Skip to content
This repository

HTTPS clone URL

Subversion checkout URL

You can clone with HTTPS or Subversion.

Download ZIP
branch: gingerbread-b2g
Fetching contributors…

Octocat-spinner-32-eaf2f5

Cannot retrieve contributors at this time

file 3529 lines (2986 sloc) 128.647 kb
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162 1163 1164 1165 1166 1167 1168 1169 1170 1171 1172 1173 1174 1175 1176 1177 1178 1179 1180 1181 1182 1183 1184 1185 1186 1187 1188 1189 1190 1191 1192 1193 1194 1195 1196 1197 1198 1199 1200 1201 1202 1203 1204 1205 1206 1207 1208 1209 1210 1211 1212 1213 1214 1215 1216 1217 1218 1219 1220 1221 1222 1223 1224 1225 1226 1227 1228 1229 1230 1231 1232 1233 1234 1235 1236 1237 1238 1239 1240 1241 1242 1243 1244 1245 1246 1247 1248 1249 1250 1251 1252 1253 1254 1255 1256 1257 1258 1259 1260 1261 1262 1263 1264 1265 1266 1267 1268 1269 1270 1271 1272 1273 1274 1275 1276 1277 1278 1279 1280 1281 1282 1283 1284 1285 1286 1287 1288 1289 1290 1291 1292 1293 1294 1295 1296 1297 1298 1299 1300 1301 1302 1303 1304 1305 1306 1307 1308 1309 1310 1311 1312 1313 1314 1315 1316 1317 1318 1319 1320 1321 1322 1323 1324 1325 1326 1327 1328 1329 1330 1331 1332 1333 1334 1335 1336 1337 1338 1339 1340 1341 1342 1343 1344 1345 1346 1347 1348 1349 1350 1351 1352 1353 1354 1355 1356 1357 1358 1359 1360 1361 1362 1363 1364 1365 1366 1367 1368 1369 1370 1371 1372 1373 1374 1375 1376 1377 1378 1379 1380 1381 1382 1383 1384 1385 1386 1387 1388 1389 1390 1391 1392 1393 1394 1395 1396 1397 1398 1399 1400 1401 1402 1403 1404 1405 1406 1407 1408 1409 1410 1411 1412 1413 1414 1415 1416 1417 1418 1419 1420 1421 1422 1423 1424 1425 1426 1427 1428 1429 1430 1431 1432 1433 1434 1435 1436 1437 1438 1439 1440 1441 1442 1443 1444 1445 1446 1447 1448 1449 1450 1451 1452 1453 1454 1455 1456 1457 1458 1459 1460 1461 1462 1463 1464 1465 1466 1467 1468 1469 1470 1471 1472 1473 1474 1475 1476 1477 1478 1479 1480 1481 1482 1483 1484 1485 1486 1487 1488 1489 1490 1491 1492 1493 1494 1495 1496 1497 1498 1499 1500 1501 1502 1503 1504 1505 1506 1507 1508 1509 1510 1511 1512 1513 1514 1515 1516 1517 1518 1519 1520 1521 1522 1523 1524 1525 1526 1527 1528 1529 1530 1531 1532 1533 1534 1535 1536 1537 1538 1539 1540 1541 1542 1543 1544 1545 1546 1547 1548 1549 1550 1551 1552 1553 1554 1555 1556 1557 1558 1559 1560 1561 1562 1563 1564 1565 1566 1567 1568 1569 1570 1571 1572 1573 1574 1575 1576 1577 1578 1579 1580 1581 1582 1583 1584 1585 1586 1587 1588 1589 1590 1591 1592 1593 1594 1595 1596 1597 1598 1599 1600 1601 1602 1603 1604 1605 1606 1607 1608 1609 1610 1611 1612 1613 1614 1615 1616 1617 1618 1619 1620 1621 1622 1623 1624 1625 1626 1627 1628 1629 1630 1631 1632 1633 1634 1635 1636 1637 1638 1639 1640 1641 1642 1643 1644 1645 1646 1647 1648 1649 1650 1651 1652 1653 1654 1655 1656 1657 1658 1659 1660 1661 1662 1663 1664 1665 1666 1667 1668 1669 1670 1671 1672 1673 1674 1675 1676 1677 1678 1679 1680 1681 1682 1683 1684 1685 1686 1687 1688 1689 1690 1691 1692 1693 1694 1695 1696 1697 1698 1699 1700 1701 1702 1703 1704 1705 1706 1707 1708 1709 1710 1711 1712 1713 1714 1715 1716 1717 1718 1719 1720 1721 1722 1723 1724 1725 1726 1727 1728 1729 1730 1731 1732 1733 1734 1735 1736 1737 1738 1739 1740 1741 1742 1743 1744 1745 1746 1747 1748 1749 1750 1751 1752 1753 1754 1755 1756 1757 1758 1759 1760 1761 1762 1763 1764 1765 1766 1767 1768 1769 1770 1771 1772 1773 1774 1775 1776 1777 1778 1779 1780 1781 1782 1783 1784 1785 1786 1787 1788 1789 1790 1791 1792 1793 1794 1795 1796 1797 1798 1799 1800 1801 1802 1803 1804 1805 1806 1807 1808 1809 1810 1811 1812 1813 1814 1815 1816 1817 1818 1819 1820 1821 1822 1823 1824 1825 1826 1827 1828 1829 1830 1831 1832 1833 1834 1835 1836 1837 1838 1839 1840 1841 1842 1843 1844 1845 1846 1847 1848 1849 1850 1851 1852 1853 1854 1855 1856 1857 1858 1859 1860 1861 1862 1863 1864 1865 1866 1867 1868 1869 1870 1871 1872 1873 1874 1875 1876 1877 1878 1879 1880 1881 1882 1883 1884 1885 1886 1887 1888 1889 1890 1891 1892 1893 1894 1895 1896 1897 1898 1899 1900 1901 1902 1903 1904 1905 1906 1907 1908 1909 1910 1911 1912 1913 1914 1915 1916 1917 1918 1919 1920 1921 1922 1923 1924 1925 1926 1927 1928 1929 1930 1931 1932 1933 1934 1935 1936 1937 1938 1939 1940 1941 1942 1943 1944 1945 1946 1947 1948 1949 1950 1951 1952 1953 1954 1955 1956 1957 1958 1959 1960 1961 1962 1963 1964 1965 1966 1967 1968 1969 1970 1971 1972 1973 1974 1975 1976 1977 1978 1979 1980 1981 1982 1983 1984 1985 1986 1987 1988 1989 1990 1991 1992 1993 1994 1995 1996 1997 1998 1999 2000 2001 2002 2003 2004 2005 2006 2007 2008 2009 2010 2011 2012 2013 2014 2015 2016 2017 2018 2019 2020 2021 2022 2023 2024 2025 2026 2027 2028 2029 2030 2031 2032 2033 2034 2035 2036 2037 2038 2039 2040 2041 2042 2043 2044 2045 2046 2047 2048 2049 2050 2051 2052 2053 2054 2055 2056 2057 2058 2059 2060 2061 2062 2063 2064 2065 2066 2067 2068 2069 2070 2071 2072 2073 2074 2075 2076 2077 2078 2079 2080 2081 2082 2083 2084 2085 2086 2087 2088 2089 2090 2091 2092 2093 2094 2095 2096 2097 2098 2099 2100 2101 2102 2103 2104 2105 2106 2107 2108 2109 2110 2111 2112 2113 2114 2115 2116 2117 2118 2119 2120 2121 2122 2123 2124 2125 2126 2127 2128 2129 2130 2131 2132 2133 2134 2135 2136 2137 2138 2139 2140 2141 2142 2143 2144 2145 2146 2147 2148 2149 2150 2151 2152 2153 2154 2155 2156 2157 2158 2159 2160 2161 2162 2163 2164 2165 2166 2167 2168 2169 2170 2171 2172 2173 2174 2175 2176 2177 2178 2179 2180 2181 2182 2183 2184 2185 2186 2187 2188 2189 2190 2191 2192 2193 2194 2195 2196 2197 2198 2199 2200 2201 2202 2203 2204 2205 2206 2207 2208 2209 2210 2211 2212 2213 2214 2215 2216 2217 2218 2219 2220 2221 2222 2223 2224 2225 2226 2227 2228 2229 2230 2231 2232 2233 2234 2235 2236 2237 2238 2239 2240 2241 2242 2243 2244 2245 2246 2247 2248 2249 2250 2251 2252 2253 2254 2255 2256 2257 2258 2259 2260 2261 2262 2263 2264 2265 2266 2267 2268 2269 2270 2271 2272 2273 2274 2275 2276 2277 2278 2279 2280 2281 2282 2283 2284 2285 2286 2287 2288 2289 2290 2291 2292 2293 2294 2295 2296 2297 2298 2299 2300 2301 2302 2303 2304 2305 2306 2307 2308 2309 2310 2311 2312 2313 2314 2315 2316 2317 2318 2319 2320 2321 2322 2323 2324 2325 2326 2327 2328 2329 2330 2331 2332 2333 2334 2335 2336 2337 2338 2339 2340 2341 2342 2343 2344 2345 2346 2347 2348 2349 2350 2351 2352 2353 2354 2355 2356 2357 2358 2359 2360 2361 2362 2363 2364 2365 2366 2367 2368 2369 2370 2371 2372 2373 2374 2375 2376 2377 2378 2379 2380 2381 2382 2383 2384 2385 2386 2387 2388 2389 2390 2391 2392 2393 2394 2395 2396 2397 2398 2399 2400 2401 2402 2403 2404 2405 2406 2407 2408 2409 2410 2411 2412 2413 2414 2415 2416 2417 2418 2419 2420 2421 2422 2423 2424 2425 2426 2427 2428 2429 2430 2431 2432 2433 2434 2435 2436 2437 2438 2439 2440 2441 2442 2443 2444 2445 2446 2447 2448 2449 2450 2451 2452 2453 2454 2455 2456 2457 2458 2459 2460 2461 2462 2463 2464 2465 2466 2467 2468 2469 2470 2471 2472 2473 2474 2475 2476 2477 2478 2479 2480 2481 2482 2483 2484 2485 2486 2487 2488 2489 2490 2491 2492 2493 2494 2495 2496 2497 2498 2499 2500 2501 2502 2503 2504 2505 2506 2507 2508 2509 2510 2511 2512 2513 2514 2515 2516 2517 2518 2519 2520 2521 2522 2523 2524 2525 2526 2527 2528 2529 2530 2531 2532 2533 2534 2535 2536 2537 2538 2539 2540 2541 2542 2543 2544 2545 2546 2547 2548 2549 2550 2551 2552 2553 2554 2555 2556 2557 2558 2559 2560 2561 2562 2563 2564 2565 2566 2567 2568 2569 2570 2571 2572 2573 2574 2575 2576 2577 2578 2579 2580 2581 2582 2583 2584 2585 2586 2587 2588 2589 2590 2591 2592 2593 2594 2595 2596 2597 2598 2599 2600 2601 2602 2603 2604 2605 2606 2607 2608 2609 2610 2611 2612 2613 2614 2615 2616 2617 2618 2619 2620 2621 2622 2623 2624 2625 2626 2627 2628 2629 2630 2631 2632 2633 2634 2635 2636 2637 2638 2639 2640 2641 2642 2643 2644 2645 2646 2647 2648 2649 2650 2651 2652 2653 2654 2655 2656 2657 2658 2659 2660 2661 2662 2663 2664 2665 2666 2667 2668 2669 2670 2671 2672 2673 2674 2675 2676 2677 2678 2679 2680 2681 2682 2683 2684 2685 2686 2687 2688 2689 2690 2691 2692 2693 2694 2695 2696 2697 2698 2699 2700 2701 2702 2703 2704 2705 2706 2707 2708 2709 2710 2711 2712 2713 2714 2715 2716 2717 2718 2719 2720 2721 2722 2723 2724 2725 2726 2727 2728 2729 2730 2731 2732 2733 2734 2735 2736 2737 2738 2739 2740 2741 2742 2743 2744 2745 2746 2747 2748 2749 2750 2751 2752 2753 2754 2755 2756 2757 2758 2759 2760 2761 2762 2763 2764 2765 2766 2767 2768 2769 2770 2771 2772 2773 2774 2775 2776 2777 2778 2779 2780 2781 2782 2783 2784 2785 2786 2787 2788 2789 2790 2791 2792 2793 2794 2795 2796 2797 2798 2799 2800 2801 2802 2803 2804 2805 2806 2807 2808 2809 2810 2811 2812 2813 2814 2815 2816 2817 2818 2819 2820 2821 2822 2823 2824 2825 2826 2827 2828 2829 2830 2831 2832 2833 2834 2835 2836 2837 2838 2839 2840 2841 2842 2843 2844 2845 2846 2847 2848 2849 2850 2851 2852 2853 2854 2855 2856 2857 2858 2859 2860 2861 2862 2863 2864 2865 2866 2867 2868 2869 2870 2871 2872 2873 2874 2875 2876 2877 2878 2879 2880 2881 2882 2883 2884 2885 2886 2887 2888 2889 2890 2891 2892 2893 2894 2895 2896 2897 2898 2899 2900 2901 2902 2903 2904 2905 2906 2907 2908 2909 2910 2911 2912 2913 2914 2915 2916 2917 2918 2919 2920 2921 2922 2923 2924 2925 2926 2927 2928 2929 2930 2931 2932 2933 2934 2935 2936 2937 2938 2939 2940 2941 2942 2943 2944 2945 2946 2947 2948 2949 2950 2951 2952 2953 2954 2955 2956 2957 2958 2959 2960 2961 2962 2963 2964 2965 2966 2967 2968 2969 2970 2971 2972 2973 2974 2975 2976 2977 2978 2979 2980 2981 2982 2983 2984 2985 2986 2987 2988 2989 2990 2991 2992 2993 2994 2995 2996 2997 2998 2999 3000 3001 3002 3003 3004 3005 3006 3007 3008 3009 3010 3011 3012 3013 3014 3015 3016 3017 3018 3019 3020 3021 3022 3023 3024 3025 3026 3027 3028 3029 3030 3031 3032 3033 3034 3035 3036 3037 3038 3039 3040 3041 3042 3043 3044 3045 3046 3047 3048 3049 3050 3051 3052 3053 3054 3055 3056 3057 3058 3059 3060 3061 3062 3063 3064 3065 3066 3067 3068 3069 3070 3071 3072 3073 3074 3075 3076 3077 3078 3079 3080 3081 3082 3083 3084 3085 3086 3087 3088 3089 3090 3091 3092 3093 3094 3095 3096 3097 3098 3099 3100 3101 3102 3103 3104 3105 3106 3107 3108 3109 3110 3111 3112 3113 3114 3115 3116 3117 3118 3119 3120 3121 3122 3123 3124 3125 3126 3127 3128 3129 3130 3131 3132 3133 3134 3135 3136 3137 3138 3139 3140 3141 3142 3143 3144 3145 3146 3147 3148 3149 3150 3151 3152 3153 3154 3155 3156 3157 3158 3159 3160 3161 3162 3163 3164 3165 3166 3167 3168 3169 3170 3171 3172 3173 3174 3175 3176 3177 3178 3179 3180 3181 3182 3183 3184 3185 3186 3187 3188 3189 3190 3191 3192 3193 3194 3195 3196 3197 3198 3199 3200 3201 3202 3203 3204 3205 3206 3207 3208 3209 3210 3211 3212 3213 3214 3215 3216 3217 3218 3219 3220 3221 3222 3223 3224 3225 3226 3227 3228 3229 3230 3231 3232 3233 3234 3235 3236 3237 3238 3239 3240 3241 3242 3243 3244 3245 3246 3247 3248 3249 3250 3251 3252 3253 3254 3255 3256 3257 3258 3259 3260 3261 3262 3263 3264 3265 3266 3267 3268 3269 3270 3271 3272 3273 3274 3275 3276 3277 3278 3279 3280 3281 3282 3283 3284 3285 3286 3287 3288 3289 3290 3291 3292 3293 3294 3295 3296 3297 3298 3299 3300 3301 3302 3303 3304 3305 3306 3307 3308 3309 3310 3311 3312 3313 3314 3315 3316 3317 3318 3319 3320 3321 3322 3323 3324 3325 3326 3327 3328 3329 3330 3331 3332 3333 3334 3335 3336 3337 3338 3339 3340 3341 3342 3343 3344 3345 3346 3347 3348 3349 3350 3351 3352 3353 3354 3355 3356 3357 3358 3359 3360 3361 3362 3363 3364 3365 3366 3367 3368 3369 3370 3371 3372 3373 3374 3375 3376 3377 3378 3379 3380 3381 3382 3383 3384 3385 3386 3387 3388 3389 3390 3391 3392 3393 3394 3395 3396 3397 3398 3399 3400 3401 3402 3403 3404 3405 3406 3407 3408 3409 3410 3411 3412 3413 3414 3415 3416 3417 3418 3419 3420 3421 3422 3423 3424 3425 3426 3427 3428 3429 3430 3431 3432 3433 3434 3435 3436 3437 3438 3439 3440 3441 3442 3443 3444 3445 3446 3447 3448 3449 3450 3451 3452 3453 3454 3455 3456 3457 3458 3459 3460 3461 3462 3463 3464 3465 3466 3467 3468 3469 3470 3471 3472 3473 3474 3475 3476 3477 3478 3479 3480 3481 3482 3483 3484 3485 3486 3487 3488 3489 3490 3491 3492 3493 3494 3495 3496 3497 3498 3499 3500 3501 3502 3503 3504 3505 3506 3507 3508 3509 3510 3511 3512 3513 3514 3515 3516 3517 3518 3519 3520 3521 3522 3523 3524 3525 3526 3527 3528
//
// Copyright 2010 The Android Open Source Project
//
// The input reader.
//
#define LOG_TAG "InputReader"

//#define LOG_NDEBUG 0

// Log debug messages for each raw event received from the EventHub.
#define DEBUG_RAW_EVENTS 0

// Log debug messages about touch screen filtering hacks.
#define DEBUG_HACKS 0

// Log debug messages about virtual key processing.
#define DEBUG_VIRTUAL_KEYS 0

// Log debug messages about pointers.
#define DEBUG_POINTERS 0

// Log debug messages about pointer assignment calculations.
#define DEBUG_POINTER_ASSIGNMENT 0

#include <cutils/log.h>
#include <ui/InputReader.h>

#include <stddef.h>
#include <stdlib.h>
#include <unistd.h>
#include <errno.h>
#include <limits.h>
#include <math.h>

