

This Document is Public

Doc.No.:EUM/TSS/DOC/13/708025Issue:v1J e-signedDate:1 June 2018WBS/DBS::

EUMETSAT Eumetsat-Allee 1, D-64295 Darmstadt, Germany Tel: +49 6151 807-7 Fax: +49 6151 807 555 http://www.eumetsat.int

This Document is Public

Document Signature Table

	Name	Function	Signature	Date
Prepared by:	Daniel Lee	Software & Data Formats Engineer		
Reviewed by:	Anders Meier Soerensen	Service Architect & Deputy Competence Area Manager		
Reviewed by:	Jörg Ackermann	Remote Sensing Expert & Team Leader Microwave		
Reviewed by:	Nicholas Coyne	Additional Data Services Manager		
Reviewed by:	Kim Hui Gaune	User Support Officer		
Reviewed by:	Kevin Marston	SOG Chairperson		
Approved by:	Joaquin Gonzalez Picazo	H/SEP		

Distribution List

Name	Organisation
As indicated in document signature table, and Simon Elliott, Carlos Cabanas, Alistair Richardson, Thomas Heinemann, Stephan Zinke, Ester Rojo.	EUMETSAT
EUMETSAT Internet site (PDF version)	EUMETSAT

This Document is Public

Document Change Record

lssue / Revision	Date	DCN. No	Summary of Changes
v1	24 October 2013		Initial version for review
v1A	12 December 2013		Added missing attributes in Table 4.
			Adjusted definition of expansion and alignment coefficients in Sections 8.10 and 8.11.
			Corrected name of VIIRS-MOD-GEO_All group from Compact VIIRS SDR.
v1B	4 April 2014		Adjusted definition of expansion and alignment coefficients in Section 8.5.
			Corrected $-\sin(lat)$ to $-\sin(lon)$ in section 8.9.
v1C	21 August 2014		Added second paragraph in 10.14 and a new section 10.14.1 Determination of Offset and Scale Factors.
			Modified the use of Fill Values in section 7.1, step 6 and step 17.
			Table 33 updated to account for actual range of instrument data.
v1D	11 November 2014		Deleted section 1.6 Open Issues
			Corrected QF3_SCAN_SDR to QF3_SCAN_RDR in section 5.2
			Corrected the dimension of Radiance and QF1_VIIRSMBANDSDR in Table 8
			Included OriginalFilename attribute in new Table 7 and in Table 10.
			Added missing PadByte1 in Table 13, Step 29.
			Added Threshold value in Table 14, Step 7 and 8
			Modified handling of scale and offset in Table 14 Step 12 and 14
			Deleted redundant Step 8 in Table 16
			Added missing QF2_SCAN_VIIRSSDRGEO in Table 16, Step 19.
			Improvements to the Radiance Representations and Conversions in section 10
			Added section 11 Fill, Mode and Quality Flag Values.
			Improvements to section 12 Parameter Values
			Editorial changes throughout the document
v1F	07 July 2015		Updated for the Imagery Resolution Band channels

	and geolocation data
16 February 2016	Updated to include VIIRS Day Night Band handling and definitions, as well as introducing the concept of Tie Point Zone Groups.
	Correction of algorithm for creation and reconstruction of the Groups in the Data_Products group.
	Editorials and clarifications.
11 April 2016	Accepted changes from v1G.
25 January 2018	Updates to signature table.
	Release version for CVIIRS 2.0.x.
	Update to current state of EARS-VIIRS processing.
	Editorials and clarifications.
	Add TD 14, CVIIRS Software User Manual to Reference Documents
	Remove sections 2 and 3
	Reconstruct missing references in change log
	Typographical errors fixed
	16 February 2016 11 April 2016 25 January 2018

This Document is Public

Table of Contents

1	Intro	luction		a
•	1 1			3 0
	1.1	Scope		0
	1.2	Applicable Decuments	1	0
	1.3	Applicable Documents		0
	1.4	Reference Documents		0
2	1.5	Jocument Structure	C CDD Dradwat Format	0
2	Over	The VIIDO Occurring Occurrents	5 SDR Product Format	2
	2.1	The VIIRS Scanning Geometry		2
		2.1.1 M-Band and I-Band		2
	~ ~	2.1.2 Day/Night Band (DNB)		2
	2.2	The VIRS SDR Granules		4
	2.3	Geolocation Data in the Original VIIRS SDR	Product	5
	2.4	Geolocation Data in the Compact VIIRS SD	R Product1	5
		2.4.1 Tie-Point Zones		5
		2.4.2 Tie-Point Zone Groups		6
	2.5	Observation Data in the Original and Compa	act VIIRS SDR Product23	3
	2.6	HDF5 Files		5
3	Conte	ent of the Original VIIRS SDR		0
	3.1	Geolocation and Angular Data		0
	3.2	Observation Data in Original VIIRS SDR Pro	oduct34	4
	3.3	Attributes of Geolocation and Observation d	ata3	7
	3.4	Metadata		8
4	Conte	ent of the Compact VIIRS SDR		9
	4.1	Geolocation and Angular Data		9
		4.1.1 Attributes of the Geolocation and Ar	gular Data Group4	3
	4.2	Observation Data		3
		4.2.1 Attributes of the Radiance Dataset f	or M-Band, I-Band and Day/Night-Band4	5
		4.2.2 Attributes of the Observation Data C	Group	6
	4.3	All_Data		7
	4.4	Attributes of the Root Group		8
	4.5	Metadata		8
5	Steps	for Generating the Compact VIIRS SDR f	rom the Original VIIRS SDR4	9
	5.1	Generating the Geolocation and Angular Da	ta49	9
	5.2	Generating the Observation Data		3
	5.3	Generating the Metadata		5
6	Steps	for Reconstructing the Original VIIRS SD	R from the Compact VIIRS SDR	7
•	6.1	Reconstructing the Geolocation and Angula	r Data	7
	62	Reconstructing the Observation Data	6	0
	6.3	Reconstructing the Metadata	6	2
7	File N	laming Convention		4
-	71	Original VIIRS SDR File Naming Convention	6 6	4
	72	Compact VIIRS SDR File Naming Convention	n 6	5
8	Math	ematical Algorithms	6	5
U	8 1	Relative and Absolute Pixel Indices	6	5
	8.2	Tie Point Zone Indices	6	6
	0.2 8 3	HDF5 Data Array Indices	6	7
	0.0 8 /	Interpolation Parameters and Pixel Offset		7
	0.4 8 5	Scapping Geometry Corrections	0 6	، ۵
	0.0	Internelation Conditions	0.	3 0
	0.0	9.6.1 Divel Desition Internelation Condition		3 0
		0.0.1 FIXELFUSILION INTERPOLATION CONDITIO	1	3
		0.0.2 Salemite Direction Interpolation Con	גונוטוז	0
		o.o.o Solar Direction Interpolation Conditi	الال	U
	07	o.o.4 Lunar Direction Interpolation Condit	۲)	1
	0./	PUSITION CONVERSIONS	······································	1
		o.r.i Longitude, Latitude to Unit Vector		1
		o.1.∠ vector to Longitude, Latitude		1

9

10

Compact VIIRS SDR Product Format User Guide

8.8	Direction Conversions	72
	8.8.1 Azimuth Angle, Zenith Angle to Unit Vector	72
	8.8.2 Vector to Azimuth Angle, Zenith Angle	72
8.9	Reference Frame Transformations	72
	8.9.1 Pixel Centred to Earth Centred	73
	8.9.2 Earth Centred to Pixel Centred	73
8.10	Pixel Expansion Correction	73
8.11	Pixel Alignment Correction	75
8.12	Interpolation/Extrapolation	76
	8.12.1 Vector Interpolation/Extrapolation	76
	8.12.2 Direction Vector and Position Vector Midpoint	76
	8.12.3 Longitude, Latitude Interpolation/Extrapolation	77
	8.12.4 Azimuth, Zenith Angle Interpolation/Extrapolation	77
8.13	Extrapolation of Parameters for Tie Points	77
8.14	Radiance Representations and Conversions	78
	8.14.1 Determination of Dual-Scale Offset and Scale Factors	79
	8.14.2 Single-Scale to Dual-Scale Radiance Conversion	79
	8.14.3 Dual-Scale to Single-Scale Radiance Conversion	80
	8.14.4 Single-Scale to Floating Point Radiance Conversion	80
	8.14.5 Floating Point to Single-Scale Radiance Conversion	80
	8.14.6 Dual-Scale to Floating Point Radiance Conversion	80
	8.14.7 Floating Point to Dual-Scale Radiance Conversion	81
	8.14.8 Floating Point to Custom Floating Point Radiance Conversion	81
8.15	Visible channels Radiance to Reflection conversion	84
8.16	Infrared channels Radiance to Brightness Temperature conversion	85
8.17	Reflectance Conversion from Floating Point to Integer	86
8.18	Brightness Temperature Conversion from Floating Point to Integer	
Fill, N	Node and Quality Flag Values	88
9.1	VIIRS Pixel Level Fill Values	
9.2	Other VIIRS Fill Values	
9.3	VIIRS Mode Values	
9.4	VIIRS Quality Flag Values	91
Para	meter Values	95
10.1	Tie Point Zone Parameter Values	95
10.2	Typical Reflectance Parameter Values	
10.3	Typical Brightness Temperature Parameter Values	99
10.4	Typical Radiance Range Values	100
10.5	Typical Radiance Representation Conversion Parameter Values	101

This Document is Public

List of Figures

Figure 1 VIIRS M-Band scan and aggregation zone geometry shown for one half of a full scan. A full
scan has 3200 pixels along scan and 16 pixels along track
Figure 2 DNB Aggregation Zone Ground Coverage (Nadir to End-of-Scan)14
Figure 3 Layout of the Geolocation data in the original VIIRS SDR Product, based on the example of
one granule of the VIIRS M-Band
Figure 4 Tie Point Zone Layout. The Compact VIIRS SDR Product stores the six geolocation and
angular parameters only in the four corner points A, B, C and D.
Figure 5 Example of Tie-Point Zone Groups
Figure 6 Example of an instrument scan of the size 2005x25 pixels divided in four Tie-Point Zone
Groups with indices (iscan, itrack) = (0.0), (1.0), (0.1) and (1.1). Each group is characterised by the
location (p _{scan} , p _{track}) of its upper left corner, the number of Tie-Point Zones in the group (N _{zones}
scan, Nzones track) and the number of pixels in each Tie-Point Zone (Zscan, Ztrack),
Figure 7 Aggregation Zones and Tie-Point Group Zones for the VIIRS Day/Night Band
Figure 8 Aggregation Zone and Tie Point Zone Layout for M- and I-Band. The discontinuity in the
pixel size at the Aggregation Zone boundary does not impact the interpolation within the Tie-
Point Zones as the Aggregation Zone boundary coincides with a Tie-Point Zone boundary
Figure 9 Geolocation and Angular parameter Lavout in the Compact VIIRS SDR Product for the M-
and I-Band
Figure 10, Layout of the Observation data in the Compact VIIRS SDR Product, based on the example
of one granule of VIIRS M-Band data
Figure 11 Layout of the Observation data in the Compact VIIRS SDR Product based on the example
of one granule of VIIRS Dav/Night-Band data
Figure 12 HDE5 file structure for the Original M-Band VIIRS SDR and the Compact M-Band VIIRS
SDR 26
Figure 13 HDF5 file structure for the Original I-Band VIIRS SDR and the Compact I-Band VIIRS SDR 27
Figure 14 HDF5 file structure for the Original M- and I-Band VIIRS SDR and the Compact M- and I-
Band VIIRS SDR
Figure 15 HDF5 file structure for the Original DNB VIIRS SDR and the Compact DNB VIIRS SDR29
Figure 16 File Name Structure
Figure 17 Definition of the Pixel Offset
Figure 18 View along the track direction of the VIIRS scanning geometry
Figure 19 View of the VIIRS scanning geometry in a plane perpendicular to the track direction and
containing the line through P_1 , P_2 and the satellite introduced in Figure 18
Figure 20 Radiance Representation Conversions
Figure 21 Determination of the Dual-Scale Offset and Scale Factors
Figure 22 Encoding layout of IEEE 754 32 bit floating point numbers, precision 24 bits
Figure 23 Encoding layout of N-bit (17) bit floating point numbers, example, precision 13 bits

This Document is Public

List of Tables

Table 1 DNB Aggregation (Nadir to End-of-Scan)	13
Table 2 Parameters characterising the Tie-Point Zone Groups for the example of an instrument	scan
of the size 2005x25 pixels divided in four Tie-Point Zone Groups as shown in Figure 6	18
Table 3 Parameters characterising the proposed VIIRS Day/Night Band Tie-Point Zone Groups	19
Table 4 Parameters characterising the VIIRS M-Band Tie-Point Zone Groups	21
Table 5 Observation data in the Original and the Compact VIIRS SDR Product based on 3	2 bit
floating point, 16 bit integer Single Scale and 16 bit integer Dual Scale	25
Table 6 Geolocation Data in Original VIIRS SDR Product	30
Table 7 Observation Data in Original VIIRS SDR Product	34
Table 8 HDF5 Attributes of Root Group of Geolocation and Observation data	
Table 9 HDF5 Datasets in Group /All Data/VIIRS-MOD-GEO All /All Data/VIIRS-IMG-GEO All	and
/All Data/VIIRS-DNB-GEO All	39
Table 10 HDF5 Attributes of Group /All Data/VIIRS-MOD-GE0 All /All Data/VIIRS-IMG-GE0	All
and /All_Data/VIIRS-DNB-GEO_All	
Table 11 HDF5 Datasets in Group /All Data/VIIRS-Ch-SDR All	43
Table 12 HDF5 Attributes of Dataset /All_Data/VIIRS-Ch-SDR_All/Radiance	45
Table 13 HDF5 Attributes of Group /All Data/VIIRS-Ch-SDR All	46
Table 14 HDF5 Datasets in Group /All Data	47
Table 15 HDF5 Attributes of Root Group /	48
Table 16 Steps for generating the geolocation data of the Compact VIIRS SDR Product	49
Table 17 Steps for generating the observation data of the Compact VIIRS SDR Product	53
Table 18 Steps for generating the metadata of the Compact VIIRS SDR Product	55
Table 19 Steps for reconstructing declocation data of the Original VIIRS SDR Product	
Table 20 Steps for reconstructing the observation data of the Original VIIRS SDR Product	61
Table 20 Steps for reconstructing the metadata of the Original VIIRS SDR Product	63
Table 22 Fill Values manning between Original VIIRS DNB SDR and Compact VIIRS DNB SDI	00 ⊋ for
Radiance Dataset	84
Table 23 Parameters used fir Reflectance calculation	04
Table 24 Parameters used fir Rightness Temperature calculation	
Table 25 Summary of the Pixel Level Fill Values relevant to the Compact VIIRS SDR product form	nat 88
Table 26 Summary of the other VIIRS Fill Values relevant to the Compact VIIRS SDR product for	mat 80
Table 27 ModeScan Values	80
Table 28 ModeGran Values	03 00
Table 20 OF1 SCAN VIIDSSDDGEO Quality Elag Values	
Table 29 QL1_SCAN_VIIRSSDIGEO Quality Flag Values	91
Table 30 QI 2_SCAN_VIINSSDINGEO Quality Flag Values	91
Table 31 QF2_VIINSSDRGEO Quality Flag Values	92 Elog
Table 32 QFT_VIRSINDAINDSDR, QFT_VIRSIDAINDSDR allu QFT_VIRSDINDSDR Quality	riay 02
Table 22 OF2 SCAN SDP Quality Flag Values	92
Table 35 QF2_SCAN_SDR Quality Flag Values.	93 02
Table 34 QF3_SCAN_RDR Quality Flag Values.	93
Table 35 QF4_SCAN_SDR Quality Flag Values.	94
Table 30 QF5_GRAN_DAD_DETECTOR Quality Flag values.	94
Table 37 The point 20the parameter values	90 Dond
Table 38 Equivalent width and band-integrated solar irradiance for the TT VIRS visible M-t	sano
Channels	00
TADIE 39 COEFFICIENTS USED FOR THE CENTRAL WAVELENGTRS AND THE DAND COFFECTIONS TO CONVERT E	
view redienees to brightness temperatures	99 Earth
view radiances to brightness temperatures.	99 Earth 100
view radiances to brightness temperatures Table 40 Typical Radiance Range Values for M3, M4, M5, M7 and M13	99 Earth 100 101
view radiances to brightness temperatures Table 40 Typical Radiance Range Values for M3, M4, M5, M7 and M13 Table 41 Offset and scale factors with corresponding integer and floating point ranges and thresh	99 Earth 100 101 iolds

This Document is Public

1 INTRODUCTION

1.1 Purpose

During the implementation of the EUMETSAT provided VIIRS Regional Service (EARS-VIIRS, described in [RD-5]) a need was identified to develop a Compact VIIRS SDR Product Format (Level 1) to achieve a cost efficient distribution of the VIIRS data via EUMETCast, EUMETSAT's satellite based data distribution system.

This document specifies the Compact VIIRS SDR Product Format and how it relates to the Original VIIRS SDR Product Format developed as part of the Suomi-NPP and JPSS Programmes. It provides guidelines on how to construct the Compact product format from the Original product format and on how to reconstruct the Original product format from the Compact product format.

1.2 Scope

The document has been prepared as a product format specification, and as a guide for users and developers of tools for handling, visualising and processing the data from the VIIRS Regional Service.

The main use case is expected to be that VIIRS data distributed via EUMETCast in the Compact SDR format is converted back to the Original VIIRS SDR format for further processing and visualisation by the service users. However, it is also expected that tools will be developed for visualising and utilising the data directly from the Compact VIIRS SDR format without first reconstructing the Original VIIRS SDR format.

In combination with the relevant S-NPP/JPSS and HDF5 documentation this document provides sufficient level of detail for the development of tools capable of reading and writing the Compact VIIRS SDR format. Additionally, EUMETSAT provides software for converting between the two product formats, called CVIIRS. Further information about this software can be found in [RD-6].

This Document is Public

1.3 Applicable Documents

[AD-1]	Joint Polar Satellite System (JPSS) Common Data	474-00001-01-B0200,
	Format Control Book - External	August 23, 2016, 0200C
	Volume I - Overview	
[AD-2]	Joint Polar Satellite System (JPSS) Common Data	474-00001-03-B0124,
	Format Control Book - External	October 02, 2014, 0124C
	Volume III - SDR/TDR Formats	
[AD-3]	Joint Polar Satellite System (JPSS) Common Data	474-00001-05-B0124
	Format Control Book – External	October 02, 2014, 0124C
	Volume V - Metadata	

1.4 Reference Documents

[RD-1]	Compact VIIRS SDR - Representation of	EUM/TSS/REP/13/710728
	Observations	v1, 06/09/2015
[RD-2]	Joint Polar Satellite System (JPSS) Visible Infrared	E/RA-00004, December 18,
	Imaging Radiometer Suite (VIIRS) Sensor Data	2013 Rev. A
	Record (SDR) Geolocation Algorithm Theoretical	
	Basis Document (ATBD)	
[RD-3]	The HDF Group, Champaign, IL, USA. HDF5	Release 1.8.8.
	User's Guide	
[RD-4]	IEEE Standard for Floating-Point Arithmetic	IEEE Standard 754, 2008
[RD-5]	TD 14 - EUMETSAT Advanced Retransmission	EUM/OPS/DOC/06/0467
	Service Technical Description	
[RD-6]	CVIIRS - Software User Manual	EUM/TSS/SUM/14/784457

1.5 Document Structure

- Section 1 General information (this section).
- Section 2 Provides an overview of both the Original and the Compact VIIRS SDR Product Format.
- Section 3 Describes the detailed content of the Original VIIRS SDR Product Format with cross references to the Compact VIIRS SDR Product Format.
- Section 4 Describes the detailed content of the Compact VIIRS SDR Product Format.
- Section 5 Lists the steps required for generating the Compact VIIRS SDR from the Original VIIRS SDR.
- Section 6 Lists the steps required for reconstructing the original VIIRS SDR from the Compact VIIRS SDR.
- Section 7 Defines the Product file naming conventions.

- Section 88 Details the mathematical algorithms required for generating and applying the geolocation data of the Compact VIIRS SDR.
- Section 9 Provides Fill, Mode and Quality Flag Values.
- Section 10 Provides typical parameters values for the mathematical algorithms.

This Document is Public

2 OVERVIEW OF THE ORIGINAL AND THE COMPACT VIIRS SDR PRODUCT FORMAT

This section explains the VIIRS scanning geometry and provides an overview of the Original and the Compact VIIRS SDR Product format.

2.1 The VIIRS Scanning Geometry

2.1.1 M-Band and I-Band¹

The VIIRS instrument has a wide swath of 3000 km and performs a scan every 1.786 s. Each scan contains 16 M-Band scan lines and 32 I-Band Scan lines. To ensure a more uniform pixel size across the swath, the VIIRS instrument performs a pixel aggregation in the scan direction. In the central 3:1 Aggregation Zone below the spacecraft three instrument pixels are aggregated to one pixel at the product level, in the intermediate 2:1 Aggregation Zone two instrument pixels are aggregated to one pixel at the product level, and in the outer 1:1 Aggregation Zone each instrument pixel results in one pixel at the product level. The result is 3200 pixels in the scan direction for the VIIRS M-bands and 6400 for the VIIRS I-Bands at the product level.

Figure 1 VIIRS M-Band scan and aggregation zone geometry shown for one half of a full scan. A full scan has 3200 pixels along scan and 16 pixels along track.

2.1.2 Day/Night Band (DNB)

While in the M-Band and I-Band data there are 3 aggregation zones on both left and right from nadir, in the DNB there are 32 aggregation zones on both sides of nadir.

The DNB has the same along-track extent on the Focal Plane Array (FPA) as all the other bands; however where the other bands have 16 or 32 along-track detectors the DNB has 672

¹ Please note, that in the following text, usually both M- and I-Band are mentioned, as the CVIIRS tool can handle both. For the time being, though, EUMETSAT disseminates the M-Band data only.

This Document is Public

"sub-pixel" detectors. When scanning near nadir 16 pixels per frame are constructed on-board from an aggregation of 42 along-track sub-pixel detectors each. These 16 pixels coincide with the 16 ideal 'M' band pixels only at nadir. As the sensor scans away from nadir the number of sub-pixel detectors in the aggregation is reduced to eliminate the bow-tie effect and to keep the field of view on the ground very nearly constant at 0.742 km. This scheme involves a total of 32 different aggregation modes, each of which is used on both sides of nadir.

