
-1-

Using GTNET and NS-3 for
Cyber-Physical Simulation

Rev: 24th April 2023

Cyber-security Simulation using NS-3

-2-

Contents
1 CASE INFORMATION..4

2 INTRODUCTION ..9

2. ...9

2.1. Example scenario..9

2.2. Installing NS-3 .. 11

3 SYSTEM MODELLING ... 12

3. ... 12

3.1. RTDS simulation system model ... 12

3.2. NS-3 Communication Network Simulation model .. 14

3.3. Interfacing RTDS with NS-3... 15

4 PEAK SHAVING APPLICATION .. 17

4. ... 18

4.1. Running Denial of Service (DoS) and Man-In-The-Middle attacks (MITM) 18

4.2. Running the case CyberSecSimPeakShaveUDP in RTDS ... 19

4.3. Running the UDP Cyber-security simulation in NS-3 ... 22

4.4. Running the case CyberSecSimPeakShaveTCP in RTDS .. 27

4.5. Running the TCP Cyber-security simulation in NS-3 .. 28

5 USING NS-3 TO MODIFY DNP3 PACKETS ... 33

5. ... 33

5.1. Running the simulation in NS-3 ... 33

5.2. Decoding the simulation file ... 35

5.3. Virtual NS-3 network created ... 41

5.4. Example scenario: GTNET_DNP ... 42

5.1. Running the NS-3 DNP3 simulation.. 44

5.2. Setting and Monitoring DNP3 values.. 44

5.3. Stating the new values to be assigned for DNP3 .. 44

6 USING NS-3 TO MODIFY MODBUS PACKETS .. 49

6. ... 49

6.1. Example scenario: Modbus_Communication... 49

6.2. Stating the new values to be assigned for MODBUS ... 50

7 USING NS-3 TO MODIFY IEC104 PACKETS.. 53

7. ... 53

7.1. Example scenario: IEC104_Communication... 53

Cyber-security Simulation using NS-3

-3-

7.2. Stating the new values to be assigned for IEC104 .. 55

8 USING NS-3 TO MODIFY PMU PACKETS .. 58

8. ... 58

8.1. Example scenario: PMU_Communication ... 58

8.2. Stating the new values to be assigned for PMU ... 60

9 USING NS-3 TO MODIFY GOOSE Frames ... 63

9. ... 64

9.1. Example scenario: GOOSE_Communication .. 64

9.2. Stating the new values to be assigned for GOOSE .. 66

10 USING NS-3 TO MODIFY Sampled value Frames.. 69

10. ... 70

10.1. Example scenario: SV_Communication ... 70

11 CHANGES MADE TO NS-3.29.. 74

11. ... 74

11.1. Writing an Application to Create a TCP server and Client... 74

11.2. Writing an Application to Create a TCP SYN flood attack ... 76

11.3. Writing an Application to change TCP and UDP packets on the Wire 77

11.4. Modifications made in arp-l3-protocol to enable ARP spoofing 77

12 References.. 78

Cyber-security Simulation using NS-3

-4-

1 CASE INFORMATION
Case Name CyberSecSimPeakShaveUDP.rtfx

Location \Example Cases\11 Cybersecurity\NS-3 peak
shave\CyberSecSimPeakShaveUDP.rtfx

Created by Chamara Devanarayana

Revision 00 – April 2023

Target Cyber-Physical simulations using NS-3

Minimum Hardware
1 x NovaCor Chassis with at least 2 enabled cores

1 x GTNETx2

RSCAD Version RSCAD FX 2.0 and above

Keywords Cyber-security, GTNET-SKT

Purpose Demonstrate a Man-In-The-Middle attack and a DoS attack on an
energy market application using the GTNET-SKT UDP protocol.

Case Name CyberSecSimPeakShaveTCP.rtfx

Location
\Example Cases\11 Cybersecurity\NS-3 peak
shave\CyberSecSimPeakShaveTCP.rtfx

Created by Chamara Devanarayana

00 – April 2023 00 – April 2023

Target Cyber-Physical simulations using NS-3

Minimum Hardware
1 x NovaCor Chassis with at least 1 enabled core

1 x GTNETx2

RSCAD Version RSCAD FX 2.0 and above

Keywords Cyber-security, GTNET-SKT

Cyber-security Simulation using NS-3

-5-

Purpose Demonstrate a Man-In-The-Middle attack and a DoS attack on an
energy market application using the GTNET-SKT TCP protocol.

Case Name GTNET_DNP.rtfx

Location
Tutorial Cases\03 Protection and Automation\06 GTNET
Applications\06 SCADA\06a GTNET_DNP\GTNET_DNP.rtfx

Created by Dinesh Gurusinghe

Revision 18 – June 2021

Target Cyber-Physical simulations using NS-3

Minimum Hardware
1 x NovaCor Chassis with at least 1 enabled core

1 x GTNETx2

RSCAD Version RSCAD FX 2.0 and above

Keywords Cyber-security, GTNET-DNP

Purpose Demonstrate a Man-In-The-Middle attack on DNP3 SCADA
application.

Case Name Modbus_Communication.rtfx

Location
\Tutorial Cases\03 Protection and Automation\06 GTNET
Applications\06 SCADA\06c
GTNET_MODBUS\Modbus_Communication.rtfx

Created by Sachintha Kariyawasam

Revision 20 – September 2022

Target Cyber-Physical simulations using NS-3

Minimum Hardware
1 x NovaCor Chassis with at least 1 enabled core

1 x GTNETx2

Cyber-security Simulation using NS-3

-6-

RSCAD Version RSCAD FX 2.0 and above

Keywords Cyber-security, GTNET-MODBUS

Purpose Demonstrate a Man-In-The-Middle attack on MODBUS SCADA
application.

Case Name IEC104_Communication.rtfx

Location
\Tutorial Cases\03 Protection and Automation\06 GTNET
Applications\06 SCADA\06b GTNET_104\
IEC104_Communication.rtfx

Created by Dinesh Gurusinghe

Revision 12 – December 2022

Target Cyber-Physical simulations using NS-3

Minimum Hardware
1 x NovaCor Chassis with at least 1 enabled core

1 x GTNETx2

RSCAD Version RSCAD FX 2.0 and above

Keywords Cyber-security, GTNET-IEC104

Purpose Demonstrate a Man-In-The-Middle attack on IEC104 SCADA
application.

Case Name PMU_Communication.rtfx

Location
\Tutorial Cases\03 Protection and Automation\06 GTNET
Applications\05 Synchrophasors\05a
GTNET_PMU\PMU_Communication.rtfx

Created by Dinesh Gurusinghe

Cyber-security Simulation using NS-3

-7-

Revision 21 – August 2021

Target Cyber-Physical simulations using NS-3

Minimum Hardware
1 x NovaCor Chassis with at least 1 enabled core

1 x GTNETx2

RSCAD Version RSCAD FX 2.0 and above

Keywords Cyber-security, GTNET-PMU

Purpose Demonstrate a Man-In-The-Middle attack on Synchrophasors to
report false data.

Case Name GOOSE_Communication.rtfx

Location \Example Cases\11
Cybersecurity\GTNET_GSE\GOOSE_Communication.rtfx

Created by Dinesh Gurusinghe

Revision 20 – March 2023

Target Cyber-Physical simulations using NS-3

Minimum Hardware
1 x NovaCor Chassis with at least 1 enabled core

1 x GTNETx2

RSCAD Version RSCAD FX 2.0 and above

Keywords Cyber-security, GTNET-GSE

Purpose Demonstrate a Man-In-The-Middle attack on GOOSE

Case Name SV_Communication.rtfx

Location
\Tutorial Cases\03 Protection and Automation\06 GTNET
Applications\01 Sampled Values\01a
GTNET_SV\SV_Communication.rtfx

Cyber-security Simulation using NS-3

-8-

Created by Sachintha Kariyawasam

Revision 4 – August 2021

Target Cyber-Physical simulations using NS-3

Minimum Hardware
1 x NovaCor Chassis with at least 1 enabled core

1 x GTNETx2

RSCAD Version RSCAD FX 2.0 and above

Keywords Cyber-security, GTNET-SV

Purpose Demonstrate a Man-In-The-Middle attack on Sampled values
protocol.

Cyber-security Simulation using NS-3

-9-

2 INTRODUCTION
The traditional electric grid consisted of generation plants, transformers, tripping devices

and feeders. The generation was mostly centralized, and the control was manual. The

emergence of smart grid enabled two-way communication between the controller and

assets in real time. This made it possible to include intermittent renewable energy resources

such as wind and solar energy. Furthermore, it also enabled secondary energy markets,

where the customer are paid for the limited energy they generate and the time shifting of

their power consumption. However, this connectivity of controllers and assets through

computer networks created the possibility of cyber-attacks on the power systems. The

readers can refer [1] for a detailed survey of the possible attacks. In this report, we

demonstrate how to simulate MITM attack and a DoS attack in an open source network

simulator called NS-3. Then we show how to monitor the effects of these attacks in the

power system using the RTDSTM with the aid of an example scenario. In this scenario, the

Distribution system operator (DSO) makes use of secondary energy markets to carry out

peak shaving.

2.1. Example scenario
In this report we are using a scenario that was presented in [2] at the Cyber-physical security

for low-voltage grids website.

The Distributed energy resources (DERs) are customers that provide flexibility to the

Distribution system operator (DSO) by mean of time shifting the load or providing small

amounts of power. However, it is not feasible for the DSO to contract these DERs directly.

Therefore, they make use of an entity called the Aggregator. The aggregators contract a

portfolio of DERs. These aggregators in turn have contracts with the DSO. Whenever the DSO

needs to shed some load these aggregators are informed of the shedding needed. The

Cyber-security Simulation using NS-3

-10-

aggregator operates the technical infrastructure to communicate with the DER units. These

aggregators are financially responsible to the DSO in case the level of load shedding could

not be delivered.