#define INDENT " "
#define INDENT2 " "
#define INDENT3 " "
#define INDENT4 " "

namespace android {

// --- Static Functions ---

template<typename T>
inline static T abs(const T& value) {
    return value < 0 ? - value : value;
}

template<typename T>
inline static T min(const T& a, const T& b) {
    return a < b ? a : b;
}

template<typename T>
inline static void swap(T& a, T& b) {
    T temp = a;
    a = b;
    b = temp;
}

inline static float avg(float x, float y) {
    return (x + y) / 2;
}

inline static float pythag(float x, float y) {
    return sqrtf(x * x + y * y);
}

static inline const char* toString(bool value) {
    return value ? "true" : "false";
}


int32_t updateMetaState(int32_t keyCode, bool down, int32_t oldMetaState) {
    int32_t mask;
    switch (keyCode) {
    case AKEYCODE_ALT_LEFT:
        mask = AMETA_ALT_LEFT_ON;
        break;
    case AKEYCODE_ALT_RIGHT:
        mask = AMETA_ALT_RIGHT_ON;
        break;
    case AKEYCODE_SHIFT_LEFT:
        mask = AMETA_SHIFT_LEFT_ON;
        break;
    case AKEYCODE_SHIFT_RIGHT:
        mask = AMETA_SHIFT_RIGHT_ON;
        break;
    case AKEYCODE_SYM:
        mask = AMETA_SYM_ON;
        break;
    default:
        return oldMetaState;
    }

    int32_t newMetaState = down ? oldMetaState | mask : oldMetaState & ~ mask
            & ~ (AMETA_ALT_ON | AMETA_SHIFT_ON);

    if (newMetaState & (AMETA_ALT_LEFT_ON | AMETA_ALT_RIGHT_ON)) {
        newMetaState |= AMETA_ALT_ON;
    }

    if (newMetaState & (AMETA_SHIFT_LEFT_ON | AMETA_SHIFT_RIGHT_ON)) {
        newMetaState |= AMETA_SHIFT_ON;
    }

    return newMetaState;
}

static const int32_t keyCodeRotationMap[][4] = {
        // key codes enumerated counter-clockwise with the original (unrotated) key first
        // no rotation, 90 degree rotation, 180 degree rotation, 270 degree rotation
        { AKEYCODE_DPAD_DOWN, AKEYCODE_DPAD_RIGHT, AKEYCODE_DPAD_UP, AKEYCODE_DPAD_LEFT },
        { AKEYCODE_DPAD_RIGHT, AKEYCODE_DPAD_UP, AKEYCODE_DPAD_LEFT, AKEYCODE_DPAD_DOWN },
        { AKEYCODE_DPAD_UP, AKEYCODE_DPAD_LEFT, AKEYCODE_DPAD_DOWN, AKEYCODE_DPAD_RIGHT },
        { AKEYCODE_DPAD_LEFT, AKEYCODE_DPAD_DOWN, AKEYCODE_DPAD_RIGHT, AKEYCODE_DPAD_UP },
};
static const int keyCodeRotationMapSize =
        sizeof(keyCodeRotationMap) / sizeof(keyCodeRotationMap[0]);

int32_t rotateKeyCode(int32_t keyCode, int32_t orientation) {
    if (orientation != InputReaderPolicyInterface::ROTATION_0) {
        for (int i = 0; i < keyCodeRotationMapSize; i++) {
            if (keyCode == keyCodeRotationMap[i][0]) {
                return keyCodeRotationMap[i][orientation];
            }
        }
    }
    return keyCode;
}

static inline bool sourcesMatchMask(uint32_t sources, uint32_t sourceMask) {
    return (sources & sourceMask & ~ AINPUT_SOURCE_CLASS_MASK) != 0;
}


// --- InputDeviceCalibration ---

InputDeviceCalibration::InputDeviceCalibration() {
}

void InputDeviceCalibration::clear() {
    mProperties.clear();
}

void InputDeviceCalibration::addProperty(const String8& key, const String8& value) {
    mProperties.add(key, value);
}

bool InputDeviceCalibration::tryGetProperty(const String8& key, String8& outValue) const {
    ssize_t index = mProperties.indexOfKey(key);
    if (index < 0) {
        return false;
    }

    outValue = mProperties.valueAt(index);
    return true;
}

bool InputDeviceCalibration::tryGetProperty(const String8& key, int32_t& outValue) const {
    String8 stringValue;
    if (! tryGetProperty(key, stringValue) || stringValue.length() == 0) {
        return false;
    }

    char* end;
    int value = strtol(stringValue.string(), & end, 10);
    if (*end != '\0') {
        LOGW("Input device calibration key '%s' has invalid value '%s'. Expected an integer.",
                key.string(), stringValue.string());
        return false;
    }
    outValue = value;
    return true;
}

bool InputDeviceCalibration::tryGetProperty(const String8& key, float& outValue) const {
    String8 stringValue;
    if (! tryGetProperty(key, stringValue) || stringValue.length() == 0) {
        return false;
    }

    char* end;
    float value = strtof(stringValue.string(), & end);
    if (*end != '\0') {
        LOGW("Input device calibration key '%s' has invalid value '%s'. Expected a float.",
                key.string(), stringValue.string());
        return false;
    }
    outValue = value;
    return true;
}


// --- InputReader ---

InputReader::InputReader(const sp<EventHubInterface>& eventHub,
        const sp<InputReaderPolicyInterface>& policy,
        const sp<InputDispatcherInterface>& dispatcher) :
        mEventHub(eventHub), mPolicy(policy), mDispatcher(dispatcher),
        mGlobalMetaState(0), mDisableVirtualKeysTimeout(-1) {
    configureExcludedDevices();
    updateGlobalMetaState();
    updateInputConfiguration();
}

InputReader::~InputReader() {
    for (size_t i = 0; i < mDevices.size(); i++) {
        delete mDevices.valueAt(i);
    }
}

void InputReader::loopOnce() {
    RawEvent rawEvent;
    mEventHub->getEvent(& rawEvent);

#if DEBUG_RAW_EVENTS
    LOGD("Input event: device=0x%x type=0x%x scancode=%d keycode=%d value=%d",
            rawEvent.deviceId, rawEvent.type, rawEvent.scanCode, rawEvent.keyCode,
            rawEvent.value);
#endif

    process(& rawEvent);
}

void InputReader::process(const RawEvent* rawEvent) {
    switch (rawEvent->type) {
    case EventHubInterface::DEVICE_ADDED:
        addDevice(rawEvent->deviceId);
        break;

    case EventHubInterface::DEVICE_REMOVED:
        removeDevice(rawEvent->deviceId);
        break;

    case EventHubInterface::FINISHED_DEVICE_SCAN:
        handleConfigurationChanged(rawEvent->when);
        break;

    default:
        consumeEvent(rawEvent);
        break;
    }
}

void InputReader::addDevice(int32_t deviceId) {
    String8 name = mEventHub->getDeviceName(deviceId);
    uint32_t classes = mEventHub->getDeviceClasses(deviceId);

    InputDevice* device = createDevice(deviceId, name, classes);
    device->configure();

    if (device->isIgnored()) {
        LOGI("Device added: id=0x%x, name=%s (ignored non-input device)", deviceId, name.string());
    } else {
        LOGI("Device added: id=0x%x, name=%s, sources=%08x", deviceId, name.string(),
                device->getSources());
    }

    bool added = false;
    { // acquire device registry writer lock
        RWLock::AutoWLock _wl(mDeviceRegistryLock);

        ssize_t deviceIndex = mDevices.indexOfKey(deviceId);
        if (deviceIndex < 0) {
            mDevices.add(deviceId, device);
            added = true;
        }
    } // release device registry writer lock

    if (! added) {
        LOGW("Ignoring spurious device added event for deviceId %d.", deviceId);
        delete device;
        return;
    }
}

void InputReader::removeDevice(int32_t deviceId) {
    bool removed = false;
    InputDevice* device = NULL;
    { // acquire device registry writer lock
        RWLock::AutoWLock _wl(mDeviceRegistryLock);

        ssize_t deviceIndex = mDevices.indexOfKey(deviceId);
        if (deviceIndex >= 0) {
            device = mDevices.valueAt(deviceIndex);
            mDevices.removeItemsAt(deviceIndex, 1);
            removed = true;
        }
    } // release device registry writer lock

    if (! removed) {
        LOGW("Ignoring spurious device removed event for deviceId %d.", deviceId);
        return;
    }

    if (device->isIgnored()) {
        LOGI("Device removed: id=0x%x, name=%s (ignored non-input device)",
                device->getId(), device->getName().string());
    } else {
        LOGI("Device removed: id=0x%x, name=%s, sources=%08x",
                device->getId(), device->getName().string(), device->getSources());
    }

    device->reset();

    delete device;
}

InputDevice* InputReader::createDevice(int32_t deviceId, const String8& name, uint32_t classes) {
    InputDevice* device = new InputDevice(this, deviceId, name);

    const int32_t associatedDisplayId = 0; // FIXME: hardcoded for current single-display devices

    // Switch-like devices.
    if (classes & INPUT_DEVICE_CLASS_SWITCH) {
        device->addMapper(new SwitchInputMapper(device));
    }

    // Keyboard-like devices.
    uint32_t keyboardSources = 0;
    int32_t keyboardType = AINPUT_KEYBOARD_TYPE_NON_ALPHABETIC;
    if (classes & INPUT_DEVICE_CLASS_KEYBOARD) {
        keyboardSources |= AINPUT_SOURCE_KEYBOARD;
    }
    if (classes & INPUT_DEVICE_CLASS_ALPHAKEY) {
        keyboardType = AINPUT_KEYBOARD_TYPE_ALPHABETIC;
    }
    if (classes & INPUT_DEVICE_CLASS_DPAD) {
        keyboardSources |= AINPUT_SOURCE_DPAD;
    }

    if (keyboardSources != 0) {
        device->addMapper(new KeyboardInputMapper(device,
                associatedDisplayId, keyboardSources, keyboardType));
    }

    // Trackball-like devices.
    if (classes & INPUT_DEVICE_CLASS_TRACKBALL) {
        device->addMapper(new TrackballInputMapper(device, associatedDisplayId));
    }

    // Touchscreen-like devices.
    if (classes & INPUT_DEVICE_CLASS_TOUCHSCREEN_MT) {
        device->addMapper(new MultiTouchInputMapper(device, associatedDisplayId));
    } else if (classes & INPUT_DEVICE_CLASS_TOUCHSCREEN) {
        device->addMapper(new SingleTouchInputMapper(device, associatedDisplayId));
    }

    return device;
}

void InputReader::consumeEvent(const RawEvent* rawEvent) {
    int32_t deviceId = rawEvent->deviceId;

    { // acquire device registry reader lock
        RWLock::AutoRLock _rl(mDeviceRegistryLock);

        ssize_t deviceIndex = mDevices.indexOfKey(deviceId);
        if (deviceIndex < 0) {
            LOGW("Discarding event for unknown deviceId %d.", deviceId);
            return;
        }

        InputDevice* device = mDevices.valueAt(deviceIndex);
        if (device->isIgnored()) {
            //LOGD("Discarding event for ignored deviceId %d.", deviceId);
            return;
        }

        device->process(rawEvent);
    } // release device registry reader lock
}

void InputReader::handleConfigurationChanged(nsecs_t when) {
    // Reset global meta state because it depends on the list of all configured devices.
    updateGlobalMetaState();

    // Update input configuration.
    updateInputConfiguration();

    // Enqueue configuration changed.
    mDispatcher->notifyConfigurationChanged(when);
}

void InputReader::configureExcludedDevices() {
    Vector<String8> excludedDeviceNames;
    mPolicy->getExcludedDeviceNames(excludedDeviceNames);

    for (size_t i = 0; i < excludedDeviceNames.size(); i++) {
        mEventHub->addExcludedDevice(excludedDeviceNames[i]);
    }
}

void InputReader::updateGlobalMetaState() {
    { // acquire state lock
        AutoMutex _l(mStateLock);

        mGlobalMetaState = 0;

        { // acquire device registry reader lock
            RWLock::AutoRLock _rl(mDeviceRegistryLock);

            for (size_t i = 0; i < mDevices.size(); i++) {
                InputDevice* device = mDevices.valueAt(i);
                mGlobalMetaState |= device->getMetaState();
            }
        } // release device registry reader lock
    } // release state lock
}

int32_t InputReader::getGlobalMetaState() {
    { // acquire state lock
        AutoMutex _l(mStateLock);

        return mGlobalMetaState;
    } // release state lock
}

void InputReader::updateInputConfiguration() {
    { // acquire state lock
        AutoMutex _l(mStateLock);

        int32_t touchScreenConfig = InputConfiguration::TOUCHSCREEN_NOTOUCH;
        int32_t keyboardConfig = InputConfiguration::KEYBOARD_NOKEYS;
        int32_t navigationConfig = InputConfiguration::NAVIGATION_NONAV;
        { // acquire device registry reader lock
            RWLock::AutoRLock _rl(mDeviceRegistryLock);

            InputDeviceInfo deviceInfo;
            for (size_t i = 0; i < mDevices.size(); i++) {
                InputDevice* device = mDevices.valueAt(i);
                device->getDeviceInfo(& deviceInfo);
                uint32_t sources = deviceInfo.getSources();

                if ((sources & AINPUT_SOURCE_TOUCHSCREEN) == AINPUT_SOURCE_TOUCHSCREEN) {
                    touchScreenConfig = InputConfiguration::TOUCHSCREEN_FINGER;
                }
                if ((sources & AINPUT_SOURCE_TRACKBALL) == AINPUT_SOURCE_TRACKBALL) {
                    navigationConfig = InputConfiguration::NAVIGATION_TRACKBALL;
                } else if ((sources & AINPUT_SOURCE_DPAD) == AINPUT_SOURCE_DPAD) {
                    navigationConfig = InputConfiguration::NAVIGATION_DPAD;
                }
                if (deviceInfo.getKeyboardType() == AINPUT_KEYBOARD_TYPE_ALPHABETIC) {
                    keyboardConfig = InputConfiguration::KEYBOARD_QWERTY;
                }
            }
        } // release device registry reader lock

        mInputConfiguration.touchScreen = touchScreenConfig;
        mInputConfiguration.keyboard = keyboardConfig;
        mInputConfiguration.navigation = navigationConfig;
    } // release state lock
}

void InputReader::disableVirtualKeysUntil(nsecs_t time) {
    mDisableVirtualKeysTimeout = time;
}

bool InputReader::shouldDropVirtualKey(nsecs_t now,
        InputDevice* device, int32_t keyCode, int32_t scanCode) {
    if (now < mDisableVirtualKeysTimeout) {
        LOGI("Dropping virtual key from device %s because virtual keys are "
                "temporarily disabled for the next %0.3fms. keyCode=%d, scanCode=%d",
                device->getName().string(),
                (mDisableVirtualKeysTimeout - now) * 0.000001,
                keyCode, scanCode);
        return true;
    } else {
        return false;
    }
}

void InputReader::getInputConfiguration(InputConfiguration* outConfiguration) {
    { // acquire state lock
        AutoMutex _l(mStateLock);

        *outConfiguration = mInputConfiguration;
    } // release state lock
}

status_t InputReader::getInputDeviceInfo(int32_t deviceId, InputDeviceInfo* outDeviceInfo) {
    { // acquire device registry reader lock
        RWLock::AutoRLock _rl(mDeviceRegistryLock);

        ssize_t deviceIndex = mDevices.indexOfKey(deviceId);
        if (deviceIndex < 0) {
            return NAME_NOT_FOUND;
        }

        InputDevice* device = mDevices.valueAt(deviceIndex);
        if (device->isIgnored()) {
            return NAME_NOT_FOUND;
        }

        device->getDeviceInfo(outDeviceInfo);
        return OK;
    } // release device registy reader lock
}

void InputReader::getInputDeviceIds(Vector<int32_t>& outDeviceIds) {
    outDeviceIds.clear();

    { // acquire device registry reader lock
        RWLock::AutoRLock _rl(mDeviceRegistryLock);

        size_t numDevices = mDevices.size();
        for (size_t i = 0; i < numDevices; i++) {
            InputDevice* device = mDevices.valueAt(i);
            if (! device->isIgnored()) {
                outDeviceIds.add(device->getId());
            }
        }
    } // release device registy reader lock
}

int32_t InputReader::getKeyCodeState(int32_t deviceId, uint32_t sourceMask,
        int32_t keyCode) {
    return getState(deviceId, sourceMask, keyCode, & InputDevice::getKeyCodeState);
}

int32_t InputReader::getScanCodeState(int32_t deviceId, uint32_t sourceMask,
        int32_t scanCode) {
    return getState(deviceId, sourceMask, scanCode, & InputDevice::getScanCodeState);
}

int32_t InputReader::getSwitchState(int32_t deviceId, uint32_t sourceMask, int32_t switchCode) {
    return getState(deviceId, sourceMask, switchCode, & InputDevice::getSwitchState);
}

int32_t InputReader::getState(int32_t deviceId, uint32_t sourceMask, int32_t code,
        GetStateFunc getStateFunc) {
    { // acquire device registry reader lock
        RWLock::AutoRLock _rl(mDeviceRegistryLock);

        int32_t result = AKEY_STATE_UNKNOWN;
        if (deviceId >= 0) {
            ssize_t deviceIndex = mDevices.indexOfKey(deviceId);
            if (deviceIndex >= 0) {
                InputDevice* device = mDevices.valueAt(deviceIndex);
                if (! device->isIgnored() && sourcesMatchMask(device->getSources(), sourceMask)) {
                    result = (device->*getStateFunc)(sourceMask, code);
                }
            }
        } else {
            size_t numDevices = mDevices.size();
            for (size_t i = 0; i < numDevices; i++) {
                InputDevice* device = mDevices.valueAt(i);
                if (! device->isIgnored() && sourcesMatchMask(device->getSources(), sourceMask)) {
                    result = (device->*getStateFunc)(sourceMask, code);
                    if (result >= AKEY_STATE_DOWN) {
                        return result;
                    }
                }
            }
        }
        return result;
    } // release device registy reader lock
}

bool InputReader::hasKeys(int32_t deviceId, uint32_t sourceMask,
        size_t numCodes, const int32_t* keyCodes, uint8_t* outFlags) {
    memset(outFlags, 0, numCodes);
    return markSupportedKeyCodes(deviceId, sourceMask, numCodes, keyCodes, outFlags);
}

bool InputReader::markSupportedKeyCodes(int32_t deviceId, uint32_t sourceMask, size_t numCodes,
        const int32_t* keyCodes, uint8_t* outFlags) {
    { // acquire device registry reader lock
        RWLock::AutoRLock _rl(mDeviceRegistryLock);
        bool result = false;
        if (deviceId >= 0) {
            ssize_t deviceIndex = mDevices.indexOfKey(deviceId);
            if (deviceIndex >= 0) {
                InputDevice* device = mDevices.valueAt(deviceIndex);
                if (! device->isIgnored() && sourcesMatchMask(device->getSources(), sourceMask)) {
                    result = device->markSupportedKeyCodes(sourceMask,
                            numCodes, keyCodes, outFlags);
                }
            }
        } else {
            size_t numDevices = mDevices.size();
            for (size_t i = 0; i < numDevices; i++) {
                InputDevice* device = mDevices.valueAt(i);
                if (! device->isIgnored() && sourcesMatchMask(device->getSources(), sourceMask)) {
                    result |= device->markSupportedKeyCodes(sourceMask,
                            numCodes, keyCodes, outFlags);
                }
            }
        }
        return result;
    } // release device registy reader lock
}

void InputReader::dump(String8& dump) {
    mEventHub->dump(dump);
    dump.append("\n");

    dump.append("Input Reader State:\n");

