Skip to content
Permalink
Branch: master
Find file Copy path
Find file Copy path
Fetching contributors…
Cannot retrieve contributors at this time
358 lines (309 sloc) 12.5 KB
import torch
import torch.nn as nn
import torch.nn.functional as F
import numpy as np
import scipy.linalg
from . import thops
class _ActNorm(nn.Module):
"""
Activation Normalization
Initialize the bias and scale with a given minibatch,
so that the output per-channel have zero mean and unit variance for that.
After initialization, `bias` and `logs` will be trained as parameters.
"""
def __init__(self, num_features, scale=1.):
super().__init__()
# register mean and scale
size = [1, num_features, 1, 1]
self.register_parameter("bias", nn.Parameter(torch.zeros(*size)))
self.register_parameter("logs", nn.Parameter(torch.zeros(*size)))
self.num_features = num_features
self.scale = float(scale)
self.inited = False
def _check_input_dim(self, input):
return NotImplemented
def initialize_parameters(self, input):
self._check_input_dim(input)
if not self.training:
return
assert input.device == self.bias.device
with torch.no_grad():
bias = thops.mean(input.clone(), dim=[0, 2, 3], keepdim=True) * -1.0
vars = thops.mean((input.clone() + bias) ** 2, dim=[0, 2, 3], keepdim=True)
logs = torch.log(self.scale/(torch.sqrt(vars)+1e-6))
self.bias.data.copy_(bias.data)
self.logs.data.copy_(logs.data)
self.inited = True
def _center(self, input, reverse=False):
if not reverse:
return input + self.bias
else:
return input - self.bias
def _scale(self, input, logdet=None, reverse=False):
logs = self.logs
if not reverse:
input = input * torch.exp(logs)
else:
input = input * torch.exp(-logs)
if logdet is not None:
"""
logs is log_std of `mean of channels`
so we need to multiply pixels
"""
dlogdet = thops.sum(logs) * thops.pixels(input)
if reverse:
dlogdet *= -1
logdet = logdet + dlogdet
return input, logdet
def forward(self, input, logdet=None, reverse=False):
if not self.inited:
self.initialize_parameters(input)
self._check_input_dim(input)
# no need to permute dims as old version
if not reverse:
# center and scale
input = self._center(input, reverse)
input, logdet = self._scale(input, logdet, reverse)
else:
# scale and center
input, logdet = self._scale(input, logdet, reverse)
input = self._center(input, reverse)
return input, logdet
class ActNorm2d(_ActNorm):
def __init__(self, num_features, scale=1.):
super().__init__(num_features, scale)
def _check_input_dim(self, input):
assert len(input.size()) == 4
assert input.size(1) == self.num_features, (
"[ActNorm]: input should be in shape as `BCHW`,"
" channels should be {} rather than {}".format(
self.num_features, input.size()))
class LinearZeros(nn.Linear):
def __init__(self, in_channels, out_channels, logscale_factor=3):
super().__init__(in_channels, out_channels)
self.logscale_factor = logscale_factor
# set logs parameter
self.register_parameter("logs", nn.Parameter(torch.zeros(out_channels)))
# init
self.weight.data.zero_()
self.bias.data.zero_()
def forward(self, input):
output = super().forward(input)
return output * torch.exp(self.logs * self.logscale_factor)
class Conv2d(nn.Conv2d):
pad_dict = {
"same": lambda kernel, stride: [((k - 1) * s + 1) // 2 for k, s in zip(kernel, stride)],
"valid": lambda kernel, stride: [0 for _ in kernel]
}
@staticmethod
def get_padding(padding, kernel_size, stride):
# make paddding
if isinstance(padding, str):
if isinstance(kernel_size, int):
