

Edge Architectures Simulation

Chae Rim Kim

Submitted in accordance with the requirements for the degree of

BSc Computer Science

2019/2020

School of Computing
FACULTY OF ENGINEERING

 ii

Type of Project: Empirical Investigation

The candidate confirms that the work submitted is their own and the appropriate credit has

been given where reference has been made to the work of others.

I understand that failure to attribute material which is obtained from another source may be

considered as plagiarism.

 (Signature of student) ______________________________

© 2019-2020 The University of Leeds and Chae Rim Kim

 iii

Summary

The rapid growth of the Internet of Things (IoT) has brought edge computing paradigm under

the spotlight. Edge computing brings computing resources closer to end-devices, to meet

the increasing needs of performance requirements. This report aims to investigate the effect

of computational and networking system parameters on the performance of a face

recognition application. The project will evaluate the performance of single-tier, two-tier, and

two-tier with Edge Orchestrator (EO) architecture through an empirical investigation, using

EdgeCloudSim. The results showed that the best performance could be achieved by utilising

two-tier with EO architecture, with high VM processing speed and numerous edge servers.

Based on the investigation of the parameters, recommendations for future application design

and deployment are made, which will help to design a scalable and effective application.

 iv

Acknowledgements

I would like to express my gratitude to Professor Karim Djemame for the valuable support,

guidance, and encouragement he has given me throughout the project. It has been a great

help in the development and management of the project.

I would also like to thank my project assessor, Professor Jie Xu for his useful and

constructive recommendations during the progress meeting.

 v

List of Acronyms

Abbreviation Term Definition

AR Augmented Reality Computer-generated content that is overlaid on a

real-world environment

AWS Amazon Web

Service

Amazon’s cloud computing service

CSV Comma Separated

Value

A delimited plain text file that stores data in a tabular

format

EO Edge Orchestrator A module that decides how and where to handle

incoming client requests in edge computing

GB Gigabytes A unit of information used

GHz Gigahertz A unit to measure clock frequency of CPU

IoT Internet of Things Devices that are interconnected through the internet,

collecting and sharing data

KB Kilobyte A unit of digital information

Mbps Megabits per second A measure of internet bandwidth

MIPS Million Instructions

Per Second

A measure of the execution speed of the computer

RAM Random Access

Memory

Computer’s short-term memory that can be

accessed randomly

VM Virtual Machine Emulation of a physical computer, running its own

applications and an operating system

VR Virtual Reality A three-dimensional computer-generated

environment that can be interacted by a person

WAN Wide Area Network A network that extends over a large area,

interconnecting multiple local area networks

WLAN Wireless Local Area

Network

A network that allows devices to connect and

communicate wirelessly via Wi-Fi

 vi

Table of Contents

Summary ... iii

Acknowledgements ... iv

List of Acronyms ... v

Table of Contents... vi

1. Introduction ... 1

1.1 Project Background ... 1

1.2 Problem Statement .. 1

1.3 Possible Solution ... 2

1.4 How to demonstrate the quality of solution ... 2

1.5 Aim ... 2

1.6 Objectives .. 2

1.7 Deliverables ... 3

1.8 Project Management .. 3

1.8.1 Methodology .. 3

1.8.2 Tasks, Milestones and Timeline .. 4

1.8.3 Risk Assessment ... 5

2. Background Research.. 6

2.1 Cloud Computing ... 6

2.2 Internet of Things (IoT) .. 6

2.2.1 Internet of Things ... 6

2.2.2 IoT and Edge Computing ... 7

2.3 Edge Computing .. 7

2.3.1 Edge Computing Architectures .. 7

2.3.2 Advantages of Edge Computing .. 8

2.4 Edge Computing Simulator .. 9

3. Literature review ... 11

3.1 Single-tier ... 11

3.2 Two-tier .. 13

3.3 Two-tier with EO .. 15

4. Design .. 17

4.1 Hypotheses .. 17

4.2 Experimental Design .. 17

 vii

4.2.1 Experiment’s Assumptions .. 17

4.2.2 Initial Experiment ... 18

4.2.3 Experiment Design .. 18

4.3 Performance Metrics .. 19

5. Implementation ... 20

5.1 Implementation Details .. 20

5.2 Evaluation Metrics ... 20

5.3 Result Visualisation ... 20

6. Technical Evaluation .. 21

6.1 Initial Experiment ... 21

6.2 Experiment Results .. 24

6.2.1 Effect of WLAN bandwidth... 24

6.2.2 Effect of VM processing speed .. 25

6.2.3 Effect of edge servers .. 27

6.2.4 Effect of VM capacity ... 29

6.3 Findings.. 31

6.3.1 Findings Summary ... 31

6.3.2 Hypotheses Verification ... 32

6.3.3 Significant Parameters .. 33

6.4 Recommendations ... 33

7. Project evaluation ... 35

7.1 Evaluation .. 35

7.1.1 Aims and Objectives .. 35

7.1.2 Project Management.. 36

7.1.3 Limitations .. 36

7.2 Related work .. 37

7.2.1 Prior Work .. 37

7.2.2 Future work .. 37

7.3 Personal Reflection .. 38

7.4 Legal, Ethical, Social and Professional Issues ... 39

 viii

8. Conclusion... 40

List of References ... 41

Appendix A. External Material ... 43

Appendix B. Literature Review – Summary ... 44

Appendix C. Initial Gantt Chart ... 45

Appendix D. Full Simulation Results .. 46

 1

1. Introduction

1.1 Project Background

With the Internet of Things (IoT), an enormous amount of data gets generated from end-user

devices including mobile phones, wearable devices, sensors and vehicles every second [1].

In order for these large volumes of data to provide meaningful insight, data processing is

necessary, which may require larger computational resources than the device’s capabilities.

The emergence of cloud computing addressed the issue of limited computational and energy

resources of devices with its virtualised resources and dynamically reconfigurable nature [2].

However, cloud computing comes with the cost of high latency and limited bandwidth issues,

which could be a serious bottleneck for applications requiring real-time data processing and

responses [3].

Edge computing allows for data processing to be done at the network edge, closer to the

data source, resulting in shorter response time and more efficient processing [3]. It places

computational resources at the logical extremes of a network, with the ability to store, cache,

process and load balance the data to be sent to the cloud.

Edge architecture is being utilized in many different fields where the latency of data

processing is a crucial factor of the system, such as in Autonomous Vehicles, Augmented

reality (AR) / Virtual Reality (VR), and facial recognition for security, where the processing of

large data is a prominent feature of the application [4]. Edge computing does not necessarily

replace cloud computing but rather complements it by offloading tasks to servers in close

proximity, rather than a distant cloud datacentre [4].

1.2 Problem Statement

Fundamentally, edge computing allows us to bring computing resources closer to end-

devices, hence providing a better quality of service [2]. This is directly related to application

performance; hence it is important to investigate the effect of different computational and

networking system parameters on the performance results. An empirical investigation of the

evaluation of different edge architectures will be carried out using the EdgeCloudSim

simulator, which addresses the particular demands of edge computing [5].

 2

1.3 Possible Solution

Different edge architectures deployed in different domains can be simulated by altering the

parameters and metrics of the EdgeCloudSim simulator. The simulator provides a design

space with configurable parameters to allow for testing various architectures of edge

computing. This provides an insight regarding the connection between the computational

parameters and the performance results [5].

Parameters will be chosen by first conducting an initial experiment to test and determine the

key variables. The project will further be conducted by designing experiments, implementing

and collecting data, followed by results interpretation [6]. The results will be used to further

imply and recommend future directions of the performance of edge computing applications.

1.4 How to demonstrate the quality of solution

The quality of the solution could be demonstrated by incorporating a thorough and

systematic methodology. By outlining how the research is undertaken, the project stays

focused, helping to deliver a precise and accurate solution to the research question.

The validity of the simulation results can be confirmed with existing works of literature and

experiments. One can compare and contrast the overall results with the literature’s findings

to see where the solution lies, to gain some extent of confidence in the solution.

Furthermore, novel experiments could be designed by choosing parameters and metrics that

have not been researched yet, thereby bringing the scope of the solution forward.

1.5 Aim

The aim of the project is to investigate the effect of computational and networking system

parameters on the application performance results, through EdgeCloudSim simulator. It will

evaluate the performance of different architectures, including single-tier, two-tier and two-tier

with Edge Orchestrator (EO).

1.6 Objectives

The objectives of the project are as follows:

1. Identify the key issues in relation to edge computing performance

2. Design and implement different experiments through the configuration of key

parameters

3. Analyse and interpret the performance results

4. Propose further recommendations on the architecture of edge computing applications

 3

1.7 Deliverables

The project delivers a report including:

1. Background research – outlines relevant areas for the investigation and critically

appraises literature that addresses similar problems.

2. Simulation experiment design – proposes the details of the simulation.

3. Experiment implementation – details the execution of the experiment design,

outlining the tools and techniques used for the implementation. This will be in the

form of software and scripts.

4. Technical evaluation – entails the analysis and interpretation of the simulation

results, verifying the hypotheses of the experiment.

5. Project evaluation – presents a discussion regarding the success of the project,

self-evaluation and future works of the research.

1.8 Project Management

1.8.1 Methodology

The project utilises simulation and is comprised of three sequential phases. Simulation offers

the possibility to investigate novel and complex systems with limited resources in the

laboratory [7]. It provides empirical results for specific scenarios [8] in a controlled and

repeatable environment [9], which is suitable for subjects like edge computing with no

standardized architecture [10]. The project adopts an agile approach, where several

iterations of each step are performed. The iterative process allows for the elimination of

uncertainties arising from the experiment, ensuring the accuracy and integrity of the results.

1. Experimental design

Following a thorough literature review, design a suite of systematic experiments in advance

to clearly define the focus of the research; states the parameters and evaluation metrics to

be explored.

2. Implementation and data collection

Execution of the experiment design using EdgeCloudSim to collect a set of data, which is to

be translated into meaningful results by generating visual plots that illustrate the relationship

between the variables chosen. It details the tools and methods used for data collection.