    { // acquire device registry reader lock
        RWLock::AutoRLock _rl(mDeviceRegistryLock);

        for (size_t i = 0; i < mDevices.size(); i++) {
            mDevices.valueAt(i)->dump(dump);
        }
    } // release device registy reader lock
}


// --- InputReaderThread ---

InputReaderThread::InputReaderThread(const sp<InputReaderInterface>& reader) :
        Thread(/*canCallJava*/ true), mReader(reader) {
}

InputReaderThread::~InputReaderThread() {
}

bool InputReaderThread::threadLoop() {
    mReader->loopOnce();
    return true;
}


// --- InputDevice ---

InputDevice::InputDevice(InputReaderContext* context, int32_t id, const String8& name) :
        mContext(context), mId(id), mName(name), mSources(0) {
}

InputDevice::~InputDevice() {
    size_t numMappers = mMappers.size();
    for (size_t i = 0; i < numMappers; i++) {
        delete mMappers[i];
    }
    mMappers.clear();
}

static void dumpMotionRange(String8& dump, const InputDeviceInfo& deviceInfo,
        int32_t rangeType, const char* name) {
    const InputDeviceInfo::MotionRange* range = deviceInfo.getMotionRange(rangeType);
    if (range) {
        dump.appendFormat(INDENT3 "%s: min=%0.3f, max=%0.3f, flat=%0.3f, fuzz=%0.3f\n",
                name, range->min, range->max, range->flat, range->fuzz);
    }
}

void InputDevice::dump(String8& dump) {
    InputDeviceInfo deviceInfo;
    getDeviceInfo(& deviceInfo);

    dump.appendFormat(INDENT "Device 0x%x: %s\n", deviceInfo.getId(),
            deviceInfo.getName().string());
    dump.appendFormat(INDENT2 "Sources: 0x%08x\n", deviceInfo.getSources());
    dump.appendFormat(INDENT2 "KeyboardType: %d\n", deviceInfo.getKeyboardType());
    if (!deviceInfo.getMotionRanges().isEmpty()) {
        dump.append(INDENT2 "Motion Ranges:\n");
        dumpMotionRange(dump, deviceInfo, AINPUT_MOTION_RANGE_X, "X");
        dumpMotionRange(dump, deviceInfo, AINPUT_MOTION_RANGE_Y, "Y");
        dumpMotionRange(dump, deviceInfo, AINPUT_MOTION_RANGE_PRESSURE, "Pressure");
        dumpMotionRange(dump, deviceInfo, AINPUT_MOTION_RANGE_SIZE, "Size");
        dumpMotionRange(dump, deviceInfo, AINPUT_MOTION_RANGE_TOUCH_MAJOR, "TouchMajor");
        dumpMotionRange(dump, deviceInfo, AINPUT_MOTION_RANGE_TOUCH_MINOR, "TouchMinor");
        dumpMotionRange(dump, deviceInfo, AINPUT_MOTION_RANGE_TOOL_MAJOR, "ToolMajor");
        dumpMotionRange(dump, deviceInfo, AINPUT_MOTION_RANGE_TOOL_MINOR, "ToolMinor");
        dumpMotionRange(dump, deviceInfo, AINPUT_MOTION_RANGE_ORIENTATION, "Orientation");
    }

    size_t numMappers = mMappers.size();
    for (size_t i = 0; i < numMappers; i++) {
        InputMapper* mapper = mMappers[i];
        mapper->dump(dump);
    }
}

void InputDevice::addMapper(InputMapper* mapper) {
    mMappers.add(mapper);
}

void InputDevice::configure() {
    if (! isIgnored()) {
        mContext->getPolicy()->getInputDeviceCalibration(mName, mCalibration);
    }

    mSources = 0;

    size_t numMappers = mMappers.size();
    for (size_t i = 0; i < numMappers; i++) {
        InputMapper* mapper = mMappers[i];
        mapper->configure();
        mSources |= mapper->getSources();
    }
}

void InputDevice::reset() {
    size_t numMappers = mMappers.size();
    for (size_t i = 0; i < numMappers; i++) {
        InputMapper* mapper = mMappers[i];
        mapper->reset();
    }
}

void InputDevice::process(const RawEvent* rawEvent) {
    size_t numMappers = mMappers.size();
    for (size_t i = 0; i < numMappers; i++) {
        InputMapper* mapper = mMappers[i];
        mapper->process(rawEvent);
    }
}

void InputDevice::getDeviceInfo(InputDeviceInfo* outDeviceInfo) {
    outDeviceInfo->initialize(mId, mName);

    size_t numMappers = mMappers.size();
    for (size_t i = 0; i < numMappers; i++) {
        InputMapper* mapper = mMappers[i];
        mapper->populateDeviceInfo(outDeviceInfo);
    }
}

int32_t InputDevice::getKeyCodeState(uint32_t sourceMask, int32_t keyCode) {
    return getState(sourceMask, keyCode, & InputMapper::getKeyCodeState);
}

int32_t InputDevice::getScanCodeState(uint32_t sourceMask, int32_t scanCode) {
    return getState(sourceMask, scanCode, & InputMapper::getScanCodeState);
}

int32_t InputDevice::getSwitchState(uint32_t sourceMask, int32_t switchCode) {
    return getState(sourceMask, switchCode, & InputMapper::getSwitchState);
}

int32_t InputDevice::getState(uint32_t sourceMask, int32_t code, GetStateFunc getStateFunc) {
    int32_t result = AKEY_STATE_UNKNOWN;
    size_t numMappers = mMappers.size();
    for (size_t i = 0; i < numMappers; i++) {
        InputMapper* mapper = mMappers[i];
        if (sourcesMatchMask(mapper->getSources(), sourceMask)) {
            result = (mapper->*getStateFunc)(sourceMask, code);
            if (result >= AKEY_STATE_DOWN) {
                return result;
            }
        }
    }
    return result;
}

bool InputDevice::markSupportedKeyCodes(uint32_t sourceMask, size_t numCodes,
        const int32_t* keyCodes, uint8_t* outFlags) {
    bool result = false;
    size_t numMappers = mMappers.size();
    for (size_t i = 0; i < numMappers; i++) {
        InputMapper* mapper = mMappers[i];
        if (sourcesMatchMask(mapper->getSources(), sourceMask)) {
            result |= mapper->markSupportedKeyCodes(sourceMask, numCodes, keyCodes, outFlags);
        }
    }
    return result;
}

int32_t InputDevice::getMetaState() {
    int32_t result = 0;
    size_t numMappers = mMappers.size();
    for (size_t i = 0; i < numMappers; i++) {
        InputMapper* mapper = mMappers[i];
        result |= mapper->getMetaState();
    }
    return result;
}


// --- InputMapper ---

InputMapper::InputMapper(InputDevice* device) :
        mDevice(device), mContext(device->getContext()) {
}

InputMapper::~InputMapper() {
}

void InputMapper::populateDeviceInfo(InputDeviceInfo* info) {
    info->addSource(getSources());
}

void InputMapper::dump(String8& dump) {
}

void InputMapper::configure() {
}

void InputMapper::reset() {
}

int32_t InputMapper::getKeyCodeState(uint32_t sourceMask, int32_t keyCode) {
    return AKEY_STATE_UNKNOWN;
}

int32_t InputMapper::getScanCodeState(uint32_t sourceMask, int32_t scanCode) {
    return AKEY_STATE_UNKNOWN;
}

int32_t InputMapper::getSwitchState(uint32_t sourceMask, int32_t switchCode) {
    return AKEY_STATE_UNKNOWN;
}

bool InputMapper::markSupportedKeyCodes(uint32_t sourceMask, size_t numCodes,
        const int32_t* keyCodes, uint8_t* outFlags) {
    return false;
}

int32_t InputMapper::getMetaState() {
    return 0;
}


// --- SwitchInputMapper ---

SwitchInputMapper::SwitchInputMapper(InputDevice* device) :
        InputMapper(device) {
}

SwitchInputMapper::~SwitchInputMapper() {
}

uint32_t SwitchInputMapper::getSources() {
    return 0;
}

void SwitchInputMapper::process(const RawEvent* rawEvent) {
    switch (rawEvent->type) {
    case EV_SW:
        processSwitch(rawEvent->when, rawEvent->scanCode, rawEvent->value);
        break;
    }
}

void SwitchInputMapper::processSwitch(nsecs_t when, int32_t switchCode, int32_t switchValue) {
    getDispatcher()->notifySwitch(when, switchCode, switchValue, 0);
}

int32_t SwitchInputMapper::getSwitchState(uint32_t sourceMask, int32_t switchCode) {
    return getEventHub()->getSwitchState(getDeviceId(), switchCode);
}


// --- KeyboardInputMapper ---

KeyboardInputMapper::KeyboardInputMapper(InputDevice* device, int32_t associatedDisplayId,
        uint32_t sources, int32_t keyboardType) :
        InputMapper(device), mAssociatedDisplayId(associatedDisplayId), mSources(sources),
        mKeyboardType(keyboardType) {
    initializeLocked();
}

KeyboardInputMapper::~KeyboardInputMapper() {
}

void KeyboardInputMapper::initializeLocked() {
    mLocked.metaState = AMETA_NONE;
    mLocked.downTime = 0;
}

uint32_t KeyboardInputMapper::getSources() {
    return mSources;
}

void KeyboardInputMapper::populateDeviceInfo(InputDeviceInfo* info) {
    InputMapper::populateDeviceInfo(info);

    info->setKeyboardType(mKeyboardType);
}

void KeyboardInputMapper::dump(String8& dump) {
    { // acquire lock
        AutoMutex _l(mLock);
        dump.append(INDENT2 "Keyboard Input Mapper:\n");
        dump.appendFormat(INDENT3 "AssociatedDisplayId: %d\n", mAssociatedDisplayId);
        dump.appendFormat(INDENT3 "KeyboardType: %d\n", mKeyboardType);
        dump.appendFormat(INDENT3 "KeyDowns: %d keys currently down\n", mLocked.keyDowns.size());
        dump.appendFormat(INDENT3 "MetaState: 0x%0x\n", mLocked.metaState);
        dump.appendFormat(INDENT3 "DownTime: %lld\n", mLocked.downTime);
    } // release lock
}

void KeyboardInputMapper::reset() {
    for (;;) {
        int32_t keyCode, scanCode;
        { // acquire lock
            AutoMutex _l(mLock);

            // Synthesize key up event on reset if keys are currently down.
            if (mLocked.keyDowns.isEmpty()) {
                initializeLocked();
                break; // done
            }

            const KeyDown& keyDown = mLocked.keyDowns.top();
            keyCode = keyDown.keyCode;
            scanCode = keyDown.scanCode;
        } // release lock

        nsecs_t when = systemTime(SYSTEM_TIME_MONOTONIC);
        processKey(when, false, keyCode, scanCode, 0);
    }

    InputMapper::reset();
    getContext()->updateGlobalMetaState();
}

void KeyboardInputMapper::process(const RawEvent* rawEvent) {
    switch (rawEvent->type) {
    case EV_KEY: {
        int32_t scanCode = rawEvent->scanCode;
        if (isKeyboardOrGamepadKey(scanCode)) {
            processKey(rawEvent->when, rawEvent->value != 0, rawEvent->keyCode, scanCode,
                    rawEvent->flags);
        }
        break;
    }
    }
}

bool KeyboardInputMapper::isKeyboardOrGamepadKey(int32_t scanCode) {
    return scanCode < BTN_MOUSE
        || scanCode >= KEY_OK
        || (scanCode >= BTN_GAMEPAD && scanCode < BTN_DIGI);
}

void KeyboardInputMapper::processKey(nsecs_t when, bool down, int32_t keyCode,
        int32_t scanCode, uint32_t policyFlags) {
    int32_t newMetaState;
    nsecs_t downTime;
    bool metaStateChanged = false;

    { // acquire lock
        AutoMutex _l(mLock);

        if (down) {
            // Rotate key codes according to orientation if needed.
            // Note: getDisplayInfo is non-reentrant so we can continue holding the lock.
            if (mAssociatedDisplayId >= 0) {
                int32_t orientation;
                if (! getPolicy()->getDisplayInfo(mAssociatedDisplayId, NULL, NULL, & orientation)) {
                    return;
                }

                keyCode = rotateKeyCode(keyCode, orientation);
            }

            // Add key down.
            ssize_t keyDownIndex = findKeyDownLocked(scanCode);
            if (keyDownIndex >= 0) {
                // key repeat, be sure to use same keycode as before in case of rotation
                keyCode = mLocked.keyDowns.itemAt(keyDownIndex).keyCode;
            } else {
                // key down
                if ((policyFlags & POLICY_FLAG_VIRTUAL)
                        && mContext->shouldDropVirtualKey(when, getDevice(), keyCode, scanCode)) {
                    return;
                }

                mLocked.keyDowns.push();
                KeyDown& keyDown = mLocked.keyDowns.editTop();
                keyDown.keyCode = keyCode;
                keyDown.scanCode = scanCode;
            }

            mLocked.downTime = when;
        } else {
            // Remove key down.
            ssize_t keyDownIndex = findKeyDownLocked(scanCode);
            if (keyDownIndex >= 0) {
                // key up, be sure to use same keycode as before in case of rotation
                keyCode = mLocked.keyDowns.itemAt(keyDownIndex).keyCode;
                mLocked.keyDowns.removeAt(size_t(keyDownIndex));
            } else {
                // key was not actually down
                LOGI("Dropping key up from device %s because the key was not down. "
                        "keyCode=%d, scanCode=%d",
                        getDeviceName().string(), keyCode, scanCode);
                return;
            }
        }

        int32_t oldMetaState = mLocked.metaState;
        newMetaState = updateMetaState(keyCode, down, oldMetaState);
        if (oldMetaState != newMetaState) {
            mLocked.metaState = newMetaState;
            metaStateChanged = true;
        }

        downTime = mLocked.downTime;
    } // release lock

    if (metaStateChanged) {
        getContext()->updateGlobalMetaState();
    }

    getDispatcher()->notifyKey(when, getDeviceId(), AINPUT_SOURCE_KEYBOARD, policyFlags,
            down ? AKEY_EVENT_ACTION_DOWN : AKEY_EVENT_ACTION_UP,
            AKEY_EVENT_FLAG_FROM_SYSTEM, keyCode, scanCode, newMetaState, downTime);
}

ssize_t KeyboardInputMapper::findKeyDownLocked(int32_t scanCode) {
    size_t n = mLocked.keyDowns.size();
    for (size_t i = 0; i < n; i++) {
        if (mLocked.keyDowns[i].scanCode == scanCode) {
            return i;
        }
    }
    return -1;
}

int32_t KeyboardInputMapper::getKeyCodeState(uint32_t sourceMask, int32_t keyCode) {
    return getEventHub()->getKeyCodeState(getDeviceId(), keyCode);
}

int32_t KeyboardInputMapper::getScanCodeState(uint32_t sourceMask, int32_t scanCode) {
    return getEventHub()->getScanCodeState(getDeviceId(), scanCode);
}

bool KeyboardInputMapper::markSupportedKeyCodes(uint32_t sourceMask, size_t numCodes,
        const int32_t* keyCodes, uint8_t* outFlags) {
    return getEventHub()->markSupportedKeyCodes(getDeviceId(), numCodes, keyCodes, outFlags);
}

int32_t KeyboardInputMapper::getMetaState() {
    { // acquire lock
        AutoMutex _l(mLock);
        return mLocked.metaState;
    } // release lock
}


// --- TrackballInputMapper ---

TrackballInputMapper::TrackballInputMapper(InputDevice* device, int32_t associatedDisplayId) :
        InputMapper(device), mAssociatedDisplayId(associatedDisplayId) {
    mXPrecision = TRACKBALL_MOVEMENT_THRESHOLD;
    mYPrecision = TRACKBALL_MOVEMENT_THRESHOLD;
    mXScale = 1.0f / TRACKBALL_MOVEMENT_THRESHOLD;
    mYScale = 1.0f / TRACKBALL_MOVEMENT_THRESHOLD;

    initializeLocked();
}

TrackballInputMapper::~TrackballInputMapper() {
}

uint32_t TrackballInputMapper::getSources() {
    return AINPUT_SOURCE_TRACKBALL;
}

void TrackballInputMapper::populateDeviceInfo(InputDeviceInfo* info) {
    InputMapper::populateDeviceInfo(info);

    info->addMotionRange(AINPUT_MOTION_RANGE_X, -1.0f, 1.0f, 0.0f, mXScale);
    info->addMotionRange(AINPUT_MOTION_RANGE_Y, -1.0f, 1.0f, 0.0f, mYScale);
}

void TrackballInputMapper::dump(String8& dump) {
    { // acquire lock
        AutoMutex _l(mLock);
        dump.append(INDENT2 "Trackball Input Mapper:\n");
        dump.appendFormat(INDENT3 "AssociatedDisplayId: %d\n", mAssociatedDisplayId);
        dump.appendFormat(INDENT3 "XPrecision: %0.3f\n", mXPrecision);
        dump.appendFormat(INDENT3 "YPrecision: %0.3f\n", mYPrecision);
        dump.appendFormat(INDENT3 "Down: %s\n", toString(mLocked.down));
        dump.appendFormat(INDENT3 "DownTime: %lld\n", mLocked.downTime);
    } // release lock
}

void TrackballInputMapper::initializeLocked() {
    mAccumulator.clear();

    mLocked.down = false;
    mLocked.downTime = 0;
}

void TrackballInputMapper::reset() {
    for (;;) {
        { // acquire lock
            AutoMutex _l(mLock);

            if (! mLocked.down) {
                initializeLocked();
                break; // done
            }
        } // release lock

        // Synthesize trackball button up event on reset.
        nsecs_t when = systemTime(SYSTEM_TIME_MONOTONIC);
        mAccumulator.fields = Accumulator::FIELD_BTN_MOUSE;
        mAccumulator.btnMouse = false;
        sync(when);
    }