In this report, we are simulating a smart grid where the peak load of the distribution

transformer is controlled by means of load shedding or increased generation at the DERs. In

this scenario, the communication network consists of the following network connections:

• A remote terminal unit (RTU) and the DSO.

• DSO and the Aggregator

• The Aggregator and the DERs.

The RTU communicates data on the load level at the distribution transformer to the DSO.

This communication network is modelled in NS-3. We can also model it in DeterLab which is

a testbed containing actual computers. The power network related to this scenario is

modelled in the RTDS.

Similar co-simulation setups have been used in the recent literature. In [2], Liu et al.

conducted a co-simulation using RTDS and NS-3. In this simulation they made the state

information of an IEEE 14-bus system available using the phasor measurement unit (PMU)

and based on the information they performed closed loop control actions. Then the effect

of DoS attacks of different magnitudes and MITM attacks were observed. In [3], Chen et al.

analyzed the effects of cyber-attacks on the power system transient stability of bus voltage

which uses a static VAR compensator. Here, they use an 11-bus test system modelled in

RTDS. The cyber network was modelled in OPNET. Hahn et al. in [4] analyzed the cyber-

physical impacts of malicious breaker tripping at generators observing the synchronicity of

generator rotor angle, DoS attacks on the DNP3 servers and coordinated cyber-attacks. Here,

the power system is modelled in RTDS and the cyber system is modelled in the PowerCyber

testbed of the Iowa state university.

 The remainder of this report is organized as follows. First, we introduce our system model

which consists of the power system and the cyber-network with brief explanations on the

Cyber-security Simulation using NS-3

-11-

attacks that we are running. Next we explain how to connect the RTDS simulator to NS-3.

Then we show how to simulate the cyber-physical system using the NS-3 simulator to model

the network and attacks and RTDS simulator to model the power system

2.2. Installing NS-3
Follow the steps stated below to install NS-3 in you Ubuntu Linux PC.

1. In an Ubuntu Linux PC clone the git repository
https://github.com/chamara84/ns3_cybersec.git

2.2.1. Installing the pre-requisites:

1. Go to ./ns3_cybersec/ns-allinone-3.29
2. ./configurePreReq
3. export CXXFLAGS="-Wall"
4. ./build.py

2.3. Create the ns3 configuration file for Protocol data
modification

1. Go to /etc : cd /etc

2. Create folder ns3: sudo mkdir ns3

3. Change permissions for your username: chown <username>:<username> ns3

4. Go to folder ns3

5. Move the file ns3.conf in the ns3_cybersec folder to /etc/ns3/ folder.

https://github.com/chamara84/ns3_cybersec.git

Cyber-security Simulation using NS-3

-12-

3 SYSTEM MODELLING
The scenario is modelled in two parts. The first part is the power system model in the RTDS.

The second is the communication network model in the NS-3. We are providing the details

of these two models in the next two subsections. The power system model is shown in Figure

1.

Figure 1 Power system model

3.1. RTDS simulation system model
Here, we are modelling a power system having four DERs. Each DER is represented with a Dynamic source

and a Dynamic load. Then the grid transmission is modelled as a power source of 4kV. The Distribution

transformer steps it down to 120V. The power factor was assumed to be 0.8 and we needed to keep the

load of the distribution transformer at 6MVA. This load level is measured in real time using the P & Q

meter model in the RSCAD.

Cyber-security Simulation using NS-3

-13-

Figure 2 Power system simulation model

Cyber-security Simulation using NS-3

-14-

3.2. NS-3 Communication Network Simulation model

Figure 3 Network simulation model

We model all the network components using the Node type in the NS-3 network simulator. Then all the

connections between nodes other than the DERs, the Attacker and the Switch in the Smart Grid1 are

modelled as point-to-point links. The connection between DERS, Attacker and the Switch are modelled as a

CSMA link. CSMA link is the closest possible connection type to the Ethernet connection in the NS-3. This

Ethernet type connection is required to carryout the Man-In-The-Middle attacks using ARP spoofing.

Router R1 acts as the gateway for the DERs to reach the Aggregator 1. We used the UDP sockets as the

transport layer protocol for the communication. As one can see in Figure 3, the nodes DER1, DER2, DER3,

DER4, Aggregator1, DSO and the RTU Grid1 exists in both NS-3 and the RTDS simulator. This is because the

data is actually generated and consumed at the RTDS Simulator. NS-3 is just there to make the packets

under go simulated network conditions before they reenter the RTDS simulator. We have made some

modification to the original NS-3 version 3.29 so that it is able to carry out attacks such as ARP spoofing,

TCP SYN flood, Capturing the packet at IP level and making modifications. These modifications are

explained in the Section 7 and the source code can be made available for those who are interested. In the

R1

Cyber-security Simulation using NS-3

-15-

Networking simulation conducted, we have used the emulated networking interface of NS-3.

3.3. Interfacing RTDS with NS-3
The NS-3 simulator need to run on a Linux machine, which has two or more network interface cards. The

network connectivity between the RTDS and this Linux machine is achieved through the GTNET card of the

RTDS simulator. The connection setup is shown in Figure 4.

Figure 4 Interfacing the RTDS with NS-3

Here, as shown on Figure 4, the simulated nodes Ingress and egress are directly connected

to each of the Ethernet ports on the machines. These nodes acts as the entry and exit points

Cyber-security Simulation using NS-3

-16-

to and from the simulated network. For an example if we want the data to traverse from

DER1 to the Aggregator, the flow of data happens in the following order:

1. The Data is calculated at the RTDS simulator

2. GTNET interface corresponding to DER1 sends data to the Ingress interface

3. Ingress node forwards the data to the simulated DER1 Node

4. The data travers the network and gets to the simulated Aggregator node

5. Simulated aggregator node sends the data to the Egress node

6. Egress node forwards the data to the GTNET interface corresponding to the

Aggregator node at RTDS simulator.

The other communication between the nodes happen in a similar fashion.

Cyber-security Simulation using NS-3

-17-

4 PEAK SHAVING APPLICATION
In this application all the calculations are performed using a script running in the RSCAD. The data flows of

this application are as follows:

1. The control system reads measurement data from Remote Terminal Units (RTU) in the field (e.g. in

substations) and delivers the data to the distribution management system (DMS).

2. A state estimator in the DMS calculates power flow estimates for all grid assets. If any of the assets

are loaded above the limit, the DMS calculates the inverted difference as a reference signal.

3. The DMS sends a reference signal to one or several aggregators. In the case where several

Aggregators are jointly providing the service, the signal will be split and be sent to all contracted

aggregators corresponding to each aggregator’s proportional share in the installed capacity or

service commitment.

4. The aggregators requests flexibility information from all DER units in its portfolio.

5. The DER units respond with a flexibility prognosis.

6. The aggregator performs an internal optimization of its portfolio, in order to be able to deliver the

service in the cheapest and most optimal way.

7. The aggregator sends set-points to all connected units and requests flexibility updates.

8. The DER units respond with an updated flexibility prognosis.

9. Smart meters at the DER owner provide measurements to the DSO.

In the simulation case, we simulate a system with a single Aggregator. The following calculations are

carried out using the runtime script in the RTDS simulator:

1. Calculation of the reference signal in step 2

Cyber-security Simulation using NS-3

-18-

a. Here we collect the information of the current loading by reading a meter in runtime in the

script

b. Then we calculate the level of overloading using a set threshold in the script

2. Calculation of the flexibility for each DER at step 5

a. Here, we use a set percentage for the increment in power output and load reduction

3. Calculation of the set-points at the aggregator in step 6

4.1. Running Denial of Service (DoS) and Man-In-The-Middle
attacks (MITM)

We developed some capability into NS-3 to run attacks such as DoS and Man-In-The-Middle. The DoS

attack can result in the server going unresponsive to the legitimate traffic. Furthermore, the receive

queues of the nodes are limited in size. Therefore the legitimate traffic might get completely dropped or

get delayed. In the case of MITM, the attacker changes the packets with a malicious intent in mind. In our

simulated scenario, the DoS attacks on the Aggregator resulted in the distribution transformer being

overloaded for an extended period of time. In the case of MITM attack, we assumed a scenario where the

attacker work in favor of DER1. Therefore, the attacker made changes to the flexibility information of the

other DERs such that they do not have any flexibility. This resulted in DER1 unfairly getting to sell all of its

flexibility and earning the maximum.

4.1.1. DoS attacks in NS-3
The construction of DoS attacks in NS-3 differs based on the transport layer protocol used. For the UDP

transport layer, the DoS attack is just one or many nodes sending a lot of bogus UDP traffic at a given port

of the server, which is listening on that port. This makes the server overwhelmed with the traffic. In the

case of TCP transport layer, DoS attacks are created by sending many SYN packets with bogus source IPs.

The SYN packet is the first packet sent to establish a TCP session. Then the server allocates resources and

send the SYN ACK packet. However, since the SYN packet has a bogus source IP there is no one to accept

the SYN ACK. Then the server keeps this session open for a given time and then close it. When there are a

larger number of packets like this, the server can go out of resources for the legitimate traffic. This type of

DoS attack is called a SYN flood attack.

Cyber-security Simulation using NS-3

-19-

4.1.2. MITM attacks in NS-3
In the testing carried out, we used ARP spoofing in order to carry out MITM attacks. In order for the ARP

spoofing to work, both the attacker and the victim should be in the same sub-net. ARP protocol maps the

IP addresses to the Medium access control (MAC) address. When a node needs to send a packet to an IP

address which is in its own sub-net it requests the MAC address of the node which bears the given IP

address. This request is called the ARP request. This request is broadcasted in the sub-net. Then the node

bearing that IP replies with the MAC address. This is called the ARP reply. This mapping between the MAC

address and the IP address is stored in the ARP table of this node. These entries have a time of expiry.

