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Abstract. In 1999, Berry and Keating showed that a regularization of the
1D classical HamiltonianH = xp gives semiclassically the smooth counting
function of the Riemann zeros. In this paper, we first generalize this result by
considering a phase space delimited by two boundary functions in position and
momenta, which induce a fluctuation term in the counting of energy levels. We
next quantize thexp Hamiltonian, adding an interaction term that depends on
two wavefunctions associated with the classical boundaries in phase space. The
general model is solved exactly, obtaining a continuum spectrum with discrete
bound states embbeded in it. We find the boundary wavefunctions associated
with the Berry–Keating regularization, for which the average Riemann zeros
become resonances. A spectral realization of the Riemann zeros is achieved
exploiting the symmetry of the model under the exchange of position and
momenta which is related to the duality symmetry of the zeta function. The
boundary wavefunctions, giving rise to the Riemann zeros, are found using the
Riemann–Siegel formula of the zeta function. Other Dirichlet L-functions are
shown to find a natural realization in the model.
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1. Introduction

At the beginning of the 20th century Polya and Hilbert made the bold conjecture that the
imaginary part of the Riemann zeros could be the oscillation frequencies of a physical system.
If true this suggestion would imply a proof of the celebrated Riemann hypothesis (RH). The
importance of this conjecture lies in its connection with prime numbers. If the RH is true then
the statistical distribution of the primes will be constrained in the most favourable way [1, 2].
Otherwise, in the words of Bombieri, the failure of the RH would create havoc in the distribution
of the prime numbers [3] (see also [4]–[7]1 for reviews on the RH).

After the advent of quantum mechanics, the Polya–Hilbert conjecture was formulated as
the existence of a self-adjoint operator whose spectrum contains the imaginary part of the
Riemann zeros. This conjecture was for a long time regarded as a wild speculation until the
works of Selberg in the 50s and those of Montgomery in the 70s. Selberg found a remarkable
duality between the length of geodesics on a Riemann surface and the eigenvalues of the
Laplacian operator defined on it [8]. This duality is encapsulated in the so called Selberg trace
formula, which has a strong similarity to the Riemann explicit formula relating the zeros and
the prime numbers. The Riemann zeros would correspond to the eigenvalues, and the primes to
the geodesics. This classical versus quantum version of the primes and the zeros is also at the
heart of the so-called quantum chaos approach to the RH.

Quite independently of Selberg’s work, Montgomery showed that the Riemann zeros are
distributed randomly and obey locally the statistical law of the random matrix theory (RMT) [9].
The RMT was originally proposed to explain the chaotic behaviour of the spectra of nuclei but
it has applications in other branches of physics, especially in condensed matter [10]. There
are several universality classes of random matrices, and it turns out that the one related to
the Riemann zeros is the Gaussian unitary ensemble (GUE) associated with random hermitean

1 See Watkins M athttp://secamlocal.ex.ac.uk/∼mwatkins/zeta/physics.htmfor a comprehensive review on several
approaches to the RH.
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matrices. Montgomery’s analytical results found an impressive numerical confirmation in the
works of Odlyzko in the 80s, so that the GUE law, as applied to the Riemann zeros is nowadays
called the Montgomery–Odlyzko law [11]. An important hint suggested by this law is that the
Polya–Hilbert HamiltonianH must break the time reversal symmetry. The reason for this is that
the GUE statistics describes random Hamiltonians where this symmetry is broken. A simple
example is provided by materials with impurities subject to an external magnetic field, as in the
quantum Hall effect.

A further step in the Polya–Hilbert–Montgomery–Odlyzko pathway was taken by
Berry [12, 13], who noticed a similarity between the formula yielding the fluctuations of
the number of zeros, around its average positionEn ∼ 2πn/logn, and a formula giving the
fluctuations of the energy levels of a Hamiltonian obtained by the quantization of a classical
chaotic system [14]. The comparison between these two formulae suggests that the prime
numbersp correspond to the isolated periodic orbits whose period is logp. In the quantum
chaos scenario the prime numbers appear as classical objects, while the Riemann zeros are
quantal. This classical/quantum interpretation of the primes/zeros is certainly reminiscent of
the one underlying the Selberg trace formula mentioned earlier. A success of the quantum
chaos approach is that it explains the deviations from the GUE law of the zeros found
numerically by Odlyzko. The similarity between the fluctuation formulae described above,
while rather appealing, has a serious drawback observed by Connes which has to do with an
overall sign difference between them [15]. It is as if the periodic orbits were missing in the
underlying classical chaotic dynamics, a fact that is difficult to understand physically. This and
other observations led Connes to propose an abstract approach to the RH based on discrete
mathematical objects known as adeles [15]. The final outcome of Connes’ work is a trace
formula whose proof, not yet found, amounts to that of a generalized version of the RH. In
Connes’ approach there is an operator, which plays the role of the Hamiltonian, whose spectrum
is a continuum with missing spectral lines corresponding to the Riemann zeros. We are thus
confronted with two possible physical realizations of the Riemann zeros, either as point-like
spectra or as missing spectra in a continuum. Later on we shall see that both pictures can be
reconciled in a QM model having a discrete spectra embedded in a continuum.

