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Abstract. In 1999, Berry and Keating showed that a regularization of the
1D classical HamiltoniarH = xp gives semiclassically the smooth counting
function of the Riemann zeros. In this paper, we first generalize this result by
considering a phase space delimited by two boundary functions in position and
momenta, which induce a fluctuation term in the counting of energy levels. We
next quantize thexp Hamiltonian, adding an interaction term that depends on
two wavefunctions associated with the classical boundaries in phase space. The
general model is solved exactly, obtaining a continuum spectrum with discrete
bound states embbeded in it. We find the boundary wavefunctions associated
with the Berry—Keating regularization, for which the average Riemann zeros
become resonances. A spectral realization of the Riemann zeros is achieved
exploiting the symmetry of the model under the exchange of position and
momenta which is related to the duality symmetry of the zeta function. The
boundary wavefunctions, giving rise to the Riemann zeros, are found using the
Riemann—Siegel formula of the zeta function. Other Dirichlet L-functions are
shown to find a natural realization in the model.
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1. Introduction

At the beginning of the 20th century Polya and Hilbert made the bold conjecture that the
imaginary part of the Riemann zeros could be the oscillation frequencies of a physical system.
If true this suggestion would imply a proof of the celebrated Riemann hypothesis (RH). The
importance of this conjecture lies in its connection with prime numbers. If the RH is true then
the statistical distribution of the primes will be constrained in the most favourable y&y. [
Otherwise, in the words of Bombieri, the failure of the RH would create havoc in the distribution
of the prime numbers3] (see also4]-[7]* for reviews on the RH).

After the advent of quantum mechanics, the Polya—Hilbert conjecture was formulated as
the existence of a self-adjoint operator whose spectrum contains the imaginary part of the
Riemann zeros. This conjecture was for a long time regarded as a wild speculation until the
works of Selberg in the 50s and those of Montgomery in the 70s. Selberg found a remarkable
duality between the length of geodesics on a Riemann surface and the eigenvalues of the
Laplacian operator defined on &][ This duality is encapsulated in the so called Selberg trace
formula, which has a strong similarity to the Riemann explicit formula relating the zeros and
the prime numbers. The Riemann zeros would correspond to the eigenvalues, and the primes to
the geodesics. This classical versus quantum version of the primes and the zeros is also at the
heart of the so-called quantum chaos approach to the RH.

Quite independently of Selberg’s work, Montgomery showed that the Riemann zeros are
distributed randomly and obey locally the statistical law of the random matrix theory (RWIT) [

The RMT was originally proposed to explain the chaotic behaviour of the spectra of nuclei but

it has applications in other branches of physics, especially in condensed méjiteftere

are several universality classes of random matrices, and it turns out that the one related to
the Riemann zeros is the Gaussian unitary ensemble (GUE) associated with random hermitean

1 See Watkins M alittp://secamlocal.ex.ac.ukmwatkins/zeta/physics.htfar a comprehensive review on several
approaches to the RH.
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matrices. Montgomery’s analytical results found an impressive numerical confirmation in the
works of Odlyzko in the 80s, so that the GUE law, as applied to the Riemann zeros is nowadays
called the Montgomery—Odlyzko lavL]]. An important hint suggested by this law is that the
Polya—Hilbert HamiltoniarH must break the time reversal symmetry. The reason for this is that
the GUE statistics describes random Hamiltonians where this symmetry is broken. A simple
example is provided by materials with impurities subject to an external magnetic field, as in the
guantum Hall effect.

A further step in the Polya—Hilbert—-Montgomery—Odlyzko pathway was taken by
Berry [12, 13], who noticed a similarity between the formula yielding the fluctuations of
the number of zeros, around its average positign~ 27n/logn, and a formula giving the
fluctuations of the energy levels of a Hamiltonian obtained by the quantization of a classical
chaotic system14]. The comparison between these two formulae suggests that the prime
numbersp correspond to the isolated periodic orbits whose period ildg the quantum
chaos scenario the prime numbers appear as classical objects, while the Riemann zeros are
guantal. This classical/quantum interpretation of the primes/zeros is certainly reminiscent of
the one underlying the Selberg trace formula mentioned earlier. A success of the quantum
chaos approach is that it explains the deviations from the GUE law of the zeros found
numerically by Odlyzko. The similarity between the fluctuation formulae described above,
while rather appealing, has a serious drawback observed by Connes which has to do with an
overall sign difference between therhd]. It is as if the periodic orbits were missing in the
underlying classical chaotic dynamics, a fact that is difficult to understand physically. This and
other observations led Connes to propose an abstract approach to the RH based on discrete
mathematical objects known as adelé$§]| The final outcome of Connes’ work is a trace
formula whose proof, not yet found, amounts to that of a generalized version of the RH. In
Connes’ approach there is an operator, which plays the role of the Hamiltonian, whose spectrum
is a continuum with missing spectral lines corresponding to the Riemann zeros. We are thus
confronted with two possible physical realizations of the Riemann zeros, either as point-like
spectra or as missing spectra in a continuum. Later on we shall see that both pictures can be
reconciled in a QM model having a discrete spectra embedded in a continuum.

The next step within the Polya—Hilbert framework came in 1999 when Berry and
Keating [L6, 17] on one hand and Connedj on the other, proposed that the classical
Hamiltonian H = xp, wherex and p are the position and momenta of a one-dimensional
(1D) particle, is closely related to the Riemann zeros. This striking suggestion was based
on a semiclassical analysis ¢ = xp, which led these authors to reach quite opposite
conclusions regarding the possible spectral interpretation of the Riemann zeros. The origin of
the disagreement is due to the choice of different regularizatiohk6fx p. Berry and Keating
chose a Planck cell regularization in which case the smooth part of the Riemann zeros appears
semiclassically as discrete energy levels. Connes, on the other hand chose an upper cutoff for
the position and momenta which gives semiclassically a continuum spectrum where the smooth
zeros are missing. All these semiclassical results are heuristic and so far lack a consistent
guantum version. It is the aim of this paper to provide such a quantum version in the hope
that it will shed new light concerning the spectral realization of the Riemann zeros.

The organization of the paper is as follows. In sectiyrwe review the semiclassical
approaches tdd = xp due to Berry, Keating and Connes who gave an heuristic derivation
of the asymptotic behaviour of the smooth part of the Riemann zeros. In se&tioe
generalize the semiclassical Berry—Keating (BK) Planck cell regularizaticip bfy means of
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two classical functions which definevaggly boundary for the allowed semiclassical region in
phase space. This generalization allows us to explain semiclassically the fluctuation term in the
spectrum. In sectiod, we define the quantum Hamiltonian associated with the semiclassical
approach introduced above. The Hamiltonian is given by the quantizatidth efxp plus

an interaction term that depends on two generic boundary wavefunctions and we solve the
associated Schrodinger equation finding the exact eigenfunctions and eigenenergies in terms
of a functionF(E) which plays the role of a Jost function for this model, and whose analyticity
properties are studied in secti@n In section6, we find the boundary wavefunctions that

give rise to the quantum version of the semiclassical BK model for the smooth zeros of the
Riemann zeta function, which are common to all the even Dirichlet L-functions. We also find
the boundary wavefunctions associated with the smooth approximation of the zeros of the odd
Dirichlet L-functions. In sectiory, we quantize the relation between the fluctuation part of

the spectrum and the semiclassical phase boundaries, obtaining the equations satisfied by the
boundary wavefunctions, and we solve them explicitly. Finally, using the duality properties of
these wavefunctions and the Riemann-Siegel formula of the zeta function we find a model
whose Jost function is proportional to the zeta function. From this fact, and making some
additional assumptions, we show that the Riemann zeros on the critical line are bound states
of the model. However, we cannot exclude the existence of zeros outside the critical line,
which would imply a proof of the RH. We describe in an appendix the computation of the
wavefunctions associated with the smooth and exact Riemann zeros.