In the case of ARP spoofing, the attacker listens to these ARP requests and replies with its own MAC

address. Then the victim sends the data packets to the attacker without knowing that this is a malicious

user. Then the attacker can either extract information before sending it to the intended user or it can

modify or drop that packet. Another way of achieving the same result is sending unsolicited ARP replies or

ARP requests. Figure 5 shows the first scenario.

Figure 5 ARP spoofing

4.2. Running the case CyberSecSimPeakShaveUDP in RTDS
In this section, we describe the steps involved in running this case in the RTDS simulator. The sample case

can be made available to those interested. This case uses the GTNET SKT-Multi firmware. Therefore, the

SKT 1.23 firmware or above must be installed.

Cyber-security Simulation using NS-3

-20-

Figure 6 Power system model for SKT UDP simulation

4.2.1. Changes needed in the Draft
 We first discuss the changes needed in the GTNET card used by the RTU and the DSO. Here we used 2

channels. One used by the RTU and the other used by the DSO. For this communication, we did not use the

NS-3 network as an intermediate hop. This communication was directly between the two GTNET channels

where RTU is the client and the DSO is the server. This is not a limitation. We can use the NS-3 for this

communication as well. We did this to lessen the complexity of the NS-3 simulation. Each of the channels

of the GTNET card needs an assigned IP. These can be set at the Config file editor in the RSCAD main

window. Let us assume that the IP address of the RTU is 172.24.9.249 and that of DSO is 172.24.9.250.

Then, the remote address of the RTU should be set to the IP address of the DSO which is 172.24.9.250. The

DSO is sending correction signal to the Aggregator. Therefore, the remote IP of DSO is set to the IP address

of the Aggregator responsible for DSO. Let us call it Aggregator-DSO interface. Aggregator-DSO interface

has the IP address 172.24.9.248 in the example case. The 3rd channel in the RTU and DSO GTNET interface

is used to get the information on the time the distribution transformer stays overloaded. The information

Cyber-security Simulation using NS-3

-21-

is captured in NS-3. The remote IP of this channel is set to the IP of the Ingress port which is 172.24.2.139

in the example case.

Now, let us look at the changes needed in the GTNET card used by the DERs and the aggregator. First the

IP addresses should be set for the DERs. Let us assume we use the IPs 172.24.9.240-172.24.9.243 for the

DERs. In order to be able to process this control scenario in the script we used five IP addresses for the

Aggregator. Four of these are used for the communication with each DER and the other for the

communication with the DSO. Had we did all this processing using a C++ code inside the aggregator node

in NS-3 we could eliminate the need for all of these IPs since the aggregator node processing is no longer

carried out using a script. The other way of doing this is aggregating all the DER flexibility. Let us assume

the aggregator use 172.24.9.244 for the communication with DER1 (let us call it Aggregator-DER1),

172.24.9.245 for Aggregator-DER2, 172.24.9.246 for Aggregator-DER3, 172.24.9.247 for Aggregator-DER4

and 172.24.9.248 for Aggregator-DSO. Then let us assume that the IP address of the ingress interface of

the machine running NS-3 is 172.24.2.139 and that of the egress interface is 172.24.2.102.

Since we need to send the traffic between the DERs and the Aggregator through the simulated network,

we set the remote IPs of the DERs and Aggregator as follows:

• DER1 remote IP 172.24.2.139

• DER2 remote IP 172.24.2.139

• DER3 remote IP 172.24.2.139

• DER4 remote IP 172.24.2.139

• Aggregator-DER1 remote IP 172.24.2.139

• Aggregator-DER2 remote IP 172.24.2.139

• Aggregator-DER3 remote IP 172.24.2.139

• Aggregator-DER4 remote IP 172.24.2.139

The other parameters set in the GTNET multi are the variables received and transmitted. These are

specified in the “From GTNET-SKT-x ” and “To GTNET-SKT-x” settings respectively. The ingress node is

capable of finding out which DER or Aggregator it should forward the packet. This is made possible by

including the DER index and the Aggregator index in the data sent over the GTNET card.

Cyber-security Simulation using NS-3

-22-

4.2.2. Running the case in Runtime
This case is run using the script provided. In the script we set the P and Q load and P and Q generation as

shown in the below table.

Node name P Load P Generation Q Load Q Generation

DER 1 4.5 MW 3.0 MW 4.0 MVar 3.0 MVar

DER 2 4.5 MW 3.0 MW 4.0 MVar 3.0 MVar

DER 3 4.5 MW 3.0 MW 4.0 MVar 3.0 MVar

DER 4 4.5 MW 3.0 MW 4.0 MVar 3.0 MVar

The P load at the Distribution transformer is maintained at 4.8MW and 3.6 MVar, using load shedding and

increased generation at the DERs. The DSO send the correction signal to Aggregator to reduce the P load

by 1.2 MW and Q load by 0.4 MVar. Each DER is assumed to be able to reduce the load by 80% and

increase the generation by 20%. DERs send this information to the Aggregator. Then the aggregator

calculates the set points and send them to the DERs. As mentioned before these calculations are carried

out in the script. To repeat the process to get the average values we reset the values of the loads and

generation of the DERs to the initial value after the script go through the loop twice in the RSCAD script.

Furthermore, we pick DERs in random order in each iteration to use their flexibility. Therefore, every DER is

able to sell their flexibility with equal opportunity. The time the transformer remain overloaded is

indicated on the meter, timeOverloadPlot2, in runtime.

4.3. Running the UDP Cyber-security simulation in NS-3
We have created an example NS-3 scenario at “~/ns3_cybersec/ns-allinone-3.29/ns-

3.29/examples/RTDS-DoS-Simulatio/rtds-dos-simulation_UDP_BiDir.cc”. This scenario can be

run by navigating to the “~/ns3_cybersec /ns-3-allinone/ns-3.29” folder and running the

command below. However, remember that the IP addresses for DERs and Aggregators should be the ones

that you set on the GTNET cards. The IP addresses for the Int1IP and the Int2IP are the IP addresses of the

network interface cards of the PC running NS-3.

• NS_LOG="Icmpv4L4Protocol":"Ipv4Protocol" ./waf --run "rtds-dos-

simulation_UDP_BiDir --stopTime=500 --DoSEnabled=false --

ArpSpoofEnabled=false --IPDER1=172.24.9.10 --IPDER2=172.24.9.11 --

Cyber-security Simulation using NS-3

-23-

IPDER3=172.24.9.12 --IPDER4=172.24.9.13 --IPAggreDER1=172.24.9.14 --

IPAggreDER2=172.24.9.15 --IPAggreDER3=172.24.9.16 --

IPAggreDER4=172.24.9.17 --Int1IP=172.24.2.101 --Int2IP=172.24.2.102 –

Int1MAC=08:00:27:48:57:c3 --Int2MAC=08:00:27:20:6d:04 --

Gateway=172.24.0.1 --Subnet=2 -- deviceName1=enp7s0 --

deviceName2=enp8s0”

Now, let us break this command into parts and see what each subpart does.

• NS_LOG="Icmpv4L4Protocol":"Ipv4Protocol" : This shows all the information on the Icmpv4

protocol and IPv4 protocol when NS-3 simulation enters the code related to those protocols

• ./waf --run "rtds-dos-simulation_UDP_BiDir: This part starts the simulation stated in the

C++ code rtds-dos-simulation_UDP_BiDir.cc

• --stopTime=500 : These are the options. This option set the stop time of the simulation to be 500

seconds

• --DoSEnabled=false : When true this starts a DoS attack at 100 seconds and ending at 200

seconds.

• --ArpSpoofEnabled=false: When true this enables ARP spoofing and we set the flexibility of all

the DERs except DER1 to 0.0

• --IPDERx=172.24.9.10 : Here x can be 1,2,3 or 4. This make the egress node send the data

directed to DERx to this IP address.

• --IPAggreDERx=172.24.9.14: Here x can be 1,2,3 or 4. This make the egress node send to data

directed to Aggregator-DERx to this IP address

• --Int1IP=172.24.2.101: This sets the IP address of the ingress node to this IP

• --Int2IP=172.24.2.102: This sets the IP address of the egress node to this IP

• --Int1MAC=08:00:27:48:57:c3: This sets the MAC address of the ingress node to the given

MAC

• --Int2MAC=08:00:27:20:6d:04: This sets the MAC address of the egress node to the given

MAC

• --Gateway=172.24.0.1 : This sets the gateway of the second interface

• --Subnet=2: This sets the subnet mask for the two NS-3 emu interfaces

Cyber-security Simulation using NS-3

-24-

Running this command starts the ns-3 simulation. However, before this command is run both the network

interfaces in the Linux machine running NS-3 should be in the promiscuous mode. This can be run by

running the following Linux command.

• sudo ifconfig <interface_name> promisc

The interfaces can be listed using the command: ifconfig -a

4.3.1. Running the Co-simulation
If you run the RSCAD simulation and the NS-3 simulation with out attacks you would see something similar
to the image below:

If you observe it for a sufficiently long time you would see that all the three DER have equal opportunity in

Cyber-security Simulation using NS-3

-25-

selling their flexibility to the Aggregator. In the next simulation we are going to make the flexibility of the

DER1 zero using a Man-In-The-Middle attack. Then you would see that only the other DERs are able to sell

their flexibility.

Now let us run a Denial of service attack at the Aggregator. Here, we are sending a lot of UDP traffic at the

Aggregator so that it is unable to process the actual traffic. This will make the distribution transformer

being overloaded for a longer time. We will start this attack 40 sec into the NS-3 simulation and end it at

50 sec into the simulation. However, the system do not recover.