The next step within the Polya–Hilbert framework came in 1999 when Berry and
Keating [16, 17] on one hand and Connes [15] on the other, proposed that the classical
Hamiltonian H = xp, where x and p are the position and momenta of a one-dimensional
(1D) particle, is closely related to the Riemann zeros. This striking suggestion was based
on a semiclassical analysis ofH = xp, which led these authors to reach quite opposite
conclusions regarding the possible spectral interpretation of the Riemann zeros. The origin of
the disagreement is due to the choice of different regularizations ofH = xp. Berry and Keating
chose a Planck cell regularization in which case the smooth part of the Riemann zeros appears
semiclassically as discrete energy levels. Connes, on the other hand chose an upper cutoff for
the position and momenta which gives semiclassically a continuum spectrum where the smooth
zeros are missing. All these semiclassical results are heuristic and so far lack a consistent
quantum version. It is the aim of this paper to provide such a quantum version in the hope
that it will shed new light concerning the spectral realization of the Riemann zeros.

The organization of the paper is as follows. In section2, we review the semiclassical
approaches toH = xp due to Berry, Keating and Connes who gave an heuristic derivation
of the asymptotic behaviour of the smooth part of the Riemann zeros. In section3, we
generalize the semiclassical Berry–Keating (BK) Planck cell regularization ofxp by means of
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two classical functions which define awiggly boundary for the allowed semiclassical region in
phase space. This generalization allows us to explain semiclassically the fluctuation term in the
spectrum. In section4, we define the quantum Hamiltonian associated with the semiclassical
approach introduced above. The Hamiltonian is given by the quantization ofH = xp plus
an interaction term that depends on two generic boundary wavefunctions and we solve the
associated Schrödinger equation finding the exact eigenfunctions and eigenenergies in terms
of a functionF(E) which plays the role of a Jost function for this model, and whose analyticity
properties are studied in section5. In section6, we find the boundary wavefunctions that
give rise to the quantum version of the semiclassical BK model for the smooth zeros of the
Riemann zeta function, which are common to all the even Dirichlet L-functions. We also find
the boundary wavefunctions associated with the smooth approximation of the zeros of the odd
Dirichlet L-functions. In section7, we quantize the relation between the fluctuation part of
the spectrum and the semiclassical phase boundaries, obtaining the equations satisfied by the
boundary wavefunctions, and we solve them explicitly. Finally, using the duality properties of
these wavefunctions and the Riemann–Siegel formula of the zeta function we find a model
whose Jost function is proportional to the zeta function. From this fact, and making some
additional assumptions, we show that the Riemann zeros on the critical line are bound states
of the model. However, we cannot exclude the existence of zeros outside the critical line,
which would imply a proof of the RH. We describe in an appendix the computation of the
wavefunctions associated with the smooth and exact Riemann zeros.

The present work is closely related to those in [18]–[20], where we studied an interacting
version of thexp Hamiltonian based on the relation of this model with the so called Russian
doll model of superconductivity [21]–[23]. For a field theoretical approach to the RH inspired by
the latter works, see [24]. We would also like to mention some important differences between
the present paper and those of [18]–[20]. First of all, the position variablex was chosen in
[18]–[20] to belong to the finite interval(1, N) with N → ∞, while in this paper we choose the
half line (0,∞) which gives a more symmetric treatment between the position and momentum
variables. Secondly, in the earlier references the interaction term was added to the inverse
Hamiltonian 1/(xp), while in this paper we add the interaction directly to the Hamiltonian
xp, which is more natural from a physical viewpoint. We have also tried to make an extensive
use of the duality symmetry of the Riemann zeta function reflected in the functional relation it
satisfies.