3. Analysis and interpretation

Examining and moulding the data collected, producing a result set describing the general

trend of the experiments. It also identifies the significance and implications of the analysis

and discovers linkages to the objectives of the investigation.

 4

1.8.2 Tasks, Milestones and Timeline

A Gantt chart in Figure 1 outlines the tasks and milestones of the project. Christmas break

and exam period have been omitted as it is less likely that a substantial amount of work

could be done over the period.

Figure 1. Project Gantt chart

1. Background Research / Literature review

To conduct research and develop a critical analysis of relevant literature essential for

the understanding of the project scope, identifying new ways of interpreting the topic

and to validate experimental results. A continuous task throughout the project.

2. Project scoping

Develop a scoping document outlining and planning the project; includes problem

context, aims, objectives, deliverables, project plan, methodology and a preliminary

literature review.

3. Installation / Test run of EdgeCloudSim

Install and run the default configuration of EdgeCloudSim for better understanding of

the possible solution and experiment design.

4. Experiment Design

(Milestone 1) Conduct an initial experiment to identify key parameters.

(Milestone 2) Design the system architecture to be tested based on the initial

experiment – constructing hypotheses, selecting computational parameters and

metrics of the experiment.

 5

5. Experiment Implementation

(Milestone 3) Implement and run experiments on EdgeCloudSim, then generate

plots through MATLAB.

6. Evaluation

The evaluation is composed of two parts – technical and project evaluation.

(Milestone 4) Conduct a technical evaluation that interprets and analyses the

experiment results for hypotheses verification.

Carry out a project evaluation that reflects on project management and objectives.

7. Unforeseen Tasks

Extra time used to handle unexpected tasks or experiments.

8. Report Writing

Writing up the report – intermediate and final report, including a complete literature

review and detailed documentation of the experiment implementation and analysis.

1.8.3 Risk Assessment

Table 1. Risk assessment and mitigation

Possible Risk Outcome

Likeli

hood

(1-5)

Impact

(1-5)

Risk

(1-25)
Risk mitigation

Software

unavailable from

GitHub

Unable to run the

simulation and

generate output

1 5 5
Keep a personal copy of the

original simulator

Technical issues

with the

simulator

Unable to generate

simulation results
2 4 8

Seek support from simulator

maintainer and supervisor

Loss of

simulation

results

Loss of empirical

data to be studied
1 4 4

Backup the simulation

results in a cloud storage

Limited literature

on the topic

Less resource to

compare the project

findings to; limitation

in confirming the

result validity

1 3 3

Perform a more thorough

analysis of literature and

seek help from supervisor or

experts in the field

Absence of the

supervisor

Unable to receive

feedback
1 2 2

A weekly update of progress

and discussion via email

Illness and

unforeseen

personal issues

Delay in project

delivery and

progress

1 3 3
Apply for mitigating

circumstances

Poor time

management

skills

Unable to meet the

project deadline
1 3 3

Set short term goals and

rearrange priorities if the

deadline could not be met

1-6 - Low Risk 8-12 - Moderate Risk 15-25 - High Risk

 6

2. Background Research

This chapter provides the context of the work involved in the project. It defines key concepts

and technologies regarding the subject, creating a general foundation for the problem.

2.1 Cloud Computing

Cloud computing, a virtualised datacentre, offers rich computation and storage capabilities

with effective economies of scale [11]. Cloud computing processes a vast amount of data

and heavy computation tasks through on-demand and configurable computing resources.

Cloud computing allows for various tasks to be offloaded to a datacentre, which solves the

problem of end-devices’ lack of computational and energy resources limitations.

However, cloud computing comes with high latency and limited bandwidth, as datacentres

are likely to be located distantly from end-user devices. In situations requiring instant data

processing such as Augmented Reality with real-time constraints [12], this factor cannot be

tolerated as the response could be tied to a vital decision of the application. In addition, the

architecture concerns the loss of privacy as it releases personal and social data to

centralised services. The emergence of edge computing supplements the limitations of the

traditional cloud approach, by deploying resource-rich servers at the edge [2].

2.2 Internet of Things (IoT)

This section illustrates the basic concepts of the Internet of Things (IoT) and its conventional

approach. In addition, the integration of IoT with edge computing will be introduced, to help

mitigate the challenges of the existing architecture.

2.2.1 Internet of Things

Internet of Things (IoT) is a network of connected sensors and devices, which continuously

produce and exchange data via complex networks to provide intelligent analytics [13]. Due to

the resource-constrained nature of the devices, data collected is offloaded to the cloud

datacentre for further processing [2].

This process introduces new challenges such as high communication latency, network

bandwidth requirements, resource constraints and security challenges, which arises from

large data transmission [14]. IoT applications that require real-time data analytics, such as

safety and health applications, cannot tolerate the response time of the conventional cloud

approach [15].

 7

2.2.2 IoT and Edge Computing

To help address the aforementioned issues, the concept of edge computing has emerged. It

places computing resources, referred to as micro datacentres or cloudlets, in proximity to

end devices at the network edge [16]. Based on the request, one or more Virtual Machines

(VMs) are launched to execute application tasks remotely on edge servers [12].

Edge computing supports the mobility and geographical dispersion of IoT applications,

where devices can offload and process data in the closest computing resource. By taking

advantages of these intermediate nodes and storage capabilities, reduced bandwidth

demands on the network and faster response time can be achieved [1].

The computational capacity in proximity, enough storage space, and fast response time that

edge computing offers, can help IoT solve its critical issues [15]. With the substantial growth

of the number of IoT devices, the selection and management of edge nodes will be a crucial

aspect for the successful deployment of the future IoT applications [2].

2.3 Edge Computing

Edge computing places computational resources at the network edge, allowing for proximate

data processing [3]. By distributing the edge servers near the end devices, devices can

offload their tasks, ensuring short response time and better quality of service [17].

2.3.1 Edge Computing Architectures

Figure 2. Edge architectures and parameters in each layer (inspired by [6])

[5]

 8

Figure 2 illustrates the three-layer architecture of edge computing, including the cloud layer,

edge layer, and IoT device layer.

1. Single-tier

Single tier architecture only utilizes the edge layer to perform its computations [6]. Devices

communicate with edge servers over Wireless Local Area Network (WLAN) for data

transmission and processing [18]. Edge servers allow mobile devices to perform complicated

tasks which otherwise would be unable due to the resource constraints of the devices.

2. Two-tier

The two-tier architecture utilizes both edge and cloud layers to perform computations. If

edge devices require more computational power to process the data [9], or based on a

probability selection mechanism, the cloud datacentre is used [6]. Mobile devices offload

their tasks to the global cloud through Wide Area Network (WAN).

3. Two-tier with Edge Orchestrator (EO)

If the edge servers belong to the same administrative organisation, the system can be

expanded by sharing the federation of edge servers [18]. Tasks are first sent to the edge

orchestrator (EO), where EO load balances and redirects tasks among multiple edge servers

based on their status [19]. This requires data transfer from one node to another, which might

result in a slight transmission delay [18]. Despite the concern, EO architecture provides

better performance than single or two-tier architecture as the workload is distributed between

computational resources, in which the VMs do not experience overload and congestion [6].

2.3.2 Advantages of Edge Computing

The proximity of computational resources helps relieve many issues of the existing

architecture [3]. The advantages of integrating Internet of Things with edge computing are

discussed next.

1. Reduced bandwidth costs

Placing edge servers close to end-user devices serves as a platform for filtering and

analysing the data to be sent to the cloud [1]. Uploading large volumes of data produced by

IoT devices to a cloud datacentre is a bandwidth-intensive computation, which leads to

network congestion and transmission delay [3]. Edge helps to relieve the pressure on the

network traffic, thereby reducing the bandwidth demand and increasing network

performance.

 9

2. Lower transmission latency

Edge computing enables data processing at the network edge, supporting real-time analytics

for time-sensitive systems [14]. As clients do not encounter Wide Area Network (WAN) delay

to access cloud services such as Amazon Web Services (AWS) or Google Cloud [15], edge

computing provides a lower transmission delay in data communication [5]. Satyanarayanan

et al. [16] propose that the use of edge servers for wearable cognitive-assistance systems

improves response times by between 80 and 200 milliseconds (ms) [20].

3. Reduced energy consumption

IoT devices can mitigate their energy consumption by offloading the tasks to edge servers

[15]. Research by Michalák and Watson [21] identified that for applications, communication

consumes a lot more energy compared to processing [21]. Therefore, by performing in-

network processing, the communication can be reduced hence the energy per unit data can

be reduced [22]. Satyanarayanan et al. [16] propose that task offloading reduces 30-40% of

energy consumption on mobile devices [3]. On the other hand, Noor et al claim that reduced

battery consumption comes with higher bandwidth usage and power consumption, which is a

trade-off to be investigated further [23].

4. Privacy policy enforcement

Private data collected from IoT devices are pre-processed in edge resources [2], enforcing

the privacy policies of its owner before releasing to centralised cloud services [16]. The data

is fragmented and distributed across edge nodes, allowing for enhanced security

management and data protection [17].

5. Scalability and availability

Data being processed and filtered in dispersed edge nodes leads to distributed data

processing architecture, thereby scalable [1]. Moreover, if cloud services become

unavailable, the redundant edge servers can replace the service to mask the failure, making

the service more available [16].

2.4 Edge Computing Simulator

To simulate the performance of different edge architectures, a simulator that fulfils the edge

computing domain is required. With the development of edge computing paradigm, various

simulation tools have been proposed to model the edge and IoT environment [9]. This

section will discuss the capabilities and features of various simulators and propose a

justification of the chosen simulator, EdgeCloudSim.

iFogSim [1], proposed by Gupta et al. models an edge and fog computing environment to

evaluate the resource management techniques in latency, network congestion, energy

 10

consumption and cost. However, it does not support failure modelling, which is essential as it

serves as a guide to building a better performing edge architecture.

IoTSim [24] simulates IoT big data processing, supporting heterogeneous IoT and edge

systems. However, it does not provide networking support and edge processing, limiting the

investigation scope of edge computing.