Cyber-security Simulation using NS-3

-26-

Cyber-security Simulation using NS-3

-27-

4.4. Running the case CyberSecSimPeakShaveTCP in RTDS
This case is similar to the case where we used the UDP transport layer protocol. In this case, we used TCP

only for the communication between DERs and the Aggregator, since we are planning to disrupt this

communication inside the simulated NS-3 network using cyber attacks. However, when running TCP it was

difficult to use a single IP address for both reception and transmission. Therefore, we reduced the case to

have only two DERs. Each one of these DERs has one IP to listen to incoming connections and the other for

initiating a connection. Similarly, we have two IPs for the Aggregator-DER1 interface and Aggregator-DER2

interface.

Figure 7 Draft case for the RSCAD simulation

This case is run using the script provided. In the script we set the P and Q load and P and Q generation as

shown in the below table.

Node name P Load P Generation Q Load Q Generation

DER 1 4.5 MW 3.0 MW 4.0 MVar 3.0 MVar

DER 2 4.5 MW 3.0 MW 4.0 MVar 3.0 MVar

Cyber-security Simulation using NS-3

-28-

The P load at the Distribution transformer is maintained at 2.4 MW and 1.8 MVar using load shedding and

increased generation at the DERs. The DSO send the correction signal to Aggregator to reduce the P load

by 0.6 MW and Q load by 0.2 MVar. Each DER is assumed to be able to reduce the load by 80% and

increase the generation by 20%. The other details are the same as the case having the UDP transport layer

protocol.

4.5. Running the TCP Cyber-security simulation in NS-3
We have created an example NS-3 scenario at “~/ns3_cybersec/ns-allinone-3.29/ns-

3.29/examples/RTDS-DoS-Simulation/rtds-dos-simulation_TCP_BiDir.cc”. This scenario can

be run by navigating to the ~/ns3_cybersec /ns-3-allinone/ns-3.29 folder and running the

command below. However, remember that the IP addresses for DERs and Aggregators should be the ones

that you set on the GTNET cards. The IP addresses for the Int1IP and the Int2IP are the IP addresses of the

network interface cards of the PC running NS-3.

• NS_LOG="Icmpv4L4Protocol":"Ipv4Protocol" ./waf --run "rtds-dos-

simulation_TCP_BiDir --stopTime=500 --DoSEnabled=false --

ArpSpoofEnabled =false --IPDER1C=172.24.9.10 --IPDER1S=172.24.9.11 --

IPDER2C=172.24.9.12 --IPDER2S=172.24.9.13 --IPAggreDER1S=172.24.9.14 -

-IPAggreDER1C=172.24.9.15 --IPAggreDER2C=172.24.9.16 --

IPAggreDER2S=172.24.9.17 --Int1IP=172.24.2.101 --Int2IP=172.24.2.102 -

-InterSynTime=1e-6 --maxParallelSessions=100 --

Int1MAC=08:00:27:48:57:c3 --Int2MAC=08:00:27:20:6d:04 --

Gateway=172.24.0.1 --Subnet=2 -- deviceName1=enp7s0 --

deviceName2=enp8s0”

Here, the IPDERxS, where x is 1 or 2, is the server interface of DERs 1 and 2. The IPDERxC is the client

interface of the DERs. IPAggreDERxS is the interface IP of the aggregator which listens to packets from the

DERs. The IPAggreDER1C is the interface which sends packets to the DERs. The option InterSynTime

defines the time between two consecutive SYN packets when running the SYN flood DoS attack. The option

maxParallelSessions is the number of TCP sessions that can be served by the node concurrently. All the

other options are same as the scenario with UDP transport layer protocol.

Cyber-security Simulation using NS-3

-29-

4.5.1. Running the Co-simulation
If you observe the RSCAD runtime without any attack in NS-3, you would see something similar to the
figure below. It will not stay static. However, from time to time it will show something similar the below
image. It will change since the RSCAD script loops through the entire process multiple times.

If we run a Man-In-The-Middle attack and make DER1 have no flexibility, you would see something similar
to the image below:

Cyber-security Simulation using NS-3

-30-

If we run a Syn-flood attack on the Aggregator, the entire process will be halted at 50sec into the
simulation. NS-3 does not seem to recover from it although we stop the DoS attack at 60 Sec.

Cyber-security Simulation using NS-3

-31-

 If you compare the total time the simulation ran and the time the transformer was at over loaded state
you will see that the time is approximately 50 sec. This is given that you started the NS-3 and RSCAD script
approximately at the same time.
You will also see that the NS-3 stops writing to the console at around 50 sec.

4.5.2. Modifying the iptable rules
The iptables in Linux is the firewall of the Linux machine. It is possible for it to block incoming
tcp ports. Furthermore, it will send RST packets or icmp port unreachable packets when a
SYN packet arrives to ports ns-3 nodes are listening to (ex: tcp port 7001). Therefore, the
following commands should be executed (ignore the statements starting with #).

Cyber-security Simulation using NS-3

-32-

#Dropping RST

sudo iptables -I OUTPUT -p tcp --tcp-flags RST RST -j DROP

Accept the packets sent to tcp port 7001

 sudo iptables -A INPUT -p tcp -m tcp --dport 7001 -m conntrack --ctstate
NEW,UNTRACKED -j ACCEPT

4.5.3. Make the rules permanent
Install the iptables-save package to save the iptable rules to make them permanent using
the following command.

sudo apt-get install iptables-persistent

After making changes to the iptables enter the following command to make the rules
permanent.

sudo iptables-save

Cyber-security Simulation using NS-3

-33-

5 USING NS-3 TO MODIFY DNP3 PACKETS

Figure 8 Network setup for NS-3 simulation

We use the above network topology when connecting the GTNET card to the P&A suite or
any other controller. Here, the NS-3 simulation creates a simulated network between the
GTNET card and the controller or the monitor. We can run Man-In-The-Middle attacks and
Denial of service attacks within the NS-3 network.

5.1. Running the simulation in NS-3
This simulation is run using the TAP interface of NS-3. First we need to create two TAP
interfaces and two bridge interfaces in the Linux machine running NS-3. Let the tap
interfaces be tap00 and tap01 and the bridge interfaces be br0 and br1. Then, we bridge one
of the physical Ethernet interfaces (say enp7s0) with tap00 using br0. Then we bridge the
other physical interface (say enp8s0) with tap01 using br1. The set of commands to be
entered are given below:

sudo ip link add name br0 type bridge
sudo ip link add name br1 type bridge

sudo ip tuntap add mode tap tap00
sudo ip tuntap add mode tap tap01

sudo ip link set dev tap00 address 00:00:00:00:01:20
sudo ip address add 0.0.0.0 dev tap00
sudo ip link set dev tap00 promisc on

Simulated
IED

Ethernet Switch

NovaCor

G
TN

ET
x2

Simulation model

NS-3

RSCAD Runtime
and P&A Suite

Cyber-security Simulation using NS-3

-34-

sudo ip link set dev tap00 up

sudo ip link set dev tap01 address 00:00:00:00:01:21
sudo ip address add 0.0.0.0 dev tap01

sudo ip link set dev enp7s0 down
sudo ip address add 0.0.0.0 dev enp7s0
sudo ip link set dev enp7s0 up

sudo ip link set dev enp8s0 down
sudo ip address add 0.0.0.0 dev enp8s0
sudo ip link set dev enp8s0 up

sudo ip link set dev enp11s0 down
sudo ip address add 0.0.0.0 dev enp11s0
sudo ip link set dev enp11s0 up

sudo ip link set dev tap01 promisc on
sudo ip link set dev tap01 up

sudo ip link set dev tap00 master br0
sudo ip link set dev enp7s0 master br0

sudo ip link set dev tap01 master br1
sudo ip link set dev enp8s0 master br1

sudo ip link set dev br0 up
sudo ip link set dev br1 up
sudo ip link set dev enp7s0 promisc on
sudo ip link set dev enp8s0 promisc on

A bash script that contains these instructions are included in ~/ns3_cybersec/ns-
allinone-3.29/ns-3.29/setupInterface. To run this script navigate to the folder
~/ns3_cybersec/ns-allinone-3.29/ns-3.29/ and enter ./setupInterface at the
terminal.

The simulation file we use for this simulation can be found in ~/ns3_cybersec/ns-
allinone-3.29/ns-3.29/examples/RTDS-DoS-Simulation/rtds-Tap-ICS-Mod-
One_Net.cc

Cyber-security Simulation using NS-3

-35-

5.2. Decoding the simulation file
The simulation script is a C-file which can be found at ~/ns3_cybersec/ns-allinone-3.29/ns-
3.29/examples/RTDS-DoS-Simulation/rtds-Tap-ICS-Mod-One_Net.cc. Here we explain
only the important elements in the file. For more information the users are referred to the official
wiki page of NS-3, https://www.nsnam.org/wiki/Main_Page.