2. Semiclassical approach

The classical Berry–Keating–Connes (BKC) Hamiltonian [15]–[17]

H cl
0 = xp (2.1)

has classical trajectories given by the hyperbolas (see figure1(a))

x(t)= x0e
t , p(t)= p0e

−t . (2.2)

The dynamics is unbounded, so one should not expect a discrete spectrum even at the
semiclassical level. To overcome this difficulty, Berry and Keating proposed in 1999 to restrict
the phase space of thexp model to those points(x, p) where |x|> lx and |p|> l p, with
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Figure 1. (a) A classical trajectory (2.2). The region in shadow is the
allowed phase space of the semiclassical regularizations of Berry and Keating.
(b) Generalization of the phase space region given by equations (3.1).

lx l p = 2π h̄. These constraints lead to a finite number of semiclassical states,N (E), with energy
between 0 andE given by

N (E)=
A

2π h̄
, (2.3)

whereA is the area of the allowed phase space region below the curveE = xp. The result, in
units h̄ = 1 is

NBK(E)=
E

2π

(
log

E

2π
− 1

)
+ 1, (2.4)

which agrees with the asymptotic limit of the smooth part of the formula giving the number of
Riemann zeros whose imaginary part lies in the interval(0, E),

〈N (E)〉 ∼
E

2π

(
log

E

2π
− 1

)
+

7

8
+ O(E−1). (2.5)

The exact formula for the number of zeros,NR(E), due to Riemann, also contains a fluctuation
term which depends on the zeta function [1] (see figure2),

NR(E)= 〈N (E)〉 +Nfl(E),

〈N (E)〉 =
θ(E)

π
+ 1, (2.6)

Nfl(E)=
1

π
Im logζ

(
1

2
+ iE

)
,

whereθ(E) is the phase of the Riemann zeta functionζ(1/2− iE),

θ(E)= Im log0

(
1

4
+

i

2
E

)
−

E

2
logπ, (2.7)

whose asymptotic expansion

θ(E)=
E

2
log

(
E

2π

)
−

E

2
−
π

8
+ O(E−1) (2.8)
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Figure 2. Number of Riemann zeros in the interval(0, E): black: exact
formula (2.6), red: smooth function〈N (E)〉 and blue:〈N (E)〉 + 1/2.

yields (2.5). The functionζ(s), for Res> 1, can be related to the prime numbersp thanks to
the Euler product formula

ζ(s)=

∏
p>1

1

1− p−s
, Res> 1. (2.9)

This expression diverges if Res = 1/2, however one can heuristically use it to write the
fluctuation term in (2.6) as

Nfl(E)= −
1

π

∑
p

∞∑
m=1

1

mpm/2
sin(mE log p), (2.10)

which gives a reasonable result after truncating the sum over the primes. As observed by Berry,
equation (2.10) resembles formally the fluctuation part of the spectrum of a classical 1D chaotic
Hamiltonian with isolated periodic orbits

Nfl(E)=
1

π

∑
γp

∞∑
m=1

1

m2sinh(mλp/2)
sin(Scl(E)), (2.11)

whereγp denotes the primitive periodic orbits, the labelm describes the windings of those orbits,
±λp are the instability exponents andScl(E) is the classical action, which is equal tomETγ p,
with Tγ p the period ofγp. Comparing (2.10) and (2.11), Berry conjectured the existence of a
classical chaotic Hamiltonian whose primitive periodic orbits would be labelled by the prime
numbersp = 2,3, . . ., with periodsTp = log p and instability exponentsλp = ±log p [12, 13].
Moreover, since each orbit is counted once, the Hamiltonian must break time reversal (otherwise
there would be a factor 2/π in front of equation (2.10) instead of 1/π ). The quantization of this
classical chaotic Hamiltonian would likely contain the Riemann zeros in its spectrum. This idea
is the key of the quantum chaos approach to the RH.

Besides the fact that the earlier Hamiltonian has not yet been found there is the Connes
criticism that the similarity between equations (2.10) and (2.11) fails in two issues. The first
is the overall minus sign in (2.10) as compared to (2.11), and the second is that the term
2sinh(mλp/2) only becomespm/2 when m → ∞. Connes relates theminus signproblem to
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an alternative interpretation of the Riemann zeros as missing spectral lines as opposed to the
conventional one. This interpretation is based on a different regularization scheme for thexp
Hamiltonian. In [15], Connes restricts the phase space of the model to be|x|<3, |p|<3,
where3 is a cutoff which is sent to infinite at the end of the calculation. The number of
semiclassical states is given now by

NC(E)=
E

π
log3−

E

2π

(
log

E

2π
− 1

)
, (2.12)

where the first term leads, in the limit3→ ∞, to a continuum while the second term coincides
with minus the average position of the Riemann zeros (2.4). A possible interpretation of these
results is that the Riemann zeros are missing spectral lines in a continuum, which is in apparent
contradiction with the BK interpretation of the zeros as bound states. As we shall show below
both interpretations can be reconciled at the quantum level where the Riemann zeros appear as
discrete spectra embbeded in a continuum of states.

