Chapter 2

The Syntax of Syntax

Once upon a time programmers crafted their programs by wiring circuits to Machine Code
perform logic operations. This was laborious. The stored program computer®

made it easier to reconfigure a machine for a new computation—and introduced

a machine code. Thus was introduced the new tedium of machine code pro-

gramming wherein the binary numbers corresponding to machine operations

are calculated by hand.

A mere year later? an enterprising chap got a computer to assemble ma- Assembly Language
chine code for him. The simple assembly language he created mapped letters
of the alphabet to machine operations. Subsequent assemblers allow a bit more
flexibility but maintain the direct correspondence of assembly statements to
machine instructions.

The programmer attempting to express formulas, procedures and algorithms Low Level Language
directly in assembly language soon found him or her self saddled with unweildy
programs that were difficult to debug, integrate, and reason about due to the
low conceptual and semantic level of the assembly languages. To make matters
worse, the programs were seldom portable from one machine architecture to
another.

IWilliams, Kilburn (1948). Electronic Digital Computers. Nature, Vol 162, p. 487
2Campbell-Kelly (1998). Programming the EDSAC. Annals of the History of Computing,
IEEE, Vol. 20 Issue 4 p. 46-67

99

High Level Language

Domain Specific
Language

60 CHAPTER 2. THE SYNTAX OF SYNTAX

To compensate, software engineers built compilers® and interpreters* to
further abstract away from the machine and to allow for portable programs that
would enable the programmer to move beyond simple instructions to higher level
concepts such as procedures, functions, objects, modules, first-class and higher-
order ’things’ of every kind.?

Not only did the variety of general purpose languages multiply as new ma-
chines and new techniques of program organization arrived, many programmers
found that designing a specific language® for a problem or domain made their
task easier.

Computer scientists learned (and are still learning) quite a bit from all those
languages about how to design, specify, and implement a computer language.
This chapter will use just a tiny fraction of the accumulated knowledge in order
to bootstrap a general computer language implementation system.

2.1 Automatically generate language compilers from BNF-style syntax + semantics.
1/20/2013 v/

Goals, continued.

In order to accomplish the goal, this chapter is organized as follows:

Section: Page — req
2 (Introduction) 59 —1/1
2.1 % Syntax and the Backus-Naur Form. 61 —0/0
2.2 % Common ibnf Rules. 62 —1/1
2.3 * A Calculator Example. 65 —1/1
2.4 %* Declaring ibnf in ibnf/six. 69 —1/1
2.5 % Implementing six in ibnf/six. 75— 1/1
2.6 * A toy compiler in ibnf/six 81 —1/1
2.6 * The i Language in ibnf/six. 72— 0/1
2.6 * Other Programming Languages. 80 — 0/9

Sub-projects (sections) for Chapter 2: The Syntax of Syntax.

3J.W. Backus, H. Herrick and 1. Ziller. (1954) Preliminary Report : Specifications for
the IBM Mathematical FORmula TRANSlating System, FORTRAN. Programming Research
Group, Applied Science Division, International Business Machines Corporation

4J. McCarthy. (1959) Recursive Functions of Symbolic Expressions and Their Computation
by Machine. Memo 8, Artificial Intelligence Project, RLE and MIT Computation Center

5Many of which we introduced in the previous chapter.

6]. Bentley. (1986) Programming Pearls: Little Languages. Communications of the ACM,
Vol. 29, No. 8, pp. 711-721

2.1. SYNTAX AND THE BACKUS-NAUR FORM 61

Just as with the previous chapter, this is a literate program” wherein regular
descriptive text (such as this paragraph) is mixed with computer evaluated
program text in a monospace font.

2.1 Syntax and the Backus-Naur Form

Early on language designers realized they needed a formal way of describing
what was a validly declared (as opposed to correct or bugS-free) program in a
particular language and what was not.

John Backus (and Peter Naur) gave us that formal method of describing® BNF,
computer language syntax. The following example shows how Backus-Naur Syntax
Form describes a syntax with simple textual grammar made of lowercase letters,
numbers and keyboard-accessible symbols:

<us phone number> ::= (<three digits>) <three digits> - <four digits>
<three digits> <digit> <digit> <digit>

<four digits> 1:= <digit> <digit> <digit> <digit>

<digit> si== 01 112131415161 718189

(111)222-3333 satisfies the above grammer, while (44)5555-666 and (777)
888 - 9999 (note the spaces) do not.

This chapter will use a variant of BNF called ibnf, formally defined in
section 2.4.

In the over-arching project of which this chapter is a part, syntax definitions
(starting with an ibnf description of commonly-used character sequences) will
be placed in the indp branch of the tree:!°

“cap,env,lang,indp ~ ([sntx :~ ([common-chr :"([ibnf :~ $ 1; $)1; $)1; $);

"Donald E. Knuth, Literate Programming, Stanford, California: Center for the Study of
Language and Information, 1992, CSLI Lecture Notes, no. 27

8Hopper, (1947) U.S. Naval Historical Center Online Library Photograph NH 96566-KN

9J. W. Backus, (1959) The syntax and semantics of the proposed international algebraic
language of the Zuerich ACM-GRAMM conference, ICIP Paris

10T his line of i code declares a location where our syntax definitions may reside. See chapter
1 for an introduction to i code.

62 CHAPTER 2. THE SYNTAX OF SYNTAX

2.2 Common ibnf Rules

rules An ibnf syntax consists of a sequence of rules. Many complete syntax defi-
nitions (often for different languages) may share a common set of rules. These
rules can be collected and defined just once, then composed in a modular'!
manner. This section will define some commonly-used character sequences ap-
plicable to many grammars.

