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Abstract—For a few years now, our team in Huawei Technolo-
gies, Helsinki System Security laboratory have been following
the open-source CHERI work from Cambridge University with
great interest, as this re-birth of a hardware capability system
has the promise to revolutionize how the mobile industry deals
with memory protection in consumer devices, beyond what can
be achieved with technologies like ARM Pointer Authentication
or Memory Tagging — features that already have appeared in
contemporary processors.

Of special interest to our team has been the consideration
of achieved security benefit vs. performance degradation in the
software stack. To analyze this in practice, we, together with
a team from Fraunhofer AISEC, have ported a few of the OS
kernels and base systems used today in products to the CHERI
platform, more specifically the RISC-V one for now, with the
intent to collect first-hand evidence of what level of compiler
or software optimization still needs to take place to help make
CHERI technology mainstream, and at the same time set up a
reference platform to eventually demonstrate this opportunity.

This white-paper accompanies the open-sourcing of our current
Linux 5.15 CHERI port for RISC-V, along with a minimal run-
time. Considering the significant on-going research effort on the
Morello ARM platform, we hope this work is of benefit for other
Linux community ports taking place in the CHERI context, both
by pin-pointing where in the code the implementation effort for a
functioning CHERI adaptation needs to happen in Linux, and to
provide indication of some of the design patterns applied by us to
complete the necessary code adaptation needed when migrating
from a non-CHERI ISA to a full-capability setup. Today, our
Linux image runs in full-capability mode on CHERI RISC-V, but
we do not yet claim it is full-featured or even properly analyzed
for optimal capability application. It is however ready as a starting
point for future research.

Index Terms—Hardware Capabilities, Linux kernel, Mobile
Security, RISC-V

I. INTRODUCTION

This port of Linux to the CHERI (RISC-V) was developed to
validate the performance and security properties of CHERI for
Linux, which is the most used OS kernel today, especially in
consumer and cloud. The “CHERIfication” of Linux, primarily
involved two main endeavors: The first was to support user-
space programs and daemons compiled with CHERI. In order to
achieve this, programs needed to be loaded with the awareness
that they were compiled with CHERI support — requiring
changes in the program loader, acting on changes in the ELF
format. The changes were needed to manage the capability-
formatting of environment variables for the program. Also,
the scheduler / interrupt handler in the kernel needed to be
made CHERI-aware, i.e. to know whether a user-space process
is CHERIfied or not, since register saves and restores have

to account for whether capability registers are in use during
scheduling. The second endeavor was to compile the kernel
proper with CHERI memory protection, i.e. to let the bounds
in CHERI capabilities guard the memory references within
the kernel. The current state of this part of the CHERIfication
covers only the main kernel, its memory management code,
its bootstrap for RISC-V and selected drivers (filesystem,
network) that have been used for validation in QEMU and on
FPGAs. This part of the work mostly included fixes for pointer
(capability) provenance, i.e. to modify casts from integers to
pointers which in most architectures can be done, but in CHERI,
the address must at least be accompanied with the range of the
reference turning the pointer into a capability. A few instances
where kernel code modified in this way actually turned out
to reference memory addresses beyond the allocation (mostly
different optimizations) where also corrected.

The accompanying open-source github repository [1] con-
tains our CHERI-modifications to a number of different existing
projects centered around the Linux kernel and a very minimal
run-time for it. The project is complete enough to run the
Linux kernel with a runtime consisting of either the MUSL or
glibc C standard library and a few applications (busybox, ssh,
dbus, systemd) on top of the QEMU RISC-V CHERI emulator
and necessary scripting (buildroot) is included to replicate this
setup. We have also run the same code on a Xilinx FPGA with
the CHERI Flute core for some first benchmarking experiments.
We return to this in Section VI.

We hope the academic research, CHERI and Linux commu-
nities can leverage this work for further evolving the CHERI
software stack towards the fully functional, deployed and secure
computing architecture it deserves to become.

II. THE CHERI ARCHITECTURE

The project on Capability Hardware Enhanced RISC Instruc-
tions (CHERI) is a hardware-software co-design project to
enable hardware capabilities in a contemporary ISA on modern
processors — to “enable fine-grained memory protection
and highly scalable software compartmentalization” [2]. This
research direction has been on-going for more than a decade
at the University of Cambridge Computer Laboratory [3],
and even though recent research investment like the Digital
Security by Design Initiative [4] and, e.g., the Morello Project
that prototypes CHERI capabilities on ARM hardware have
expanded the research and evaluation work on CHERI much
beyond Cambridge, the university still takes center stage in its
evolution.
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A one-line introduction to CHERI from a memory protection
and software perspective is that processors with this technology
provide a mechanism for memory references (pointers) — now
called capabilities — to architecturally include metadata such
as bounds for the memory area the capability is allowed to
dereference. CHERI also implements strict typing between
capabilities stored in memory and other types of data, backed
by a memory tagging architecture. These two architectural
features provide the fundament of the capability system. The
CHERI mechanisms has, to date, been implemented on at
least MIPS, RISC-V and ARM architectures. An excellent
introduction and in-depth material for learning about CHERI
is available through research papers and technical reports from
the University of Cambridge (e.g. [2], [5], [6] and [7]) —
these constitute a starting point for learning about CHERI,
their content is not repeated or digested here. Much of the
rest of the material in this white-paper assumes a rudimentary
understanding of CHERI and its ISA.