 First we have a set of includes which are in the NS3 API. We created the application Attack-app to
help the users in creating a Man-In-The-Middle type of attack. The header file for it is #include
"ns3/attack-app.h". We also made some modifications to the ARP protocol in NS3 to facilitate
the ARP poisoning type of attack. The details about these modifications are listed in Chapter 11.4.
The include statements are shown below:

// Includes
#include <stdio.h>
#include <stdlib.h>
#include <string>
#include <iostream>
#include <fstream>
#include "ns3/ipv4-address-generator.h"
#include <string>
#include <cassert>
#include <iomanip>
#include "ns3/command-line.h"
#include "ns3/config.h"
#include "ns3/uinteger.h"
#include "ns3/boolean.h"
#include "ns3/double.h"
#include "ns3/string.h"
#include "ns3/log.h"
#include "ns3/internet-stack-helper.h"
#include "ns3/ipv4-address-helper.h"
#include "ns3/udp-client-server-helper.h"
#include "ns3/log.h"
#include "ns3/ipv4-address.h"
#include "ns3/nstime.h"
#include "ns3/inet-socket-address.h"
#include "ns3/inet6-socket-address.h"
#include "ns3/socket.h"
#include "ns3/simulator.h"
#include "ns3/socket-factory.h"
#include "ns3/packet.h"
#include "ns3/uinteger.h"
#include "ns3/netanim-module.h"
#i l d " 3/d t t h"

https://www.nsnam.org/wiki/Main_Page

Cyber-security Simulation using NS-3

-36-

#include ns3/data rate.h
#include "ns3/udp-socket-factory.h"
#include "ns3/packet-sink-helper.h"
#include "ns3/ipv4-global-routing-helper.h"
#include <fstream>
#include "ns3/core-module.h"
#include "ns3/internet-module.h"
#include "ns3/applications-module.h"
#include "ns3/fd-net-device-module.h"
#include "ns3/point-to-point-module.h"
#include <sys/socket.h>
#include <arpa/inet.h>
#include "ns3/flow-monitor-helper.h"
#include "ns3/csma-helper.h"

Then inside the main function, first we set some global parameters so that we can connect the
virtual NS3 network to the real world. The first parameter is the
SimulatorImplementationType, which specifies whether it is a Real time simulator
implementation or not. The second parameter is ChecksumEnabled, which will add the IP
checksum to the packets sent.

GlobalValue::Bind ("SimulatorImplementationType", StringValue
("ns3::RealtimeSimulatorImpl"));
GlobalValue::Bind ("ChecksumEnabled", BooleanValue (true));

Next, we create a set of Nodes. A node can be a mobile device, a PC, a switch, a router or a
firewall. However, note that they are just empty hulls that does not do anything. The user
will need to either code what it is supposed to do by mean of an NS3 application or use an
existing application in NS3.

// Create ns3 nodes for simulating the communications network
 Ptr<Node> n0 = CreateObject<Node> ();
 Ptr<Node> n1 = CreateObject<Node> ();
 Ptr<Node> n2 = CreateObject<Node> ();
 Ptr<Node> n3 = CreateObject<Node> ();
 Ptr<Node> n4 = CreateObject<Node> ();

In this example, we use a very simple network setting. All the virtual nodes and the external
nodes are in the same CSMA network. CSMA is a protocol similar to Ethernet. However, there
are differences between the two. NS3 does not have an Ethernet implementation build in.
Since all the nodes are going to be on the same network, we next create a container that
contains all the nodes.

Cyber-security Simulation using NS-3

-37-

 NodeContainer n0n1n2n3 = NodeContainer (n0, n1, n2, n3, n4);

Afterwards, we create a CSMA network with a data rate of 100Mbps and an end-to-end delay
of 6560 Nano Seconds. Then we install this CSMA network interfaces in the above-created
nodes. All these network devices (you can assume they are Ethernet ports), are saved in the
NetDeviceContainer dn0n1n2n3.

CsmaHelper csmaNetwork;
csmaNetwork.SetChannelAttribute ("DataRate", StringValue ("100Mbps"));
csmaNetwork.SetChannelAttribute ("Delay", TimeValue (NanoSeconds (6560)));
NetDeviceContainer dn0n1n2n3 = csmaNetwork.Install (n0n1n2n3);

The next step is to install the network stack on the nodes created. This consists of the ARP
protocol, IP protocol and the socket protocol installed in the nodes. Without these protocols
these nodes cannot send or receive packets.

// installing IP stacks into the nodes
 InternetStackHelper stack;
 stack.Install (n0);
 stack.Install (n1);
 stack.Install (n2);
 stack.Install (n3);
 stack.Install (n4);

Next we assign IP addresses to these nodes using the Ipv4AddressHelper class. When
assigning the IP addesses we make sure that the IPs of the outside world devices are in the
same network.

Ipv4AddressHelper ipv4;
ipv4.SetBase ("172.24.0.0", "255.255.0.0", "0.0.9.241"); //this is the outer net-
work
Ipv4InterfaceContainer ipn0n1n2n3 = ipv4.Assign (dn0n1n2n3);

If we need specific routes set they should be set next. However, since this example does not

Cyber-security Simulation using NS-3

-38-

need any special routing we are not setting any here. Please refer to the official NS3 Wiki if
you need information on it.

Next, we create the interfaces which will be connected to the outside world. We create
interfaces on the nodes n0 and n4 that can be connected to the outside world. Then we can
assume node n0 and node n4 are our outside world nodes. We are connecting the tap00 to
node n0 and tap 01 to node n4. We created these tap devices in the Linux system using the
script in Section 5.

// Use the TapBridgeHelper to connect to the pre-configured tap devices for
// the left side. We go with "UseBridge" mode since the CSMA devices support
// promiscuous mode and can therefore make it appear that the bridge is
// extended into ns-3. The install method essentially bridges the specified
// tap to the specified CSMA device.
// Connect the left side tap to the left side CSMA device in ghost node n0

 TapBridgeHelper tapBridge;
 tapBridge.SetAttribute ("Mode", StringValue ("UseBridge"));
 tapBridge.SetAttribute ("DeviceName", StringValue ("tap00"));
 tapBridge.Install (n0, dn0n1n2n3.Get (0));
 tapBridge.SetAttribute ("DeviceName", StringValue ("tap01"));
 tapBridge.Install (n4, dn0n1n2n3.Get (4));

 Now that the infrastructure is complete, we can install the applications on the nodes. Here,
we only install the attack-app that we created. This application will help us run the man-in-
the-middle attack. First, we pick n3 to be our attacker node who will do ARP spoofing and
modify the packets. Then we get the IP address and the interface index of the CSMA interface
of the attacker node. Afterwards, we get a pointer to the Ipv4Interface of the CSMA interface
of node n3.

uint32_t attackerId = 3;
std::pair<Ptr<Ipv4>, uint32_t> returnValue = ipn0n1n2n3.Get (attackerId);
Ptr<Ipv4> ipv4Val = returnValue.first;
uint32_t index = returnValue.second;
Ptr<Ipv4Interface> iface = ipv4Val->GetObject<Ipv4L3Protocol> ()->GetInterface
(index);

The next step is configuring the attacker-app. Here, first we create the AttackApp object and

Cyber-security Simulation using NS-3

-39-

save the pointer to it in attacker object. Then we create vectors of the IP addresses to be
spoofed, the victims IP address and the victims MAC address as spoofedIPs, victimIPs and
victimMACs respectively. When users with the IP addresses in the victimIPs vector try to
access the IP addresses in the spoofedIPs vector their ARP table mapping of the MAC address
for the spoofedIPs will be replaced by the MAC address of the Attacker. This is achieved by
sending unsolicited ARP replies to the node with MAC addresses in victimMACs. An image
showing how this is done is shown in Figure 5.

Next we setup the attacker-app using the Setup command. The arguments of this function
are the node the application is installed, the network interface to use, the IPv4 interface, the
spoofedIPs, victimIPs and the victimMACs. Then we add the attacker application to the node
n3. Finally we start the application with a scheduled start and end times.

Ptr<AttackApp> attacker = CreateObject<AttackApp> ();
std::vector<Ipv4Address> spoofedIPs{Ipv4Address ("172.24.9.251")};
std::vector<Ipv4Address> victimIPs{Ipv4Address ("172.24.9.55")};
std::vector<Address> victimMACs{ns3::Mac48Address ("00:0A:35:00:10:09")};

attacker->Setup (n0n1n2n3.Get (attackerId), dn0n1n2n3.Get (attackerId), iface,
spoofedIPs, victimIPs, victimMACs);
n0n1n2n3.Get (attackerId)->AddApplication (attacker);
attacker->SetStartTime (Seconds (1.0));
attacker->SetStopTime (Seconds (3600.0));

Next we do the same procedure for the traffic sent in the reverse direction using the code
below. This is the end of the applications setup.

Cyber-security Simulation using NS-3

-40-

std::pair<Ptr<Ipv4>, uint32_t> returnValue2 = ipn0n1n2n3.Get (attackerId);
Ptr<Ipv4> ipv4Val2 = returnValue2.first;
uint32_t index2 = returnValue2.second;

Ptr<Ipv4Interface> iface2 = ipv4Val2->GetObject<Ipv4L3Protocol> ()->GetInterface
(index2);

Ptr<AttackApp> attacker2 = CreateObject<AttackApp> ();
std::vector<Ipv4Address> spoofedIPs1{Ipv4Address ("172.24.9.55")};
std::vector<Ipv4Address> victimIPs1{Ipv4Address ("172.24.9.251")};
std::vector<Address> victimMACs1{ns3::Mac48Address ("10:65:30:05:d8:ff")};

attacker2->Setup (n0n1n2n3.Get (attackerId), dn0n1n2n3.Get (attackerId), iface,
spoofedIPs1,victimIPs1, victimMACs1);
n0n1n2n3.Get (attackerId)->AddApplication (attacker2);
attacker2->SetStartTime (Seconds (1.0));
attacker2->SetStopTime (Seconds (3600.0));

Then we enable packet capturing in all the interfaces in the CSMA network using the below
command.

csmaNetwork.EnablePcapAll ("pmuconnectiontestNet", false);

Finally we schedule the simulation to run for 1 hour and deallocate all memory at the end of
it using the below commands.

// Run the simulation for 1 hour to give the user time to play around
//
Simulator::Stop (Seconds (3600.));
Simulator::Run ();
Simulator::Destroy ();

Cyber-security Simulation using NS-3

-41-

5.3. Virtual NS-3 network created

Using the above code we create the above network. The external communication is achieved
by bridging the physical Ethernet device with a virtual tap device created in Linux. The NS-3
nodes are able to interface with those Tap devices. Hence, the traffic will be routed in the
Virtual CSMA network before exiting through the bridge on the other side. The attacker node
sends Spoofed ARP replies to the DNP3 server and the DNP3 client so that the traffic will be
routed through it.