    InputMapper::reset();
}

void TrackballInputMapper::process(const RawEvent* rawEvent) {
    switch (rawEvent->type) {
    case EV_KEY:
        switch (rawEvent->scanCode) {
        case BTN_MOUSE:
            mAccumulator.fields |= Accumulator::FIELD_BTN_MOUSE;
            mAccumulator.btnMouse = rawEvent->value != 0;
            // Sync now since BTN_MOUSE is not necessarily followed by SYN_REPORT and
            // we need to ensure that we report the up/down promptly.
            sync(rawEvent->when);
            break;
        }
        break;

    case EV_REL:
        switch (rawEvent->scanCode) {
        case REL_X:
            mAccumulator.fields |= Accumulator::FIELD_REL_X;
            mAccumulator.relX = rawEvent->value;
            break;
        case REL_Y:
            mAccumulator.fields |= Accumulator::FIELD_REL_Y;
            mAccumulator.relY = rawEvent->value;
            break;
        }
        break;

    case EV_SYN:
        switch (rawEvent->scanCode) {
        case SYN_REPORT:
            sync(rawEvent->when);
            break;
        }
        break;
    }
}

void TrackballInputMapper::sync(nsecs_t when) {
    uint32_t fields = mAccumulator.fields;
    if (fields == 0) {
        return; // no new state changes, so nothing to do
    }

    int motionEventAction;
    PointerCoords pointerCoords;
    nsecs_t downTime;
    { // acquire lock
        AutoMutex _l(mLock);

        bool downChanged = fields & Accumulator::FIELD_BTN_MOUSE;

        if (downChanged) {
            if (mAccumulator.btnMouse) {
                mLocked.down = true;
                mLocked.downTime = when;
            } else {
                mLocked.down = false;
            }
        }

        downTime = mLocked.downTime;
        float x = fields & Accumulator::FIELD_REL_X ? mAccumulator.relX * mXScale : 0.0f;
        float y = fields & Accumulator::FIELD_REL_Y ? mAccumulator.relY * mYScale : 0.0f;

        if (downChanged) {
            motionEventAction = mLocked.down ? AMOTION_EVENT_ACTION_DOWN : AMOTION_EVENT_ACTION_UP;
        } else {
            motionEventAction = AMOTION_EVENT_ACTION_MOVE;
        }

        pointerCoords.x = x;
        pointerCoords.y = y;
        pointerCoords.pressure = mLocked.down ? 1.0f : 0.0f;
        pointerCoords.size = 0;
        pointerCoords.touchMajor = 0;
        pointerCoords.touchMinor = 0;
        pointerCoords.toolMajor = 0;
        pointerCoords.toolMinor = 0;
        pointerCoords.orientation = 0;

        if (mAssociatedDisplayId >= 0 && (x != 0.0f || y != 0.0f)) {
            // Rotate motion based on display orientation if needed.
            // Note: getDisplayInfo is non-reentrant so we can continue holding the lock.
            int32_t orientation;
            if (! getPolicy()->getDisplayInfo(mAssociatedDisplayId, NULL, NULL, & orientation)) {
                return;
            }

            float temp;
            switch (orientation) {
            case InputReaderPolicyInterface::ROTATION_90:
                temp = pointerCoords.x;
                pointerCoords.x = pointerCoords.y;
                pointerCoords.y = - temp;
                break;

            case InputReaderPolicyInterface::ROTATION_180:
                pointerCoords.x = - pointerCoords.x;
                pointerCoords.y = - pointerCoords.y;
                break;

            case InputReaderPolicyInterface::ROTATION_270:
                temp = pointerCoords.x;
                pointerCoords.x = - pointerCoords.y;
                pointerCoords.y = temp;
                break;
            }
        }
    } // release lock

    int32_t metaState = mContext->getGlobalMetaState();
    int32_t pointerId = 0;
    getDispatcher()->notifyMotion(when, getDeviceId(), AINPUT_SOURCE_TRACKBALL, 0,
            motionEventAction, 0, metaState, AMOTION_EVENT_EDGE_FLAG_NONE,
            1, &pointerId, &pointerCoords, mXPrecision, mYPrecision, downTime);

    mAccumulator.clear();
}

int32_t TrackballInputMapper::getScanCodeState(uint32_t sourceMask, int32_t scanCode) {
    if (scanCode >= BTN_MOUSE && scanCode < BTN_JOYSTICK) {
        return getEventHub()->getScanCodeState(getDeviceId(), scanCode);
    } else {
        return AKEY_STATE_UNKNOWN;
    }
}


// --- TouchInputMapper ---

TouchInputMapper::TouchInputMapper(InputDevice* device, int32_t associatedDisplayId) :
        InputMapper(device), mAssociatedDisplayId(associatedDisplayId) {
    mLocked.surfaceOrientation = -1;
    mLocked.surfaceWidth = -1;
    mLocked.surfaceHeight = -1;

    initializeLocked();
}

TouchInputMapper::~TouchInputMapper() {
}

uint32_t TouchInputMapper::getSources() {
    return mAssociatedDisplayId >= 0 ? AINPUT_SOURCE_TOUCHSCREEN : AINPUT_SOURCE_TOUCHPAD;
}

void TouchInputMapper::populateDeviceInfo(InputDeviceInfo* info) {
    InputMapper::populateDeviceInfo(info);

    { // acquire lock
        AutoMutex _l(mLock);

        // Ensure surface information is up to date so that orientation changes are
        // noticed immediately.
        configureSurfaceLocked();

        info->addMotionRange(AINPUT_MOTION_RANGE_X, mLocked.orientedRanges.x);
        info->addMotionRange(AINPUT_MOTION_RANGE_Y, mLocked.orientedRanges.y);

        if (mLocked.orientedRanges.havePressure) {
            info->addMotionRange(AINPUT_MOTION_RANGE_PRESSURE,
                    mLocked.orientedRanges.pressure);
        }

        if (mLocked.orientedRanges.haveSize) {
            info->addMotionRange(AINPUT_MOTION_RANGE_SIZE,
                    mLocked.orientedRanges.size);
        }

        if (mLocked.orientedRanges.haveTouchSize) {
            info->addMotionRange(AINPUT_MOTION_RANGE_TOUCH_MAJOR,
                    mLocked.orientedRanges.touchMajor);
            info->addMotionRange(AINPUT_MOTION_RANGE_TOUCH_MINOR,
                    mLocked.orientedRanges.touchMinor);
        }

        if (mLocked.orientedRanges.haveToolSize) {
            info->addMotionRange(AINPUT_MOTION_RANGE_TOOL_MAJOR,
                    mLocked.orientedRanges.toolMajor);
            info->addMotionRange(AINPUT_MOTION_RANGE_TOOL_MINOR,
                    mLocked.orientedRanges.toolMinor);
        }

        if (mLocked.orientedRanges.haveOrientation) {
            info->addMotionRange(AINPUT_MOTION_RANGE_ORIENTATION,
                    mLocked.orientedRanges.orientation);
        }
    } // release lock
}

void TouchInputMapper::dump(String8& dump) {
    { // acquire lock
        AutoMutex _l(mLock);
        dump.append(INDENT2 "Touch Input Mapper:\n");
        dump.appendFormat(INDENT3 "AssociatedDisplayId: %d\n", mAssociatedDisplayId);
        dumpParameters(dump);
        dumpVirtualKeysLocked(dump);
        dumpRawAxes(dump);
        dumpCalibration(dump);
        dumpSurfaceLocked(dump);
        dump.appendFormat(INDENT3 "Translation and Scaling Factors:");
        dump.appendFormat(INDENT4 "XOrigin: %d\n", mLocked.xOrigin);
        dump.appendFormat(INDENT4 "YOrigin: %d\n", mLocked.yOrigin);
        dump.appendFormat(INDENT4 "XScale: %0.3f\n", mLocked.xScale);
        dump.appendFormat(INDENT4 "YScale: %0.3f\n", mLocked.yScale);
        dump.appendFormat(INDENT4 "XPrecision: %0.3f\n", mLocked.xPrecision);
        dump.appendFormat(INDENT4 "YPrecision: %0.3f\n", mLocked.yPrecision);
        dump.appendFormat(INDENT4 "GeometricScale: %0.3f\n", mLocked.geometricScale);
        dump.appendFormat(INDENT4 "ToolSizeLinearScale: %0.3f\n", mLocked.toolSizeLinearScale);
        dump.appendFormat(INDENT4 "ToolSizeLinearBias: %0.3f\n", mLocked.toolSizeLinearBias);
        dump.appendFormat(INDENT4 "ToolSizeAreaScale: %0.3f\n", mLocked.toolSizeAreaScale);
        dump.appendFormat(INDENT4 "ToolSizeAreaBias: %0.3f\n", mLocked.toolSizeAreaBias);
        dump.appendFormat(INDENT4 "PressureScale: %0.3f\n", mLocked.pressureScale);
        dump.appendFormat(INDENT4 "SizeScale: %0.3f\n", mLocked.sizeScale);
        dump.appendFormat(INDENT4 "OrientationSCale: %0.3f\n", mLocked.orientationScale);
    } // release lock
}

void TouchInputMapper::initializeLocked() {
    mCurrentTouch.clear();
    mLastTouch.clear();
    mDownTime = 0;

    for (uint32_t i = 0; i < MAX_POINTERS; i++) {
        mAveragingTouchFilter.historyStart[i] = 0;
        mAveragingTouchFilter.historyEnd[i] = 0;
    }

    mJumpyTouchFilter.jumpyPointsDropped = 0;

    mLocked.currentVirtualKey.down = false;

    mLocked.orientedRanges.havePressure = false;
    mLocked.orientedRanges.haveSize = false;
    mLocked.orientedRanges.haveTouchSize = false;
    mLocked.orientedRanges.haveToolSize = false;
    mLocked.orientedRanges.haveOrientation = false;
}

void TouchInputMapper::configure() {
    InputMapper::configure();

    // Configure basic parameters.
    configureParameters();

    // Configure absolute axis information.
    configureRawAxes();

    // Prepare input device calibration.
    parseCalibration();
    resolveCalibration();

    { // acquire lock
        AutoMutex _l(mLock);

         // Configure surface dimensions and orientation.
        configureSurfaceLocked();
    } // release lock
}

void TouchInputMapper::configureParameters() {
    mParameters.useBadTouchFilter = getPolicy()->filterTouchEvents();
    mParameters.useAveragingTouchFilter = getPolicy()->filterTouchEvents();
    mParameters.useJumpyTouchFilter = getPolicy()->filterJumpyTouchEvents();
    mParameters.virtualKeyQuietTime = getPolicy()->getVirtualKeyQuietTime();
}

void TouchInputMapper::dumpParameters(String8& dump) {
    dump.appendFormat(INDENT3 "UseBadTouchFilter: %s\n",
            toString(mParameters.useBadTouchFilter));
    dump.appendFormat(INDENT3 "UseAveragingTouchFilter: %s\n",
            toString(mParameters.useAveragingTouchFilter));
    dump.appendFormat(INDENT3 "UseJumpyTouchFilter: %s\n",
            toString(mParameters.useJumpyTouchFilter));
}

void TouchInputMapper::configureRawAxes() {
    mRawAxes.x.clear();
    mRawAxes.y.clear();
    mRawAxes.pressure.clear();
    mRawAxes.touchMajor.clear();
    mRawAxes.touchMinor.clear();
    mRawAxes.toolMajor.clear();
    mRawAxes.toolMinor.clear();
    mRawAxes.orientation.clear();
}

static void dumpAxisInfo(String8& dump, RawAbsoluteAxisInfo axis, const char* name) {
    if (axis.valid) {
        dump.appendFormat(INDENT4 "%s: min=%d, max=%d, flat=%d, fuzz=%d\n",
                name, axis.minValue, axis.maxValue, axis.flat, axis.fuzz);
    } else {
        dump.appendFormat(INDENT4 "%s: unknown range\n", name);
    }
}

void TouchInputMapper::dumpRawAxes(String8& dump) {
    dump.append(INDENT3 "Raw Axes:\n");
    dumpAxisInfo(dump, mRawAxes.x, "X");
    dumpAxisInfo(dump, mRawAxes.y, "Y");
    dumpAxisInfo(dump, mRawAxes.pressure, "Pressure");
    dumpAxisInfo(dump, mRawAxes.touchMajor, "TouchMajor");
    dumpAxisInfo(dump, mRawAxes.touchMinor, "TouchMinor");
    dumpAxisInfo(dump, mRawAxes.toolMajor, "ToolMajor");
    dumpAxisInfo(dump, mRawAxes.toolMinor, "ToolMinor");
    dumpAxisInfo(dump, mRawAxes.orientation, "Orientation");
}

bool TouchInputMapper::configureSurfaceLocked() {
    // Update orientation and dimensions if needed.
    int32_t orientation;
    int32_t width, height;
    if (mAssociatedDisplayId >= 0) {
        // Note: getDisplayInfo is non-reentrant so we can continue holding the lock.
        if (! getPolicy()->getDisplayInfo(mAssociatedDisplayId, & width, & height, & orientation)) {
            return false;
        }
    } else {
        orientation = InputReaderPolicyInterface::ROTATION_0;
        width = mRawAxes.x.getRange();
        height = mRawAxes.y.getRange();
    }

    bool orientationChanged = mLocked.surfaceOrientation != orientation;
    if (orientationChanged) {
        mLocked.surfaceOrientation = orientation;
    }

    bool sizeChanged = mLocked.surfaceWidth != width || mLocked.surfaceHeight != height;
    if (sizeChanged) {
        LOGI("Device reconfigured: id=0x%x, name=%s, display size is now %dx%d",
                getDeviceId(), getDeviceName().string(), width, height);

        mLocked.surfaceWidth = width;
        mLocked.surfaceHeight = height;

        // Configure X and Y factors.
        if (mRawAxes.x.valid && mRawAxes.y.valid) {
            mLocked.xOrigin = mRawAxes.x.minValue;
            mLocked.yOrigin = mRawAxes.y.minValue;
            mLocked.xScale = float(width) / mRawAxes.x.getRange();
            mLocked.yScale = float(height) / mRawAxes.y.getRange();
            mLocked.xPrecision = 1.0f / mLocked.xScale;
            mLocked.yPrecision = 1.0f / mLocked.yScale;

            configureVirtualKeysLocked();
        } else {
            LOGW(INDENT "Touch device did not report support for X or Y axis!");
            mLocked.xOrigin = 0;
            mLocked.yOrigin = 0;
            mLocked.xScale = 1.0f;
            mLocked.yScale = 1.0f;
            mLocked.xPrecision = 1.0f;
            mLocked.yPrecision = 1.0f;
        }

        // Scale factor for terms that are not oriented in a particular axis.
        // If the pixels are square then xScale == yScale otherwise we fake it
        // by choosing an average.
        mLocked.geometricScale = avg(mLocked.xScale, mLocked.yScale);

        // Size of diagonal axis.
        float diagonalSize = pythag(width, height);

        // TouchMajor and TouchMinor factors.
        if (mCalibration.touchSizeCalibration != Calibration::TOUCH_SIZE_CALIBRATION_NONE) {
            mLocked.orientedRanges.haveTouchSize = true;
            mLocked.orientedRanges.touchMajor.min = 0;
            mLocked.orientedRanges.touchMajor.max = diagonalSize;
            mLocked.orientedRanges.touchMajor.flat = 0;
            mLocked.orientedRanges.touchMajor.fuzz = 0;
            mLocked.orientedRanges.touchMinor = mLocked.orientedRanges.touchMajor;
        }

        // ToolMajor and ToolMinor factors.
        mLocked.toolSizeLinearScale = 0;
        mLocked.toolSizeLinearBias = 0;
        mLocked.toolSizeAreaScale = 0;
        mLocked.toolSizeAreaBias = 0;
        if (mCalibration.toolSizeCalibration != Calibration::TOOL_SIZE_CALIBRATION_NONE) {
            if (mCalibration.toolSizeCalibration == Calibration::TOOL_SIZE_CALIBRATION_LINEAR) {
                if (mCalibration.haveToolSizeLinearScale) {
                    mLocked.toolSizeLinearScale = mCalibration.toolSizeLinearScale;
                } else if (mRawAxes.toolMajor.valid && mRawAxes.toolMajor.maxValue != 0) {
                    mLocked.toolSizeLinearScale = float(min(width, height))
                            / mRawAxes.toolMajor.maxValue;
                }

                if (mCalibration.haveToolSizeLinearBias) {
                    mLocked.toolSizeLinearBias = mCalibration.toolSizeLinearBias;
                }
            } else if (mCalibration.toolSizeCalibration ==
                    Calibration::TOOL_SIZE_CALIBRATION_AREA) {
                if (mCalibration.haveToolSizeLinearScale) {
                    mLocked.toolSizeLinearScale = mCalibration.toolSizeLinearScale;
                } else {
                    mLocked.toolSizeLinearScale = min(width, height);
                }

                if (mCalibration.haveToolSizeLinearBias) {
                    mLocked.toolSizeLinearBias = mCalibration.toolSizeLinearBias;
                }

                if (mCalibration.haveToolSizeAreaScale) {
                    mLocked.toolSizeAreaScale = mCalibration.toolSizeAreaScale;
                } else if (mRawAxes.toolMajor.valid && mRawAxes.toolMajor.maxValue != 0) {
                    mLocked.toolSizeAreaScale = 1.0f / mRawAxes.toolMajor.maxValue;
                }

                if (mCalibration.haveToolSizeAreaBias) {
                    mLocked.toolSizeAreaBias = mCalibration.toolSizeAreaBias;
                }
            }

            mLocked.orientedRanges.haveToolSize = true;
            mLocked.orientedRanges.toolMajor.min = 0;
            mLocked.orientedRanges.toolMajor.max = diagonalSize;
            mLocked.orientedRanges.toolMajor.flat = 0;
            mLocked.orientedRanges.toolMajor.fuzz = 0;
            mLocked.orientedRanges.toolMinor = mLocked.orientedRanges.toolMajor;
        }

        // Pressure factors.
        mLocked.pressureScale = 0;
        if (mCalibration.pressureCalibration != Calibration::PRESSURE_CALIBRATION_NONE) {
            RawAbsoluteAxisInfo rawPressureAxis;
            switch (mCalibration.pressureSource) {
            case Calibration::PRESSURE_SOURCE_PRESSURE:
                rawPressureAxis = mRawAxes.pressure;
                break;
            case Calibration::PRESSURE_SOURCE_TOUCH:
                rawPressureAxis = mRawAxes.touchMajor;
                break;
            default:
                rawPressureAxis.clear();
            }

            if (mCalibration.pressureCalibration == Calibration::PRESSURE_CALIBRATION_PHYSICAL
                    || mCalibration.pressureCalibration
                            == Calibration::PRESSURE_CALIBRATION_AMPLITUDE) {
                if (mCalibration.havePressureScale) {
                    mLocked.pressureScale = mCalibration.pressureScale;
                } else if (rawPressureAxis.valid && rawPressureAxis.maxValue != 0) {
                    mLocked.pressureScale = 1.0f / rawPressureAxis.maxValue;
                }
            }

            mLocked.orientedRanges.havePressure = true;
            mLocked.orientedRanges.pressure.min = 0;
            mLocked.orientedRanges.pressure.max = 1.0;
            mLocked.orientedRanges.pressure.flat = 0;
            mLocked.orientedRanges.pressure.fuzz = 0;
        }

        // Size factors.
        mLocked.sizeScale = 0;
        if (mCalibration.sizeCalibration != Calibration::SIZE_CALIBRATION_NONE) {
            if (mCalibration.sizeCalibration == Calibration::SIZE_CALIBRATION_NORMALIZED) {
                if (mRawAxes.toolMajor.valid && mRawAxes.toolMajor.maxValue != 0) {
                    mLocked.sizeScale = 1.0f / mRawAxes.toolMajor.maxValue;
                }
            }

            mLocked.orientedRanges.haveSize = true;
            mLocked.orientedRanges.size.min = 0;
            mLocked.orientedRanges.size.max = 1.0;
            mLocked.orientedRanges.size.flat = 0;
            mLocked.orientedRanges.size.fuzz = 0;
        }