kernel_size = [kernel_size, kernel_size]
if isinstance(stride, int):
stride = [stride, stride]
padding = padding.lower()
try:
padding = Conv2d.pad_dict[padding](kernel_size, stride)
except KeyError:
raise ValueError("{} is not supported".format(padding))
return padding
def __init__(self, in_channels, out_channels,
kernel_size=[3, 3], stride=[1, 1],
padding="same", do_actnorm=True, weight_std=0.05):
padding = Conv2d.get_padding(padding, kernel_size, stride)
super().__init__(in_channels, out_channels, kernel_size, stride,
padding, bias=(not do_actnorm))
# init weight with std
self.weight.data.normal_(mean=0.0, std=weight_std)
if not do_actnorm:
self.bias.data.zero_()
else:
self.actnorm = ActNorm2d(out_channels)
self.do_actnorm = do_actnorm
def forward(self, input):
x = super().forward(input)
if self.do_actnorm:
x, _ = self.actnorm(x)
return x
class Conv2dZeros(nn.Conv2d):
def __init__(self, in_channels, out_channels,
kernel_size=[3, 3], stride=[1, 1],
padding="same", logscale_factor=3):
padding = Conv2d.get_padding(padding, kernel_size, stride)
super().__init__(in_channels, out_channels, kernel_size, stride, padding)
# logscale_factor
self.logscale_factor = logscale_factor
self.register_parameter("logs", nn.Parameter(torch.zeros(out_channels, 1, 1)))
# init
self.weight.data.zero_()
self.bias.data.zero_()
def forward(self, input):
output = super().forward(input)
return output * torch.exp(self.logs * self.logscale_factor)
class Permute2d(nn.Module):
def __init__(self, num_channels, shuffle):
super().__init__()
self.num_channels = num_channels
self.indices = np.arange(self.num_channels - 1, -1, -1).astype(np.long)
self.indices_inverse = np.zeros((self.num_channels), dtype=np.long)
for i in range(self.num_channels):
self.indices_inverse[self.indices[i]] = i
if shuffle:
self.reset_indices()
def reset_indices(self):
np.random.shuffle(self.indices)
for i in range(self.num_channels):
self.indices_inverse[self.indices[i]] = i
def forward(self, input, reverse=False):
assert len(input.size()) == 4
if not reverse:
return input[:, self.indices, :, :]
else:
return input[:, self.indices_inverse, :, :]
class InvertibleConv1x1(nn.Module):
def __init__(self, num_channels, LU_decomposed=False):
super().__init__()
w_shape = [num_channels, num_channels]
w_init = np.linalg.qr(np.random.randn(*w_shape))[0].astype(np.float32)
if not LU_decomposed:
# Sample a random orthogonal matrix:
self.register_parameter("weight", nn.Parameter(torch.Tensor(w_init)))
else:
np_p, np_l, np_u = scipy.linalg.lu(w_init)
np_s = np.diag(np_u)
np_sign_s = np.sign(np_s)
np_log_s = np.log(np.abs(np_s))
np_u = np.triu(np_u, k=1)
l_mask = np.tril(np.ones(w_shape, dtype=np.float32), -1)
eye = np.eye(*w_shape, dtype=np.float32)
self.register_buffer('p', torch.Tensor(np_p.astype(np.float32)))
self.register_buffer('sign_s', torch.Tensor(np_sign_s.astype(np.float32)))
self.l = nn.Parameter(torch.Tensor(np_l.astype(np.float32)))
self.log_s = nn.Parameter(torch.Tensor(np_log_s.astype(np.float32)))
self.u = nn.Parameter(torch.Tensor(np_u.astype(np.float32)))
self.l_mask = torch.Tensor(l_mask)
self.eye = torch.Tensor(eye)
self.w_shape = w_shape
self.LU = LU_decomposed
def get_weight(self, input, reverse):
w_shape = self.w_shape
if not self.LU:
pixels = thops.pixels(input)
dlogdet = torch.slogdet(self.weight)[1] * pixels
if not reverse:
weight = self.weight.view(w_shape[0], w_shape[1], 1, 1)
else:
weight = torch.inverse(self.weight.double()).float()\
