Skip to content
master
Go to file
Code

Latest commit

 

Git stats

Files

Permalink
Failed to load latest commit information.
Type
Name
Latest commit message
Commit time
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

README.md

VIGAN

This is a PyTorch implementation of the paper "VIGAN: Missing View Imputation with Generative Adversarial Networks". Please cite the paper in your publications if you find the source code useful to your research.

Installation

Install pytorch and torchvision.

VIGAN model

VIGAN is the model for imputing missing views based on generative adversarial networks which combines cross-domain relations given unpaired data with multi-view relations given paired data.

Dataset

Benchmark dataset: MNIST (http://deeplearning.net/data/mnist/mnist.pkl.gz).

Train the network to learn to generate digit images and the corresponding edges images of the digits images, inspired by CoGAN. We provide a python code to automaticlly download data and generate training data in the form of pairs of ( digit image, edges image ).

Train the model

When you train the model, you can tune the parameters in "options" folder.

python train.py

Test the model

python test.py

Acknowledgments

Code is inspired by CycleGAN and CoGAN.

About

PyTorch implementation of VIGAN

Resources

Releases

No releases published

Packages

No packages published

Languages

You can’t perform that action at this time.