Table 1 shows how the DNB sub-pixel detectors are aggregated from nadir to end of scan:

Aggregation Mode from Nadir	Number of S Pix	Number of Pixels per Mode	
	Track Scan		
	Direction	Direction	104
1	42	66	184
2	42	64	/2
3	41	6Z	88
4 5	20	59	72 80
5	39	53	80 72
7	30	J2 /0	64
, 8	36	45	64
9	35	40	64
10	34	40	64
11	33	38	64
12	32	35	80
13	31	33	56
14	30	30	80
15	29	28	72
16	28	26	72
17	27	24	72
18	27	23	32
19	26	22	48
20	26	21	32
21	25	20	48
22	25	19	40
23	24	18	56
24	24	17	40
25	23	16	72
26	23	15	24
27	22	15	32
28	22	14	64
29	21	13	64
30	21	12	64
31	20	12	16
32	20	11	80
Total			2032

Table 1 DNB Aggregation (Nadir to End-of-Scan)

Note, that each scan of VIIRS Day/Night Band contains 4064x16 pixels where a scan of the VIIRS M-Band contains 3200x16 pixels.

Figure 2 illustrates where these 32 aggregation modes project to the ground this half of a scan. The S/C is assumed to be at its nominal 833km altitude and the orbit inclination is

This Document is Public

assumed to be zero degree, and the sub-spacecraft point is assumed to be at latitude/longitude (0, 0).

Figure 2 DNB Aggregation Zone Ground Coverage (Nadir to End-of-Scan)

2.2 The VIIRS SDR Granules

The VIIRS SDR product is organised in granules, each consisting of 48 VIIRS instrument scans in a single file. The granule boundaries and the granule (file) naming and numbering are accurately defined, i.e. granules generated by different processing centres are aligned and identically named.

For the VIIRS M-Band a granule with 48 instrument scans contains 768 lines along the track. Similarly for the VIIRS I-Band a granule with 48 instrument scans contains 1536 lines along the track.

For VIIRS DNB a granule contains as well 48 instrument scans with 768 lines along the track.

Please note that every so often, one granule contains only 47 instrument scans. This is to account for the necessary alignment of the scanning duration to the granule grid.

This Document is Public

2.3 Geolocation Data in the Original VIIRS SDR Product

In the Original VIIRS SDR Product the geolocation data is provided in full for each pixel. It is organised in separate two-dimensional HDF5 datasets for each geolocation parameter as shown in Figure 3 for the example of the VIIRS M-Band.

Figure 3 Layout of the Geolocation data in the original VIIRS SDR Product, based on the example of one granule of the VIIRS M-Band

2.4 Geolocation Data in the Compact VIIRS SDR Product

In the Compact VIIRS SDR format, geolocation data is stored only for the corner points, i.e. the Tie-Points, of each Tie-Point Zone. Interpolation functions are defined for re-constructing the geolocation data for all pixels within the Tie-Point Zone.

2.4.1 Tie-Point Zones

In the Compact VIIRS SDR Product the geolocation data and viewing angles are stored only at so-called Tie-Points, shown as point A, B, C and D in Figure 4 for a single Tie-Point Zone for the example of the M-Band. The Tie Point Zone has been defined to have a size of (16x16) M-Band pixels, (32x32) I-Band pixels and (variable x 16) DNB pixels. Interpolation functions are defined to interpolate the data to reconstruct the geolocation and viewing angles for each pixel. This is addressed in more detail in the subsequent sections of this document.

Note that the Tie-Points A, B, C and D shown in Figure 4 are located at the corners of the 16x16 M-Band pixel Tie-point Zone. Consequently the same Tie-Points can be used to reconstruct the full set of geolocation data for both the 16x16 M-Band pixels and the 32x32 I-Band pixels contained in the Tie-point Zone.

The process of generating the six parameters corresponding to the four Tie Point Zone corner points A, B, C and D uses exactly the same interpolation functions that a user would use to reconstruct the parameters at each pixel centre starting from the Tie Points. However, in this

This Document is Public

case the functions are set up to extrapolate the parameters from the centre of the four corner pixels to the four Tie Point Zone corner points A, B, C and D. This is also addressed in more detail in the subsequent sections of this document.

Figure 4 Tie Point Zone Layout. The Compact VIIRS SDR Product stores the six geolocation and angular parameters only in the four corner points A, B, C and D.

2.4.2 Tie-Point Zone Groups

Due to the irregularity of the DNB aggregation zones Tie-Point Zones need to be organized in Tie-Point Zone Groups.

A Tie-Point Zone Group is characterised by the following principles:

- 1. A Tie-Point Zone Group is a contiguous group in both scan and track direction of Tie-Point Zones, all with the same size (for example 16x16, 16x24 or 14x16 pixels in the scan and track direction respectively);
- 2. All neighbouring Tie-Point Zones within a Tie-Point Zone Group share their common corner Tie-Points, meaning that the geolocation data is stored only once for those shared Tie-Points;
- 3. Neighbouring Tie-Point Zones on the boundary between Tie-Point Zone Groups do not share Tie-Points, meaning that the geolocation data is stored separately for those Tie-Points;
- 4. A Tie-Point Zone Group may extend over multiple Aggregation Zones if the Aggregation Zones all share the same level of pixel aggregation in the track direction (for example Aggregation Zone A and B, but not Aggregation Zone B and C in Figure 5);

This Document is Public

With this concept of Tie-Point Zone Groups and the listed principles, we can cover M-Band, I-Band and DNB. This covers both the logic and performance of the interpolation scheme as well as the storage logic for the geolocation data.

Figure 5 Example of Tie-Point Zone Groups.

Figure 6 Example of an instrument scan of the size 2005x25 pixels divided in four Tie-Point Zone Groups with indices $(i_{scan}, i_{track}) = (0,0), (1,0), (0,1)$ and (1,1). Each group is characterised by the location (p_{scan}, p_{track}) of its upper left corner, the number of Tie-Point Zones in the group $(N_{zones, scan}, N_{zones, track})$ and the number of pixels in each Tie-Point Zone (Z_{scan}, Z_{track}) .

This Document is Public

Scan Direction							
TPZ Group Scan Index	Number of TPZs in Group Scan Direction	TPZ Size Scan Direction (pixels)	TPZ Group Location Scan Compact	TPZ Group Location Scan (pixel index)	TPZ Group Compact Size Scan Direction	TPZ Group Size Scan Direction (pixels)	
k _{group, scan}	N _{zones,scan}	Z _{scan}	p _{scan} ,compact	p _{scan}	N _{scan} + 1	$N_{scan} \cdot Z_{scan}$	
0	200	10	0	0	201	2000	
1	1	5	201	2000	2	5	
Total Size in Scan Direction2032005							
2	Total number	of TPZ Groups in	Scan direction	N _{groups,scan}			
		т	rack Directio	n			
TPZ Group	Number of	TPZ Size	TPZ Group	TPZ Group	TPZ Group	TPZ Group	
Track Index	TPZs	Track	Location	Location	Compact	Size	
	in Group	Direction	Track	Track	Size Track	Track	
	Track	(pixels)	Compact	(pixel index)	Direction	Direction	
	Direction					(pixels)	
$k_{group,track}$	Nzones,track	Z_{track}	Ptrack,compact	p track	N _{track} + 1	N _{track} · Z _{track}	
0	2	10	0	0	3	20	
1	1	5	3	20	2	5	
	Total Size in Track Direction525						
2	2 Total number of TPZ Groups in Track direction N _{eroups,track}						

Table 2 Parameters characterising the Tie-Point Zone Groups for the example of an instrument scan of the size 2005x25 pixels divided in four Tie-Point Zone Groups as shown in Figure 6.

For the VIIRS Day/Night Band the Aggregation Zones, based on Table 1 extracted from [RD-2], and the Tie-Point Group Zones are shown in Figure 7. Technically, it would have been possible to combine the two Aggregation Zones 32 and 31, 30 and 29, 28 and 27, and 26 and 25, respectively, into one Tie-Point Zone Group each. However, for the sake of simplicity, a one to one relationship between the VIIRS Day/Night Band Aggregation Zones and the Tie-Point Zone Groups is kept.

This Document is Public

Figure 7 Aggregation Zones and Tie-Point Group Zones for the VIIRS Day/Night Band.

The detailed layout of the VIIRS Day/Night Band Tie-Point Zone Groups is given in Table 3 below. Note that the shaded part of the table is present in the HDF5 compact product file.

Scan Direction									
TPZ	Aggre-	Number of	TPZ Size	TPZ	TPZ	TPZ	TPZ		
Group	gation	TPZs	Scan	Group	Group	Group	Group		
Scan Index	Mode	in Group	Direction	Location	Location	Compact	Size		
	from Nadir	Scan	(pixels)	Scan	Scan	Size	Scan		
		Direction		Compact	(pixel	Scan	Direction		
					index)	Direction	(pixels)		
igroup, scan	-	N _{zones,scan}	Z _{scan}	pscan,compact	p _{scan}	$N_{scan} + 1$	$N_{scan}\!\!\cdot Z_{scan}$		
0	32	5	16	0	0	6	80		
1	31	1	16	6	80	2	16		
2	30	4	16	8	96	5	64		
3	29	4	16	13	160	5	64		
4	28	4	16	18	224	5	64		
5	27	2	16	23	288	3	32		
6	26	1	24	26	320	2	24		

Table 3 Parameters characterising the proposed VIIRS Day/Night Band Tie-Point Zone Groups

This Document is Public

	25	0		A 4		20		211	4	72
1	25	3		24		28		344	4	72
8	24	2		20		32		416	3	40
9	23	4		14		35		456	5	56
10	22	2	20			40		512	3	40
11	21	3		16		43		552	4	48
12	20	2		16		47		600	3	32
13	19	3		16		50		632	4	48
14	18	2		16		54		680	3	32
15	17	3		24		57		712	4	72
16	16	3		24		61		784	4	72
17	15	3		24		65		856	4	72
18	14	5		16		69		928	6	80
19	13	4		14		75		1008	5	56
20	12	5		16		80		1064	6	80
21	11	4		16		86		1144	5	64
22	10	4		16		91		1208	5	64
23	9	4		16		96		1272	5	64
24	8	4		16		101		1336	5	64
25	7	4		16		106		1400	5	64
26	6	3	24			111		1464	4	72
27	5	5	16			115	1536		6	80
28	4	3	24			121	1616		4	72
20	3	1	24			121		1688	5	88
30	2	3		24		120		1776	1	72
30	1	23		2 4 0		134 184		19/9		184
31	1	23		0 Q		158		2032	24	184
32	2	23		0		190	130 2032 182 2216		24	72
33	Z	3		24		102		2210	4	12
03 Tatal Cina in	32 Saar Dinaatia	5		10		510		3984	0	80
Total Size in	Scan Directio	on C	TD7 C		C		NT		316	4064
04	64 I otal number of TPZ Groups in Scan direction N _{groups,scan}									
Track Directi	Track Direction									
TPZ Group	Number	of	TPZ	Size	TPZ	Group	TPZ	Group	TPZ Group	p TPZ Group
Track Index	TPZs		Track		Locatio	on	Loca	tion	Compact	Size
	in Group		Direction	n	Track		Trac	k	Size Tracl	k Track
	Track		(pixels)		Compa	act	(pixe	el index)	Direction	Direction
	Direction		· /		1					(pixels)
igroup,track	N _{zones,track}		Z _{track}		p _{track,con}	mpact	p _{track}		N _{track} + 1	$N_{track} \cdot Z_{track}$
0	1		16		0		0		2	16
Total Size in	Track Directi	ion							2	16
1 Total number of TPZ Groups in Track direction Narouns track								1		

For the VIIRS M- and I-Band geolocation there will be only one Tie Point Zone Group, each covering the full scan and containing 200 Tie-Point Zones, each of the size of 16x16 M-Band pixels or 32x32 I-Band pixels, covering a full VIIRS scan.

This Document is Public

Figure 8 Aggregation Zone and Tie Point Zone Layout for M- and I-Band. The discontinuity in the pixel size at the Aggregation Zone boundary does not impact the interpolation within the Tie-Point Zones as the Aggregation Zone boundary coincides with a Tie-Point Zone boundary.

For the M-Band the detailed layout of the VIIRS M-Band Tie-Point Zone Groups is given in Table 4. Note that the shaded part of the table is intended for inclusion in the HDF5 compact product file.

	Scan Direction							
TD7 Current	Numerie eine eff		TD7 Current	TDZ Current	TDZ Caracia	TD7 Current		
TPZ Group	Number of	IPZ Size	TPZ Group	TPZ Group	TPZ Group	TPZ Group		
Scan Index	TPZs	Scan Location Location Compact Size						
	in Group	in Group Direction Scan Scan Size Scan						
	Scan	(pixels)	Compact	(pixel index)	Scan	Direction		
	Direction				Direction	(pixels)		
İgroup, scan	N_{scan}	Z _{scan}	P scan,compact	p _{scan}	N _{scan} + 1	$N_{scan} \cdot Z_{scan}$		
0	200	16	0	0	201	3200		
	Total Size in Scan Direction2013200							
1	Total number	of TPZ Groups in	Scan direction	N _{groups,scan}				

Table 4 Parameters characterising the VIIRS M-Band Tie-Point Zone Groups

Track Direction								
TPZ Group Track Index	Number of TPZs in Group Track Direction	TPZ Size Track Direction (pixels)	TPZ Group Location Track Compact	TPZ Group Location Track (pixel index)	TPZ Group Compact Size Track Direction	TPZ Group Size Track Direction (pixels)		
İgroup,track	Ntrack	Ztrack	Ptrack,compact	Ptrack	N _{track} + 1	N _{track} · Z _{track}		
0	1	16	0	0	2	16		
	Total Size in Track Direction 2 16							
1	1 Total number of TPZ Groups in Track direction N _{groups,track}							

This Document is Public

The resulting layout of the parameters within the Compact VIIRS SDR Product Format for the M-Band is shown in Figure 9. Each parameter is stored in an HDF5 array of the size 96x201. This corresponds to 200 Tie Point Zones for each of the 48 scans.

N_{zones,scan} = 200 Tie Point Zones

Figure 9 Geolocation and Angular parameter Layout in the Compact VIIRS SDR Product for the M- and I-Band.

Note that for neighbouring Tie Point Zones within one Tie Point Zone Group across the scan and track direction, the corner points are shared and the parameters are only stored once in the Compact VIIRS SDR Product. From comparing Figure 8 and Figure 9 it can be seen that the corner points B and C of the first Tie Point Zone in the Scan are identical to the corner points A and D respectively of the second Tie Point Zone. Corner points between individual scans are not shared since they are not identical due to the bow tie effect of the VIIRS scanning geometry.

This Document is Public

From Figure 8 it can be seen that there is a discontinuity in the pixel size at the Aggregation Zone boundary. However, this does not impact the interpolation scheme as all Aggregation Zone boundaries coincide with a Tie-Point Zone boundary.

2.5 Observation Data in the Original and Compact VIIRS SDR Product

Common to the Original VIIRS SDR and the Compact VIIRS SDR is that all the observation data of a granule is stored in separate two dimensional HDF5 datasets for each channel and representation. The dataset size is 768x3200 for an M-Band channel and 1536x6400 for an I-Band Channel; for the DNB the dataset size is 768x4064.

The layout of the Compact VIIRS SDR product observations is shown in Figure 10 for M-Band, and in Figure 11 for DNB.

Figure 10 Layout of the Observation data in the Compact VIIRS SDR Product, based on the example of one granule of VIIRS M-Band data.

This Document is Public

Figure 11 Layout of the Observation data in the Compact VIIRS SDR Product, based on the example of one granule of VIIRS Day/Night-Band data.

The main differences between the Observation data contained in the Original M-Band or I-Band VIIRS SDR and in the Compact M-Band or I-Band VIIRS SDR are, that where the Original M-Band or I-Band VIIRS SDR contains Radiances, Reflectances and Brightness Temperatures, the Compact M-Band or I-Band VIIRS SDR contains only Radiances, and that where the Original M-Band or I-Band VIIRS SDR makes use of both floating point and integers for storing the values, the Compact M-Band or I-Band VIIRS SDR only uses integers. This is shown in Table 5.

Please note, that due to the high dynamic range of the Day/Night Band, the representation of the radiances in the Compact DNB VIIRS SDR is through custom floating point numbers. More details on this are available in section 8.14.8.

Moreover, the Compact M-Band or I-Band VIIRS SDR uses a dual-scale representation for storing Radiance values as 16 bit unsigned integers. It is based on two offset and scale factor sets, one for low radiance values and one for high radiance values. The representation thereby matches the characteristics of the VIIRS dual gain channels and ensures a higher accuracy of the radiance values.

The Compact M-Band or I-Band VIIRS SDR contains supporting parameters for reconstructing both the Reflectances and Brightness Temperatures to an accuracy well within the instrument noise. A separate document is available demonstrating the performance of the reconstruction of the Reflectances and Brightness Temperatures ([RD-1]).

This Document is Public

Original VIIRS SDR						
Ch	Radiance	Reflectance	Bright.Tem.			
M1	16 bit uint	16 bit uint				
M2	16 bit uint	16 bit uint				
M3	32 bit float	16 bit uint				
M4	32 bit float	16 bit uint				
M5	32 bit float	16 bit uint				
M6	16 bit uint	16 bit uint				
M7	32 bit float	16 bit uint				
M8	16 bit uint	16 bit uint				
M9	16 bit uint	16 bit uint				
M10	16 bit uint	16 bit uint				
M11	16 bit uint	16 bit uint				
M12	16 bit uint		16 bit uint			
M13	32 bit float		32 bit float			
M14	16 bit uint		16 bit uint			
M15	16 bit uint		16 bit uint			
M16	16 bit uint		16 bit uint			
11	16 bit uint	16 bit uint				
12	16 bit uint	16 bit uint				
13	16 bit uint	16 bit uint				
14	16 bit uint		16 bit uint			
15	16 bit uint		16 bit uint			
DNB	32 bit float					

Table 5 Observation data in the Original and the Compact VIIRS SDR Product based on 32 bitfloating point, 16 bit integer Single Scale and 16 bit integer Dual Scale.

Cor	Compact VIIRS SDR				
Ch	Radiance				
M1	16 bit uint				
M2	16 bit uint				
M3	16 bit uint				
M4	16 bit uint				
M5	16 bit uint				
M6	16 bit uint				
M7	16 bit uint				
M8	16 bit uint				
M9	16 bit uint				
M10	16 bit uint				
M11	16 bit uint				
M12	16 bit uint				
M13	16 bit uint				
M14	16 bit uint				
M15	16 bit uint				
M16	16 bit uint				
11	16 bit unt				
12	16 bit unt				
13	16 bit unt				
14	16 bit unt				
	n bit floot				

Single Scale Representation Dual Scale Representation

2.6 HDF5 Files

Single Gain Channel

Dual Gain Channel

Three Gain Channel

The Original VIIRS SDR data product is separated in individual HDF5 files for each channel and for the geolocation data. The Compact VIIRS SDR combines all M-Band, I-Band or DNB data in one HDF5 file each² while maintaining the HDF5 group names consistent with the Original VIIRS SDR, see Figure 12, Figure 13, Figure 14 and Figure 15 below.

² Please note, that the Compact VIIRS SDR allows a variant where M-Band and I-Band data are present in one file.

Figure 12 HDF5 file structure for the Original M-Band VIIRS SDR and the Compact M-Band VIIRS SDR.

This Document is Public

VIIRS SDR							
I-Band Geolocation data	HDF5 File						
/All_Data/VIIRS-IMG /Data_Products	-GEO_All						
I1 Observations	HDF5 File						
/All_Data/VIIRS-I1-S /Data_Products	DR_All						
I2 Observations	HDF5 File						
/All_Data/VIIRS-I2-S /Data_Products	DR_All						
•							
I5 Observations	HDF5 File						
/All_Data/VIIRS-I5-S /Data_Products	DR_AII						

Compact VIIRS SDR	R
All data HDI	F5 File
/AII_Data/VIIRS-IMG-GEO_AII /AII_Data/VIIRS-I1-SDR_AII /AII_Data/VIIRS-I2-SDR_AII /AII_Data/VIIRS-I3-SDR_AII /AII_Data/VIIRS-I4-SDR_AII /AII_Data/VIIRS-I5-SDR_AII	

Figure 13 HDF5 file structure for the Original I-Band VIIRS SDR and the Compact I-Band VIIRS SDR.

HDF5 File

Compact VIIRS SDR Product Format User Guide

VIIRS SI	DR		Compact VII	RS SDR
M-Band Geolocation data	HDF5 File		All data	HDF
/All_Data/VIIRS-MOD-GE /Data_Products	EO_All		/All_Data/VIIRS-IM	GEO_AII
I-Band Geolocation data	HDF5 File		/AII_Data/VIIRS-M2 /AII_Data/VIIRS-M3	-SDR_All
/All_Data/VIIRS-IMG-GE /Data_Products	O_All		/AII_Data/VIIRS-M4 /AII_Data/VIIRS-M5 /AII_Data/VIIRS-M6	-SDR_AII -SDR_AII -SDR_AII
M1 Observations	HDF5 File		/AII_Data/VIIRS-M7 /AII_Data/VIIRS-M8	-SDR_All -SDR_All
/All_Data/VIIRS-M1-SDR /Data_Products	_AII		/AII_Data/VIIRS-M9 /AII_Data/VIIRS-M1 /AII_Data/VIIRS-M1	-SDR_AII 0-SDR_AII 1-SDR_AII
M2 Observations	HDF5 File		/All_Data/VIIRS-M1 /All_Data/VIIRS-M1	2-SDR_AII 3-SDR_AII
/All_Data/VIIRS-M2-SDR /Data_Products	_AII		/AII_Data/VIIRS-M1 /AII_Data/VIIRS-M1 /AII_Data/VIIRS-M1 /AII_Data/VIIRS-I1-5	4-SDR_AII 5-SDR_AII 6-SDR_AII SDR_AII
•			/All_Data/VIIRS-I2-S /All_Data/VIIRS-I3-S	SDR_AII SDR_AII
M16 Observations	HDF5 File	_	/All_Data/VIIRS-I4-S /All_Data/VIIRS-I5-S	SDR_AII SDR_AII
/All_Data/VIIRS-M16-SD /Data_Products	R_All		/Data_Products	
I1 Observations	HDF5 File			
/All_Data/VIIRS-I1-SDR_ /Data_Products	All			
I2 Observations	HDF5 File	_		
/All_Data/VIIRS-I2-SDR_ /Data_Products	All			
I5 Observations	HDF5 File			
/All_Data/VIIRS-I5-SDR_ /Data_Products	All			

Figure 14 HDF5 file structure for the Original M- and I-Band VIIRS SDR and the Compact Mand I-Band VIIRS SDR.