2.2 Collect common ibnf rules. 12/18/2010 v/

Goals, continued.

The program text in this section, highligted in blue, is declared to be stored
contiguously as sntx, common-chr, ibnf but when extracted from this document
may named common-chr.ibnf.

digits, Common definitions such as identifying digits in ibnf are substantially
alternatives rule the same as they would be in BNF, with alternatives separated by a vertical
bar (> |’) and with the 7’ indicating that the this is an alternatives rule, in
which the semantic result is the semantic result of the successful alternative.

The semantic result of matching a character is the character itself.

dgt ? IOI|l1||I2IIl3||l4l|15l||6III7I|I8I|I9’

uppercase The uppercase alphabet is declared the same way.

upr ? |A|||B|||C|||D|||E|||F|||G|||H|||I|||J|||K|||L|||M||
lNIlIOIllPIlIQlllRllISIIlTllIUIIIVIlIwIIIXllIYIlIZI

lowercase Likewise lowercase letters in the English alphabet:

lwr ? IalIlbllICIIldlllelllflllglIlhlllillljlllkllIllllmll
'n'I'o'I'p'I'q'I'r'I's'I't'I'u'|'v'|‘w'|'x'|‘y'|'z'

alphabetic Alphabetics are uppercase or lowercase.

HD.L. Parnas, (1972). On the Criteria To Be Used in Decomposing Systems into Modules.
Communications of the ACM Vol. 15, No. 12 pp.1053 - 1058

2.2. COMMON IBNF RULES 63

alp 7 upr | lwr ;

Alphanumerics are uppercase, lowercase, or digits. alphanumeric

aln 7 upr | lwr | dgt ;

A hex digit is a letter A to F or a digit. hex digit

hex 7 dgt ['A'['B'|'C'|'D'|['E'|'F'['a'['b'['c'['d'|'e'|"'f"

There is a category for conventional character symbols. character symbols

smb ? I_IIl_l|I+I|I=l|I‘I|I"'lll!lll@lll#llI$I|l%l|l"l|l&l|
llllI/IIl:lll;lIl*vll(lIl)lll[llI]lll{llI}Ill’lll.lll<l||>lll?l

Three specific symbols are always preceded by a backslash when included escaped symbols,
in typical strings. Two more may be. Each specific symbol is described as accumulation rule
the accumulation of the rule for matching a backslash and for matching that
symbol. Accumulation rules are identified by a forward slash.

sps ? bsl | btk | bgt | bnl | btb ;
bsl / '"\\' "\\' ;

btk / '\\' '\"'

bgt / '\\' '\"!

bnl / '\\' 'n' ;

btb / "\\' 't' ;

Whitespace characters need definition too. The code in this chapter whitespace,
implements a scannerless parser'? and whitespace is explicitly coded in ibnf scannerless
grammars. parser

wsc 7' ' | '\t' | '\n' ;

Whitespace is often made of spaces in sequence. The period in this next optional rule,

recursive rule,

2Daniel J. Salomon and Gordon V. Cormack. Scannerless NSLR(1) parsing of programming sequences
languages. SIGPLAN 89, pp 170-178. ACM Press, 1989.

64 CHAPTER 2. THE SYNTAX OF SYNTAX

rule indicates an optional item in the sequence, and in this case the item refered
to is the rule itself and so the rule is recursive'?, allowing a sequence of one or
more spaces to be met by the rule.

s / sp .s ;
tabs Spaces can be made of space characters or tab characters.
sp 7" '] "\t';
characters in strings A character suitable for inclusion in a string is a number, a lowercase letter,

an uppercase letter, a common symbol, or a special symbol, or whitespace.

sch ? dgt | upr | lwr | smb | wsc | sps ;

strings of characters Strings in ibnf are made of one or more suitible characters.

chs / sch .chs ;

positive integers Positive integers are made from one or more digits in sequence. In ibnf the
period indicates an optional element of the sequence, and rules may be recursive.

pnt / dgt .pnt ;

alphanumeric Alphanumeric ’symbols’ are made of uppercase, lowercase, and numeric
symbols characters.

als / aln .als ;

IBWirth, Niklaus (1976). Algorithms + Data Structures = Programs. Prentice-Hall p. 126.

2.3. A CALCULATOR EXAMPLE 65

2.3 A Calculator Example

A calculator that can compute simple math expressions will have a syntax for
those expressions. This calculator example therefore contains additional syntax
definitions.

2.2 Tmplement a Calculator Example. 1/28/2013 v

Goals, continued.

The calculator example syntax is defined in sntx,calc-example,ibnf and
is exported as calc-example.ibnf):.

“cap,env,lang,indp,sntx ~ ([calc-example :"([ibnf :~ § 1;
[six-py :~ $ 1;
[input :~ $ 1; $)1; $);

In this calculator example the syntax is a sequence of newline-terminated
lines:

syntax = line .s '\n' .syntax ;

But calculator does not just parse expressions... It must also return results. Semantic actions
Returning the results of what was expressed in the parsed syntax make up the
semantic actions', of the calculator.

In this chapter another set of definitions declare what semantic action is
associated with the succesful parsing of a syntax item. In this calculator example
the semantics are defined in sntx,calc-example,six-py and are exported as
calc-example.six-py). For convenience the semantic actions are shown in a
different color. Here is the semantic declaration for the above syntax rule:

syntax ~ .1.1 + .4.1

The above semantic action for the syntax rule merely says that the semantic
results of the first component of the syntax rule (e.g. the result of the line rule)
is concatenated with the fourth component of the syntax rule (e.g. the result of

M Dijkstra, Edsger W. (1976.) The characterization of semantics (A Discipline of Program-
ming, Chapter 3) Prentice-Hall.

