Permalink
8e72855 Apr 18, 2018
2 contributors

Users who have contributed to this file

@yuyu2172 @Hakuyume
204 lines (165 sloc) 6.96 KB
from __future__ import division
import numpy as np
from chainer.backends import cuda
from chainercv.utils.bbox._nms_gpu_post import _nms_gpu_post
if cuda.available:
import cupy as cp
@cp.util.memoize(for_each_device=True)
def _load_kernel(kernel_name, code, options=()):
assert isinstance(options, tuple)
kernel_code = cp.cuda.compile_with_cache(code, options=options)
return kernel_code.get_function(kernel_name)
def non_maximum_suppression(bbox, thresh, score=None,
limit=None):
"""Suppress bounding boxes according to their IoUs.
This method checks each bounding box sequentially and selects the bounding
box if the Intersection over Unions (IoUs) between the bounding box and the
previously selected bounding boxes is less than :obj:`thresh`. This method
is mainly used as postprocessing of object detection.
The bounding boxes are selected from ones with higher scores.
If :obj:`score` is not provided as an argument, the bounding box
is ordered by its index in ascending order.
The bounding boxes are expected to be packed into a two dimensional
tensor of shape :math:`(R, 4)`, where :math:`R` is the number of
bounding boxes in the image. The second axis represents attributes of
the bounding box. They are :math:`(y_{min}, x_{min}, y_{max}, x_{max})`,
where the four attributes are coordinates of the top left and the
bottom right vertices.
:obj:`score` is a float array of shape :math:`(R,)`. Each score indicates
confidence of prediction.
This function accepts both :obj:`numpy.ndarray` and :obj:`cupy.ndarray` as
an input. Please note that both :obj:`bbox` and :obj:`score` need to be
the same type.
The type of the output is the same as the input.
Args:
bbox (array): Bounding boxes to be transformed. The shape is
:math:`(R, 4)`. :math:`R` is the number of bounding boxes.
thresh (float): Threshold of IoUs.
score (array): An array of confidences whose shape is :math:`(R,)`.
limit (int): The upper bound of the number of the output bounding
boxes. If it is not specified, this method selects as many
bounding boxes as possible.
Returns:
array:
An array with indices of bounding boxes that are selected. \
They are sorted by the scores of bounding boxes in descending \
order. \
The shape of this array is :math:`(K,)` and its dtype is\
:obj:`numpy.int32`. Note that :math:`K \\leq R`.
"""
xp = cuda.get_array_module(bbox)
if xp == np:
return _non_maximum_suppression_cpu(bbox, thresh, score, limit)
else:
return _non_maximum_suppression_gpu(bbox, thresh, score, limit)
def _non_maximum_suppression_cpu(bbox, thresh, score=None, limit=None):
if len(bbox) == 0:
return np.zeros((0,), dtype=np.int32)
if score is not None:
order = score.argsort()[::-1]
bbox = bbox[order]
bbox_area = np.prod(bbox[:, 2:] - bbox[:, :2], axis=1)
selec = np.zeros(bbox.shape[0], dtype=bool)
for i, b in enumerate(bbox):
tl = np.maximum(b[:2], bbox[selec, :2])
br = np.minimum(b[2:], bbox[selec, 2:])
area = np.prod(br - tl, axis=1) * (tl < br).all(axis=1)
iou = area / (bbox_area[i] + bbox_area[selec] - area)
if (iou >= thresh).any():
continue
selec[i] = True
if limit is not None and np.count_nonzero(selec) >= limit:
break
selec = np.where(selec)[0]
if score is not None:
selec = order[selec]
return selec.astype(np.int32)
def _non_maximum_suppression_gpu(bbox, thresh, score=None, limit=None):
if len(bbox) == 0:
return cp.zeros((0,), dtype=np.int32)
n_bbox = bbox.shape[0]
if score is not None:
order = score.argsort()[::-1].astype(np.int32)
else:
order = cp.arange(n_bbox, dtype=np.int32)
sorted_bbox = bbox[order, :]
selec, n_selec = _call_nms_kernel(
sorted_bbox, thresh)
selec = selec[:n_selec]
selec = order[selec]
if limit is not None:
selec = selec[:limit]
return selec
_nms_gpu_code = '''
#define DIVUP(m,n) ((m) / (n) + ((m) % (n) > 0))
int const threadsPerBlock = sizeof(unsigned long long) * 8;
__device__
inline float devIoU(float const *const bbox_a, float const *const bbox_b) {
float top = max(bbox_a[0], bbox_b[0]);
float bottom = min(bbox_a[2], bbox_b[2]);
float left = max(bbox_a[1], bbox_b[1]);
float right = min(bbox_a[3], bbox_b[3]);
float height = max(bottom - top, 0.f);
float width = max(right - left, 0.f);
float area_i = height * width;
float area_a = (bbox_a[2] - bbox_a[0]) * (bbox_a[3] - bbox_a[1]);
float area_b = (bbox_b[2] - bbox_b[0]) * (bbox_b[3] - bbox_b[1]);
return area_i / (area_a + area_b - area_i);
}
extern "C"
__global__
void nms_kernel(const int n_bbox, const float thresh,
const float *dev_bbox,
unsigned long long *dev_mask) {
const int row_start = blockIdx.y;
const int col_start = blockIdx.x;
const int row_size =
min(n_bbox - row_start * threadsPerBlock, threadsPerBlock);
const int col_size =
min(n_bbox - col_start * threadsPerBlock, threadsPerBlock);
__shared__ float block_bbox[threadsPerBlock * 4];
if (threadIdx.x < col_size) {
block_bbox[threadIdx.x * 4 + 0] =
dev_bbox[(threadsPerBlock * col_start + threadIdx.x) * 4 + 0];
block_bbox[threadIdx.x * 4 + 1] =
dev_bbox[(threadsPerBlock * col_start + threadIdx.x) * 4 + 1];
block_bbox[threadIdx.x * 4 + 2] =
dev_bbox[(threadsPerBlock * col_start + threadIdx.x) * 4 + 2];
block_bbox[threadIdx.x * 4 + 3] =
dev_bbox[(threadsPerBlock * col_start + threadIdx.x) * 4 + 3];
}
__syncthreads();
if (threadIdx.x < row_size) {
const int cur_box_idx = threadsPerBlock * row_start + threadIdx.x;
const float *cur_box = dev_bbox + cur_box_idx * 4;
int i = 0;
unsigned long long t = 0;
int start = 0;
if (row_start == col_start) {
start = threadIdx.x + 1;
}
for (i = start; i < col_size; i++) {
if (devIoU(cur_box, block_bbox + i * 4) >= thresh) {
t |= 1ULL << i;
}
}
const int col_blocks = DIVUP(n_bbox, threadsPerBlock);
dev_mask[cur_box_idx * col_blocks + col_start] = t;
}
}
'''
def _call_nms_kernel(bbox, thresh):
n_bbox = bbox.shape[0]
threads_per_block = 64
col_blocks = np.ceil(n_bbox / threads_per_block).astype(np.int32)
blocks = (col_blocks, col_blocks, 1)
threads = (threads_per_block, 1, 1)
mask_dev = cp.zeros((n_bbox * col_blocks,), dtype=np.uint64)
bbox = cp.ascontiguousarray(bbox, dtype=np.float32)
kern = _load_kernel('nms_kernel', _nms_gpu_code)
kern(blocks, threads, args=(cp.int32(n_bbox), cp.float32(thresh),
bbox, mask_dev))
mask_host = mask_dev.get()
selection, n_selec = _nms_gpu_post(
mask_host, n_bbox, threads_per_block, col_blocks)
return selection, n_selec