To be noted is that CHERI exists in the open source in many
forms that all came together in making our project possible.
HDL-based processor (Bluespec) images are available for a
set of cores that implement CHERI, our work has been done
on the Flute RISC-V CHERI core. The university maintains
CLANG/LLVM compiler images supporting CHERI extensions
for the platforms mentioned above, we have made use of the
CHERI RISC-V compiler toolchain to complete this work. In
addition, detailed reference manuals for their ISA are available.
QEMU support is also available for CHERI for initial testing
and debugging. University researchers were also kind enough
to take compiler bug reports and explain ISA intricacies in
chat groups along our journey, and all of these were crucial to
our eventual success to get Linux running with CHERI.

III. THE MODIFIED CODE

As stated above, the code modifications we provide cover
a few open-source projects. Table I collects these in one
view. The main effort has been on the Linux kernel, but also
getting the MUSL and glibc C libraries CHERIfied was a
significant endeavor. To note is still that the lines of code
needing modification to compile and run CHERI (for kernel
and libc) is insignificant compared to the total code-bases of
the respective projects — the compiler does most of the heavy-
lifting. This seems to hold even more true for system and
user applications, if our very limited sample can be considered
any indication. Of course any single modification constitutes
a separate analysis and fixing activity, either in the form of a
compilation error or, more often than not, a run-time crash, so
even few code changes may represent a fair bit of debugging
effort. In Section IV we provide some insight into the most
common fixes and modification patterns that we ended up
applying in the kernel context.

Figure 1 shows the overview of the system that is provided
as part of this project. The kernel can be compiled either in
CHERI hybrid mode, where the kernel supports applications
with capability protection, but is not itself engineered for
memory protection, or in CHERI full-capability mode where

Applications

glibc user space

Linux Kernel (pure/hybrid capability)

RISC-V (RV64I) + CHERI (Flute Core/QEMU)

dbus systemd

glibc

OpenSSH

musl user space

BusyBox (init)

musl

Serial Network File System

BusyBox

Figure 1. Architecture overview of our RISC-V CHERI Linux system

memory protection in the form of allocation boundary checks
with capabilities is applied to all software parts of the system.
We provide two user space variants, one based on our musl
port and the other on our glibc port. The glibc variant uses our
cherified systemd version as init system, the musl variant uses
the cherified BusyBox. Both variants use our BusyBox and
OpenSSH CHERI-ports to realize a basic shell environment.

IV. MODIFYING THE LINUX KERNEL FOR CHERI

The CHERI Clang/LLVM compiler from Cambridge Uni-
versity successfully compiles most of the Linux kernel source
code, configured for the 64 bits RISC-V architecture, without
any changes. In our current work, only some 200 files were
modified because of CHERI. The majority of those files have
only been marginally modified, caused by us fixing compiler
errors / warnings.

Some code causes run-time exceptions due to CHERI tag
or bounds violations. A typical example is that, in the original
Linux code, a pointer is cast to unsigned long, then
manipulated by bit-wise OR/AND/SHIFT, and finally cast
back to a pointer. This is obviously violating the pointer
provenance of CHERI, not least because a 128 bits capability
cannot be represented by a 64-bit long. This is not an error
or mistake by default — to note is that this approach is
perfectly acceptable in legacy 64-bit systems. The template
pattern / code change to fix these problems often involves
using uintptr_t, type-defined to the CHERI Clang/LLVM
compiler built-in type __uintcap_t. When the unsigned
long is replaced with uintptr_t the capability provenance
is maintained and the tag is not dropped during the cast as
the uintptr_t is guaranteed to fit a pointer / capability.
The semantics of the original code can thus be maintained,
and the fix is backwards compatible (say uintptr_t can
be type-defined to unsigned long for conventional 64 bits
RISC-V architectures).
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Table I
OVERVIEW OF SOFTWARE PROJECTS MODIFIED AS PART OF THE CHERIFICATION PROCESS

Project URL Description LoC

buildroot https://buildroot.org Tool to generate setup N/A
Linux Kernel 5.15 https://www.kernel.org Linux kernel 5942
MUSL libc https://musl.libc.org Lightweight libc for Linux syscalls 2030
glibc https://www.gnu.org/software/libc/ GNU C Library 2268
Busybox https://busybox.net Unix utilities + shell in single executable 21
OpenSSH https://www.openssh.com OpenBSD secure shell 6
OpenSSL https://www.openssl.org Secure communication library 24
systemd https://www.freedesktop.org/wiki/Software/systemd/ System and service manager 52
dbus https://www.freedesktop.org/wiki/Software/dbus/ Message bus system 29

One thing to clarify is that the pointer provenance upgrades
were done based on run-time errors, not by static analysis. To
consistently modify all problematic cases with this method
would require thorough code coverage support. This has not
yet been performed, but we have modified all encountered
cases from device power-up until the user space command line
prompt appears. Additionally, unit tests, performance tests and
some ad-hoc usage of applications like SSH have uncovered a
few additional kernel provenance cases that have been fixed.
But there is no guarantee that the port is complete beyond the
practical testing effort.

In practice, assembly code is changed in
arch/riscv/include/asm/ most notably in
atomic.h, bitops.h, cherireg.h, cheri.h,
cmpxchg.h, ptrace.h, syscall.h, uaccess.h,
and for architecture code in arch/riscv/lib/ changes
are mainly done in memcpy.S, memmove.S, memset.S,
as well as in uaccess.S. In-kernel modifications in
arch/riscv/kernel are concentrated around head.S,
entry.S and process.c.

The CHERIfication of drivers is not complete by virtue
of this work. Instead, we have only provided modification to
drivers that were necessary for the platforms (qemu and FPGA)
we have tested on. The drivers that were changed in the context
of this work represent this minimal port: drivers/block,
drivers/tty, drivers/char, and to support them, also
changes to file system under fs/, memory management under
mm/, network code under net/ as well as headers under
include/linux/ were modified.