        // Orientation
        mLocked.orientationScale = 0;
        if (mCalibration.orientationCalibration != Calibration::ORIENTATION_CALIBRATION_NONE) {
            if (mCalibration.orientationCalibration
                    == Calibration::ORIENTATION_CALIBRATION_INTERPOLATED) {
                if (mRawAxes.orientation.valid && mRawAxes.orientation.maxValue != 0) {
                    mLocked.orientationScale = float(M_PI_2) / mRawAxes.orientation.maxValue;
                }
            }

            mLocked.orientedRanges.orientation.min = - M_PI_2;
            mLocked.orientedRanges.orientation.max = M_PI_2;
            mLocked.orientedRanges.orientation.flat = 0;
            mLocked.orientedRanges.orientation.fuzz = 0;
        }
    }

    if (orientationChanged || sizeChanged) {
        // Compute oriented surface dimensions, precision, and scales.
        float orientedXScale, orientedYScale;
        switch (mLocked.surfaceOrientation) {
        case InputReaderPolicyInterface::ROTATION_90:
        case InputReaderPolicyInterface::ROTATION_270:
            mLocked.orientedSurfaceWidth = mLocked.surfaceHeight;
            mLocked.orientedSurfaceHeight = mLocked.surfaceWidth;
            mLocked.orientedXPrecision = mLocked.yPrecision;
            mLocked.orientedYPrecision = mLocked.xPrecision;
            orientedXScale = mLocked.yScale;
            orientedYScale = mLocked.xScale;
            break;
        default:
            mLocked.orientedSurfaceWidth = mLocked.surfaceWidth;
            mLocked.orientedSurfaceHeight = mLocked.surfaceHeight;
            mLocked.orientedXPrecision = mLocked.xPrecision;
            mLocked.orientedYPrecision = mLocked.yPrecision;
            orientedXScale = mLocked.xScale;
            orientedYScale = mLocked.yScale;
            break;
        }

        // Configure position ranges.
        mLocked.orientedRanges.x.min = 0;
        mLocked.orientedRanges.x.max = mLocked.orientedSurfaceWidth;
        mLocked.orientedRanges.x.flat = 0;
        mLocked.orientedRanges.x.fuzz = orientedXScale;

        mLocked.orientedRanges.y.min = 0;
        mLocked.orientedRanges.y.max = mLocked.orientedSurfaceHeight;
        mLocked.orientedRanges.y.flat = 0;
        mLocked.orientedRanges.y.fuzz = orientedYScale;
    }

    return true;
}

void TouchInputMapper::dumpSurfaceLocked(String8& dump) {
    dump.appendFormat(INDENT3 "SurfaceWidth: %dpx\n", mLocked.surfaceWidth);
    dump.appendFormat(INDENT3 "SurfaceHeight: %dpx\n", mLocked.surfaceHeight);
    dump.appendFormat(INDENT3 "SurfaceOrientation: %d\n", mLocked.surfaceOrientation);
}

void TouchInputMapper::configureVirtualKeysLocked() {
    assert(mRawAxes.x.valid && mRawAxes.y.valid);

    // Note: getVirtualKeyDefinitions is non-reentrant so we can continue holding the lock.
    Vector<VirtualKeyDefinition> virtualKeyDefinitions;
    getPolicy()->getVirtualKeyDefinitions(getDeviceName(), virtualKeyDefinitions);

    mLocked.virtualKeys.clear();

    if (virtualKeyDefinitions.size() == 0) {
        return;
    }

    mLocked.virtualKeys.setCapacity(virtualKeyDefinitions.size());

    int32_t touchScreenLeft = mRawAxes.x.minValue;
    int32_t touchScreenTop = mRawAxes.y.minValue;
    int32_t touchScreenWidth = mRawAxes.x.getRange();
    int32_t touchScreenHeight = mRawAxes.y.getRange();

    for (size_t i = 0; i < virtualKeyDefinitions.size(); i++) {
        const VirtualKeyDefinition& virtualKeyDefinition =
                virtualKeyDefinitions[i];

        mLocked.virtualKeys.add();
        VirtualKey& virtualKey = mLocked.virtualKeys.editTop();

        virtualKey.scanCode = virtualKeyDefinition.scanCode;
        int32_t keyCode;
        uint32_t flags;
        if (getEventHub()->scancodeToKeycode(getDeviceId(), virtualKey.scanCode,
                & keyCode, & flags)) {
            LOGW(INDENT "VirtualKey %d: could not obtain key code, ignoring",
                    virtualKey.scanCode);
            mLocked.virtualKeys.pop(); // drop the key
            continue;
        }

        virtualKey.keyCode = keyCode;
        virtualKey.flags = flags;

        // convert the key definition's display coordinates into touch coordinates for a hit box
        int32_t halfWidth = virtualKeyDefinition.width / 2;
        int32_t halfHeight = virtualKeyDefinition.height / 2;

        virtualKey.hitLeft = (virtualKeyDefinition.centerX - halfWidth)
                * touchScreenWidth / mLocked.surfaceWidth + touchScreenLeft;
        virtualKey.hitRight= (virtualKeyDefinition.centerX + halfWidth)
                * touchScreenWidth / mLocked.surfaceWidth + touchScreenLeft;
        virtualKey.hitTop = (virtualKeyDefinition.centerY - halfHeight)
                * touchScreenHeight / mLocked.surfaceHeight + touchScreenTop;
        virtualKey.hitBottom = (virtualKeyDefinition.centerY + halfHeight)
                * touchScreenHeight / mLocked.surfaceHeight + touchScreenTop;

    }
}

void TouchInputMapper::dumpVirtualKeysLocked(String8& dump) {
    if (!mLocked.virtualKeys.isEmpty()) {
        dump.append(INDENT3 "Virtual Keys:\n");

        for (size_t i = 0; i < mLocked.virtualKeys.size(); i++) {
            const VirtualKey& virtualKey = mLocked.virtualKeys.itemAt(i);
            dump.appendFormat(INDENT4 "%d: scanCode=%d, keyCode=%d, "
                    "hitLeft=%d, hitRight=%d, hitTop=%d, hitBottom=%d\n",
                    i, virtualKey.scanCode, virtualKey.keyCode,
                    virtualKey.hitLeft, virtualKey.hitRight,
                    virtualKey.hitTop, virtualKey.hitBottom);
        }
    }
}

void TouchInputMapper::parseCalibration() {
    const InputDeviceCalibration& in = getDevice()->getCalibration();
    Calibration& out = mCalibration;

    // Touch Size
    out.touchSizeCalibration = Calibration::TOUCH_SIZE_CALIBRATION_DEFAULT;
    String8 touchSizeCalibrationString;
    if (in.tryGetProperty(String8("touch.touchSize.calibration"), touchSizeCalibrationString)) {
        if (touchSizeCalibrationString == "none") {
            out.touchSizeCalibration = Calibration::TOUCH_SIZE_CALIBRATION_NONE;
        } else if (touchSizeCalibrationString == "geometric") {
            out.touchSizeCalibration = Calibration::TOUCH_SIZE_CALIBRATION_GEOMETRIC;
        } else if (touchSizeCalibrationString == "pressure") {
            out.touchSizeCalibration = Calibration::TOUCH_SIZE_CALIBRATION_PRESSURE;
        } else if (touchSizeCalibrationString != "default") {
            LOGW("Invalid value for touch.touchSize.calibration: '%s'",
                    touchSizeCalibrationString.string());
        }
    }

    // Tool Size
    out.toolSizeCalibration = Calibration::TOOL_SIZE_CALIBRATION_DEFAULT;
    String8 toolSizeCalibrationString;
    if (in.tryGetProperty(String8("touch.toolSize.calibration"), toolSizeCalibrationString)) {
        if (toolSizeCalibrationString == "none") {
            out.toolSizeCalibration = Calibration::TOOL_SIZE_CALIBRATION_NONE;
        } else if (toolSizeCalibrationString == "geometric") {
            out.toolSizeCalibration = Calibration::TOOL_SIZE_CALIBRATION_GEOMETRIC;
        } else if (toolSizeCalibrationString == "linear") {
            out.toolSizeCalibration = Calibration::TOOL_SIZE_CALIBRATION_LINEAR;
        } else if (toolSizeCalibrationString == "area") {
            out.toolSizeCalibration = Calibration::TOOL_SIZE_CALIBRATION_AREA;
        } else if (toolSizeCalibrationString != "default") {
            LOGW("Invalid value for touch.toolSize.calibration: '%s'",
                    toolSizeCalibrationString.string());
        }
    }

    out.haveToolSizeLinearScale = in.tryGetProperty(String8("touch.toolSize.linearScale"),
            out.toolSizeLinearScale);
    out.haveToolSizeLinearBias = in.tryGetProperty(String8("touch.toolSize.linearBias"),
            out.toolSizeLinearBias);
    out.haveToolSizeAreaScale = in.tryGetProperty(String8("touch.toolSize.areaScale"),
            out.toolSizeAreaScale);
    out.haveToolSizeAreaBias = in.tryGetProperty(String8("touch.toolSize.areaBias"),
            out.toolSizeAreaBias);
    out.haveToolSizeIsSummed = in.tryGetProperty(String8("touch.toolSize.isSummed"),
            out.toolSizeIsSummed);

    // Pressure
    out.pressureCalibration = Calibration::PRESSURE_CALIBRATION_DEFAULT;
    String8 pressureCalibrationString;
    if (in.tryGetProperty(String8("touch.pressure.calibration"), pressureCalibrationString)) {
        if (pressureCalibrationString == "none") {
            out.pressureCalibration = Calibration::PRESSURE_CALIBRATION_NONE;
        } else if (pressureCalibrationString == "physical") {
            out.pressureCalibration = Calibration::PRESSURE_CALIBRATION_PHYSICAL;
        } else if (pressureCalibrationString == "amplitude") {
            out.pressureCalibration = Calibration::PRESSURE_CALIBRATION_AMPLITUDE;
        } else if (pressureCalibrationString != "default") {
            LOGW("Invalid value for touch.pressure.calibration: '%s'",
                    pressureCalibrationString.string());
        }
    }

    out.pressureSource = Calibration::PRESSURE_SOURCE_DEFAULT;
    String8 pressureSourceString;
    if (in.tryGetProperty(String8("touch.pressure.source"), pressureSourceString)) {
        if (pressureSourceString == "pressure") {
            out.pressureSource = Calibration::PRESSURE_SOURCE_PRESSURE;
        } else if (pressureSourceString == "touch") {
            out.pressureSource = Calibration::PRESSURE_SOURCE_TOUCH;
        } else if (pressureSourceString != "default") {
            LOGW("Invalid value for touch.pressure.source: '%s'",
                    pressureSourceString.string());
        }
    }

    out.havePressureScale = in.tryGetProperty(String8("touch.pressure.scale"),
            out.pressureScale);

    // Size
    out.sizeCalibration = Calibration::SIZE_CALIBRATION_DEFAULT;
    String8 sizeCalibrationString;
    if (in.tryGetProperty(String8("touch.size.calibration"), sizeCalibrationString)) {
        if (sizeCalibrationString == "none") {
            out.sizeCalibration = Calibration::SIZE_CALIBRATION_NONE;
        } else if (sizeCalibrationString == "normalized") {
            out.sizeCalibration = Calibration::SIZE_CALIBRATION_NORMALIZED;
        } else if (sizeCalibrationString != "default") {
            LOGW("Invalid value for touch.size.calibration: '%s'",
                    sizeCalibrationString.string());
        }
    }

    // Orientation
    out.orientationCalibration = Calibration::ORIENTATION_CALIBRATION_DEFAULT;
    String8 orientationCalibrationString;
    if (in.tryGetProperty(String8("touch.orientation.calibration"), orientationCalibrationString)) {
        if (orientationCalibrationString == "none") {
            out.orientationCalibration = Calibration::ORIENTATION_CALIBRATION_NONE;
        } else if (orientationCalibrationString == "interpolated") {
            out.orientationCalibration = Calibration::ORIENTATION_CALIBRATION_INTERPOLATED;
        } else if (orientationCalibrationString != "default") {
            LOGW("Invalid value for touch.orientation.calibration: '%s'",
                    orientationCalibrationString.string());
        }
    }
}

void TouchInputMapper::resolveCalibration() {
    // Pressure
    switch (mCalibration.pressureSource) {
    case Calibration::PRESSURE_SOURCE_DEFAULT:
        if (mRawAxes.pressure.valid) {
            mCalibration.pressureSource = Calibration::PRESSURE_SOURCE_PRESSURE;
        } else if (mRawAxes.touchMajor.valid) {
            mCalibration.pressureSource = Calibration::PRESSURE_SOURCE_TOUCH;
        }
        break;

    case Calibration::PRESSURE_SOURCE_PRESSURE:
        if (! mRawAxes.pressure.valid) {
            LOGW("Calibration property touch.pressure.source is 'pressure' but "
                    "the pressure axis is not available.");
        }
        break;

    case Calibration::PRESSURE_SOURCE_TOUCH:
        if (! mRawAxes.touchMajor.valid) {
            LOGW("Calibration property touch.pressure.source is 'touch' but "
                    "the touchMajor axis is not available.");
        }
        break;

    default:
        break;
    }

    switch (mCalibration.pressureCalibration) {
    case Calibration::PRESSURE_CALIBRATION_DEFAULT:
        if (mCalibration.pressureSource != Calibration::PRESSURE_SOURCE_DEFAULT) {
            mCalibration.pressureCalibration = Calibration::PRESSURE_CALIBRATION_AMPLITUDE;
        } else {
            mCalibration.pressureCalibration = Calibration::PRESSURE_CALIBRATION_NONE;
        }
        break;

    default:
        break;
    }

    // Tool Size
    switch (mCalibration.toolSizeCalibration) {
    case Calibration::TOOL_SIZE_CALIBRATION_DEFAULT:
        if (mRawAxes.toolMajor.valid) {
            mCalibration.toolSizeCalibration = Calibration::TOOL_SIZE_CALIBRATION_LINEAR;
        } else {
            mCalibration.toolSizeCalibration = Calibration::TOOL_SIZE_CALIBRATION_NONE;
        }
        break;

    default:
        break;
    }

    // Touch Size
    switch (mCalibration.touchSizeCalibration) {
    case Calibration::TOUCH_SIZE_CALIBRATION_DEFAULT:
        if (mCalibration.pressureCalibration != Calibration::PRESSURE_CALIBRATION_NONE
                && mCalibration.toolSizeCalibration != Calibration::TOOL_SIZE_CALIBRATION_NONE) {
            mCalibration.touchSizeCalibration = Calibration::TOUCH_SIZE_CALIBRATION_PRESSURE;
        } else {
            mCalibration.touchSizeCalibration = Calibration::TOUCH_SIZE_CALIBRATION_NONE;
        }
        break;

    default:
        break;
    }

    // Size
    switch (mCalibration.sizeCalibration) {
    case Calibration::SIZE_CALIBRATION_DEFAULT:
        if (mRawAxes.toolMajor.valid) {
            mCalibration.sizeCalibration = Calibration::SIZE_CALIBRATION_NORMALIZED;
        } else {
            mCalibration.sizeCalibration = Calibration::SIZE_CALIBRATION_NONE;
        }
        break;

    default:
        break;
    }

    // Orientation
    switch (mCalibration.orientationCalibration) {
    case Calibration::ORIENTATION_CALIBRATION_DEFAULT:
        if (mRawAxes.orientation.valid) {
            mCalibration.orientationCalibration = Calibration::ORIENTATION_CALIBRATION_INTERPOLATED;
        } else {
            mCalibration.orientationCalibration = Calibration::ORIENTATION_CALIBRATION_NONE;
        }
        break;

    default:
        break;
    }
}

void TouchInputMapper::dumpCalibration(String8& dump) {
    dump.append(INDENT3 "Calibration:\n");

    // Touch Size
    switch (mCalibration.touchSizeCalibration) {
    case Calibration::TOUCH_SIZE_CALIBRATION_NONE:
        dump.append(INDENT4 "touch.touchSize.calibration: none\n");
        break;
    case Calibration::TOUCH_SIZE_CALIBRATION_GEOMETRIC:
        dump.append(INDENT4 "touch.touchSize.calibration: geometric\n");
        break;
    case Calibration::TOUCH_SIZE_CALIBRATION_PRESSURE:
        dump.append(INDENT4 "touch.touchSize.calibration: pressure\n");
        break;
    default:
        assert(false);
    }

    // Tool Size
    switch (mCalibration.toolSizeCalibration) {
    case Calibration::TOOL_SIZE_CALIBRATION_NONE:
        dump.append(INDENT4 "touch.toolSize.calibration: none\n");
        break;
    case Calibration::TOOL_SIZE_CALIBRATION_GEOMETRIC:
        dump.append(INDENT4 "touch.toolSize.calibration: geometric\n");
        break;
    case Calibration::TOOL_SIZE_CALIBRATION_LINEAR:
        dump.append(INDENT4 "touch.toolSize.calibration: linear\n");
        break;
    case Calibration::TOOL_SIZE_CALIBRATION_AREA:
        dump.append(INDENT4 "touch.toolSize.calibration: area\n");
        break;
    default:
        assert(false);
    }

    if (mCalibration.haveToolSizeLinearScale) {
        dump.appendFormat(INDENT4 "touch.toolSize.linearScale: %0.3f\n",
                mCalibration.toolSizeLinearScale);
    }

    if (mCalibration.haveToolSizeLinearBias) {
        dump.appendFormat(INDENT4 "touch.toolSize.linearBias: %0.3f\n",
                mCalibration.toolSizeLinearBias);
    }

    if (mCalibration.haveToolSizeAreaScale) {
        dump.appendFormat(INDENT4 "touch.toolSize.areaScale: %0.3f\n",
                mCalibration.toolSizeAreaScale);
    }

    if (mCalibration.haveToolSizeAreaBias) {
        dump.appendFormat(INDENT4 "touch.toolSize.areaBias: %0.3f\n",
                mCalibration.toolSizeAreaBias);
    }

    if (mCalibration.haveToolSizeIsSummed) {
        dump.appendFormat(INDENT4 "touch.toolSize.isSummed: %d\n",
                mCalibration.toolSizeIsSummed);
    }

    // Pressure
    switch (mCalibration.pressureCalibration) {
    case Calibration::PRESSURE_CALIBRATION_NONE:
        dump.append(INDENT4 "touch.pressure.calibration: none\n");
        break;
    case Calibration::PRESSURE_CALIBRATION_PHYSICAL:
        dump.append(INDENT4 "touch.pressure.calibration: physical\n");
        break;
    case Calibration::PRESSURE_CALIBRATION_AMPLITUDE:
        dump.append(INDENT4 "touch.pressure.calibration: amplitude\n");
        break;
    default:
        assert(false);
    }

    switch (mCalibration.pressureSource) {
    case Calibration::PRESSURE_SOURCE_PRESSURE:
        dump.append(INDENT4 "touch.pressure.source: pressure\n");
        break;
    case Calibration::PRESSURE_SOURCE_TOUCH:
        dump.append(INDENT4 "touch.pressure.source: touch\n");
        break;
    case Calibration::PRESSURE_SOURCE_DEFAULT:
        break;
    default:
        assert(false);
    }

    if (mCalibration.havePressureScale) {
        dump.appendFormat(INDENT4 "touch.pressure.scale: %0.3f\n",
                mCalibration.pressureScale);
    }

    // Size
    switch (mCalibration.sizeCalibration) {
    case Calibration::SIZE_CALIBRATION_NONE:
        dump.append(INDENT4 "touch.size.calibration: none\n");
        break;
    case Calibration::SIZE_CALIBRATION_NORMALIZED:
        dump.append(INDENT4 "touch.size.calibration: normalized\n");
        break;
    default:
        assert(false);
    }

    // Orientation
    switch (mCalibration.orientationCalibration) {
    case Calibration::ORIENTATION_CALIBRATION_NONE:
        dump.append(INDENT4 "touch.orientation.calibration: none\n");
        break;
    case Calibration::ORIENTATION_CALIBRATION_INTERPOLATED:
        dump.append(INDENT4 "touch.orientation.calibration: interpolated\n");
        break;
    default:
        assert(false);
    }
}

void TouchInputMapper::reset() {
    // Synthesize touch up event if touch is currently down.
    // This will also take care of finishing virtual key processing if needed.
    if (mLastTouch.pointerCount != 0) {
        nsecs_t when = systemTime(SYSTEM_TIME_MONOTONIC);
        mCurrentTouch.clear();
        syncTouch(when, true);
    }

    { // acquire lock
        AutoMutex _l(mLock);
        initializeLocked();
    } // release lock

    InputMapper::reset();
}

void TouchInputMapper::syncTouch(nsecs_t when, bool havePointerIds) {
    uint32_t policyFlags = 0;

    // Preprocess pointer data.

    if (mParameters.useBadTouchFilter) {
        if (applyBadTouchFilter()) {
            havePointerIds = false;
        }
    }

    if (mParameters.useJumpyTouchFilter) {
        if (applyJumpyTouchFilter()) {
            havePointerIds = false;
        }
    }

    if (! havePointerIds) {
        calculatePointerIds();
    }

    TouchData temp;
    TouchData* savedTouch;
    if (mParameters.useAveragingTouchFilter) {
        temp.copyFrom(mCurrentTouch);
        savedTouch = & temp;

        applyAveragingTouchFilter();
    } else {
        savedTouch = & mCurrentTouch;
    }

    // Process touches and virtual keys.