The present work is closely related to thoselfij{{20], where we studied an interacting
version of thexp Hamiltonian based on the relation of this model with the so called Russian
doll model of superconductivity2[l]-[23]. For a field theoretical approach to the RH inspired by
the latter works, see€?fl]. We would also like to mention some important differences between
the present paper and those @BJ[20]. First of all, the position variable was chosen in
[18]-[20] to belong to the finite intervall, N) with N — oo, while in this paper we choose the
half line (0, co) which gives a more symmetric treatment between the position and momentum
variables. Secondly, in the earlier references the interaction term was added to the inverse
Hamiltonian %/ (xp), while in this paper we add the interaction directly to the Hamiltonian
X p, which is more natural from a physical viewpoint. We have also tried to make an extensive
use of the duality symmetry of the Riemann zeta function reflected in the functional relation it
satisfies.

2. Semiclassical approach
The classical Berry—Keating—Connes (BKC) Hamiltoniag[{[17]

HE = xp (2.1)
has classical trajectories given by the hyperbolas (see fifajg

X(t) = %€, p(t) = poe". (2.2)

The dynamics is unbounded, so one should not expect a discrete spectrum even at the
semiclassical level. To overcome this difficulty, Berry and Keating proposed in 1999 to restrict
the phase space of thep model to those pointgx, p) where |x| > I, and |p| > |, with
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@ g1, ® p,

Figure 1. (a) A classical trajectory 22). The region in shadow is the
allowed phase space of the semiclassical regularizations of Berry and Keating.
(b) Generalization of the phase space region given by equaBobs (

Ix1p = 2w h. These constraints lead to a finite number of semiclassical sté{&s, with energy
between 0 and given by

N(E) = (2.3)

27h’

whereA is the area of the allowed phase space region below the &ievexp. The result, in
unitsh=11is
E E
Nek(E) = (Iog o T 1) +1, (2.4)

which agrees with the asymptotlc limit of the smooth part of the formula giving the number of
Riemann zeros whose imaginary part lies in the intef@aE),

(N(E))~£<Iog£—1)+;+O(E 1, (2.5)

The exact formula for the number of zerdé (E), due to Riemann, also contains a fluctuation
term which depends on the zeta functidh(see figure2),

NR(E) = (N(E)) + Na(E),

0(E
wEy ="+ 2.6)

Ni(E) = Elmlogg <1+|E>

whereé (E) is the phase of the Riemann zeta functig/2 — i E),

1 E
0(E) =ImlogTl’ <4+2E)—§Iogn 2.7)
whose asymptotic expansion
E E E =n 4
G(E)_Elog(5>—5—§+O(E ) (2.8)
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Figure 2. Number of Riemann zeros in the interveD, E): black: exact
formula 2.6), red: smooth functiorV(E)) and blue N (E)) + 1/2.

yields @.5). The functionz (s), for Res > 1, can be related to the prime numbgrshanks to
the Euler product formula

1
S) = —_— Res > 1. 2.9
£(s) l‘[l T > (2.9)
This expression diverges if Be=1/2, however one can heuristically use it to write the

fluctuation term in2.6) as

1 =1
J\fﬂ(E):—;Z:X:mpw2 sin(mElog p), (2.10)
p m=1

which gives a reasonable result after truncating the sum over the primes. As observed by Berry,
equation 2.10 resembles formally the fluctuation part of the spectrum of a classical 1D chaotic
Hamiltonian with isolated periodic orbits

1 nd 1 _
Ni(B) = — VZ mzﬂ ESRT2) sin(Su(E)), (2.11)

wherey, denotes the primitive periodic orbits, the labetiescribes the windings of those orbits,
+1, are the instability exponents ar8i(E) is the classical action, which is equalioET,
with T, the period ofy,. Comparing 2.10 and @.11), Berry conjectured the existence of a
classical chaotic Hamiltonian whose primitive periodic orbits would be labelled by the prime
numbersp = 2, 3, .. ., with periodsT, = log p and instability exponents, = £log p [12, 13].
Moreover, since each orbit is counted once, the Hamiltonian must break time reversal (otherwise
there would be a factor/zr in front of equation2.10 instead of ). The quantization of this
classical chaotic Hamiltonian would likely contain the Riemann zeros in its spectrum. This idea
is the key of the quantum chaos approach to the RH.

Besides the fact that the earlier Hamiltonian has not yet been found there is the Connes
criticism that the similarity between equatiorisi0 and @.11) fails in two issues. The first
is the overall minus sign in2(10 as compared to2(11), and the second is that the term
2sinhimip/2) only becomesp™? whenm — co. Connes relates thainus signproblem to
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an alternative interpretation of the Riemann zeros as missing spectral lines as opposed to the
conventional one. This interpretation is based on a different regularization scheme g the
Hamiltonian. In [L5], Connes restricts the phase space of the model txpe A, |p| < A,
where A is a cutoff which is sent to infinite at the end of the calculation. The number of
semiclassical states is given now by

E E E
Nc(E) = ~ log A — o (Iog 5~ 1) , (2.12)

where the first term leads, in the limit — oo, to a continuum while the second term coincides

with minus the average position of the Riemann ze4)( A possible interpretation of these
results is that the Riemann zeros are missing spectral lines in a continuum, which is in apparent
contradiction with the BK interpretation of the zeros as bound states. As we shall show below
both interpretations can be reconciled at the quantum level where the Riemann zeros appear as
discrete spectra embbeded in a continuum of states.

3. Semiclassical treatment of the fluctuations

The quantum chaos approach suggests that the fluctuation part of the spectrum of the yet
unknown Riemann Hamiltonian has a classical origin related to the prime numbers. Taking into
account the BK heuristic derivation of the smooth part of the spectrum, it is tempting to extend
the semiclassical approach in order to explain the fluctuation term in the Riemann formula for
the zeros. The simplest idea is to generalize the allowed phase spacexqf Heamiltonian
replacing the boundarigg| = I, and|p| =1, by two curvesx,(p) and p¢(X), such that (see

figure 1(b))

X > Xa(P), IPl > Pei(X), (3.1)
wherexq(p) and py(X), are positive functions satisfying
Xa(P) =Xa(—p) >0, VpeR,
pCl(X) > Oa VX S R+.