V. EXAMPLES AND CONTEXT

In this section we provide a few examples of CHERI porting
that we encountered during the project. These are not intended
to be a complete list of issues solved nor a comprehensive
porting guide — instead we hope these examples will provide
an idea of the type of work involved when porting a full-
featured OS kernel to the CHERI platform.

A. Pointer provenance

Above, we discussed at length how code that casts pointers
to unsigned long explicitly causes the pointer to lose capability
provenance. Here is a textbook example of such an issue found
in fs/ext4/mballoc.c:

Listing 1. Pointer provenance
static inline void *mb_correct_addr_and_bit(int *bit, void

*addr)
{
#if BITS_PER_LONG == 64

*bit += ((unsigned long) addr & 7UL) << 3;
addr = (void *) ((unsigned long) addr & ~7UL);

#elif BITS_PER_LONG == 32

*bit += ((unsigned long) addr & 3UL) << 3;
addr = (void *) ((unsigned long) addr & ~3UL);

#else
#error "how many bits you are?!"
#endif

return addr;

In this situation, addr as a pointer is first cast to unsigned
long, bit manipulated, then cast back to a pointer. After
compiling for the CHERI RISC-V ISA and executing it on
CHERI RISC-V, addr is represented by a capability and its
memory storage is tagged to mark the capability provenance.
As the tag is cleared if addr is cast to unsigned long,
any later dereferencing of addr will cause an exception to be
raised. The appropriate fix for this issue is listed below:

Listing 2. Pointer provenance fixed
*bit += ((uintptr_t) addr & 7UL) << 3;
addr = (void *) ((uintptr_t) addr & ~7UL);

The example above is benevolent, as the fix is concentrated to
one location in the code. Unfortunately, the kind of modification
needed (capability exception caused by lost provenance) can
often be more complex and require modification in multiple
header and source files when the cast value is passed around
using macros, or as function arguments. But in any case, this
is the most common problem when CHERIfying legacy code.

B. Generating capabilities

To accommodate the existing code structure in the Linux
kernel and to limit the amount of modifications to it, there
are numerous cases where a pointer / capability needs to be
explicitly constructed from an integer. Particularly in the part
of the Linux kernel that handles memory management, the
practice of using unsigned integers to temporarily store memory
addresses is not uncommon, whereby the recreation of the
pointer / capability is needed in the case where a complete
re-write of the memory management code is not undertaken.
The CHERI Clang/LLVM compiler provides built-in functions
to gain provenance for such pointers from a default global
data capability, i.e. capability metadata (with e.g. initially very
unconstrained boundaries) is used to make up the missing
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metadata for the capability cast from the unsigned integer,
allowing the capability to be de-referenced. The following
compiler built-in functions are used for this:

Listing 3. Compiler built-ins for capability (re)creation
__builtin_cheri_global_data_get()
__builtin_cheri_address_set(x, y)

The first function returns a capability equivalent to the global
data capability, whereas the second one modifies the address
of a capability while maintaining its provenance (i.e. sets the
address). Thus, to intentionally convert an integer to a pointer,
a capability equivalent to global data capability is used as a
base, and its address is replaced with the one stored in the
unsigned integer. We created a helper C function

Listing 4. Helper function
uintcap_t cheri_long_data(unsigned long addr);

to encapsulate this operation, and we use this in the porting
wherever provenance of a capability cannot be easily established
(and tighter capability bounds assigned). One example of such
a case is the following:

Listing 5. Missing provenance
static inline void setup_vmalloc_vm_locked(struct vm_struct

*vm, struct vmap_area *va, unsigned long flags, const
void *caller)

{
vm->flags = flags;
vm->addr = (void *)va->va_start;
vm->size = va->va_end - va->va_start;
vm->caller = caller;
va->vm = vm;

}

struct vmap_area {
unsigned long va_start;
unsigned long va_end;
..

};

In this function vm->addr is a pointer, assigned to the value
of va->va_start, however the provenance of the capability
that represents vm->addr cannot be established, because
struct vmap_area is defined as above and va_start is
defined as type unsigned long. Of course, if vm->addr is
later de-referenced, an exception will be raised, but the current
code does not give / store information about the intended pointer
provenance — that would require deeper code modification.
Therefore, we modified this code (shown below) to intentionally
give provenance to the pointer, so it can be later de-referenced,
and leave the assignment of tighter provenance as future work:

Listing 6. Assigning global provenance
vm->addr = (void *)cheri_long_data(va->va_start);

In general, we constrain the use of
cheri_long_data to give provenance to pointers
related to Linux memory management in files
such as arch/riscv/include/asm/page.h,
arch/riscv/mm/init.c, mm/vmalloc.c and
mm/ioremap.c.

C. Allocators

For most buffers and references to buffers that can be
statically resolved by the CHERI compiler, such as a memory
allocation on the stack (a local array with defined length) the
provenance of the capability for this buffer will be set by the
compiler with proper bounds set to match the array. However,
for heap memory allocators, the range can only be resolved at
run-time, since the size of allocations is passed as an argument
to the allocation function. Also the alignment and memory
location of the allocation is determined dynamically. In such
situations, we have modified the memory allocation function
itself to set the range for the capability pointer. For example
in the Linux kernel mm/slub.c allocator, in the allocation
function

Listing 7. Memory allocator
static __always_inline void *slab_alloc_node(struct

kmem_cache *s, struct list_lru *lru, gfp_t gfpflags,
int node, unsigned long addr, size_t orig_size)

{ .. }

at the end of the function, before returning the pointer /
capability to the caller, we have replaced the original code to
set the proper boundaries for the allocated object as follows:
#ifndef CONFIG_CPU_CHERI_PURECAP

return object;
#else

return cheri_csetbounds(object, s->size);
#endif

where cheri_csetbounds is a macro defined to set the
upper bound of a capability, using the compiler built-in
function __builtin_cheri_bounds_set((x), (y))
to provide the provenance.