3. Semiclassical treatment of the fluctuations

The quantum chaos approach suggests that the fluctuation part of the spectrum of the yet
unknown Riemann Hamiltonian has a classical origin related to the prime numbers. Taking into
account the BK heuristic derivation of the smooth part of the spectrum, it is tempting to extend
the semiclassical approach in order to explain the fluctuation term in the Riemann formula for
the zeros. The simplest idea is to generalize the allowed phase space of thexp Hamiltonian
replacing the boundaries|x| = lx and |p| = l p by two curvesxcl(p) and pcl(x), such that (see
figure1(b))

x > xcl(p), |p|> pcl(x), (3.1)

wherexcl(p) and pcl(x), are positive functions satisfying

xcl(p)= xcl(−p) > 0, ∀p ∈ R,
pcl(x) > 0, ∀x ∈ R+.

(3.2)

These conditions split the allowed phase space into two disconnected regions in the first and
forth quadrants of thexp plane. Notice thatx is always positive whilep can be either positive
or negative. The BK boundaries obviously correspond to the choice

BK: xcl(p)= lx, pcl(x)= l p. (3.3)

For the extended boundary conditions (BCs) the minimal distancelx and minimal momentuml p

can be defined as the intersection point of the curves,xcl(p) and pcl(x), which we shall assume
to be unique and to satisfy

xcl(l p)= lx, pcl(lx)= l p. (3.4)

The classicalxp Hamiltonian together with the BK conditions have the exchange symmetry
x

lx
↔

p

l p
, (3.5)

whose generalization to the extended model is

xcl(l px/ lx)

lx
=

pcl(x)

l p
. (3.6)
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The counting of semiclassical states is based again on equation (2.3). The area below the curve
E = xp and bounded by the conditions (3.1) is given by (see figure1(b))

A =

∫ xI

lx

dx
∫ l px/ lx

pcl(x)
dp +

∫ xM

xI

dx
∫ E/x

pcl(x)
dp +

∫ pI

l p

dp
∫ lx p/ l p

xcl(p)
dx +

∫ pM

pI

dp
∫ E/p

xcl(p)
dx. (3.7)

The quantitiesxM , pM (resp.xI , pI ) are the position and momenta of the points where the curve
E = xp intersects the boundariespcl(x), xcl(p) (resp. the linex/ lx = p/ l p), and satisfy,

E = xM pcl(xM)= xcl(pM)pM = xI pI ,
xI

lx
=

pI

l p
. (3.8)

Integration of (3.7) yields

A = E log

(
E

lxl p

)
+ E − lxl p − E log

(
pcl(xM)

l p

)
− E log

(
xcl(pM)

lx

)
−

∫ xM

lx

dx pcl(x)−
∫ pM

l p

dp xcl(p). (3.9)

Partially integrating the last two terms in (3.9) and dividing byh = lxl p = 2π(h̄ = 1), the
semiclassical value ofN (E) reads

N (E)=NBK(E)−
E

2π
log

(
pcl(xM)

l p

)
−

E

2π
log

(
xcl(pM)

lx

)
+

∫ xM

lx

dx

2π
x

dpcl(x)

dx
+

∫ pM

l p

dp

2π
p

dxcl(p)

dp
. (3.10)

The BK conditions (3.3) of course reproduce equation (2.4). More general boundary functions
induce a fluctuation term in the counting formula of a form which recalls equation (2.6). Let us
denote this term as

nfl(E)= −
E

2π
log

(
pcl(xM)

l p

)
−

E

2π
log

(
xcl(pM)

lx

)
+

∫ xM

lx

dx

2π
x

dpcl(x)

dx
+

∫ pM

l p

dp

2π
p

dxcl(p)

dp

(3.11)

so that

N (E)=NBK(E)+ nfl(E). (3.12)

Taking the derivative of (3.11) with respect toE, and using equations (3.8) one gets

dnfl(E)

dE
= −

1

2π
log

(
pcl(xM)

l p

)
−

1

2π
log

(
xcl(pM)

lx

)
, (3.13)

which implies that the boundary functions are related to the fluctuation part of the density of
states. A further simplification is achieved imposing thexp symmetry (3.6)

pcl(xM)

l p
=

xcl(pM)

lx
,

pM

l p
=

xM

lx
, (3.14)

which leads to
dnfl(E)

dE
= −

1

π
log

(
pcl(xM)

l p

)
= −

1

π
log

(
xcl(pM)

lx

)
. (3.15)
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Hence,xp-symmetric boundary functionspcl(xM) and xcl(pM) are completely fixed by the
density of the fluctuations. To findpcl(x), one combines (3.15) and (3.8)

pcl(xM)= l p e−πn′

fl(E) =
E

xM
, n′

fl(E)=
dnfl(E)

dE
, (3.16)

which givesxM as a function ofE

xM =
E

l p
eπn′

fl(E). (3.17)

If nfl(E)= 0, the latter equations reproduce the BK boundary conditions (3.4). Equation (3.17)
givesxM as a function ofE and it is monotonically increasing, provided

dxM(E)

dE
> 0 H⇒ 1 +πE

d2nfl(E)

dE2
> 0. (3.18)

Under this condition, we can expressE as a function ofxM and replace it in (3.16), obtaining the
boundary functionpxM = E(xM)/xM . In this case, the inverse problem of finding a Hamiltonian
given the spectrum has a unique solution at the semiclassical level. If the fluctuations are strong
enough at some energies, then condition (3.18) could be violated implying thatE = E(x) as
well aspcl(x)will be multivalued functions. This gives rise to a manifold of boundary functions,
each one having discontinuities at some values ofx.