These conditions split the allowed phase space into two disconnected regions in the first and
forth quadrants of th&p plane. Notice thax is always positive whilgp can be either positive
or negative. The BK boundaries obviously correspond to the choice

BK: Xa(p) =Ix, Pei(X) =1 p. (3.3)

For the extended boundary conditions (BCs) the minimal distgrened minimal momentur,
can be defined as the intersection point of the cuxg&) and py(X), which we shall assume
to be unique and to satisfy

(3.2)

Xcl(I p) = |x, pcl(lx) = Ip- (3-4)
The classicak p Hamiltonian together with the BK conditions have the exchange symmetry

X_ P (35)

I 1p

whose generalization to the extended model is
Xcl(I pX/lx) _ pcl(x)

» » (3.6)

New Journal of Physics 10 (2008) 033016 (http://www.njp.org/)
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The counting of semiclassical states is based again on equat®nThe area below the curve
= xp and bounded by the condition3.{) is given by (see figuré(b))

[pX/Ix E/x Ixp/lp Pm E/p
/ dx/ dp+/ dx/ dp+/ dx+/ dp dx. (3.7
Ix Pei(X) Pei(X) I Xei(P) P Xel(P)

p
The quantitiexy, pw (resp.x;, p;) are the position and momenta of the points where the curve
E = xpintersects the boundarigg(x), Xa(p) (resp. the linex/l, = p/l,), and satisfy,

X _ P

E = Xm Pai(Xm) = Xe1(Pm) Pm = X P, I i (3.8)
X P
Integration of 8.7) yields
A= Elog (I I;: ) +E —Ixl, — Elog (M) —Elog (XCI(lpM))
P XM Pm P "
— | dxXp)— [ dpxi(p). (3.9)

Iy Ip
Partially integrating the last two terms i8.9) and dividing byh = 1,1, =2r(h =1), the
semiclassical value of (E) reads
E E
Iy 2 I
N fXM dx (AP0 [P dp dxai(p)
I 27'[ dX I 2 dp )
The BK conditions 8.3) of course reproduce equatio?.4). More general boundary functions

induce a fluctuation term in the counting formula of a form which recalls equaién (et us
denote this term as

(3.10)

na(E) = — Iog(pcll(:M)> —%Iog <xc|(|lxom)) +f,XM g_:; dp(;;ﬁx) +/|pM g_: pdxsép)
(3.11)
so that
N(E) = Nk (E) +nq(E). (3.12)
Taking the derivative 0f3.11) with respect taE, and using equation8 () one gets
d”(;(EE) - —% log (%:M)) - % log (@) , (3.13)

which implies that the boundary functions are related to the fluctuation part of the density of
states. A further simplification is achieved imposing xpesymmetry 8.6)

Pa(Xm)  Xei(Pm) Pv _ Xm (3.14)
|p B Ix ’ lp B lX ’ '
which leads to
dng(E) _ _1 log Pei(Xm) _ _1 log Xci(Pm) ' (3.15)
dE T |p T lX

New Journal of Physics 10 (2008) 033016 (http://www.njp.org/)
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Hence,xp-symmetric boundary functionp(Xy) and Xq(pw) are completely fixed by the
density of the fluctuations. To fing(x), one combines3 15 and (3.8

—n; E ’ dnﬂ(E)
Pa(Xm) =1p € m(E)ZE, ngy(E) = E (3.16)
which givesxy as a function o
E /
Xm = — M), (3.17)

lp

If ng(E) = 0, the latter equations reproduce the BK boundary conditi®m. Equation 8.17)
givesxy as a function o and it is monotonically increasing, provided

dxu (E) d?nq(E)
4E >0 = 1+rnE JE?
Under this condition, we can expreSsas a function oky and replace it in%.16), obtaining the
boundary functiomy,, = E(xm)/Xu. In this case, the inverse problem of finding a Hamiltonian
given the spectrum has a unique solution at the semiclassical level. If the fluctuations are strong
enough at some energies, then conditiBri could be violated implying thaE = E(x) as
well aspq (x) will be multivalued functions. This gives rise to a manifold of boundary functions,
each one having discontinuities at some values. of

) (3.18)

4. The quantum model

In this section, we shall give a quantum version of the semiclassical results obtained above. The
starting point is the quantization of the classical hamiltortigh= x p. Let us consider the usual
normal ordered expression

HOZ%(xp+ pX) = —i (x%+%), 4.2)

where p = —id/dx. In [19, 25] it was shown thatH, becomes a self-adjoint operator in two
cases where the domain of tRevariable are chosen as: (1)<0x < co or (2) a < X < b with

a andb finite. For the purpose of this paper, we shall keep to case 1. Case 2 was discussed at
length in [L9]. Sincex > 0 one can write4.1) as

Ho = x¥2px*?, x> 0. (4.2)
The exact eigenfunctions o4 () are given by
1 1
Pe(X) = o XUAE EeR, (4.3)

where the eigenenergi€sbelong to the real line. The normalization @) is the appropiate
one for a continuum spectra,

welpe) = [ dxop00e 00 =3(E—E), (4.4)
The quantum Hamiltonian associated to the semiclassical approach is
H = Ho+i(|¥a) (bl — [¥b) (Val), (4.5)

wherey, andy, are two wavefunctions which we take to be real for the Hamiltonian to be
hermitean and with eigenvalues appearing in p&rs-E. In this section, we shall give the
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http://www.njp.org/

10 I0P Institute of Physics () DEUTSCHE PHYSIKALISCHE GESELLSCHAFT

general solution of the Schrédinger equation associated to the Hamiltegh&nfér generic
choices ofy, p(X). Later on, in sectiory, we shall relatey, ,(x) to the boundary functions
P (X) andxq(p), of the semiclassical model, proving under certain assumptions that the energy
spectrum of the quantum model agrees with the semiclassical results derived in the previous
section. This justifiea posteriorithe choice of the Hamiltoniami(5).
The Schrddinger equation for an eigenstatgx) with energyE of the Hamiltonian 4.5)
is given by the integro—differential equation
(. d 1 : > . *
=l (X& + 5) Ye(x)+ Iwa(X)f dy Yo (Y)¥e(y) — H//b(X)f dy Ya(y)¥Ve(y)
0 0

= Eye(X). (4.6)
Let us introduce the variablkp

g=Ilogx, gqeR 4.7
and the overlap integrals

A= (falvre) = /0 AX a0 Y (),
4.8)

B = (Yulye) = /Ooo dx Yp(X)Ye(X),
which depend ore. Using these definitions equatiofh.§) becomes

— (% + %) Ye(@) +i(Bya(Q) — Ayn(@) = EVe(Q). (4.9)
The general solution of this equation is given by

Ye(q) =e W28 [Co+ f " dg V2N (B ) - A%(q/»] (4.10)

whereC, is an integration constant. It is convenient to define the functions

a(@) =e"Ya(q),  Yax) = %
(4.11)
b
b(a) =e"*yp(@),  Y(X) = %
so that
B q
Ye(q) =e V2B Co+ / dg'e"9(Ba(q) — Ab(q’))] : (4.12)
An alternative way to express.aa_ is
Ye(q) =e MBI C, — f ) dg'e"E(Ba(q’) — Ab(q’))] : (4.13)
L q
whereC,, is related taC, by
Cs = Co+ Ba(—E) — Ab(—E), (4.14)

New Journal of Physics 10 (2008) 033016 (http://www.njp.org/)
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where

f(E):/oo dq€efif(g), f=a,b. (4.15)
We shall assume tha(q;O;ndb(q) satisfy

lim fq dg'e®9f(q)=0 f=a,b,

g——o0 J_

(4.16)
qllm f dq, eﬁiEq/ f (q/) = O, f = a, b,
which implies that the asymptotic behaviourypf (x) is dominated byCy andC,, i.e.
Co Cwo
I|m Ye(X) = JA2TE" I|m Ye(X) = VTR (4.17)
Plugging @.13 into (4.9) yields the relation between the constaAtsB andC,,
1+Sp —Sa | (A a(kE)
’ ’ =Col ¢ 4.18
( S» 1 so,a) (B) 0 (b(E) ’ (4-18)
where the function$; 4(E) with f, g =a, b are defined by
o q -y
S()= [ daet i@ [ do'e g, (4.19)
Similarly, introducing 4.13 into (4.8) yields
1-Sp S ) (A) (é(E))
. ! =Cqy (- , 4.20
<_Sa,b 1+S.5/ \B b(E) (4.20)
where
SaE)= [ et f@ [ do e’ g (4.21)
oo q
This function is related t&; 4 in two ways,
Sig(E) = —Siq4(E) + f(E) §(—E), (4.22)
St 4(E) =Sy 1 (—E). (4.23)

To derive these equations one makes a change of order in the integration. Combi@g (
and @.23 one obtains thehufflerelation
Sig(E)+ St (—E) = f(E) §(—E). (4.24)

The terminology is borrowed from the theory of multiple zeta functions where there is a similar
relation between the two variable Euler—Zagier zeta functis, s;), and the Riemann zeta
function¢(s) [26, 27].