.view(w_shape[0], w_shape[1], 1, 1)
return weight, dlogdet
else:
self.p = self.p.to(input.device)
self.sign_s = self.sign_s.to(input.device)
self.l_mask = self.l_mask.to(input.device)
self.eye = self.eye.to(input.device)
l = self.l * self.l_mask + self.eye
u = self.u * self.l_mask.transpose(0, 1).contiguous() + torch.diag(self.sign_s * torch.exp(self.log_s))
dlogdet = thops.sum(self.log_s) * thops.pixels(input)
if not reverse:
w = torch.matmul(self.p, torch.matmul(l, u))
else:
l = torch.inverse(l.double()).float()
u = torch.inverse(u.double()).float()
w = torch.matmul(u, torch.matmul(l, self.p.inverse()))
return w.view(w_shape[0], w_shape[1], 1, 1), dlogdet
def forward(self, input, logdet=None, reverse=False):
"""
log-det = log|abs(|W|)| * pixels
"""
weight, dlogdet = self.get_weight(input, reverse)
if not reverse:
z = F.conv2d(input, weight)
if logdet is not None:
logdet = logdet + dlogdet
return z, logdet
else:
z = F.conv2d(input, weight)
if logdet is not None:
logdet = logdet - dlogdet
return z, logdet
class GaussianDiag:
Log2PI = float(np.log(2 * np.pi))
@staticmethod
def likelihood(mean, logs, x):
"""
lnL = -1/2 * { ln|Var| + ((X - Mu)^T)(Var^-1)(X - Mu) + kln(2*PI) }
k = 1 (Independent)
Var = logs ** 2
"""
return -0.5 * (logs * 2. + ((x - mean) ** 2) / torch.exp(logs * 2.) + GaussianDiag.Log2PI)
@staticmethod
def logp(mean, logs, x):
likelihood = GaussianDiag.likelihood(mean, logs, x)
return thops.sum(likelihood, dim=[1, 2, 3])
@staticmethod
def sample(mean, logs, eps_std=None):
eps_std = eps_std or 1
eps = torch.normal(mean=torch.zeros_like(mean),
std=torch.ones_like(logs) * eps_std)
return mean + torch.exp(logs) * eps
class Split2d(nn.Module):
def __init__(self, num_channels):
super().__init__()
self.conv = Conv2dZeros(num_channels // 2, num_channels)
def split2d_prior(self, z):
h = self.conv(z)
return thops.split_feature(h, "cross")
def forward(self, input, logdet=0., reverse=False, eps_std=None):
if not reverse:
z1, z2 = thops.split_feature(input, "split")
mean, logs = self.split2d_prior(z1)
logdet = GaussianDiag.logp(mean, logs, z2) + logdet
return z1, logdet
else:
z1 = input
mean, logs = self.split2d_prior(z1)
z2 = GaussianDiag.sample(mean, logs, eps_std)
z = thops.cat_feature(z1, z2)
return z, logdet
def squeeze2d(input, factor=2):
assert factor >= 1 and isinstance(factor, int)
if factor == 1:
return input
size = input.size()
B = size[0]
C = size[1]
H = size[2]
W = size[3]
assert H % factor == 0 and W % factor == 0, "{}".format((H, W))
x = input.view(B, C, H // factor, factor, W // factor, factor)
x = x.permute(0, 1, 3, 5, 2, 4).contiguous()
x = x.view(B, C * factor * factor, H // factor, W // factor)
return x
def unsqueeze2d(input, factor=2):
assert factor >= 1 and isinstance(factor, int)
factor2 = factor ** 2
if factor == 1:
return input
size = input.size()
B = size[0]
C = size[1]
H = size[2]
W = size[3]
assert C % (factor2) == 0, "{}".format(C)
x = input.view(B, C // factor2, factor, factor, H, W)
x = x.permute(0, 1, 4, 2, 5, 3).contiguous()
x = x.view(B, C // (factor2), H * factor, W * factor)
return x
class SqueezeLayer(nn.Module):
def __init__(self, factor):
super().__init__()
self.factor = factor
def forward(self, input, logdet=None, reverse=False):
if not reverse:
output = squeeze2d(input, self.factor)
return output, logdet
else:
output = unsqueeze2d(input, self.factor)
return output, logdet
You can’t perform that action at this time.