Implementation
Language

Parsing Engine,

Syntax Tree

negatable

66 CHAPTER 2. THE SYNTAX OF SYNTAX

recursively applying the syntax rule.)

For the syntax of a line, one may include a variable assignment but will
include a negatable expression:

line = .var nexpr ;

line : registers[.1.1.1] = int(.2.1)
[-=> " .2.1°

For the semantics of a line, a register will be assigned the value of the negat-
able expression and then a textual string containing the value of the negatable
expression will be returned to be accumulated by the syntax rule.

The semantic expressions for these syntax rules are a pidgin'® of ’semantics
for ibnf expressions’ mixed with the native syntax of another programming
language used for implementation such as (in this case) python. In the above
examples the references (e.g. .1.1 or .4.1) are references to sematic products of
the ’six’ parsing engine, while the funcitons, assignments, and operations (e.g.
int(), =, +) are borrowed from the implementation language.

The ibnf/six system is a regularly constructed parsing engine that consumes
a source text under the direction of an ibnf grammer text and produces a result.
Each time a syntax rule successfully parses all of its sub rules, the collection
of the sub rule results is passed as a tuple to the semantic action of the rule.
The result of the semantic action is returned from the rule to be accumulated
in a tuple at the next level up. The natural intermediate representation of this
behaivor is a syntax tree.

For convenience there are three modes of semantic production, each seen
once above. The caret indicates that a referenced item or the result of an
operation (which may be on referenced items) should be returned. The colon
indicates that a computation will occur before a result is returned. A sequence
of lines with vertical bars declare quoted text to be returned, with back-ticks
unescaping expressions embedded in the quoted text.

Continuing the example:

A negatable expression is one which may be negated, and the (optional)
negation is identified with a -’ sign.

15Holm, John (2000), An Introduction to Pidgins and Creoles, Cambridge Univ. Press.

2.3. A CALCULATOR EXAMPLE 67

nexpr = .s .neg expr ;
neg 7 =0 g
nexpr " (str(0 - int(.3.1)) if(len(.2) > 1 and .2.1 == "-") else .3.1)

A variable assignment is just a lowercase letter followed by the equals sign:

var = .s lwr .s '=' ;

var .2

An expression may be an addition, a subtraction, an multiplication, a divi- expression
sion, or an item all by itself.

expr ? addexpr | subexpr | mulexpr | divexpr | itmexpr ;

The addition expression (with optional white space) is two items joined addition

by a '+’ sign. Likewise the subtraction, multiplication, and division. subtraction
multiplication
division
addexpr = .s itm .s '+' .s itm ;
subexpr = .s itm .s '-' .s itm ;
mulexpr = .s itm .s 'x' .s itm ;
divexpr = .s itm .s '/' .s itm ;

addexpr ~ str(int(.2.1) + int(.6.1))
subexpr ~ str(int(.2.1) - int(.6.1))
mulexpr ~ str(int(.2.1) * int(.6.1))
divexpr ~ str(int(.2.1) / int(.6.1))

The item expression is just an item. An item may be a variable identifier, item expression,

a positive integer or a parenthetical negatable expression. item,
variable
itmexpr = .s itm ;
itm ? vbl | pnt | parens ;

itmexpr ~ .2.1

68 CHAPTER 2. THE SYNTAX OF SYNTAX

variable A variable is just a lowercase letter, but when the sytnax is matched in an
expression the semantic action is to retrieve the previous value recorded for that
variable.
vbl = lwr ;
vbl ~ str(registers[.1.1 1])
parentheses Parentheses surround a negatable expression. Nesting is thus allowed.
parens = .s '(' nexpr .s ')'

parens -~ .3.1

A calculator needs input:

a=1+34

b=a + 40

c = 56-6

d=b-c

x =10 / 2

v=x- 12
y=-(5-3)

z = -80
e=@+5)/(2+2)
f=-1

To build the example, first run the semantic rule parser on the calculator
example semantic rules:

python sixparser.py calc-example.six-py blank.txt calc-example.smtx

Combine the grammars and then run the syntax rule parser on the calculator
example syntax rules and include the generated semantics as a parameter:

cat ./common-chr.ibnf ./calc-example.ibnf > ./calc-example-full.ibnf
python ibnfmeta.py calc-example-full.ibnf calc-example.smtx calc-example.py

Run the calculator on the input and view the output:

2.4. DECLARING IBNF IN IBNF/SIX 69

python calc-example.py calc-example.input blank.txt calc.out
cat calc.out

--> 356
--> 75
--> 50
--> 25

2.4 Declaring ibnf in ibnf/six

Annotating rules with productions (as shown in the calculator example) enables compiler-compiler
the system to automatically construct an interpreter or even a compiler for
input texts written in the described syntax. When the described syntax is a
system for describing syntax (e.g. ibnf.ibnf) and when the semantics are
those of semantics-generation (as will be seen in ibnf.six-py, six.ibnf and
in six.six-py) then the result is a parser-generator or a compiler-compiler®.

If the compiler-compiler thus described is sufficiently versatile to reproduce meta-compiler
its own executable when provided with its own syntax and semantics definitions
then the result is a metacompiler'”. ibnf/six is a metacompiler.

2.3 Declare ibnf in ibnf/six. 1/15/2013 v

Goals, continued.

ibnf will use the common definitions introduced in the first section and in-
troduces more defined in sntx,ibnf,ibnf and exported as ibnf.ibnf. The
semantic rules for parsing ibnf are defined in sntx,ibnf,six-py and are ex-
ported as ibnf.six-py.