Cyber-security Simulation using NS-3

-42-

5.4. Example scenario: GTNET_DNP

The above case can be found in the Tutorials tab in RSCAD FX 2.0 at the following location:

Cyber-security Simulation using NS-3

-43-

Here, we have a simple network with a power source and a dynamic load with a breaker in
the middle. The user can control the breaker status, and the set active power and reactive
power in the dynamic load using DNP3. Here we use the P&A suite to control these

Cyber-security Simulation using NS-3

-44-

parameters.

5.1. Running the NS-3 DNP3 simulation
To run the NS-3 Tap simulation to modify DNP3 data, first navigate to the ns-3-allinone/ns-
3.29. Then execute the following command:

 NS_LOG="Icmpv4L4Protocol":"Ipv4Protocol" ./waf --run "rtds-Tap-ICS-Mod-
One_Net”

This will start the NS-3 simulation.

5.2. Setting and Monitoring DNP3 values
In the runtime of the RSCAD simulation you are able to see the current that travels in the
bus and the set active and reactive power of the dynamic load. Then in the P&A suite you
are able to connect to the DNP3 server hosted on the GTNET cards. Furthermore, you can
modify and monitor the parameters using DNP3 communication. If there is a man-in-the-
middle attack on DNP3 communication, there will be a disparity between what you see in
the runtime and in the P&A suite.

5.3. Stating the new values to be assigned for DNP3
The modifications to the DNP3 data are included in a file “ns3.conf”. This file should be
located in /etc/ns3 in the Linux machine. The format of the text are given below

protocol dnp3

<function_code> <Group> <Variation> <Index> <value>

Here the file parser uses the protocol dnp3 to identify that the following data are for dnp3
packet modification. The next lines contain information on what to modify.

Function_code - The Function code of the dnp3 message of interest

Group - Is the DNP3 group number of the parameter

Variation - Is the DNP3 variation of the group of the parameter

Index - Is the index of the variable belonging to the stated group and variance

Value - Is the new parameter value to be assigned

An example is shown below:

Cyber-security Simulation using NS-3

-45-

protocol dnp3

129 1 1 0 0

129 30 5 0 100

129 32 5 0 100

3 12 1 0 3

4 12 1 0 3

129 12 1 0 4

3 41 3 0 200

4 41 3 0 200

129 41 3 0 150

129 1 1 0 0

129 40 3 0 23

As shown above the first 3 lines manipulate the reported Binary status of the breaker and
the Analog input corresponding to the Irms_pri. Here, the function code used is 129 which
corresponds to the Response function of the DNP3 server. Using the first line we modify the
first binary input status to OPEN. Using the second line we modify the first analog input to
100.

After running the simulation the following can be observed in the runtime.

Manipulate
LATCH_OFF

Manipulate
first Analog
control block

Cyber-security Simulation using NS-3

-46-

Here, you can see that the breaker status is shown as open although it is closed.
Furthermore, the value of Irms_pri is reported as 100.0 when the actual value is 0.02524

The commands in DNP3 usually happens in 3 stages as shown below:

The Select function has a value of 3, the Operate function has value of 4 and the response
function has a value of 129. In the lines 3, 4 and 5 of the above example after the line,
protocol dnp3, we are modifying a command, which instructs to latch off a breaker. Using
the values set for the SELECT and OPERATE function we will not let the breaker latch off. The
value passed by the DNP3 master for the LATCH_ON operation is three. Using the first line,
3 12 1 0 3, we modify the LATCH_OFF (value of 4) value to LATCH_ON (value of 3) for the
variable with index 0 of Group number 12 and variance 1. This modification is done for the
SELECT message. Then we do the same for the OPERATE message in the second line. Then in
line 5 we modify the RESPONSE message to carry the value of LATCH_OFF. We do this
because the DNP3 master does not send the OPERATE command if the SELECT value and the

Cyber-security Simulation using NS-3

-47-

RESPONSE values are different. Make sure you use the port 20000 as the Listening port at
DNP3 server (The GTNET-DNP3).

You will see that although you send the LATCH_OFF command it will not be reflected in the
Runtime. If you see a packet capture at the client interface you will see that there is nothing
wrong there.

Client Side server side Server side

Payload for SELECT

Payload for SELECT

Cyber-security Simulation using NS-3

-48-

Payload for Response

Payload for Response

Payload for Operate

Payload for Operate

Cyber-security Simulation using NS-3

-49-

6 USING NS-3 TO MODIFY MODBUS PACKETS
Here, we use NS-3 to modify the MODBUS packets that goes through the NS-3 virtual
network. These modification are done using ARP spoofing attacks. The instructions for
running the NS-3 simulations are similar to that of DNP3. Therefore, we will not explain it
here. The only difference is in the entries added in /etc/ns3/ns3.conf. Which we will
explain in the subsequent subsections.

6.1. Example scenario: Modbus_Communication

The above case can be found in the Tutorials tab in RSCAD FX 2.0 at the following location:

Cyber-security Simulation using NS-3

-50-

6.2. Stating the new values to be assigned for MODBUS
The modifications to the MODBUS data are included in a file “ns3.conf”. This file should be
located in /etc/ns3 in the Linux machine. The format of the text are given below

protocol modbus

<function_code> <Index> <value>

Here the file parser uses the string “protocol Modbus” to identify that the data following
that line are for modbus packet modification. The next lines contain information on what to
modify.

Function_code - The Function code of the modbus message of interest

Index - Is the index of the variable belonging to the stated Function code

Cyber-security Simulation using NS-3

-51-

Value - Is the new parameter value to be assigned

An example is shown below:

protocol modbus

2 0 0

4 0 100

4 1 123

3 0 4

3 1 6

After running the simulation the following can be observed in the runtime.

Cyber-security Simulation using NS-3

-52-

Now if we compare the wireshark captures on the server side and client side of these responses you would
see that the packets have been modified. If you observe the destination Ethernet address of the responses
at server side you will see that it is not the same as the clients. However in this scenario as all the nodes
are in the same network it should be the same as the clients. That happens because of ARP spoofing and
the Attacker node gets and sends the data running a Man-In-The-Middle attack. It is also the case at the
Client side.

Server Side Client side

Cyber-security Simulation using NS-3

-53-

7 USING NS-3 TO MODIFY IEC104 PACKETS
Here, we use NS-3 to modify the IEC104 packets that goes through the NS-3 virtual network.
These modification are done using ARP spoofing attacks. The instructions for running the NS-
3 simulations are similar to that of DNP3. Therefore, we will not explain it here. The only
difference is in the entries added in /etc/ns3/ns3.conf. Which we will explain in the
subsequent subsections.

7.1. Example scenario: IEC104_Communication

The above case can be found in the Tutorials tab in RSCAD FX 2.0 at the following location:

Cyber-security Simulation using NS-3

-54-

Cyber-security Simulation using NS-3

-55-

7.2. Stating the new values to be assigned for IEC104
The modifications to the IEC104 data are included in a file “ns3.conf”. This file should be
located in /etc/ns3 in the Linux machine. The format of the text are given below

protocol iec104

<TypeID> <ASDU No> <IOA> <value>

Here the file parser uses the string “protocol iec104” to identify that the data following that
line are for IEC104 packet modification. The next lines contain information on what to
modify.

TypeID - The Function code of the IEC104 message of interest

ASDU No - This is the common address and it is association with all objects with in the ASDU
IOA- This is the Information object address. It identifies a particular data with in a station

Value - Is the new parameter value to be assigned

An example is shown below:

protocol iec104

 1 3 1000 1

 13 3 6000 200.53

 45 3 4000 0

 50 3 8000 123.456

Cyber-security Simulation using NS-3

-56-

After running the simulation, the following can be observed in the runtime.

Now if we compare the wireshark captures on the server side and client side of these responses you would
see that the packets have been modified. If you observe the destination Ethernet address of the responses
at server side you will see that it is not the same as the clients. However in this scenario as all the nodes
are in the same network it should be the same as the clients. That happens because of ARP spoofing and
the Attacker node gets and sends the data running a Man-In-The-Middle attack. It is also the case at the
Client side.

Server Side Client side

A modification to Binary control (IOA 4000) command is done on line 3 of “ns3.conf”. When we try to

Cyber-security Simulation using NS-3

-57-

change the value of CtrlMode from 0 to 1, it does not carry out in the runtime because of this modification.
Therefore, the CtrlMode remains in state 0 even after the execution of the command.

A modification to Analog control (IOA 8000) command is done on line 4 of “ns3.conf”. When we try to set
the value of Pset_104 from 10 to 20, it sets the value to 123.5 in the runtime because of this modification.
The value becomes 123.5 instead of 123.456 due to rounding off.

Cyber-security Simulation using NS-3

-58-

8 USING NS-3 TO MODIFY PMU PACKETS
Here, we use NS-3 to modify the Synchro-phasor packets that goes through the NS-3 virtual
network. These modification are done using ARP spoofing attacks. The instructions for
running the NS-3 simulations are similar to that of DNP3. Therefore, we will not explain it
here. The only difference is in the entries added in /etc/ns3/ns3.conf. Which we will
explain in the subsequent subsections.

8.1. Example scenario: PMU_Communication

The above case can be found in the Tutorials tab in RSCAD FX 2.0 at the following location:

Cyber-security Simulation using NS-3

-59-

Cyber-security Simulation using NS-3

-60-

8.2. Stating the new values to be assigned for PMU
The modifications to the PMU data are included in a file “ns3.conf”. This file should be
located in /etc/ns3 in the Linux machine. The format of the text are given below

protocol pmu

<Station> <DataType> <Data name> <value>

Here the file parser uses the string “protocol pmu” to identify that the data following that
line are for PMU packet modification. The next lines contain information on what to modify.