HDF5 File

Compact VIIRS SDR Product Format User Guide

This Document is Public

VIIRS SDR							
DNB Geolocation data	HDF5 File						
/All_Data/VIIRS-DNB-GEO_All /Data_Products							
DNB Observations	HDF5 File						
/All_Data/VIIRS-DNB-SDR_All /Data_Products							

Compact VIIRS SDR

All data

/All_Data/VIIRS-DNB-GEO_All

/All_Data/VIIRS-DNB-SDR_All /Data_Products

Figure 15 HDF5 file structure for the Original DNB VIIRS SDR and the Compact DNB VIIRS SDR.

This Document is Public

3 CONTENT OF THE ORIGINAL VIIRS SDR

This section defines the groups and datasets of the Original VIIRS SDR product and indicates which of these are included in the Compact VIIRS SDR Product.

Please note, that the definition assumes that the Dataset Name, Description, etc., is the same for M-Band, I-Band and DNB, unless specifically highlighted.

3.1 Geolocation and Angular Data

Geo HDF5 Dat	Compact VIIRS SDR Product					
Dataset Name	Description	Data Type	Dim.	Units	Incl.	Comment/ Cross Reference
StartTime	Starting Time of each scan in IET (1/1/1958)	64 bit int	[48]	μs	~	Included as is
MidTime	Mid-Time of each scan IET (1/1/1958)	64 bit int	[48]	μs	~	Included as is
Latitude	Latitude of each pixel (positive North)	32 bit float		degree	~	Included at tie-points, interpolation scheme for all pixels
Longitude	Longitude of each pixel (positive East)	32 bit float		degree	~	Included at tie-points, interpolation scheme for all pixels
Solar ZenithAngle	Zenith angle of sun at each pixel position	32 bit float		degree	~	Included at tie-points, interpolation scheme for all pixels
Solar AzimuthAngle	Azimuth angle of sun (measured clockwise positive from North) at each pixel position	32 bit float	M: [768, 3200] I: [1536, 6400] DNB: [768, 4064]	degree	~	Included at tie-points, interpolation scheme for all pixels
Satellite ZenithAngle	Zenith angle to Satellite at each pixel position	32 bit float		degree	~	Included at tie-points, interpolation scheme for all pixels
Satellite AzimuthAngle	Azimuth angle (measured clockwise positive from North) to Satellite at each	32 bit float		degree	✓	Included at tie-points, interpolation scheme for all pixels

Table 6 Geolocation Data in Original VIIRS SDR Product

Geolocation Data in Original VIIRS SDR Product HDF5 Datasets in Group /All_Data/VIIRS-MOD-GEO_All						Compact VIIRS SDR Product	
Dataset Name	Description	Data Type	Dim.	Units	Incl.	Comment/ Cross Reference	
	pixel position						
Height	Ellipsoid-Geoid separation	32 bit float		meter	_	Currently not included, but under consideration	
SatelliteRange	Line of sight distance from the ellipsoid intersection to the satellite	32 bit float		meter	-	Currently not included, but under consideration	
SCPosition	Spacecraft position in ECR Coordinates (X, Y, Z) at the mid-time of scan	32 bit float	[48, 3]	meter	~	Included as is	
SCVelocity	Spacecraft velocity in ECR Coordinates (dx/dt, dy/dt, dz/dt) at the mid-time of scan	32 bit float	[48,3]	m/s	~	Included as is	
SCAttitude	Spacecraft attitude with respect to the Geodetic Reference Frame Coordinates (roll, pitch, yaw) at the midtime of scan	32 bit float	[48,3]	arc second	~	Included as is	
SCSolar ZenithAngle	The angle in the spacecraft reference frame from zenith vector (negative z-axis) to the solar vector	32 bit float	[48]	degree	~	Included as is	
SCSolar AzimuthAngle	The angle in the spacecraft reference frame from x-axis to	32 bit float	[48]	degree	~	Included as is	

Geolocation Data in Original VIIRS SDR Product HDF5 Datasets in Group /All_Data/VIIRS-MOD-GEO_All						Compact VIIRS SDR Product	
Dataset Name	Description	Data Type	Dim.	Units	Incl.	Comment/ Cross Reference	
	the solar vector projected onto the spacecraft x- y plane, measured counterclockwis e (observer looking toward zenith (negative z-axis))						
ModeScan	The VIIRS operational mode, reported at the scan level, see Table 27	8 bit uchar	[48]	unitless	~	Included as is	
ModeGran	The VIIRS operational mode, reported at the granule level, see Table 28	8 bit uchar	[1]	untiless	~	Included as is	
PadByte1	Pad byte	8 bit uchar	[3]	unitless	~	Included as is	
NumberOf Scans	Actual number of VIIRS scans that were used to create this granule	32 bit int	[1]	unitless	~	Included as is	
QF1_SCAN_ VIIRSSDR GEO	Scan-level quality flag, see Table 29.	8 bit uchar	[48]	unitless	~	Included as is	
QF2_SCAN_ VIIRSSDR GEO	Scan-level quality flag, see Table 30.	8 bit uchar	[48]	unitless	~	Included as is	
QF2_VIIRS SDRGEO	Pixel-level quality flag, see Table 31.	8 bit uchar	M: [768, 3200] I: [1536, 6400] DNB: [768, 4064]	unitless	-	Not considered relevant as geolocation data is based on interpolation scheme	
Latitude_TC DNB only	Latitude of each pixel (positive North)), terrain corrected	32 bit float	[768, 4064]	degree	-	Currently not included, but under consideration	

Geolocation Data in Original VIIRS SDR Product						Compact VIIRS SDR Product	
Dataset Name	Description	Data Type	Dim.	Units	Incl.	Comment/ Cross Reference	
Longitude_TC DNB only	Longitude of each pixel (positive East), terrain corrected	32 bit float	[768, 4064]	degree	-	Currently not included, but under consideration	
Lunar ZenithAngle DNB only	Zenith angle of moon at each pixel position	32 bit float	[768, 4064]	degree	~	Included at tie-points, interpolation scheme for all pixels	
Lunar AzimuthAngle DNB only	Azimuth angle of moon (measured clockwise positive from North) at each pixel position	32 bit float	[768, 4064]	degree	~	Included at tie-points, interpolation scheme for all pixels	
Height_TC DNB only	Height over Ellipsoid	32 bit float	[768, 4064]	meter	-	Currently not included, but under consideration	
Moon PhaseAngle DNB only	Angle between ray vector to moon from earth and ray vector of	32 bit float	[1]	degree	~	Included as is	
Moon IllumFraction DNB only	Fraction of the moon illuminated (expressed as percent)	32 bit float	[1]	percent	~	Included as is	
QF2_VIIRS SDRGEO_TC DNB only	Pixel-level quality flag, Table 32, terrain corrected	8 bit uchar	[768, 4064]	unitless	-	Not considered relevant as geolocation data is based on interpolation scheme	

This Document is Public

3.2 Observation Data in Original VIIRS SDR Product

Table 7 Observation Data in Original VIIRS SDR Product

Observation Data in Original VIIRS SDR Product HDF5 Datasets in Group /All_Data/VIIRS-Ch-SDR_All						Compact VIIRS SDR Product	
Dataset Name	Description	Data Type	Dim.	Units	Incl.	Comment/ Cross Reference	
Radiance M1-M16 I1-I5 DNB	Calibrated Top of Atmosphere (TOA) Radiance for each VIIRS pixel, needs radiance scale and offset factors	<i>M1-M2, M6,</i> <i>M8-M12,</i> <i>M14-M16,</i> <i>11-15:</i> 16 bit uint <i>M3-M5, M7,</i> <i>M13,</i> <i>DNB:</i> 32 bit float	<i>M:</i> [768, 3200] <i>I:</i> [1536, 6400] <i>DNB:</i> [768, 4064]	<i>M</i> , <i>I</i> : W/(m2 sr μm) <i>DNB:</i> W/(cm ² sr)	~	Included as is M3-M5, M7, M13: Included as dual scale integer representation	
Radiance factors <i>M1-M2, M6,</i> <i>M8-M12,</i> <i>M14-M16,</i> <i>I1-I5</i>	Radiance scale and offset: array[scale, offset]	32 bit float	[2]	unitless	~	Included as attributes of the Radiance dataset	
Reflectance M1-M11, I1-I3	Calibrated TOA Reflectance for each VIIRS pixel	16 bit uint	<i>M:</i> [768, 3200] <i>I:</i> [1536, 6400]	unitless	-	Not included, can be derived from the corresponding radiance	
Reflectance Factors M1-M11, I1-I3	Reflectance scale and offset: array[scale, offset]	32 bit float	[2]	unitless	-	Not included, only meaningful with the reflectance	
Brightness Temperature M12-M16, I4-I5	Calibrated TOA Brightness Temperature for each VIIRS pixel	M12, M14- M16, I4-I5: 16 bit uint M13: 32 bit float	<i>M:</i> [768, 3200] <i>I:</i> [1536, 6400]	К	-	Not included, can be derived from the corresponding radiances	
Brightness Temperature Factors M12, M14- M16, I4-I5	Brightness Temperature scale and offset: array[scale, offset]	32 bit float	[2]	unitless	-	Not included, only meaningful with the brightness temperature	

Observation Data in Original VIIRS SDR Product					Compact VIIRS SDR Product	
HDF5 Datasets in Group /All_Data/VIIRS-Ch-SDR_All						
Dataset Name	Description	Data Type	Dim.	Units	Incl.	Comment/ Cross Reference
ModeScan	The VIIRS operational mode, reported at the scan level, see Table 27.	8 bit uchar	[48]	unitless	-	Included as part of the geolocation data
ModeGran	The VIIRS operational mode, reported at the granule level, see Table 28.	8 bit uchar	[1]	unitless	-	Included as part of the geolocation data
PadByte1	Pad Byte	8 bit uchar	[3]	unitless	~	Included as is
NumberOfS cans	Actual number of VIIRS scans that were used to create this granule	8 bit uchar	[1]	unitless	-	Included as part of the geolocation data
NumberOfM issingPkts	Number of missing packets in scan	32 bit int	[48]	unitless	~	Included as is
NumberOfB adChecksum s	Number of packets with bad checksum in scan	32 bit int	[48]	unitless	~	Included as is
NumberOfD iscardedPkts	Number of discarded packets in scan	32 bit int	[48]	unitless	~	Included as is
QF1_VIIRS MBAND SD R <i>M1-M16</i>	Quality Flag for each pixel, see Table 32.	8 bit uchar	[768, 3200]	unitless	~	Included as is
QF1_VIIRSI BANDSDR 11-15	Quality Flag for each pixel, see Table 32.	8 bit uchar	[1536, 6400]	unitless	~	Included as is
QF1_VIIRS DNBSDR DNB	Quality Flag for each pixel, see Table 32.	8 bit uchar	[768, 4064]	unitless	~	Included as is
QF2_SCAN _SDR	Quality Flag for Scan (indicates general SDR information),	8 bit uchar	[48]	unitless	~	Included as is

Observation Data in Original VIIRS SDR Product HDF5 Datasets in Group /All_Data/VIIRS-Ch-SDR_All					Compact VIIRS SDR Product	
Dataset Name	Description	Data Type	Dim.	Units	Incl.	Comment/ Cross Reference
	see Table 34.					
QF3_SCAN _RDR	Quality Flag for Scan (indicates general RDR information), see Table 34.	8 bit uchar	[48]	unitless	~	Included as is
QF4_SCAN _SDR <i>M1-M16</i> <i>11-15</i>	Reduced Quality Indication, see Table 35.	8 bit uchar	[48]	unitless	~	Included as is
QF5_GRAN _BAD_DET ECTOR <i>M1-M16,</i> <i>11-15</i>	Quality Flag – Bad detector, see Table 36.	8 bit uchar	M: [16] I: [32]	unitless	~	Included as is

This Document is Public

3.3 Attributes of Geolocation and Observation data

Table 8 HDF5 Attributes of Root Group of Geolocation and Observation data

	HDF5 Attributes of /	Root Grou	ıp		Co	mpact VIIRS SDR Product
Attribute Name	Description	Data Type	Dim.	Units	Incl.	Comment/ Cross Reference
Distributor	Designates the distributor of the data.	String	[1]	unitless	~	Included as is
Mission_Nam e	The character string by which the mission is known.	String	[1]	unitless	~	Included as is
N_Dataset_So urce	The producer of the HDF5 files.	String	[1]	unitless	~	Included as is
N_GEO_Ref Contained in Observation data only	Filename of the HDF5 file containing the related Geolocation information.	String	[1]	unitless	~	Included as is
N_HDF_Creat ion_Date	The date that the HDF5 file was created. Expressed as YYYYMMDD. Paired with N_HDF_Creation_Tim e	String	[1]	unitless	~	Included as is
N_HDF_Creat ion_Time	The time that the HDF5 file was created. Expressed as HHMMSS.SSSSSZ Paired with N_HDF_Creation_Dat e.	String	[1]	unitless	~	Included as is
Platform_Shor t_Name	An acronym, or shorter form of the platform name, used to identify the platform.	String	[1]	unitless	~	Included as is

This Document is Public

3.4 Metadata

The metadata is contained in the group /All_Data/Data_Products and it is included in full in the Compact VIIRS SDR product. The metadata is not described in further detail in this document, but is described in [AD-3].

This Document is Public

4 CONTENT OF THE COMPACT VIIRS SDR

The HDF5 structure of the Compact VIIRS SDR is shown in Figure 14. Whenever possible and for reason of consistency, the original VIIRS SDR data set, attribute and group names have been maintained in the Compact VIIRS SDR. The HDF groups **viirs-mod-GEO_All**, **viirs-IMG-GEO_All**, and **viirs-DNB-GEO_All** contain the geolocation information and the groups **viirs-ch-sdr_All** contain the corresponding observations for channel *Ch*.

4.1 Geolocation and Angular Data

The groups /All_Data/VIIRS-MOD-GEO_All, /All_Data/VIIRS-IMG-GEO_All and /All_Data/VIIRS-DNB-GEO_All contain datasets needed for the calculation of the geolocation and viewing angles for each VIIRS pixel and are described in detail in Table 9 below. Additional channel specific datasets needed are included as attributes of the individual channel groups /All_Data/VIIRS-Ch-SDR_All, see Table 13.

HDF5 Datasets in Group /All_Data/VIIRS-MOD-GEO_All, /All_Data/VIIRS-IMG-GEO_All and /All_Data/VIIRS-DNB-GEO_All							
Dataset Name	Description	Data Dimension I Type		Units		ment	
NumberOfTie PointZoneGroups Track	Number of Tie Point Zones Groups in the Track direction	32 bit int	[1]	unitless (groups)		N _{groups,track}	
NumberOfTie PointZoneGroupsScan	Number of Tie Point Zones Groups in the Scan direction	32 bit int	[1]	unitless (groups)		N _{groups,scan}	
TiePointZoneGroup LocationTrack Compact	Start of the Tie Point Zone Group in the Track direction	32 bit int	$[N_{groups,track}]$	unitless (pixel index)		P _{track} ,compact	
TiePointZoneGroup LocationScanComp act	Start of the Tie Point Zone Group in the Scan direction	32 bit int	[Ngroups,scan]	unitless (pixel index)		Pscan,compact	
NumberOfTie PointZonesTrack	Number of Tie Point Zones in the Track direction	32 bit int	[Ngroups,track]	unitless (zones)		N _{zones,track}	
NumberOfTie PointZonesScan	Number of Tie Point Zones in the Scan direction	32 bit int	[Ngroups,scan]	unitless (zones)		N _{zones,scan}	

Table 9 HDF5 Datasets in Group /All_Data/VIIRS-MOD-GEO_All, /All_Data/VIIRS-IMG-GEO_All and /All_Data/VIIRS-DNB-GEO_All

/All_Data/VIIRS	11 and	Symbol			
Dataset Name	Description	Data Type	Dimension	Units	ment
Latitude	Latitude of each Tie Point (positive North)	32 bit float	$\begin{bmatrix} 48* \\ \sum_{N_{groups,track}} \\ (N_{zones,track} + 1), \\ \sum_{N_{groups,scan}} \\ (N_{zones,scan} + 1) \end{bmatrix}$ degree		lat
Longitude	Longitude of each Tie Point (positive East)	32 bit float	$[48*$ $\sum_{N_{groups,track}} (N_{zones,track} + 1),$ $\sum_{N_{groups,scan}} (N_{zones,scan} + 1)]$	degree	lon
SolarZenithAngle	Zenith angle of sun at each Tie Point position	32 bit float	$[48*$ $\sum_{N_{groups,track}} (N_{zones,track} + 1),$ $\sum_{N_{groups,scan}} (N_{zones,scan} + 1)]$	degree	zen
SolarAzimuthAngle	Azimuth angle of sun (measured clockwise positive from North) at each Tie Point position	32 bit float	$[48*$ $\sum_{N_{groups,track}} (N_{zones,track} + 1),$ $\sum_{N_{groups,scan}} (N_{zones,scan} + 1)]$	degree	azi
SatelliteZenithAngle	Zenith angle to Satellite at each Tie Point position	32 bit float	$[48*$ $\sum_{N_{groups,track}} (N_{zones,track} + 1),$ $\sum_{N_{groups,scan}} (N_{zones,scan} + 1)]$	degree	zen
SatelliteAzimuthAngle	Azimuth angle (measured clockwise positive from North) to Satellite at each Tie Point position	32 bit float	$[48*$ $\sum_{N_{groups,track}} (N_{zones,track} + 1),$ $\sum_{N_{groups,scan}} (N_{zones,scan} + 1)]$	degree	azi
ExpansionCoefficient	Correction coefficient accounting for the variation in Pixel size along the Scan direction each	32 bit float	[∑ _{Ngroups,scan} N _{zones,scan}]	unitless	Cexpansion
AlignmentCoefficient	Correction coefficient accounting for the Pixels not being linearly aligned along the track direction	32 bit float	[∑ _{Ngroups,scan} N _{zones,scan}]	unitless	Calignment
QF1_SCAN_VIIRSSD	Scan level quality flag,	8 bit	[48]	unitless	

/All_Data/VIIRS	Symbol				
Dataset Name	Description	Data Type	Dimension	Units	ment
RGEO	see Table 29.	uchar			
	Table 30 QF2_SCAN_VIIRSS DRGEO Quality Flag Values.				
	Scan level quality flag, see Table 30.				
QF2_SCAN_VIIRSSD RGEO	Table31QF2_VIIRSSDRGEOQualityFlagValues.	8 bit uchar	[48]	unitless	
SCVelocity	Spacecraft position in ECR Coordinates (X, Y, Z) at the mid-time of scan	32 bit float	[48, 3]	meter	
SCPosition	Spacecraft velocity in ECR Coordinates (dx/dt, dy/dt, dz/dt) at the mid-time of scan	32 bit float	[48, 3]	m/s	
SCAttitude	Spacecraft attitude with respect to the Geodetic Reference Frame Coordinates (roll, picth, yaw) at the midtime of scan	32 bit float	[48, 3]	arc second	
StartTime	Starting of each scan in IET (1/1/1958)	64 bit int	[48]	micro sec	
MidTime	Mid-Time of each scan IET (1/1/1958)	64 bit int	[48]	micro sec	
PadByte1	Pad Byte	8 bit uchar	[3]	unitless	
SCSolar ZenithAngle	The angle from the normal vector of the Solar Diffuser surface (z-axis of the solar diffuser frame) to the solar vector	32 bit float	[48]	degree	
SCSolar AzimuthAngle	The angle from the Solar Diffuser reference frame x-axis to the	32 bit float	[48]	degree	

HDF5 Datasets in Group /All_Data/VIIRS-MOD-GEO_All, /All_Data/VIIRS-IMG-GEO_All and /All_Data/VIIRS-DNB-GEO_All							
Dataset Name	Description	Data Type	Units		ment		
	projection of the solar vector onto the solar diffuser surface (x-y plane), measured counterclockwise (observer looking toward the SD surface)						
LunarZenithAngle DNB only	Zenith angle of moon at each pixel position (present only for DNB)	32 bit float	$[48* \\ \sum_{N_{groups,track}} (N_{zones,track} + 1), \\ \sum_{N_{groups,scan}} (N_{zones,scan} + 1)]$	degree		zen	
LunarAzimuthAngle DNB only	Azimuth angle of moon (measured clockwise positive from North) at each pixel position (present only for DNB)	32 bit float	$[48*$ $\sum_{N_{groups,track}} (N_{zones,track} + 1),$ $\sum_{N_{groups,scan}} (N_{zones,scan} + 1)]$	degree		azi	
MoonIllumFraction DNB only	(present only for DNB)	32 bit float	[1]	degree			
MoonPhaseAngle DNB only	(present only for DNB)	32 bit float	[1]	percent			

This Document is Public

4.1.1 Attributes of the Geolocation and Angular Data Group

The viirs-mod-GEO_All, viirs-img-GEO_All, and viirs-dnb-GEO_All groups have the following attributes.

Table 10 HDF5 Attributes of Group /All_Data/VIIRS-MOD-GEO_All, /All_Data/VIIRS-IMG-GEO_All, and /All_Data/VIIRS-DNB-GEO_All

HDF5 Attributes of Group /All_Data/VIIRS-MOD-GE0_All, /All_Data/VIIRS-IMG-GE0_All, and /All_Data/VIIRS-DNB-GE0_All						Symbol	
Attribute Name	Name Description Data Type Dim. Units						
Original Filename	The filename of the original VIIRS SDR file containing the Geolocation and Angular Data	String	[1]	unitless		-	

4.2 **Observation Data**

The group **viirs-ch-sdr_all** contains the M Band, I-Band and Day/Night-Band channel information. Each group contains the information related to one channel and all the **viirs-ch-sdr_all** groups have the same structure in the Compact VIIRS SDR Product Format with the exception of the **QF1_viirsMBANDSDR** dataset whose name changes to **QF1_viirsIBANDSDR** for the I-Band channels and to **QF1_viirsDNBSDR** for the DNB.