“cap,env,lang,indp,sntx ~ ([ibnf :7([ibnf :~ $];
[six-py " $1; $)1; $);

16Stephen C. Johnson. YACC: Yet Another Compiler-Compiler. Unix Programmer’s Man-
ual Vol 2b, 1979.

17Schorre (1964). A Syntax-Oriented Complier Writing Language. Proceedings of the 1964
19th ACM National Conference, ACM Press, New York, NY, 41.301-41.3011

PEG,
packrat

70 CHAPTER 2. THE SYNTAX OF SYNTAX

The ibnf/six system implements a parsing expression grammer, or PEG!S.
A PEG imposes an order of selection on what might otherwise be an ambiguous
choice in a BNF-style grammer— in a PEG the first option is selected when there
are two possible matches. In addition the ibnf/six system implements a pack-
rat'®. parser, using memoization of previously visited states as an optimization
for efficiency and for handling recursive rules.

The result of processing the syntax and semantics rules in this section will
be an ibnf syntax parser, which is one half of the ibnf/six system. Crafting a
six syntax parser with its own semantic rules will be the subject of the section
following this one.

To begin with, a syntax is made of rules.
syntax = rules ;

syntax ~ prologue + .1.1 + semantics + epilogue

The semantic action of the syntax rule is to produce a program of four parts:
a prologue that sets up the parsing engine initial conditions, a set of function
definitions (each corresponding to a defined rule in the syntax being parsed,)
the semantic actions for the syntax being parsed and an epilogue that performs
the final actions of the parsing engine before it exits. In this implementation of
ibnf/six the result is a python program.

rules = rule .rules ;

rules 1.1+ 2.1

The function definitions that result from successfuly parsed rules are simply
concatenated into a sequence of function definitions.

A rule may incorporate other rules, may be a choice amongst alternatives or
may just be a blank line:

18Ford, Bryan (2004). Parsing Expression Grammars: A Recognition Based Syntactic Foun-
dation. Proceedings of the 31st ACM SIGPLAN-SIGACT Symposium on Principles of Pro-
gramming Languages.

9Warth, Douglass, Millstein (2008). Packrat Parsers Can Support Left Recursion. ACM
SIGPLAN 2008 Workshop on Partial Evaluation and Program Manipulation

2.4. DECLARING IBNF IN IBNF/SIX 71

rule ? incorp | altern | blankline ;

Blank lines have optional whitespace and end in a newline character. Blank
lines provide nothing to the parsing program that is being assembled.

blankline = .s '\n' ;

blankline =~ ""

Each rule type has a name and a body. The alternating rule is signified by
a question mark.

altern = .s name .s '?' albody .s ';' .s '\n' ;

The semantic action of matching an ’altern’ rule is to compose a new function
that takes an input text and indicates a match was found if that input text starts
with one of the alternatives listed in the body of the ’altern’ rule.

altern |def ~.2.1° _p(s, c):

| if been("~.2.1°",s): return was(c, " .2.1°",s)
| else:

| mark(".2.1°",s,(F,T,s,0,c,("","")));met = F
| ~#.5#"

| if not met:

| return mark("".2.1°",s,(F,T,s,0,c,("","")))
| else:

|

return mark(" .2.1°",s, (met,mem,s,tl,tc,ta))
.albody ~ #.1.2# + #.1.3.1#
.cmatch ~ #.1#

.cm | if not met: (met,mem,ts,tl,tc,ta)=cm(' .1',s,c)
.btb | if not met: (met,mem,ts,tl,tc,ta)=cm(' .1"',s,c)
.bnl | if not met: (met,mem,ts,tl,tc,ta)=cm('" .1 ',s,c)
.name | if not met: (met,mem,ts,tl,tc,ta)=".1 _p(s,c)

The first thing the produced function does is check to see if the same position
in the source text has already been evaluated for matching that syntax rule. If
so the function returns the success or failure previously determined.

If that location in the source text has not been evaluated for matching the
syntax rule before, the generated function marks the location as failing the

72 CHAPTER 2. THE SYNTAX OF SYNTAX

match and sets a flag (for having met at least one rule) to False.

In the process of creating the generated function, the ’altern’ rule next re-
curses on the 5th component of the rule, which is the ’albody’. Upon recursion
one of six things will be included in the genrated function: a call to another
named rule, a call to matching a newline, a call to matching a tab, a call to
matching a character, a call to a superior rule to matching characters, or the
results of composing recursive calls to the 'albody’ rule.

Finally in the genrated function if nothing was matched then failure is re-
turned, otherwise success is both memoized and returned.

The incorporating rule is signified by either a forwards slash or an equals
sign:

incorp = .s name .s iflag inbody .s ';' .s '\n' ;
iflag 7 '/' | '='

The semantic action of matching an ’incorp’ rule is to compose a new function
that takes an input text and indicates if matches were found sequentially in the
input text for all of the items listed in the body of the ’incorp’ rule.

