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Summary  

The rapid growth of the Internet of Things (IoT) has brought edge computing paradigm under 

the spotlight. Edge computing brings computing resources closer to end-devices, to meet 

the increasing needs of performance requirements. This report aims to investigate the effect 

of computational and networking system parameters on the performance of a face 

recognition application. The project will evaluate the performance of single-tier, two-tier, and 

two-tier with Edge Orchestrator (EO) architecture through an empirical investigation, using 

EdgeCloudSim. The results showed that the best performance could be achieved by utilising 

two-tier with EO architecture, with high VM processing speed and numerous edge servers. 

Based on the investigation of the parameters, recommendations for future application design 

and deployment are made, which will help to design a scalable and effective application.  
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AR Augmented Reality  Computer-generated content that is overlaid on a 
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format 
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Mbps Megabits per second A measure of internet bandwidth 
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Per Second 

A measure of the execution speed of the computer 
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Memory 

Computer’s short-term memory that can be 

accessed randomly 

VM Virtual Machine Emulation of a physical computer, running its own 

applications and an operating system 

VR Virtual Reality  A three-dimensional computer-generated 

environment that can be interacted by a person  

WAN Wide Area Network  A network that extends over a large area, 

interconnecting multiple local area networks 

WLAN Wireless Local Area 

Network 

A network that allows devices to connect and 

communicate wirelessly via Wi-Fi 
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1. Introduction 

1.1 Project Background 

With the Internet of Things (IoT), an enormous amount of data gets generated from end-user 

devices including mobile phones, wearable devices, sensors and vehicles every second [1]. 

In order for these large volumes of data to provide meaningful insight, data processing is 

necessary, which may require larger computational resources than the device’s capabilities. 

The emergence of cloud computing addressed the issue of limited computational and energy 

resources of devices with its virtualised resources and dynamically reconfigurable nature [2]. 

However, cloud computing comes with the cost of high latency and limited bandwidth issues, 

which could be a serious bottleneck for applications requiring real-time data processing and 

responses [3]. 

Edge computing allows for data processing to be done at the network edge, closer to the 

data source, resulting in shorter response time and more efficient processing [3]. It places 

computational resources at the logical extremes of a network, with the ability to store, cache, 

process and load balance the data to be sent to the cloud.  

Edge architecture is being utilized in many different fields where the latency of data 

processing is a crucial factor of the system, such as in Autonomous Vehicles, Augmented 

reality (AR) / Virtual Reality (VR), and facial recognition for security, where the processing of 

large data is a prominent feature of the application [4]. Edge computing does not necessarily 

replace cloud computing but rather complements it by offloading tasks to servers in close 

proximity, rather than a distant cloud datacentre [4].  

1.2 Problem Statement 

Fundamentally, edge computing allows us to bring computing resources closer to end-

devices, hence providing a better quality of service [2]. This is directly related to application 

performance; hence it is important to investigate the effect of different computational and 

networking system parameters on the performance results. An empirical investigation of the 

evaluation of different edge architectures will be carried out using the EdgeCloudSim 

simulator, which addresses the particular demands of edge computing [5]. 
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1.3 Possible Solution 

Different edge architectures deployed in different domains can be simulated by altering the 

parameters and metrics of the EdgeCloudSim simulator. The simulator provides a design 

space with configurable parameters to allow for testing various architectures of edge 

computing. This provides an insight regarding the connection between the computational 

parameters and the performance results [5]. 

Parameters will be chosen by first conducting an initial experiment to test and determine the 

key variables. The project will further be conducted by designing experiments, implementing 

and collecting data, followed by results interpretation [6]. The results will be used to further 

imply and recommend future directions of the performance of edge computing applications.  

1.4 How to demonstrate the quality of solution 

The quality of the solution could be demonstrated by incorporating a thorough and 

systematic methodology. By outlining how the research is undertaken, the project stays 

focused, helping to deliver a precise and accurate solution to the research question.  

The validity of the simulation results can be confirmed with existing works of literature and 

experiments. One can compare and contrast the overall results with the literature’s findings 

to see where the solution lies, to gain some extent of confidence in the solution. 

Furthermore, novel experiments could be designed by choosing parameters and metrics that 

have not been researched yet, thereby bringing the scope of the solution forward.  

1.5 Aim  

The aim of the project is to investigate the effect of computational and networking system 

parameters on the application performance results, through EdgeCloudSim simulator. It will 

evaluate the performance of different architectures, including single-tier, two-tier and two-tier 

with Edge Orchestrator (EO). 

1.6 Objectives 

The objectives of the project are as follows: 

1. Identify the key issues in relation to edge computing performance 

2. Design and implement different experiments through the configuration of key 

parameters  

3. Analyse and interpret the performance results 

4. Propose further recommendations on the architecture of edge computing applications  
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1.7 Deliverables 

The project delivers a report including:  

1. Background research – outlines relevant areas for the investigation and critically 

appraises literature that addresses similar problems. 

2. Simulation experiment design – proposes the details of the simulation. 

3. Experiment implementation – details the execution of the experiment design, 

outlining the tools and techniques used for the implementation. This will be in the 

form of software and scripts. 

4. Technical evaluation – entails the analysis and interpretation of the simulation 

results, verifying the hypotheses of the experiment. 

5. Project evaluation – presents a discussion regarding the success of the project, 

self-evaluation and future works of the research. 

1.8 Project Management 

1.8.1 Methodology 

The project utilises simulation and is comprised of three sequential phases. Simulation offers 

the possibility to investigate novel and complex systems with limited resources in the 

laboratory [7]. It provides empirical results for specific scenarios [8] in a controlled and 

repeatable environment [9], which is suitable for subjects like edge computing with no 

standardized architecture [10]. The project adopts an agile approach, where several 

iterations of each step are performed. The iterative process allows for the elimination of 

uncertainties arising from the experiment, ensuring the accuracy and integrity of the results.  

1. Experimental design 

Following a thorough literature review, design a suite of systematic experiments in advance 

to clearly define the focus of the research; states the parameters and evaluation metrics to 

be explored.  

2. Implementation and data collection 

Execution of the experiment design using EdgeCloudSim to collect a set of data, which is to 

be translated into meaningful results by generating visual plots that illustrate the relationship 

between the variables chosen. It details the tools and methods used for data collection.  

3. Analysis and interpretation 

Examining and moulding the data collected, producing a result set describing the general 

trend of the experiments. It also identifies the significance and implications of the analysis 

and discovers linkages to the objectives of the investigation.  
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1.8.2 Tasks, Milestones and Timeline 

A Gantt chart in Figure 1 outlines the tasks and milestones of the project. Christmas break 

and exam period have been omitted as it is less likely that a substantial amount of work 

could be done over the period. 

Figure 1. Project Gantt chart 

1. Background Research / Literature review 

To conduct research and develop a critical analysis of relevant literature essential for 

the understanding of the project scope, identifying new ways of interpreting the topic 

and to validate experimental results. A continuous task throughout the project. 

2. Project scoping 

Develop a scoping document outlining and planning the project; includes problem 

context, aims, objectives, deliverables, project plan, methodology and a preliminary 

literature review.  

3. Installation / Test run of EdgeCloudSim 

Install and run the default configuration of EdgeCloudSim for better understanding of 

the possible solution and experiment design. 

4. Experiment Design 

(Milestone 1) Conduct an initial experiment to identify key parameters.  

(Milestone 2) Design the system architecture to be tested based on the initial 

experiment – constructing hypotheses, selecting computational parameters and 

metrics of the experiment.  
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5. Experiment Implementation 

(Milestone 3) Implement and run experiments on EdgeCloudSim, then generate 

plots through MATLAB.  

6. Evaluation 

The evaluation is composed of two parts – technical and project evaluation. 

(Milestone 4) Conduct a technical evaluation that interprets and analyses the 

experiment results for hypotheses verification. 

Carry out a project evaluation that reflects on project management and objectives.  

7. Unforeseen Tasks 

Extra time used to handle unexpected tasks or experiments. 

8. Report Writing  

Writing up the report – intermediate and final report, including a complete literature 

review and detailed documentation of the experiment implementation and analysis.  