In our port of the MUSL and glibc C-libraries, a very similar
addition was made for the malloc function. These additions
result in most of the memory allocations in the capability-
enabled kernel (and in the run-time) to be properly bounded
and enforced by CHERI — only the exceptions mentioned
above have too lax provenance for the time being.

In addition, we found multiple user space programs such as
dbus to include their own allocators. These have to be adapted
to ensure an alignment of all memory allocations to 128 bit,
to allow capabilities to be stored in them. In addition the
allocators must be adapted to set the appropriate bounds on
capabilities to the memory allocations.

D. When local modification is not enough

Like said above, the CHERIfication of Linux was performed
with a conservative strategy to emphasize localized, contained
modifications, and to not embark on a journey where Linux is
rewritten as a capability OS. The main goal was to get to a point
where Linux runs successfully, with in-kernel capability support
as well as having the “hybrid” ability to run cherified workloads
on a CHERI RISC-V target. Still, not all modifications could
be completed in only local scope, and the modification of the
ioctl service was one of those, as outlined below. In general,
where either widely used data structures or function signatures
needed to be augmented for capability support, this caused
changes to spread in the code. As an example of this, we
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examine modifications done to the random_ioctl function
signature:

Listing 8. Modifying the function signature
static long random_ioctl(struct file *f, unsigned int cmd,

unsigned long arg)
{
int __user *p = (int __user *)arg;
int ent_count;
..

The random_ioctl function has an argument arg de-
fined as unsigned long, and immediately on function entry
this argument is cast to a pointer p. This is the typical case
of a cast leading to a memory reference that will fail at de-
referencing. At the same time, the semantics of this function
expects its caller to pass a pointer to it so that the kernel can
locate data to read or write from / to user space memory. We
modified the function signature to contain a memory reference
/ pointer type:

Listing 9. Modified function signature
static long random_ioctl(struct file *f, unsigned int cmd,

uintptr_t arg)

which allows a capability to be used through the inter-
face. However, this started a chain reaction of modifica-
tions to be carried out. As the random_ioctl is present
as the unlocked_ioctl member variable in struct
file_operation

Listing 10. Struct file operation
const struct file_operations random_fops = {
.read_iter = random_read_iter,
.write_iter = random_write_iter,
.poll = random_poll,
.unlocked_ioctl = random_ioctl,
.compat_ioctl = compat_ptr_ioctl,
.fasync = random_fasync,
.llseek = noop_llseek,
.splice_read = generic_file_splice_read,
.splice_write = iter_file_splice_write,

};

its definition in turn needed to be upgraded to the following:

Listing 11. Type update
struct file_operations {
..
long (*unlocked_ioctl) (struct file *, unsigned int,

uintptr_t);
..

};

The modification on struct file_operations turned
out to have a wide impact across the Linux kernel, since all
code that uses an instance of struct file_operations
and its unlocked_ioctl member variable now have to
provide a matching function pointer to it. This update alone
caused changes in around 40 source code files, and considering
that only few drivers have been ported at this time, the total
cost of this update in the upstream kernel would be significantly
higher. The example shows that although memory protection
of individual CHERIfied memory references in the kernel
is relatively easy and at large a compiler-assisted endeavor,
wherever the interfaces and data structures need to be updated
in a kernel context, the impact can be quite severe and hard to
contain in a localized manner.

E. Capabilities and memory access

As discussed before, the provenance of a capability is
lost when extracting part of it. This was discussed earlier
on situations where the code casts a pointer to an integer
and manipulates its address. A related issue is that some
functions do not exchange pointers and integers explicitly,
but they copy or move data between memory locations,
and these memory location may contain capabilities. If
a capability is not copied or moved in memory as a
whole, its provenance is also lost. Functions that expose
such operations include arch/riscv/lib/memcpy.S,
arch/riscv/memset.S, arch/riscv/lib/uaccess.S,
as well as lib/sort.c.

A memory location that contains a capability is aligned with
the size of capability, and in CHERI RISC-V the size is 128 bits
and the alignment 16 bytes. For a memory address that is 16
bytes aligned, we must assume that it can contain a capability,
and when copying or moving its contents, we must do it at 16
bytes granularity. These modifications have been implemented
e.g. in the files listed above, but also in the memcpy and
memmove implementations in the MUSL and glibc C libraries.
Take for example the memcpy.S implementation: We now
split the source memory location to be copied into three regions:
the first region is from the start address to the lowest 16-bytes
aligned address in the source buffer, the middle region spans all
16-bytes aligned addresses up to the highest 16-bytes aligned
address in source, and then follows a remainder region to the
end address. For the first and the last regions, copying is (and
can) be made at byte granularity, since we know it will not fit
a capability:

Listing 12. Capability-aware memory copying
Region 1:
clbu t2, (ca1)
csb t2, (ca0)
cincoffset ca1, ca1, 1
cincoffset ca0, ca0, 1
bltu a1, t0, 1b

Region 2:
clc ct2, (ca1)
csc ct2, (ca0)
cincoffset ca1, ca1, CHERICAP_SIZE
cincoffset ca0, ca0, CHERICAP_SIZE
bltu a1, t1, 2b

..