2.4. DECLARING IBNF IN IBNF/SIX 73

incorp :smfnc="_s(a,m,s,e,c,n): return(T,T,s,e-s,c,(n,fils:e]))"
|def ~.2.1° _p(s, c):
| if been(" .2.1°",s): return was(c, " .2.1°",s)
| else:
| mark(">.2.1°",s,(F,T,s,0,c,("","")))
| ok=True; ts=s; tl=0; a={0: ("","")}
| mem={0:True}; tc=c; n=0
| ~#.5#"
| if ok:
| rv=".2.1 _s(a,andmemo(mem) ,s,ts+tl,tc," .2.1°")
| return mark(" .2.1°",s,rv)
|
|
|
|
|
|

return mark("*.2.1°",s,(F,T,s,0,c,("","")))
“("def "+.2.1+smfnc if .4.1 == "/" else "")°
.inbody if ok:
n=n+1; ((C "n" if .1.2.0 == "pnit" else "") ok,mem[n],ts,tl,tc,aln])=\
“#.1.2.1 if .1.2.0=="pnit" else .1.2#"
T#.1.3%
.pnit "n"
.cmatch = #.1#
.name ~ .1 +"_p ((ts+tl), tc)"
.cm “ "em(\'" + .1+ "\!', (ts+tl), tc)"
.bsl ~ " cm(chr(92) ,(ts+tl), tc)"
.btk ~ " cm(chr(39) ,(ts+tl), tc)"
.bqt = " cm(chr(34) ,(ts+tl), tc)"

.bnl ~ " cm(chr(10) , (ts+tl), tc)"

As with the previous rule, the first thing the produced function does is
check to see if the same position in the source text has already been evaluated
for matching that syntax rule. If so the function returns the success or failure
previously determined.

If this is a new evaluation, the generated function marks the location as
failing the match and sets a flag (for not having failed a rule yet) to True.

In the process of creating the generated function, the ’incorp’ rule next
recurses on the 5th component of the rule, which is the 'inbody’. Upon recursion
one of nine things will be included in the genrated function: a call to another
named rule, a call to matching a newline, a call to matching a tab, a call to
matching a single quote, a call to matching a backslash, a call to matching a
character, a call to a superior rule to matching characters, a call to matching a
period (optional) named item, or the results of composing recursive calls to the
‘inbody’ rule.

Finally in the genrated function if everything was matched then the semantic
function is called, after which success is both memoized and returned. Otherwise

74 CHAPTER 2. THE SYNTAX OF SYNTAX

in the generated function failure is memoized and returned.

If the rule being generated was marked with a slash then the incorp rule will
generate an additional semantic function for the rule that simply returns the
extent of the source text matched as the result of that rule’s semantic action.

A name is made up of one or more lowercase letters. The semantic action of
matching the name rule is to return the letters making up the name.

name / lwr .name ;

Within the rule albody rule-named-items are separated by the vertical bar
symbol. More alternatives may be found on the next line if the last thing on
the albody line is a vertical bar symbol. For a semantic action, the albody rule
returns the complete tuple of values available to it. The almore semantic action
however is to return the fourth item in the tuple of values available to it (e.g.
the result of its ’albody’.

albody = .s nit .almore ;
almore = .s '|' .alnewline albody ;
alnewline / .s '\n' ;

albody ~ ..
almore ~ .4

Within the rule inbody rule there may be multiple possibly period prefixed
named items. Like albody, inbody passes upwards everything it gets.

inbody = .s onit .inbody ;
onit ? pnit | nit ;

inbody ~ ..

pnits are:

pnit = '.' nit ;

pnit ~ .2

2.5. IMPLEMENTING SIX IN IBNF/SIX 75

A nit is a name or a character match.

nit ? name cmatch ;

A character match is a suitable character (or escaped character) as defined
in common-chr surrounded by single quotes.

cmatch = '\'' sch '\'' ;

cmatch =~ .2

To build the ibnf parser, first run the semantic rule parser on the ibnf se-
mantic rules:

python sixparser.py ibnf.six-py blank.txt ibnf-smtx.py

Combine the grammars and then run the syntax rule parser on the ibnf
syntax rules and include the generated semantics as a parameter:

cat ./common-chr.ibnf ./ibnf.ibnf > ./ibnf-full.ibnf
python ibnfmeta.py ibnf-full.ibnf ibnf-smtx.py ibnf.py

Run the generated parser on the very input that produced it, then do it
again:

python ibnf.py ibnf-full.ibnf ibnf-smtx.py ibnfmeta2.py
python ibnfmeta2.py ibnf-full.ibnf ibnf-smtx.py ibnfmeta3.py

2.5 Implementing six in ibnf/six

The previous section implemented a parser of syntax rules that allowed for the
inclusion of externally generated semantic productions for those rules. This
section implements a parser and generator for those semantic rules. The sep-
aration of syntax from semantics allows syntax to be re-used and semantics to
be re-targeted.

76 CHAPTER 2. THE SYNTAX OF SYNTAX

2.4 Declare the syntax and semantics of six. 1/20/2013 v/

Goals, continued.

six will use the common definitions introduced in the first section and in-
troduces more defined in sntx,six,ibnf and exported as six.ibnf. The se-
mantic rules for parsing six are defined in sntx,six,six-py and are exported
as six.six-py.

“cap,env,lang,indp,sntx ~ ([six :"(C [ibnf :7 $];

[six-py :~ $1; $)1; $);

The result of processing the rules of sytax for six will be an six parser.

syntax = srules end ;

syntax ~ .1.1 + .2.1

The six parser consumes semantic rules and (as its own semantic function)
emits the results of processing those rules into semantic functions, followed by
some predefined values that may be used by semantic functions.

The srules rule is defined recursively:

srules = srule .srules ;

srules = .1.1 + .2.1

The values of the rules (as semantic functions for inclusion in an ibnf parser)
are returned concatenated together by the six parser.

A srule is a blank line or a basic semantic definition.

srule ? blankline | base ;

Blank lines have optional whitespace and end in a newline character.