The solutions of the equationgl.(8 and @.20 depend on the determinant of the
associated Z 2 matrices given by

FE)=1+Sp— SatSaSo— SpSas
ﬁ(E) =1- S,b + :Q-b,a+ ~al,aéb,b - ~%,bS),a’

2 The S 4(2) differs in a sign respect to the one consider&d p0].

(4.25)
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which are related by4(23

F(E) = F(—E). (4.26)
Moreover, since(x) andb(x) are real functions one has

S; 4(E) = St g(—E"), (4.27)
which in turn implies

F*(E) = F(—E"). (4.28)

After these observations, we can return to the solutiod dfgf and @.20. We shall distinguish
two cases: (1)F(E) #0 and (2)F(E) =0, whereE is real since it is an eigenvalue of the
Hamiltonian @.5).

Casel: F(E)#0
Equation 4.28 implies thatF(—E) # 0 and thereforeA and B can be expressed in two
different ways,

_ Co pa A AT o c e
A= ﬂE)[(l Sha) A(E) + S0 B(E)] = OB [(1+5.2) &(E) — & b(E)], (4.29)
C ) ) c. o
- J-"(IOE [~ SpaB)+1+Sp bE)] =2~ [Spa(B)+A-Sp bE)]. (430)
Now using equation4.22), these equations reduce to
Co _ F(E)
C. F(—E) (4.31)

which by equation4.28) is a pure phase fdg real. Hence, up to an overall factor, the integration
constants for this solution can be chosen as

Co=F(E),

Co = F(—B),
A=(1-S2) A(E) + Sa b(E),
B=—S5a(E)+(1+S,p) b(E).

Since the constantg, andC,, do not vanish, the wavefunction is non normalizable near the
origin and infinity (recall equatiord(17)) and therefore they correspond to scattering states. Of
course they will be normalizable in the distributional sense.

Case 2. F(E)=0
The integration constants can be chosen as

Co=0,

Cs =0,

A= S,
B=(@1+S0),

which solves equationg (18 and @.20. SinceC, = C,, = 0, the leading term of the behaviour
of ¥e(x) vanish near the origin and infinity and under appropiate conditiong,gnthe state

(4.32)

(4.33)
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Bound states Scattering states
—o—0—o0 o o—0 o

Figure 3. Pictorial representation of the spectrum of the model. The bound states
are the points wher&(E) = 0, which are embedded in a continuum of scattering
states.

e will be normalizable corresponding to a bound state. In the appendix, we compute the norm
of these states.

Hence, the generic spectrum of the Hamiltonidrb) consists of a continuum covering
the whole real line with, eventually, some isolated bound states embedded in it, whenever
F(E) =0. This structure also arises in the Hamiltonian studiedl®j.[The functionF(E)
plays the role of the Jost function since its zeros gives the position of the bound states and its
phase gives the scattering phase shift according to equétidi).(

Before we continue with the general formalism it is worth studying a simple case which
illustrates the results obtained so far.

4.1. An example: a quantum trap

Let us start with the classical version of a trap where a particle is restricted to the region
Xp < X < Xa. The semiclassical number of states is given by the area forraida (

A Ya dx E E Xa
n=—=[ = —=_—log=2, 4.34
2 ‘/;b 2t X 2« Xb ( )
which yields the eigenenergies
2N
Ene— " neN (4.35)
Iog(xa/xb)

The quantum version of this model is realized by two boundary statgéx) proportional to
delta functions, i.e.

Va(X) = aoXt28(X —Xa),  ¥p(X) = boX,*8(X — X). (4.36)
The associated potentiad$q) andb(q) are
a(q) =ad(q—0da), b(q) =bod(q— ),

(4.37)
O =100X%Xa, Qp=10gXp.
The various quantities defined above are readily computed obtaining
é:aoeiE"ﬁ, 6=boeiEcb,
2 b2
Sa=2  So=-, (4.38)

Sup = aghpe E%?, $a=0,
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wherega., = ga — Op = 109 (Xa/Xp). Plugging these equations int.25 yields
2
FE)=1+ (a.%b()) +aghg €5%>, (4.39)

For generic values @y, by, the Jost function4.39 never vanishes obtaining a spectrum which
is continuous. Howeverr (E) vanishes provided the following condition holds

agho

e=—-= +1 = F(E)=2(1+edE%p), (4.40)
in which cases the spectrum contains bound states embbeded in the continuum with energies
2r(n+1/2
fe=1 = Enzn(—/) neN,
Zﬂqrall,b (4.41)

fe=-1 — E,= neN

Qa,b
that agree with the semiclassical energe8% for n > 1. The un-normalized wavefunction of
the bound states, i.&5(E) = 0, can be computed from equatioh12

1 {1, Xp < X < Xa, (4.42)

X)=—+—
Ve(X) x1/2—iE | 0, X < Xp Or X > Xa,

which shows that they are confined to the regign x,). The wavefunctions whef(E) # 0
can be similarly found obtaining

F(B), 0 < X < Xp,
1 b 2
WE(X)le/z—_iE 1—(?) , Xp < X < Xa, (4.43)
F(—E), Xa < X < 00.

Hence if @.40 holds, these wavefunctions vanish in the regi@p x,) which contains the
trapped particlesA(42. In this example, the mechanism responsible for the existence of bound
states is the transport of the particles from the positigio the positior,. At the quantum level

the confinement requires the fine tuning of the couplings (see equdti&d)(which introduces
periodic or antiperiodic boundary conditions depending on the sign &¥hen|e| £ 1 the
particle can escape the trap and the bound states become resonances.

5. Analyticity properties of  JF(E)

As in ordinary quantum mechanics, the Jost functiBnE) satisfies certain analyticity
properties reflecting the causal structure of the dynamics. In our case, these properties follow
from those of the functior®; 4 (equation 4.19) and the definition4.25.

Indeed, let us expres 4(E) in terms of the Fourier transforms of the functiohg. First,
we replacay(q) by its inverse Fourier transform

*©dE" ., . ,
9(@) = / € ) (5.1)
—o0 2T
back into equation4.19, obtaining
o0 E/ o0 . q . , ,
Sw@®=[ 50 [ dei@ [ e, 52
—oc &TT -0 —00
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X, b Xa

Figure 4. Semiclassical picture of the model represented by the potetid)(

The last integral is given by the distribution

q . ’ ’ H /
/ dq €E B — gaE—-E) [nS(E’— E)+T1P E/l E}, (5.3)

where P denotes the Cauchy principal part. Pluggig3 into (5.2) and using the Fourier
transform off gives,

1| - > dE’ f(E') §(—E’
sf,g(E)zé[f(E)g(—EHP/ : (E) d( )] (5.4)

—oo TTI E'—E

Alternatively, one can write5(4) as

> dE’ f(E") §(—E)
E)= .
=t.o(E) foo 27i E'—E—ie ' (5:5)

with € > 0 an infinitesimal. Equation5(5) shows that the poles & 4(E) are located in the
lower half of the complex energy plane. Thus for well behave functibng, the function
St 4(E) will be analytic in the complex upper-half plane. These properties also apAyEo
which is the product of5; 4 functions with f, g = a, b. Another important property of the Jost
function F(E) is that its zeros lie either on the real axis or below it, i.e.

if F(E)=0 = ImE<XKO. (5.6)
The proof of this equation is similar to the one donelif]] being convenient to regularize the
intervalx € (0, co) as(N~1, N) with N — oo.