4. The quantum model

In this section, we shall give a quantum version of the semiclassical results obtained above. The
starting point is the quantization of the classical hamiltonianH cl

0 = xp. Let us consider the usual
normal ordered expression

H0 =
1
2(xp+ px)= −i

(
x d

dx + 1
2

)
, (4.1)

where p = −id/dx. In [19, 25] it was shown thatH0 becomes a self-adjoint operator in two
cases where the domain of thex variable are chosen as: (1) 0< x <∞ or (2) a< x < b with
a andb finite. For the purpose of this paper, we shall keep to case 1. Case 2 was discussed at
length in [19]. Sincex > 0 one can write (4.1) as

H0 = x1/2 px1/2, x > 0. (4.2)

The exact eigenfunctions of (4.2) are given by

φE(x)=
1

√
2π

1

x1/2−iE
, E ∈ R, (4.3)

where the eigenenergiesE belong to the real line. The normalization of (4.3) is the appropiate
one for a continuum spectra,

〈φE|φE′〉 =

∫
∞

0
dx φ∗

E(x)φE′(x)= δ(E − E′). (4.4)

The quantum Hamiltonian associated to the semiclassical approach is

H = H0 + i(|ψa〉〈ψb| − |ψb〉〈ψa|), (4.5)

whereψa andψb are two wavefunctions which we take to be real for the Hamiltonian to be
hermitean and with eigenvalues appearing in pairsE,−E. In this section, we shall give the
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general solution of the Schrödinger equation associated to the Hamiltonian (4.5), for generic
choices ofψa,b(x). Later on, in section7, we shall relateψa,b(x) to the boundary functions
pcl(x) andxcl(p), of the semiclassical model, proving under certain assumptions that the energy
spectrum of the quantum model agrees with the semiclassical results derived in the previous
section. This justifiesa posteriorithe choice of the Hamiltonian (4.5).

The Schrödinger equation for an eigenstateψE(x) with energyE of the Hamiltonian (4.5)
is given by the integro–differential equation

−i

(
x

d

dx
+

1

2

)
ψE(x)+ iψa(x)

∫
∞

0
dy ψb(y)ψE(y)− iψb(x)

∫
∞

0
dy ψa(y)ψE(y)

= EψE(x). (4.6)

Let us introduce the variableq

q = logx, q ∈ R (4.7)

and the overlap integrals

A = 〈ψa|ψE〉 =

∫
∞

0
dx ψa(x)ψE(x),

(4.8)

B = 〈ψb|ψE〉 =

∫
∞

0
dx ψb(x)ψE(x),

which depend onE. Using these definitions equation (4.6) becomes

−i

(
d

dq
+

1

2

)
ψE(q)+ i(Bψa(q)− Aψb(q))= EψE(q). (4.9)

The general solution of this equation is given by

ψE(q)= e−(1/2−iE)q

[
C0 +

∫ q

−∞

dq′ e(1/2−iE)q′

(Bψa(q
′)− Aψb(q

′))

]
, (4.10)

whereC0 is an integration constant. It is convenient to define the functions

a(q)= eq/2ψa(q), ψa(x)=
a(x)
√

x
,

(4.11)

b(q)= eq/2ψb(q), ψb(x)=
b(x)
√

x

so that

ψE(q)= e−(1/2−iE)q

[
C0 +

∫ q

−∞

dq′e−iEq′

(Ba(q′)− Ab(q′))

]
. (4.12)

An alternative way to express (4.12) is

ψE(q)= e−(1/2−iE)q

[
C∞ −

∫
∞

q
dq′e−iEq′

(Ba(q′)− Ab(q′))

]
, (4.13)

whereC∞ is related toC0 by

C∞ = C0 + Bâ(−E)− Ab̂(−E), (4.14)
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where

f̂ (E)=

∫
∞

−∞

dq eiEq f (q), f = a,b. (4.15)