 

1.8.3 Risk Assessment 

Table 1. Risk assessment and mitigation 

Possible Risk Outcome 

Likeli 

hood 

(1-5) 

Impact  

(1-5) 

Risk  

(1-25) 
Risk mitigation 

Software 

unavailable from 

GitHub 

Unable to run the 

simulation and 

generate output 

1 5 5 
Keep a personal copy of the 

original simulator 

Technical issues 

with the 

simulator 

Unable to generate 

simulation results 
2 4 8 

Seek support from simulator 

maintainer and supervisor  

Loss of 

simulation 

results 

Loss of empirical 

data to be studied  
1 4 4 

Backup the simulation 

results in a cloud storage  

Limited literature 

on the topic 

Less resource to 

compare the project 

findings to; limitation 

in confirming the 

result validity 

1 3 3 

Perform a more thorough 

analysis of literature and 

seek help from supervisor or 

experts in the field 

Absence of the 

supervisor 

Unable to receive 

feedback 
1 2 2 

A weekly update of progress 

and discussion via email  

Illness and 

unforeseen 

personal issues 

Delay in project 

delivery and 

progress 

1 3 3 
Apply for mitigating 

circumstances 

Poor time 

management 

skills 

Unable to meet the 

project deadline 
1 3 3 

Set short term goals and 

rearrange priorities if the 

deadline could not be met 

 

1-6 - Low Risk 8-12 - Moderate Risk 15-25 - High Risk 
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2. Background Research 

This chapter provides the context of the work involved in the project. It defines key concepts 

and technologies regarding the subject, creating a general foundation for the problem.   

2.1 Cloud Computing  

Cloud computing, a virtualised datacentre, offers rich computation and storage capabilities 

with effective economies of scale [11]. Cloud computing processes a vast amount of data 

and heavy computation tasks through on-demand and configurable computing resources. 

Cloud computing allows for various tasks to be offloaded to a datacentre, which solves the 

problem of end-devices’ lack of computational and energy resources limitations. 

However, cloud computing comes with high latency and limited bandwidth, as datacentres 

are likely to be located distantly from end-user devices. In situations requiring instant data 

processing such as Augmented Reality with real-time constraints [12],  this factor cannot be 

tolerated as the response could be tied to a vital decision of the application. In addition, the 

architecture concerns the loss of privacy as it releases personal and social data to 

centralised services. The emergence of edge computing supplements the limitations of the 

traditional cloud approach, by deploying resource-rich servers at the edge [2]. 

2.2 Internet of Things (IoT) 

This section illustrates the basic concepts of the Internet of Things (IoT) and its conventional 

approach. In addition, the integration of IoT with edge computing will be introduced, to help 

mitigate the challenges of the existing architecture.    

2.2.1 Internet of Things 

Internet of Things (IoT) is a network of connected sensors and devices, which continuously 

produce and exchange data via complex networks to provide intelligent analytics [13]. Due to 

the resource-constrained nature of the devices, data collected is offloaded to the cloud 

datacentre for further processing [2]. 

This process introduces new challenges such as high communication latency, network 

bandwidth requirements, resource constraints and security challenges, which arises from 

large data transmission [14]. IoT applications that require real-time data analytics, such as 

safety and health applications, cannot tolerate the response time of the conventional cloud 

approach [15]. 
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2.2.2 IoT and Edge Computing 

To help address the aforementioned issues, the concept of edge computing has emerged. It 

places computing resources, referred to as micro datacentres or cloudlets, in proximity to 

end devices at the network edge [16]. Based on the request, one or more Virtual Machines 

(VMs) are launched to execute application tasks remotely on edge servers [12]. 

Edge computing supports the mobility and geographical dispersion of IoT applications, 

where devices can offload and process data in the closest computing resource. By taking 

advantages of these intermediate nodes and storage capabilities, reduced bandwidth 

demands on the network and faster response time can be achieved [1]. 

The computational capacity in proximity, enough storage space, and fast response time that 

edge computing offers, can help IoT solve its critical issues [15]. With the substantial growth 

of the number of IoT devices, the selection and management of edge nodes will be a crucial 

aspect for the successful deployment of the future IoT applications [2]. 

2.3 Edge Computing 

Edge computing places computational resources at the network edge, allowing for proximate 

data processing [3]. By distributing the edge servers near the end devices, devices can 

offload their tasks, ensuring short response time and better quality of service [17]. 

2.3.1 Edge Computing Architectures 

 

Figure 2. Edge architectures and parameters in each layer (inspired by [6]) 

[5] 
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Figure 2 illustrates the three-layer architecture of edge computing, including the cloud layer, 

edge layer, and IoT device layer.  

1. Single-tier  

Single tier architecture only utilizes the edge layer to perform its computations [6]. Devices 

communicate with edge servers over Wireless Local Area Network (WLAN) for data 

transmission and processing [18]. Edge servers allow mobile devices to perform complicated 

tasks which otherwise would be unable due to the resource constraints of the devices. 

2. Two-tier  

The two-tier architecture utilizes both edge and cloud layers to perform computations. If 

edge devices require more computational power to process the data [9], or based on a 

probability selection mechanism, the cloud datacentre is used [6]. Mobile devices offload 

their tasks to the global cloud through Wide Area Network (WAN). 

3. Two-tier with Edge Orchestrator (EO) 

If the edge servers belong to the same administrative organisation, the system can be 

expanded by sharing the federation of edge servers [18]. Tasks are first sent to the edge 

orchestrator (EO), where EO load balances and redirects tasks among multiple edge servers 

based on their status [19]. This requires data transfer from one node to another, which might 

result in a slight transmission delay [18]. Despite the concern, EO architecture provides 

better performance than single or two-tier architecture as the workload is distributed between 

computational resources, in which the VMs do not experience overload and congestion [6]. 

 

2.3.2 Advantages of Edge Computing 

The proximity of computational resources helps relieve many issues of the existing 

architecture [3]. The advantages of integrating Internet of Things with edge computing are 

discussed next.  

1. Reduced bandwidth costs 

Placing edge servers close to end-user devices serves as a platform for filtering and 

analysing the data to be sent to the cloud [1]. Uploading large volumes of data produced by 

IoT devices to a cloud datacentre is a bandwidth-intensive computation, which leads to 

network congestion and transmission delay [3]. Edge helps to relieve the pressure on the 

network traffic, thereby reducing the bandwidth demand and increasing network 

performance.  
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2. Lower transmission latency 

Edge computing enables data processing at the network edge, supporting real-time analytics 

for time-sensitive systems [14]. As clients do not encounter Wide Area Network (WAN) delay 

to access cloud services such as Amazon Web Services (AWS) or Google Cloud [15], edge 

computing provides a lower transmission delay in data communication [5]. Satyanarayanan 

et al. [16] propose that the use of edge servers for wearable cognitive-assistance systems 

improves response times by between 80 and 200 milliseconds (ms) [20]. 

3. Reduced energy consumption 

IoT devices can mitigate their energy consumption by offloading the tasks to edge servers 

[15]. Research by Michalák and Watson [21] identified that for applications, communication 

consumes a lot more energy compared to processing [21]. Therefore, by performing in-

network processing, the communication can be reduced hence the energy per unit data can 

be reduced [22]. Satyanarayanan et al. [16] propose that task offloading reduces 30-40% of 

energy consumption on mobile devices [3]. On the other hand, Noor et al claim that reduced 

battery consumption comes with higher bandwidth usage and power consumption, which is a 

trade-off to be investigated further [23]. 

4. Privacy policy enforcement  

Private data collected from IoT devices are pre-processed in edge resources [2], enforcing 

the privacy policies of its owner before releasing to centralised cloud services [16]. The data 

is fragmented and distributed across edge nodes, allowing for enhanced security 

management and data protection [17]. 

5. Scalability and availability 

Data being processed and filtered in dispersed edge nodes leads to distributed data 

processing architecture, thereby scalable [1]. Moreover, if cloud services become 

unavailable, the redundant edge servers can replace the service to mask the failure, making 

the service more available [16]. 

2.4 Edge Computing Simulator 

To simulate the performance of different edge architectures, a simulator that fulfils the edge 

computing domain is required. With the development of edge computing paradigm, various 

simulation tools have been proposed to model the edge and IoT environment [9]. This 

section will discuss the capabilities and features of various simulators and propose a 

justification of the chosen simulator, EdgeCloudSim. 

iFogSim [1], proposed by Gupta et al. models an edge and fog computing environment to 

evaluate the resource management techniques in latency, network congestion, energy 
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consumption and cost. However, it does not support failure modelling, which is essential as it 

serves as a guide to building a better performing edge architecture. 

IoTSim [24] simulates IoT big data processing, supporting heterogeneous IoT and edge 

systems. However, it does not provide networking support and edge processing, limiting the 

investigation scope of edge computing.  

FogNetSim++ [25] models a large fog network, incorporating various mobility models and 

scheduling algorithms. While it supports suitable metrics for performance evaluation, it does 

not enable interoperability between fog federations, which is needed to investigate the two-

tier with EO architecture.  