FogNetSim++ [25] models a large fog network, incorporating various mobility models and

scheduling algorithms. While it supports suitable metrics for performance evaluation, it does

not enable interoperability between fog federations, which is needed to investigate the two-

tier with EO architecture.

EdgeCloudSim [5], based on CloudSim [26], provides a design space for configuring

computational and networking parameters for performance evaluation [5]. It provides mobility

support with geographic awareness, which characterises the nature of end-user devices in

IoT, such as moving cars and users. EdgeCloudSim has been selected due to its suitability

of supported metrics and parameters in regard to the project aim stated in section 1.5. The

simulator uses three configuration files to compose different edge architectures, which are

as follows:

1. default_configuration.properties - contains key simulation parameters such as the

simulation time, number of mobile devices, network configuration, cloud datacentre

settings and simulation scenarios.

2. edge_devices.xml - consists of key-pair values that model the edge server topology.

It defines edge server characteristics such as its access points and server hosts [10].

Specifications of the VMs are available for configuring, such as its storage,

processing speed and the number of cores.

3. applications.xml - models the characteristics of IoT applications used. It defines

application properties such as task length, data size, active/idle period, and the

probability of cloud selection.

These configurations together provide full control of different edge computing scenarios.

Following the configuration is the execution of the experiment, which is done by stating

related files in a command line.

 11

3. Literature review

This chapter aims to present a critical appraisal of relevant literature and to summarise

existing solutions that address similar problems. The findings are classified according to the

architecture considered in the research – single-tier, two-tier, and two-tier with EO.

3.1 Single-tier

Single tier architecture exclusively uses the edge layer to serve its requests, where the end-

user device and the edge server is within the same WLAN [18].

Service time

Sonmez et al. [18] and Suryavansh et al. [19] designed a simulation-based experiment

using EdgeCloudSim for performance evaluation of a face recognition application and an

augmented reality application. Both papers proposed that for single-tier architecture, the

service time increases as the number of mobile devices increases. Suryavansh et al.

indicated that the service time increased from 2 to 4 seconds as the number of mobile

devices grew from 100 to 600. Single tier architecture has a limited number of edge servers -

therefore, no new tasks can be admitted if bottleneck occurs in popular locations due to

exhaustion of resources, which increases the service time [12].

The results of the above investigation agree with another study performed by Jha et al. [9],

where a self-driving application was simulated on an IoTSim-Edge simulator. The study

identified that as the processing is done in a time-shared manner, it leads to increased

service time.

Suryavansh et al. [19] studied the impact of the VM capacity on the service time of the

application. The finding shows that the service time increases with the reduction of the VM

capacity. With low VM capacity, edge servers can handle fewer tasks, hence it takes longer

for tasks to get processed.

Failed task

Sonmez et al. [5] proposed that the percentage of failed tasks due to VM capacity increases

as long as the WLAN bandwidth increases. As the bandwidth increases, tasks arrive at a

faster rate which causes the shortage of network resources, incurring network congestions

[12]. The edge servers face limitation in its VM resources, hence the percentage of failed

tasks increases.

 12

Additionally, Suryavansh et al. [19] stated that the decrease in the number of edge servers

due to device failure results in a computational overload in the functional servers. This

increases the percentage of failed tasks as it does not have sufficient computational capacity,

leading to a degradation of the application performance.

Latency

Gupta et al. [1] investigated the network congestion for a latency-sensitive online game

using iFogSim simulator. As the number of mobile devices increases, the load on the

network increases, leading to network congestion. Sonmez et al. [18] identified that the

communication latency for single-tier architecture is solely caused by WLAN delay, as it

does not encounter Wide Area Network (WAN) communication. WAN congestion introduces

significant communication latency, which makes real-time communication impossible for

time-sensitive applications.

Premsankar et al. [2] designed a testbed for GamingAnywhere cloud gaming platform, which

identified that the use of network edge servers gives significantly low latency of under 25ms.

The study identified that the public Amazon Cloud in Germany and Ireland incurs a delay

that is at least twice as much, compared to the edge servers. The use of closely located

servers is beneficial as it does not encounter a significant WAN delay caused by the long-

latency links.

Summary

It is concluded that offloading the workload to the edge nodes certainly improves the

application performance due to the benefit provided by its proximity. The resource provided

by the edge server is adequate, but not as sufficient as what is available from the infinitely

scalable cloud datacentre [12]. Hence, further offloading to a more resourceful facility is

desired.

 13

3.2 Two-tier

Service time

Jha et al. [9] proposed an IoTSim-Edge simulator, where they simulated a self-driving

application that utilises both the edge and the cloud server for processing. If a car moves

and goes out of the range of the current edge server, the processed data is transmitted to an

appropriate edge server. The communication time between the edge servers increases the

service time of the application, although it is balanced by the faster processing speed of the

two-tier architecture.

Sonmez et al. [18] examined the effect of task size on face recognition application’s service

time. The application requires high computational resources; hence the processing time

dominates the service time, especially when the task size is large. When the task size is

4000 Million Instructions (MI), single and two-tier architecture encounters computational

resource congestion, leading to longer processing time. For smaller task size of 250 MI, the

WAN delay accounts for most of the service time, and almost no failure happens during

processing as it has enough processing power.

Aljulayfi and Djemame [6] identified that increasing both the WLAN bandwidth and VM

processing speed leads to the reduced processing time as there is no congestion on edge

servers, hence no overload on the VM.

Failed task

A study by Aljulayfi and Djemame [6] showed that an increase in the number of edge servers

leads to a decreased percentage of failed tasks. More requests can be accepted, which are

then distributed across the edge nodes for efficient processing. Moreover, the percentage of

failed tasks decreases in the cloud as well, as fewer tasks are offloaded to the cloud - the

edge layer has sufficient computational resources, hence the need for cloud offloading

decreases.

However, more tasks being accepted increases the load on the VMs, leading to a saturation

of the VMs. There exists a trade-off between WLAN bandwidth and the task failure, as tasks

arriving at a faster rate causes more failure due to VM capacity.

The study showed that the failure due to the VM capacity can be mitigated by increasing the

VM processing speed. As long as the VM processing speed increases, the processing gets

done faster, preventing the queuing of the tasks. Sonmez et al. [5] argue that if the VM

utilisation is too high, the requested task cannot be accepted, leading to a high percentage

of failed tasks. Aljulayfi and Djemame [6] stated that increasing both the bandwidth and the

 14

VM processing speed improves the overall performance of the architecture, due to no

congestion in the WLAN and no overload on the VM.

Sonmez et al. [5] identified that the task failure increases dramatically for two-tier when the

WAN bandwidth is very low of 4 Mbps, due to WAN congestion. The communication for

cloud data processing can lead to WAN congestion, increasing the task failure by 25% in the

worst case.

Latency

According to Gupta et al. [1], the two-tier architecture has managed to keep its latency low

despite the increase in the number of devices, as most of the data-intensive communication

happens through low-latency links. In two-tier architecture, most tasks are sent to the edge

devices through WLAN, which Sonmez et al. [18] identified it to be a trivial reason to task

failure. On the other hand, the WAN delay dominates the network congestion, accounting for

more than 30% of the overall latency.

Gupta et al. [1] also identified that as the size of the edge server topology increases, the

average network delay reduces. More computational resources are made available for

processing; hence no specific edge node gets overly saturated. Aljulayfi and Djemame’s [6]

investigation indicated that the WLAN delay improves with the addition of the edge servers,

as there is no network congestion. In addition, the study stated that cloud datacentre also

benefits from the increase in the number of edge servers, as a smaller number of tasks are

sent to the cloud, reducing the WAN delay.

Summary

Overall, it can be concluded that the two-tier architecture outperforms the single-tier

architecture as it offloads some of the tasks to the cloud datacentre, relieving some of the

computational and networking resource limitations. However, a study by Liu et al. [12]

revealed the insufficiency of the two-tier architecture for compute-intensive and time-

sensitive mobile applications, proposing the need for a coordinated allocation of computing

and network resources.

 15

3.3 Two-tier with EO

To exploit the capabilities of computing resources, two-tier with EO architecture has been

proposed - it utilises the full resources of both the edge servers and the cloud datacentre

through effective coordination [12]. The orchestrator helps to provide different service to

various users, according to the requirements and the availabilities of the resources [20].

Service time

A study by Suryavansh et al. [19] identified the two-tier with EO architecture utilises the edge

servers as much as possible by load balancing, so that the data transmission to the cloud

only happens when the edge capacity is exhausted. The minimization of the requests sent to

the distant datacentre offsets the unsuitability of the cloud that arises due to the WAN delay,

reducing the service time. On the other hand, if the probability of task offload to the cloud is

high, the performance can be negatively impacted by the WAN delay that arises due to long-

latency link communication.

Aljulayfi and Djemame [6] pointed out that when the number of mobile devices is high, the

two-tier with EO architecture has significant improvement in the processing time compared

to single and two-tier architecture, as it balances the load across the VMs. In addition,

Sonmez et al. [5] examined that increased task size does not affect the service time as it has

enough computational resources for processing.

Failed task

Sonmez et al. [5] proposed that in two-tier with EO architecture, average task failure due to

mobility does not increase, as tasks are distributed and executed in a fast manner across the

edge nodes.

Latency

Premsankar et al. [2] proposed that a traffic flow control for the edge servers reduces the

service latency of the architecture while supporting for scalability. Firstly, the Edge

Orchestrator can forward computationally intensive tasks to VMs with higher processing

capabilities based on the need. Moreover, edge computing resources can be migrated to

support the mobility of end-user devices. The orchestrator enables a scalable and desirable

performance of the application by load balancing the tasks and resources based on the

requirements.

 16

Sonmez et al. [5] identified that as the orchestrator balances the load across computational

resources, the utilisation of the VMs is consistent among the nodes without any overloading

in particular VMs.

Summary

Overall, the studies highlighted the importance of two-tier with EO architecture consuming all

available edge servers, outperforming the singe and two-tier architectures as the VMs are

not overloaded and there exists no resource congestion.

This project will contribute to the research by addressing further relationships between the

parameters and the performance that have not been studied previously. Based on the

understanding and skills gained from this chapter, simulation experiments will be designed in

the next chapter.