Station - The name of the station

DataType - This states if the data are Phasors (DataType=0), Analog values (DataType=1),
Digital values (DataType=2)

Data name - This is the name of the data appearing in the Configuration frame 2. Here the
spaces are replaced with underscores.

Value - Is the new parameter value to be assigned. In the case of Phasors it will be a pair of
values. You should know if the data are transmitted using Cartesian or polar format and put
the values accordingly. The angles should be specified in radians not degrees.

An example is shown below:

protocol pmu

LOADBUS 0 PHASOR_CH_2:VB 112953.62 -1.57

Configuration frame 2

Cyber-security Simulation using NS-3

-61-

LOADBUS 1 ANALOG_CH_0 100.0

 LOADBUS 2 DIGITAL_CH_0 0

Here we use the software called PMU connection tester to monitor the phasor data. After running
the simulation, the following can be observed in the runtime and the PMU connection tester.

Now if we compare the wireshark captures on the server side and client side of these responses
you would see that the packets have been modified. If you observe the destination Ethernet
address of the responses at server side you will see that it is not the same as the clients. However,

Cyber-security Simulation using NS-3

-62-

in this scenario as all the nodes are in the same network it should be the same as the clients. That
happens because of ARP spoofing and the Attacker node gets and sends the data running a Man-In-The-
Middle attack. It is also the case at the Client side.

Server Side Client side

Cyber-security Simulation using NS-3

-63-

9 USING NS-3 TO MODIFY GOOSE Frames
Here, we use NS-3 to modify the GOOSE frames that arrives at the tap device of NS-3 virtual
network. These modification are done by sending a malicious GOOSE frame. This GOOSE
frame will increment the stNum field of the GOOSE frame and reset the sqNum field as
shown in the figure below:

 The instructions for running the NS-3 simulations are similar to that of DNP3 given in section
5.1. Therefore, we will not explain it here. The only difference is in the entries added in
/etc/ns3/ns3.conf. Which we will explain in the subsequent subsections.

Cyber-security Simulation using NS-3

-64-

9.1. Example scenario: GOOSE_Communication

The above case can be found in the Tutorials tab in RSCAD FX 2.0 at the following location:

Cyber-security Simulation using NS-3

-65-

Cyber-security Simulation using NS-3

-66-

9.2. Stating the new values to be assigned for GOOSE
The modifications to the GOOSE data are included in a file “ns3.conf”. This file should be
located in /etc/ns3 in the Linux machine. The format of the text are given below

protocol goose

<GocbRef> <DataSet> <DataIndex> <value>

Here the file parser uses the string “protocol goose” to identify that the data following that
line are for GOOSE frame modification. The next lines contain information on what to
modify.

GocbRef - The name of the goose control block

DataSet - The name of the data set

DataIndex - The index of the data within that data set

Value - Is the new parameter value to be assigned.

An example is shown below:

protocol goose

BRK_IEDNewDevice/LLN0GOBRK_IED BRK_IEDNewDevice/LLN0$Goose_dataset2 0 0640 \

BRK_IEDNewDevice/LLN0GOBRK_IED BRK_IEDNewDevice/LLN0$Goose_dataset2 1 030318 \

BRK_IEDNewDevice/LLN0GOBRK_IED BRK_IEDNewDevice/LLN0$Goose_dataset2 2 127 \

BRK_IEDNewDevice/LLN0GOBRK_IED BRK_IEDNewDevice/LLN0$Goose_dataset2 3 1.569

Here we are interested in the goose frames with the gocdRef,
BRK_IEDNewDevice/LLN0GOBRK_IED and the dataset
BRK_IEDNewDevice/LLN0$Goose_dataset2. These data frames are created by the case that we
are running. Each of these data frames that we create in the GTNET card for the case mentioned
above, will have 4 data fields. The first two are bit-string followed by an integer and a floating
point value. The values for the bit strings consists of two parts and it is written as a hexadecimal.
The first byte gives the number of padding bits at the end of the bit string. The second byte gives
the value. For an example if we take the first value 0640, 06 is the number of padding bits and 40
is the value. If we write 0x40 in binary we get: b01000000. The last 6 bits are padding bits.
Therefore, the values is b01. This value is the status of a breaker, b01 means the breaker is OPEN.
Therefore, the subscriber will always see the breaker as OPEN immaterial of the actual state of
the breaker. The second field in the goose frame of interest is the quality bit value of the breaker

Cyber-security Simulation using NS-3

-67-

status. It is also of bit-string type. We are modifying the values of it to b0000001100011. In the
third line we are modifying the integer value of 127. Finally we are modifying the floating point
value to 1.569.

Now lets see this modifications in action. Run the simulation file rtds-Tap-ICS-Mod-One_Net in
NS-3 using the instructions provided in section 5.1. Then start the RSCAD simulation. After running
the simulation, the following can be observed in the runtime. If you stop the NS-3 simulation at
any point you will see that the actual value that matches the values at the BREAKER IED is shown
at the TRIP IED.

Now lets study the wireshark capture taken at any interface connected to the network the GTNET card is
connected. One observation you can make is that there is a duplicate frame created for each Ethernet
multicast frame the Breaker IED sends. Now lets compare those Ethernet frames.

Cyber-security Simulation using NS-3

-68-

Original Duplicate

In additional to the changes in the data fields, you will see that the stNum field of the duplicate message is
higher than that of the Original. This higher stNum ensures that this false goose frame gets accepted by
the subscriber. Furthermore, we have modified the time field in the duplicate message to have the current
time.

Cyber-security Simulation using NS-3

-69-

10 USING NS-3 TO MODIFY Sampled value Frames
Here, we use NS-3 to modify the Sampled Value frames that arrives at the tap device of NS-
3 virtual network. These modification are done by sending a malicious SV frame. This SV
frame will increment the smpCnt field of the SV frame field as shown in the figure below:

 The instructions for running the NS-3 simulations are similar to that of DNP3 given in section
5.1. Therefore, we will not explain it here. The only difference is in the entries added in
/etc/ns3/ns3.conf. Which we will explain in the subsequent subsections.

Cyber-security Simulation using NS-3

-70-

10.1. Example scenario: SV_Communication

The above case can be found in the Tutorials tab in RSCAD FX 2.0 at the following location:

Cyber-security Simulation using NS-3

-71-

The runtime without the attack should look similar to the image below:

Stating the new values to be assigned for Sampled Values

The modifications to the Sampled Values data are included in a file “ns3.conf”. This file

Cyber-security Simulation using NS-3

-72-

should be located in /etc/ns3 in the Linux machine. The format of the text are given below

protocol sample_value

<svID> <ASDU number> <DataIndex> <value> <quality>

Here the file parser uses the string “protocol sample_value” to identify that the data
following that line are for SV frame modification. The next lines contain information on what
to modify.

svID - The Sampled Value ID

ASDU number - The ASDU index in the frame if there are multiple of them

DataIndex - The index of the data within the ASDU

Value - Is the new parameter value to be assigned.

Quality - The new quality bit value

An example is shown below:

protocol sample_value

4001 0 0 0 1 \

4001 0 1 0 0\

4001 0 2 0 0

Here we are interested in the SV frames with the svID, 4001 and the ASDU index 0. These data
frames are created by the case that we are running. Each of these data frames that we create in
the GTNET card for the case mentioned above, will have 8 data fields. In the first line we modify
the first value to 0 and the quality to 1. In the next two lines we modify the second and third value
to 0 and the quality to zero.

Now lets see this modifications in action. Run the simulation file rtds-Tap-ICS-Mod-One_Net in
NS-3 using the instructions provided in section 5.1. Then start the RSCAD simulation. After running
the simulation, the following can be observed in the runtime. If you stop the NS-3 simulation at
any point you will see that the actual value that matches the values at the LPIT is shown at the
Protection IED. As you can see, although we only modify the first three data values the current
values are also seem changed that is because of the time lag for processing and transmission at
NS-3 nodes. So an old value gets sent sometime later. Furthermore, the modification does not
happen to all the SV frames. This is also because of the processing and transmission delay. For
example the time difference between the frames shown below are 4ms.

Cyber-security Simulation using NS-3

-73-

Now lets study the wireshark capture taken at any interface connected to the network the GTNET card is
connected. One observation you can make is that there is a duplicate frame created for each Ethernet
multicast frame the Breaker IED sends. Now lets compare those Ethernet frames.

Original Duplicate

In additional to the changes in the data fields, you will see that the smpCnt field of the duplicate message
is higher than that of the Original. This higher smpCnt ensures that this false SV frame gets accepted by the
subscriber. However, it might also cause synchronization problems at the subscriber and it might get non-
responsive.

Cyber-security Simulation using NS-3

-74-

11 CHANGES MADE TO NS-3.29
NS-3.29 is an open source network simulator. Therefore, it does not have built in support to
run cyber attacks. However, it has all the necessary infrastructure to carryout some network
level cyber attacks such as DoS attacks and MITM attacks. In this section, we discuss the
additions we included in NS-3.29.

11.1. Writing an Application to Create a TCP server and Client
 Although there are examples in the NS-3.29 on UDP client and server, there is no example on the

TCP client and server communication. Here, we describe how an application involving TCP Client and

server can be developed. A general guide on how to create new applications can be found in

https://www.nsnam.org/wiki/HOWTO_make_and_use_a_new_application. In our current

application, we are creating an application called MyApp which can accept, process and send TCP

packets. The source code can be found in /examples/rtds-dos-simulation_TCP_BiDir.cc. The three

way hand shake involved in a client sending a packet is handled automatically by the

TcpSocketFactory. The only part we have to worry about is the acceptance of a packet in the server

side. Every application has to implement three functions by default.