EdgeCloudSim [5], based on CloudSim [26], provides a design space for configuring 

computational and networking parameters for performance evaluation [5]. It provides mobility 

support with geographic awareness, which characterises the nature of end-user devices in 

IoT, such as moving cars and users. EdgeCloudSim has been selected due to its suitability 

of supported metrics and parameters in regard to the project aim stated in section 1.5. The 

simulator uses three configuration files to compose different edge architectures, which are 

as follows: 

1. default_configuration.properties - contains key simulation parameters such as the 

simulation time, number of mobile devices, network configuration, cloud datacentre 

settings and simulation scenarios.  

2. edge_devices.xml - consists of key-pair values that model the edge server topology. 

It defines edge server characteristics such as its access points and server hosts [10].  

Specifications of the VMs are available for configuring, such as its storage, 

processing speed and the number of cores.  

3. applications.xml - models the characteristics of IoT applications used. It defines 

application properties such as task length, data size, active/idle period, and the 

probability of cloud selection. 

These configurations together provide full control of different edge computing scenarios. 

Following the configuration is the execution of the experiment, which is done by stating 

related files in a command line.  



 11 

3. Literature review 

This chapter aims to present a critical appraisal of relevant literature and to summarise 

existing solutions that address similar problems. The findings are classified according to the 

architecture considered in the research – single-tier, two-tier, and two-tier with EO.  

3.1 Single-tier  

Single tier architecture exclusively uses the edge layer to serve its requests, where the end-

user device and the edge server is within the same WLAN [18]. 

 

Service time 

Sonmez et al. [18]  and Suryavansh et al. [19] designed a simulation-based experiment 

using EdgeCloudSim for performance evaluation of a face recognition application and an 

augmented reality application. Both papers proposed that for single-tier architecture, the 

service time increases as the number of mobile devices increases. Suryavansh et al. 

indicated that the service time increased from 2 to 4 seconds as the number of mobile 

devices grew from 100 to 600. Single tier architecture has a limited number of edge servers - 

therefore, no new tasks can be admitted if bottleneck occurs in popular locations due to 

exhaustion of resources, which increases the service time [12].  

The results of the above investigation agree with another study performed by Jha et al. [9], 

where a self-driving application was simulated on an IoTSim-Edge simulator. The study 

identified that as the processing is done in a time-shared manner, it leads to increased 

service time.  

Suryavansh et al. [19] studied the impact of the VM capacity on the service time of the 

application. The finding shows that the service time increases with the reduction of the VM 

capacity. With low VM capacity, edge servers can handle fewer tasks, hence it takes longer 

for tasks to get processed.  

 

Failed task 

Sonmez et al. [5] proposed that the percentage of failed tasks due to VM capacity increases 

as long as the WLAN bandwidth increases. As the bandwidth increases, tasks arrive at a 

faster rate which causes the shortage of network resources, incurring network congestions 

[12]. The edge servers face limitation in its VM resources, hence the percentage of failed 

tasks increases. 
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Additionally, Suryavansh et al. [19] stated that the decrease in the number of edge servers 

due to device failure results in a computational overload in the functional servers. This 

increases the percentage of failed tasks as it does not have sufficient computational capacity, 

leading to a degradation of the application performance.  

 

Latency  

Gupta et al. [1] investigated the network congestion for a latency-sensitive online game 

using iFogSim simulator. As the number of mobile devices increases, the load on the 

network increases, leading to network congestion. Sonmez et al. [18] identified that the 

communication latency for single-tier architecture is solely caused by WLAN delay, as it 

does not encounter Wide Area Network (WAN) communication. WAN congestion introduces 

significant communication latency, which makes real-time communication impossible for 

time-sensitive applications. 

Premsankar et al. [2] designed a testbed for GamingAnywhere cloud gaming platform, which 

identified that the use of network edge servers gives significantly low latency of under 25ms. 

The study identified that the public Amazon Cloud in Germany and Ireland incurs a delay 

that is at least twice as much, compared to the edge servers. The use of closely located 

servers is beneficial as it does not encounter a significant WAN delay caused by the long-

latency links. 

 

Summary  

It is concluded that offloading the workload to the edge nodes certainly improves the 

application performance due to the benefit provided by its proximity. The resource provided 

by the edge server is adequate, but not as sufficient as what is available from the infinitely 

scalable cloud datacentre [12]. Hence, further offloading to a more resourceful facility is 

desired.  
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3.2 Two-tier 

Service time 

Jha et al. [9] proposed an IoTSim-Edge simulator, where they simulated a self-driving 

application that utilises both the edge and the cloud server for processing. If a car moves 

and goes out of the range of the current edge server, the processed data is transmitted to an 

appropriate edge server. The communication time between the edge servers increases the 

service time of the application, although it is balanced by the faster processing speed of the 

two-tier architecture.  

Sonmez et al. [18] examined the effect of task size on face recognition application’s service 

time. The application requires high computational resources; hence the processing time 

dominates the service time, especially when the task size is large. When the task size is 

4000 Million Instructions (MI), single and two-tier architecture encounters computational 

resource congestion, leading to longer processing time. For smaller task size of 250 MI, the 

WAN delay accounts for most of the service time, and almost no failure happens during 

processing as it has enough processing power. 

Aljulayfi and Djemame [6] identified that increasing both the WLAN bandwidth and VM 

processing speed leads to the reduced processing time as there is no congestion on edge 

servers, hence no overload on the VM.  

 

Failed task 

A study by Aljulayfi and Djemame [6] showed that an increase in the number of edge servers 

leads to a decreased percentage of failed tasks. More requests can be accepted, which are 

then distributed across the edge nodes for efficient processing. Moreover, the percentage of 

failed tasks decreases in the cloud as well, as fewer tasks are offloaded to the cloud - the 

edge layer has sufficient computational resources, hence the need for cloud offloading 

decreases. 

However, more tasks being accepted increases the load on the VMs, leading to a saturation 

of the VMs. There exists a trade-off between WLAN bandwidth and the task failure, as tasks 

arriving at a faster rate causes more failure due to VM capacity.  

The study showed that the failure due to the VM capacity can be mitigated by increasing the 

VM processing speed. As long as the VM processing speed increases, the processing gets 

done faster, preventing the queuing of the tasks. Sonmez et al. [5] argue that if the VM 

utilisation is too high, the requested task cannot be accepted, leading to a high percentage 

of failed tasks. Aljulayfi and Djemame [6] stated that increasing both the bandwidth and the 
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VM processing speed improves the overall performance of the architecture, due to no 

congestion in the WLAN and no overload on the VM.  

Sonmez et al. [5] identified that the task failure increases dramatically for two-tier when the 

WAN bandwidth is very low of 4 Mbps, due to WAN congestion. The communication for 

cloud data processing can lead to WAN congestion, increasing the task failure by 25% in the 

worst case.  

 

Latency  

According to Gupta et al. [1], the two-tier architecture has managed to keep its latency low 

despite the increase in the number of devices, as most of the data-intensive communication 

happens through low-latency links. In two-tier architecture, most tasks are sent to the edge 

devices through WLAN, which Sonmez et al. [18]  identified it to be a trivial reason to task 

failure. On the other hand, the WAN delay dominates the network congestion, accounting for 

more than 30% of the overall latency. 

Gupta et al. [1] also identified that as the size of the edge server topology increases, the 

average network delay reduces. More computational resources are made available for 

processing; hence no specific edge node gets overly saturated. Aljulayfi and Djemame’s [6] 

investigation indicated that the WLAN delay improves with the addition of the edge servers, 

as there is no network congestion. In addition, the study stated that cloud datacentre also 

benefits from the increase in the number of edge servers, as a smaller number of tasks are 

sent to the cloud, reducing the WAN delay. 

 

Summary  

Overall, it can be concluded that the two-tier architecture outperforms the single-tier 

architecture as it offloads some of the tasks to the cloud datacentre, relieving some of the 

computational and networking resource limitations. However, a study by Liu et al. [12] 

revealed the insufficiency of the two-tier architecture for compute-intensive and time-

sensitive mobile applications, proposing the need for a coordinated allocation of computing 

and network resources.  
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3.3 Two-tier with EO 

To exploit the capabilities of computing resources, two-tier with EO architecture has been 

proposed - it utilises the full resources of both the edge servers and the cloud datacentre 

through effective coordination [12]. The orchestrator helps to provide different service to 

various users, according to the requirements and the availabilities of the resources [20]. 

 

Service time 

A study by Suryavansh et al. [19] identified the two-tier with EO architecture utilises the edge 

servers as much as possible by load balancing, so that the data transmission to the cloud 

only happens when the edge capacity is exhausted. The minimization of the requests sent to 

the distant datacentre offsets the unsuitability of the cloud that arises due to the WAN delay, 

reducing the service time. On the other hand, if the probability of task offload to the cloud is 

high, the performance can be negatively impacted by the WAN delay that arises due to long-

latency link communication. 