 17

4. Design

This chapter details the design of the experiments that were constructed to investigate the

edge computing performance. Hypotheses are formulated, and experiment scenario with its

parameters are presented.

4.1 Hypotheses

The research conducts a performance evaluation of edge computing in relation to scalability.

A system is said to be scalable if it remains effective with no performance loss when

additional resources are added [27]. In other words, as the load condition increases, the

service should remain effective. In the scope of this investigation, the ‘effectiveness’ is

measured by evaluating the system's service time and percentage of failed tasks.

Two hypotheses have been formulated to help demonstrate the aim of the project. The

results of the experiments will validate the correctness of the hypotheses, identifying the

factors that affect the performance of the application. Hypotheses are as follows:

Hypothesis 1 – Increase in WLAN bandwidth and VM processing speed reduces the service

time.

Hypothesis 2 – Increase in the number of edge servers and VM capacity reduces the

percentage of failed tasks.

The combination of reduced service time and failed tasks will prove for the scalability of the

application, where the tasks are handled in a reasonable time and accuracy.

4.2 Experimental Design

4.2.1 Experiment’s Assumptions

The study will focus on the scenario of the face recognition application, as the parameter

values modelled in Table 2 is the most compatible with this scenario. Face recognition

application is a compute-intensive task, which requires a high volume of data upload [28].

The edge server processes the data and returns a relatively small-sized response back to

mobile devices [18]. It is assumed that the user sends a task and waits for the reply, instead

of sending successive requests [18]. The environment will be simulated for 30 minutes,

which is considered enough for the main events to have taken place. Moreover, each

experiment will be repeated five times to minimize the variation in the dataset to gain

statistical significance.

 18

4.2.2 Initial Experiment

An initial experiment will be conducted in order to identify the key parameters for the specific

scenario used. The application uploads 1500 Kilobytes (KB) of data and downloads 15 KB of

data. The users are assumed to be active for 45 seconds and idle for 15 seconds.

Additionally, the WAN and WLAN delay reflects the average latency values of real life, which

are 100 milliseconds (ms) and 5ms, respectively.

In order to avoid discrepancies arising from EdgeCloudSim, the initial experiment will

reproduce Sonmez et al.’s [18] experiments. Hence the configuration values have been

inspired by the literature [18], allowing for the verification and comparison of the results.

Table 3 illustrates the initial experiment specific parameters and their values.

Table 2. Simulation parameters

Parameter (Unit) Value

Simulation time (min) 30

Number of repetitions 5

Min. number of mobile devices 50

Max. number of mobile devices 250

Cloud processing speed
(MIPS)

20000

WAN propagation delay (ms) 100

WLAN internal delay (ms) 5

Probability of cloud selection 10%

Data upload size (KB) 1500

Data download size 15

Active period (sec) 45

Idle period (sec) 15

Dwell time in L1, L2, L3 (sec) 60,30,15

Table 3. Initial experiment parameters

Parameter (Unit) Value

WAN/ WLAN bandwidth
(Mbps)

20 / 300

Number of edge servers in
L1, L2, L3

2,4,8

VM processor speed (MIPS) 1000

VM capacity (KB) 50000

4.2.3 Experiment Design

In edge computing, there exists a number of parameters that needs investigation in three

different layers of the architecture, as illustrated in figure 2. The initial experiment identified

the significance of the computational power at the network edge, highlighting the importance

of VM capacity and the number of edge servers, see section 6.1. In addition, the WLAN

bandwidth and the VM processing speed has shown its influence on the network delay and

processing time, which will be examined further.

Four main parameters identified from the initial experiment will be used to test against the

hypotheses proposed in section 4.1. Table 4 illustrates the details of the configuration

values.

 19

Table 4. Description of parameters for hypotheses testing

Hypothesis Experiment Parameter Values

- 1 Initial experiment -

Hypothesis 1
2 Bandwidth (Mbps) 100 300 500

3 VM processing speed (MIPS) 1000 2000 3000

Hypothesis 2
4

Number of edge servers per
location

2 4 6

5 VM capacity (KB) 50000 75000 100000

1. An initial experiment is designed to identify the key parameters for the investigation

and to understand the behaviour of different architectures in edge computing.

2. Effect of WLAN bandwidth: is designed to investigate the effect of increasing the

bandwidth on network delay and the service time in a bigger scope.

3. Effect of VM processing speed: is designed to investigate the effect of increasing

the VM processing speed on the processing time.

4. Effect of edge servers: is designed to investigate the effect of increasing the number

of edge servers per location on the percentage of task failure due to mobility. It

examines the impact of increased server availability.

5. Effect of VM edge capacity: is designed to investigate the effect of increasing the

VM capacity on the number of failures, which will affect the server’s handling of

incoming tasks.

The combination of experiment 2 and 3 will test Hypothesis 1, and experiment 4 and 5

Hypothesis 2. By doing so, the study aims to evaluate the scalability, where it provides better

performance through reduced service time and percentage of failed tasks.

4.3 Performance Metrics

Considering various performance metrics is important as it helps us understand the

underlying behaviour and relationships in the data. In time-constrained Augmented Reality

application, the time taken for the provision of service plays a crucial role. Hence, one of the

performance metrics that will be investigated is the service time, which refers to the

processing time and the network delay. Furthermore, the percentage of failed tasks is

selected as another metric as the successfulness of the task processing is another important

factor in application performance. Moreover, the VM utilisation is considered to monitor the

workload on the VMs and how this impacts the performance.

 20

5. Implementation

This chapter illustrates how the experiments detailed in the previous section will be

implemented. It outlines the implementation environment, simulator details, and the program

used to analyse the results collected from the simulation.

5.1 Implementation Details

The experiment will run on a MacBook Pro with 2.5GHz Intel Core i5 and 8GB memory. The

IntelliJ platform will be used to configure, compile and run the experiment.

EdgeCloudSim version 2.0 will be used for the implementation, where different edge

computing scenarios can be modelled and tuned through the configuration files. A runner

script will be used to run the simulations in parallel, specifying the number of available cores

and iterations. The simulation results are saved as Comma Separated Values (CSV) per

iteration, as it eases the exporting and processing of the data [5].

5.2 Evaluation Metrics

Evaluation metrics for the experiment have been identified in section 4.3. They are used to

measure how well the scenario performed under different criteria. The primary reason for

using EdgeCloudSim [5] is its support for the various performance metrics, meaning that the

values of the chosen metric can be obtained directly in the form of numerical data.

In EdgeCloudSim, further decomposition of the main evaluation metric, service time, is

available as a combination of ‘network delay’ and ‘processing time’ metric. The network delay

is further divided into WAN and WLAN delay, which identifies the effect of different

networking parameters more evidently. Another important metric is the task failure, which is

supported via the percentage of failed tasks along with the failure reason. The VM utilisation

is illustrated as a percentage of how loaded the VMs are.

5.3 Result Visualisation

To visualise the results produced by the EdgeCloudSim simulator, MATLAB is used. Running

the simulation produces numerous log files, where individual files are specific to the

architecture, the number of mobile devices, and an application used. MATLAB plotter files

included in the simulator take the log files and generate graphs based on a chosen

performance metric. Various style, formats and error plotting schemes are deployed in

MATLAB, generating graphs that are appropriate for the data.

 21

6. Technical Evaluation

This chapter provides a technical evaluation of the simulation results of a face recognition

application. Graphical analysis of plots followed by justification and explanation will be

carried out. It tests the hypotheses formulated in the design chapter by contrasting it to the

results obtained. The y-axis of the graphs represents the evaluation metric and the x-axis

represents the load condition. In the remainder of the report, all graphs will display the

average of 5 iterations.

6.1 Initial Experiment

The graph displays the average of 5 iterations. From the statistical point of view, the

calculated standard deviation was 0.1472, which indicates that the data is centred around

the mean and hence is less variant. The standard deviation was used to show the indication

of errors, as error bars were too small to be seen in the graphs.

Percentage of failed tasks

(A) Percentage of failed tasks (B) Failure due to VM capacity (C) Failure due to mobility

Figure 3.1. Percentage of failed tasks and failure reason - Initial experiment

The results of the initial experiment show that the percentage of failed tasks for single and

two-tier increases rapidly as the load condition increases. In figure 3.1A, a steep increase in

failure can be observed for 150 and 175 devices for single and two-tier architecture,

respectively. The two-tier with EO architecture’s failed tasks remained constant around 7%,

providing a stable service.

The failure reason can be seen in figure 3.1B and 3.1C. Through the initial experiment, it

was identified that the network delay had no significant impact on the task failure for the

 22

particular configuration used. However, the percentage of failed tasks due to VM capacity

increased with the growth of the load condition. For single-tier architecture, 20% of tasks

failed due to VM capacity when the load condition was the highest. Two-tier architecture

faced a similar trend, although the failure percentage was slightly lower than the single-tier

architecture due to its additional computing resource, the cloud datacentre.

Two-tier with EO architecture was not affected by the VM capacity as tasks were distributed

to different processing facilities based on the application’s requirements and the system’s

capabilities.

Failure due to mobility happens when the user requiring face recognition leaves the WLAN

coverage area before receiving the response [5]. There is an increasing trend for all

architectures as the load increases, with single-tier having the highest failure percentage.

The VM capacity and the number of edge servers have been identified as important,

as it could reduce the percentage of failed tasks. Therefore, experiments will be

designed to investigate the effect of increasing the number of edge servers and VM capacity.

Service time

(A) Service time (B) Processing time

Figure 3.2. Average service time and processing time – Initial experiment

As figure 3.2A illustrates, the service time increases as long as the load condition increases.

The single-tier architecture has the longest service time, followed by the two-tier

architecture. Two-tier with EO architecture has a significantly lower service time, with a

stable trend as the load increases. To investigate the individual components of the service

time, two sub experiments exploring the processing time and the network delay have been

designed.

 23

Processing time

The processing time follows the same trend as the service time, showing an increasing trend

for all architectures – see figure 3.2B. The EO architecture provides the fastest response

with relatively low processing time compared to the other two architectures. It faces a slight

increase in processing time when the load condition is 200, which after 225 devices,

decreases again.