In the appendix, we use the results obtained in this section to compute the norm of the
eigenstates.
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6. The quantum version of the BK model

Let us consider the BK constraints> |, and|p| > | .. Itis rather natural to associate constraint
x > |, with the wavefunction

Yp(X) = by 132 8(x — 1), (6.1)

which is localized at the boundary= I,. The factorl /2 gives the correct dimensionality to
Yp(X), with by a dimensionless parameter. On the other hand the congtpaistl , admits two
possible quantum versions,

vroo o (1 )\ {cos(l 0X).
{Iﬁa x) 220 (271) sin(l px). (6.2)

Due to the fact that/, has to be real, one cannot choose a pure plane WateTdae boundary
wavefunctions§.1) and ©.2) are the cosine and sine Fourier transform of each other, namely

+ 2 1/2

wa‘(x) sin(l,xy/Ix).
Indeed, extending the domain ¢f(x) according to the parity of (n = £) one gets

27T|

I, \Y? ~ (1.X
Uo(—X) = n¥p(X)  —  YI(X) = (ﬁ) dm/D=D oy, (l"—) (6.4)

which are the quantum analogue of the classical equati®gs (ater on, we shall consider
more general wavefunctiong,,, to account for the fluctuations in the Riemann formula,
imposing again equatior(3). The relation 6.3) betweeny= and v, must imply a close link
between their Mellin transforrr@i(E) andb(E). To derive it, let us write

i cogl pxy/ly)

A — —1/2+IE 1/2+E p x)s
ai(E)—/(; Yy (X) = <27T| ) / dx x~ / dy ¥i( ){sin(lpxy/lx).
(6.5)

The basic integrals one needs are
00 dx X—l/2+iE COQpX)_ 1_ 2_7.[ (1/2+E e2.i0+(E)’ (6 6)
0 sin(px) — 2 \|p| e?-(B) '
where
e ['(1/4+iE/2) -+
r(1/4—iE/2)’ ’
e ['(3/4+iE/2)
I'(3/4—iE/2)’
The functioné.(E) coincides with the phase of the Riemann zeta funct®)(and more
generally of the even Dirichlet L-functions, white (E) is the phase factor of the odd Dirichlet
L-functions. These phases appear in the functional relation of even and odd L functions, and

they arise in our context from the two possible relations between the boundary fungtfons
andi,. Plugging equationg.6) into (6.5) yields

ao (27l,\' onE [ —(1/2)—iE
4. (E) = bo(l ) e /0 dy ¥u(y)y : (6.8)
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where the integral is nothing bbt—E), thus
271, \'E . .
8, (E) = 20 (X)) e=®) ), (6.9)

This important equation reflects the relatiéh3) which in turn is the quantum version of the
Xp symmetry between boundaries. In the BK case, the Mellin transforms of the associated
wavefunctions§.1) and 6.2) are

8. (E) = 2 (Zl—’:) @%E ()= byl (6.10)
which are pure phases, up to overall constants.Shgunctions can be readily computed using
equation $.4). To do so, we first consider the products

&.(E)a.(—E) = aj,
b(E)b(~E) = b,

8. (E)b(—E) = aghoe?™(®,
b(E)a.(—E) = aghoe 2*(®),

where we used,l, = 27 and thatd, (—E) = —6.(E). The diagonal terms o$; 4 are given
simply by

(6.11)

2 b2
Sua.(BE) = %, Sn(E) = EO (6.12)
since the Hilbert transform of a constant is zero, i.e.
®d 1
P ———— =0, EeR. 6.13
/_oo mit—E ’ < ( )

The computation of,, p andS, ., uses the analytic properties di’e'®. Let us focus on the
case of &+E = e??®) This function converges rapidly to zero |& — oc in the upper half
plane, and it has poles &, =i(2n+1/2) (n=0, 1, ...) where it behaves like
(=D)"2(2m)>" 1

(2n)! 2n+1/2+iE’
We can split &(® into the sum

QP0(E)

(6.14)

o0

: —1)" 2(2m)*" 1
" = Q. (E)+Q_(E o E=3"" 6.15
(E) (E), (E) ,Z:(; (2n)! 2n+1/2+iE’ (6.15)
where ., (E) is analytic in the upper half plane and goes to zero abHwhile 2_(E) has
poles in the upper half plane and behaves 4s &t infinity. The function2_(E) can also be
written as

1
Q_(E) = 2/ dx x Y?"E cog 2 x) = Y p—
0

. 1F2 —+ I_a )
1+2iE 4 2 24 2
where;F, is a hypergeometric function of the type (1,2). From the analyticity properti€s.of
one gets immediately their Hilbert transform

P / ﬂ Q(t)
o Tit—E

1 E15 E 2) (6.16)

—+Q.(E), EeR. (6.17)
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HenceS,, » = Sip, as given by equatiorb(4), becomes

Sp(E) = ao 0 |:e2|9(E) /OO d_t.92i9(t)i|

wTit—E
a°2b° [Q.(E)+Q_(E) + Q.(E) — Q_(E)]
= agho Q. (E). (6.18)

Similarly one finds

S.a(E) = aghy 2_(—E). (6.19)
Notice that both functions are analytic in the upper half plane. The Jost function finally reads

F(E) = 1+agbo(Q(E) — Q_(—E)) + (a02b0> — (30bp)*Q4(E)Q_(—E). (6.20)
In the asymptotic limitE| > 1

Q_(E)~ é — Q(E)=e"®+0 (é) , (6.21)
which implies

F(E) =1+aghy €?® + (a02b0> +0 (é) . (6.22)
This Jost function has zeros on the real axis, up to ordEr, provided

a°2b° =41 = F(E)=21+e’®)+0 (é) . (6.23)

The choices = —1 reproduces the smooth part of the Riemann form2ulg &ince,

e=-1 = 1-"®=1_"WE) —q, (6.24)
whereE is the average position of the zeros. On the other hand the cheickleads to

e=1 = 1+é®=0 — cosd(E)=0 (6.25)
so that the number of zeros in the intery@| E) is given by

Nem(E) = o1&, 2, (6.26)

which gives a better numerical approximation than the tekiE)) that appears in the exact
Riemann formulaZ.6) (see also figur@). In the case of the sine boundary functi@?) one
similarly obtains the smooth part of the zeros of the odd Dirichlet L-functions.

In summary, we have shown that the semiclassical BK boundary conditions have a
qguantum counterpart in terms of the boundary wavefunctipps, and that the average
Riemann zeros become asymptotically bound states of the model or more appropiately
resonances.
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7. The quantum model of the Riemann zeros

In section3, we showed how to incorporate the fluctuations of the energy levels in the heuristic
xp model by means of the functiong;(x) and xq(p) which define the boundaries of the
allowed phase space. These functions are given by equ&id8 {n terms of the density of

the fluctuation part of the energy levels. The relation between the wavefun¢tiarsdy, and

the boundary wavefunctiong,(x) andx.(p) is given by the following conditions:

(1og P+ g0 ) 1) =0 r.)
p
(1oa -+ b)) 1) =0 (7.2)

whereng (E) = dnq (E)/dE andHo is the non interacting Hamiltoniad (1). The hat ovex and
p stress the fact that they are operators. To solve these equations let us write them as

(log|pl +)¥p+7Tn§|(H0))|wa> =0, (7.3)

(log X+ Ax + 7Ny (Ho)) [¥n) = O, (7.4)

Ap=—logly, Ax = —logly. (7.5)
It is convenient to expand the states, ,) in the basis4.3)

o 1 1

[Vap) = /_OodEl/fa,b(E)WE), (X|pe) = N (7.6)
Let us first consider equatiofi.@) which in the basis{.6) becomes

f dE'(¢e|logX|pe) Yn(E') + (hx + 7Ny (E)) Yn(E) = 0. (7.7)
The matrix elements of the operator gan be readily computed,

(¢ellogX|pe) = —i8'(E' — E), (7.8)
which substituted intoA.7) and upon integration yields

. dyr,(E .