2.5. IMPLEMENTING SIX IN IBNF/SIX 7

blankline = .s '\n' ;

blankline ~ "

A basic semantic definition has a name followed by some optional setup
code, a body of program code that is produced when the syntax for that named
syntax component is matched by the parser, and then an optional sequence of
recursive definitions that may be refrenced by that body of code.

base = .s name .setup body .recr;

body ? qlineset | cline ;

setup = .s ':' .s code .s '\n' .setup ;

recr = .s '.' name .rsetup body .recr ;

rsetup = .s ':' .s rcode .s '\n' .rsetup ;

rcode = ritm .rcode ;

ritm ? string | rcr | lwr | dpathw | dhas | pnt | '>' | '<' |

I{I | l}l | L) I I%l | l(l | 1 1 I I)l I 1 1 | l[l I I]l I

M b -
l;l | L] | [| T ! | |/| I 1= | v | [g

The body of program text may be a set of ’‘quoted’ text lines to be deposited
as the resulting function’s return value or it may be a singe code line, and the
result of executing that code line is deposited as the resulting function’s return
value.

The semantic implementation of the basic semantic rule declares a semantic
function which conditionally includes setup code for a rule being parsed by that
rule, will include 'body’ code for returning a result for a rule being parsed by
that rule, and which conditionaly is followed by a recursive function definition
for a semantic rule being parsed by that rule:

78 CHAPTER 2. THE SYNTAX OF SYNTAX

base :rbody=" o = \"\"\n rx="+.2.1+"_r\n if a != \"\":\n"+.5.1+" return (o)\n"
|def ~.2.1°_s(a,m,s,e,c,n):

[* (" rx="+.2.1+"_r " if .5.1 !="" else "")°

[~(" "+.3.1 if .3.1 != "" else "")°~

| return (T,T,s,e-s,c,(" .2.1°", ~.4.1°))

|~ ("def "+.2.1+"_r(a,m,s,e,c,n):\n"+rbody if .5.1 != "" else "")°
setup ~ ((.4.1 +"\n " + .7.1) if .7.1 != "" else .4.1)
rsetup = ((" "+.4.1 + " "+ .7.1+4"\n") if .7.1 I= "" else " "+.4.1+"\n")
recr " " if af0] ==\"" + .3.1 + "\":\n" + .4.1 + " o=o+" + .5.1 +"\n"+ .6.1

A code line starts with a caret:

cline = .s '"'" .s code .s '\n' ;

cline - 4.1

A set of quoted lines have a vertical bar at the start of each:

gqlineset = qglines ;

gqlines = .s glsep qline .qlimes ;
glsep = "'

qline = qchs '\n' ;

qlineset & n\un + .1.1 + u\n"

gqlines T .21+ .31+ 4.1
qlsep ~ "\\n\" + \\\n\""
qline S (T

A code line may be escaped with back-tics. The result of code within the
back-tics is inserted in-line with the quoted text:

2.5. IMPLEMENTING SIX IN IBNF/SIX 79

qchs = .gch .qchs ;

qch ?7aln | qq | qt | gs | gsmb | ' ' | qcode ;
aq = \"'

qt = '"\'';

gs = "\\' ;

qcode = '*' .s code .s '™'

qchs 1.1+ 2.1

aqg M\

qt -~ ll\\\lll

gs - "\NAN\"

qcode = II\II + " + 3.1 + " + \llll

A name is composed of lowercase letters:

name / lwr .name ;

Quoted symbols may not include the back-tick, because that is used to escape
the quoted text:

qub ? I_lll_llI+I|I=I|I~I|I!I|I@I|l#l I$III%I'I"IIl&lll!lllllll/ll
l:llI;Ill*lll(lll)lll[lll]ll |

I
l{l I}lll’lll'lll<lll>lll?l g

Strings may be interrupted by newlines and continued on the next line after
a continuation character:

string = '\"' .strcs '\"'
strcs = sch .strcs ;
string -~ Il\ll n + '2. 1 + |l\|l n

strcs -1+ 201

six-py is a pidgin of six syntax for data reference paths and recursive calls,
and of python code. The pidgin is constructed of code item(s) and may span
multiple lines when the newline is followed by a code continuation character:

80 CHAPTER 2. THE SYNTAX OF SYNTAX

code = citm .code ;

citm ? string | cnl | rcr | lwr | dpathw | dhas | pnt | '>' | '<' |
L L T T e A L G [Ty [T Y L L (O L
|;| I 141 | [| ! I |/| | 1= | v I [g
cnl = '\n' .s '"!'
code - 1.1+ .21
cnl -~ "\\\n"

Data reference paths are turned into python array dereferences:

dpathw = dpath ;

dpath = '.! pnt .dpath ;

dhas = Lot

dpathw ~ "a" + .1.1

dpath - "["+ .2.1 + "]" + .3.1
dhas -~ n all

Recursive calls are made between hash marks:

rcr 7 rca | rcb ;

rca = '#' .s name .s ':' .s code .s '#'

rcb = '#' .s code .s '#'

rca - .3.1 +"_s(" + .7.1 + ",m,s,e,c,n) [5][1]"

rcb "rx(" + .3.1 + ",m,s,e,c,n)"

The parsing engine assembled by the ibnf/six system requires some prede-
fined functionality, which is encapsulatd in six in definitions for a prologue and
an epilogue and which is placed in the semantic output after all of the seman-
tic rules. The syntax rule for ’end’ optionally matches whitespace, which will
always succeed.

end = .s

The prologue and epilogue are included as simple global variable assignments
that may be referred to in other sematic productions (such as the production
for ’syntax’ in ibnf.)