Below is the list of datasets contained in this group. The attributes of the dataset **Radiances** contained in the group are described in section 4.2.1. The attributes of the group itself are described in section 4.2.2.

HDF5 Datasets in Group /All_Data/VIIRS-Ch-SDR_All						
Dataset Name	Description	Data Type		Docu- ment		
Radiance M1-M16, I1-15 DNB	Integer representation of Calibrated Top of Atmosphere (TOA) Radiance for each VIIRS pixel	<i>M</i> , <i>I</i> : 16 bit uint <i>DNB</i> : 32 bit float	<i>M:</i> [768, 3200] <i>I:</i> [1536, 6400] <i>DNB:</i> [768, 4064]	<i>M</i> , <i>I</i> : W/(m ² sr μm) <i>DNB</i> : W/(cm ² sr)		С
QF1_VIIRSMBA	Quality Flag for each pixel,	8 bit	[768, 3200]	unitless		-

HDF5 Datasets in Group /All_Data/VIIRS-Ch-SDR_All						
Dataset Name	Description	Data Type	Dim.	Units		Docu- ment
NDSDR M1-M16	see Table 32	uchar				
QF1_VIIRS IBAN DSDR 11-15	Quality Flag for each pixel, see Table 32	8 bit uchar	[1536, 6400]	unitless		-
QF1_VIIRS DNB S DR <i>DNB</i>	Quality Flag for each pixel, see Table 32	8 bit uchar	[768, 4064]	unitless		-
QF2_SCAN_SDR	Quality Flag for Scan (indicates general SDR information), see Table 34 QF3_SCAN_RDR Quality Flag Values.	8 bit uchar	[48]	unitless		-
QF3_SCAN_RDR	Quality Flag for Scan (indicates general RDR information), see Table 34	8 bit uchar	[48]	unitless		-
QF4_SCAN_SDR <i>M1-M16,</i> <i>I1-I5</i>	Reduced Quality Indication, see Table 35	8 bit uchar	M: [768] I: [1536]	unitless		_
QF5_GRAN_BAD DETECTOR <i>M1-M16,</i> <i>I1-I5</i>	Quality Flag – Bad detector, see Table 36	8 bit uchar	M: [16] I: [32]	unitless		_
PadByte1	Pad Byte	8 bit uchar	[3]	unitless		-
NumberOfMissing Pkts	Number of missing packets in scan	32 bit int	[48]	unitless		-
NumberOfBadChe cksums	Number of packets with bad checksum in scan	32 bit int	[48]	unitless		_
NumberOfDiscard edPkts	Number of discarded packets in scan	32 bit int	[48]	unitless		-

This Document is Public

4.2.1 Attributes of the Radiance Dataset for M-Band, I-Band and Day/Night-Band

Each Radiance dataset for M-Band, I-Band and Day/Night-Band has the following attributes:

HDF5 Attributes of Dataset /All_Data/VIIRS-Ch-SDR All/Radiance Symbol in Document Data Attribute Name Description Dim. Units Type RadianceOffset Offset for calculating Radiance L from High 32 bit W m⁻² sr⁻ its integer representation C [1] ahigh *M1-M16*, float $^{1} \mu m^{-1}$ for C>Ctreshold 11-15 RadianceScale Scale factor for calculating Radiance L High W m⁻² sr⁻ 32 bit from its integer representation C [1] bhigh $^{1}\mu m^{-1}$ *M1-M16*, float for C>Ctreshold 11-15 RadianceOffset Offset for calculating Radiance L from Low W m⁻² sr⁻ 32 bit its integer representation C [1] alow *M1-M16*, $^{1} \mu m^{-1}$ float for $C \leq C_{treshold}$ *I1-I5* RadianceScale Scale factor for calculating Radiance L Low 32 bit W m⁻² sr from its integer representation C [1] blow *M1-M16*, $^{1} \mu m^{-1}$ float for C \leq C_{treshold} 11 - 15Threshold Integer threshold for selection of the 16 bit *M1-M16*. [1] unitless Ctreshold High or Low Offset and Scale pair uint *I1-I5* EquivalentWidth Equivalent width. Needed for the 32 bit *M1-M11*, [1] μm Avis calculation of the Reflectance float 11-13 IntegratedSolar Band-integrated solar irradiance. Irradiance 32 bit Needed for the calculation of the W m⁻² [1] B_{vis} *M1-M11*, float Reflectance 11-13 EarthSun Distance Relation between the mean and the 32 bit Normalised actual Earth-Sun distance. Needed for [1] unitless d_{se} float the calculation of the Reflectance *M1-M11*, 11-13 CentralWave Central wavelength. Needed for the 32 bit Length calculation of the Brightness [1] m $\lambda_{\rm C}$ float Temperature M12-M16, I4, I5 [1] unitless BandCorrection Band Correction 32 bit Air

Table 12 HDF5 Attributes of Dataset /All_Data/VIIRS-Ch-SDR_All/Radiance.

This Document is Public

HDF5 Attributes of Dataset /All_Data/VIIRS-Ch-SDR_All/Radiance						Symbol
Attribute Name	Description	Data Type	Dim.	Units		ment
CoefficientA M12-M16, I4, I5	Coefficient A. Needed for the calculation of the Brightness Temperature	float				
BandCorrection CoefficientB <i>M12-M16</i> , <i>14</i> , <i>15</i>	Band Correction Coefficient B. Needed for the calculation of the Brightness Temperature	32 bit float	[1]	К		B _{ir}

4.2.2 Attributes of the Observation Data Group

Each **viirs-ch-sdr_all** group has the following attributes.

HDF5 Attributes of Group /All_Data/VIIRS-Ch-SDR_All						
Attribute Name	Description	Data Type	Dim.	Units		ment
TiePointZoneGr oupLocationTrac k	Start of the Tie Point Zone Group in the track direction	32 bit int	[N _{groups,} track]	unitless		P _{track}
TiePointZoneGr oupLocationSca n	Start of the Tie Point Zone Group in the scan direction	32 bit int	[Ngroups, scan]	unitless		P _{scan}
TiePointZone SizeTrack	Size of the Tie Point Zone in the Track direction	32 bit int	[N _{groups} , track]	pixels		Z _{track}
TiePointZone SizeScan	Size of the Tie Point Zone in the Scan direction	32 bit int	[N _{groups,} _{scan}]	pixels		Z _{scan}
PixelOffsetTrack	Offset in Track direction of Pixel [0,0] centre relative to Tie Point A	32 bit float	[1]	pixels		Poffset, track
PixelOffsetScan	Offset in Scan direction of Pixel [0,0] centre relative to Tie Point A	32 bit float	[1]	pixels		poffset, scan
Original Reflectance Offset M1-M11, I1-I3	Offset used in the Original VIIRS SDR Product for representing the Radiance as an integer	32 bit float	[1]	unitless		areflectance
Original ReflectanceScale <i>M1-M11</i> ,	Scale factor used in the Original VIIRS SDR Product for representing the radiance as an integer	32 bit float	[1]	unitless		b _{reflectance}

Table 13 HDF5 Attributes of Group /All_Data/VIIRS-Ch-SDR_All.

This Document is Public

HDF5 Attributes of Group /All_Data/VIIRS-Ch-SDR_All						
Attribute Name	Description	Data Type	Dim.	Units		in Docu- ment
11-13						
Original Brightness Temperature Offset M12, M14-M16, I4, I5	Offset used in the Original VIIRS SDR Product for representing the Radiance as an integer	32 bit float	[1]	К		a _{bt}
Original Brightness Temperature Scale M12, M14-M16, I4, I5	Scale factor used in the Original VIIRS SDR Product for representing the radiance as an integer	32 bit float	[1]	К		b _{bt}
Original Filename	The filename of the original VIIRS SDR file containing the data of this channel	String	[1]	unitless		1

4.3 All_Data

The group /All_Data contains datasets related to the VIIRS instrument. These datasets are applicable to both geolocation and observation data and are described in detail in Table 14 below.

HDF5 Datasets in Group /All_Data						
Dataset Name	Description	Data Type	Dim.	Units		in Docu- ment
NumberOfScans	Actual number of VIIRS scans that were used to create this granule	32 bit integer	[1]	unitless		N _{scan}
ModeScan	The VIIRS operational mode, reported at the granule level	8 bit uchar	[48]	unitless		-
ModeGran	The VIIRS operational mode, reported at the granule level	8 bit uchar	[1]	unitless		-

Lubic 14 IIDI 5 Duiuseis in Orbup ///ii_Duiu	Table 14	HDF5	Datasets	in	Group	/All_	Data
--	----------	------	----------	----	-------	-------	------

This Document is Public

4.4 Attributes of the Root Group

The root group / has the flowing attributes

HDF5 Attributes of Root Group /						Symbol
Attribute Name	Description	Data Type Dim. Units		Units		in Docu- ment
CVIIRS_Version	SW Version of the CVIIRS tool which created this compact SDR	String	[1]	unitless		
Compact_VIIRS _SDR_Version	Version of the format of the compact SDR contained in this file	String	[1]	unitless		
Distributor	Designates the distributor of the data.	String	[1]	unitless		-
Mission_Name	sion_Name The character string by which the mission is known. [1] unitless			-		
N_Dataset_Sour ce	The producer of the HDF5 files.	String	[1]	unitless		-
N_GEO_Ref	Filename of the HDF5 file containing the related Geolocation information.	String	[1]	unitless		-
N_HDF_Creatio n_Date	The date that the HDF5 file was created. Expressed as YYYYMMDD . Paired with N_HDF_Creation_Time	String	[1]	unitless		-
N_HDF_Creatio n_Time	The time that the HDF5 file was created Expressed as HHMMSS.SSSSSZ Paired with N_HDF_Creation_Date.	String	[1]	unitless		-
Platform_Short_ Name	An acronym, or shorter form of the platform name, used to identify the platform.	String	[1]	unitless		-
Satellite_Id_File name	The Satellite ID used for the filename	String	[1]	unitless		-

Table 15 HDF5 Attributes of Root Group /

4.5 Metadata

The metadata is contained in the group /All_Data/Data_Products of the Original VIIRS SDR product and it is included in full in the Compact VIIRS SDR product. The metadata is not described in further detail in this document, but is described in [AD-3].

This Document is Public

5 STEPS FOR GENERATING THE COMPACT VIIRS SDR FROM THE ORIGINAL VIIRS SDR

5.1 Generating the Geolocation and Angular Data

Table 16 below lists the steps required for generating the geolocation data of the Compact VIIRS SDR Product from the Original VIIRS SDR Product. Each step contains a short description as well as references to sections of this document giving more detailed instructions.

Please note that for the generation of the simplified Tie Point Zone schema with just one Tie Point Zone Group (M-Band, I-Band), the following values shall be used:

```
\begin{split} & \texttt{NumberOfTiePointZoneGroupsTrack} = 1, \\ & \texttt{NumberOfTiePointZoneGroupsScan} = 1, \\ & \texttt{TiePointZoneGroupLocationTrackCompact} = 0, \\ & \texttt{TiePointZoneGroupLocationScanCompact} = 0, \\ & \texttt{TiePointZoneGroupLocationTrack} = 0, \\ & \texttt{TiePointZoneGroupLocationScan} = 0. \end{split}
```

Each Scan in the VIIRS SDR corresponds here to one entry in the Tie Point Zone Groups Track directory. That is, for a standard VIIRS SDR granule with 768 pixels along track, i.e. 48 scans, the algorithm described below needs to be repeated 48 times, i.e. for each scan.

Step	Description	References
1	Create the target group /All_Data/VIIRS-MOD-GEO_All (or /All_Data/VIIRS-IMG-GEO_All or /All_Data/VIIRS-DNB-GEO_All) in the Compact VIIRS SDR HDF5 file.	HDF5 definitions www.hdf5.org
2	Access the source group /All_Data/VIIRS-MOD-GEO_All (or /All_Data/VIIRS-IMG-GEO_All or /All_Data/VIIRS-DNB-GEO_All) in the Original VIIRS SDR HDF5 geolocation file.	
3	From the source group read the Latitude, Longitude, SatelliteAzimuthAngle, SatelliteZenithAngle, SolarAzimuthAngle, andSolarZenithAngle, and for DNB also the LunarAzimuthAngle and LunarZenithAngle data sets in full.	Section 3.1
4	Iterate over all Tie Point Zone Groups and perform Steps 5-17 below. The Tie Point Zone Groups are defined via the scanning properties of the instrument; e.g., for DNB they are defined according to the aggregation zones, see Table 3.	
5	Iterate over all Tie Point Zones in the Tie Point Zone Group and perform the Steps 6-17 for each Tie Point Zone.	Tie Point Zones Section 2.4.1
6	Extract from the data read from file in Step 3, the data for the Pixels	Indices

Step	Description	References
	with relative indices (0,0), (0, Z_{scan} -1), (Z_{track} -1, 0) and (Z_{track} -1, Z_{scan} -1) and use it as the temporary Tie Points A', B', C' and D' respectively of the Tie Point Zone.	Section 8.1
7	If any of the dataset values associated with the temporary Tie Points A', B', C' and D' are a floating point Fill Value as defined in Table 25, then set all values of the final Tie Points A, B, C and D of the Tie Point Zone to the floating point Fill Value. If different Fill Values are present, use the one with the smallest absolute value. Else perform Steps 8-17.	Fill Values Section 9.1
8	For each of the temporary Tie Points A', B', C' and D' Calculate from the Longitude and Latitude the Position Unit Vector.	Calculation Section 8.7.1
9	For each of the temporary Tie Points A', B', C' and D' calculate from the SatelliteAzimuthAngle and SatelliteZenithAngle the Satellite Unit Vector and transform the vector from the Pixel Centred Frame to the Earth Centred Frame.	Calculation Section 8.8.1 Transformation, section 8.9.1
10	For each of the temporary Tie Points A', B', C' and D' calculate from the SolarAzimuthAngle and SolarZenithAngle the Solar Unit Vector and transform the vector from the Pixel Centred Frame to the Earth Centred Frame.	Calculation Section 8.8.1 Transformation, section 8.9.1
11	<u>Only for DNB</u> : For each of the temporary Tie Points A', B', C' and D' calculate from the LunarAzimuthAngle and LunarZenithAngle the Lunar Unit Vector and transform the vector from the Pixel Centred Frame to the Earth Centred Frame.	Calculation Section 8.8.1 Transformation, section 8.9.1
12	Calculate the Pixel Expansion Correction coefficient c _{expansion} based on temporary Tie Points A', B', C' and D'.	Section 8.10
13	Calculate the Pixel Alignment Correction coefficient c _{alignment} based on temporary Tie Points A', B', C' and D'.	Section 8.11
14	Iterate over the four final Tie Points A, B, C and D of the Tie Point Zone and perform Steps 15-17 for each Tie Point.	
15	Based on the temporary Tie Points, calculate the extrapolation parameters s_{track} and s_{scan} for the Tie Point.	Section 8.13
16	Based on the temporary Tie Points, calculate the corrected interpolation parameters α_{track} and α_{scan} for the Tie Point.	Section 8.5
17	Based on the temporary Tie Points, use the Vector Extrapolation to calculate the Position Unit Vector, Satellite Unit Vector and Solar Unit Vector for the Tie Point.	Extrapolation, section 8.12.1
18	Iterate over all Tie Point Zone Groups.	Section 2.4.2
19	Iterate over all Tie Point Zones within the Tie Point Zone Group. If the Tie Point Zone has a neighbour Tie Point Zone in the scan direction,	Tie Point Zones

Step	Description	References
	perform Step 20. This step forces the Tie Points that are shared between Tie Point Zones to be identical by using the midpoints of the calculated values.	Section2.4.1
	For each of the vectors Position Vector, Satellite Vector and Solar Vector, and Lunar Vector for DNB, calculate the midpoint between the Vector for the Tie Point B of this Tie Point Zone and Tie Point A of the neighbour Tie Point Zone, and replace the Vector of both Tie Points with the result.	Midpoint Section 8.12.2 Fill Values Section 9.1
20	If one of the two input vectors contains Fill Values as defined in Table 26, then use the vector without Fill Values as the result. If both vectors contain Fill Values, then set the result to the one with the smallest absolute value.	
	Repeat the above for the Tie Point C of this Tie Point Zone and Tie Point D of the neighbour Tie Point Zone.	
21	Iterate over all Tie Point Zone Groups and perform Steps 22-30 for each Tie Point Zone Group.	Section 2.4.2
22	Iterate over all Tie Point Zones within the Tie Point Zone Group and perform the Steps 23-29 for each Tie Point Zone.	Tie Point Zones Section 2.4.1
23	Iterate over the four final Tie Points A, B, C and D of the Tie Point Zone and perform Steps 24-26 for each Tie Point.	
	If the Position Vector contains Fill Values as defined in Table 26, then set the Latitude and Longitude for the Tie Point to the Fill Value.	Fill Values Section 9.1
24	Else covert the Position Vector for the Tie Point to the longitude and latitude representation.	Conversion, section 8.7.2
	The result of this step is the Latitude and Longitude for the Tie Point.	
	If the Satellite Vector contains Fill Values as defined in Table 26, then set the SatelliteAzimuthAngle and SatelliteZenithAngle for the Tie Point to the Fill Value.	Fill Values Section 9.1
25	Else transform Satellite Vector for the Tie Point from the Earth Centred Frame to the Pixel Centred Frame and convert the result hash to arimnth and parith angle representation	Transformation, section 8.9.2
	The result of this step is the SatelliteAzimuthAngle and SatelliteZenithAngle for the Tie Point.	Conversion, section 8.8.2
	If the Solar Vector contains Fill Values as defined in Table 26, then set the SolarAzimuthAngle and SolarZenithAngle for	Fill Values Section 9.1
26	the Tie Point to the Fill Value. Transform the Solar Vector for the Tie Point from the Earth	Transformation, section 8.9.2
	back to azimuth and zenith angle representation.	Conversion, section 8.8.2
	The result of this step is the SolarAzimuthAngle and	

Step	Description	References
	SolarZenithAngle for the Tie Point.	
27	If the Lunar Vector contains Fill Values as defined in Table 26, then set the LunarAzimuthAngle and LunarZenithAngle for the Tie Point to the Fill Value. Transform the Lunar Vector for the Tie Point from the Earth Centred Frame to the Pixel Centred Frame and convert the result back to azimuth and zenith angle representation. The result of this step is the LunarAzimuthAngle and LunarZenithAngle for the Tie Point	Fill Values Section 9.1 Transformation, section 8.9.2 Conversion, section 8.8.2
28	If any of the values associated with the final Tie Points A, B, C and D contains Fill Values as defined in Table 26, then set c _{expansion} to zero. Else, recalculate the Pixel Expansion Correction coefficient c _{expansion} now based on the final Tie Points A, B, C and D.	Section 8.10
29	If any of the values associated with the final Tie Points A, B, C and D contains Fill Values as defined in Table 26, then set c _{alignment} to zero. Recalculate the Pixel Alignment Correction coefficient c _{alignment} now based on the final Tie Points A, B, C and D.	Section 8.11
30	Add to the target HDF5 file the size of the Tie Point Zone, Z _{track} and Z _{scan} , and the Pixel Offset p _{offset,track} , p _{offset,scan} , P _{track} and P _{scan} corresponding to TiePointZoneSizeTrack, TiePointZoneSizeScan, PixelOffsetTrack, PixelOffsetScan, TiePointZoneGroupLocationTrack and TiePointZoneGroupLocationScan as HDF5 attributes of each observation group /All_Data/VIIRS-Ch-SDR_ALL contained in the product.	Section 4.2.2
31	Add to the target HDF5 file the number of Tie Point Zones N _{zones,track} and N _{zones,scan} corresponding to NumberOfTiePointZonesTrack, NumberOfTiePointZonesScan, and number of Tie Point Zone Groups N _{groups,track} and N _{groups,scan} corresponding to NumberOfTiePointZoneGroupsTrack and NumberOfTiePointZoneGroupsScan within the HDF5 data object /All_Data/VIIRS-MOD-GE0_All (or /All_Data/VIIRS-IMG-GE0_All or /All_Data/VIIRS-DNB-GE0_All).	Section 4.1
32	Add to the target HDF5 file correction coefficients c _{expansion} and c _{alignment} , corresponding to ExpansionCoefficient, AlignmentCoefficient, within the HDF5 data object /All_Data/VIIRS-MOD-GE0_All (or /All_Data/VIIRS-IMG- GE0_All or /All_Data/VIIRS-DNB-GE0_All).	Section 4.1
33	Add, for all Tie Points, the calculated Latitude, Longitude, SatelliteAzimuthAngle, SatelliteZenithAngle, SolarAzimuthAngle, and SolarZenithAngle, and LunarAzimuthAngle and LunarZenithAngle for DNB, values to the target HDF5 file in the data object /All_Data/VIIRS-MOD- GEO All (or /All Data/VIIRS-IMG-GEO All or	Section 4.1 Index relations Section 8.3

This Document is Public

Step	Description	References
	/All_Data/VIIRS-DNB-GEO_All).	
34	From the source group copy the datasets StartTime, MidTime, SCPosition, SCVelocity, SCAttitude, PadByte1, QF1_SCAN_VIIRSSDRGE0 and QF2_SCAN_VIIRSSDRGE0, and for DNB as well MoonIllumFraction and MoonPhaseAngle, to the target group.	Section 3.1 Section 4.1
35	From the source group copy the datasets ModeScan, ModeGran and NumberOfScans to the target group /All_Data	Section 3.1 Section 4.3

5.2 Generating the Observation Data

Table 17 below lists the steps required for generating the observation data of the Compact VIIRS SDR Product from the Original VIIRS SDR Product. Each step contains a short description as well as references to sections of this document giving more detailed instructions.