We shall assume thata(q) andb(q) satisfy

lim
q→−∞

∫ q

−∞

dq′ e−iEq′

f (q′)= 0, f = a,b,

(4.16)

lim
q→∞

∫
∞

q
dq′ e−iEq′

f (q′)= 0, f = a,b,

which implies that the asymptotic behaviour ofψE(x) is dominated byC0 andC∞, i.e.

lim
x→0

ψE(x)=
C0

x1/2−iE
, lim

x→∞
ψE(x)=

C∞

x1/2−iE
. (4.17)

Plugging (4.12) into (4.8) yields the relation between the constantsA, B andC0,(
1 + Sa,b −Sa,a

Sb,b 1− Sb,a

) (
A
B

)
= C0

(
â(E)
b̂(E)

)
, (4.18)

where the functionsSf,g(E) with f, g = a,b are defined by2

Sf,g(E)=

∫
∞

−∞

dq eiEq f (q)
∫ q

−∞

dq′ e−iEq′

g(q′). (4.19)

Similarly, introducing (4.13) into (4.8) yields(
1− S̃a,b S̃a,a

−S̃b,b 1 + S̃b,a

) (
A
B

)
= C∞

(
â(E)
b̂(E)

)
, (4.20)

where

S̃f,g(E)=

∫
∞

−∞

dq eiEq f (q)
∫

∞

q
dq′ e−iEq′

g(q′). (4.21)

This function is related toSf,g in two ways,

S̃f,g(E)= −Sf,g(E)+ f̂ (E) ĝ(−E), (4.22)

S̃f,g(E)= Sg, f (−E). (4.23)

To derive these equations one makes a change of order in the integration. Combining (4.22)
and (4.23) one obtains theshufflerelation

Sf,g(E)+ Sg, f (−E)= f̂ (E) ĝ(−E). (4.24)

The terminology is borrowed from the theory of multiple zeta functions where there is a similar
relation between the two variable Euler–Zagier zeta functionζ(s1, s2), and the Riemann zeta
functionζ(s) [26, 27].

The solutions of the equations (4.18) and (4.20) depend on the determinant of the
associated 2× 2 matrices given by

F(E)= 1 + Sa,b − Sb,a + Sa,aSb,b − Sa,bSb,a,

F̃(E)= 1− S̃a,b + S̃b,a + S̃a,aS̃b,b − S̃a,bS̃b,a,
(4.25)

2 TheSf,g(z) differs in a sign respect to the one considered [19, 20].
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which are related by (4.23)

F̃(E)= F(−E). (4.26)

Moreover, sincea(x) andb(x) are real functions one has

S∗

f,g(E)= Sf,g(−E∗), (4.27)

which in turn implies

F∗(E)= F(−E∗). (4.28)

After these observations, we can return to the solution of (4.18) and (4.20). We shall distinguish
two cases: (1)F(E) 6= 0 and (2)F(E)= 0, whereE is real since it is an eigenvalue of the
Hamiltonian (4.5).

Case 1: F(E) 6= 0
Equation (4.28) implies thatF(−E) 6= 0 and thereforeA and B can be expressed in two
different ways,

A =
C0

F(E)
[
(1− Sb,a) â(E)+ Sa,a b̂(E)

]
=

C∞

F(−E)

[
(1 + S̃b,a) â(E)− S̃a,a b̂(E)

]
, (4.29)

B =
C0

F(E)
[
− Sb,b â(E)+ (1 + Sa,b) b̂(E)

]
=

C∞

F(−E)

[
S̃b,b â(E)+ (1− S̃a,b) b̂(E)

]
. (4.30)

Now using equation (4.22), these equations reduce to

C0

C∞

=
F(E)
F(−E)

, (4.31)

which by equation (4.28) is a pure phase forE real. Hence, up to an overall factor, the integration
constants for this solution can be chosen as

C0 = F(E),

C∞ = F(−E),

A = (1− Sb,a) â(E)+ Sa,a b̂(E),

B = −Sb,b â(E)+ (1 + Sa,b) b̂(E).

(4.32)

Since the constantsC0 andC∞ do not vanish, the wavefunction is non normalizable near the
origin and infinity (recall equation (4.17)) and therefore they correspond to scattering states. Of
course they will be normalizable in the distributional sense.

Case 2: F(E)= 0
The integration constants can be chosen as

C0 = 0,

C∞ = 0,

A = Sa,a,

B = (1 + Sa,b),

(4.33)

which solves equations (4.18) and (4.20). SinceC0 = C∞ = 0, the leading term of the behaviour
of ψE(x) vanish near the origin and infinity and under appropiate conditions onψa,b, the state

New Journal of Physics 10 (2008) 033016 (http://www.njp.org/)

http://www.njp.org/


13

Bound states Scattering states

Figure 3. Pictorial representation of the spectrum of the model. The bound states
are the points whereF(E)= 0, which are embedded in a continuum of scattering
states.