We also implemented similar handling for lib/sort.c.
In order to maintain provenances of capabilities, we added
a function void swap_words_128(void *a, void

*b, size_t n) to swap two memory region in 16-bytes
granularity, and adjusted the rest of the C-code in the spirit
explained above.

Functions may also intentionally read or write beyond bound-
aries of capabilities. For example, some string manipulation
functions determine the end of a string by checking its final
‘\0’ ending, and to optimize performance, they iterate based
on the size of an unsigned long instead of char, looking
for ‘\0’ from the read unsigned long to determine the
end of a string. Such operation can potentially cause the
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reading of memory beyond the boundaries of capabilities set
for the char pointers. We encountered this type of prob-
lem in lib/strings, lib/strncpy_from_user.c
and lib/strnlen_user.c, but also in the MUSL and
glibc C libraries. In such cases we typically made a work-
around by disabling the optimization and resorting to reading
and writing one byte at time. Below is a typical case of such
an optimization:

Listing 13. Type misuse causing boundary violation
while (max >= sizeof(unsigned long)) {
unsigned long c, data;
c = read_word_at_a_time(src+res);
if (has_zero(c, &data, &constants)) {
data = prep_zero_mask(c, data, &constants);
data = create_zero_mask(data);

*(unsigned long *)(dest+res) = c & zero_bytemask(data);
return res + find_zero(data);

}

*(unsigned long *)(dest+res) = c;
res += sizeof(unsigned long);
count -= sizeof(unsigned long);
max -= sizeof(unsigned long);

}

F. Kernel assembler parts

In CHERI RISC-V, some assembler instructions, particu-
larly load/store instructions, have changed semantics com-
pared to the standard RISC-V instruction set. Also, some
pseudo-instructions have been replaced with new ones in
capability mode. The compiler will of course use the
new instructions when compiling for CHERI, but assem-
bler code (both inlined in C code and included as indi-
vidual files) have to be changed by hand. In the kernel
code, we have replaced all RISC-V load/store instructions
(using integer addresses) with CHERI load/store instruc-
tions accessing memory via capabilities. Most of these
changes are located in the arch/riscv/include/asm/
directory, arch/riscv/kernel/head.S which repre-
sents the execution flow of very early kernel startup and
arch/riscv/kernel/entry.S which defines exception
entry and exit.

To illustrate such changes, we use
arch/riscv/kernel/head.S as an example. It
defines the _start_kernel assembly function that picks
one core to run the main boot sequence, to set up virtual
memory, to relocate the kernel to use virtual memory,
and then it continues by calling other kernel initialization
functions. When running the Linux kernel on a CHERI
RISC-V target, _start_kernel also needs to initialize
the CHERI __cap_relocs table, whose entries relocate
to functions’ calling addresses. After __cap_relocs
is successfully setup, C function calls can be made.
The CHERI Clang/LLVM compiler provides a function
cheri_init_globals_3 for this purpose and we need to
call it as part of _start_kernel:

Listing 14. Snippet from start_kernel
/* Save hart ID and DTB physical address */
mv s0, a0
mv s1, a1

la a2, boot_cpu_hartid
XIP_FIXUP_OFFSET a2
REG_S a0, (a2)
/* Initialize page tables and relocate */
/* to virtual addresses */
la sp, init_thread_union + THREAD_SIZE
XIP_FIXUP_OFFSET sp

#ifdef CONFIG_BUILTIN_DTB
la a0, __dtb_start

#else
mv a0, s1

#endif /* CONFIG_BUILTIN_DTB */
call setup_vm

#ifdef CONFIG_MMU
la a0, early_pg_dir
XIP_FIXUP_OFFSET a0
call relocate

#endif /* CONFIG_MMU */

Above is the original _start_kernel function, which
calls setup_vm, and subsequently calls relocation function
to switch the kernel from physical to virtual address operation.
When executing on a CHERI RISC-V target, the setup_vm
call will fail, because it further calls other C functions before
the _cap_relocs is set up. In code modified by us, we
delay setup_vm to be called after __cap_reloc, and for
the kernel to be able to switch to virtual address operation,
we also implement a temporary memory mapping for this in
create_page_tables:

Listing 15. Modified _start_kernel
#ifdef CONFIG_MMU
#ifndef CONFIG_CPU_CHERI

la a0, early_pg_dir
XIP_FIXUP_OFFSET a0

#else
call create_page_tables
la s2, early_pg_dir

#endif
call relocate

#endif /* CONFIG_MMU */

Later we call:

Listing 16. Activating capability tables
cllc cra, init_cap_relocs
cjalr cra
..
mv a0, s1
cllc cra, setup_vm
cjar cra

Here, init_cap_relocs is called first, which calls into
the compiler provided function cheri_init_globals_3.
After that setup_vm is called. At this stage, the processor
is switched to capability mode, and the instruction pattern
to call functions is changed to the cllc and cjar pair of
instructions.

G. Pointer size assumptions

One common issue we encountered during the CHERIfi-
cation of supporting libraries and user space applications is
that some software makes assumptions on the pointer size.
These break once the software is compiled for CHERI. Two
software projects, where we encountered this were dbus and
systemd. These problems are fixed by removing the static
assumed pointer size.

The libdbus library uses a specific structure (namely
DBusMessageRealIter), which should not be directly
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accessed by library users and is therefore opaque. In order to
still permit stack allocations, libdbus offers a dummy structure
which is casted to the actual structure where necessary in the
library. Both structures must have the same size and alignment,
which is ensured by assertions. With CHERI’s 128-bit pointers,
the size and alignment of both structures changes and breaks
the assertions. Consequentially, the dummy structure had to be
adapted during CHERIfication.