I WC;)I(E ) +(Ax+ny(E))yp(E) =0. (7.9)
The solution of 7.9) is simply

Yp(E) = p,0 €M ETMED, (7.10)

where o IS an integration constant. Thespace representation @, follows from (7.10
and (7.6
Yp(X) = /OO dEyYn(E)ge(X) = lﬁbo/w d—EéWE”"”(E”x‘”z*‘E. (7.11)
—co ") e V21
Recalling that),(x) = b(x)/+/X one gets
* dE

b(X) = V.0 ?ei(xxEmnﬂ(E))XiE_ (7.12)
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Observing thab(x) is related to its Fourier transfortE), as

b(x) = / N Z—EB(E)x—iE, (7.13)

o0

one finally obtains
B(E) = v/ 274y g&™ PxE+TMm(ED (7.14)

where we assumed that;(E) is an odd function ofE. If nyz(E) =0, equation 7.14
reproducesq.10), i.e.

M(E)=0 = B(E)=+27pdl!F =bolF. (7.15)
To simplify the notations we shall writ& (14) as
b(E) = byl 'E g 7™M ®), (7.16)

Let us now solve the conditio (3) for the wavefunction/,. We first need to define the operator
log|p| acting in the Hilbert space expanded by the functigasE € R). In this respect it is
worth remembering that the operatpe= —id/dx is self-adjoint in the real lin¢—oco, co) and
in the finite intervals(a, b), but not in the half-line(0, co) [28]. However, the operatop?
admits infinitely many self-adjoint extensions in the half-line provide the wavefunctions satisfy
the boundary condition

¥'(0) =k (0), (7.17)
where k e RUoo. We shall confine ourselves to the cases where O and oo, which
correspond to the von Neumann and Dirichlet BCs, respectively,

k=0— ¢'(0) =0,

(7.18)
Kk =00 — Y¥(0)=0.

The corresponding eigenstates of the opergtawith eigenvalueg? read

Xp _ |2 cogpx) (p>0),
{ © _{sin(px) (p > 0). (7.19)

Xp a T
These bases are complete in the space of functions defigd-id), i.e.
/ dp(xg))* xp(x) =8(x=x), X, x>0, n==. (7.20)
0

The operator logp| will be defined as% log p?, and therefore admits the same self-adjoint
extensions a$?. The analogue of equatioi.() reads now

/ dE'(¢ellog|pllde) Ya(E) + (p + 74 (E))Ya(E) = 0. (7.21)

o0

The matrix elements of logp| can be computed introducing the resolution of the identity in the
basis 7.19,

(el log | pll¢e) = fo dplog pigelx1) (x2lde), (7.22)
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where the overlap of the eigenstateg¥éfandH, are

*dX /24 [cOLpX)
+ _ YA —(1/2)+E )
(Xpe) = fo —X {Sin(px)_ (7.23)
These integrals were already computed in equatiod),(and the result is
(27.[)—1/2+iE )
(Xplde) = Wez'@@ (7.24)
Plugging this equation into/(22), and performing the integral gives
(¢ellog| pllge) =i8'(E'— E)(2r)E D EME), (7.25)
which introduced into{.21]) yields a differential equation whose solution is
Va, (E) = Ya o(2) " Fe ! METMEZ(EN, (7.26)
The functiony,(x) reads
oo > dE i i +1 + —1/2+i
wan(x) :f dEWan(E)(ﬁE(X) — Iﬁa,O/ \/T_n(zn,)—lEe—l()upE N (E) 2ﬁ9rz(E))X 1/2 IE’ (727)
while
> dE —IE o—i(pE+ng(E)+20,(E)) IE
a,(X) = Yao0 / E(Zn) et n(EDyIE (7.28)

whose Fourier transform is
8,(E) = a 0(2m)Y/2HEHeErTMEI 120, (E) (7.29)
If there are no fluctuations, equation29 reduces to

iE
n(E)=0 — én(E)zﬂwa,o<2|—”> e?n(®) (7.30)

P
which coincides with equatior6(10. To simplify notations we shall write/(29 as

iE
4,(E) = a <2|—”> g T (B2, (E)), (7.31)
p

The two solutions{.16 and (7.31) satisfy the duality relatiorg(9) and hence the wavefunctions
Y4, (X) is the cosine or sine Fourier transformyaf(x) (see equationd3)).

Having found the boundary wavefunctions for generic fluctuations we turn into the
computation of the corresponding Jost function. The basic products & #melb functions
needed to find th&; 4 functions are similar to equatiof.(L1),

a.(E)a.(—E)=a3,
b(E)b(—E) =13,

4. (E)B(—E) = aghy € (¢=©®rmnm(E)), (7.32)
6( E)a.(—E) = agbg @20 (E)+ng(E)).
The diagonal terms d; 4 are the same as in equatidh12), i.e.
2 b2
Sua(B)= 2 So(E) =2 (7.33)

2’ 2’
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while the evaluation of the off-diagonal terms depends on the analytic properties of the function
e21"=(® where

ni(E) =

Qi:[E) + Ny (E) (734)

This definition is strongly reminiscent of the Riemann formg), with n..(E) playing the
role of Nr(E), andng(E) that of N5 (E). However, we must keep in mind th&&(E) is a step
function while we expech..(E) to be a continuous interpolating function between the zeros.
The value ofS,,  is given by the integral

) [ee] Ting (t)
Suo(B) = 20 {ez’””i(E) P / dte ] | (7.35)
o t—E

We shall make the asumption th&t'&:(® is an analytic function in the upper half plane which
goes to zero agE| — oo. In this case the Cauchy integral on the RHS 080 is equal to
e?""+(E) and one finds

Su. p(E) = agh &™), (7.36)
Similarly S, 5, vanishes so that the Jost function reduces to

2
F(E) - 1o 4 (A22) e
and under the usual choice
b .
€= ? =41 = F(E)=2(1+ee®®) (7.38)

Whenng = 0 the results of the previous subsection showeddhatl gives a better numerical
estimate to the smooth part of the zeros. In the following we shall also make that choice which
implies that the number of zeros 8% E) in the interval(0, E) is

Nom(E) = Nem(E) +ng(E) = (E) +3, (7.39)

where Ngm(E) was defined in §.26) for the particular case of the zeta functians),
which corresponds to.(E). Equation 7.39 agrees asymptotically with the semiclassical
formula 3.12), which confirms the ansatz made for the statgand .