    TouchResult touchResult = consumeOffScreenTouches(when, policyFlags);
    if (touchResult == DISPATCH_TOUCH) {
        detectGestures(when);
        dispatchTouches(when, policyFlags);
    }

    // Copy current touch to last touch in preparation for the next cycle.

    if (touchResult == DROP_STROKE) {
        mLastTouch.clear();
    } else {
        mLastTouch.copyFrom(*savedTouch);
    }
}

TouchInputMapper::TouchResult TouchInputMapper::consumeOffScreenTouches(
        nsecs_t when, uint32_t policyFlags) {
    int32_t keyEventAction, keyEventFlags;
    int32_t keyCode, scanCode, downTime;
    TouchResult touchResult;

    { // acquire lock
        AutoMutex _l(mLock);

        // Update surface size and orientation, including virtual key positions.
        if (! configureSurfaceLocked()) {
            return DROP_STROKE;
        }

        // Check for virtual key press.
        if (mLocked.currentVirtualKey.down) {
            if (mCurrentTouch.pointerCount == 0) {
                // Pointer went up while virtual key was down.
                mLocked.currentVirtualKey.down = false;
#if DEBUG_VIRTUAL_KEYS
                LOGD("VirtualKeys: Generating key up: keyCode=%d, scanCode=%d",
                        mLocked.currentVirtualKey.keyCode, mLocked.currentVirtualKey.scanCode);
#endif
                keyEventAction = AKEY_EVENT_ACTION_UP;
                keyEventFlags = AKEY_EVENT_FLAG_FROM_SYSTEM | AKEY_EVENT_FLAG_VIRTUAL_HARD_KEY;
                touchResult = SKIP_TOUCH;
                goto DispatchVirtualKey;
            }

            if (mCurrentTouch.pointerCount == 1) {
                int32_t x = mCurrentTouch.pointers[0].x;
                int32_t y = mCurrentTouch.pointers[0].y;
                const VirtualKey* virtualKey = findVirtualKeyHitLocked(x, y);
                if (virtualKey && virtualKey->keyCode == mLocked.currentVirtualKey.keyCode) {
                    // Pointer is still within the space of the virtual key.
                    return SKIP_TOUCH;
                }
            }

            // Pointer left virtual key area or another pointer also went down.
            // Send key cancellation and drop the stroke so subsequent motions will be
            // considered fresh downs. This is useful when the user swipes away from the
            // virtual key area into the main display surface.
            mLocked.currentVirtualKey.down = false;
#if DEBUG_VIRTUAL_KEYS
            LOGD("VirtualKeys: Canceling key: keyCode=%d, scanCode=%d",
                    mLocked.currentVirtualKey.keyCode, mLocked.currentVirtualKey.scanCode);
#endif
            keyEventAction = AKEY_EVENT_ACTION_UP;
            keyEventFlags = AKEY_EVENT_FLAG_FROM_SYSTEM | AKEY_EVENT_FLAG_VIRTUAL_HARD_KEY
                    | AKEY_EVENT_FLAG_CANCELED;

            // Check whether the pointer moved inside the display area where we should
            // start a new stroke.
            int32_t x = mCurrentTouch.pointers[0].x;
            int32_t y = mCurrentTouch.pointers[0].y;
            if (isPointInsideSurfaceLocked(x, y)) {
                mLastTouch.clear();
                touchResult = DISPATCH_TOUCH;
            } else {
                touchResult = DROP_STROKE;
            }
        } else {
            if (mCurrentTouch.pointerCount >= 1 && mLastTouch.pointerCount == 0) {
                // Pointer just went down. Handle off-screen touches, if needed.
                int32_t x = mCurrentTouch.pointers[0].x;
                int32_t y = mCurrentTouch.pointers[0].y;
                if (! isPointInsideSurfaceLocked(x, y)) {
                    // If exactly one pointer went down, check for virtual key hit.
                    // Otherwise we will drop the entire stroke.
                    if (mCurrentTouch.pointerCount == 1) {
                        const VirtualKey* virtualKey = findVirtualKeyHitLocked(x, y);
                        if (virtualKey) {
                            if (mContext->shouldDropVirtualKey(when, getDevice(),
                                    virtualKey->keyCode, virtualKey->scanCode)) {
                                return DROP_STROKE;
                            }

                            mLocked.currentVirtualKey.down = true;
                            mLocked.currentVirtualKey.downTime = when;
                            mLocked.currentVirtualKey.keyCode = virtualKey->keyCode;
                            mLocked.currentVirtualKey.scanCode = virtualKey->scanCode;
#if DEBUG_VIRTUAL_KEYS
                            LOGD("VirtualKeys: Generating key down: keyCode=%d, scanCode=%d",
                                    mLocked.currentVirtualKey.keyCode,
                                    mLocked.currentVirtualKey.scanCode);
#endif
                            keyEventAction = AKEY_EVENT_ACTION_DOWN;
                            keyEventFlags = AKEY_EVENT_FLAG_FROM_SYSTEM
                                    | AKEY_EVENT_FLAG_VIRTUAL_HARD_KEY;
                            touchResult = SKIP_TOUCH;
                            goto DispatchVirtualKey;
                        }
                    }
                    return DROP_STROKE;
                }
            }
            return DISPATCH_TOUCH;
        }

    DispatchVirtualKey:
        // Collect remaining state needed to dispatch virtual key.
        keyCode = mLocked.currentVirtualKey.keyCode;
        scanCode = mLocked.currentVirtualKey.scanCode;
        downTime = mLocked.currentVirtualKey.downTime;
    } // release lock

    // Dispatch virtual key.
    int32_t metaState = mContext->getGlobalMetaState();
    policyFlags |= POLICY_FLAG_VIRTUAL;
    getDispatcher()->notifyKey(when, getDeviceId(), AINPUT_SOURCE_KEYBOARD, policyFlags,
            keyEventAction, keyEventFlags, keyCode, scanCode, metaState, downTime);
    return touchResult;
}

void TouchInputMapper::detectGestures(nsecs_t when) {
    // Disable all virtual key touches that happen within a short time interval of the
    // most recent touch. The idea is to filter out stray virtual key presses when
    // interacting with the touch screen.
    //
    // Problems we're trying to solve:
    //
    // 1. While scrolling a list or dragging the window shade, the user swipes down into a
    // virtual key area that is implemented by a separate touch panel and accidentally
    // triggers a virtual key.
    //
    // 2. While typing in the on screen keyboard, the user taps slightly outside the screen
    // area and accidentally triggers a virtual key. This often happens when virtual keys
    // are layed out below the screen near to where the on screen keyboard's space bar
    // is displayed.
    if (mParameters.virtualKeyQuietTime > 0 && mCurrentTouch.pointerCount != 0) {
        mContext->disableVirtualKeysUntil(when + mParameters.virtualKeyQuietTime);
    }
}

void TouchInputMapper::dispatchTouches(nsecs_t when, uint32_t policyFlags) {
    uint32_t currentPointerCount = mCurrentTouch.pointerCount;
    uint32_t lastPointerCount = mLastTouch.pointerCount;
    if (currentPointerCount == 0 && lastPointerCount == 0) {
        return; // nothing to do!
    }

    BitSet32 currentIdBits = mCurrentTouch.idBits;
    BitSet32 lastIdBits = mLastTouch.idBits;

    if (currentIdBits == lastIdBits) {
        // No pointer id changes so this is a move event.
        // The dispatcher takes care of batching moves so we don't have to deal with that here.
        int32_t motionEventAction = AMOTION_EVENT_ACTION_MOVE;
        dispatchTouch(when, policyFlags, & mCurrentTouch,
                currentIdBits, -1, currentPointerCount, motionEventAction);
    } else {
        // There may be pointers going up and pointers going down and pointers moving
        // all at the same time.
        BitSet32 upIdBits(lastIdBits.value & ~ currentIdBits.value);
        BitSet32 downIdBits(currentIdBits.value & ~ lastIdBits.value);
        BitSet32 activeIdBits(lastIdBits.value);
        uint32_t pointerCount = lastPointerCount;

        // Produce an intermediate representation of the touch data that consists of the
        // old location of pointers that have just gone up and the new location of pointers that
        // have just moved but omits the location of pointers that have just gone down.
        TouchData interimTouch;
        interimTouch.copyFrom(mLastTouch);

        BitSet32 moveIdBits(lastIdBits.value & currentIdBits.value);
        bool moveNeeded = false;
        while (!moveIdBits.isEmpty()) {
            uint32_t moveId = moveIdBits.firstMarkedBit();
            moveIdBits.clearBit(moveId);

            int32_t oldIndex = mLastTouch.idToIndex[moveId];
            int32_t newIndex = mCurrentTouch.idToIndex[moveId];
            if (mLastTouch.pointers[oldIndex] != mCurrentTouch.pointers[newIndex]) {
                interimTouch.pointers[oldIndex] = mCurrentTouch.pointers[newIndex];
                moveNeeded = true;
            }
        }

        // Dispatch pointer up events using the interim pointer locations.
        while (!upIdBits.isEmpty()) {
            uint32_t upId = upIdBits.firstMarkedBit();
            upIdBits.clearBit(upId);
            BitSet32 oldActiveIdBits = activeIdBits;
            activeIdBits.clearBit(upId);

            int32_t motionEventAction;
            if (activeIdBits.isEmpty()) {
                motionEventAction = AMOTION_EVENT_ACTION_UP;
            } else {
                motionEventAction = AMOTION_EVENT_ACTION_POINTER_UP;
            }

            dispatchTouch(when, policyFlags, &interimTouch,
                    oldActiveIdBits, upId, pointerCount, motionEventAction);
            pointerCount -= 1;
        }

        // Dispatch move events if any of the remaining pointers moved from their old locations.
        // Although applications receive new locations as part of individual pointer up
        // events, they do not generally handle them except when presented in a move event.
        if (moveNeeded) {
            dispatchTouch(when, policyFlags, &mCurrentTouch,
                    activeIdBits, -1, pointerCount, AMOTION_EVENT_ACTION_MOVE);
        }

        // Dispatch pointer down events using the new pointer locations.
        while (!downIdBits.isEmpty()) {
            uint32_t downId = downIdBits.firstMarkedBit();
            downIdBits.clearBit(downId);
            BitSet32 oldActiveIdBits = activeIdBits;
            activeIdBits.markBit(downId);

            int32_t motionEventAction;
            if (oldActiveIdBits.isEmpty()) {
                motionEventAction = AMOTION_EVENT_ACTION_DOWN;
                mDownTime = when;
            } else {
                motionEventAction = AMOTION_EVENT_ACTION_POINTER_DOWN;
            }

            pointerCount += 1;
            dispatchTouch(when, policyFlags, &mCurrentTouch,
                    activeIdBits, downId, pointerCount, motionEventAction);
        }
    }
}

void TouchInputMapper::dispatchTouch(nsecs_t when, uint32_t policyFlags,
        TouchData* touch, BitSet32 idBits, uint32_t changedId, uint32_t pointerCount,
        int32_t motionEventAction) {
    int32_t pointerIds[MAX_POINTERS];
    PointerCoords pointerCoords[MAX_POINTERS];
    int32_t motionEventEdgeFlags = 0;
    float xPrecision, yPrecision;

    { // acquire lock
        AutoMutex _l(mLock);

        // Walk through the the active pointers and map touch screen coordinates (TouchData) into
        // display coordinates (PointerCoords) and adjust for display orientation.
        for (uint32_t outIndex = 0; ! idBits.isEmpty(); outIndex++) {
            uint32_t id = idBits.firstMarkedBit();
            idBits.clearBit(id);
            uint32_t inIndex = touch->idToIndex[id];

            const PointerData& in = touch->pointers[inIndex];

            // X and Y
            float x = float(in.x - mLocked.xOrigin) * mLocked.xScale;
            float y = float(in.y - mLocked.yOrigin) * mLocked.yScale;

            // ToolMajor and ToolMinor
            float toolMajor, toolMinor;
            switch (mCalibration.toolSizeCalibration) {
            case Calibration::TOOL_SIZE_CALIBRATION_GEOMETRIC:
                toolMajor = in.toolMajor * mLocked.geometricScale;
                if (mRawAxes.toolMinor.valid) {
                    toolMinor = in.toolMinor * mLocked.geometricScale;
                } else {
                    toolMinor = toolMajor;
                }
                break;
            case Calibration::TOOL_SIZE_CALIBRATION_LINEAR:
                toolMajor = in.toolMajor != 0
                        ? in.toolMajor * mLocked.toolSizeLinearScale + mLocked.toolSizeLinearBias
                        : 0;
                if (mRawAxes.toolMinor.valid) {
                    toolMinor = in.toolMinor != 0
                            ? in.toolMinor * mLocked.toolSizeLinearScale
                                    + mLocked.toolSizeLinearBias
                            : 0;
                } else {
                    toolMinor = toolMajor;
                }
                break;
            case Calibration::TOOL_SIZE_CALIBRATION_AREA:
                if (in.toolMajor != 0) {
                    float diameter = sqrtf(in.toolMajor
                            * mLocked.toolSizeAreaScale + mLocked.toolSizeAreaBias);
                    toolMajor = diameter * mLocked.toolSizeLinearScale + mLocked.toolSizeLinearBias;
                } else {
                    toolMajor = 0;
                }
                toolMinor = toolMajor;
                break;
            default:
                toolMajor = 0;
                toolMinor = 0;
                break;
            }

            if (mCalibration.haveToolSizeIsSummed && mCalibration.toolSizeIsSummed) {
                toolMajor /= pointerCount;
                toolMinor /= pointerCount;
            }

            // Pressure
            float rawPressure;
            switch (mCalibration.pressureSource) {
            case Calibration::PRESSURE_SOURCE_PRESSURE:
                rawPressure = in.pressure;
                break;
            case Calibration::PRESSURE_SOURCE_TOUCH:
                rawPressure = in.touchMajor;
                break;
            default:
                rawPressure = 0;
            }

            float pressure;
            switch (mCalibration.pressureCalibration) {
            case Calibration::PRESSURE_CALIBRATION_PHYSICAL:
            case Calibration::PRESSURE_CALIBRATION_AMPLITUDE:
                pressure = rawPressure * mLocked.pressureScale;
                break;
            default:
                pressure = 1;
                break;
            }

            // TouchMajor and TouchMinor
            float touchMajor, touchMinor;
            switch (mCalibration.touchSizeCalibration) {
            case Calibration::TOUCH_SIZE_CALIBRATION_GEOMETRIC:
                touchMajor = in.touchMajor * mLocked.geometricScale;
                if (mRawAxes.touchMinor.valid) {
                    touchMinor = in.touchMinor * mLocked.geometricScale;
                } else {
                    touchMinor = touchMajor;
                }
                break;
            case Calibration::TOUCH_SIZE_CALIBRATION_PRESSURE:
                touchMajor = toolMajor * pressure;
                touchMinor = toolMinor * pressure;
                break;
            default:
                touchMajor = 0;
                touchMinor = 0;
                break;
            }

            if (touchMajor > toolMajor) {
                touchMajor = toolMajor;
            }
            if (touchMinor > toolMinor) {
                touchMinor = toolMinor;
            }

            // Size
            float size;
            switch (mCalibration.sizeCalibration) {
            case Calibration::SIZE_CALIBRATION_NORMALIZED: {
                float rawSize = mRawAxes.toolMinor.valid
                        ? avg(in.toolMajor, in.toolMinor)
                        : in.toolMajor;
                size = rawSize * mLocked.sizeScale;
                break;
            }
            default:
                size = 0;
                break;
            }

            // Orientation
            float orientation;
            switch (mCalibration.orientationCalibration) {
            case Calibration::ORIENTATION_CALIBRATION_INTERPOLATED:
                orientation = in.orientation * mLocked.orientationScale;
                break;
            default:
                orientation = 0;
            }

            // Adjust coords for orientation.
            switch (mLocked.surfaceOrientation) {
            case InputReaderPolicyInterface::ROTATION_90: {
                float xTemp = x;
                x = y;
                y = mLocked.surfaceWidth - xTemp;
                orientation -= M_PI_2;
                if (orientation < - M_PI_2) {
                    orientation += M_PI;
                }
                break;
            }
            case InputReaderPolicyInterface::ROTATION_180: {
                x = mLocked.surfaceWidth - x;
                y = mLocked.surfaceHeight - y;
                orientation = - orientation;
                break;
            }
            case InputReaderPolicyInterface::ROTATION_270: {
                float xTemp = x;
                x = mLocked.surfaceHeight - y;
                y = xTemp;
                orientation += M_PI_2;
                if (orientation > M_PI_2) {
                    orientation -= M_PI;
                }
                break;
            }
            }

            // Write output coords.
            PointerCoords& out = pointerCoords[outIndex];
            out.x = x;
            out.y = y;
            out.pressure = pressure;
            out.size = size;
            out.touchMajor = touchMajor;
            out.touchMinor = touchMinor;
            out.toolMajor = toolMajor;
            out.toolMinor = toolMinor;
            out.orientation = orientation;

            pointerIds[outIndex] = int32_t(id);

            if (id == changedId) {
                motionEventAction |= outIndex << AMOTION_EVENT_ACTION_POINTER_INDEX_SHIFT;
            }
        }