Systemd employs an optimized hashmap implementation that
uses packed structures nested into each other. CHERI’s 128-bit
capabilities change the layout of those structures and breaks
the assumptions in the code, manifesting in failing assertions.
During CHERIfication, these structures had to be adapted.

VI. EVALUATION

We evaluated both the security and performance of the final
system. For the security evaluation we used a QEMU-based
CHERI system and for the performance evaluation an FPGA-
based CHERI system. In both cases, a Linux setup based on
the glibc C libary was used.

A. Security Evaluation

With capabilities, the CHERI extensions offer a flexible
concept for building software protection features. The main
goal of CHERI is to provide fine-grained memory protection.
The primary goal of our security evaluation is to ensure that
the expected memory safety guarantees are achieved in the
developed system. Additionally, the security offered by those
features should be put into a greater context, pointing out areas
in which the CHERI protections have no positive influence on.

Memory safety is a property of a program, language, or
runtime and describes the absence of memory corruptions.
Memory safety is typically divided into temporal and spatial
safety. Both parts of memory safety refer to different bug types.

Spatial memory safety concerns the access bounds of pointers
and objects. A pointer to an object should only be able to access
the storage space of the object and must not read or write
beyond the object’s bounds. Typical spatial memory corruptions
that should be tested are buffer over- and underflows. Both bug
types can occur in different data regions of the program (stack,
heap, and globals) and via read and write accesses, resulting
in several different test cases. Over- and underflows can also
occur intra-object, i.e., inside of complex objects such as a
struct containing a buffer.

Temporal memory safety concerns the lifetime of dynami-
cally allocated objects. The lifetime of those objects is typically
explicitly managed by the programmer, which can lead to
several issues, whose detection by the CHERI-based system
should be tested. First, a use-after-free bug is present if a pointer
to an already freed object (i.e., a “dangling” pointer) is used,
which can lead to memory corruptions and leaks. Second, a
double-free bug is present, if a pointer to a freed object is used
to free the object again, which can lead to memory corruption
by the allocator.

To get an impression of the security improvements the devel-
oped system and CHERI in general can offer in comparison to

a non-CHERI system, we use tests from the Juliet Test Suite for
C/C++ [8], [9]. The Juliet Test Suite is a set of tests developed
by the NSA Center for Assured Software. In its current version,
1.3, it includes a large collection of test cases categorized under
118 different Common Weakness Enumerations (CWEs).

The Juliet test suite was developed with the evaluation of
static analysis tools in mind. This goal is supported by the
design of the single test cases. Each test case is a small, artificial
piece of software that contains exactly one type of intended
flaw. The software includes one function that exhibits the flaw
(‘bad’) and one or more functions that implement a non-flawed
(‘good’) version of the same functionality. With this ground-
truth the ability of static analysis tools to classify the functions
in a test case can be evaluated.

1) Test Setup: For our test setup, we made the following
changes to the Juliet test suite to adapt it to our system and
simplify the evaluation of the results.

a) Run script: We added a run script, which runs all
selected ‘good’ and ‘bad’ test cases and collects their exit
codes. We differentiate between ‘normal exits’, ‘timeouts’,
‘segfaults’, ‘CHERI violations’, ‘allocation failures’, ‘explicit
error exits’, ‘aborts’ and ‘unknown exit codes’.

b) Incompatible test cases: We filtered out Windows-
specific test cases and C++ source files, because these depend
on a cherified C++ standard library which is not available on
our system.

c) Test cases expecting input: For automated testing, the
test script already provides a timeout mechanism to handle
hanging test cases. These test cases usually are waiting for user
input or a socket connection. In a simple test setup as ours,
these inputs, and also socket connections, are not provided. We
filter out these test cases based on keywords in the functional
component of the test case name, such as “fgets” or “socket”.

d) Test cases with randomness: For some test cases
randomized values for variables are used so that the intended
flaw is not triggered every time. When evaluating static analysis
tools, these test cases make sense. However, as we aim to
evaluate the CHERI extension during run-time, the included
randomness leads to unreliable results. For this reason we filter
out test cases using random values, which are identified via
the presence of the keyword “rand” in their name.

e) Flow variants: Multiple control and data flow variants
exist for each functional flaw. For the evaluation we only
included the base flow variant.

2) Results: The adapted test suite is run twice, once with
CHERI-support enabled and once disabled. It contains 546 test
cases distributed over 78 CWEs.

Table II shows the summary output of the run script for the
plain RISC-V and for the cherified RISC-V system considering
only the ’bad’ code executables, i.e., test cases in which a
normal exit means that a flaw remained undetected. In summary,
CHERI reduces the number of normal exits by 108, the number
of segfaults by 52, and the number of aborts by 8. In other
words, the CHERI-based system detects and prevents 108
more flawed test cases. The number of timed out test cases
and explicit test case exits remain the same. In total 168
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Table II
SUMMARY OF THE AGGREGATED EXIT CODES OF THE NON-CHERI AND

CHERI VERSION OF THE JULIET TEST SUITE.

Plain RISC-V RISC-V CHERI

Normal Exits 419 311
Timeouts 37 37
Explicit Error Exits 1 1
Allocation Error Exits 3 3
Segfaults 63 11
Aborts 23 15
CHERI Violations 0 168

Test Cases 546 546

Table III
SUMMARY OF THE AGGREGATED EXIT CODES OF THE NON-CHERI AND

CHERI VERSION OF THE JULIET TEST SUITE FOR SPATIAL MEMORY
SAFETY (CWES 121, 122, 124, 126, 127).