Aljulayfi and Djemame [6] pointed out that when the number of mobile devices is high, the 

two-tier with EO architecture has significant improvement in the processing time compared 

to single and two-tier architecture, as it balances the load across the VMs. In addition, 

Sonmez et al. [5] examined that increased task size does not affect the service time as it has 

enough computational resources for processing.  

 

Failed task 

Sonmez et al. [5] proposed that in two-tier with EO architecture, average task failure due to 

mobility does not increase, as tasks are distributed and executed in a fast manner across the 

edge nodes. 

 

Latency  

Premsankar et al. [2] proposed that a traffic flow control for the edge servers reduces the 

service latency of the architecture while supporting for scalability. Firstly, the Edge 

Orchestrator can forward computationally intensive tasks to VMs with higher processing 

capabilities based on the need. Moreover, edge computing resources can be migrated to 

support the mobility of end-user devices. The orchestrator enables a scalable and desirable 

performance of the application by load balancing the tasks and resources based on the 

requirements. 
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Sonmez et al. [5] identified that as the orchestrator balances the load across computational 

resources, the utilisation of the VMs is consistent among the nodes without any overloading 

in particular VMs.  

 

Summary  

Overall, the studies highlighted the importance of two-tier with EO architecture consuming all 

available edge servers, outperforming the singe and two-tier architectures as the VMs are 

not overloaded and there exists no resource congestion.   

This project will contribute to the research by addressing further relationships between the 

parameters and the performance that have not been studied previously. Based on the 

understanding and skills gained from this chapter, simulation experiments will be designed in 

the next chapter.  
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4. Design 

This chapter details the design of the experiments that were constructed to investigate the 

edge computing performance. Hypotheses are formulated, and experiment scenario with its 

parameters are presented. 

4.1 Hypotheses 

The research conducts a performance evaluation of edge computing in relation to scalability. 

A system is said to be scalable if it remains effective with no performance loss when 

additional resources are added [27]. In other words, as the load condition increases, the 

service should remain effective. In the scope of this investigation, the ‘effectiveness’ is 

measured by evaluating the system's service time and percentage of failed tasks.   

Two hypotheses have been formulated to help demonstrate the aim of the project. The 

results of the experiments will validate the correctness of the hypotheses, identifying the 

factors that affect the performance of the application. Hypotheses are as follows: 

Hypothesis 1 – Increase in WLAN bandwidth and VM processing speed reduces the service 

time. 

Hypothesis 2 – Increase in the number of edge servers and VM capacity reduces the 

percentage of failed tasks. 

The combination of reduced service time and failed tasks will prove for the scalability of the 

application, where the tasks are handled in a reasonable time and accuracy.  

4.2 Experimental Design 

4.2.1 Experiment’s Assumptions 

The study will focus on the scenario of the face recognition application, as the parameter 

values modelled in Table 2 is the most compatible with this scenario. Face recognition 

application is a compute-intensive task, which requires a high volume of data upload [28]. 

The edge server processes the data and returns a relatively small-sized response back to 

mobile devices [18]. It is assumed that the user sends a task and waits for the reply, instead 

of sending successive requests [18]. The environment will be simulated for 30 minutes, 

which is considered enough for the main events to have taken place. Moreover, each 

experiment will be repeated five times to minimize the variation in the dataset to gain 

statistical significance.  
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4.2.2 Initial Experiment 

An initial experiment will be conducted in order to identify the key parameters for the specific 

scenario used. The application uploads 1500 Kilobytes (KB) of data and downloads 15 KB of 

data. The users are assumed to be active for 45 seconds and idle for 15 seconds. 

Additionally, the WAN and WLAN delay reflects the average latency values of real life, which 

are 100 milliseconds (ms) and 5ms, respectively.  

In order to avoid discrepancies arising from EdgeCloudSim, the initial experiment will 

reproduce Sonmez et al.’s [18] experiments. Hence the configuration values have been 

inspired by the literature [18], allowing for the verification and comparison of the results. 

Table 3 illustrates the initial experiment specific parameters and their values.  

 

Table 2. Simulation parameters 

Parameter (Unit) Value  

Simulation time (min) 30 

Number of repetitions  5 

Min. number of mobile devices  50 

Max. number of mobile devices  250 

Cloud processing speed 
(MIPS) 

20000 

WAN propagation delay (ms) 100 

WLAN internal delay (ms) 5 

Probability of cloud selection 10% 

Data upload size (KB) 1500 

Data download size  15 

Active period (sec) 45 

Idle period (sec) 15 

Dwell time in L1, L2, L3 (sec) 60,30,15  
 

Table 3. Initial experiment parameters 

Parameter (Unit) Value 

WAN/ WLAN bandwidth 
(Mbps) 

20 / 300 

Number of edge servers in 
L1, L2, L3 

2,4,8 

VM processor speed (MIPS) 1000 

VM capacity (KB) 50000 
 

 

4.2.3 Experiment Design 

In edge computing, there exists a number of parameters that needs investigation in three 

different layers of the architecture, as illustrated in figure 2. The initial experiment identified 

the significance of the computational power at the network edge, highlighting the importance 

of VM capacity and the number of edge servers, see section 6.1. In addition, the WLAN 

bandwidth and the VM processing speed has shown its influence on the network delay and 

processing time, which will be examined further.  

Four main parameters identified from the initial experiment will be used to test against the 

hypotheses proposed in section 4.1. Table 4 illustrates the details of the configuration 

values. 
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Table 4. Description of parameters for hypotheses testing 

Hypothesis Experiment Parameter Values 

-  1 Initial experiment  -  

Hypothesis 1 
2 Bandwidth (Mbps) 100 300 500 

3 VM processing speed (MIPS) 1000 2000 3000 

Hypothesis 2 
4 

Number of edge servers per 
location 

2 4 6 

5 VM capacity (KB) 50000 75000 100000 

1. An initial experiment is designed to identify the key parameters for the investigation 

and to understand the behaviour of different architectures in edge computing.  

2. Effect of WLAN bandwidth: is designed to investigate the effect of increasing the 

bandwidth on network delay and the service time in a bigger scope.   

3. Effect of VM processing speed: is designed to investigate the effect of increasing 

the VM processing speed on the processing time. 

4. Effect of edge servers: is designed to investigate the effect of increasing the number 

of edge servers per location on the percentage of task failure due to mobility. It 

examines the impact of increased server availability. 

5. Effect of VM edge capacity: is designed to investigate the effect of increasing the 

VM capacity on the number of failures, which will affect the server’s handling of 

incoming tasks.  

The combination of experiment 2 and 3 will test Hypothesis 1, and experiment 4 and 5 

Hypothesis 2. By doing so, the study aims to evaluate the scalability, where it provides better 

performance through reduced service time and percentage of failed tasks. 

4.3 Performance Metrics 

Considering various performance metrics is important as it helps us understand the 

underlying behaviour and relationships in the data. In time-constrained Augmented Reality 

application, the time taken for the provision of service plays a crucial role. Hence, one of the 

performance metrics that will be investigated is the service time, which refers to the 

processing time and the network delay. Furthermore, the percentage of failed tasks is 

selected as another metric as the successfulness of the task processing is another important 

factor in application performance. Moreover, the VM utilisation is considered to monitor the 

workload on the VMs and how this impacts the performance. 
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5. Implementation 

This chapter illustrates how the experiments detailed in the previous section will be 

implemented. It outlines the implementation environment, simulator details, and the program 

used to analyse the results collected from the simulation.  

5.1 Implementation Details 

The experiment will run on a MacBook Pro with 2.5GHz Intel Core i5 and 8GB memory. The 

IntelliJ platform will be used to configure, compile and run the experiment.  

EdgeCloudSim version 2.0 will be used for the implementation, where different edge 

computing scenarios can be modelled and tuned through the configuration files. A runner 

script will be used to run the simulations in parallel, specifying the number of available cores 

and iterations. The simulation results are saved as Comma Separated Values (CSV) per 

iteration, as it eases the exporting and processing of the data [5]. 

5.2 Evaluation Metrics 

Evaluation metrics for the experiment have been identified in section 4.3. They are used to 

measure how well the scenario performed under different criteria. The primary reason for 

using EdgeCloudSim [5] is its support for the various performance metrics, meaning that the 

values of the chosen metric can be obtained directly in the form of numerical data.  