Step	Description	References
1	Iterate over the VIIRS channels $Ch = M1-M16$, I1-I5 or DNB and perform the Steps 2-21 for each channel.	
2	Create the target group /All_Data/VIIRS-Ch-SDR_All in the Compact VIIRS SDR HDF5 file.	
3	Access the source group /All_Data/VIIRS-Ch-SDR_All in the Original VIIRS SDR HDF5 file for <i>Ch</i> .	
4	From the source group copy the applicable datasets QF1_VIIRSMBANDSDR (or QF1_VIIRSIBANDSDR or QF1_VIIRSDNBSDR), QF2_SCAN_SDR, QF3_SCAN_RDR, QF4_SCAN_SDR (M- and I-Band only), QF5_GRAN_BADDETECTOR (M- and I-Band only), PadByte1, NumberOfMissingPkts, NumberOfBadChecksums and NumberOfDiscardedPkts to the target group.	Section 3.2 Section 4.2
5	If <i>Ch</i> is one of the channels M1, M2, M6, M8-M12, M14-M16, I1-I5 then perform Steps 6-8.	
6	Copy the 16 bit uint source group dataset Radiance to the target group.	Section 3.2 Section 4.2 Section 8.14.2

Table 17 S	Steps for generatin	g the observation	data of the	Compact VL	IRS SDR Product
------------	---------------------	-------------------	-------------	------------	-----------------

Step	Description	References
7	Add the scale contained in the source group dataset RadianceFactors twice to the dataset Radiance in the target group as the attributes b _{low} and b _{high} , i.e. RadianceScaleLow, RadianceScaleHigh. Add the offset contained in the source group dataset RadianceFactors twice to the dataset Radiance in the target group as the attributes a _{low} and a _{high} , i.e. RadianceOffsetLow, RadianceOffsetHigh.	Section 3.2 Section 4.2.1 Section 8.14.2
8	Set the value of dataset Threshold in the target group to zero.	Section 4.2.1 Section 8.14.2
10	If <i>Ch</i> is one of the channels M3-M5, M7, M13 then perform Steps 11- 14.	
11	Read the 32 bit floating point source group dataset Radiance	Section 3.2
	Compute the values of a_{low} , b_{low} , a_{high} , b_{high} and the threshold $L_{threshold}$ from the parameters defined in Table 41.	Section 8.14.1
12	Convert each 32 bit floating point value in the Radiance dataset to a 16 bit uint using the dual-scale representation.	Section 8.14.7
13	Write the 16 bit uint dataset Radiance to the target group.	Section 4.2
14	Add a_{low} , b_{low} , a_{high} , b_{high} and $C_{threshold}$ corresponding to RadianceOffsetLow, RadianceScaleLow, RadianceOffsetHigh, RadianceScaleHigh and Treshold as attributes to the dataset Radiance in the target group.	Section 4.2.1
15	If <i>Ch</i> is one of the channels M1-M11, I1-I3 then perform Steps 16-18.	
16	Lookup A_{vis} and B_{vis} for the channel Ch in Table 39 and add them as the attributes EquivalentWidth and IntegratedSolarIrradiance of the dataset Radiance in the target group.	Section 4.2.1 Section 9.2
17	Calculate the normalised Earth-Sun distance d_{se} and add it as the attribute <code>EarthSunDistanceNormalised</code> of the dataset Radiance in the target group	Section 4.2.1 Section 8.15
18	Add the offset and scale contained in the source group dataset ReflectanceFactors as the attributes OriginalReflectanceOffset and OriginalReflectanceScale to the target group.	Section 3.2 Section 4.2.2
19	If <i>Ch</i> is one of the channels M12-M16, I4-I5 then perform Steps 20-21.	
20	Lookup λ_C , A_{ir} and B_{ir} for the channel <i>Ch</i> in Table 40 and add them	Section 4.2.1

This Document is Public

Step	Description	References
	as the attributes CentralWaveLength, BandCorrectionCoefficientA, and	Section 9.2
	the target group.	
21	Add the offset and scale contained in the source group dataset BrightnessTemperatureFactors as the attributes OriginalBrightnessTemperatureOffset and OriginalBrightnessTemperatureScale of the target group.	Section 3.2 Section 4.2.2
22	If <i>Ch</i> is DNB then perform Steps 23-25	
23	Calculate N-bit Floating point parameters as described in section 8.14.8 and create custom datatype based on Float32.	Section 8.14.8
24	Copy Radiance data into dataset Radiance with datatype as created in Step 23.	
25	Set N-Bit Filter for HDF5 Dataset	

5.3 Generating the Metadata

The table below lists the steps required for generating the metadata of the Compact VIIRS SDR Product from the Original VIIRS SDR Product.

Table	18	Steps	for	generating	the g	metad	lata e	of the	Com	pact	VIIRS	SDR	Pro	duct
1 4010	10	Steps.	,	Serveranne	,			<i>j</i>	00110	pace	,			

Step	Description	References
1	Create Group /Data_Products	
2	For each Group m_All in /All_Data create Group m under /Data_Products	
3	For each Group /Data_Products/m create Dataset m_Aggr and m_Gran_0	
4	For each Dataset n under /All_Data/m_All create Dataset references to n in Dataset /Data_Products/m/m_Aggr and Dataset Region reference in Dataset /Data_Products/m/m_Gran_0	
5	For each Group Data_Products/m copy the attributes of the original Product to the compact product	
6	For each Dataset under Data_Products/m copy the attributes of the original Product to the compact product	

This Document is Public

6 STEPS FOR RECONSTRUCTING THE ORIGINAL VIIRS SDR FROM THE COMPACT VIIRS SDR

6.1 Reconstructing the Geolocation and Angular Data

Table 19 below lists the steps required for reconstructing the geolocation data for each Pixel starting from the Tie Point based information contained in the Compact VIIRS SDR Product. Each step contains a short description as well as references to sections of this document giving more detailed instructions.

Please note that for the re-generation with the simplified Tie Point Zone schema with just one Tie Point Zone Group (M-Band, I-Band), the following values shall be used, if those are not available in the Compact VIIRS SDR format. This is true for Compact VIIRS SDR products created with a CVIIRS version <1.0.0:

```
\begin{split} & \text{NumberOfTiePointZoneGroupsTrack} = 1, \\ & \text{NumberOfTiePointZoneGroupsScan} = 1, \\ & \text{TiePointZoneGroupLocationTrackCompact} = 0, \\ & \text{TiePointZoneGroupLocationScanCompact} = 0, \\ & \text{TiePointZoneGroupLocationTrack} = 0, \\ & \text{TiePointZoneGroupLocationScan} = 0. \end{split}
```

Each Scan in the VIIRS SDR corresponds here to one entry in the Tie Point Zone Groups Track directory. That is, for a standard VIIRS SDR granule with 768 pixels along track, i.e. 48 scans, the algorithm described below needs to be repeated 48 times, i.e. for each scan.

Step	Description	References
1	From the Compact VIIRS SDR HDF5 file read the following attributes of any of the groups /All_Data/VIIRS-Ch- SDR_ALL TiePointZoneSizeTrack, TiePointZoneSizeScan, PixelOffsetTrack, PixelOffsetScan, TiePointZoneGroupLocationTrack and TiePointZoneGroupLocationScan.	HDF5 definitions www.hdf5.org Section 4.2.2
2	Create the target group /All_Data/VIIRS-MOD-GEO_All (or /All_Data/VIIRS-IMG-GEO_All or /All_Data/VIIRS-DNB-GEO_All) in the Original VIIRS SDR HDF5 geolocation file.	
3	Access the source group /All_Data/VIIRS-MOD-GEO_All (or /All_Data/VIIRS-IMG-GEO_All or /All_Data/VIIRS-DNB-GEO_All) in the Compact VIIRS SDR HDF5 file.	
4	From the source group read the datasets NumberOfTiePointZonesTrack, NumberOfTiePointZonesScan, NumberOfTiePoinZoneGroupsTrack, NumberOfTiePointZoneGroupsScan,	Section 4.1

 Table 19 Steps for reconstructing geolocation data of the Original VIIRS SDR Product

Step	Description	References
	TiePointZoneGroupLocationTrackCompact, TiePointZoneGroupLocationScanCompact, ExpansionCoefficient, AlignmentCoefficient, Latitude, Longitude, SatelliteAzimuthAngle, SatelliteZenithAngle, SolarAzimuthAngle, SolarZenithAngle, and for DNB as well LunarAzimuthAngle and LunarZenithAngle, in full.	
5	If any of the dataset values associated with the temporary Tie Points A', B', C' and D' are a floating point Fill Value as defined in Table 25, then set all values of the final Tie Points A, B, C and D of the Tie Point Zone to the floating point Fill Value. If different Fill Values are present, use the one with the largest absolute value. Else perform Steps 6-18.	Fill Values Section 9.1
6	Iterate over all Tie Point Zone Groups and determine the start of the Tie Point Zones in this group by using the values read from TiePointZoneGroupLocationTrackCompact and TiePointZoneGroupLocationScanCompact, as well as TiePointZoneGroupLocationTrack and TiePointZoneGroupLocationTrack, respectively.	
7	Iterate over all Tie Point Zones within the Tie Point Zone Group and perform the Steps 8-18 for each Tie Point Zone. Use NumberOfTiePoinZoneGroupsTrack and NumberOfTiePointZoneGroupsScan to determine the number of Tie Point Zones in this Tie Point Zone Group.	Tie Point Zones Section 2.4
8	Associate the data read from file in Step 1-4 with the corresponding Tie Points A, B, C and D of the Tie Point Zone using the index relations.	Index relations Section 8.3
9	If the Tie Point Zone, defined by the positions of its four Tie Points A, B, C and D, crosses the Datum Line or lies within the polar regions, then calculate from the Longitude and Latitude the Position Unit Vector for each of the Tie Points A, B, C and D. Otherwise do nothing.	Condition, section 8.6.1 Calculation Section 8.7.1
10	If, for Tie Points A, B, C and D, the range of the SatelliteAzimuthAngle values is large or the points are close to one of the Poles or the SatelliteZenithAngle is small, then, for each of the Tie Points A, B, C and D, calculate from the SatelliteAzimuthAngle and SatelliteZenithAngle the Satellite Unit Vector and transform the vector from the Pixel Centred Frame to the Earth Centred Frame. See section 10.6.2 for the definition of "large", "small" and "close to". Otherwise do nothing.	Condition, section 8.6.2 Calculation Section 8.8.1 Transformation, section 8.9.1
11	If, for Tie Points A, B, C and D, the range of the SolarAzimuthAngle values is large or the points are close to one of the Poles or the SolarZenithAngle is small, then, for each of the Tie Points A, B, C and D, calculate from the	Condition, section 8.6.3 Calculation

Step	Description	References	
	SolarAzimuthAngle and SolarZenithAngle the So Unit Vector and transform the vector from the Pixel Centred Frame to the Earth Centred Frame. See section 8.6.3 for the definition of "large", "small" and "close to".		
	Otherwise do nothing.		
12	Only for DNB: If, for Tie Points A, B, C and D, the range of the LunarAzimuthAngle values is large or the points are close to one of the Poles or the LunarZenithAngle is small, then, for each of the Tie Points A, B, C and D, calculate from the LunarAzimuthAngle and LunarZenithAngle the Lunar Unit Vector and transform the vector from the Pixel Centred Frame to the Earth Centred Frame. See section 8.6.3 for the definition of "large", "small" and "close to". Otherwise do nothing.	Condition, section 8.6.3 Calculation Section 8.8.1 Transformation, section 8.9.1	
13	Iterate over all Pixels within the Tie Point Zone and perform Steps 14-18 for each Pixel.		
14	14 Calculate the interpolation parameters s _{track} and s _{scan} for the pixel.		
15	Calculate the corrected interpolation parameters α_{track} and α_{scan} for the pixel.	Section 8.5	
16	If the Position Unit Vectors were calculated in Step 9, use the Vector Interpolation to calculate the Position Unit Vector for the Pixel and convert the result back to the longitude and latitude representation.	Interpolation, section 8.12.1 Conversion, section 8.7.2	
	Otherwise, interpolate directly in longitude and latitude. The result of this step is the Latitude and Longitude for the Pixel.	Interpolation, section 8.12.3	
17	If the Satellite Unit Vectors were calculated in Step 10, use the Vector Interpolation to calculate the Satellite Unit Vector for the Pixel, transform the vector from the Earth Centred Frame to Pixel Centred Frame and convert the result back to azimuth and zenith angle representation. Otherwise, interpolate directly in azimuth and zenith angle. The result of this step is the SatelliteAzimuthAngle and SatelliteZenithAngle for the Pixel.	Interpolation, section 8.12.1 Transformation, section 8.9.2 Conversion, section 8.8.2 Interpolation, section 8.12.4	
18	If the Solar Unit Vectors were calculated in Step 11, use the Vector Interpolation to calculate the Solar Unit Vector for the Pixel, transform the vector from the Earth Centred to Pixel Centred Frame and covert the result back to azimuth and	Interpolation, section 8.12.1 Transformation,	

This Document is Public

Step	Description	References
	zenith angle representation.	section 8.9.2
	Otherwise, interpolate directly in azimuth and zenith angle.	Conversion, section 8.8.2
	The result of this step is the SolarAzimuthAngle and SolarZenithAngle for the Pixel.	Interpolation, section 8.12.4
	Only for DNB: If the Lunar Unit Vectors were calculated in Step 12, use the Vector Interpolation to calculate the Lunar	Interpolation, section 8.12.1
	Unit Vector for the Pixel, transform the vector from the Earth Centred to Pixel Centred Frame and covert the result back to azimuth and zenith angle representation.	Transformation, section 8.9.2
19	Otherwise, interpolate directly in azimuth and zenith angle.	Conversion, section 8.8.2
	The result of this step is the LunarAzimuthAngle and LunarZenithAngle for the Pixel.	Interpolation, section 8.12.4
20	Write, for all Pixels, the calculated Latitude, Longitude, SatelliteAzimuthAngle, SatelliteZenithAngle, SolarAzimuthAngle, and SolarZenithAngle, and for DNB the LunarAzimuthAngle and LunarZenithAngle, values to the target group.	Section 3.1
21	From the source group copy the datasets StartTime, MidTime, SCPosition, SCVelocity, SCAttitude, PadBytel, QF1_SCAN_VIIRSSDRGEO and QF2_SCAN_VIIRSSDRGEO, and for DNB as well MoonIllumFraction and MoonPhaseAngle, to the target group.	Section 4.1 Section 3.1
22	From the source group /All_Data copy the datasets NumberOfScans, ModeScan and ModeGran to the target group.	Section 4.3 Section 3.1

6.2 **Reconstructing the Observation Data**

Table 20 below lists the steps required for generating the observation data of the Original VIIRS SDR Product from the Compact VIIRS SDR Product. Each step contains a short description as well as references to sections of this document giving more detailed instructions.

This Document is Public

Step	Description	References
1	Iterate over the VIIRS channels $Ch = M1-M16$, I1-I5 or DNB and perform the Steps 2-23 for each channel.	
2	Access the source group /All_Data/VIIRS-Ch-SDR_All in the Compact VIIRS SDR HDF5 file.	
3	Read the target group attribute OriginalFilename and create a new Original VIIRS SDR HDF5 file for channel <i>Ch</i> .	Section 4.2.2
4	Create the target group /All_Data/VIIRS-Ch-SDR_All in the Original VIIRS SDR HDF5 file.	
5	From the source group copy the datasets QF1_VIIRSMBANDSDR (or QF1_VIIRSIBANDSDR or QF1_VIIRSDNBSDR), QF2_SCAN_SDR, QF3_SCAN_RDR, QF4_SCAN_SDR (only M- and I-Band), QF5_GRAN_BADDETECTOR (only M- and I-Band), PadByte1, NumberOfMissingPkts, NumberOfBadChecksums and NumberOfDiscardedPkts to the target group.	Section 3.2 Section 4.2
6	From the source group /All_Data copy the datasets NumberOfScans, ModeScan and ModeGran to the target group.	Section 4.3 Section 3.2
7	Read the source group Radiance dataset attributes RadianceOffsetLow, RadianceScaleLow, RadianceOffsetHigh, RadianceScaleHigh and Threshold corresponding to a _{low} , b _{low} , a _{high} , b _{high} and C _{threshold} .	Section 4.2.1
8	If <i>Ch</i> is one of the channels M1, M2, M6, M8-M12, M14-M16, I1-I5 then perform Steps 9-10.	
9	Copy the 16 bit uint source group dataset Radiance to the target group.	Section 3.2 Section 4.2
10	Add b_{low} and a_{low} as scale and offset respectively to the target group dataset RadianceFactors.	Section 4.2.1 Section 3.2
11	Read the 16 bit uint source group dataset Radiance.	Section 0
12	If <i>Ch</i> is one of the channels M3-M5, M7, M13 then perform Step 13.	Section 3.2 Section 8.14.6
13	Convert each 16 bit uint value in the Radiance dataset to a 32 bit floating point using the dual-scale representation conversion and write the 32 bit floating point dataset Radiance to the target group.	Section 8.14.6
14	If <i>Ch</i> is one of the channels M1-M11, I1-I3 then perform Steps 15-18.	

Table 20 Steps for reconstructing the observation data of the Original VIIRS SDR Product

This Document is Public

Step	Description	References
15	Read the source group Radiance dataset attributes EquivalentWidth, IntegratedSolarIrradiance and EarthSunDistanceNormalised corresponding to A_{vis} , B_{visand} and d_{se} .	Section 4.2.1
16	For each value in the 32 bit floating point dataset Radiance find the corresponding /All_Data/VIIRS-MOD- GEO_All/SolarZenithAngle for the pixel and calculate the Reflectance.	Section 8.15
17	Read the source group attributes OriginalReflectanceOffset and OriginalReflectanceScale corresponding to a _{reflectance} and b _{reflectance} and write them to the target group dataset ReflectanceFactors.	Section 4.2.2 Section 3.2
18	For each Reflectance value, calculate the integer representation based on $a_{reflectance}$ and $b_{reflectance}$ and write it to the target group Reflectance dataset	Section 8.17 Section 3.2
19	If <i>Ch</i> is one of the channels M12-M16, I4, I5 then perform Steps 19-21.	
20	Read the source group Radiance dataset attributes CentralWaveLength, BandCorrectionCoefficientA, and BandCorrectionCoefficientB corresponding to λ_C , A_{ir} and B_{ir}	Section 4.2.1
21	Read the source group attributes OriginalBrightnessTemperatureOffset and OriginalBrightnessTemperatureScale corresponding to a_{bt} and b_{bt} and write them to the target group dataset BrightnessTemperatureFactors.	Section 4.2.2 Section 3.2
22	For each value in the 32 bit floating point dataset Radiance calculate the BrightnessTemperature.	Section 8.16
23	If <i>Ch</i> is one of the channels M12, M14-M16, I4-I5 then convert the Brightness Temperatures to the integer representation based on a_{bt} and b_{bt} and write it to the target group BrightnessTemperature dataset	Section 8.18 Section 3.2
24	If <i>Ch</i> is the channel M13 then write the Brightness Temperatures to the target group BrightnessTemperature dataset	Section 3.2
25	If <i>Ch</i> is the channel DNB then copy the Radiance dataset to the target group with datatype of Float32.	

6.3 Reconstructing the Metadata

Table 21 below lists the steps required for reconstructing the metadata of the Original VIIRS SDR Product from the Compact VIIRS SDR Product

This Document is Public

Table 21 Steps for reconstructing the metadata of the Original VIIRS SDR Product

Step	Description	References
1	Create Group / Data_Products	
2	For each Group m_All in /All_Data create Group m under /Data_Products	
3	For each Group /Data_Products/m create Dataset m_Aggr and m_Gran_0	
4	For each Dataset n under /All_Data/m_All create Dataset references to n in Dataset /Data_Products/m/m_Aggr and Dataset Region reference in Dataset /Data_Products/m/m_Gran_0	
5	For each Group Data_Products/m copy the attributes of the original Product to the compact product	
6	For each Dataset under Data_Products/m copy the attributes of the original Product to the compact product	

This Document is Public

7 FILE NAMING CONVENTION

The file naming convention for the Compact VIIRS SDR follows the convention for the Original VIIRS SDR as defined in [AD-1] section 3.4.1. The structure is shown in

Figure 16 below.

Figure 16 File Name Structure

The Spacecraft ID for S-NPP is npp and for JPSS-1/NOAA20 j01.

7.1 Original VIIRS SDR File Naming Convention

Examples of file names for the M-Band VIIRS SDR observation files are:

SVM01_npp_d20030125_t0847056_e0848301_b00015_c20090513182937523620_noaa_ops.h5 SVM02_npp_d20030125_t0847056_e0848301_b00015_c20090513182937523620_noaa_ops.h5

SVM16_npp_d20030125_t0847056_e0848301_b00015_c20090513182937523620_noaa_ops.h5

and the corresponding geolocation file:

GMODO_npp_d20030125_t0847056_e0848301_b00015_c20090513182937523620_noaa_ops.h5

Examples of file names for the I-Band VIIRS SDR observation files are:

SVI01_npp_d20030125_t0847056_e0848301_b00015_c20090513182937523620_noaa_ops.h5 SVI02_npp_d20030125_t0847056_e0848301_b00015_c20090513182937523620_noaa_ops.h5

SVI05_npp_d20030125_t0847056_e0848301_b00015_c20090513182937523620_noaa_ops.h5

and the corresponding geolocation file:

GIMGO_npp_d20030125_t0847056_e0848301_b00015_c20090513182937523620_noaa_ops.h5

Examples of file names for the Day/Night-Band VIIRS SDR observation files are:

This Document is Public

SVDNB_npp_d20030125_t0847056_e0848301_b00015_c20090513182937523620_noaa_ops.h5

and the corresponding geolocation file:

GDNBO_npp_d20030125_t0847056_e0848301_b00015_c20090513182937523620_noaa_ops.h5

7.2 Compact VIIRS SDR File Naming Convention

In the file name convention for the Compact VIIRS SDR the Data Product ID is defined as SV[M | I | IM | DNB]C, where S stands for SDR, V for VIIRS, M for M-Band, I for I-Band, IM for M- and I-Band, DNB for Day/Night-Band, and C for Compact.

The 'I' and 'M' indicate, respectively, the presence of the I- and/or M-band channels inside the aggregation, as well as the respective geolocation data, i.e. GMODO and/or GIMGO. The allowed combinations are:

- M only M-band channels and the M-band geolocation data are present.
- I only I-band channels and the I-band geolocation data are present.
- IM both the I- and the M-band channels and geolocation data are present.

Example file names:

SVMC_npp_d20030125_t0847056_e0848301_b00015_c20090513182937523620_eum_ops.h5 SVIC_npp_d20030125_t0847056_e0848301_b00015_c20090513182937523620_eum_ops.h5 SVIMC_npp_d20030125_t0847056_e0848301_b00015_c20090513182937523620_eum_ops.h5 SVDNBC_npp_d20030125_t0847056_e0848301_b00015_c20090513182937523620_eum_ops.h5

8 MATHEMATICAL ALGORITHMS

This section details the mathematical algorithms required for generating and applying the geolocation data of the Compact VIIRS SDR Product. The individual sections are referenced in the steps defined in sections 5 and 6.

