Fork of numpy/numpy
C Python Other
Switch branches/tags
Pull request Compare This branch is 10 commits behind numpy:master.
Latest commit e657629 Oct 18, 2017 @ahaldane ahaldane Merge pull request #9883 from eric-wieser/0d-format
ENH: Implement ndarray.__format__ for 0d arrays
Failed to load latest commit information.
benchmarks BENCH: Added missing ufunc benchmarks Oct 11, 2017
branding/icons add .gitattributes and fix line endings Oct 31, 2010
doc Merge pull request #9842 from bashtage/protect-empty-init Oct 18, 2017
numpy Merge pull request #9883 from eric-wieser/0d-format Oct 18, 2017
tools TST: appveyor: Enable OpenBLAS via MinGW Gfortran Sep 5, 2017
.appveyor.yml MAINT: Make appveyor config a dot-file Oct 1, 2017
.gitattributes MAINT: Remove numpy-macosx-installer and win32build directories. Feb 25, 2017
.gitignore MAINT: update .gitignore Apr 10, 2017
.gitmodules Add Numpydoc as a git submodule Jul 25, 2013
.mailmap MAINT: Update .mailmap May 18, 2017
.travis.yml MAINT: merge python -3 and -OO test Sep 1, 2017 MAINT give pointers to coding style and dev environment Aug 28, 2015
INSTALL.rst.txt BUG: financial.pmt modifies input #8055 Sep 23, 2016
LICENSE.txt Update LICENSE.txt to 2017 Jan 18, 2017 MAINT: remove outdated doc/f2py content. Jun 18, 2017 MAINT: Add appveyor badge to README Oct 1, 2017
THANKS.txt ENH: core: Start einsum function, add copyright notices to files Jan 23, 2011 MAINT: Reuse the code to compute sha256, md5 hashes Aug 25, 2017 BUG: Fix runtests --benchmark-compare in python 3 Oct 15, 2017 BUG: fix issue when using ``python somecommand --force``. Jun 20, 2017
site.cfg.example DOC: change Numpy to NumPy in remaining files Sep 6, 2016
tox.ini TST: Add Python 3.5 and 3.6 to Tox environments Mar 8, 2017


Travis AppVeyor

NumPy is the fundamental package needed for scientific computing with Python.

It provides:

  • a powerful N-dimensional array object
  • sophisticated (broadcasting) functions
  • tools for integrating C/C++ and Fortran code
  • useful linear algebra, Fourier transform, and random number capabilities

If nose is installed, tests can be run after installation with:

python -c 'import numpy; numpy.test()'

Powered by NumFOCUS