Skip to content
master
Switch branches/tags
Code

Latest commit

 

Git stats

Files

Permalink
Failed to load latest commit information.
Type
Name
Latest commit message
Commit time
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Similarity Py Build Status Coverage Status

Installation

Install the package

    $ pip install similarityPy

Dependencies

enum

Distance Algorithms

 Numerical Data

  Norm

      Data: [{x, y, z}]
      Formula: alt tag

  Manhattan Distance

      Data: [{a, b, c}, {x, y, z}]
      Formula: alt tag

  Euclidean Distance

      Data: [{a, b, c}, {x, y, z}]
      Formula: alt tag

  Squared Euclidean Distance

      Data: [{a, b, c}, {x, y, z}]
      Formula: alt tag

  Normalized Squared Euclidean Distance

      Data: [{a, b}, {x, y}]
      Formula: alt tag

  Chessboard Distance

      Data: [{a, b, c}, {x, y, z}]
      Formula: alt tag

  Bray Curtis Distance

      Data: [{a, b, c}, {x, y, z}]
      Formula: alt tag

  Canberra Distance

      Data: [{a, b, c}, {x, y, z}]
      Formula: alt tag

  Cosine Distance

      Data: [{a, b, c}, {x, y, z}]
      Formula: alt tag

  Correlation Distance

      Data: [{a, b, c}, {x, y, z}]
      Formula: alt tag

 Boolean Data

  Jaccard Dissimilarity

      Data: [{True,False,True}, {True,True,False}]
      Explanation:[u,v] is equivalent to alt tag, where nij is the number of corresponding pairs of elements in u and v respectively equal to i and j.

  Matching Dissimilarity

      Data: [{True,False,True}, {True,True,False}]
      Explanation:[u,v] is equivalent to (n10+n01)/Length[u], where nij is the number of corresponding pairs of elements in u and v respectively equal to i and j.

  Dice Dissimilarity

      Data: [{True,False,True}, {True,True,False}]
      Explanation:[u,v] is equivalent to alt tag, where nij is the number of corresponding pairs of elements in u and v respectively equal to i and j.

  Rogers Tanimoto Dissimilarity

      Data: [{True,False,True}, {True,True,False}]
      Explanation:[u,v] is equivalent to alt tag, where nij is the number of corresponding pairs of elements in u and v respectively equal to i and j.

  Russell Rao Dissimilarity

      Data: [{True,False,True}, {True,True,False}]
      Explanation:[u,v] is equivalent to (n10+n01+n00)/Length[u], where nij is the number of corresponding pairs of elements in u and v respectively equal to i and j.

  Sokal Sneath Dissimilarity

      Data: [{True,False,True}, {True,True,False}]
      Explanation:[u,v] is equivalent to alt tag, where nij is the number of corresponding pairs of elements in and respectively equal to i and j.

  Yule Dissimilarity

      Data: [{True,False,True}, {True,True,False}]
      Explanation:[u,v] is equivalent to alt tag, where nij is the number of corresponding pairs of elements in and respectively equal to i and j.

 String Data

  Hamming Distance

      Data: [{a, b, c}, {x, y, z}]
      Explanation:[u,v] gives the number of elements whose values disagree in u and v.

  Edit Distance

      Data: [{a, b, c}, {x, y, z}]
      Explanation:[u,v] gives the number of one-element deletions, insertions, and substitutions required to transform u to v.

  Damerau Levenshtein Distance

      Data: [{a, b, c}, {x, y, z}]
      Explanation:[u,v] gives the number of one-element deletions, insertions, substitutions, and transpositions required to transform u to v.

  Needleman Wunsch Similarity (Not Implemented Yet)

      Data: [{a, b, c}, {x, y, z}]
      Explanation:[u,v] finds an optimal global alignment between the elements of u and v, and returns the number of one-element matches.

  Smith Waterman Similarity (Not Implemented Yet)

      Data: [{a, b, c}, {x, y, z}]
      Explanation:[u,v] finds an optimal local alignment between the elements of u and v, and returns the number of one-element matches.

Testing

Run all tests:

    $ python -m unittest discover -s tests -p '*_test.py'

Start test with nose and code coverage:

    $ nosetests --with-cov  --cov-report html  --cov  similarityPy tests/