8.1 Relative and Absolute Pixel Indices

Within the Tie Point Zone a pixel is given relative indices ($i_{track,relative,}$, $i_{scan,relative}$) starting at (0,0) at the Tie Point A and counting up to (Z_{track} -1, Z_{scan} -1) at Tie Point C, where Z_{track} and Z_{scan} are the size of the Tie Point Zone along the track and scan directions respectively. In the case of the VIIRS M-band, ($i_{track,relative,}$, $i_{scan,relative}$) runs from (0,0) through (15,15) as shown in Figure 4. For the DNB it runs from (0,0) through (7,15), (13,15), (15,15), (19,15), (21,15) or (23,15) depending on the Tie Point Zone Group; see details in Figure 7 and Table 37.

Similarly, within the granule a pixel is given absolute indices $(i_{track,}, i_{scan})$ starting at (0,0) and counting up to $(N_{track} -1, N_{scan} -1)$, where N_{track} and N_{scan} are the size of the Granule along the track and scan directions respectively. In the case of the VIIRS M-band, (i_{track}, i_{scan}) runs from (0,0) through (767, 3199), for I-Band up to (767, 6399) and for DNB (767, 4063).

This Document is Public

For the simplified case of M- and I-Band, as the Tie Point Zones are all the same size across the full VIIRS swath, the conversions from absolute to relative pixel indices

 $i_{relative,track} = remainder\left(\frac{i_{track}}{Z_{track}}\right)$ $i_{relative,scan} = remainder\left(\frac{i_{scan}}{Z_{scan}}\right)$

as well as the conversion from relative to absolute pixel indices

$$i_{track} = i_{zone,track} \cdot Z_{track} + i_{relative,track}$$

 $i_{scan} = i_{zone,scan} \cdot Z_{scan} + i_{relative,scan}$

are simple. Here (i_{zone,track}, i_{zone,scan}) are the indices of the Tie Point Zone within the Granule as shown in Figure 9.

For the general case (Day/Night-Band, applicable as well to M- and I-Band) the Tie Point Zone sizes vary through the Tie Point Zone Groups. Thus, the formulas to be used need to consider the index of the start of a Tie Point Zone Group. Those are stored in the Datasets or Attributes of the Compact VIIRS SDR: TiePointZoneGroupLocationTrack ($P_{track}[j]$), TiePointZoneGroupLocationScan($P_{scan}[j]$), TiePointZoneGroupLocationTrackCompact ($P_{track,compact}[j]$), TiePointZoneGroupLocationScanCompact ($P_{scan,compact}[j]$).

For any given Tie Point Zone Group *j*:

Conversion from absolute to relative pixel indices:

$$\begin{split} i_{relative,track} &= remainder\left(\frac{i_{track} - P_{track}[j]}{Z_{track}[j]}\right)\\ i_{relative,scan} &= remainder\left(\frac{i_{scan} - P_{scan}[j]}{Z_{scan}[j]}\right) \end{split}$$

Conversion from relative to absolute pixel indices:

$$i_{track} = i_{zone,track} \cdot Z_{track}[j] + i_{relative,track} + P_{track}[j]$$
$$i_{scan} = i_{zone,scan} \cdot Z_{scan}[j] + i_{relative,scan} + P_{scan}[j]$$

In the Compact VIIRS SDR Product the size of the Tie Point Zone Z_{track} and Z_{scan} as well as the Start of the Tie Point Zone Groups P_{track} and P_{scan} are stored as attributes of each contained observation group, see section 4.2.2.

8.2 Tie Point Zone Indices

This Document is Public

For the simplified case of M- and I-Band the Tie Point Zone indices ($i_{zone,track}$, $i_{zone,scan}$) can be calculated from the absolute pixel indices (i_{track} , i_{scan}) as

$$\begin{split} i_{zone,track} &= integer\left(\frac{l_{track}}{Z_{track}}\right) \\ i_{zone,scan} &= integer\left(\frac{i_{scan}}{Z_{scan}}\right) \end{split}$$

In the case of the VIIRS M-band, $(i_{zone,track,}, i_{zone,scan})$ runs from (0, 0) through (47, 199) corresponding to a full Granule.

For the general case (Day/Night-Band, applicable as well to M- and I-Band) the Tie Point Zone indices ($i_{zone,track}$, $i_{zone,scan}$) can be calculated from the absolute pixel indices (i_{track} , i_{scan}) for each Tie Point Zone Group j as

$$i_{zone,track} = \sum_{\substack{n=1\\j=1}}^{J-1} N_{zones,track} + integer\left(\frac{i_{track} - P_{track}[j]}{Z_{track}[j]}\right)$$
$$i_{zone,scan} = \sum_{n=1}^{J-1} N_{zones,scan} + integer\left(\frac{i_{scan} - P_{scan}[j]}{Z_{scan}[j]}\right)$$

8.3 HDF5 Data Array Indices

For all cases (the simplified case of M- and I-Band, as well as the general case (Day/Night-Band, applicable as well to M- and I-Band)) the Tie Point Zone indices (i_{zone,track}, i_{zone,scan}) are used for calculating the location of geolocation and angular parameters within the HDF5 data array. For each of the Tie Points A, B, C and D the array indices are

$$(i_A, j_A)_{HDF5} = (2 \cdot i_{zone, track}, i_{zone, scan})$$
$$(i_B, j_B)_{HDF5} = (2 \cdot i_{zone, track}, i_{zone, scan} + 1)$$
$$(i_C, j_C)_{HDF5} = (2 \cdot i_{zone, track} + 1, i_{zone, scan} + 1)$$
$$(i_D, j_D)_{HDF5} = (2 \cdot i_{zone, track} + 1, i_{zone, scan})$$

8.4 Interpolation Parameters and Pixel Offset

Where the pixel indices are integer numbers, the interpolation parameters s_{track} and s_{scan} are real numbers varying as a function of the relative pixel indices

$$s_{track}(i_{relative,track}) = \frac{p_{offset,track} + i_{relative,track}}{Z_{track}}$$
$$s_{scan}(i_{relative,scan}) = \frac{p_{offset,scan} + i_{relative,scan}}{Z_{scan}}$$

This Document is Public

Here the Pixel Offsets (p_{offset,track}, p_{offset,scan}) indicate the offsets of the corner pixel centre with respect to its nearest Tie Point A as shown in

Figure 17, where the corner pixel is the one with local indices (0,0) within its Tie Point Zone. The Pixel Offset is measured in units of pixels and in the case of the VIIRS instrument, the Pixel Offset is (0.5, 0.5) for all bands and channels.

In the Compact VIIRS SDR Product the Pixel Offset (p_{offset,track}, p_{offset,scan}) is stored as attributes of each contained observation group, see section 4.2.2.

Figure 17 Definition of the Pixel Offset

This Document is Public

8.5 Scanning Geometry Corrections

Two geometrical corrections are applied to the Interpolation Parameters s_{track} and s_{scan} introduced in section 8.4, resulting in the Corrected Interpolation Parameters α_{track} and α_{scan}

 $\alpha_{scan} = s_{scan} + s_{scan}(1 - s_{scan})c_{\text{expansion}} + s_{track}(1 - s_{track})c_{\text{alignment}}$

 $\alpha_{track} = s_{track}$

Both corrections are approximated as second order polynomials in s_{track} and s_{scan} . The corrections depend on the coefficients $c_{expansion}$ and $c_{alignment}$ that can be considered constant for each Tie Point Zone.

The first correction, expressed by the coefficient c_{expansion}, accounts for the variation in Pixel size across each Tie Point Zone and is described in further detail in section 8.10.

The second correction, expressed by the coefficient c_{alignment}, accounts for the Pixels not being linearly aligned along the track direction and is described in further detail in section 8.11.

In the Compact VIIRS SDR Product the geometrical correction coefficients $c_{expansion}$ and $c_{alignment}$ are included once for each Tie Point Zone scan index $i_{zone,scan}$, corresponding to a total of $N_{zones,scan}$ of each coefficient, see section 4.1. These coefficient values can be applied for all scans contained in the granule.

8.6 Interpolation Conditions

Within a given Tie Point Zone, the conditions defined in this section determine if the Vector Interpolation method must be applied for the Pixel Position, Satellite Direction and Solar Direction respectively, to ensure numerical accuracy.

The Vector Interpolation method is generally applicable and always provides the best possible accuracy. However, for reasons of computational speed, it is recommended to use the simpler direct interpolation methods whenever possible.

The indices A, B, C and D used in the expressions refer to the four Tie Points of the Tie Point Zone.

8.6.1 Pixel Position Interpolation Condition

For the Pixel Position, Vector Interpolation must be applied if the Tie Point Zone crosses the Datum Line

 $\max(lon_A, lon_B, lon_C, lon_D) - \min(lon_A, lon_B, lon_C, lon_D) > 90^{\circ}$

or if the Tie Point Zone lies within the Polar regions

This Document is Public

$$\max(|lat_A|, |lat_B|, |lat_C|, |lat|_D) > lat_{position \ limit}$$

where a typical value of the limit is $lat_{position \ limit} = 60^{\circ}$.

Otherwise, the longitude and latitude can be interpolated directly.

8.6.2 Satellite Direction Interpolation Condition

For the Satellite Direction, Vector Interpolation must be applied if the range of the Satellite Azimuth Angle is large

 $\max(azi_A, azi_B, azi_C, azi_D) - \min(azi_A, azi_B, azi_C, azi_D) > azi_{satellite limit}$

where a typical value of the limit is $azi_{satellite\ limit} = 5^{\circ}$, or if the Satellite Zenith Angle is small $min(zen_A, zen_B, zen_C, zen_D) < zen_{satellite\ limit}$

where a typical value of the limit is $zen_{satellite \ limit} = 10^{\circ}$, or if the Tie Point Zone is close to one of the Poles

 $\max(|lat_A|, |lat_B|, |lat_C|, |lat|_D) > lat_{satellite limit}$

where a typical value of the limit is $lat_{satellite limit} = 80^{\circ}$.

Otherwise, the azimuth and zenith angles can be interpolated directly.

8.6.3 Solar Direction Interpolation Condition

For the Solar Direction, Vector Interpolation must be applied if the range of the Solar Azimuth Angle is large

 $\max(azi_A, azi_B, azi_C, azi_D) - \min(azi_A, azi_B, azi_C, azi_D) > azi_{solar limit}$

where a typical value of the limit is $azi_{solar \ limit} = 5^{\circ}$, or if the Solar Zenith Angle is small

 $\min(zen_A, zen_B, zen_C, zen_D) < zen_{solar limit}$

where a typical value of the limit is $zen_{solar \ limit} = 10^\circ$, or if the Tie Point Zone is close to one of the Poles

 $\max(|lat_A|, |lat_B|, |lat_C|, |lat|_D) > lat_{solar limit}$

where a typical value of the limit is $lat_{solar \ limit} = 80^{\circ}$.

Otherwise, the azimuth and zenith angles can be interpolated directly.

This Document is Public

8.6.4 Lunar Direction Interpolation Condition

For the Lunar Direction, Vector Interpolation must be applied if the range of the Lunar Azimuth Angle is large

 $\max(azi_A, azi_B, azi_C, azi_D) - \min(azi_A, azi_B, azi_C, azi_D) > azi_{lunar limit}$

where a typical value of the limit is $azi_{lunar\ limit} = 5^{\circ}$, or if the Lunar Zenith Angle is small $min(zen_A, zen_B, zen_C, zen_D) < zen_{lunar\ limit}$

where a typical value of the limit is $zen_{lunar \ limit} = 10^{\circ}$, or if the Tie Point Zone is close to one of the Poles

 $\max(|lat_A|, |lat_B|, |lat_C|, |lat|_D) > lat_{lunar limit}$

where a typical value of the limit is $lat_{lunar limit} = 80^{\circ}$.

Otherwise, the azimuth and zenith angles can be interpolated directly.

8.7 **Position Conversions**

In the interpolation scheme a position can either be represented as longitude and latitude or as a vector pointing from the centre of the Earth towards the position. The advantage of using the vector for interpolation is that it provides the same good accuracy for all longitudes and latitudes. However, it is computationally more demanding.

Note that, for the purpose of interpolation within a Tie Point Zone, it is sufficiently accurate to assume a spherical Earth.

8.7.1 Longitude, Latitude to Unit Vector

The conversion from longitude and latitude to a Position Unit Vector is

$$x = \cos(lat) \cos(lon)$$

$$y = \cos(lat) \sin(lon)$$

$$z = \sin(lat)$$

8.7.2 Vector to Longitude, Latitude

The conversion from Position Vector to longitude and latitude is

This Document is Public

$$lon = \tan^{-1}\left(\frac{y}{x}\right)$$
$$lat = \tan^{-1}\left(\frac{z}{\sqrt{x^2 + y^2}}\right)$$

For correct computation of $\tan^{-1}(y/x)$ use the dual argument function $\tan^{2}(y,x)$ provided in most programming languages.

8.8 Direction Conversions

In the interpolation scheme a direction can either be represented as azimuth and zenith angle or as a vector.

8.8.1 Azimuth Angle, Zenith Angle to Unit Vector

The conversion from azimuth and zenith angles to a Direction Unit Vector is

$$x = \sin(zen) \sin(azi)$$

$$y = \sin(zen) \cos(azi)$$

$$z = \cos(zen)$$

8.8.2 Vector to Azimuth Angle, Zenith Angle

The conversion from a Direction Vector to azimuth and zenith angles is

$$azi = \tan^{-1}\left(\frac{x}{y}\right)$$
$$zen = \frac{\pi}{2} - \tan^{-1}\left(\frac{z}{\sqrt{x^2 + y^2}}\right)$$

For correct computation of $\tan^{-1}(y/x)$ use the dual argument function $\tan^{2}(y,x)$ provided in most programming languages.

8.9 Reference Frame Transformations

Two reference frames are being used in the interpolation scheme.

In the Pixel Centred reference frame the x-axis points to the East, the y-axis to the North and the z-axis to the Zenith. Generally the azimuth and zenith angles are expressed in the Pixel Centred reference frame.

In the Earth Centred reference frame the z-axis points to the North, the x-axis to the 0° longitude and the y-axis completes the system.

Vector interpolation are performed in the Earth Centred reference frame to ensure that the interpolated coordinate values all refer to the same reference frame.

This Document is Public

The transformation between the Earth Centred reference frame and the Pixel Centred reference frame can be expressed using the orthogonal transformation matrix

$$M = \begin{pmatrix} m_{0,0} & m_{0,1} & m_{0,2} \\ m_{1,0} & m_{1,1} & m_{1,2} \\ m_{2,0} & m_{2,1} & m_{2,2} \end{pmatrix} = \begin{pmatrix} -\sin(lon) & \cos(lon) & 0 \\ -\sin(lat)\cos(lon) & -\sin(lat)\sin(lon) & \cos(lat) \\ \cos(lat)\cos(lon) & \cos(lat)\sin(lon) & \sin(lat) \end{pmatrix}$$

8.9.1 Pixel Centred to Earth Centred

A vector expressed in the Pixel Centred reference frame (PC) can be transformed to the Earth Centred (EC) reference frame using

$$\begin{aligned} x_{EC} &= m_{0,0} x_{PC} + m_{0,1} y_{PC} + m_{0,2} z_{PC} \\ y_{EC} &= m_{1,0} x_{PC} + m_{1,1} y_{PC} + m_{1,2} z_{PC} \\ z_{EC} &= m_{2,0} x_{PC} + m_{2,1} y_{PC} + m_{2,2} z_{PC} \end{aligned}$$

8.9.2 Earth Centred to Pixel Centred

A vector expressed in the Earth Centred (EC) reference frame can be transformed to the Pixel Centred reference frame (PC) using

 $\begin{aligned} x_{PC} &= m_{0,0} x_{EC} + m_{1,0} y_{EC} + m_{2,0} z_{EC} \\ y_{PC} &= m_{0,1} x_{EC} + m_{1,1} y_{EC} + m_{2,1} z_{EC} \\ z_{PC} &= m_{0,2} x_{EC} + m_{1,2} y_{EC} + m_{2,2} z_{EC} \end{aligned}$

8.10 Pixel Expansion Correction

For the VIIRS M-Band and I-Band, pixels are sampled at constant increments in the instrument scanning angle φ , see Figure 18. Consequently the on-ground pixel size increases towards the edge of the swath. This means that the pixel centres are not linearly distributed along the scan direction within a Tie Point Zone.

To characterise this effect the coefficient $c_{expansion}$ is introduced. It expresses the pixel centre shift, normalised against the scan direction size of the Tie Point Zone, for a Pixel at the midpoint of the Tie Point Zone. The actual correction is a function of s_{scan} and can be approximated as a second order polynomial

 $s_{scan}(1-s_{scan})c_{expansion}$

where s_{scan} varies from 0.0 to 1.0 across the Tie Point Zone.

This Document is Public

Figure 18 View along the track direction of the VIIRS scanning geometry

The Satellite Zenith Angles at Tie Point A and B are written ζ_A and ζ_B respectively.

The corresponding scan angles can be computed from

$$\varphi_A = \sin^{-1} \left(\frac{\mathbf{R} \cdot \sin(\zeta_A)}{\mathbf{R} + H} \right)$$
$$\varphi_B = \sin^{-1} \left(\frac{\mathbf{R} \cdot \sin(\zeta_B)}{\mathbf{R} + H} \right)$$

where the mean Earth radius R = 6371 km and the mean orbital height H = 824 km are sufficiently accurate as a basis for the calculation of the geometrical correction considered in this section.

The corresponding values of θ are

$$heta_A = \zeta_A - \varphi_A$$
 $heta_B = \zeta_B - \varphi_B$

At the scan midpoint

$$\varphi = \frac{\varphi_A + \varphi_B}{2}$$
$$\zeta = \sin^{-1} \left(\frac{(R + H) \cdot \sin(\varphi)}{R} \right)$$

This Document is Public

$$\theta = \zeta - \varphi$$

For use in the quadratic approximation of the pixel size variation across the Tie Point Zone, the following correction factor is defined

$$c_{\text{expansion}} = 4 \cdot \frac{\frac{\theta_A + \theta_B}{2} - \theta}{\theta_A - \theta_B}$$

8.11 Pixel Alignment Correction

The VIIRS instrument scans 16 M-Band lines and 32 I-Band lines during one instrument scan. At the sub-satellite point the 16 or 32 pixels are linearly aligned along the track direction. However, away from the sub-satellite point, the pixels are located along a curved arc formed by the intersection of the along track scan plane and the Earth surface.

To characterise this effect the coefficient $c_{alignment}$ is introduced. It expresses the pixel centre shift in the scan direction, normalised against the size of the Tie Point Zone, for a Pixel at the midpoint of the Tie Point Zone. The actual correction is a function of s_{track} and can be approximated as a second order polynomial

$$s_{track}(1-s_{track})c_{alignment}$$

where s_{track} varies from 0.0 to 1.0 across the Tie Point Zone.

Figure 19 View of the VIIRS scanning geometry in a plane perpendicular to the track direction and containing the line through P_1 , P_2 and the satellite introduced in Figure 18.

This Document is Public

An overview of the geometry is given in Figure 19. A and D are two Tie Points, the distance d is half the scan width and can be found from

$$d = \left(\frac{R+H}{R}\cos(\varphi) - \cos(\zeta)\right)\sin\left(\frac{\beta}{2}\right)$$

where an approximate value of $\sin\left(\frac{\beta}{2}\right) \approx \frac{11.9 \text{ km}}{2 \cdot 824 \text{ km}}$ found from the VIIRS scan width at the sub-satellite point and the mean orbit height is sufficiently accurate for the purpose of this correction.

In the plane considered in Figure 19, the correction e can be expressed as

$$e = \cos(\zeta) - \sqrt{\cos^2(\zeta) - d^2}$$

which must be projected to the horizontal plane and normalised against the scan direction size of the Tie Point Zone to give

$$c_{\text{alignment}} = 4 \cdot \frac{e \cdot \sin(\zeta)}{\theta_A - \theta_B}$$

8.12 Interpolation/Extrapolation

The indices A, B, C and D used in the expressions refer to the four Tie Points of the Tie Point Zone.