1. The Setup function

2. The StartApplication function

3. The StopApplication function

In the Setup function, we initialize the class variables. In the StartApplication function we run all the

functions that are needed for the application to do its job. These functions continue to run until the

function StopApplication is called. These two functions are called by the event scheduler when we

set the start time and the stop time for the application at the caller. In addition to these functions,

we have the following functions for the TCP application to process the packet data.

1. HandleAcceptRequest function

2. HandleAccept function

https://www.nsnam.org/wiki/HOWTO_make_and_use_a_new_application

Cyber-security Simulation using NS-3

-75-

3. HandlePeerClose function

4. HandlePeerError function

5. HandleClose function

6. PrintTraffic function

7. pktProcessingIngressNode

8. pktProcessingEgressNode

9. pktProcessingAggregatorNode

10. giveParsingString

11.1.1. HandleAcceptRequest
This function is called when the TCP server gets a SYN request. Usually we do not need to do anything

since the TCP protocol handles it.

11.1.2. HandleAccept
This function is called after the three way hand shake is done and we need to call the function to process

the packet inside this function using callbacks. Furthermore, we can make the server drop the connection

if the number of sessions are above a certain threshold.

11.1.3. HandlePeerClose
This function is called when the client send the FIN packet to close the socket connection.

11.1.4. HandlePeerError
This function is called when the client is in an error situation. We close the socket at the server at this

situation.

11.1.5. HandleClose
This function is called when the server closes the connection.

11.1.6. PrintTraffic
This is one of the functions that processes the TCP data. This function is used to forward the data as it is

Cyber-security Simulation using NS-3

-76-

the simulated Aggregator node in the NS-3 simulation or the actual DER IP at the RTDS simulator.

11.1.7. pktProcessingIngressNode
This function processes TCP data at the ingress node. The main requirement of this function is to figure out

the simulated node to forward the data. This is achieved by processing the first three integers in the packet

data. The first one is the message type, the send is the index number of the DER or the aggregator the

message was initialized, and the third is the index number of the DER or the Aggregator the message is

destined to. If the Message type is eight, the message carries the flexibility information. Then the second

integer is the ID of the DER and the last integer is the ID of the Aggregator. If the message type is 7, the

message carries the setPoints. The second integer is the Aggregator index and the third is the DER index

the setPoints are destined to.

11.1.8. pktProcessingEgressNode
This function forward the data to the correct GTNET IP the packets are destined. If the message type is 7,

these messages are sent to the correct DER GTNET IP based on the third integer entry in the packet. If the

message type is 8, it is forwarded to the correct Aggregator GTNET IP based on the third integer in the

packet.

11.1.9. pktProcessingAggregatorNode
This function forwards the setPoints to the correct simulated DER based on the second integer in the

packet.

11.1.10. giveParsingString
This function returns a string array of the information presented in each 4 byte block of the data area of

the SKT application based on the message type.

11.2. Writing an Application to Create a TCP SYN flood attack
The source code for this SYN flood attack can be found in /src/applications/model/tcp-syn-flood.cc. Here

we provide a brief explanation on how the code works. As explained earlier, in SYN flood attacks the client

send TCP session initialization messages using fabricated source IPs. As any NS-3 application, this

application has the tree functions that initiate, start and stop the application. The respective functions are:

Setup, StartApplication and StopApplication. In the Setup function, we initialize the NS-3 node the

application is installed, the IP of the victim, the actual IP of the node, the TCP port that is exploited and the

Cyber-security Simulation using NS-3

-77-

time between two consecutive SYN packets. In the StartApplication function, we create the socket and

schedule an event to call the SendSyn function. The SendSyn function is the function that uses the socket

to send the SYN packets. Then we have the StopApplication function which deallocates the socket and

clear the data.

In the SendSyn function, we generate a bogus source IP and create the TCP header and the IPv4 header

and send the packet to the IP address of the victim.

11.3. Writing an Application to change TCP and UDP packets
on the Wire

These modifications enabled MITM type of attacks. The source code for this application can be found in

/src/applications/model/attack-app.cc. In the Setup function, we initialize the NS-3 node the application

runs in, the network device, the IPv4 interface, the actual IP address of the node interface, the victims IP

address and the victims MAC address. In the StartApplication function, we use the device receive callback

function to get the packets on the wire. We set the callback to the function

NonPromiscReceiveFromDevice. Then when ever a packet is received in that device this function gets

called. In this stop application function, we stop this application.

Inside the NonPromiscReceiveFromDevice function we call the ReceiveFromDevice function. Here, we

remove the headers and modify the data such that only DER1 has flexibility.

11.4. Modifications made in arp-l3-protocol to enable ARP
spoofing

The source code that implement the ARP protocol is in /src/internet/model/arp-l3-protocol. This code in

ns-3.29 does not accept unsolicited ARP replies. Therefore we modified the code to accept a flag

m_spoofARP which enables the device to reply to any ARP request with its own MAC address.

Cyber-security Simulation using NS-3

-78-

12References

[1] Elmrabet, Z., Ghazi, H.E., Kaabouch, N., & Ghazi, H.E. (2018). Cyber-Security in Smart

Grid: Survey and Challenges. Computers & Electrical Engineering, 67, 469-482.

[2] M. Korman, E. Mathias, O. Gehrke, A. M. Kosek . D1.1 Smart grid scenarios, version

1.1. Retrieved from Cyber-physical security for low-voltage grids website:

http://www.salvage-project.com/uploads/4/9/5/5/49558369/salvage_d1.1_v1.1.pdf

[3] R. Liu, C. Vellaithurai, S. S. Biswas, T. T. Gamage and A. K. Srivastava, "Analyzing the

Cyber-Physical Impact of Cyber Events on the Power Grid," in IEEE Transactions on

Smart Grid, vol. 6, no. 5, pp. 2444-2453,Sept.2015. doi: 10.1109/TSG.2015.2432013

[4] B. Chen, K. L. Butler-Purry, A. Goulart and D. Kundur, "Implementing a real-time

cyber-physical system test bed in RTDS and OPNET," 2014 North American Power

Symposium (NAPS), Pullman, WA, 2014, pp. 1-6. doi: 10.1109/NAPS.2014.6965381

[5] A. Hahn, A. Ashok, S. Sridhar and M. Govindarasu, "Cyber-Physical Security Testbeds:

Architecture, Application, and Evaluation for Smart Grid," in IEEE Transactions on

Smart Grid, vol. 4, no. 2, pp. 847-855, June 2013. doi: 10.1109/TSG.2012.2226919

	1.
	1 CASE INFORMATION
	2 INTRODUCTION
	2.
	2.1. Example scenario
	2.2. Installing NS-3
	2.2.1. Installing the pre-requisites:

	2.3. Create the ns3 configuration file for Protocol data modification

	3 SYSTEM MODELLING
	3.
	3.1. RTDS simulation system model
	3.2. NS-3 Communication Network Simulation model
	3.3. Interfacing RTDS with NS-3

	4 PEAK SHAVING APPLICATION
	4.
	4.1. Running Denial of Service (DoS) and Man-In-The-Middle attacks (MITM)
	4.1.1. DoS attacks in NS-3
	4.1.2. MITM attacks in NS-3

	4.2. Running the case CyberSecSimPeakShaveUDP in RTDS
	4.2.1. Changes needed in the Draft
	4.2.2. Running the case in Runtime

	4.3. Running the UDP Cyber-security simulation in NS-3
	4.3.1. Running the Co-simulation

	4.4. Running the case CyberSecSimPeakShaveTCP in RTDS
	4.5. Running the TCP Cyber-security simulation in NS-3
	4.5.1. Running the Co-simulation
	4.5.2. Modifying the iptable rules
	4.5.3. Make the rules permanent

	5 USING NS-3 TO MODIFY DNP3 PACKETS
	5.
	5.1. Running the simulation in NS-3
	5.2. Decoding the simulation file
	5.3. Virtual NS-3 network created
	5.4. Example scenario: GTNET_DNP
	5.1. Running the NS-3 DNP3 simulation
	5.2. Setting and Monitoring DNP3 values
	5.3. Stating the new values to be assigned for DNP3

	6 USING NS-3 TO MODIFY MODBUS PACKETS
	6.
	6.1. Example scenario: Modbus_Communication
	6.2. Stating the new values to be assigned for MODBUS

	7 USING NS-3 TO MODIFY IEC104 PACKETS
	7.
	7.1. Example scenario: IEC104_Communication
	7.2. Stating the new values to be assigned for IEC104

	8 USING NS-3 TO MODIFY PMU PACKETS
	8.
	8.1. Example scenario: PMU_Communication
	8.2. Stating the new values to be assigned for PMU

	9 USING NS-3 TO MODIFY GOOSE Frames
	9.
	9.1. Example scenario: GOOSE_Communication
	9.2. Stating the new values to be assigned for GOOSE

	10 USING NS-3 TO MODIFY Sampled value Frames
	10.
	10.1. Example scenario: SV_Communication

	11 CHANGES MADE TO NS-3.29
	11.
	11.1. Writing an Application to Create a TCP server and Client
	11.1.1. HandleAcceptRequest
	11.1.2. HandleAccept
	11.1.3. HandlePeerClose
	11.1.4. HandlePeerError
	11.1.5. HandleClose
	11.1.6. PrintTraffic
	11.1.7. pktProcessingIngressNode
	11.1.8. pktProcessingEgressNode
	11.1.9. pktProcessingAggregatorNode
	11.1.10. giveParsingString

	11.2. Writing an Application to Create a TCP SYN flood attack
	11.3. Writing an Application to change TCP and UDP packets on the Wire
	11.4. Modifications made in arp-l3-protocol to enable ARP spoofing

	12 References