Plain RISC-V RISC-V CHERI

Normal Exits 111 6
Segfaults 41 0
CHERI Violations 0 146

Test Cases 152 152

CHERI exceptions (tag and length violations) are triggered. Of
note, the cherified system also reduces the number of possibly
exploitable segfaults. Instead of the segfaults, fine grained
CHERI violations are triggered.

3) Discussion: It was shown that the CHERI extension
successfully provides complete protection against spatial mem-
ory corruptions (cf. Table III). Of the 152 test cases, which
can be classified as spatial memory flaws, 146 test cases
lead to memory corruptions during run-time and trigger a
CHERI exception during run-time. The remaining 6 test cases
do not violate memory safety during run-time. Furthermore,
CHERI also provides partial or transitive protection against
several additional weaknesses. These weaknesses typically lead
to spatial memory corruption or information leaks that are
subsequently detected by CHERI.

However, CHERI does not yield any improved protection
against many other weaknesses included in the Juliet test
suite. On the one hand, many of theses weaknesses cannot be
detected at run-time and, hence, are unrelated to CHERI. On
the other hand, the CHERI extension and the cherified software

Table IV
SUMMARY OF THE AGGREGATED EXIT CODES OF THE NON-CHERI AND
CHERI VERSION OF THE JULIET TEST SUITE FOR TEMPORAL MEMORY

SAFETY (CWES 401, 415, 416, 562, 590).

Plain RISC-V RISC-V CHERI

Normal Exits 29 29
Segfaults 1 9
Aborts 19 11
CHERI Violations 0 0

Test Cases 49 49

components do not protect against temporal memory issues
(cf. Table IV). However, there is research into a revocation-
based garbage collection system for CHERI capabilities to
enforce temporal memory safety for the heap [10], [11].

B. Performance Evaluation

Apart from the effectiveness of the offered protection fea-
tures, the performance of pure-capability software components
and CHERI-based systems in general is crucial for CHERI’s
success. We used different benchmarks to get a general
impression of the impact that CHERI has on the performance.
In the following, the test setup is detailed before showing and
discussing the gained results.

1) Test Setup: The Flute CPU, a 5-stage in-order RISC-V
core, was used for the performance evaluation. It has been
extended with CHERI support by the University of Cambridge.
The core at commit version 3c31d0072e1 was used to
run the benchmarks. It was compiled using the bluespec
compiler at commit version d05342e3582, together with
bsc-contrib at commit version 2bd5f091703. It was
synthesized to run at 94 MHz on a Xilinx Virtex UltraScale+
FPGA (Xilinx VCU118 evaluation kit) using Xilinx Vivado
2020.2.

The benchmarks are compiled with the CHERI clang
toolchain and are run on a buildroot-based, hybrid capability
system configured to use the busybox-init system and the glibc
C library. The root filesystem of the system is stored in RAM
and an SD-card attached to the FPGA board is used to transfer
the benchmark results off of the board. Additional detailed
performance metrics are collected from each benchmark run
with the minimal_count_stats4 tool. The corresponding
performance counters are set up in riscv-pk5 and are briefly
described in the documentation of the Flute core6.

At the start of the data collection, each benchmark goes
through a warm-up phase. In this phase, the benchmark is run
twice without data being collected from the run. This ensures
that the internal state of the processor is the same for the
following benchmark runs. Afterwards, the benchmark is run
ten times.

The results of the benchmarks are compared with a baseline
with no CHERI software components, the plain platform. It uses
the same setup as described above (same software and compiler
version for all components), but does not activate the CHERI
software support. The glibc version used in both platforms
differs in one important aspect. Several glibc optimization
are disabled on the CHERI platform, but are present on
the plain platform. The exception is memcpy. We disabled
its optimizations on the plain platform as well, because the

1https://github.com/CTSRD-CHERI/Flute/commit/3c31d0072e
2https://github.com/B-Lang-org/bsc/commit/d05342e358
3https://github.com/B-Lang-org/bsc-contrib/commit/2bd5f09170
4https://github.com/CTSRD-CHERI/cheribsd/tree/master/usr.bin/minimal_

count_stats
5https://github.com/CTSRD-CHERI/riscv-pk/blob/cheri_purecap/machine

/minit.c#L128
6https://github.com/CTSRD-CHERI/Flute/blob/CHERI/Doc/Performance_

Monitor/Performance_Monitoring.md

8

https://github.com/CTSRD-CHERI/Flute/commit/3c31d0072e
https://github.com/B-Lang-org/bsc/commit/d05342e358
https://github.com/B-Lang-org/bsc-contrib/commit/2bd5f09170
https://github.com/CTSRD-CHERI/cheribsd/tree/master/usr.bin/minimal_count_stats
https://github.com/CTSRD-CHERI/cheribsd/tree/master/usr.bin/minimal_count_stats
https://github.com/CTSRD-CHERI/riscv-pk/blob/cheri_purecap/machine/minit.c#L128
https://github.com/CTSRD-CHERI/riscv-pk/blob/cheri_purecap/machine/minit.c#L128
https://github.com/CTSRD-CHERI/Flute/blob/CHERI/Doc/Performance_Monitor/Performance_Monitoring.md
https://github.com/CTSRD-CHERI/Flute/blob/CHERI/Doc/Performance_Monitor/Performance_Monitoring.md


MiBench (average) Dhrystone CoreMark
0

2

4

6

8

10

12

14

16

Pe
rfo

rm
an

ce
 o

ve
rh

ea
d 

(%
)

16.3

14.4

3.7

Figure 2. Overhead of the three evaluated performance benchmarks

benchmarks make frequent and heavy use of it, which would
skew the results against CHERI.