        // Check edge flags by looking only at the first pointer since the flags are
        // global to the event.
        if (motionEventAction == AMOTION_EVENT_ACTION_DOWN) {
            if (pointerCoords[0].x <= 0) {
                motionEventEdgeFlags |= AMOTION_EVENT_EDGE_FLAG_LEFT;
            } else if (pointerCoords[0].x >= mLocked.orientedSurfaceWidth) {
                motionEventEdgeFlags |= AMOTION_EVENT_EDGE_FLAG_RIGHT;
            }
            if (pointerCoords[0].y <= 0) {
                motionEventEdgeFlags |= AMOTION_EVENT_EDGE_FLAG_TOP;
            } else if (pointerCoords[0].y >= mLocked.orientedSurfaceHeight) {
                motionEventEdgeFlags |= AMOTION_EVENT_EDGE_FLAG_BOTTOM;
            }
        }

        xPrecision = mLocked.orientedXPrecision;
        yPrecision = mLocked.orientedYPrecision;
    } // release lock

    getDispatcher()->notifyMotion(when, getDeviceId(), getSources(), policyFlags,
            motionEventAction, 0, getContext()->getGlobalMetaState(), motionEventEdgeFlags,
            pointerCount, pointerIds, pointerCoords,
            xPrecision, yPrecision, mDownTime);
}

bool TouchInputMapper::isPointInsideSurfaceLocked(int32_t x, int32_t y) {
    if (mRawAxes.x.valid && mRawAxes.y.valid) {
        return x >= mRawAxes.x.minValue && x <= mRawAxes.x.maxValue
                && y >= mRawAxes.y.minValue && y <= mRawAxes.y.maxValue;
    }
    return true;
}

const TouchInputMapper::VirtualKey* TouchInputMapper::findVirtualKeyHitLocked(
        int32_t x, int32_t y) {
    size_t numVirtualKeys = mLocked.virtualKeys.size();
    for (size_t i = 0; i < numVirtualKeys; i++) {
        const VirtualKey& virtualKey = mLocked.virtualKeys[i];

#if DEBUG_VIRTUAL_KEYS
        LOGD("VirtualKeys: Hit test (%d, %d): keyCode=%d, scanCode=%d, "
                "left=%d, top=%d, right=%d, bottom=%d",
                x, y,
                virtualKey.keyCode, virtualKey.scanCode,
                virtualKey.hitLeft, virtualKey.hitTop,
                virtualKey.hitRight, virtualKey.hitBottom);
#endif

        if (virtualKey.isHit(x, y)) {
            return & virtualKey;
        }
    }

    return NULL;
}

void TouchInputMapper::calculatePointerIds() {
    uint32_t currentPointerCount = mCurrentTouch.pointerCount;
    uint32_t lastPointerCount = mLastTouch.pointerCount;

    if (currentPointerCount == 0) {
        // No pointers to assign.
        mCurrentTouch.idBits.clear();
    } else if (lastPointerCount == 0) {
        // All pointers are new.
        mCurrentTouch.idBits.clear();
        for (uint32_t i = 0; i < currentPointerCount; i++) {
            mCurrentTouch.pointers[i].id = i;
            mCurrentTouch.idToIndex[i] = i;
            mCurrentTouch.idBits.markBit(i);
        }
    } else if (currentPointerCount == 1 && lastPointerCount == 1) {
        // Only one pointer and no change in count so it must have the same id as before.
        uint32_t id = mLastTouch.pointers[0].id;
        mCurrentTouch.pointers[0].id = id;
        mCurrentTouch.idToIndex[id] = 0;
        mCurrentTouch.idBits.value = BitSet32::valueForBit(id);
    } else {
        // General case.
        // We build a heap of squared euclidean distances between current and last pointers
        // associated with the current and last pointer indices. Then, we find the best
        // match (by distance) for each current pointer.
        PointerDistanceHeapElement heap[MAX_POINTERS * MAX_POINTERS];

        uint32_t heapSize = 0;
        for (uint32_t currentPointerIndex = 0; currentPointerIndex < currentPointerCount;
                currentPointerIndex++) {
            for (uint32_t lastPointerIndex = 0; lastPointerIndex < lastPointerCount;
                    lastPointerIndex++) {
                int64_t deltaX = mCurrentTouch.pointers[currentPointerIndex].x
                        - mLastTouch.pointers[lastPointerIndex].x;
                int64_t deltaY = mCurrentTouch.pointers[currentPointerIndex].y
                        - mLastTouch.pointers[lastPointerIndex].y;

                uint64_t distance = uint64_t(deltaX * deltaX + deltaY * deltaY);

                // Insert new element into the heap (sift up).
                heap[heapSize].currentPointerIndex = currentPointerIndex;
                heap[heapSize].lastPointerIndex = lastPointerIndex;
                heap[heapSize].distance = distance;
                heapSize += 1;
            }
        }

        // Heapify
        for (uint32_t startIndex = heapSize / 2; startIndex != 0; ) {
            startIndex -= 1;
            for (uint32_t parentIndex = startIndex; ;) {
                uint32_t childIndex = parentIndex * 2 + 1;
                if (childIndex >= heapSize) {
                    break;
                }

                if (childIndex + 1 < heapSize
                        && heap[childIndex + 1].distance < heap[childIndex].distance) {
                    childIndex += 1;
                }

                if (heap[parentIndex].distance <= heap[childIndex].distance) {
                    break;
                }

                swap(heap[parentIndex], heap[childIndex]);
                parentIndex = childIndex;
            }
        }

#if DEBUG_POINTER_ASSIGNMENT
        LOGD("calculatePointerIds - initial distance min-heap: size=%d", heapSize);
        for (size_t i = 0; i < heapSize; i++) {
            LOGD(" heap[%d]: cur=%d, last=%d, distance=%lld",
                    i, heap[i].currentPointerIndex, heap[i].lastPointerIndex,
                    heap[i].distance);
        }
#endif

        // Pull matches out by increasing order of distance.
        // To avoid reassigning pointers that have already been matched, the loop keeps track
        // of which last and current pointers have been matched using the matchedXXXBits variables.
        // It also tracks the used pointer id bits.
        BitSet32 matchedLastBits(0);
        BitSet32 matchedCurrentBits(0);
        BitSet32 usedIdBits(0);
        bool first = true;
        for (uint32_t i = min(currentPointerCount, lastPointerCount); i > 0; i--) {
            for (;;) {
                if (first) {
                    // The first time through the loop, we just consume the root element of
                    // the heap (the one with smallest distance).
                    first = false;
                } else {
                    // Previous iterations consumed the root element of the heap.
                    // Pop root element off of the heap (sift down).
                    heapSize -= 1;
                    assert(heapSize > 0);

                    // Sift down.
                    heap[0] = heap[heapSize];
                    for (uint32_t parentIndex = 0; ;) {
                        uint32_t childIndex = parentIndex * 2 + 1;
                        if (childIndex >= heapSize) {
                            break;
                        }

                        if (childIndex + 1 < heapSize
                                && heap[childIndex + 1].distance < heap[childIndex].distance) {
                            childIndex += 1;
                        }

                        if (heap[parentIndex].distance <= heap[childIndex].distance) {
                            break;
                        }

                        swap(heap[parentIndex], heap[childIndex]);
                        parentIndex = childIndex;
                    }

#if DEBUG_POINTER_ASSIGNMENT
                    LOGD("calculatePointerIds - reduced distance min-heap: size=%d", heapSize);
                    for (size_t i = 0; i < heapSize; i++) {
                        LOGD(" heap[%d]: cur=%d, last=%d, distance=%lld",
                                i, heap[i].currentPointerIndex, heap[i].lastPointerIndex,
                                heap[i].distance);
                    }
#endif
                }

                uint32_t currentPointerIndex = heap[0].currentPointerIndex;
                if (matchedCurrentBits.hasBit(currentPointerIndex)) continue; // already matched

                uint32_t lastPointerIndex = heap[0].lastPointerIndex;
                if (matchedLastBits.hasBit(lastPointerIndex)) continue; // already matched

                matchedCurrentBits.markBit(currentPointerIndex);
                matchedLastBits.markBit(lastPointerIndex);

                uint32_t id = mLastTouch.pointers[lastPointerIndex].id;
                mCurrentTouch.pointers[currentPointerIndex].id = id;
                mCurrentTouch.idToIndex[id] = currentPointerIndex;
                usedIdBits.markBit(id);

#if DEBUG_POINTER_ASSIGNMENT
                LOGD("calculatePointerIds - matched: cur=%d, last=%d, id=%d, distance=%lld",
                        lastPointerIndex, currentPointerIndex, id, heap[0].distance);
#endif
                break;
            }
        }

        // Assign fresh ids to new pointers.
        if (currentPointerCount > lastPointerCount) {
            for (uint32_t i = currentPointerCount - lastPointerCount; ;) {
                uint32_t currentPointerIndex = matchedCurrentBits.firstUnmarkedBit();
                uint32_t id = usedIdBits.firstUnmarkedBit();

                mCurrentTouch.pointers[currentPointerIndex].id = id;
                mCurrentTouch.idToIndex[id] = currentPointerIndex;
                usedIdBits.markBit(id);

#if DEBUG_POINTER_ASSIGNMENT
                LOGD("calculatePointerIds - assigned: cur=%d, id=%d",
                        currentPointerIndex, id);
#endif

                if (--i == 0) break; // done
                matchedCurrentBits.markBit(currentPointerIndex);
            }
        }

        // Fix id bits.
        mCurrentTouch.idBits = usedIdBits;
    }
}

/* Special hack for devices that have bad screen data: if one of the
* points has moved more than a screen height from the last position,
* then drop it. */
bool TouchInputMapper::applyBadTouchFilter() {
    // This hack requires valid axis parameters.
    if (! mRawAxes.y.valid) {
        return false;
    }

    uint32_t pointerCount = mCurrentTouch.pointerCount;

    // Nothing to do if there are no points.
    if (pointerCount == 0) {
        return false;
    }

    // Don't do anything if a finger is going down or up. We run
    // here before assigning pointer IDs, so there isn't a good
    // way to do per-finger matching.
    if (pointerCount != mLastTouch.pointerCount) {
        return false;
    }

    // We consider a single movement across more than a 7/16 of
    // the long size of the screen to be bad. This was a magic value
    // determined by looking at the maximum distance it is feasible
    // to actually move in one sample.
    int32_t maxDeltaY = mRawAxes.y.getRange() * 7 / 16;

    // XXX The original code in InputDevice.java included commented out
    // code for testing the X axis. Note that when we drop a point
    // we don't actually restore the old X either. Strange.
    // The old code also tries to track when bad points were previously
    // detected but it turns out that due to the placement of a "break"
    // at the end of the loop, we never set mDroppedBadPoint to true
    // so it is effectively dead code.
    // Need to figure out if the old code is busted or just overcomplicated
    // but working as intended.

    // Look through all new points and see if any are farther than
    // acceptable from all previous points.
    for (uint32_t i = pointerCount; i-- > 0; ) {
        int32_t y = mCurrentTouch.pointers[i].y;
        int32_t closestY = INT_MAX;
        int32_t closestDeltaY = 0;

#if DEBUG_HACKS
        LOGD("BadTouchFilter: Looking at next point #%d: y=%d", i, y);
#endif

        for (uint32_t j = pointerCount; j-- > 0; ) {
            int32_t lastY = mLastTouch.pointers[j].y;
            int32_t deltaY = abs(y - lastY);

#if DEBUG_HACKS
            LOGD("BadTouchFilter: Comparing with last point #%d: y=%d deltaY=%d",
                    j, lastY, deltaY);
#endif

            if (deltaY < maxDeltaY) {
                goto SkipSufficientlyClosePoint;
            }
            if (deltaY < closestDeltaY) {
                closestDeltaY = deltaY;
                closestY = lastY;
            }
        }

        // Must not have found a close enough match.
#if DEBUG_HACKS
        LOGD("BadTouchFilter: Dropping bad point #%d: newY=%d oldY=%d deltaY=%d maxDeltaY=%d",
                i, y, closestY, closestDeltaY, maxDeltaY);
#endif

        mCurrentTouch.pointers[i].y = closestY;
        return true; // XXX original code only corrects one point

    SkipSufficientlyClosePoint: ;
    }

    // No change.
    return false;
}

/* Special hack for devices that have bad screen data: drop points where
* the coordinate value for one axis has jumped to the other pointer's location.
*/
bool TouchInputMapper::applyJumpyTouchFilter() {
    // This hack requires valid axis parameters.
    if (! mRawAxes.y.valid) {
        return false;
    }

    uint32_t pointerCount = mCurrentTouch.pointerCount;
    if (mLastTouch.pointerCount != pointerCount) {
#if DEBUG_HACKS
        LOGD("JumpyTouchFilter: Different pointer count %d -> %d",
                mLastTouch.pointerCount, pointerCount);
        for (uint32_t i = 0; i < pointerCount; i++) {
            LOGD(" Pointer %d (%d, %d)", i,
                    mCurrentTouch.pointers[i].x, mCurrentTouch.pointers[i].y);
        }
#endif

        if (mJumpyTouchFilter.jumpyPointsDropped < JUMPY_TRANSITION_DROPS) {
            if (mLastTouch.pointerCount == 1 && pointerCount == 2) {
                // Just drop the first few events going from 1 to 2 pointers.
                // They're bad often enough that they're not worth considering.
                mCurrentTouch.pointerCount = 1;
                mJumpyTouchFilter.jumpyPointsDropped += 1;

#if DEBUG_HACKS
                LOGD("JumpyTouchFilter: Pointer 2 dropped");
#endif
                return true;
            } else if (mLastTouch.pointerCount == 2 && pointerCount == 1) {
                // The event when we go from 2 -> 1 tends to be messed up too
                mCurrentTouch.pointerCount = 2;
                mCurrentTouch.pointers[0] = mLastTouch.pointers[0];
                mCurrentTouch.pointers[1] = mLastTouch.pointers[1];
                mJumpyTouchFilter.jumpyPointsDropped += 1;

#if DEBUG_HACKS
                for (int32_t i = 0; i < 2; i++) {
                    LOGD("JumpyTouchFilter: Pointer %d replaced (%d, %d)", i,
                            mCurrentTouch.pointers[i].x, mCurrentTouch.pointers[i].y);
                }
#endif
                return true;
            }
        }
        // Reset jumpy points dropped on other transitions or if limit exceeded.
        mJumpyTouchFilter.jumpyPointsDropped = 0;

#if DEBUG_HACKS
        LOGD("JumpyTouchFilter: Transition - drop limit reset");
#endif
        return false;
    }

    // We have the same number of pointers as last time.
    // A 'jumpy' point is one where the coordinate value for one axis
    // has jumped to the other pointer's location. No need to do anything
    // else if we only have one pointer.
    if (pointerCount < 2) {
        return false;
    }

    if (mJumpyTouchFilter.jumpyPointsDropped < JUMPY_DROP_LIMIT) {
        int jumpyEpsilon = mRawAxes.y.getRange() / JUMPY_EPSILON_DIVISOR;

        // We only replace the single worst jumpy point as characterized by pointer distance
        // in a single axis.
        int32_t badPointerIndex = -1;
        int32_t badPointerReplacementIndex = -1;
        int32_t badPointerDistance = INT_MIN; // distance to be corrected

        for (uint32_t i = pointerCount; i-- > 0; ) {
            int32_t x = mCurrentTouch.pointers[i].x;
            int32_t y = mCurrentTouch.pointers[i].y;

#if DEBUG_HACKS
            LOGD("JumpyTouchFilter: Point %d (%d, %d)", i, x, y);
#endif

            // Check if a touch point is too close to another's coordinates
            bool dropX = false, dropY = false;
            for (uint32_t j = 0; j < pointerCount; j++) {
                if (i == j) {
                    continue;
                }

                if (abs(x - mCurrentTouch.pointers[j].x) <= jumpyEpsilon) {
                    dropX = true;
                    break;
                }

                if (abs(y - mCurrentTouch.pointers[j].y) <= jumpyEpsilon) {
                    dropY = true;
                    break;
                }
            }
            if (! dropX && ! dropY) {
                continue; // not jumpy
            }

            // Find a replacement candidate by comparing with older points on the
            // complementary (non-jumpy) axis.
            int32_t distance = INT_MIN; // distance to be corrected
            int32_t replacementIndex = -1;

            if (dropX) {
                // X looks too close. Find an older replacement point with a close Y.
                int32_t smallestDeltaY = INT_MAX;
                for (uint32_t j = 0; j < pointerCount; j++) {
                    int32_t deltaY = abs(y - mLastTouch.pointers[j].y);
                    if (deltaY < smallestDeltaY) {
                        smallestDeltaY = deltaY;
                        replacementIndex = j;
                    }
                }
                distance = abs(x - mLastTouch.pointers[replacementIndex].x);
            } else {
                // Y looks too close. Find an older replacement point with a close X.
                int32_t smallestDeltaX = INT_MAX;
                for (uint32_t j = 0; j < pointerCount; j++) {
                    int32_t deltaX = abs(x - mLastTouch.pointers[j].x);
                    if (deltaX < smallestDeltaX) {
                        smallestDeltaX = deltaX;
                        replacementIndex = j;
                    }
                }
                distance = abs(y - mLastTouch.pointers[replacementIndex].y);
            }

            // If replacing this pointer would correct a worse error than the previous ones
            // considered, then use this replacement instead.
            if (distance > badPointerDistance) {
                badPointerIndex = i;
                badPointerReplacementIndex = replacementIndex;
                badPointerDistance = distance;
            }
        }

        // Correct the jumpy pointer if one was found.
        if (badPointerIndex >= 0) {
#if DEBUG_HACKS
            LOGD("JumpyTouchFilter: Replacing bad pointer %d with (%d, %d)",
                    badPointerIndex,
                    mLastTouch.pointers[badPointerReplacementIndex].x,
                    mLastTouch.pointers[badPointerReplacementIndex].y);
#endif

            mCurrentTouch.pointers[badPointerIndex].x =
                    mLastTouch.pointers[badPointerReplacementIndex].x;
            mCurrentTouch.pointers[badPointerIndex].y =
                    mLastTouch.pointers[badPointerReplacementIndex].y;
            mJumpyTouchFilter.jumpyPointsDropped += 1;
            return true;
        }
    }

    mJumpyTouchFilter.jumpyPointsDropped = 0;
    return false;
}

/* Special hack for devices that have bad screen data: aggregate and
* compute averages of the coordinate data, to reduce the amount of
* jitter seen by applications. */
void TouchInputMapper::applyAveragingTouchFilter() {
    for (uint32_t currentIndex = 0; currentIndex < mCurrentTouch.pointerCount; currentIndex++) {
        uint32_t id = mCurrentTouch.pointers[currentIndex].id;
        int32_t x = mCurrentTouch.pointers[currentIndex].x;
        int32_t y = mCurrentTouch.pointers[currentIndex].y;
        int32_t pressure;
        switch (mCalibration.pressureSource) {
        case Calibration::PRESSURE_SOURCE_PRESSURE:
            pressure = mCurrentTouch.pointers[currentIndex].pressure;
            break;
        case Calibration::PRESSURE_SOURCE_TOUCH:
            pressure = mCurrentTouch.pointers[currentIndex].touchMajor;
            break;
        default:
            pressure = 1;
            break;
        }

        if (mLastTouch.idBits.hasBit(id)) {
            // Pointer was down before and is still down now.
            // Compute average over history trace.
            uint32_t start = mAveragingTouchFilter.historyStart[id];
            uint32_t end = mAveragingTouchFilter.historyEnd[id];

            int64_t deltaX = x - mAveragingTouchFilter.historyData[end].pointers[id].x;
            int64_t deltaY = y - mAveragingTouchFilter.historyData[end].pointers[id].y;
            uint64_t distance = uint64_t(deltaX * deltaX + deltaY * deltaY);