In EdgeCloudSim, further decomposition of the main evaluation metric, service time, is 

available as a combination of ‘network delay’ and ‘processing time’ metric. The network delay 

is further divided into WAN and WLAN delay, which identifies the effect of different 

networking parameters more evidently. Another important metric is the task failure, which is 

supported via the percentage of failed tasks along with the failure reason. The VM utilisation 

is illustrated as a percentage of how loaded the VMs are.   

5.3 Result Visualisation 

To visualise the results produced by the EdgeCloudSim simulator, MATLAB is used. Running 

the simulation produces numerous log files, where individual files are specific to the 

architecture, the number of mobile devices, and an application used. MATLAB plotter files 

included in the simulator take the log files and generate graphs based on a chosen 

performance metric. Various style, formats and error plotting schemes are deployed in 

MATLAB, generating graphs that are appropriate for the data.  
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6. Technical Evaluation 

This chapter provides a technical evaluation of the simulation results of a face recognition 

application. Graphical analysis of plots followed by justification and explanation will be 

carried out. It tests the hypotheses formulated in the design chapter by contrasting it to the 

results obtained. The y-axis of the graphs represents the evaluation metric and the x-axis 

represents the load condition. In the remainder of the report, all graphs will display the 

average of 5 iterations.  

6.1 Initial Experiment 

The graph displays the average of 5 iterations. From the statistical point of view, the 

calculated standard deviation was 0.1472, which indicates that the data is centred around 

the mean and hence is less variant. The standard deviation was used to show the indication 

of errors, as error bars were too small to be seen in the graphs.  

 

Percentage of failed tasks 

   

(A) Percentage of failed tasks (B) Failure due to VM capacity (C) Failure due to mobility 

Figure 3.1. Percentage of failed tasks and failure reason - Initial experiment 

The results of the initial experiment show that the percentage of failed tasks for single and 

two-tier increases rapidly as the load condition increases. In figure 3.1A, a steep increase in 

failure can be observed for 150 and 175 devices for single and two-tier architecture, 

respectively. The two-tier with EO architecture’s failed tasks remained constant around 7%, 

providing a stable service.  

The failure reason can be seen in figure 3.1B and 3.1C. Through the initial experiment, it 

was identified that the network delay had no significant impact on the task failure for the 
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particular configuration used. However, the percentage of failed tasks due to VM capacity 

increased with the growth of the load condition. For single-tier architecture, 20% of tasks 

failed due to VM capacity when the load condition was the highest. Two-tier architecture 

faced a similar trend, although the failure percentage was slightly lower than the single-tier 

architecture due to its additional computing resource, the cloud datacentre.  

Two-tier with EO architecture was not affected by the VM capacity as tasks were distributed 

to different processing facilities based on the application’s requirements and the system’s 

capabilities.  

Failure due to mobility happens when the user requiring face recognition leaves the WLAN 

coverage area before receiving the response [5]. There is an increasing trend for all 

architectures as the load increases, with single-tier having the highest failure percentage. 

The VM capacity and the number of edge servers have been identified as important, 

as it could reduce the percentage of failed tasks. Therefore, experiments will be 

designed to investigate the effect of increasing the number of edge servers and VM capacity. 

 

Service time 

  

(A) Service time (B) Processing time 

Figure 3.2. Average service time and processing time – Initial experiment 

As figure 3.2A illustrates, the service time increases as long as the load condition increases. 

The single-tier architecture has the longest service time, followed by the two-tier 

architecture. Two-tier with EO architecture has a significantly lower service time, with a 

stable trend as the load increases. To investigate the individual components of the service 

time, two sub experiments exploring the processing time and the network delay have been 

designed. 
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Processing time 

The processing time follows the same trend as the service time, showing an increasing trend 

for all architectures – see figure 3.2B. The EO architecture provides the fastest response 

with relatively low processing time compared to the other two architectures. It faces a slight 

increase in processing time when the load condition is 200, which after 225 devices, 

decreases again.  

 

Network delay  

   

(A) Average network delay (B) WLAN delay (C) WAN delay 

Figure 3.3. Average network delay - Initial experiment 

In figure 3.3, the network delay, which is composed of average WLAN and WAN delay, is 

prominent in two-tier and two-tier with EO architectures. The EO architecture has the highest 

WLAN delay of 0.022 seconds, whereas the single and two-tier architecture has a delay of 

0.013 seconds, as seen in figure 3.3B. The single-tier architecture does not encounter WAN 

delay, hence is 0, whereas the two-tier architectures face a high delay of 0.4 seconds as it 

communicates with the cloud. Two-tier with EO architecture faces both WLAN and WAN at a 

high rate, hence it has the highest network latency.  

From this experiment, it can be derived that the main factor of service time lies in the 

processing time, although the network delay contributes to an increased latency to some 

extent. Even though the results indicate that the main cause of the communication latency is 

due to WAN delay, investigating WAN would be meaningless for the single-tier architecture. 

Therefore, the WLAN delay is selected as a key parameter for further investigation.  

In the next section, the WLAN bandwidth and the VM processing speed will be further 

investigated to examine the impact on the network delay and processing time, 

respectively. 
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6.2 Experiment Results 

6.2.1 Effect of WLAN bandwidth 

The experiment was designed to investigate the effect of changing the WLAN bandwidth on 

the performance results. The simulation identified that the network delay decreased 

slightly as the WLAN bandwidth increased but had a minor impact on other evaluation 

metrics. 

   

(A) 100 Mbps (B) 300 Mbps (C) 500 Mbps 

Figure 4.1. Average WLAN delay – effect of WLAN bandwidth 

Network delay specifies how long the data took to travel from one point to another. In edge 

computing, the network delay is composed of two parts – WLAN used for edge node 

communication and WAN for cloud communication. Figure 4.1 shows the impact of WLAN 

delay as the load condition increases. For 100 Megabits per second (Mbps), all architectures 

show an increasing trend as more tasks are being sent to the edge servers and the cloud 

datacentre. Two-tier with EO architecture experiences 0.01 second higher delay than the 

single and two-tier architectures, due to the extra communication needed for load balancing.  

As the bandwidth increases, the WLAN delay decreases, and remains stable even with an 

increasing load condition – see figure 4.1B. With increased WLAN bandwidth, the network 

was able to handle the task transmission stably with its available networking power. The 

communication time can be decreased as long as the network bandwidth increases, 

leading to shorter service time.  

Nevertheless, the percentage of failed tasks did not improve as the WLAN bandwidth 

increased. A bottleneck has never occurred with the configuration used, concluding that the 

WLAN bandwidth is not the main reason to failure. Furthermore, decreased 

communication time did not lead to a significant reduction of service time as the WLAN delay 

is a matter of just 0.01 seconds – it does not account for a big part of the service time.  
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Summary of the effect of WLAN bandwidth 

The effect of increasing the WLAN bandwidth was rather insignificant as the bandwidth 

values used were sufficient for the application’s task load. Instead, the experiment suggests 

that WLAN bandwidth is combined with another parameter that will complementarily improve 

the performance. Alternatively, instead of reducing the communication delay, which is trivial, 

decreasing the processing time would provide better service time. Thus, the next experiment 

will be to increase the VM processing speed, aiming for lower processing time. 

 

6.2.2 Effect of VM processing speed 

The experiment studies the effect of increasing the VM processing speed. The processing 

speed has increased from 1000 to 3000, with 1000 increments each time.  

   

(A) 1000 MIPS (B) 2000 MIPS (C) 3000 MIPS 

Figure 5.1. Average VM utilisation – effect of VM processing speed 

It was observed that the VM utilisation decreases as the VM processing speed 

increases. When the processing speed was 1000 MIPS, the utilisation was high meaning 

that there were a lot of tasks being executed in the VMs, as seen in figure 5.1A. However, as 

the processing speed increases to 2000 MIPS, the highest VM utilisation for single-tier 

architecture is 16%, which compared to the 40% of 1000 MIPs, is significantly low. The tasks 

are executed in a fast manner which leads to low VM utilisation, hence there are no 

bottleneck or overload in the VMs, providing better performance.  

Due to the better utilisation of VMs, the service time decreases for all tiers, as seen in 

figure 5.2. Two-tier with EO architecture provides a stable service time despite the increase 

in load condition, whereas the other architectures show an increasing trend as the number of 

mobile devices increases. When 250 load condition for single-tier is chosen, increasing the 

VM processing speed by 1000 MIPS led to reduced service time of 2.8 seconds to 1.22 

seconds to 0.73 seconds.  
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(A) 1000 MIPS (B) 2000 MIPS (C) 3000 MIPS 

Figure 5.2. Average service time – effect of VM processing speed 

However, in figure 5.2C, an unexpected trend is observed for two-tier with EO architecture 

for 3000 MIPS. The service time is the highest when the load condition is the smallest, and it 

gradually decreases. It has been examined that the network delay remains unchanged, 

hence the problem lies in the processing time. A bug in the edge orchestrator might have 

caused this odd behaviour when distributing and processing the request. Unfortunately, the 

exact reason as to why the problem arose could not be formulated as there is limited 

information about the load balancing scheme used in the simulator. However, a paper by 

Tham and Chattopadhyay [22] proposes a scheme that may control the workload more 

efficiently through a min-max optimisation problem.  