2.5. IMPLEMENTING SIX IN IBNF/SIX 81

end |prologue="""import sys

|from binascii import *

|[fi = file(sys.argv[1]).read()

|semantics = file(sys.argv[2]).read()

|fo = open(sys.argv[3], "w+")

|

|h={}; registers={}; context={}; mseq=0; dseq=1; T=True; F=False

|

|def n2z(a):

| return ('0' if a=='"' else a)

|

|def be2le(a):

| return a[6:8]+a[4:6]+a[2:4]1+a[0:2]

|

|def mark(p, s, t):

| (v, m ss, 1, c,a)=t
if t[1]: x =p +"-" + str(s); h[x]=(v,m,1,a); return t
else:

if not t[0]: x = p +"-" + str(s); h[x]l=(v,m,1,a); return t

return t

def been(p, s):
if h.has_key(p +"-" + str(s)): return hlp +"-" + str(s)][1]
else: return False

def was(c,p,s): (v,m,1l,a) = h[p+"-"+str(s)]; return (v,m,s,1l,c,a)

|

|

|

|

|

|

|

|

|

|

|

|def cm(ch, s, c):

| if s < len(fi):

| if fi[s] == ch: return (T, T, s, 1, ¢, ("cm", fil[s]))
| return (False, True, s, 0, c, ("cm", ""))
|
|
|
|
|
|
|
|
|
|
|
|
|

def andmemo(m):
r = True
for i in m:
if not m[i]: r = False
return r

outdata = ""

def output(s):
global outdata
outdata = outdata + str(s)

""" epilogue="""

I

| (v,m,s,1,c,a) = syntax_p(0, ({},'<1>','<0>'))
|if v:

| print "Parsed "+al[0]+" OK"

|else: print "Failed to Parse"

|print >> fo, all]

|fo.close()

82 CHAPTER 2. THE SYNTAX OF SYNTAX

To build the six parser, run the semantic rule parser on the six semantic
rules:

python sixparser.py six.six-py blank.txt six-smtx.py

Combine the grammars and then run the syntax rule parser on the six syntax
rules and include the generated semantics as a parameter:

cat ./common-chr.ibnf ./six.ibnf > ./six-full.ibnf
python ibnfmeta.py six-full.ibnf six-smtx.py sixmeta.py

Run the generated parser on the very input that produced it, then regenerate
the semantics parser:

python sixmeta.py six.six-py blank.txt six-smtx2.py
python ibnfmeta.py six-full.ibnf six-smtx2.py sixmeta2.py

Rebuild the ibnf parser using the new semantic rule parser:

python sixmeta2.py ibnf.six-py blank.txt ibnf-smtx.py

Combine the grammars and then run the syntax rule parser on the ibnf
syntax rules and include the generated semantics as a parameter:

cat ./common-chr.ibnf ./ibnf.ibnf > ./ibnf-full.ibnf
python ibnfmeta.py ibnf-full.ibnf ibnf-smtx.py ibnf.py

Run the generated parser on the very input that produced it, then do it
again:

python ibnf.py ibnf-full.ibnf ibnf-smtx.py ibnfmeta2.py
python ibnfmeta2.py ibnf-full.ibnf ibnf-smtx.py ibnfmetad.py

2.6 A toy compiler in ibnf/six

The ibnf/six system can be used to create a compiler that produces machine
code from source code in a defined language syntax.

2.6. A TOY COMPILER IN IBNF/SIX 83

2.6 Craft a toy compiler in ibnf/six. 2/8/2013 v

Goals, continued.

The toy syntax needs a place to reside.
“cap,env,lang,indp,sntx ~ ([toy :7(C [ibnf :~ $

1;
[six-py :~ $1; $)1; $);

The syntax of a toy program will consist of a series of statement sequence
lines.

syntax = program end ;
program = lines ;

lines = .seq .s '\n' .lines ;
seq = .s stmt .more ;

more = .s ';' seq ;

syntax = header + code + literals

program : # sizecode 1.1 0#
: # countvars 1.1 #
: # makelit 101 0#
emitcode 1.1 0

: print .1.1

| ok

lines ~ ("seq", .1.1 , .4.1)
seq - ("seq", .2.1, .3.1)

more - .3.1

The only statements for now are print, var, and exit.

stmt ? 1lsprint | vsprint | vdef | exit ;
lsprint = 'p' 'r' 'i' 'n' 't' .s lstring ;
vsprint = 'p' 'r' 'i' 'n' 't' .s vname ;

vdef = 'y' 'a' 'r' s vname .s '=' .s varable ;

vname / lwr .vname ;
exit = 'e' 'x'" 'i' 't' .s exitvalue ;

84

1sprint
vsprint
vdef
exit

=~ ("lsprint", .
~ ("vsprint", .
=~ ("vdef", .5.1,
~ ("exit", .6.1

7
7

CHAPTER 2. THE SYNTAX OF SYNTAX

1)
1)
.9.1)
)

Only literal strings are printable right now, and one exits with an exit value.

1lstring
strchs
strch
nsl

ntk

nqgt

nnl

ntb
varable

V|

exitvalue

strchs
nsl

ntk

nqt

nnl

ntb
1lstring
varable

end = .

I\Ill

dgt
bsl
btk
bqt
bnl
btb

.strchs '\"'
strch .strchs ;
upr | lwr | smb | " ' | '\t' | nsl | ntk | nqt | nnl | ntb ;

= |\|||
/ pnt ;

1.1+

ll\\ll
ll\l n
u\u n
ll\nll
"\t"

~ ("lstring",
- ("lstring",

.ChS |\|||

2.1

.2.1, str(s), str(len(.2.1)))

.2.1, str(s), str(len(.2.1)))

Before we do anything else we need to know how big the executable portion
of the program is:

sizecode :

.seq
.exit
.1sprint
.vdef
.vsprint

global lstart
: lstart

ok

int(# ..