#if DEBUG_HACKS
            LOGD("AveragingTouchFilter: Pointer id %d - Distance from last sample: %lld",
                    id, distance);
#endif

            if (distance < AVERAGING_DISTANCE_LIMIT) {
                // Increment end index in preparation for recording new historical data.
                end += 1;
                if (end > AVERAGING_HISTORY_SIZE) {
                    end = 0;
                }

                // If the end index has looped back to the start index then we have filled
                // the historical trace up to the desired size so we drop the historical
                // data at the start of the trace.
                if (end == start) {
                    start += 1;
                    if (start > AVERAGING_HISTORY_SIZE) {
                        start = 0;
                    }
                }

                // Add the raw data to the historical trace.
                mAveragingTouchFilter.historyStart[id] = start;
                mAveragingTouchFilter.historyEnd[id] = end;
                mAveragingTouchFilter.historyData[end].pointers[id].x = x;
                mAveragingTouchFilter.historyData[end].pointers[id].y = y;
                mAveragingTouchFilter.historyData[end].pointers[id].pressure = pressure;

                // Average over all historical positions in the trace by total pressure.
                int32_t averagedX = 0;
                int32_t averagedY = 0;
                int32_t totalPressure = 0;
                for (;;) {
                    int32_t historicalX = mAveragingTouchFilter.historyData[start].pointers[id].x;
                    int32_t historicalY = mAveragingTouchFilter.historyData[start].pointers[id].y;
                    int32_t historicalPressure = mAveragingTouchFilter.historyData[start]
                            .pointers[id].pressure;

                    averagedX += historicalX * historicalPressure;
                    averagedY += historicalY * historicalPressure;
                    totalPressure += historicalPressure;

                    if (start == end) {
                        break;
                    }

                    start += 1;
                    if (start > AVERAGING_HISTORY_SIZE) {
                        start = 0;
                    }
                }

                if (totalPressure != 0) {
                    averagedX /= totalPressure;
                    averagedY /= totalPressure;

#if DEBUG_HACKS
                    LOGD("AveragingTouchFilter: Pointer id %d - "
                            "totalPressure=%d, averagedX=%d, averagedY=%d", id, totalPressure,
                            averagedX, averagedY);
#endif

                    mCurrentTouch.pointers[currentIndex].x = averagedX;
                    mCurrentTouch.pointers[currentIndex].y = averagedY;
                }
            } else {
#if DEBUG_HACKS
                LOGD("AveragingTouchFilter: Pointer id %d - Exceeded max distance", id);
#endif
            }
        } else {
#if DEBUG_HACKS
            LOGD("AveragingTouchFilter: Pointer id %d - Pointer went up", id);
#endif
        }

        // Reset pointer history.
        mAveragingTouchFilter.historyStart[id] = 0;
        mAveragingTouchFilter.historyEnd[id] = 0;
        mAveragingTouchFilter.historyData[0].pointers[id].x = x;
        mAveragingTouchFilter.historyData[0].pointers[id].y = y;
        mAveragingTouchFilter.historyData[0].pointers[id].pressure = pressure;
    }
}

int32_t TouchInputMapper::getKeyCodeState(uint32_t sourceMask, int32_t keyCode) {
    { // acquire lock
        AutoMutex _l(mLock);

        if (mLocked.currentVirtualKey.down && mLocked.currentVirtualKey.keyCode == keyCode) {
            return AKEY_STATE_VIRTUAL;
        }

        size_t numVirtualKeys = mLocked.virtualKeys.size();
        for (size_t i = 0; i < numVirtualKeys; i++) {
            const VirtualKey& virtualKey = mLocked.virtualKeys[i];
            if (virtualKey.keyCode == keyCode) {
                return AKEY_STATE_UP;
            }
        }
    } // release lock

    return AKEY_STATE_UNKNOWN;
}

int32_t TouchInputMapper::getScanCodeState(uint32_t sourceMask, int32_t scanCode) {
    { // acquire lock
        AutoMutex _l(mLock);

        if (mLocked.currentVirtualKey.down && mLocked.currentVirtualKey.scanCode == scanCode) {
            return AKEY_STATE_VIRTUAL;
        }

        size_t numVirtualKeys = mLocked.virtualKeys.size();
        for (size_t i = 0; i < numVirtualKeys; i++) {
            const VirtualKey& virtualKey = mLocked.virtualKeys[i];
            if (virtualKey.scanCode == scanCode) {
                return AKEY_STATE_UP;
            }
        }
    } // release lock

    return AKEY_STATE_UNKNOWN;
}

bool TouchInputMapper::markSupportedKeyCodes(uint32_t sourceMask, size_t numCodes,
        const int32_t* keyCodes, uint8_t* outFlags) {
    { // acquire lock
        AutoMutex _l(mLock);

        size_t numVirtualKeys = mLocked.virtualKeys.size();
        for (size_t i = 0; i < numVirtualKeys; i++) {
            const VirtualKey& virtualKey = mLocked.virtualKeys[i];

            for (size_t i = 0; i < numCodes; i++) {
                if (virtualKey.keyCode == keyCodes[i]) {
                    outFlags[i] = 1;
                }
            }
        }
    } // release lock

    return true;
}


// --- SingleTouchInputMapper ---

SingleTouchInputMapper::SingleTouchInputMapper(InputDevice* device, int32_t associatedDisplayId) :
        TouchInputMapper(device, associatedDisplayId) {
    initialize();
}

SingleTouchInputMapper::~SingleTouchInputMapper() {
}

void SingleTouchInputMapper::initialize() {
    mAccumulator.clear();

    mDown = false;
    mX = 0;
    mY = 0;
    mPressure = 0; // default to 0 for devices that don't report pressure
    mToolWidth = 0; // default to 0 for devices that don't report tool width
}

void SingleTouchInputMapper::reset() {
    TouchInputMapper::reset();

    initialize();
 }

void SingleTouchInputMapper::process(const RawEvent* rawEvent) {
    switch (rawEvent->type) {
    case EV_KEY:
        switch (rawEvent->scanCode) {
        case BTN_TOUCH:
            mAccumulator.fields |= Accumulator::FIELD_BTN_TOUCH;
            mAccumulator.btnTouch = rawEvent->value != 0;
            // Don't sync immediately. Wait until the next SYN_REPORT since we might
            // not have received valid position information yet. This logic assumes that
            // BTN_TOUCH is always followed by SYN_REPORT as part of a complete packet.
            break;
        }
        break;

    case EV_ABS:
        switch (rawEvent->scanCode) {
        case ABS_X:
            mAccumulator.fields |= Accumulator::FIELD_ABS_X;
            mAccumulator.absX = rawEvent->value;
            break;
        case ABS_Y:
            mAccumulator.fields |= Accumulator::FIELD_ABS_Y;
            mAccumulator.absY = rawEvent->value;
            break;
        case ABS_PRESSURE:
            mAccumulator.fields |= Accumulator::FIELD_ABS_PRESSURE;
            mAccumulator.absPressure = rawEvent->value;
            break;
        case ABS_TOOL_WIDTH:
            mAccumulator.fields |= Accumulator::FIELD_ABS_TOOL_WIDTH;
            mAccumulator.absToolWidth = rawEvent->value;
            break;
        }
        break;

    case EV_SYN:
        switch (rawEvent->scanCode) {
        case SYN_REPORT:
            sync(rawEvent->when);
            break;
        }
        break;
    }
}

void SingleTouchInputMapper::sync(nsecs_t when) {
    uint32_t fields = mAccumulator.fields;
    if (fields == 0) {
        return; // no new state changes, so nothing to do
    }

    if (fields & Accumulator::FIELD_BTN_TOUCH) {
        mDown = mAccumulator.btnTouch;
    }

    if (fields & Accumulator::FIELD_ABS_X) {
        mX = mAccumulator.absX;
    }

    if (fields & Accumulator::FIELD_ABS_Y) {
        mY = mAccumulator.absY;
    }

    if (fields & Accumulator::FIELD_ABS_PRESSURE) {
        mPressure = mAccumulator.absPressure;
    }

    if (fields & Accumulator::FIELD_ABS_TOOL_WIDTH) {
        mToolWidth = mAccumulator.absToolWidth;
    }

    mCurrentTouch.clear();

    if (mDown) {
        mCurrentTouch.pointerCount = 1;
        mCurrentTouch.pointers[0].id = 0;
        mCurrentTouch.pointers[0].x = mX;
        mCurrentTouch.pointers[0].y = mY;
        mCurrentTouch.pointers[0].pressure = mPressure;
        mCurrentTouch.pointers[0].touchMajor = 0;
        mCurrentTouch.pointers[0].touchMinor = 0;
        mCurrentTouch.pointers[0].toolMajor = mToolWidth;
        mCurrentTouch.pointers[0].toolMinor = mToolWidth;
        mCurrentTouch.pointers[0].orientation = 0;
        mCurrentTouch.idToIndex[0] = 0;
        mCurrentTouch.idBits.markBit(0);
    }

    syncTouch(when, true);

    mAccumulator.clear();
}

void SingleTouchInputMapper::configureRawAxes() {
    TouchInputMapper::configureRawAxes();

    getEventHub()->getAbsoluteAxisInfo(getDeviceId(), ABS_X, & mRawAxes.x);
    getEventHub()->getAbsoluteAxisInfo(getDeviceId(), ABS_Y, & mRawAxes.y);
    getEventHub()->getAbsoluteAxisInfo(getDeviceId(), ABS_PRESSURE, & mRawAxes.pressure);
    getEventHub()->getAbsoluteAxisInfo(getDeviceId(), ABS_TOOL_WIDTH, & mRawAxes.toolMajor);
}


// --- MultiTouchInputMapper ---

MultiTouchInputMapper::MultiTouchInputMapper(InputDevice* device, int32_t associatedDisplayId) :
        TouchInputMapper(device, associatedDisplayId) {
    initialize();
}

MultiTouchInputMapper::~MultiTouchInputMapper() {
}

void MultiTouchInputMapper::initialize() {
    mAccumulator.clear();
}

void MultiTouchInputMapper::reset() {
    TouchInputMapper::reset();

    initialize();
}

void MultiTouchInputMapper::process(const RawEvent* rawEvent) {
    switch (rawEvent->type) {
    case EV_ABS: {
        uint32_t pointerIndex = mAccumulator.pointerCount;
        Accumulator::Pointer* pointer = & mAccumulator.pointers[pointerIndex];

        switch (rawEvent->scanCode) {
        case ABS_MT_POSITION_X:
            pointer->fields |= Accumulator::FIELD_ABS_MT_POSITION_X;
            pointer->absMTPositionX = rawEvent->value;
            break;
        case ABS_MT_POSITION_Y:
            pointer->fields |= Accumulator::FIELD_ABS_MT_POSITION_Y;
            pointer->absMTPositionY = rawEvent->value;
            break;
        case ABS_MT_TOUCH_MAJOR:
            pointer->fields |= Accumulator::FIELD_ABS_MT_TOUCH_MAJOR;
            pointer->absMTTouchMajor = rawEvent->value;
            break;
        case ABS_MT_TOUCH_MINOR:
            pointer->fields |= Accumulator::FIELD_ABS_MT_TOUCH_MINOR;
            pointer->absMTTouchMinor = rawEvent->value;
            break;
        case ABS_MT_WIDTH_MAJOR:
            pointer->fields |= Accumulator::FIELD_ABS_MT_WIDTH_MAJOR;
            pointer->absMTWidthMajor = rawEvent->value;
            break;
        case ABS_MT_WIDTH_MINOR:
            pointer->fields |= Accumulator::FIELD_ABS_MT_WIDTH_MINOR;
            pointer->absMTWidthMinor = rawEvent->value;
            break;
        case ABS_MT_ORIENTATION:
            pointer->fields |= Accumulator::FIELD_ABS_MT_ORIENTATION;
            pointer->absMTOrientation = rawEvent->value;
            break;
        case ABS_MT_TRACKING_ID:
            pointer->fields |= Accumulator::FIELD_ABS_MT_TRACKING_ID;
            pointer->absMTTrackingId = rawEvent->value;
            break;
        case ABS_MT_PRESSURE:
            pointer->fields |= Accumulator::FIELD_ABS_MT_PRESSURE;
            pointer->absMTPressure = rawEvent->value;
            break;
        }
        break;
    }

    case EV_SYN:
        switch (rawEvent->scanCode) {
        case SYN_MT_REPORT: {
            // MultiTouch Sync: The driver has returned all data for *one* of the pointers.
            uint32_t pointerIndex = mAccumulator.pointerCount;

            if (mAccumulator.pointers[pointerIndex].fields) {
                if (pointerIndex == MAX_POINTERS) {
                    LOGW("MultiTouch device driver returned more than maximum of %d pointers.",
                            MAX_POINTERS);
                } else {
                    pointerIndex += 1;
                    mAccumulator.pointerCount = pointerIndex;
                }
            }

            mAccumulator.pointers[pointerIndex].clear();
            break;
        }

        case SYN_REPORT:
            sync(rawEvent->when);
            break;
        }
        break;
    }
}

void MultiTouchInputMapper::sync(nsecs_t when) {
    static const uint32_t REQUIRED_FIELDS =
            Accumulator::FIELD_ABS_MT_POSITION_X | Accumulator::FIELD_ABS_MT_POSITION_Y;

    uint32_t inCount = mAccumulator.pointerCount;
    uint32_t outCount = 0;
    bool havePointerIds = true;

    mCurrentTouch.clear();

    for (uint32_t inIndex = 0; inIndex < inCount; inIndex++) {
        const Accumulator::Pointer& inPointer = mAccumulator.pointers[inIndex];
        uint32_t fields = inPointer.fields;

        if ((fields & REQUIRED_FIELDS) != REQUIRED_FIELDS) {
            // Some drivers send empty MT sync packets without X / Y to indicate a pointer up.
            // Drop this finger.
            continue;
        }

        PointerData& outPointer = mCurrentTouch.pointers[outCount];
        outPointer.x = inPointer.absMTPositionX;
        outPointer.y = inPointer.absMTPositionY;

        if (fields & Accumulator::FIELD_ABS_MT_PRESSURE) {
            if (inPointer.absMTPressure <= 0) {
                // Some devices send sync packets with X / Y but with a 0 pressure to indicate
                // a pointer going up. Drop this finger.
                continue;
            }
            outPointer.pressure = inPointer.absMTPressure;
        } else {
            // Default pressure to 0 if absent.
            outPointer.pressure = 0;
        }

        if (fields & Accumulator::FIELD_ABS_MT_TOUCH_MAJOR) {
            if (inPointer.absMTTouchMajor <= 0) {
                // Some devices send sync packets with X / Y but with a 0 touch major to indicate
                // a pointer going up. Drop this finger.
                continue;
            }
            outPointer.touchMajor = inPointer.absMTTouchMajor;
        } else {
            // Default touch area to 0 if absent.
            outPointer.touchMajor = 0;
        }

        if (fields & Accumulator::FIELD_ABS_MT_TOUCH_MINOR) {
            outPointer.touchMinor = inPointer.absMTTouchMinor;
        } else {
            // Assume touch area is circular.
            outPointer.touchMinor = outPointer.touchMajor;
        }

        if (fields & Accumulator::FIELD_ABS_MT_WIDTH_MAJOR) {
            outPointer.toolMajor = inPointer.absMTWidthMajor;
        } else {
            // Default tool area to 0 if absent.
            outPointer.toolMajor = 0;
        }

        if (fields & Accumulator::FIELD_ABS_MT_WIDTH_MINOR) {
            outPointer.toolMinor = inPointer.absMTWidthMinor;
        } else {
            // Assume tool area is circular.
            outPointer.toolMinor = outPointer.toolMajor;
        }

        if (fields & Accumulator::FIELD_ABS_MT_ORIENTATION) {
            outPointer.orientation = inPointer.absMTOrientation;
        } else {
            // Default orientation to vertical if absent.
            outPointer.orientation = 0;
        }

        // Assign pointer id using tracking id if available.
        if (havePointerIds) {
            if (fields & Accumulator::FIELD_ABS_MT_TRACKING_ID) {
                uint32_t id = uint32_t(inPointer.absMTTrackingId);

                if (id > MAX_POINTER_ID) {
#if DEBUG_POINTERS
                    LOGD("Pointers: Ignoring driver provided pointer id %d because "
                            "it is larger than max supported id %d",
                            id, MAX_POINTER_ID);
#endif
                    havePointerIds = false;
                }
                else {
                    outPointer.id = id;
                    mCurrentTouch.idToIndex[id] = outCount;
                    mCurrentTouch.idBits.markBit(id);
                }
            } else {
                havePointerIds = false;
            }
        }

        outCount += 1;
    }

    mCurrentTouch.pointerCount = outCount;

    syncTouch(when, havePointerIds);

    mAccumulator.clear();
}

void MultiTouchInputMapper::configureRawAxes() {
    TouchInputMapper::configureRawAxes();

    getEventHub()->getAbsoluteAxisInfo(getDeviceId(), ABS_MT_POSITION_X, & mRawAxes.x);
    getEventHub()->getAbsoluteAxisInfo(getDeviceId(), ABS_MT_POSITION_Y, & mRawAxes.y);
    getEventHub()->getAbsoluteAxisInfo(getDeviceId(), ABS_MT_TOUCH_MAJOR, & mRawAxes.touchMajor);
    getEventHub()->getAbsoluteAxisInfo(getDeviceId(), ABS_MT_TOUCH_MINOR, & mRawAxes.touchMinor);
    getEventHub()->getAbsoluteAxisInfo(getDeviceId(), ABS_MT_WIDTH_MAJOR, & mRawAxes.toolMajor);
    getEventHub()->getAbsoluteAxisInfo(getDeviceId(), ABS_MT_WIDTH_MINOR, & mRawAxes.toolMinor);
    getEventHub()->getAbsoluteAxisInfo(getDeviceId(), ABS_MT_ORIENTATION, & mRawAxes.orientation);
    getEventHub()->getAbsoluteAxisInfo(getDeviceId(), ABS_MT_PRESSURE, & mRawAxes.pressure);
}


} // namespace android
Something went wrong with that request. Please try again.