In addition, a decrease in the percentage of failed tasks can be observed as the 

processing speed increases. The initial experiment identified the VM capacity to be a big 

part of the total failure. As the VM processing speed increases, the task failure due to 

VM capacity became extremely low, under 1% for all architectures. This shows that the 

increase in the VM processing speed results in a better successfulness of tasks, as the 

requests are processed with no contention in the edge servers.  

 

Summary of the effect of VM processing speed 

This section has proven that further improvements in performance can be made by 

increasing the edge server capability – by increasing the VM processing time. The next 

experiment will examine the effect of increasing the edge node availability by varying the 

number of edge servers. 
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6.2.3 Effect of edge servers 

The experiment was designed to identify how the number of edge servers per location will 

impact the performance. There are three edge server locations for this experiment, and 2, 4 

and 6 edge servers will be used for each sub-experiment. This results in a total of 6, 12, and 

18 edge servers, which were variated from the initial experiment value to test for the 

architecture scalability. 

   

(A) 2 servers (B) 4 servers (C) 6 servers 

Figure 6.1. Average processing time – effect of edge servers 

It has been identified that as long as the number of edge server increases, the 

processing time decreases. Two-tier architectures perform better than the single-tier, as it 

has an additional cloud resource to offload to. Hence the VM overload is not as problematic 

as the single-tier architecture. Moreover, the two-tier with EO architecture provides a 

significantly better processing time for increased load condition.  

The two-tier with EO architecture faces a bottleneck after 125 devices in figure 6.1A. The 

processing time increased substantially, even when the orchestrator is supposedly balancing 

the load efficiently. Although the network delay of 0.065 seconds accounts for the processing 

time to some extent, the delay is trivial hence is negligible. The problem might have occurred 

when the orchestrator was moving the data from one node to another, causing 

communication overhead. A defect in the load-balancing scheme might have caused an 

overhead, leading to a spike in the processing time.  
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(A) 2 servers (B) 4 servers (C) 6 servers 

Figure 6.2. Percentage of failed tasks on edge – effect of edge servers 

The results showed that although there are more edge servers available, VM congestion is 

inevitable as the servers have limited storage capacity and processing power. This is 

evident primarily when there is a small number of available edge servers, 6.2A, which leads 

to increased failed task on edge.   

However, as the number of edge servers increased, the percentage of failed tasks on 

the edge was significantly reduced for all architectures. This is because the offloading 

points increases as the number of edge server increases, which means that there are 

additional computational resources for task offloading. Two-tier with EO architecture 

provides very low failed tasks, as it dynamically launches suitable VMs with sufficient power 

while considering the geographic positions of the user and the edge server [29]. 

  

(A) Failure due to VM capacity  (B) Failure due to mobility  

Figure 6.3. Failure reason for 2 edge servers per location  

A bottleneck observed in 200 load condition for two-tier with EO architecture in figure 6.3A 

shows that even with a balanced and orchestrated workload, failure due to resource 

limitations could happen. 



 29 

Figure 6.3 shows the decomposition of the failure reason. The EO architecture experienced 

a high rate of failure mainly due to the VM capacity, especially after 200 devices. A 

computational burden was experienced on the VMs after it reached its capacity, 

leading to a task failure. In addition, the failure due to mobility increased drastically after 

125 mobile devices for the EO architecture. VM congestion led to longer processing time, 

causing the mobile devices to leave the area without receiving the response. In other 

words, long processing time due to a lack of resources led to an increased probability 

of failure due to mobility. 

As for the VM utilisation, the single-tier architecture utilised 65% of its VM when the load 

condition was high. Usage of exclusive edge servers leads to the saturation of resources 

faster than the architectures that utilise the cloud, leading to overloading in VMs and inability 

to process incoming tasks. Increasing the number of edge servers allowed for the 

balanced use of the VMs, solving the problem of the high failed task for two-tier with 

EO architecture. The workload is balanced between the edge server federations, exploiting 

the full available resources. 

 

Summary of the effect of the number of edge servers 

The results identified that significant performance improvement can be achieved by 

increasing the availability of the edge servers. However, the percentage of failed tasks for 

single and two-tier architecture still increased as the load condition grew, due to the limited 

capacity of the VMs. Therefore, further improvement in the edge server capacity is desired, 

which the next section will investigate. 

 

6.2.4 Effect of VM capacity  

The VM capacity was adjusted to show the impact of improving the edge server capabilities 

on the performance results. The results indicated that increasing the VM capacity by itself 

does not improve the application performance.  

The VM capacity used for the experiment were 50,000, 75,000, and 100,000 KB. As no clear 

improvement was seen, the experiment was rerun with a lower VM capacity of 25,000 KB to 

observe any change in performance.  
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(A) Percentage of failed tasks (B) Failure due to VM capacity 

Figure 7.1. Percentage of failed tasks for 75000 KB – effect of VM capacity 

The change in VM capacity did not affect the percentage of failed tasks. All four 

configurations provided the same trend illustrated in figure 7.1 – in terms of both the 

percentage of failed tasks and failure due to VM capacity. The task failure for single-tier 

architecture increased up to 26% as the load increased, followed by the two-tier architecture 

with the same trend but with 20%. Two-tier with EO architecture has significantly low failure 

percentage despite the growth in load condition, which none of it was caused by the VM 

capacity as seen in figure 7.1B.  

   

(A) 50000 KB (B) 75000 KB (C) 100000 KB 

Figure 7.2. Average processing time – effect of VM capacity 

The processing time increased as the load increased for all architectures, as seen in figure 

7.2. However, varying the VM capacity did not reduce the processing time – three 

results are nearly identical to each other. Moreover, the VMs were utilised at a constant 

trend for all sub-experiments – thus, increasing the VM capacity did not lead to better 

utilisation of VMs. The utilisation increased with increased load for all architectures, 

meaning that more tasks are being processed inside the VMs.  
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Summary of the effect of VM capacity 

The set of experiments identified that for the configuration used, the initial value of 50,000 

KB, or the lowered version of 25,000 KB was sufficient to handle the incoming tasks and 

increasing it further did not affect the performance. EO architecture performed the best in 

terms of its failed tasks and processing time, as it has sufficient capacity and the ability to 

load balance the tasks, encountering less computational problems compared to the single 

and two-tier architecture.  

In order to exploit the full advantage of increased VM capacity, increasing the edge server 

topology or increasing the bandwidth to allow for more incoming tasks in the edge is desired. 

This synergistic scheme will help to utilise the benefits that increased VM capacity has to 

offer, leading to a better performing application.  

6.3 Findings 

6.3.1 Findings Summary 

Table 5 summarises the experimental results obtained from the investigation. It states the 

relationship between the parameter and the performance metric and compares the findings 

with the literature reviewed in chapter 3.  

Table 5. Findings from the experiment and comparison with the literature review  

Section Parameter Findings  

6.2.1 
WLAN 

bandwidth 

- Increased bandwidth leads to decreased communication 

time, hence reduced service time – this agrees with the 

investigation performed by [6]. 

- The bandwidth values used were sufficient for the scenario 

hence no bottleneck occurred – confirmed by [5] and [9]. 

As the effect is minor, complementing it with another 

parameter will provide better performance - [6] showed an 

improved performance of the architecture by combining the 

WLAN bandwidth with increased VM processing speed. 

- EO architecture suffered from the highest network delay, 

but the overall service time was complemented by reduced 

processing time due to distributed processing power. 

6.2.2 

VM 

processing 

speed 

- Increased VM processing speed leads to better utilisation 

of VMs, hence reduced service time – this agrees with [5], 

[12], [19]. 

- Increased VM processing speed also leads to less failure 

due to VM capacity. Therefore it achieves a reduced 

percentage of failed tasks – this is agreed by [6]. 

- EO architecture’s quality of service remained stable with 

the increasing load condition. 
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6.2.3 
Number of 

edge servers 

- Increased number of edge servers provides additional 

computing resources. There exists no more congestion 

leading to a reduced percentage of failed tasks and 

processing time – is studied in [6], [10], [19], which showed 

a performance improvement as the number increased. 