7.1. The connection with the Riemann-Siegel formula

The next problem is to find the function (E), and thereforeVom(E), which gives the exact
location of the Riemann zeros. Let us consider the case of the zeta function with the following
choices of parameters:

n=+ e=1 a=by=v2 ILL=1 l,=2r (7.40)
which correspond to the potentials (recdll31) and (7.16)

A(t) = @O Tm®) _ dOmmn)

(7.41)
b(t) = e M®) — dOO-mN®)
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where we skip a common factoy2 and denoten(E) = n.(E). These two functions are
interchanged under the transformation

at) - °0a—t) = ht),

(7.42)

b(t) — /Ob(—t) = A1),
so that their sum is left invariant,

a(t) +bt) - O @(—t) +b(—t)) = at) +b(t). (7.43)
The functional relation satisfied by the zeta function implies

c(1/2—it) — O (1/2+it) = ¢ (1/2—it). (7.44)
which suggests to relate+ b and¢ as

£(1/2—it) = p(t)(@At) +b(v)), (7.45)
wherep(t) is a proportionally factor. Using equations42 in (7.49 yields

c(1/2—it) = 2o ()€Y cogmn(t)). (7.46)

This formula can be compared with the parametrization of the zeta function in terms of the
Riemann-Siegel zeta functiaf(t) and its phasé(t),

r(1/2—it) = Z(t)e’®, (7.47)
which leads to,
Z(t) =2p(t) cogmn(t)). (7.48)

This equation is rather interesting since it implies that the zeros ¢fros)), which give the
bound states of the QM model, are also zeroZ df), of course ifp(t) does not have poles
at those values. Vice versa, the zerosZgf) can be zeros either of cesn(t)), or of p(t),
or both. The latter possibility would be absent if the Rieman zeros are simple, as is expected
to be the case.

A first hint on the structure of the functiopgt) and cogzn(t)) can be obtained using the
Riemann-Siegel formula fa£(t),

v(t)
Z(t) = 22 n~Y2cog6(t) —tlogn) + R(t), v(t) = [‘ / %} , (7.49)

n=1
where K] is the integer part ok andR(t) is a remainder of order/4. Combining the last two
eqguations one finds

Z(t) =2p(t) [cosh(t) cogmng(t)) —sind(t) sin(zng(t))]

v(t) v(t)
2 |:cos(9(t) PPl Cos(t ' 090 . sina () Z S'n(t log n)} (7.50)

which suggests the following |dent|f|cat|ons

Y cogt |
p(t) cosn(®) ~ Y %’
" (7.51)
. v(t) _. t |
p®) sin(ng(®) ~ =Y %?29“)

n=1
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Figure 5. In black: Nr(E), in red: Nom(E) in the interval (10, 40).

that can be combined into
v(t) 1

f(t) = p(t)énnﬂ(t) ~ Z nl/2+it . (752)
n=1

The fluctuation functiomg (t) is then given by the phase d¢ft), i.e.
Ny (t) = EIm log f (t). (7.53)
T

In figure 5, we plot the values alNou(t) that correspond to the approximate formuras@),
which shows an excellent agreement with the Riemann forn2u. (This is expected from the
fact that the main term of the Riemann-Siegel formula already gives accurate results for the
lowest Riemann zeros. For higher zeros one has to compute more terms of the rerRainder
depending on the desired accuracy. Observerfai(t) is a smooth function, except for some
jumps at higher values of(not shown in figurés) due to the approximation made, unliké(t),
which is a step function.

In figure 6, we plot the values of.53 together with those of the fluctuation part of the
Riemann formulaZ.6), i.e.

Na(t) = %lm log¢ (5 +it) . (7.54)

The jumps inNg (t) correspond to the Riemann zeros, while thoseydf) correspond, either to
jumps of the functiorv(t) appearing in the Riemann Siegel formuta49, or to those points
where the curve (t) cuts the negative real axis in the complex plane.

We gave in sectio2 a formal expression of equatioii.pb4) in terms of prime numbers,
equation 2.10, which resembles the fluctuation pa#.11) of a quantum chaotic system.
Equation 2.10 is based on the Euler product formula9) which is not valid in the case
wheres=1/2 +it, since Re > 1 for convergence of the infinite product. The Euler product
formula does not apply to the truncated sufrb@), however we shall naively try to establish a
relationship. Let us denote Ly, the nth-prime number, e.gp, = 2, p, = 3, etc, and by1(x)
the number of primes less than or equaktorhe sum 7.52 involves all integers up to(t),
which can be expressed as products of the fifsj prime numbers where

p(t) =I(v(D), Puw = Inf{p} < v(®). (7.55)
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Figure 6. In black: N5 (E), in red:nq(E) in the interval (50, 80).
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Figure 7. Left: in black:|f (E)|, in red:|¢e(1/2 +iE)| in the interval (50, 100).
Right: in black: Argf (E), in red: Arg¢e(1/2 +iE).

Using these functions we define a truncated Euler product as

wu(t) 1
e(/2+ity=]] —— (7.56)
n=1 1 - pn

It is easy to see that(1/2 +it) is not equal tof (t), for there are terms in7(56 which do not

appear in 7.52), although all the terms appearing in the latter sum also appear in the former
product. The point is that a numerical comparison of these two functions shows a qualitative
agreement as depicted in figufelndeed, the minima and maxima of their absolute value are
located around the same points, and the same happens for the zeros of their arguments. The
conclusion we draw from these heuristic considerations is that the funt{igrcontains some

sort of information related to the prime numbers although not in the form of an Euler product
formula as is the case ¢f(1/2 +it). It would be interesting to investigate the consequences of
this result from the point of view of quantum chaos.

7.2. The BK formula of @)

The main term of the Riemann-Siegel formula4© is not analytic irt due to the discontinuity
in the main sum. This problem was solved by Berry and Keating who found an alternative
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expression foZ (t) [29]. The formula is
Z(t) = (To(t) + To(=1)), (7.57)
n=1

where
jo (t)
To®) =T (=0 = D),
(7.58)
,Bn( )= 1 / dz —22K2/(2|t|)e|[9(z+t) 6(t)—zlogn]
21l Je. z

and C_ is an integration contour in the lower half plane with kn—1/2 that avoids a cut
starting at the branch poiat= —t —i/2. The constanK in (7.58 can be chosen at will and
it is related to the number of terms of the RS formula that has been smoothed for large values
of t. Using equation{.57) one can write the zeta function as

. o0 N P®) Ba(—1)
£(1/2—it) =" Z nl/2+it Z nl/2—it ’ (7.59)
which can be compared witf7 45 obtaining
. 2. Bt
f(t) — p(t)énnﬂ(t) — Z fl/(2+?t (760)
n=1

so that 7.59 can be written as
c(1/2 —it) =V f(t) + f(—1). (7.61)

Equation 7.60 gives an exact expression 6ft), which is, in fact, a smooth version of.62.
BK also found a series foZ (t) which improves the RS series. The first term of that series
corresponds to the following value of tisg(t) functions

(O] 1
BS <t)—2Erfc( oK, t)JtT)

£(n,t) =logn—6'(t), Q%(K,t) = K2 —ito"(t),

where Erfc is the complementary error function. Using these formulae one can find a better
numerical evaluation of the functiotdéom (t) andng(t).