8.12.1 Vector Interpolation/Extrapolation

Within a Tie Point Zone, a vector can be interpolated based on the Tie Points A, B, C and D as well as the corrected interpolation parameters α_{track} and α_{scan} for the pixel

$$\begin{pmatrix} x_1 \\ y_1 \\ z_1 \end{pmatrix} = (1 - \alpha_{scan}) \begin{pmatrix} x_A \\ y_A \\ z_A \end{pmatrix} + \alpha_{scan} \begin{pmatrix} x_B \\ y_B \\ z_B \end{pmatrix}$$
$$\begin{pmatrix} x_2 \\ y_2 \\ z_2 \end{pmatrix} = (1 - \alpha_{scan}) \begin{pmatrix} x_D \\ y_D \\ z_D \end{pmatrix} + \alpha_{scan} \begin{pmatrix} x_C \\ y_C \\ z_C \end{pmatrix}$$
$$\begin{pmatrix} x \\ y \\ z \end{pmatrix} = (1 - \alpha_{track}) \begin{pmatrix} x_1 \\ y_1 \\ z_1 \end{pmatrix} + \alpha_{track} \begin{pmatrix} x_2 \\ y_2 \\ z_2 \end{pmatrix}$$

8.12.2 Direction Vector and Position Vector Midpoint

The midpoint between two direction vectors can be calculated using

This Document is Public

$$\begin{pmatrix} x \\ y \\ z \end{pmatrix} = 0.5 \begin{pmatrix} x_1 \\ y_1 \\ z_1 \end{pmatrix} + 0.5 \begin{pmatrix} x_2 \\ y_2 \\ z_2 \end{pmatrix}$$

8.12.3 Longitude, Latitude Interpolation/Extrapolation

Within a Tie Point Zone, a latitude and longitude can be interpolated based on the Tie Points A, B, C and D as well as the corrected interpolation parameters α_{track} and α_{scan} for the pixel

$$\begin{pmatrix} lat_1\\ lon_1 \end{pmatrix} = (1 - \alpha_{scan}) \begin{pmatrix} lat_A\\ lon_A \end{pmatrix} + \alpha_{scan} \begin{pmatrix} lat_B\\ lon_B \end{pmatrix}$$
$$\begin{pmatrix} lat_2\\ lon_2 \end{pmatrix} = (1 - \alpha_{scan}) \begin{pmatrix} lat_D\\ lon_D \end{pmatrix} + \alpha_{scan} \begin{pmatrix} lat_C\\ lon_C \end{pmatrix}$$
$$\begin{pmatrix} lat\\ lon \end{pmatrix} = (1 - \alpha_{track}) \begin{pmatrix} lat_1\\ lon_1 \end{pmatrix} + \alpha_{track} \begin{pmatrix} lat_2\\ lon_2 \end{pmatrix}$$

8.12.4 Azimuth, Zenith Angle Interpolation/Extrapolation

Within a Tie Point Zone, azimuth and zenith angles can be interpolated based on the Tie Points A, B, C and D as well as the corrected interpolation parameters α_{track} and α_{scan} for the pixel

$$\begin{pmatrix} azi_1\\ zen_1 \end{pmatrix} = (1 - \alpha_{scan}) \begin{pmatrix} azi_A\\ zen_A \end{pmatrix} + \alpha_{scan} \begin{pmatrix} azi_B\\ zen_B \end{pmatrix}$$
$$\begin{pmatrix} azi_2\\ zen_2 \end{pmatrix} = (1 - \alpha_{scan}) \begin{pmatrix} azi_D\\ zen_D \end{pmatrix} + \alpha_{scan} \begin{pmatrix} azi_c\\ zen_C \end{pmatrix}$$
$$\begin{pmatrix} azi\\ zen \end{pmatrix} = (1 - \alpha_{track}) \begin{pmatrix} azi_1\\ zen_1 \end{pmatrix} + \alpha_{track} \begin{pmatrix} azi_2\\ zen_2 \end{pmatrix}$$

8.13 Extrapolation of Parameters for Tie Points

When the Tie Points are derived from the geolocation data of the original VIIRS SDR Product the following parameters s_{track} and s_{scan} support the extrapolation of the geolocation data from the centres of the four Tie Point Zone corner Pixels to the Tie Points A, B, C and D.

$$s_{A,track} = \frac{-p_{offset,track}}{Z_{track}-1} \qquad \qquad s_{A,scan} = \frac{-p_{offset,scan}}{Z_{scan}-1}$$
$$s_{B,track} = \frac{-p_{offset,track}}{Z_{track}-1} \qquad \qquad s_{B,scan} = \frac{Z_{scan}-p_{offset,scan}}{Z_{scan}-1}$$

This Document is Public

 $s_{C,track} = \frac{Z_{track} - p_{offset,track}}{Z_{track} - 1} \qquad s_{C,scan} = \frac{Z_{scan} - p_{offset,scan}}{Z_{scan} - 1}$ $s_{D,track} = \frac{Z_{track} - p_{offset,track}}{Z_{track} - 1} \qquad s_{D,scan} = \frac{-p_{offset,scan}}{Z_{scan} - 1}$

8.14 Radiance Representations and Conversions

In the original VIIRS SDR product radiance values are either represented using the singlescale integers or floating point values. In the Compact VIIRS SDR product all radiance values are represented using the dual-scale integer representation. See also section 2.5.

The floating point representation is based on storing the radiances directly as 32 bit floating point values.

The single-scale integer representation is based storing radiances as 16 bit unsigned integers with an associated single set of offset and scale factor a/b.

The dual-scale representation is based on storing radiance values as 16 bit unsigned integers with two associated offset and scale factor sets, one for low radiance values and one for high radiance values. The representation thereby matches the characteristics of the VIIRS dual gain channels and ensures a higher accuracy of the radiance values than possible with a single scale representation. The two offset and scale factor sets a_{low}/b_{low} and a_{high}/b_{high} as well as the integer threshold $C_{threshold}$ determining the set to be used when converting from the integer to the float representation are included in the Compact VIIRS SDR, see Table 12. The calculation of the two offset and scale factor sets a_{low}/b_{low} and a_{high}/b_{high} are described in section 8.14.1 below.

Conversions between any of these representations, as shown in Figure 20, are described in sections 8.14.2 through 8.14.7.

Figure 20 Radiance Representation Conversions

This Document is Public

8.14.1 Determination of Dual-Scale Offset and Scale Factors

The floating point radiance values L_{min} and L_{max} define the range of radiance values covered by the dual scale representation. The corresponding range of integer values available for the dual scale representation is defined by the integers C_{min} and C_{max} . The threshold $L_{threshold}$ determines if floating point radiance will be assigned to the low or to the high part of the dual gain representation. Finally $C_{threshold}$ defines the range of integers assigned to the low and to the high part of the dual gain representation.

The two offset and scale factor sets a_{low}/b_{low} and a_{high}/b_{high} are determined as follows, cf. as well Figure 21,

$$b_{low} = \frac{L_{threshold} - L_{min}}{C_{threshold} - C_{min}}, \qquad a_{low} = L_{min} - b_{low} * C_{min}$$
$$b_{high} = \frac{L_{max} - L_{threshold}}{C_{max} - C_{threshold}}, \qquad a_{high} = L_{threshold} - b_{high} * C_{threshold}$$

Typical values for the offsets a_{low} and a_{high} , the scale factors b_{low} and b_{high} as well as C_{min}, C_{threshold}, C_{max}, L_{min}, L_{threshold} and L_{max} are given in sections 10.4 and 10.5.

Figure 21 Determination of the Dual-Scale Offset and Scale Factors

8.14.2 Single-Scale to Dual-Scale Radiance Conversion

For a radiance stored as a single-scale integer $C_{Single-Scale}$, the conversion to a dual-scale integer $C_{Dual-Scale}$ is simple:

This Document is Public

 $C_{Dual-Scale} = C_{Single-Scale}$ $a_{low} = a_{high} = a_{Single-Scale}$ $b_{low} = b_{high} = b_{Single-Scale}$ $C_{Threshold} = 0$

8.14.3 Dual-Scale to Single-Scale Radiance Conversion

For a dual-scale integer $C_{Dual-Scale}$ that was originally created form a single-scale integer, the conversion back to a single-scale integer $C_{Single-Scale}$, is simple:

 $C_{Single-Scale} = C_{Dual-Scale}$ $a = a_{low}$ $b = b_{low}$

8.14.4 Single-Scale to Floating Point Radiance Conversion

If the single-scale integer radiance value *C* matches one of the integer Fill Values defined in Table 25, then set L to the corresponding floating point Fill Value.

Else calculate the floating point radiance value as follows:

$$L = a + b \cdot C$$

8.14.5 Floating Point to Single-Scale Radiance Conversion

If floating point radiance L matches one of the floating point Fill Values defined in Table 25, then set *C* to the corresponding integer Fill Value.

Else calculate the integer radiance value as follows:

$$C = nint\left\{\frac{L-a}{b}\right\}$$

If the computed integer C is outside the range $0 \le C \le 65527$, then set C to the Fill Value SOUB_UINT16_FILL defined in Table 25, indicating that the scaling is out of bounds.

8.14.6 Dual-Scale to Floating Point Radiance Conversion

If the integer radiance value *C* matches one of the integer Fill Values defined in Table 25, then set L to the corresponding floating point Fill Value.

Else, depending on the value of the integer representation C, calculate the floating point radiance value as follows

$$L = a_{low} + b_{low} \cdot C \qquad 0 \le C \le C_{threshold}$$

This Document is Public

$$L = a_{high} + b_{high} \cdot C \qquad C_{threshold} < C \le 65527$$

8.14.7 Floating Point to Dual-Scale Radiance Conversion

The threshold to be used when converting from floating point radiance to the integer representation can be calculate as

$$L_{threshold} = a_{low} + b_{low} \cdot C_{threshold}$$

If floating point radiance L matches one of the floating point Fill Values defined in Table 25, then set *C* to the corresponding integer Fill Value.

Else, depending on the value of the floating point radiance L, then calculate the integer radiance value as follows:

$$C = nint \left\{ \frac{L - a_{low}}{b_{low}} \right\} \qquad \qquad L \le L_{thres}$$
$$C = nint \left\{ \frac{L - a_{high}}{b_{high}} \right\} \qquad \qquad L > L_{thres}$$

If the computed integer C is outside the range $0 \le C \le 65527$, then set C to the Fill Value SOUB_UINT16_FILL defined in Table 25, indicating that the scaling is out of bounds.

8.14.8 Floating Point to Custom Floating Point Radiance Conversion

HDF5 has a set of predefined data types, amongst others 32 bit Floating Point numbers (IEEE). HDF5, however, allows as well defining user-defined floating point numbers with bit-lengths which are not a multiple of 16. This feature allows customizing data types to the actual needs. See [RD-3] for more details.

8.14.8.1 Floating Point Numbers

The IEEE 754 [RD-4] standard defines the encoding of floating point numbers, e.g. with 32 bits length as follows (Figure 22):

HDF5 allows, following the standard encodings defined in IEEE 754, to define variable bitlength floating point numbers, e.g. 17 bits (Figure 23):

This Document is Public

Figure 23 Encoding layout of N-bit (17) bit floating point numbers, example, precision 13 bits

All parameters needed to define the N-bit floating point number in HDF5 need to be set by the defining user: sign-position, exponent-size, -position and -bias, significand-size and -position.

8.14.8.2 Determining the needed exponent size automatically

The exponent size can be determined automatically and optimally based on the data represented in the data array.

The number of normalized floating-point numbers in a system F (B, P, L, U) (where B is the base of the system, P is the precision of the system to P numbers, L is the smallest exponent representable in the system, and U is the largest exponent used in the system) is [RD-5]:

$$2(B-1)(B^{P-1})(U-L+1)+1$$
(1)

There is a smallest positive normalized floating-point number, Underflow level = $UFL = B^L$ which has a 1 as the leading digit and 0 for the remaining digits of the significand, and the smallest possible value for the exponent.

There is a largest floating-point number, Overflow level = $OFL = (1 - B^{-P})(B^{U+1})$ which has B - 1 as the value for each digit of the significand and the largest possible value for the exponent.

Given Range of values [|a|; |b|]; a is the smallest number to be represented, b the largest; B = 2 (binary representation).

L and U to be determined based on given [|a|; |b|].

$$UFL = 2^L = a; \ L = \log_2(a) \tag{2}$$

$$OFL = (1 - 2^{-P}) * (2^{U+1}) = b; \quad U = \log_2\left(\frac{b}{1 - 2^{-P}}\right) - 1 \tag{3}$$

Determine exponent-bias:

The exponent bias is used to give the maximum possible range in the exponent, it can be used to shifts the exponent by the minimum exponent.

[1.0E-9; 1.6E-2] shall be represented optimally. Using (2) and (3) we get L=-29.897 and U=-6.943.

Thus, a range of exponents from -30 to -6, i.e. 25 different exponents, is needed. Additionally, two special meaning exponents are required by IEEE 754. The 27 exponents needed can be encoded with 5 bits. The exponent bias used here is -31.

This Document is Public

8.14.8.3 Determining the needed significand size

In contrast to the exponent size the significand size cannot be automatically determined; it needs to be given based on the numerical accuracy required.

For example, the VIIRS Day and Night Band (DNB) senses the data on-board with a resolution of 12 bit (low gain state) to 14 bit (high gain state) and specifies a calibration uncertainty between 5% (one half of maximum radiance for low gain state) and 100% (minimum radiance for high gain state). The dynamic range of the panchromatic DNB is 3.0E-9 Watt cm-2 sr-1 to at least 2.0E-2 Watt cm-2 sr-1, divided roughly equally over the 3 gain stages. Each gain state covers approx. a range of 300 numbers, encoded in 12 to 14 bits. The minimum resolution is thus ~0.018.

The maximum relative spacing (epsilon) for a given significand is 2^{-Precision},

e.g. 6 bits: epsilon = $2^{-6} = 0.015625$, maximum error = $+/-2^{-7} = +/-0.0078125$

8 bits: epsilon = $2^{-8} = 0.00390625$, maximum error = $+/-2^{-9} = +/-0.001953125$

For the mentioned example, a significand of 8 bits can thus be used without losing information.

8.14.8.4 Applying Custom Floating Point Numbers

The radiance data set is read into a 32-bit floating point array. The optimum exponent size is determined by applying formulas (2) and (3) to the detected range of values (min, max of absolute values) within the data array. A user specific data type is created following the examples given in the HDF5 User's Guide [RD-3]. When the data is written to disk, the new data type applying the N-Bit filter is used.

8.14.8.4.1 Radiance float coefficients for Day-Night Band

Custom floating points with a dynamically determined exponent size based on the min and max of the data present in the dataset is applied only if aggregations of 1 granule are processed. For any aggregation with more than one granule, custom Floating Points Numbers with a fixed size of 8 bits exponents and an exponent bias of 127 are used.

8.14.8.5 Fill Values

For Floating Point numbers in the Radiance dataset, the Fill Values in the VIIRS SDR formats are defined according to [AD-2] and are in the range of -999.2 to -999.9.

With the standard 32 bit Floating Point numbers, those Fill Value numbers can be properly encoded. However, with the tailored Floating Point numbers used for the Radiance dataset in the Observation data, due to the shorter mantissa size (8 bits instead of 23 bits), those fill values cannot be encoded properly anymore.

Thus, the Compact VIIRS SDR for the DNB stores the Fill Values as different numbers, Table 22.

This Document is Public

Table 22	2 Fill Values mapping between Original VIIRS DNB SDR and Compact VIIRS D	ONB SDR
	for Radiance Dataset	

Fill Values used for the Radiance dataset in the Original VIIRS DNB SDR, Fo	Fill Values used for the Radiance dataset in the Compact VIIRS DNB SDR, Fc
-999.9	-99
-999.8	-98
-999.7	-97
-999.6	-96
-999.5	-95
-999.4	-94
-999.3	-93
-999.2	-92

The following formulas can be used to convert the Fill Values between the Original and the Compact VIIRS DNB SDR for the Radiance Dataset:

 $F_C = F_O * 10 + 9900$ $F_O = (F_C - 9900)/10$

8.15 Visible channels Radiance to Reflection conversion

In the original VIIRS SDR, both, radiances and the associated reflectances are stored. The reflectances for all 11 visible channels are represented by 16-bit integer counts. The reflectance conversion is performed with a slope value that can in principle be channel dependent, but is the same for all channels.

If the radiance value L matches one of the floating point Fill Values defined in Table 25, then set r to this floating point Fill Value.

If the solar zenith angle Θ_{sol} is greater or equal than $\pi/2$, then set the value of r to the Fill Value NA_FLOAT32_FILL defined in Table 25.

Else, convert the radiance value L to a reflectance value r the using the following formula

$$r = \frac{\pi L}{\cos(\Theta_{sol})} \frac{\int \Phi(\lambda) d\lambda}{\int \Phi(\lambda) E_{sun}(\lambda) d\lambda} \ d_{se}^2 = \frac{\pi L}{\cos(\Theta_{sol})} \frac{A_{vis}}{B_{vis}} \ d_{se}^2$$

where λ is the channel wavelength, $\Phi(\lambda)$ the response function and $E_{sun}(\lambda)$ the Spectral solar irradiance (W m⁻² µm⁻¹).

If the resulting r is greater than the Fill Value NA_FLOAT32_FILL defined in Table 25, or if the calculation of *r* otherwise fails, then set the value of *r* to the Fill Value ERR_FLOAT32_.

The parameters required for the actual calculation of the reflectance are:

This Document is Public

	Description	Reference
Θ_{sol}	Actual solar zenith angle (rad)	Included in Compact VIIRS SDR at tie-points, see section 4.1. Interpolation required for reconstructing value for each pixel, see section 6.1.
A _{vis}	Equivalent width (µm)	Included in the Compact VIIRS SDR, see section 4.2.1. Typical values are provided in Table 38.
B _{vis}	irradiance (W m ⁻²)	
dse	Relation between the mean and the actual Earth-Sun distance (Unitless)	Included in the Compact VIIRS SDR, see section 4.2.1. Given the Julian Day D_{Jul} of the Year (0-366), the actual value of d_{se} is
		$d_{se} = 1 - 0.01673 \cdot \cos[0.9856 (D_{jul} - 4)^{\pi}/_{180}]$

Table 23 Parameters used fir Reflectance calculation

8.16 Infrared channels Radiance to Brightness Temperature conversion

Once calibrated Earth view radiances L have been computed, the calculation of the equivalent blackbody temperature, henceforth referred to as brightness temperature T, will be performed by a single equation:

$$T = \left[\frac{hc}{k \lambda_{\rm c} \ln\left(1 + \frac{2hc^2}{\lambda_c^5 L_{ir}}\right)}\right] \cdot A_{ir} + B_{ir}$$

where L must be given in W/(m2 sr m) and not in W/(m2 sr μ m). If the calculation of *T* fails, then set the value of *T* to the Fill Value ERR_FLOAT32_FILL defined in Table 25.

The parameters required for the actual calculation of the brightness temperature are:

	Description	Reference
λ_c	Central wavelength (m)	Included in the Compact VIIRS SDR, see section 4.2.1.
A _{ir}	Band Correction Coefficient (Unitless)	Typical values are provided in Table 40, in section 10.3.
B _{ir}	Band Correction Coefficient (K)	
С	Speed of Light (m s ⁻¹)	299792458 m s ⁻¹
h	Planck constant (m ² kg s ⁻¹)	6.6260755 10 ⁻³⁴ m ² kg s ⁻¹

 Table 24 Parameters used fir Brightness Temperature calculation

This Document is Public

k	Boltzmann constant (m ² kg s ⁻²	1.380658 10 ⁻²³ m ² kg s ⁻² K ⁻¹
	K ⁻¹)	

8.17 Reflectance Conversion from Floating Point to Integer

When reconstructing the Original VIIRS SDR product from the Compact VIIRS SDR product, the floating point reflectance L must be converted to the integer reflectance value C.

If L matches one of the floating point Fill Values defined in Table 25, then set r to the corresponding integer Fill Value.

Else, the integer value is calculated as follows:

$$r = nint \left\{ \frac{L - a_{reflectance}}{b_{reflectance}} \right\}$$

where the offset a_{refelctance} and the scale factor b_{reflectance} used in the Original SDR are included in the Compact SDR, section 4.2.1.

If the calculation of r fails, then set the value of r to the Fill Value ERR_UINT16_FILL defined in Table 25.

If the computed integer r is outside the range $0 \le C \le 65527$, then set r to the Fill Value SOUB_UINT16_FILL defined in Table 25, indicating that the scaling is out of bounds.

If the computed integer r is in the range $-100 \le r < 0$, then set r=0 in order to handle values that fall below zero by a small amount.

8.18 Brightness Temperature Conversion from Floating Point to Integer

When reconstructing the Original VIIRS SDR product from the Compact VIIRS SDR product, the floating point brightness temperature L must be converted to the integer brightness temperature value T.

If L matches one of the floating point Fill Values defined in Table 25, then set T to the corresponding integer Fill Value.

Else, the integer value is calculated as follows:

$$T = nint\left\{\frac{L - a_{bt}}{b_{bt}}\right\}$$

where the offset a_{bt} and the scale factor b_{bt} used in the Original SDR are included in the Compact SDR, section 4.2.1.

This Document is Public

If the calculation of T fails, then set the value of T to the Fill Value ERR_UINT16_FILL defined in Table 25.

If the computed integer *T* is outside the range $0 \le C \le 65527$, then set *T* to the Fill Value SOUB_UINT16_FILL defined in Table 25, indicating that the scaling is out of bounds.

This Document is Public

9 FILL, MODE AND QUALITY FLAG VALUES

9.1 VIIRS Pixel Level Fill Values

A summary of the Pixel Level Fill Values relevant to the Compact VIIRS SDR product format is provided in Table 25, below. For a full definition of Fill Values see section 3.5.6 of [AD-1] in combination with section 2.16 of [AD-2].

format.								
Pixel Level Definition		Values						
Algorithm Exclusions	The pixel/cell was not computed because it is not applicable to this situation (i.e., NA is the	NA_FLOAT32_FILL	-999.9					
	correct answer)	NA_UINT16_FILL	65535					
Missing at Time of Processing	C3S provided a fill value, the S/C did not provide the value, or	MISS_FLOAT32_FILL	-999.8					
	AP missing	MISS_UINT16_FILL	65534					
Onboard Pixel Trim	The VIIRS pixel was trimmed	ONBOARD_PT_FLOAT32_FILL	-999.7					
	on the S/C (e.g., overlap omitted)	ONBOARD_PT_UINT16_FILL	65533					
On-ground Pixel Trim	The VIIRS pixel was trimmed during processing (i.e., we	ONGROUND_PT_FLOAT32_FILL	-999.6					
	process the pixel)	ONGROUND_PT_UINT16_FILL	65532					

Table 25 Summary of the Pixel Level Fill Values relevant to the Compact VIIRS SDR productformat.

		MISS_UINTIO_FILL	05554
Onboard Pixel Trim	The VIIRS pixel was trimmed	ONBOARD_PT_FLOAT32_FILL	-999.7
	on the S/C (e.g., overlap omitted)	ONBOARD_PT_UINT16_FILL	65533
On-ground Pixel Trim	The VIIRS pixel was trimmed during processing (i.e., we intentionally choce not to	ONGROUND_PT_FLOAT32_FILL	-999.6
	process the pixel)	ONGROUND_PT_UINT16_FILL	65532
Cannot Calculate	The algorithm could not compute the pixel/cell because of a software or hardware	ERR_FLOAT32_FILL	-999.5
	problem (e.g., could not converge to a solution)	ERR_UINT16_FILL	65531
Ellipsoid Intersection Failed	The observation does not intersect the earth's surface	ELINT_FLOAT32_FILL	-999.4
	This is an indication of a calibration manoeuvre.	ELINT_UINT16_FILL	65530
Value Does Not Exist	The data was not available - it is not missing, nor is any attempt made to calculate the data	VDNE_FLOAT32_FILL	-999.3
		VDNE_UINT16_FILL	65529
Scaling Out Of	The scaled data was out of bounds of the data type	SOUB_FLOAT32_FILL	-999.2
Boullus	bounds of the data type	SOUB_UINT16_FILL	65528

This Document is Public

9.2 Other VIIRS Fill Values

A summary of the other VIIRS Fill Values relevant to the Compact VIIRS SDR product format is provided in Table 26, below. For a full definition of Fill Values see section 3.5.6 of [AD-1] in combination with section 2.16 of [AD-2].

Table 26	Summary of the other	VIIRS Fill	Values relevant to the	Compact VIIRS SDR product
			format.	