- EO architecture provided the best performance. However, 

when the available edge servers were low, it faced a 

computational burden, leading to performance degradation. 

6.2.4 VM capacity 

- Increased VM capacity had little effect on the performance 

due to the initial value’s sufficiency. Could be combined 

with different parameters to maximise the advantage of 

large VM capacity. 

- EO architecture performed especially well in terms of a 

failed task. The processing time remained reasonably low, 

although it showed an increasing trend as the load 

increases. 

 

6.3.2 Hypotheses Verification  

The hypothesis stated in section 4.1 will be verified based on the findings of the experiment.  

Table 6. Hypotheses verification 

Number Hypothesis Verification 

 Hypothesis 1 Increase in WLAN 

bandwidth and VM 

processing speed 

reduces the service 

time. 

- Increasing the bandwidth lead to the 

improvement of service time, although the 

reduction was not significant.  

- Increasing the VM processing speed 

contributed to reducing the service time to a 

great extent.  

- Both parameters have proven to be effective 

in reducing service time. Therefore, the 

hypothesis holds true for this experiment.  

Hypothesis 2 Increase in the 

number of edge 

servers and VM 

capacity reduces 

the percentage of 

failed tasks. 

- Increasing the number of edge servers 

significantly reduced the percentage of failed 

tasks, validating hypothesis 2. 

- VM capacity did not affect the percentage of 

failed tasks, disproving hypothesis 2.  

- The results partially confirm hypothesis 2. 
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6.3.3 Significant Parameters 

To summarise, EdgeCloudSim simulator was used to investigate the effect of computational 

and networking system parameters on the scalability of application performance. Four 

different parameters have been investigated in this research – 1) WLAN bandwidth, 2) VM 

processing speed, 3) number of edge servers and 4) VM capacity. Three main 

performance metrics selected in section 4.3 were the percentage of failed tasks and service 

time.  

The most apparent performance improvement in terms of both percentage of failed tasks 

and service time was achieved by increasing the VM processing speed, followed by the 

number of edge servers. In other words, increasing the computational power at the 

network edge through faster processing and low utilisation allowed for smoother and 

accurate processing of tasks.  

On the other hand, the WLAN bandwidth and VM capacity had a minor impact on application 

performance. Although the WLAN bandwidth improved the network delay to some extent, as 

the percentage that network delay accounts for the total service time is small, it had little 

effect on the overall results. Furthermore, increasing the VM capacity by itself did not 

improve the failure rate nor the service time.  

From a further investigation conducted to identify the parameter to be combined, it was 

determined that experiment 6.2.1, which varied the WLAN bandwidth, had the highest rate of 

failure due to VM capacity. This suggests that combining the VM capacity and WLAN 

bandwidth could fulfil the shortages of each other, improving the performance 

synergistically.  

Increased WLAN bandwidth would lead to more tasks arriving at the edge server at a faster 

rate, allowing for the full exploitation of extra capacity the VM has. The edge servers will be 

able to handle a greater volume of tasks without the congestion in the node, providing a 

better quality of service in terms of both the service time and the percentage of failure.  

6.4 Recommendations 

1. Importance of EO 

In general, using the two-tier with EO architecture always provides better performance, as it 

has the ability to balance the increasing workload. Hence, it is recommended that this 

architecture is utilised for the application to scale. However, it is recommended that two-tier 

architecture without the EO is utilised in the following scenarios: 

- If the available WLAN bandwidth is small, the network delay that incurs when 

orchestrating the load might affect the performance. Hence, it is recommended not to 
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utilise the load-balancing scheme. The simulation experiment identified it to be 100 

Mbps. 

- If the number of edge servers is exceptionally low, to minimise communication 

overhead on already congested edge nodes. The simulation experiment identified it 

to be 2 servers. 

 

2. Devising the Edge Architecture  

When implementing the edge architecture, it is important to consider the characteristics of 

the application to configure the resources accordingly. Less latency and failed tasks are 

essentially achieved by having more resources. In other words, there exists a trade-off 

between available resources and the performance of the application. Therefore, depending 

on the application requirements and characteristics such as task size, the edge deployment 

and task offloading scheme should be considered carefully.  

For applications with short dwell time per location, such as driverless cars and aircraft 

control, the service time is extremely important. Therefore, the focus should be on VM 

processing speed, which identified to have a significant impact on achieving reduced service 

time. Moreover, if the task load is heavy but there is not enough resource at the edge, it 

might be more valuable to handle the analysis centrally in the cloud [30] – which would give 

much more accuracy but comes with a slight latency.  

 

3. Management of Edge Nodes 

Because the project environment was simulated, it was assumed that the edge servers were 

not prone to failures. However, if the edge servers are up and running, various factors can 

influence the edge server availability, which is crucial for application performance. Due to the 

heterogeneity and distributed nature of the edge servers, they are not as well maintained as 

the centralised cloud datacentre [19]. The lack of maintenance could mean that the edge is 

prone to failures, which severely impacts the availability of edge servers. Hence, the 

management of the nodes through software updates rather than hardware is recommended.  
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7. Project evaluation 

This chapter conducts an evaluation of the project as a whole, reflecting on the project plan 

that was devised in the introduction chapter. It includes related works and future 

recommendations as well.  

7.1 Evaluation 

7.1.1 Aims and Objectives 

1. Identify the key issues in relation to edge computing performance.  

Based on a detailed review of edge computing literature, important parameters for each of 

single-tier, two-tier and two-tier with EO architectures have been identified. The relationship 

between the parameters and the performance was proposed, which was further 

strengthened by an initial experiment that revealed 4 key parameters specific to the scenario 

used.  

2. Design and implement different experiments through the configuration of key 

parameters.  

A suite of experiment was designed based on the key parameters identified from the 

previous objective and was implemented iteratively through EdgeCloudSim.  

3. Analyse and interpret the performance results.  

Based on a graphical analysis of the simulation results, observed trends were explained and 

justified. Conclusions were drawn, and hypotheses were verified, fulfilling the objective.  

4. Propose further recommendations on the architecture of edge computing 

applications.  

The project identified significant parameters in relation to scalability and proposed a 

combination of parameters for better performance. However, it lacked to provide 

configuration values that are feasible and applicable in real-life, as it greatly depends on the 

application used and resources available. It further proposed a desirable architecture for 

different scenarios and provided further insight into the edge server management, widening 

the context of the research.  

The investigation met the vast majority of the project objectives through an empirical 

investigation. By achieving these objectives, the aim of the experiment which was to 

investigate the effect of computational and networking system parameters on the application 

performance results, have been fulfilled.  
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7.1.2 Project Management  

In addition to evaluating the success of the project aims and objectives, the project can also 

be evaluated in terms of the methodology used and project management.  

An iterative methodology of repeating the experimental design, implementation and data 

collection, and analysis and interpretation was adopted for the study. Numerous revisions 

have been made in the design of the experiments to find a set of parameters that provide 

distinguishable performance results, thanks to the repeatable nature of the simulation. Based 

on the analysis of the results, extended experiments with different configurations were 

implemented to seek further inference of the phenomenon. For example, an experiment that 

showed little or no effect had been rerun with an extreme configuration value to observe for 

any changes or justification. 

In terms of the technology used, EdgeCloudSim was utilised to conduct various simulations. 

It has addressed the needs of parameters and evaluation metrics used for the experiment 

and allowed for ease of producing graphical results.  

Furthermore, the timeline shown in the Gantt chart (figure 1) was not strictly adhered to. The 

experiment design took longer than expected as it was constantly revisited to make 

improvements based on the experiment results. The design, implementation and analysis 

took place simultaneously and iteratively, in which the project benefited from the nature of an 

agile methodology allowing for an adaptive timeline. 

 

7.1.3 Limitations 

There exists a range of limitations related to the research problem, that has been identified, 

which are as follows: 

1. The number of mobile devices used in the analysis was limited. Although it provided 

with some significant relationships from the data, it would have been more favourable 

if a larger number of mobile devices were used, to ensure the validity of 

generalisation when proving for scalability. Researching and configuring the values 

based on the estimated number of devices used for real IoT application could have 

contributed practical importance of the research.  

2. More specific hypotheses could have been formulated in order to test and verify the 

findings more accurately. The current hypotheses combine two parameters each, 

leading to a formulation of less focused statements to investigate for.  

3. The number of parameters and the values investigated was limited due to the time 

constraint of the research. Additional performance evaluation of the combination of 

parameters could have given more confidence to the claim made in 6.3.1, which is 

now formulated as a suggestion.  
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4. Some anomalies and unexpected behaviour concerning the two-tier with EO 

architecture could not be justified, due to the lack of understanding in the load 

balancing scheme. It could have been an important indication that is significant for 

the performance.  