ψE will be normalizable corresponding to a bound state. In the appendix, we compute the norm
of these states.

Hence, the generic spectrum of the Hamiltonian (4.5) consists of a continuum covering
the whole real line with, eventually, some isolated bound states embedded in it, whenever
F(E)= 0. This structure also arises in the Hamiltonian studied in [19]. The functionF(E)
plays the role of the Jost function since its zeros gives the position of the bound states and its
phase gives the scattering phase shift according to equation (4.31).

Before we continue with the general formalism it is worth studying a simple case which
illustrates the results obtained so far.

4.1. An example: a quantum trap

Let us start with the classical version of a trap where a particle is restricted to the region
xb < x < xa. The semiclassical number of states is given by the area formula (2.3),

n =
A

2π
=

∫ xa

xb

dx

2π

E

x
=

E

2π
log

xa

xb
, (4.34)

which yields the eigenenergies

En =
2πn

log(xa/xb)
, n ∈ N. (4.35)

The quantum version of this model is realized by two boundary statesψa,b(x) proportional to
delta functions, i.e.

ψa(x)= a0x1/2
a δ(x − xa), ψb(x)= b0x1/2

b δ(x − xb). (4.36)

The associated potentialsa(q) andb(q) are

a(q)= a0δ(q − qa), b(q)= b0δ(q − qb),

qa = logxa, qb = logxb.
(4.37)

The various quantities defined above are readily computed obtaining

â = a0e
iEqa, b̂ = b0e

iEqb,

Sa,a =
a2

0

2
, Sb,b =

b2
0

2
, (4.38)

Sa,b = a0b0e
iEqa,b, Sb,a = 0,
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whereqa,b = qa − qb = log(xa/xb). Plugging these equations into (4.25) yields

F(E)= 1 +

(
a0b0

2

)2

+ a0b0 eiEqa,b. (4.39)

For generic values ofa0,b0, the Jost function (4.39) never vanishes obtaining a spectrum which
is continuous. However,F(E) vanishes provided the following condition holds

ε ≡
a0b0

2
= ±1 H⇒ F(E)= 2(1 +εeiEqa,b), (4.40)

in which cases the spectrum contains bound states embbeded in the continuum with energies

if ε = 1 H⇒ En =
2π(n + 1/2)

qa,b
n ∈ N,

if ε = −1 H⇒ En =
2πn

qa,b
n ∈ N

(4.41)

that agree with the semiclassical energies (4.35) for n � 1. The un-normalized wavefunction of
the bound states, i.e.F(E)= 0, can be computed from equation (4.12)

ψE(x)=
1

x1/2−iE

{
1, xb < x < xa,

0, x < xb or x > xa,
(4.42)

which shows that they are confined to the region(xb, xa). The wavefunctions whenF(E) 6= 0
can be similarly found obtaining

ψE(x)=
1

x1/2−iE


F(E), 0< x < xb,

1−

(
a0b0

2

)2

, xb < x < xa,

F(−E), xa < x <∞.

(4.43)

Hence if (4.40) holds, these wavefunctions vanish in the region(xb, xa) which contains the
trapped particles (4.42). In this example, the mechanism responsible for the existence of bound
states is the transport of the particles from the positionxa to the positionxb. At the quantum level
the confinement requires the fine tuning of the couplings (see equation (4.40)) which introduces
periodic or antiperiodic boundary conditions depending on the sign ofε. When |ε| 6= 1 the
particle can escape the trap and the bound states become resonances.

5. Analyticity properties of F (E)

As in ordinary quantum mechanics, the Jost functionF(E) satisfies certain analyticity
properties reflecting the causal structure of the dynamics. In our case, these properties follow
from those of the functionSf,g (equation (4.19)) and the definition (4.25).

Indeed, let us expressSf,g(E) in terms of the Fourier transforms of the functionsf, g. First,
we replaceg(q) by its inverse Fourier transform

g(q′)=

∫
∞

−∞

dE′

2π
eiEq′

ĝ(−E′) (5.1)

back into equation (4.19), obtaining

Sf,g(E)=

∫
∞

−∞

dE′

2π
ĝ(−E′)

∫
∞

−∞

dq eiEq f (q)
∫ q

−∞

dq′ ei(E′
−E)q′

. (5.2)
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p

xb

x p = E

xa

x

Figure 4. Semiclassical picture of the model represented by the potential (4.37).