Data set	Definition	Values	
NumberOfMissingP kts	Number of missing packets in scan	MISS_INT32_FILL	-998
		VDNE_INT32_FILL	-993
NumberOfBadChec ksums	Number of packets with bad checksums in scan	MISS_INT32_FILL	-998
		VDNE_INT32_FILL	-993
NumberOfDiscarde dPkts	Number of discarded packets in scan	MISS_INT32_FILL	-998
		VDNE_INT32_FILL	-993

9.3 VIIRS Mode Values

A summary of the Mode Values relevant to the Compact VIIRS SDR product format is provided in the tables below. For a full definition of Mode Values see section 2.16 of [AD-2].

Description	Datum Offset	Data Type	Legend Entries	
The VIIRS operational mode,	0	8 bits	Name	Value
reported at the scan level			Night	0
			Day	1
			Fill Values	
			MISS_UINT8_FILL	254
			ERR_UINT8_FILL	251
			VDNE_UINT8_FILL	249

Table 27 ModeScan Values.

This Document is Public

Description	Datum Offset	Data Type	Legend Entries	
The VIIRS operational mode,	0	8 bits	Name	Value
reported at the granule level			Night	0
			Day	1
			Mixed	2
			Fill Values	
			MISS_UINT8_FILL	254
			ERR_UINT8_FILL	251
			VDNE_UINT8_FILL	249

Table 28 ModeGran Values.

This Document is Public

9.4 VIIRS Quality Flag Values

A summary of the Quality Flag Values relevant to the Compact VIIRS SDR product format is provided in the tables below. For a full definition of Quality Flag Values see section 2.16 of [AD-2].

Description	Datum Offset	Data Type	Legend Entries	
Attitude and Ephemeris	0	2 bits	Name	Value
availability status			Nominal - E&A data available	0
			Missing Data <= Small Gap	1
			Small Gap < Missing Data < Granule Boundary	2
			Missing Data >= Granule Boundary	3
HAM/RTA Encoder Flag -	2	2 bits	Name	Value
Indicates the quality of the HAM and RTA encoder			Good Data	0
timestamps			Bad Data - either HAM, RTA, or both are bad for the entire scan	1
			Degraded Data - either HAM, RTA, or both are corrupted within the scan	2
			Missing Data - Missing encoder data for the scan	3
Within South Atlantic Anomaly	4	1 bit	Name	Value
			False	0
			True	1
Solar Eclipse during Earth view	5	1 bit	Name	Value
scan			False	0
			True	1
Spare	6	1 bit	Name	Value
Half Angle Mirror side	7	1 bit	Name	Value
			Mirror Side A	0
			Mirror Side B	1

Table 29 QF1_SCAN_VIIRSSDRGEO Quality Flag Values.

Table 30 QF2_SCAN_VIIRSSDRGEO Quality Flag Values.

Description		Datum Offset	Data Type	Legend Entries	
Scan Controller	Electronics	0	2 bits	Name	Value
(SCE) Side	(SCE) Side			Both sides off	0
			Side A on	1	
				Side B on	2
			Invalid side [This state should not occur]	3	

This Document is Public

Spare	2	6 bits	Name	Value

Table 31 QF2_VIIRSSDRGEO Quality Flag Values.

Description	Datum Offset	Data Type	Legend Entries	
Invalid Input Data (Indicates	0	1 bit	Name	Value
that any of the Spacecraft			False	0
Invalid or the encoder data is invalid).			True	1
Bad Pointing (Indicates that	1	1 bit	Name	Value
the sensor LOS does not			False	0
the limb based upon sensor zenith angle.)			True	1
Bad Terrain (Indicates that	2	1 bit	Name	Value
the algorithm could not			False	0
obtain a vand terrain value)			True	1
Invalid Solar Angles:	3	1 bit	Name	Value
			False	0
			True	1
Spare	4	4 bit	Name	Value

Table 32 QF1_VIIRSMBANDSDR, QF1_VIIRSIBANDSDR and QF1_VIIRSDNBSDR QualityFlag Values.

Description	Datum Offset	Data Type	Legend Entries	
Quality - Indicates	0	2 bits	Name	Value
calibration quality due to bad			Good	0
view offsets, etc or use of a			Poor	1
previous calibration view:			No Calibration	2
Saturated Pixel - Indicates	2	2 bits	Name	Value
the level of pixel saturation:			None Saturated	0
			Some Saturated	1
			All Saturated	2
Missing Data - Data required	4	2 bits	Name	Value
for calibration processing is			All data present	0
not available for processing.			EV RDR data missing	1
			Cal data (SV, CV, SD, etc.) missing	2
			Thermistor data missing	3
Out of Range - Calibrated	6	2 bits	Name	Value

This Document is Public

pixel value outside of LUT threshold limits:		All data within range	0
		Radiance out of range	1
		Reflectance or EBBT out of range	2
		Both Radiance and Reflectance or EBBT out of range	3

Table 33 QF2_SCAN_SDR Quality Flag Values.

Description	Datum Offset	Data Type	Legend Entries	
Half Angle Mirror Side	0	1 bit	Name	Value
			Side A on	0
			Side B on	1
The Moon has corrupted the	1	1 bit	Name	Value
space view			False	0
			True	1
Spare	2	6 bits	Name	Value

Table 34 QF3_SCAN_RDR Quality Flag Values.

Description	Datum Offset	Data Type	Legend Entries			
Checksum failed for zone 1	0	1 bit	Name	Value		
			False	0		
			True	1		
Checksum failed for zone 2	1	1 bit	Name	Value		
			False	0		
			True	1		
Checksum failed for zone 3	2	1 bit	Name	Value		
			False	0		
			True	1		
Checksum failed for zone 4	3	1 bit	Name	Value		
			False	0		
			True	1		
Checksum failed for zone 5	4	1 bit	Name	Value		
			False	0		
			True	1		
Checksum failed for zone 6	5	1 bit	Name	Value		
			False	0		
			True	1		
Scan data is not Present (No	6	1 bit	Name	Value		
valid Data)			False	0		

This Document is Public

			True	1
Spare	7	1 bit	Name	Value

Table 35 QF4_SCAN_SDR Quality Flag Values.

Description	Datum Offset	Data Type	Legend Entries	
Quality for this scan-line is	0	un-	Name	Value
determined by the combined		8 bit	False	0
number of steps required to find a replacement for thermistor or calibration source data			True	>1

Table 36 QF5_GRAN_BAD_DETECTOR Quality Flag Values.

Description	Datum Offset	Data Type	Legend Entries		
Bad Detector - M-Band	0	1 bit	Name	Value	
			False	0	
			True	1	
Spare	1	7 bits	Name	Value	

This Document is Public

10 PARAMETER VALUES

10.1 Tie Point Zone Parameter Values

The tie point zone parameters listed in Table 37 below are contained within the Compact VIIRS SDR, see Table 9 and Table 13, and their values are VIIRS specific constants.

When generating a Compact VIIRS SDR Product it shall be populated with the tie point zone parameters values listed in the Table 37 below.

When reading a Compact VIIRS SDR Product or reconstructing an original VIIRS SDR Product from a Compact VIIRS SDR Product, the tie point zone parameters shall be read from the Compact VIIRS SDR Product itself.

This Document is Public Table 37 Tie point zone parameter values

	Type (DS=Dataset of			Value			
Dataset/Attribute Name	VIIRS- <i>Band</i> - GEO_All, A=Attribute of VIIRS- <i>Ch-</i> <i>SDR_All</i>)	Description	Symbol	M-Band	I-Band	DNB	
NumberOfTiePoint ZoneGroupsTrack	DS	Number of Tie Point Zone Groups in the Track direction	$N_{groups,track}$	1	1	1	
NumberOfTiePoint ZoneGroupsScan	DS	Number of Tie Point Zone Groups in the Scan direction	$\mathbf{N}_{ ext{groups,scan}}$	1	1	64	
NumberOfTie PointZonesTrack	DS	Number of Tie Point Zones in the Track direction	$N_{zones,track}$	1	1	1	
NumberOfTie PointZonesScan	DS	Number of Tie Point Zones in the Scan direction	N _{zones,scan}	200	200	5, 1, 4, 4, 4, 2, 1, 3, 2, 4, 2, 3, 2, 3, 2, 3, 3, 3, 5, 4, 5, 4, 4, 4, 4, 4, 3, 5, 3, 4, 3, 23, 23, 3, 4, 3, 5, 3, 4, 4, 4, 4, 4, 5, 4, 5, 3, 3, 3, 2, 3, 2, 3, 2, 4, 2, 3, 1, 2, 4, 4, 4, 1, 5	
TiePointZone SizeTrack	А	Size of the Tie Point Zone in the Track direction	Z _{track}	16	32	16	
TiePointZone SizeScan	А	Size of the Tie Point Zone in the Scan direction	Z _{scan}	16	32	16, 16, 16, 16, 16, 16, 24, 24, 20, 14, 20, 16, 16, 16, 16, 24, 24, 24, 16, 14, 16, 16, 16, 16, 16, 16, 24, 16, 24, 22, 24, 8, 8, 24, 22, 24, 16, 24, 16, 16, 16, 16, 16, 16, 14, 16, 24, 24, 24, 24, 16, 16, 16, 16, 16, 16, 16	
PixelOffsetTrack	А	Offset in Track direction of Pixel [0,0] centre relative to Tie Point A	Poffset, track	0.5	0.5	0.5	
PixelOffsetScan	A	Offset in Scan direction of Pixel	poffset, scan	0.5	0.5	0.5	

This Document is Public							
	Type (DS-Dataset of					Value	
Dataset/Attribute Name	VIIRS- <i>Band</i> - GEO_All, A=Attribute of VIIRS- <i>Ch-</i> <i>SDR_All</i>)	Description	Symbol	M-Band	I-Band	DNB	
		[0,0] centre relative to Tie Point A					
TiePointZone GroupLocation TrackCompact	DS	Location in the compact data set of the corner of each Tie Point Zone Group in the Track Direction	P _{track,compact}	0	0	0	
TiePointZone GroupLocation ScanCompact	DS	Location in the compact data set of the corner of each Tie Point Zone Group in the Scan Direction	P _{scan,compact}	0	0	0, 6, 8, 13, 18, 23, 26, 28, 32, 35, 40, 43, 47, 50, 54, 57, 61, 65, 69, 75, 80, 86, 91, 96, 101, 106, 111, 115, 121, 125, 130, 134, 158, 182, 186, 191, 195, 201, 205, 210, 215, 220, 225, 230, 236, 241, 247, 251, 255, 259, 262, 266, 269, 273, 276, 281, 284, 288, 290, 293, 298, 303, 308, 310	
TiePointZone GroupLocation Track	A	Location in the expanded data set of the corner of each Tie Point Zone Group in the Track Direction	P _{track}	0	0	0	
TiePointZone GroupLocation Scan	A	Location in the expanded data set of the corner of each Tie Point Zone Group in the Scan Direction	P _{scan}	0	0	0, 80, 96, 160, 224, 288, 320, 344, 416, 456, 512, 552, 600, 632, 680, 712, 784, 856, 928, 1008, 1064, 1144, 1208, 1272, 1336, 1400, 1464, 1536, 1616, 1688, 1776, 1848, 2032, 2216, 2288, 2376, 2448, 2528, 2600, 2664, 2728, 2792, 2856, 2920, 3000, 3056, 3136, 3208, 3280, 3352, 3384, 3432, 3464, 3512, 3552, 3608, 3648, 3720, 3744, 3776, 3840,	

This Document is Public							
	Type (DS=Dataset of			Value			
Dataset/Attribute Name	VIIRS- <i>Band</i> - GEO_All, A=Attribute of VIIRS- <i>Ch-</i> <i>SDR_All</i>)	Description	Symbol	M-Band	I-Band	DNB	
						3904, 3968, 3984	

This Document is Public

10.2 Typical Reflectance Parameter Values

The reflectance parameters listed in Table 38 below are contained within the Compact VIIRS SDR, see Table 12, and are required for the conversion from radiance to reflectance. The values in the table are typical values provided for information and the optimal values for operational use may differ, e.g. in response to changed instrument characteristics or settings.

When generating a Compact VIIRS SDR Product it shall be populated with the appropriate operational reflectance parameters values, see also Table 17, Step 16.

When reading a Compact VIIRS SDR Product or reconstructing an original VIIRS SDR Product from a Compact VIIRS SDR Product, the reflectance parameters shall be read from the Compact VIIRS SDR Product itself, see Table 20, Step 15.

Table 38	Equivalent width and band-integrated solar irradiance for the 11 VIIRS	visible M-Band
	channels	

VIIRS Channel	EquivalentWidth A _{vis} µm	IntegratedSolarIrradiance B _{vis} W m ⁻²
M1	0.1979783550E-01	33.83940249
M2	0.1430752221E-01	26.66728877
M3	0.1900157705E-01	37.98883065
M4	0.2093922533E-01	39.14834573
M5	0.1996985823E-01	30.56515889
M6	0.1459505595E-01	18.69858623
M7	0.3869968280E-01	37.24469424
M8	0.2712116949E-01	12.38904874
M9	0.1500406861E-01	5.398250081
M10	0.5875030532E-01	14.41161119
M11	0.4669837281E-01	3.506045974
I1	0.080	130.4500003
I2	0.039	37.57360035
I3	0.060	14.73727253

10.3 Typical Brightness Temperature Parameter Values

The brightness temperature parameters listed in the table below are contained within the Compact VIIRS SDR, see Table 12, and are required for the conversion from radiance to brightness temperature. The values in the table are typical values provided for information

This Document is Public

and the optimal values for operational use may differ, e.g. in response to changed instrument characteristics or settings.

When generating a Compact VIIRS SDR Product it shall be populated with the appropriate operational brightness temperature parameters values, see also Table 17, Step 20.

When reading a Compact VIIRS SDR Product or reconstructing an original VIIRS SDR Product from a Compact VIIRS SDR Product, the brightness temperature parameters shall be read from the Compact VIIRS SDR Product itself, see Table 20, Step 20.

VIIRS Channel	CentralWaveLength λ_c m	BandCorrection CoefficientA A _{ir} Unitless	BandCorrection CoefficientB <i>B_{ir}</i> K
M12	3.692118094E-6	1.000869385	-0.637890868
M13	4.063950468E-6	1.000524131	-0.338046119
M14	8.574690139E-6	1.000666830	-0.201236951
M15	10.68610341E-6	1.004393762	-1.049491534
M16	11.81466532E-6	1.003041012	-0.649809876
I4	3.740000E-6	1.003471	-1.923757
I5	11.450000E-6	1.003843	-0.655337

Table 39 Coefficients used for the central wavelengths and the band correctionsto convert Earth view radiances to brightness temperatures

10.4 Typical Radiance Range Values

In the original VIIRS SDR product format radiances are stored using a 32 bit floating point representation for the channels M3, M4, M5, M7 and M13. In order to convert these floating point radiances into the dual gain representation used in the Compact VIIRS SDR, the appropriate offsets a_{low} and a_{high} and scale factors b_{low} and b_{high} are required. These can be computed as described in section 8.14.1 using the radiance range values provided in the table below. The values in the table are typical values provided for information and the optimal values for operational use may differ, e.g. in response to changed instrument characteristics or settings.

The floating point radiance values L_{min} and L_{max} define the range of radiance values covered by the dual scale representation. The corresponding range of integer values available for the dual scale representation is defined by the integers C_{min} and C_{max} . The threshold $L_{threshold}$ determines if floating point radiance will be assigned to the low or to the high part of the dual gain representation. Finally $C_{threshold}$ defines the range of integers assigned to the low and to the high part of the dual gain representation. See section 8.14 for further details.

This Document is Public

When generating a Compact VIIRS SDR Product it shall be populated with the appropriate operational offsets a_{low} and a_{high} , scale factors b_{low} and b_{high} and threshold C_{threshold} values, see also Table 17, Step 14.

When reading a Compact VIIRS SDR Product or reconstructing an original VIIRS SDR Product from a Compact VIIRS SDR Product, the offsets a_{low} and a_{high} , scale factors b_{low} and b_{high} and threshold C_{threshold} parameters values shall be read from the Compact VIIRS SDR Product itself, see also Table 20 Step 7.

Channel	C _{min} Minimum Integer Radiance -	C _{threshold} Threshold Integer Radiance	C _{max} Maximum Integer Radiance -	L_{min} Minimum Floating Point Radiance W m ⁻² sr ⁻¹ µm ⁻¹	$L_{threshold}$ Minimum Floating Point Radiance W m ⁻² sr ⁻¹ µm ⁻¹	L _{max} Maximum Floating Point Radiance W m ⁻² sr ⁻¹ µm ⁻¹
M3	1	32767	65527	-0.250	107.000	900.000
M4	1	32767	65527	-0.200	78.000	850.000
M5	1	32767	65527	-0.200	59.000	830.000
M7	1	32767	65527	-0.100	29.000	460.000
M13	1	32767	65527	-0.020	3.537	660.000

Table 40 Typical Radiance Range Values for M3, M4, M5, M7 and M13.

10.5 Typical Radiance Representation Conversion Parameter Values

For information Table 41 provides a summary of offset and scale factors with corresponding integer and floating point ranges and thresholds for the dual gain representation of the Compact VIIRS SDR format.

For the channels M3, M4, M5, M7 and M13 the range and threshold values are taken from Table 40 and the corresponding offset and scale factors are computed from these according to the formulas in section 8.14.1.

For the remaining channels, the offset and scale factors have been extracted from operational original VIIRS SDR products and the corresponding range and threshold values are computed from these according to the formulas in section 8.14.

This Document is Public

Table 41 Offset and scale factors with corresponding integer and floating point ranges and thresholds for the dual gain representation of theCompact VIIRS SDR format.

Channel	<i>a_{low}</i> Radiance Offset Low	b _{low} Radiance Scale Low	a _{high} Radiance Offset High	b _{high} Radiance Scale High	C _{min} Minimum Integer Radiance	C _{threshold} Threshold Integer Radiance	C _{max} Maximum Integer Radiance	L _{min} Minimum Floating Point Radiance	L _{threshold} Minimum Floating Point Radiance	L _{max} Maximum Floating Point Radiance
	$W m^{-2} sr^{-1} \mu m^{-1}$	$W m^{-2} sr^{-1} \mu m^{-1}$	W m ⁻² sr ⁻¹ μm ⁻¹	W m ⁻² sr ⁻¹ μm ⁻¹	-	-	-	$W m^{-2} sr^{-1} \mu m^{-1}$	$W m^{-2} sr^{-1} \mu m^{-1}$	$W m^{-2} sr^{-1} \mu m^{-1}$
M1	-0.210000	0.01126574	-0.210000	0.01126574	0	0	65527	-0.210	-0.210	738.000
M2	-0.200000	0.01258413	-0.200000	0.01258413	0	0	65527	-0.200	-0.200	824.400
M3	-0.253273	0.00327321	-686.169444	0.02420635	1	32767	65527	-0.250	107.000	900.000
M4	-0.202387	0.00238662	-694.164957	0.02356532	1	32767	65527	-0.200	78.000	850.000
M5	-0.201807	0.00180675	-712.164744	0.02353480	1	32767	65527	-0.200	59.000	830.000
M6	-0.090000	0.00091703	-0.090000	0.00091703	0	0	65527	-0.090	-0.090	60.000
M7	-0.100888	0.00088812	-402.092094	0.01315629	1	32767	65527	-0.100	29.000	460.000
M8	-0.140000	0.00302196	-0.140000	0.00302196	0	0	65527	-0.140	-0.140	197.880
M9	-0.090000	0.00141331	-0.090000	0.00141331	0	0	65527	-0.090	-0.090	92.520
M10	-0.040000	0.00130450	-0.040000	0.00130450	0	0	65527	-0.040	-0.040	85.440
M11	-0.020000	0.00058266	-0.020000	0.00058266	0	0	65527	-0.020	-0.020	38.160
M12	0.000000	0.00005173	0.000000	0.00005173	0	0	65527	0.000	0.000	3.390
M13	-0.020109	0.00010856	-653.066270	0.02003855	1	32767	65527	-0.020	3.537	660.000
M14	-0.030000	0.00032155	-0.030000	0.00032155	0	0	65527	-0.030	-0.030	21.040
M15	-0.020000	0.00031315	-0.020000	0.00031315	0	0	65527	-0.020	-0.020	20.500
M16	-0.020000	0.00026554	-0.020000	0.00026554	0	0	65527	-0.020	-0.020	17.380
I1	-0.410000	0.01315504	-0.410000	0.01315504	0	0	65527	-0.410	-0.410	861.600
I2	-0.240000	0.00639492	-0.240000	0.00639492	0	0	65527	-0.240	-0.240	418.800
I3	-0.210000	0.00133090	-0.210000	0.00133090	0	0	65527	-0.210	-0.210	87.000
I4	-0.010000	0.00005524	-0.010000	0.00005524	0	0	65527	-0.010	-0.010	3.610

				This Doc	cument is Pu	blic				
I5	-0.080000	0.00028340	-0.080000	0.00028340	0	0	65527	-0.080	-0.080	18.490

This Document is Public

APPENDIX A: Abbreviations

AD	Applicable Document
ATBD	Algorithmic Theoretical Baseline Document
CADU	Channel Access Data Unit
CCSDS	Consultative Committee for Space Data Systems
CIMSS	Cooperative Institute for Meteorological Satellite Studies
CSPP	Community Satellite Processing Package
CVIIRS	EUMETSAT tool for compacting and expanding VIIRS data
DNB	Day and Night Band
DS	Dataset
EARS	EUMETSAT Advanced Retransmission Service
EUMETCast	EUMETSAT's DVB S2 satellite broadcasting system
EUMETSAT	European Organisation for the Exploitation of Meteorological Satellites
FPA	Focal Plane Array
GTS	Global Telecommunication System
HAM	Half Angle Mirror
HDF	Hierarchical Data Format
ID	Identifier
JPSS	Joint Polar Satellite System
LUT	Lookup Table
NA	Not Available
NASA	National Aeronautics and Space Administration
NOAA	National Oceanic and Atmospheric Administration
NPP	(Suomi) National Polar-orbiting Partnership
PDF	Portable Data Format
PPN	Product Processing Node
RD	Reference Document
RDR	Raw Data Record
RT-STPS	Real-time Software Telemetry Processing System
SCE	Scan Controller Electronics
SDR	Sensor Data Record
TC	Terrain Corrected
TOA	Top of Atmosphere
TPZ	Tie Point Zone
VIIRS	Visible Infrared Imager Radiometer Suite