It is perhaps worth mentioning that equatiohgl), with the approximate value of (t)
given by (7.52, is a particular case of the so-called approximate functional relation due to
Hardy and Littlewood 1, 2]

_ _121((1—9)/2)
_ S s—-1/2
¢(s) = nix n-"+m —F 2

wheres=o +it, |t| =27xy, 0< o < 1. Recalling that in our modd is the energyE,
then equationt| = 27 xy becomes the hyperbol&| = xp with p=2ry =1,y so that the
sums in {.63 run over the integer values of the positions and momenta in unitg ahd
l,, respectively. Equation7(63 also suggests that the case wherg: 1/2 could be related
to the non hermitean Hamiltoniaklo = (xp+ px)/2—i(c —1/2) whose right (resp. left)
eigenfunctions are given by/2°~'E (resp. ¥x1—°~'E),

(7.62)

D oSO +O(ItME Yy, (7.63)

n<y
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On more general grounds, we would like to mention two important points. Firstly, one still
needs to show that the functiarit), defined in equation7(34), is such that €"® is analytic
in the upper-half plane and that it goes to zerdtas> oo, so that the Jost function is indeed
given by equation{.39, as we have assumed so far. Secondly, and related to the latter point,
the functionng (t) is well defined provided (t) does not vanish far real, in which case?.61)
also reads

c(1/2—it) = f(-1) (1 +eo® %) = f(=t)F (), (7.64)
which shows that our construction of a QM model of the Riemann zeros relies on the absence of
zeros of the functiorf (t) on the critical line. These zeros were investigated by Bombieri long
ago in an attempt to improve the existing lower bounds for the number of Riemann zeros on the
critical line [30]. In this regard our results give further support to, but not proof of, the RH. As
suggested in19, 20] that proof would follow if the zeta functiog(1/2 —it) can be realized

as the Jost function of a QM model of the sort discussed so far, due to its special analyticity
properties. Equation/(64) gives a partial realization of this idea but the functib(t) lacks a
physical interpretation so far. The latter approach is analogous to the ones proposed in the past
by several authors where the zeta function gives the scattering phase shift of some quantum
mechanical model, particularly on the line e 1 [31]-[39].

Another important question is: where are the prime numbers in our construction? As
suggested by the quantum chaos scenario, the prime numbers may well be classical objects
hidden in the quantum model, so the next question is: what is the classical limit of the
Hamiltonian? The free part is of course givenXyy, but the interacting part is an antisymmetric
matrix with no obvious classical version. The existence of such a classical Hamiltonian may
help to answer th@rime question but it may also lead to a real physical realization of the
model. Work along this direction is in progregs]].
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Appendix A. Wavefunctions and norms

In this appendix, we shall derive alternative expressions of the eigenfunctions of the model
and compute their norm. Let us start from equatidnl® for the eigenfunctions of the
Hamiltonian @.5),

. q .
Ye(q) =e V2R [Co+ f dg'e”="(Ba(@) — Ab(q/))] : (A.1)
Replacinga(q) andb(q) by their Fourier transform, and using equatiéii3f one finds
q .y A(— , 00 jdo g (—
/ dq/e—|Eq a(q/) — a( E) +e—|qE/ d_wel a( a)) (AZ)
oo 2 o 2l w—E
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and a similar expression for the integral lag). All the singular integrals appearing in this
appendix must be understood in the Cauchy sense. Plugging the latter expressioAslinto (
yields

Ye(q) = e /2B |:Co +1(Ba(—E) — Ab(—E)) +e e / " o gq0BaZ0) - Ab(_“’)} .

oo 27 w—E
(A.3)
Using equations4.14), (4.32 and @.33), the first term in the rhs becomes
Co+3(Ba(—E) — Ab(—E)) = <C= = ReF(E) (A.4)
so thaty (x) is given by

(A.5)

ReF(E) 0o 120 BE)A(—0) — A(E)b(—w)
veoo= S5 [ e o E ’

whereA(E) andB(E) are given by the equationd.32 and @.33. The function A.5) can also
be expanded in the basi.8) of eigenfunctions oHy, i.e.

e = [ dovela) (A.6)
namely
—1/2+iw
VE(X) = / doye(w) N (A.7)
The resultis
Ve (@) = V278 (E — w)ReF(E) + BB —ABDBC0) )\ o

N 27i ow—E '

which shows that the delocalized states, I&(E) #0, have to be normalized in the
distributional sense, while the localized states,*.€E,,) = 0, have a norm given by

_ [~ do |BEnA(-0) — AEmD-w)P
Weven = [ 52 @ _E.)? (A-9)

In the examples discussed throughout the paper the fun@iond(t) are phase factors, up to
overall constants. Moreover, if the functiét)b(—t) is analytic in the upper half-plane and
vanishes wheft| — oo, Ret > 0, then theS-functions and the associated Jost function take a
particular simple form if we allow for the existence of bound states,

Sa=Se=1  Sp=abb(-1)S.=0 = F(t)=2+at)b(-t). (A.10)
The integration constants and B, corresponding to a bound state, can be chosen as
A(En) = —B(Ep) = —1 (A.11)

which differ with respect to4.33 in an unimportant overall sign. The wavefunctighng) also
simplifies

Ve, (X) = f N %x—”z”w A(w) +b(-w) (A.12)
oo 27 ow—En
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and the scalar product of two bound state wavefunctions becomes

“do F(w)+F(—w)

00 27 (@ — Emy) (@ — Emyy) (A13)

(Ve [VEL,) =

The analiticity of the Jost functiof(E) in the upper-half plane implies the dispersion relation

f(E)=}"oo+/Ood—w 7w

. 9
oo T @ — Ep

(A.14)

whereF, is the value ofF(E) at E = +ico. From this equation, and the fact thatE, ) =
F(Em,) =0, one can show thate, andye, are orthogonal. Furthermore, equatighi4)
yields also a simple expression for the norm/ef,

* dw ReF
Wedve) = [ LI — —mF(En). (A.15)
—00 T (Cl)— Em)
Finally, writing #(E) as in equation{.39), i.e.
F(E) =2(1+ee”"®), (A.16)

wheren(E) is the number of states, up to a constant, one derives that the notra, ois
proportional to the density of statesit,,

(VenVe,) = 4N (En). (A.17)

A.1. Wavefunctions associated with the smooth and exact Riemann zeros

The Mellin transforms of the boundary wavefunctions associated with the smooth Riemann
zeros were given in equatiof.(.0. Choosindy = 1, |, = 27 anday = by = V2 we have

a(t) = V290, b(t) = 1. (A.18)
The wavefunctionsA.12) in this case become,

o0 —2i0()
do 10, &2 +1

X) = e . A.19
wEm( ) —00 \/ETL'I a)_Em ( )
The integrals can be performed using the residue theorem obtaining
1 H(x — 1) 1 1 iEn 15 iEm .,
) — _ + - = , A.20
N =y Sy =Ry (4 224 2 * (A-20)

whereH(x —1) =1, if x > 1 and 0, if O< x < 1. One can show thagxyg, — 0 asx — oo,

if 1+e%Em =0, In figureA.1, we plot the absolute values of.Q0) for those energies that
correspond to the three lowest Riemann zeros. Notice that the functions are very small in the
classical forbidden region @ x < 1. The amplitude has a high frequency component common

to the three waves plus a low frequency one that depends on the level.
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Figure A.1. Plot of |y, | for the energie€,, = 145179, 20.654 and 25.4915,
corresponding to the lowest smooth Riemann zeros (see equAt@d)), The
wavefunctions are normalized using equatiril().

1.0

12
1.0
0.8
(1)’(8) 0.8
_ 0. __ 06 _
ey = S 06
=06 = o4 =
0.4 . 0.4
0.2 0.2 0.2
1 2 3 4 5 1 2 3 4 5 1 2 3 4 5
X X X

Figure A.2. Plot of |y | for the energies Riemann zeros: 14.1347, 21.022
and 25.0109 evaluated with equatignZl) for A = 60. The wavefunctions are
normalized using equatioi\(17).

The wavefunctions associated with the exact Riemann zeros can be computed from
equation A.12) with a(t) andb(t) given by equation{.41). We do not have an analytic
expression for this integral, however a numerical estimate can be obtained truncating
(A.12) as

En*A dow . A(—w) +b(—w
Ve, (X) ~ f - _x /e (zw)+b(zw) (A.21)

In figure A.2, we plot the result for the lowest Riemann zeros. The wavefunctions have some
common features with those of figukel, but they also exhibit a random behaviour.
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