Network delay

(A) Average network delay (B) WLAN delay (C) WAN delay

Figure 3.3. Average network delay - Initial experiment

In figure 3.3, the network delay, which is composed of average WLAN and WAN delay, is

prominent in two-tier and two-tier with EO architectures. The EO architecture has the highest

WLAN delay of 0.022 seconds, whereas the single and two-tier architecture has a delay of

0.013 seconds, as seen in figure 3.3B. The single-tier architecture does not encounter WAN

delay, hence is 0, whereas the two-tier architectures face a high delay of 0.4 seconds as it

communicates with the cloud. Two-tier with EO architecture faces both WLAN and WAN at a

high rate, hence it has the highest network latency.

From this experiment, it can be derived that the main factor of service time lies in the

processing time, although the network delay contributes to an increased latency to some

extent. Even though the results indicate that the main cause of the communication latency is

due to WAN delay, investigating WAN would be meaningless for the single-tier architecture.

Therefore, the WLAN delay is selected as a key parameter for further investigation.

In the next section, the WLAN bandwidth and the VM processing speed will be further

investigated to examine the impact on the network delay and processing time,

respectively.

 24

6.2 Experiment Results

6.2.1 Effect of WLAN bandwidth

The experiment was designed to investigate the effect of changing the WLAN bandwidth on

the performance results. The simulation identified that the network delay decreased

slightly as the WLAN bandwidth increased but had a minor impact on other evaluation

metrics.

(A) 100 Mbps (B) 300 Mbps (C) 500 Mbps

Figure 4.1. Average WLAN delay – effect of WLAN bandwidth

Network delay specifies how long the data took to travel from one point to another. In edge

computing, the network delay is composed of two parts – WLAN used for edge node

communication and WAN for cloud communication. Figure 4.1 shows the impact of WLAN

delay as the load condition increases. For 100 Megabits per second (Mbps), all architectures

show an increasing trend as more tasks are being sent to the edge servers and the cloud

datacentre. Two-tier with EO architecture experiences 0.01 second higher delay than the

single and two-tier architectures, due to the extra communication needed for load balancing.

As the bandwidth increases, the WLAN delay decreases, and remains stable even with an

increasing load condition – see figure 4.1B. With increased WLAN bandwidth, the network

was able to handle the task transmission stably with its available networking power. The

communication time can be decreased as long as the network bandwidth increases,

leading to shorter service time.

Nevertheless, the percentage of failed tasks did not improve as the WLAN bandwidth

increased. A bottleneck has never occurred with the configuration used, concluding that the

WLAN bandwidth is not the main reason to failure. Furthermore, decreased

communication time did not lead to a significant reduction of service time as the WLAN delay

is a matter of just 0.01 seconds – it does not account for a big part of the service time.

 25

Summary of the effect of WLAN bandwidth

The effect of increasing the WLAN bandwidth was rather insignificant as the bandwidth

values used were sufficient for the application’s task load. Instead, the experiment suggests

that WLAN bandwidth is combined with another parameter that will complementarily improve

the performance. Alternatively, instead of reducing the communication delay, which is trivial,

decreasing the processing time would provide better service time. Thus, the next experiment

will be to increase the VM processing speed, aiming for lower processing time.

6.2.2 Effect of VM processing speed

The experiment studies the effect of increasing the VM processing speed. The processing

speed has increased from 1000 to 3000, with 1000 increments each time.

(A) 1000 MIPS (B) 2000 MIPS (C) 3000 MIPS

Figure 5.1. Average VM utilisation – effect of VM processing speed

It was observed that the VM utilisation decreases as the VM processing speed

increases. When the processing speed was 1000 MIPS, the utilisation was high meaning

that there were a lot of tasks being executed in the VMs, as seen in figure 5.1A. However, as

the processing speed increases to 2000 MIPS, the highest VM utilisation for single-tier

architecture is 16%, which compared to the 40% of 1000 MIPs, is significantly low. The tasks

are executed in a fast manner which leads to low VM utilisation, hence there are no

bottleneck or overload in the VMs, providing better performance.

Due to the better utilisation of VMs, the service time decreases for all tiers, as seen in

figure 5.2. Two-tier with EO architecture provides a stable service time despite the increase

in load condition, whereas the other architectures show an increasing trend as the number of

mobile devices increases. When 250 load condition for single-tier is chosen, increasing the

VM processing speed by 1000 MIPS led to reduced service time of 2.8 seconds to 1.22

seconds to 0.73 seconds.

 26

(A) 1000 MIPS (B) 2000 MIPS (C) 3000 MIPS

Figure 5.2. Average service time – effect of VM processing speed

However, in figure 5.2C, an unexpected trend is observed for two-tier with EO architecture

for 3000 MIPS. The service time is the highest when the load condition is the smallest, and it

gradually decreases. It has been examined that the network delay remains unchanged,

hence the problem lies in the processing time. A bug in the edge orchestrator might have

caused this odd behaviour when distributing and processing the request. Unfortunately, the

exact reason as to why the problem arose could not be formulated as there is limited

information about the load balancing scheme used in the simulator. However, a paper by

Tham and Chattopadhyay [22] proposes a scheme that may control the workload more

efficiently through a min-max optimisation problem.

In addition, a decrease in the percentage of failed tasks can be observed as the

processing speed increases. The initial experiment identified the VM capacity to be a big

part of the total failure. As the VM processing speed increases, the task failure due to

VM capacity became extremely low, under 1% for all architectures. This shows that the

increase in the VM processing speed results in a better successfulness of tasks, as the

requests are processed with no contention in the edge servers.

Summary of the effect of VM processing speed

This section has proven that further improvements in performance can be made by

increasing the edge server capability – by increasing the VM processing time. The next

experiment will examine the effect of increasing the edge node availability by varying the

number of edge servers.

 27

6.2.3 Effect of edge servers

The experiment was designed to identify how the number of edge servers per location will

impact the performance. There are three edge server locations for this experiment, and 2, 4

and 6 edge servers will be used for each sub-experiment. This results in a total of 6, 12, and

18 edge servers, which were variated from the initial experiment value to test for the

architecture scalability.

(A) 2 servers (B) 4 servers (C) 6 servers

Figure 6.1. Average processing time – effect of edge servers

It has been identified that as long as the number of edge server increases, the

processing time decreases. Two-tier architectures perform better than the single-tier, as it

has an additional cloud resource to offload to. Hence the VM overload is not as problematic

as the single-tier architecture. Moreover, the two-tier with EO architecture provides a

significantly better processing time for increased load condition.

The two-tier with EO architecture faces a bottleneck after 125 devices in figure 6.1A. The

processing time increased substantially, even when the orchestrator is supposedly balancing

the load efficiently. Although the network delay of 0.065 seconds accounts for the processing

time to some extent, the delay is trivial hence is negligible. The problem might have occurred

when the orchestrator was moving the data from one node to another, causing

communication overhead. A defect in the load-balancing scheme might have caused an

overhead, leading to a spike in the processing time.

 28

(A) 2 servers (B) 4 servers (C) 6 servers

Figure 6.2. Percentage of failed tasks on edge – effect of edge servers

The results showed that although there are more edge servers available, VM congestion is

inevitable as the servers have limited storage capacity and processing power. This is

evident primarily when there is a small number of available edge servers, 6.2A, which leads

to increased failed task on edge.

However, as the number of edge servers increased, the percentage of failed tasks on

the edge was significantly reduced for all architectures. This is because the offloading

points increases as the number of edge server increases, which means that there are

additional computational resources for task offloading. Two-tier with EO architecture

provides very low failed tasks, as it dynamically launches suitable VMs with sufficient power

while considering the geographic positions of the user and the edge server [29].

(A) Failure due to VM capacity (B) Failure due to mobility

Figure 6.3. Failure reason for 2 edge servers per location

A bottleneck observed in 200 load condition for two-tier with EO architecture in figure 6.3A

shows that even with a balanced and orchestrated workload, failure due to resource

limitations could happen.

 29

Figure 6.3 shows the decomposition of the failure reason. The EO architecture experienced

a high rate of failure mainly due to the VM capacity, especially after 200 devices. A

computational burden was experienced on the VMs after it reached its capacity,

leading to a task failure. In addition, the failure due to mobility increased drastically after

125 mobile devices for the EO architecture. VM congestion led to longer processing time,

causing the mobile devices to leave the area without receiving the response. In other

words, long processing time due to a lack of resources led to an increased probability

of failure due to mobility.

As for the VM utilisation, the single-tier architecture utilised 65% of its VM when the load

condition was high. Usage of exclusive edge servers leads to the saturation of resources

faster than the architectures that utilise the cloud, leading to overloading in VMs and inability

to process incoming tasks. Increasing the number of edge servers allowed for the

balanced use of the VMs, solving the problem of the high failed task for two-tier with

EO architecture. The workload is balanced between the edge server federations, exploiting

the full available resources.

Summary of the effect of the number of edge servers

The results identified that significant performance improvement can be achieved by

increasing the availability of the edge servers. However, the percentage of failed tasks for

single and two-tier architecture still increased as the load condition grew, due to the limited

capacity of the VMs. Therefore, further improvement in the edge server capacity is desired,

which the next section will investigate.

6.2.4 Effect of VM capacity

The VM capacity was adjusted to show the impact of improving the edge server capabilities

on the performance results. The results indicated that increasing the VM capacity by itself

does not improve the application performance.

The VM capacity used for the experiment were 50,000, 75,000, and 100,000 KB. As no clear

improvement was seen, the experiment was rerun with a lower VM capacity of 25,000 KB to

observe any change in performance.

 30

(A) Percentage of failed tasks (B) Failure due to VM capacity

Figure 7.1. Percentage of failed tasks for 75000 KB – effect of VM capacity

The change in VM capacity did not affect the percentage of failed tasks. All four

configurations provided the same trend illustrated in figure 7.1 – in terms of both the

percentage of failed tasks and failure due to VM capacity. The task failure for single-tier

architecture increased up to 26% as the load increased, followed by the two-tier architecture

with the same trend but with 20%. Two-tier with EO architecture has significantly low failure

percentage despite the growth in load condition, which none of it was caused by the VM

capacity as seen in figure 7.1B.