#)+232+4096+8

str(0 + int(n2z(#.1#)) + int(n2z(#.2#)))

= str(len(unhexlify(# exitx : O #)))

~ str(len(unhexlify(# lsprintx : (0,0) #)))
str(len(unhexlify(# vdefx : (0,0,0) #)))
str(len(unhexlify(# vsprintx : O #)))

2.6. A TOY COMPILER IN IBNF/SIX 85

Making the literal pool:

makelit : global literals, 1llist, lend; 1llist = {}; lemnd = O
: literals = # .. #

| ok

.seq TOHULH + #.2#

.exit Sonn

.1sprint T o##

.1string : global 1list, lend; 1list[.2] = lend; lend = lend + len(.1)
R

.vdef T OH#.2#

Counting the local variables:

countvars : global vlist, vend; vlist = {}; vend = 0
: literals = # .. #

| ok

.seq TOHUIH + #.2#

.vdef : global vlist, vend; vlist[.1] = vend; vend = vend + 1
| ok

Emitting the code:

emitcode : global lstart, code, vend
: code = unhexlify(# mkloclx : vend #) + # .. #
| ok
.seq : global 1start, 1llist
TOH#1# + #.2#
.exit " unhexlify(# exitx : int(.1) #)

.lsprint ~ unhexlify(# lsprintx : (int(.1.3),lstart+1llist[.1.2]) #)
.vdef " unhexlify(# vdefx : (lstart+llist[.2.2],vlist[.1],int(.2.3)) #)
.vsprint ~ unhexlify(# vsprintx : vlist[.1] #)

"Assembly language’ for each language construct, starting with making space
for local variables:

mkloclx ~ # decsp T.. k8 # 4+
" # esptoebp: .. #

To make an ’exit’ system call, put 1 in eax and push the exit value on the

86 CHAPTER 2. THE SYNTAX OF SYNTAX

stack then call interrupt 0x80.

exitx " # oneeax : .. # +
" # pushc .. # o+
" # decsp 4 # o+
~ # int : 128 #

To make an ’write’ system call with a string constant, put 4 in eax, push the
length of the string, the location of the string and some padding on the stack,
then call interrupt 0x80. When the system call returns, remove the values from
the stack.

lsprintx ~ # pushc .0 # +
" # pushc .1 #+
" # pushc 1 # o+
T # toeax 4 # o+
= # decsp 4 #+
T # int : 128 # +
" # incsp : 16 #

To initialize a local variable to a string constant value, place the address of
the string and the length of the string at the local variable’s offset in the stack
frame.

vdefx ~ # toeax : .0 # +
" # ebpeax : .1 *x 8 # +
" # toeax .2 # +

" # ebpeax : (.1 *x8) + 4 #

To make an ’write’ system call with a string variable, retrieve and push the
length of the string, retrieve and push the location of the string, put 4 in eax
and some padding on the stack, then call interrupt 0x80. When the system call
returns, remove the values from the stack.

2.6. A TOY COMPILER IN IBNF/SIX

vsprintx ~

Machine code for the

oneeax = "31c040"
esptoebp = "89eb5"
incsp T "81c4" +
decsp T "8lec" +
toeax = "b8" +
eaxebp ~ "8b4b" +
ebpeax T "8945" +
pushc - "e8" +
pusheax =~ "50"

int S "ed" +

eaxebp (.. *x8)+4 # +
pusheax : .. # +

eaxebp (.. x8) # +

pusheax : .. # +

pushc 1 #+

toeax 4 # o+

decsp 4 # o+

int : 128 # +

incsp 16

"Assembly language’:

be2le("%08X" % (.
be2le("%08X" % (.
be2le("%08X" % (.
"%o2x" % (..)
"%02X" % (..)
be2le("%08X" % (.

"%02X" % (..)

Building the mach-o program header:

)
)
)

)

87

88

CHAPTER 2. THE SYNTAX OF SYNTAX

end : global header, code, literals

: hdr
:cl
:cl
: fsz
: c2
: c2
: bsz
: c3
: c3
: c3
: c3
: c3
: c3
: c3
: fsz
: bsz

| ok

=cl

c2

c3
c3
c3
c3
c3
c3

+ 4+ + + +

+

unhex1ify("cefaedfe07000000030000000200000002000000CCO00000")
unhex1ify("00000000010000007c0000005£5f54455854000000000000")
unhex1ify("00000000001000000010000000000000")
unhex1ify("00000000")
unhex1ify("070000000500000001000000000000005£5£7465787400000000")
unhex1ify("0000000000005f5f5445585400000000000000000000E8100000")
unhex1ify("00000000")

unhex1ify ("E800000002000000000000000000000000000000")

unhex1ify ("00000000000000000500000050000000")
unhex1ify("01000000100000000000000000000000")
unhex1ify("00000000000000000000000000000000")

unhex1ify ("00000000000000000000000000000000")

unhex1ify ("E8100000000000000000000000000000")
unhex1ify("0000000000000000")

unhexlify(be2le("%08X" % (232 + len(code) + len(literals))))
unhexlify(be2le("%08X" % (len(code) + len(literals))))
: header = hdr + c1 + fsz + c2 + bsz + c3

A toy compiler needs source code to compile:

print "This is a test of the emergency broadcast sytsem. This is only a test.\n"
var foo = "bar"

var baz = "quux"

print baz; print foo
print "This is another print statement.\n"

exit 42

Build the toy compiler semantics with sixparser then build the toy compiler

with ibnfmeta:

python sixparser.py toy.six-py blank.txt toy-smtx.py
cat ./common-chr.ibnf ./toy.ibnf > ./toy-full.ibnf
python ibnfmeta.py toy-full.ibnf toy-smtx.py toy-compile.py

Compile the toy program source code with the toy compiler, then execute
the toy executable:

python toy-compile.py test.toy blank.txt toy.out
chmod 755 toy.out

./toy.out