7.2 Related work 

This section places the presented work in line with related work to identify the importance of 

the study within the field of investigation. The detailed positioning of the work and 

comparison with prior research is presented in appendix C.  

7.2.1 Prior Work 

The evaluation of the edge computing architectures has been conducted, as the subject is 

still on its developing stage. Numerous parameters need further investigation, hence 

extending the research and validating related works had shed some light on the better 

understanding of the performance of different edge architectures.  

Although extensive work has been done for the generic idea of edge computing paradigm 

and scenarios of the application deployment, not a lot of simulation-based experiments have 

considered all three architectures of edge only, edge and cloud, and edge and cloud with an 

orchestrator. The study evaluates the varying performance of the application based on the 

parameter configuration, with consideration of the architecture and its scalability.  

The performance evaluation in [6], [19] utilises the closest methodology, as it investigates 

the impact of increasing one parameter value at a time. This allows for the clear visualisation 

of the trend, as it isolates the parameter being tested from other factors that might affect the 

performance.  

Essentially, the project contributes to the research in the field by exploring the impact of 

more parameters with various configuration values. In some cases, the parameters are 

combined to maximise the performance, suggesting possible considerations when designing 

such systems.  

7.2.2 Future work   

Future works that could further enhance the study of edge computing include: 

1. Further investigation into the load balancing scheme - EO architecture’s load 

balancing scheme could be investigated further by studying the effect of task migration 

between the edge servers, focusing on the network delay incurring from the 

orchestration. 
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2. Extended experiments – More experiments could be conducted using parameters that 

have not been explored in this report. Combination of parameters could be used to 

further identify the relationship and trade-offs between the parameters.  

3. Real-life implementation of the simulation – The simulation could be deployed on a 

real experimental lab with appropriate resources, to test the application on physical 

datacentres and to compare the simulation results to real-life values. 

4. Consideration of various applications – The performance evaluation carried out is 

highly related to specific application scenario used. Modelling of different applications is 

desired as they have different requirements, such as task size, dwell time, and the 

number of devices. Therefore, this will help to compare the performance of various 

application scenarios, enriching the understanding of edge computing and the 

deployment of IoT services. 

7.3 Personal Reflection  

The project started off as somewhat broad and vague, as I could not land myself a clear goal 

and an application scenario for the simulation. As I conducted more literature review and 

experiments, the concept consolidated, and I deeply delved into the project. The project’s 

aim and goals slowly came together, which provided me with strong guidance and 

confidence in proceeding the research. Generally, the time was managed well, and 

milestones were achieved by setting up personal deadlines, helping me to stay on track and 

focused.  

There were some unexpected technical challenges of using the simulation software. Due to 

the lack of documentation of EdgeCloudSim, to understand some features and construction, 

various attempts of source code inspection and modification were made. Moreover, 

MATLAB errors and failure of graph production was especially frustrating, as there were no 

troubleshooting guide or pre-existing solutions. By trial and error, proper error handling code 

had been added, which produced successful plots to be used for the project. The technical 

difficulties incurred in a slight delay of the experiment implementation, which was not 

desirable, but was handleable. 

Upon the completion of the project, I have learned how to critically approach a research 

problem, in terms of both literature review and technical implementation. It has given me the 

confidence and skills for future research and insight into career plans. The opportunity to 

fully engage in a research project of my own interest was a grateful and rewarding 

experience, which will be valuable for my future endeavours. 
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7.4 Legal, Ethical, Social and Professional Issues 

This section covers the legal, ethical, social and professional issues that might arise 

throughout the span of the project.   

 

Legal Issues 

The project involves EdgeCloudSim simulator, which is licensed under the GNU General 

Public License v3.0 [31]. The license states the freedom to share and modify the work, and 

that it remains free software to all users meaning that the same freedom is given to the 

recipients of the software. Copyright and license notices have been preserved in the 

repository, meeting the legal issues.  

 

Ethical Issues 

The project implementation does not involve any external data, as it is delivered through a 

simulator which eliminates the factor of human interaction. Sensitive data such as images of 

people, medical images or religious texts were not used, and no external data was analysed. 

However, when deployed in real-life, the storage and processing of the sensor data must be 

addressed ethically and responsibly. 

 

Social Issues 

The project was developed for academic and experimental purposes. However, the 

implications of edge computing, such as the reduction of energy consumption could have a 

great impact on building a more sustainable society. 

 

Professional Issues 

The project strived to achieve high quality in both the process and results of the work, 

following an adequate ethical practice. It took precautions to make reliable judgement and 

analysis throughout the process, which complies with the ACM code of ethics and 

professional conduct [32]. 
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8. Conclusion 

The project has thoroughly examined the performance of various edge computing 

architectures based on the computational and networking system parameters, in relation to 

the scalability of a face recognition application. Series of experiments were designed and 

implemented to test the effect of chosen parameters against the service time and percentage 

of failed tasks, demonstrating edge computing’s capabilities.  

The experiment results demonstrated that the best performance could be achieved by 

utilising the two-tier with EO architecture with high VM processing speed and many edge 

servers. The performance evaluation in relation to scalability serves for the rapidly growing 

nature of the data generated by the IoT devices. Hence, the interpreted simulation results will 

play an important role in the deployment of future IoT application design, allowing for a more 

effective and efficient service provision. 

To conclude, the project has contributed to the extended research of the performance of 

edge computing domain by simulating different models, thereby identifying the ideal 

architecture. 
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Appendix A. External Material  

EdgeCloudSim simulator developed by Sonmez et al. was used for the project, and can be 

accessed via: 

https://github.com/chaerim-kim/EdgeCloudSim  

 

To compile the application:  

./compile.sh 

 

1. To run the default configuration singly: 

./runner.sh out_folder default_config edge_devices.xml applications.xml α  

- ./runner.sh to run the shell script 

- out_folder to define a folder for simulation result to be outputted to 

- edge_devices.xml to define edge devices file to be used 

- applications.xml to define application file to be used 

- α to set the iteration number 
 

2. Or to run the simulation in parallel: 

./run_scenarios.sh α β  

- ./run_scenarios.sh takes the runner.sh and runs several iterations in parallel 

- α defines the number of processors 

- β defines the number of iterations to be performed 
 

The simulator outputs the results of 5 different iterations as can be seen in Figure 1, where 

‘ite.log’ files are provided as a human-readable log of the simulation results, and files in 

folder ite’n’ to be fed to MATLAB for plot generation, as seen in Figure 2. 

    

Figure 1. Simulation output  Figure 2. Simulation results to be fed into MATLAB 

 

https://github.com/chaerim-kim/EdgeCloudSim
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Appendix B. Literature Review – Summary 

- 1 – single-tier architecture 

- 2.1 – two-tier architecture 

- 2.2 – two-tier with EO architecture 

Table 1. The positioning of the project  

Author Simulator Application Metrics 
Architecture 
1 2.1 2.2 

This report EdgeCloudSim 

- Augmented reality - 
face recognition 

- Average service time 

- Average processing 
time 

- Average network delay 

- Percentage of failed 
tasks 

- Average VM utilisation  

X X X 

Sonmez et 
al. [18] 

EdgeCloudSim  
- Augmented reality - 

face recognition 
- Percentage of failed 

tasks 

- Average service time 
X X X 

Aljulafi and 
Djemame [6] 

EdgeCloudSim  

- Augmented reality – 
driverless cars 

- Percentage of failed 
tasks 

- Average network delay 
- Average processing 

time 

 X X 

Suryavansh 
et al. [19] 

EdgeCloudSim  
- Augmented reality 

application 
- Percentage of failed 

tasks  

- Average service time 
X X X 

Gupta et al. 
[1] 

iFogSim 

- Latency sensitive 
online game 

- Intelligent 
surveillance 
through distributed 
camera networks  

- Average latency 

- Network use 

- Energy consumption 
X X  

Jha et al. [9] IoTSim-Edge 
- Healthcare system 

- Smart buildings 
- Self-driving cars 

- Average latency 

- Energy consumption 

- Average service time 
X X X 

Premsankar 
et al. [2] 

GamingAnywhe
re cloud gaming 
platform  

- Virtual and 
augmented reality – 
Neverball, a 3D 
arcade game  

- Response delay 
(Processing delay + 
playout delay + 
network delay) 

X   
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Appendix C. Initial Gantt Chart 

The original Gantt chart designed in October is illustrated below.  

 

Figure 3. Original Gantt Chart  
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Appendix D. Full Simulation Results  
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2. Effect of VM processing speed 
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3. Effect of edge servers 
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4. Effect of VM capacity 
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