(A) 50000 KB (B) 75000 KB (C) 100000 KB

Figure 7.2. Average processing time – effect of VM capacity

The processing time increased as the load increased for all architectures, as seen in figure

7.2. However, varying the VM capacity did not reduce the processing time – three

results are nearly identical to each other. Moreover, the VMs were utilised at a constant

trend for all sub-experiments – thus, increasing the VM capacity did not lead to better

utilisation of VMs. The utilisation increased with increased load for all architectures,

meaning that more tasks are being processed inside the VMs.

 31

Summary of the effect of VM capacity

The set of experiments identified that for the configuration used, the initial value of 50,000

KB, or the lowered version of 25,000 KB was sufficient to handle the incoming tasks and

increasing it further did not affect the performance. EO architecture performed the best in

terms of its failed tasks and processing time, as it has sufficient capacity and the ability to

load balance the tasks, encountering less computational problems compared to the single

and two-tier architecture.

In order to exploit the full advantage of increased VM capacity, increasing the edge server

topology or increasing the bandwidth to allow for more incoming tasks in the edge is desired.

This synergistic scheme will help to utilise the benefits that increased VM capacity has to

offer, leading to a better performing application.

6.3 Findings

6.3.1 Findings Summary

Table 5 summarises the experimental results obtained from the investigation. It states the

relationship between the parameter and the performance metric and compares the findings

with the literature reviewed in chapter 3.

Table 5. Findings from the experiment and comparison with the literature review

Section Parameter Findings

6.2.1
WLAN

bandwidth

- Increased bandwidth leads to decreased communication

time, hence reduced service time – this agrees with the

investigation performed by [6].

- The bandwidth values used were sufficient for the scenario

hence no bottleneck occurred – confirmed by [5] and [9].

As the effect is minor, complementing it with another

parameter will provide better performance - [6] showed an

improved performance of the architecture by combining the

WLAN bandwidth with increased VM processing speed.

- EO architecture suffered from the highest network delay,

but the overall service time was complemented by reduced

processing time due to distributed processing power.

6.2.2

VM

processing

speed

- Increased VM processing speed leads to better utilisation

of VMs, hence reduced service time – this agrees with [5],

[12], [19].

- Increased VM processing speed also leads to less failure

due to VM capacity. Therefore it achieves a reduced

percentage of failed tasks – this is agreed by [6].

- EO architecture’s quality of service remained stable with

the increasing load condition.

 32

6.2.3
Number of

edge servers

- Increased number of edge servers provides additional

computing resources. There exists no more congestion

leading to a reduced percentage of failed tasks and

processing time – is studied in [6], [10], [19], which showed

a performance improvement as the number increased.

- EO architecture provided the best performance. However,

when the available edge servers were low, it faced a

computational burden, leading to performance degradation.

6.2.4 VM capacity

- Increased VM capacity had little effect on the performance

due to the initial value’s sufficiency. Could be combined

with different parameters to maximise the advantage of

large VM capacity.

- EO architecture performed especially well in terms of a

failed task. The processing time remained reasonably low,

although it showed an increasing trend as the load

increases.

6.3.2 Hypotheses Verification

The hypothesis stated in section 4.1 will be verified based on the findings of the experiment.

Table 6. Hypotheses verification

Number Hypothesis Verification

 Hypothesis 1 Increase in WLAN

bandwidth and VM

processing speed

reduces the service

time.

- Increasing the bandwidth lead to the

improvement of service time, although the

reduction was not significant.

- Increasing the VM processing speed

contributed to reducing the service time to a

great extent.

- Both parameters have proven to be effective

in reducing service time. Therefore, the

hypothesis holds true for this experiment.

Hypothesis 2 Increase in the

number of edge

servers and VM

capacity reduces

the percentage of

failed tasks.

- Increasing the number of edge servers

significantly reduced the percentage of failed

tasks, validating hypothesis 2.

- VM capacity did not affect the percentage of

failed tasks, disproving hypothesis 2.

- The results partially confirm hypothesis 2.

 33

6.3.3 Significant Parameters

To summarise, EdgeCloudSim simulator was used to investigate the effect of computational

and networking system parameters on the scalability of application performance. Four

different parameters have been investigated in this research – 1) WLAN bandwidth, 2) VM

processing speed, 3) number of edge servers and 4) VM capacity. Three main

performance metrics selected in section 4.3 were the percentage of failed tasks and service

time.

The most apparent performance improvement in terms of both percentage of failed tasks

and service time was achieved by increasing the VM processing speed, followed by the

number of edge servers. In other words, increasing the computational power at the

network edge through faster processing and low utilisation allowed for smoother and

accurate processing of tasks.

On the other hand, the WLAN bandwidth and VM capacity had a minor impact on application

performance. Although the WLAN bandwidth improved the network delay to some extent, as

the percentage that network delay accounts for the total service time is small, it had little

effect on the overall results. Furthermore, increasing the VM capacity by itself did not

improve the failure rate nor the service time.

From a further investigation conducted to identify the parameter to be combined, it was

determined that experiment 6.2.1, which varied the WLAN bandwidth, had the highest rate of

failure due to VM capacity. This suggests that combining the VM capacity and WLAN

bandwidth could fulfil the shortages of each other, improving the performance

synergistically.

Increased WLAN bandwidth would lead to more tasks arriving at the edge server at a faster

rate, allowing for the full exploitation of extra capacity the VM has. The edge servers will be

able to handle a greater volume of tasks without the congestion in the node, providing a

better quality of service in terms of both the service time and the percentage of failure.

6.4 Recommendations

1. Importance of EO

In general, using the two-tier with EO architecture always provides better performance, as it

has the ability to balance the increasing workload. Hence, it is recommended that this

architecture is utilised for the application to scale. However, it is recommended that two-tier

architecture without the EO is utilised in the following scenarios:

- If the available WLAN bandwidth is small, the network delay that incurs when

orchestrating the load might affect the performance. Hence, it is recommended not to

 34

utilise the load-balancing scheme. The simulation experiment identified it to be 100

Mbps.

- If the number of edge servers is exceptionally low, to minimise communication

overhead on already congested edge nodes. The simulation experiment identified it

to be 2 servers.

2. Devising the Edge Architecture

When implementing the edge architecture, it is important to consider the characteristics of

the application to configure the resources accordingly. Less latency and failed tasks are

essentially achieved by having more resources. In other words, there exists a trade-off

between available resources and the performance of the application. Therefore, depending

on the application requirements and characteristics such as task size, the edge deployment

and task offloading scheme should be considered carefully.

For applications with short dwell time per location, such as driverless cars and aircraft

control, the service time is extremely important. Therefore, the focus should be on VM

processing speed, which identified to have a significant impact on achieving reduced service

time. Moreover, if the task load is heavy but there is not enough resource at the edge, it

might be more valuable to handle the analysis centrally in the cloud [30] – which would give

much more accuracy but comes with a slight latency.

3. Management of Edge Nodes

Because the project environment was simulated, it was assumed that the edge servers were

not prone to failures. However, if the edge servers are up and running, various factors can

influence the edge server availability, which is crucial for application performance. Due to the

heterogeneity and distributed nature of the edge servers, they are not as well maintained as

the centralised cloud datacentre [19]. The lack of maintenance could mean that the edge is

prone to failures, which severely impacts the availability of edge servers. Hence, the

management of the nodes through software updates rather than hardware is recommended.

 35

7. Project evaluation

This chapter conducts an evaluation of the project as a whole, reflecting on the project plan

that was devised in the introduction chapter. It includes related works and future

recommendations as well.

7.1 Evaluation

7.1.1 Aims and Objectives

1. Identify the key issues in relation to edge computing performance.

Based on a detailed review of edge computing literature, important parameters for each of

single-tier, two-tier and two-tier with EO architectures have been identified. The relationship

between the parameters and the performance was proposed, which was further

strengthened by an initial experiment that revealed 4 key parameters specific to the scenario

used.

2. Design and implement different experiments through the configuration of key

parameters.

A suite of experiment was designed based on the key parameters identified from the

previous objective and was implemented iteratively through EdgeCloudSim.

3. Analyse and interpret the performance results.

Based on a graphical analysis of the simulation results, observed trends were explained and

justified. Conclusions were drawn, and hypotheses were verified, fulfilling the objective.

4. Propose further recommendations on the architecture of edge computing

applications.

The project identified significant parameters in relation to scalability and proposed a

combination of parameters for better performance. However, it lacked to provide

configuration values that are feasible and applicable in real-life, as it greatly depends on the

application used and resources available. It further proposed a desirable architecture for

different scenarios and provided further insight into the edge server management, widening

the context of the research.

The investigation met the vast majority of the project objectives through an empirical

investigation. By achieving these objectives, the aim of the experiment which was to

investigate the effect of computational and networking system parameters on the application

performance results, have been fulfilled.

 36

7.1.2 Project Management

In addition to evaluating the success of the project aims and objectives, the project can also

be evaluated in terms of the methodology used and project management.

An iterative methodology of repeating the experimental design, implementation and data

collection, and analysis and interpretation was adopted for the study. Numerous revisions

have been made in the design of the experiments to find a set of parameters that provide

distinguishable performance results, thanks to the repeatable nature of the simulation. Based

on the analysis of the results, extended experiments with different configurations were

implemented to seek further inference of the phenomenon. For example, an experiment that

showed little or no effect had been rerun with an extreme configuration value to observe for

any changes or justification.

In terms of the technology used, EdgeCloudSim was utilised to conduct various simulations.

It has addressed the needs of parameters and evaluation metrics used for the experiment

and allowed for ease of producing graphical results.

Furthermore, the timeline shown in the Gantt chart (figure 1) was not strictly adhered to. The

experiment design took longer than expected as it was constantly revisited to make

improvements based on the experiment results. The design, implementation and analysis

took place simultaneously and iteratively, in which the project benefited from the nature of an

agile methodology allowing for an adaptive timeline.