For a comprehensive impression of the CHERI performance,
different benchmarks have been selected:

• Dhrystone [12] is a synthetic benchmark designed to test
a system’s integer performance. It was constructed by
extracting common constructs from a broad range of
software. The final score is presented as the number of
Dhrystone runs per second. In the performance evaluating
setup described here, Dhrystone is configured to calculate
its final score over 10 million runs.

• CoreMark [13] was developed as a replacement to the
Dhrystone benchmark. Its goal is to provide a portable
benchmark suite for CPUs and MCUs used in embedded
systems. The final score is based on the time required
for completing a set of algorithms (list processing, matrix
manipulation, state machines, and CRC calculation).

• MiBench [14] is a set of benchmarks designed to repre-
sent commercially representative embedded tasks. These
include JPEG decode / encode, AES encrypt / decrypt, and
SHA1.

2) Results: The main result from the performance evaluation
is the overhead created by the CHERI versions of the bench-
marks in comparison to the baseline, non-CHERI versions. In
the following, this overhead is illustrated and discussed for the
different benchmarks.

Figure 2 shows the average overhead of the CHERI system
compared to a non-CHERI system in all three benchmarks. The
MiBench and Dhrystone benchmarks show a 16.3% and 14.4%
overhead respectively. For MiBench, the value was calculated
by taking the average overhead of its 20 sub-benchmarks.
During measurements, the cherified CoreMark system showed
only 3.7% overhead.

In Figure 3 we can see more detailed results of the individual
MiBench test cases. Here, the overheads range from 49.1% for
the complex network-patricia benchmark, to only 1.7%
for the much simpler telecomm-FFT algorithm.

Based on the analysis of the additional performance
metrics data collected from the benchmarks using the
minimal_count_stats tool, the following observations
were made. Note that they are limited due to several reasons.

• Detailed micro-benchmarks are required to be able to
quantify the overhead created by single events tracked
by the performance counters. The analysis below makes
assumptions regarding which events are more expensive.

• The CPU architecture, for example, the instruction and
data cache configurations, was not considered in the
analysis.

• The compiler output, specifically the differences between
CHERI and non-CHERI binaries, was not analyzed.
Changes to the binaries can have a large impact on
the resulting performance, for example by changing how
efficiently the caches are used.

It was observed that the performance overhead is closely
linked to the amount of additional instructions executed by
the CHERI variants. In many cases, the instruction overhead
directly correlates with the performance overhead. From a
preliminary analysis, the cause of the instruction overhead
appears to be unoptimized library functions of glibc. Several
optimizations present in the glibc version of the plain platform
were incompatible with CHERI and had to be removed as
part of the cherification process. Improved performance is
likely possible by developing alternative, CHERI-compatible,
optimizations. However, it is anticipated that this will not
be possible for all optimizations. A performance overhead is
therefore always expected to be incurred due to less performant
library functions.

The instruction and data caches were identified as another
factor affecting the performance overheads. Due to changes in
memory use with 128 bit capabilities (data cache) and of the
binary itself (instruction cache), the cache access patterns are
different and the memory sub-system may experience increased
pressure with CHERI binaries. This can have both positive and
negative impacts on the cache efficiency. However, a negative
impact was observed more frequently. Particularly the impact
of 128 bit capabilities on the data cache efficiency should be
investigated further to determine if alternative cache designs
are more advantageous.

3) Discussion: The benchmarks used in the performance
evaluation had an average performance overhead of between
3.7% and 16.3%. Individual benchmarks showed a performance
overhead of between 1.7% and 49.1%. Overall, these values
are manageable or negligible in production systems. In some
target applications, however, the performance overhead of the
current system may be too high. Since the current system is a
prototype, the benchmark results must be considered as upper
bound values. With more work towards optimizing the CHERI
system, it is expected that the performance overhead can be
reduced.

VII. CONCLUSION

We have presented our initial CHERI port of Linux 5.15
for RISC-V, which supports both a hybrid and full-capability
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Figure 3. Overhead created by the individual MiBench benchmarks

mode. We described the common problems we encountered
during the CHERIfication of software projects and how we
solved them in our port. A security and performance evaluation
of the complete system was performed.

For the security analysis, we used the Juliet Test Suite,
containing a large variety of security tests organized by CWEs.
The results show that the developed CHERI system successfully
achieves spatial memory safety and, furthermore, protects
against some other flaws that eventually also result in spatial
memory corruptions. Nonetheless, the analysis also confirmed
that there are still some language runtime-related issues that
are not handled by the developed system or CHERI. First
and foremost, temporal memory corruptions remain unsolved
and while there already exist approaches to realize temporal
memory safety with CHERI, CHERI’s design does not seem
optimal for it.

For our performance analysis, we used the benchmarks
Dhrystone, CoreMark, and MiBench. The results show an
average overhead of between 3.7% to 16.3%. The microar-
chitectural metrics suggest that the overhead is likely due to
additionally executed instructions, often caused by missing
libc optimizations, and less efficient cache usage. With future
optimizations, this source of overhead can be reduced.

In companion work to this paper [1], we open-source what is
to the best of our knowledge the first freely available CHERI
port of the Linux kernel, initially for RISC-V. Linux is by
far the most used operating system kernel in the world, at
least in consumer equipment, and we hope this work will
provide a baseline or at least inspiration for further evolution
and research in the area, until the day CHERI hardware is
widely available and CHERI Linux is mature enough to be
considered for up-streaming.
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