7.1.3 Limitations

There exists a range of limitations related to the research problem, that has been identified,

which are as follows:

1. The number of mobile devices used in the analysis was limited. Although it provided

with some significant relationships from the data, it would have been more favourable

if a larger number of mobile devices were used, to ensure the validity of

generalisation when proving for scalability. Researching and configuring the values

based on the estimated number of devices used for real IoT application could have

contributed practical importance of the research.

2. More specific hypotheses could have been formulated in order to test and verify the

findings more accurately. The current hypotheses combine two parameters each,

leading to a formulation of less focused statements to investigate for.

3. The number of parameters and the values investigated was limited due to the time

constraint of the research. Additional performance evaluation of the combination of

parameters could have given more confidence to the claim made in 6.3.1, which is

now formulated as a suggestion.

 37

4. Some anomalies and unexpected behaviour concerning the two-tier with EO

architecture could not be justified, due to the lack of understanding in the load

balancing scheme. It could have been an important indication that is significant for

the performance.

7.2 Related work

This section places the presented work in line with related work to identify the importance of

the study within the field of investigation. The detailed positioning of the work and

comparison with prior research is presented in appendix C.

7.2.1 Prior Work

The evaluation of the edge computing architectures has been conducted, as the subject is

still on its developing stage. Numerous parameters need further investigation, hence

extending the research and validating related works had shed some light on the better

understanding of the performance of different edge architectures.

Although extensive work has been done for the generic idea of edge computing paradigm

and scenarios of the application deployment, not a lot of simulation-based experiments have

considered all three architectures of edge only, edge and cloud, and edge and cloud with an

orchestrator. The study evaluates the varying performance of the application based on the

parameter configuration, with consideration of the architecture and its scalability.

The performance evaluation in [6], [19] utilises the closest methodology, as it investigates

the impact of increasing one parameter value at a time. This allows for the clear visualisation

of the trend, as it isolates the parameter being tested from other factors that might affect the

performance.

Essentially, the project contributes to the research in the field by exploring the impact of

more parameters with various configuration values. In some cases, the parameters are

combined to maximise the performance, suggesting possible considerations when designing

such systems.

7.2.2 Future work

Future works that could further enhance the study of edge computing include:

1. Further investigation into the load balancing scheme - EO architecture’s load

balancing scheme could be investigated further by studying the effect of task migration

between the edge servers, focusing on the network delay incurring from the

orchestration.

 38

2. Extended experiments – More experiments could be conducted using parameters that

have not been explored in this report. Combination of parameters could be used to

further identify the relationship and trade-offs between the parameters.

3. Real-life implementation of the simulation – The simulation could be deployed on a

real experimental lab with appropriate resources, to test the application on physical

datacentres and to compare the simulation results to real-life values.

4. Consideration of various applications – The performance evaluation carried out is

highly related to specific application scenario used. Modelling of different applications is

desired as they have different requirements, such as task size, dwell time, and the

number of devices. Therefore, this will help to compare the performance of various

application scenarios, enriching the understanding of edge computing and the

deployment of IoT services.

7.3 Personal Reflection

The project started off as somewhat broad and vague, as I could not land myself a clear goal

and an application scenario for the simulation. As I conducted more literature review and

experiments, the concept consolidated, and I deeply delved into the project. The project’s

aim and goals slowly came together, which provided me with strong guidance and

confidence in proceeding the research. Generally, the time was managed well, and

milestones were achieved by setting up personal deadlines, helping me to stay on track and

focused.

There were some unexpected technical challenges of using the simulation software. Due to

the lack of documentation of EdgeCloudSim, to understand some features and construction,

various attempts of source code inspection and modification were made. Moreover,

MATLAB errors and failure of graph production was especially frustrating, as there were no

troubleshooting guide or pre-existing solutions. By trial and error, proper error handling code

had been added, which produced successful plots to be used for the project. The technical

difficulties incurred in a slight delay of the experiment implementation, which was not

desirable, but was handleable.

Upon the completion of the project, I have learned how to critically approach a research

problem, in terms of both literature review and technical implementation. It has given me the

confidence and skills for future research and insight into career plans. The opportunity to

fully engage in a research project of my own interest was a grateful and rewarding

experience, which will be valuable for my future endeavours.

 39

7.4 Legal, Ethical, Social and Professional Issues

This section covers the legal, ethical, social and professional issues that might arise

throughout the span of the project.

Legal Issues

The project involves EdgeCloudSim simulator, which is licensed under the GNU General

Public License v3.0 [31]. The license states the freedom to share and modify the work, and

that it remains free software to all users meaning that the same freedom is given to the

recipients of the software. Copyright and license notices have been preserved in the

repository, meeting the legal issues.

Ethical Issues

The project implementation does not involve any external data, as it is delivered through a

simulator which eliminates the factor of human interaction. Sensitive data such as images of

people, medical images or religious texts were not used, and no external data was analysed.

However, when deployed in real-life, the storage and processing of the sensor data must be

addressed ethically and responsibly.

Social Issues

The project was developed for academic and experimental purposes. However, the

implications of edge computing, such as the reduction of energy consumption could have a

great impact on building a more sustainable society.

Professional Issues

The project strived to achieve high quality in both the process and results of the work,

following an adequate ethical practice. It took precautions to make reliable judgement and

analysis throughout the process, which complies with the ACM code of ethics and

professional conduct [32].

 40

8. Conclusion

The project has thoroughly examined the performance of various edge computing

architectures based on the computational and networking system parameters, in relation to

the scalability of a face recognition application. Series of experiments were designed and

implemented to test the effect of chosen parameters against the service time and percentage

of failed tasks, demonstrating edge computing’s capabilities.

The experiment results demonstrated that the best performance could be achieved by

utilising the two-tier with EO architecture with high VM processing speed and many edge

servers. The performance evaluation in relation to scalability serves for the rapidly growing

nature of the data generated by the IoT devices. Hence, the interpreted simulation results will

play an important role in the deployment of future IoT application design, allowing for a more

effective and efficient service provision.

To conclude, the project has contributed to the extended research of the performance of

edge computing domain by simulating different models, thereby identifying the ideal

architecture.

 41

List of References

[1] H. Gupta, A. Vahid dastjerdi, S. K. Ghosh, and R. Buyya, ‘iFogSim: A toolkit for modeling
and simulation of resource management techniques in the Internet of Things, Edge and
Fog computing environments’, Software: Practice and Experience, vol. 47, no. 9, pp.
1275–1296, 2017, doi: 10.1002/spe.2509.

[2] G. Premsankar, M. Di Francesco, and T. Taleb, ‘Edge Computing for the Internet of
Things: A Case Study’, IEEE Internet of Things Journal, vol. 5, no. 2, pp. 1275–1284,
Apr. 2018, doi: 10.1109/JIOT.2018.2805263.

[3] W. Shi and S. Dustdar, ‘The Promise of Edge Computing’, Computer, vol. 49, no. 5, pp.
78–81, May 2016, doi: 10.1109/MC.2016.145.

[4] C. Sharma, ‘Edge Computing Framework’, p. 28, 2019.
[5] C. Sonmez, A. Ozgovde, and C. Ersoy, ‘EdgeCloudSim: An environment for

performance evaluation of Edge Computing systems’, in 2017 Second International
Conference on Fog and Mobile Edge Computing (FMEC), May 2017, pp. 39–44, doi:
10.1109/FMEC.2017.7946405.

[6] A. F. Aljulayfi and K. (orcid:- Djemame, ‘Simulation of an augmented reality application
for driverless cars in an edge computing environment’, 2019.

[7] G. Dodig-Crnkovic, ‘Scientific Methods in Computer Science’, p. 16.
[8] T. P. Morris, I. R. White, and M. J. Crowther, ‘Using simulation studies to evaluate

statistical methods’, Statistics in Medicine, vol. 38, no. 11, pp. 2074–2102, 2019, doi:
10.1002/sim.8086.

[9] D. N. Jha et al., ‘IoTSim-Edge: A simulation framework for modeling the behavior of
Internet of Things and edge computing environments’, Software: Practice and
Experience, vol. n/a, no. n/a, doi: 10.1002/spe.2787.

[10] ‘EdgeCloudSim: An environment for performance evaluation of edge computing systems
- Sonmez - 2018 - Transactions on Emerging Telecommunications Technologies -
Wiley Online Library’. https://onlinelibrary.wiley.com/doi/10.1002/ett.3493 (accessed
Feb. 21, 2020).

[11] P. Mell and T. Grance, ‘The NIST Definition of Cloud Computing’, National Institute of
Standards and Technology, NIST Special Publication (SP) 800-145, Sep. 2011. doi:
https://doi.org/10.6028/NIST.SP.800-145.

[12] Y. Liu, M. J. Lee, and Y. Zheng, ‘Adaptive Multi-Resource Allocation for Cloudlet-Based
Mobile Cloud Computing System’, IEEE Transactions on Mobile Computing, vol. 15,
no. 10, pp. 2398–2410, Oct. 2016, doi: 10.1109/TMC.2015.2504091.

[13] M. Salama, Y. Elkhatib, and G. S. Blair, ‘IoTNetSim: A Modelling and Simulation
Platform for End-to-End IoT Services and Networking’, Proceedings of the 12th
IEEE/ACM International Conference on Utility and Cloud Computing, pp. 251–261,
Dec. 2019, doi: 10.1145/3344341.3368820.

[14] M. Chiang and T. Zhang, ‘Fog and IoT: An Overview of Research Opportunities’, IEEE
Internet of Things Journal, vol. 3, no. 6, pp. 854–864, Dec. 2016, doi:
10.1109/JIOT.2016.2584538.

[15] W. Yu et al., ‘A Survey on the Edge Computing for the Internet of Things’, IEEE Access,
vol. 6, pp. 6900–6919, 2018, doi: 10.1109/ACCESS.2017.2778504.

[16] M. Satyanarayanan, ‘The Emergence of Edge Computing’, Computer, vol. 50, no. 1, pp.
30–39, Jan. 2017, doi: 10.1109/MC.2017.9.

[17] P. Garcia Lopez et al., ‘Edge-centric Computing: Vision and Challenges’, SIGCOMM
Comput. Commun. Rev., vol. 45, no. 5, pp. 37–42, Sep. 2015, doi:
10.1145/2831347.2831354.

[18] C. Sonmez, A. Ozgovde, and C. Ersoy, ‘Performance evaluation of single-tier and two-
tier cloudlet assisted applications’, in 2017 IEEE International Conference on

 42

Communications Workshops (ICC Workshops), May 2017, pp. 302–307, doi:
10.1109/ICCW.2017.7962674.

[19] S. Suryavansh, C. Bothra, M. Chiang, C. Peng, and S. Bagchi, ‘Tango of edge and cloud
execution for reliability’, in MECC ’19, 2019, doi: 10.1145/3366614.3368103.

[20] M. Satyanarayanan, P. Bahl, R. Caceres, and N. Davies, ‘The Case for VM-Based
Cloudlets in Mobile Computing’, IEEE Pervasive Computing, vol. 8, no. 4, pp. 14–23,
Oct. 2009, doi: 10.1109/MPRV.2009.82.

[21] P. Michalák and P. Watson, ‘PATH2iot: A Holistic, Distributed Stream Processing
System’, in 2017 IEEE International Conference on Cloud Computing Technology and
Science (CloudCom), Dec. 2017, pp. 25–32, doi: 10.1109/CloudCom.2017.35.

[22] C.-K. Tham and R. Chattopadhyay, ‘A load balancing scheme for sensing and analytics
on a mobile edge computing network’, in 2017 IEEE 18th International Symposium on
A World of Wireless, Mobile and Multimedia Networks (WoWMoM), Jun. 2017, pp. 1–9,
doi: 10.1109/WoWMoM.2017.7974307.

[23] T. H. Noor, S. Zeadally, A. Alfazi, and Q. Z. Sheng, ‘Mobile cloud computing: Challenges
and future research directions’, Journal of Network and Computer Applications, vol.
115, pp. 70–85, Aug. 2018, doi: 10.1016/j.jnca.2018.04.018.

[24] X. Zeng, S. K. Garg, P. Strazdins, P. P. Jayaraman, D. Georgakopoulos, and R. Ranjan,
‘IOTSim: A simulator for analysing IoT applications’, Journal of Systems Architecture,
vol. 72, pp. 93–107, Jan. 2017, doi: 10.1016/j.sysarc.2016.06.008.

[25] T. Qayyum, A. W. Malik, M. A. Khan Khattak, O. Khalid, and S. U. Khan, ‘FogNetSim++:
A Toolkit for Modeling and Simulation of Distributed Fog Environment’, IEEE Access,
vol. 6, pp. 63570–63583, 2018, doi: 10.1109/ACCESS.2018.2877696.

[26] R. N. Calheiros, R. Ranjan, A. Beloglazov, C. A. F. D. Rose, and R. Buyya, ‘CloudSim: a
toolkit for modeling and simulation of cloud computing environments and evaluation of
resource provisioning algorithms’, Software: Practice and Experience, vol. 41, no. 1,
pp. 23–50, 2011, doi: 10.1002/spe.995.

[27] M. van Steen and A. S. Tanenbaum, Distributed systems, Third edition (Version 3.01
(2017)). London: Pearson Education, 2017.

[28] N. Muslim and S. Islam, ‘Face recognition in the Edge Cloud’, in ICISPC 2017, 2017, doi:
10.1145/3132300.3132310.

[29] M. Waqas, Y. Niu, M. Ahmed, Y. Li, D. Jin, and Z. Han, ‘Mobility-Aware Fog Computing
in Dynamic Environments: Understandings and Implementation’, IEEE Access, vol. 7,
pp. 38867–38879, 2019, doi: 10.1109/ACCESS.2018.2883662.

[30] N. Heath, ‘What you need to know before implementing edge computing’, ZDNet.
https://www.zdnet.com/article/what-you-need-to-know-before-implementing-edge-
computing/ (accessed May 02, 2020).

[31] C. Sonmez, CagataySonmez/EdgeCloudSim. 2020.
[32] D. Gotterbarn, ‘The Code affirms an obligation of computing professionals to use their

skills for the benefit of society.’, ACM. https://www.acm.org/code-of-ethics (accessed
May 03, 2020).

 43

Appendix A. External Material

EdgeCloudSim simulator developed by Sonmez et al. was used for the project, and can be

accessed via:

https://github.com/chaerim-kim/EdgeCloudSim

To compile the application:

./compile.sh

1. To run the default configuration singly:

./runner.sh out_folder default_config edge_devices.xml applications.xml α

- ./runner.sh to run the shell script

- out_folder to define a folder for simulation result to be outputted to

- edge_devices.xml to define edge devices file to be used

- applications.xml to define application file to be used

- α to set the iteration number

2. Or to run the simulation in parallel:

./run_scenarios.sh α β

- ./run_scenarios.sh takes the runner.sh and runs several iterations in parallel

- α defines the number of processors

- β defines the number of iterations to be performed

The simulator outputs the results of 5 different iterations as can be seen in Figure 1, where

‘ite.log’ files are provided as a human-readable log of the simulation results, and files in

folder ite’n’ to be fed to MATLAB for plot generation, as seen in Figure 2.

Figure 1. Simulation output Figure 2. Simulation results to be fed into MATLAB

https://github.com/chaerim-kim/EdgeCloudSim

 44

Appendix B. Literature Review – Summary

- 1 – single-tier architecture

- 2.1 – two-tier architecture

- 2.2 – two-tier with EO architecture

Table 1. The positioning of the project

Author Simulator Application Metrics
Architecture
1 2.1 2.2

This report EdgeCloudSim

- Augmented reality -
face recognition

- Average service time

- Average processing
time

- Average network delay

- Percentage of failed
tasks

- Average VM utilisation

X X X

Sonmez et
al. [18]

EdgeCloudSim
- Augmented reality -

face recognition
- Percentage of failed

tasks

- Average service time
X X X

Aljulafi and
Djemame [6]

EdgeCloudSim

- Augmented reality –
driverless cars

- Percentage of failed
tasks

- Average network delay
- Average processing

time

 X X

Suryavansh
et al. [19]

EdgeCloudSim
- Augmented reality

application
- Percentage of failed

tasks

- Average service time
X X X

Gupta et al.
[1]

iFogSim

- Latency sensitive
online game

- Intelligent
surveillance
through distributed
camera networks

- Average latency

- Network use

- Energy consumption
X X

Jha et al. [9] IoTSim-Edge
- Healthcare system

- Smart buildings
- Self-driving cars

- Average latency

- Energy consumption

- Average service time
X X X

Premsankar
et al. [2]

GamingAnywhe
re cloud gaming
platform

- Virtual and
augmented reality –
Neverball, a 3D
arcade game

- Response delay
(Processing delay +
playout delay +
network delay)

X

 45

Appendix C. Initial Gantt Chart

The original Gantt chart designed in October is illustrated below.

Figure 3. Original Gantt Chart

 46

Appendix D. Full Simulation Results

1. Effect of WLAN bandwidth

Bandwidth 100 Mbps 300 Mbps 500 Mbps

Service

time

Processing

time

Network

delay

Average

failure

 47

Failure due

to VM

capacity

Failure due

to mobility

VM

utilisation

2. Effect of VM processing speed

Processing

speed
1000 MIPS 2000 MIPS 3000 MIPS

Service
time

 48

Processing
time

Network
delay

Average
failure

Failure due
to VM
capacity

 49

Failure due
to mobility

VM
utilisation

3. Effect of edge servers

Number of

edge servers
2 4 6

Service

time

Processing

time

 50

Network

delay

Average

failure

Failure due

to VM

capacity

Failure due

to mobility

 51

VM

utilisation

4. Effect of VM capacity

Capacity 50000 KB 75000 KB 95000 KB

Service

time

Processing

time

Network

delay

 52

Average

failure

Failure due

to VM

capacity

Failure due

to mobility

VM

utilisation

	Summary
	Acknowledgements
	List of Acronyms
	Table of Contents
	1. Introduction
	1.1 Project Background
	1.2 Problem Statement
	1.3 Possible Solution
	1.4 How to demonstrate the quality of solution
	1.5 Aim
	1.6 Objectives
	1.7 Deliverables
	1.8 Project Management
	1.8.1 Methodology
	1.8.2 Tasks, Milestones and Timeline
	1.8.3 Risk Assessment

	2. Background Research
	2.1 Cloud Computing
	2.2 Internet of Things (IoT)
	2.2.1 Internet of Things
	2.2.2 IoT and Edge Computing

	2.3 Edge Computing
	2.3.1 Edge Computing Architectures
	2.3.2 Advantages of Edge Computing

	2.4 Edge Computing Simulator

	3. Literature review
	3.1 Single-tier
	3.2 Two-tier
	3.3 Two-tier with EO

	4. Design
	4.1 Hypotheses
	4.2 Experimental Design
	4.2.1 Experiment’s Assumptions
	4.2.2 Initial Experiment
	4.2.3 Experiment Design

	4.3 Performance Metrics

	5. Implementation
	5.1 Implementation Details
	5.2 Evaluation Metrics
	5.3 Result Visualisation

	6. Technical Evaluation
	6.1 Initial Experiment
	6.2 Experiment Results
	6.2.1 Effect of WLAN bandwidth
	6.2.2 Effect of VM processing speed
	6.2.3 Effect of edge servers
	6.2.4 Effect of VM capacity

	6.3 Findings
	6.3.1 Findings Summary
	6.3.2 Hypotheses Verification
	6.3.3 Significant Parameters

	6.4 Recommendations

	7. Project evaluation
	7.1 Evaluation
	7.1.1 Aims and Objectives
	7.1.2 Project Management
	7.1.3 Limitations

	7.2 Related work
	7.2.1 Prior Work
	7.2.2 Future work

	7.3 Personal Reflection
	7.4 Legal, Ethical, Social and Professional Issues

	8. Conclusion
	List of References
	Appendix A. External Material
	Appendix B. Literature Review – Summary
	Appendix C. Initial Gantt Chart
	Appendix D. Full Simulation Results