The last integral is given by the distribution∫ q

−∞

dq′ ei(E′
−E)q′

= eiq(E′
−E)

[
πδ(E′

− E)+
1

i
P

1

E′ − E

]
, (5.3)

where P denotes the Cauchy principal part. Plugging (5.3) into (5.2) and using the Fourier
transform of f gives,

Sf,g(E)=
1

2

[
f̂ (E) ĝ(−E)+ P

∫
∞

−∞

dE′

π i

f̂ (E′) ĝ(−E′)

E′ − E

]
. (5.4)

Alternatively, one can write (5.4) as

Sf,g(E)=

∫
∞

−∞

dE′

2π i

f̂ (E′) ĝ(−E′)

E′ − E − iε
, (5.5)

with ε > 0 an infinitesimal. Equation (5.5) shows that the poles ofSf,g(E) are located in the
lower half of the complex energy plane. Thus for well behave functionsf̂ , ĝ, the function
Sf,g(E) will be analytic in the complex upper-half plane. These properties also apply toF(E)
which is the product ofSf,g functions with f, g = a,b. Another important property of the Jost
functionF(E) is that its zeros lie either on the real axis or below it, i.e.

if F(E)= 0 H⇒ Im E 6 0. (5.6)

The proof of this equation is similar to the one done in [19], being convenient to regularize the
intervalx ∈ (0,∞) as(N−1, N) with N → ∞.

In the appendix, we use the results obtained in this section to compute the norm of the
eigenstates.
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6. The quantum version of the BK model

Let us consider the BK constraintsx > lx and|p|> l p. It is rather natural to associate constraint
x > lx with the wavefunction

ψb(x)= b0 l 1/2
x δ(x − lx), (6.1)

which is localized at the boundaryx = lx. The factorl 1/2
x gives the correct dimensionality to

ψb(x), with b0 a dimensionless parameter. On the other hand the constraint|p|> l p admits two
possible quantum versions,{

ψ+
a (x)

ψ−

a (x)
= 2a0

(
l p

2π

)1/2 {
cos(l px),
sin(l px).

(6.2)

Due to the fact thatψa has to be real, one cannot choose a pure plane wave eil px. The boundary
wavefunctions (6.1) and (6.2) are the cosine and sine Fourier transform of each other, namely{

ψ+
a (x)

ψ−

a (x)
=

2a0

b0

(
l p

2π lx

)1/2 ∫
∞

0
dy ψb(y)

{
cos(l pxy/ lx),

sin(l pxy/ lx).
(6.3)

Indeed, extending the domain ofψb(x) according to the parity ofψη
a (η = ±) one gets

ψb(−x)= ηψb(x) → ψη
a (x)=

a0

b0

(
l p

2π lx

)1/2

ei(π/4)(η−1)ψ̂b

(
l px

lx

)
, (6.4)

which are the quantum analogue of the classical equations (3.6). Later on, we shall consider
more general wavefunctionsψa,b to account for the fluctuations in the Riemann formula,
imposing again equation (6.3). The relation (6.3) betweenψ±

a andψb must imply a close link
between their Mellin transformŝa±(E) andb̂(E). To derive it, let us write

â±(E)=

∫
∞

0
x−1/2+iE ψ±

a (x)=
2a0

b0

(
l p

2π lx

)1/2 ∫
∞

0
dx x−1/2+iE

∫
∞

0
dy ψb(y)

{
cos(l pxy/ lx),

sin(l pxy/ lx).

(6.5)

The basic integrals one needs are∫
∞

0
dx x−1/2+iE

{
cos(px)
sin(px)

=
1

2

(
2π

|p|

)(1/2)+iE {
e2iθ+(E),

e2iθ−(E),
(6.6)

where

e2iθ±(E) =


π−iE 0(1/4 + iE/2)

0(1/4− iE/2)
, η = +,

π−iE 0(3/4 + iE/2)

0(3/4− iE/2)
, η = −.

(6.7)

The functionθ+(E) coincides with the phase of the Riemann zeta function (2.7), and more
generally of the even Dirichlet L-functions, whileθ−(E) is the phase factor of the odd Dirichlet
L-functions. These phases appear in the functional relation of even and odd L functions, and
they arise in our context from the two possible relations between the boundary functionsψ±

a
andψb. Plugging equation (6.6) into (6.5) yields

â±(E)=
a0

b0

(
2π lx

l p

)iE

e2iθ±(E)

∫
∞

0
dy ψb(y)y

−(1/2)−iE, (6.8)
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where the integral is nothing butb̂(−E), thus

â±(E)=
a0

b0

(
2π lx

l p

)iE

e2iθ±(E) b̂(−E). (6.9)

This important equation reflects the relation (6.3) which in turn is the quantum version of the
xp symmetry between boundaries. In the BK case, the Mellin transforms of the associated
wavefunctions (6.1) and (6.2) are

â±(E)= a0

(
2π

l p

)iE

e2iθ±(E), b̂(E)= b0 l iE
x , (6.10)

which are pure phases, up to overall constants. TheSf,g functions can be readily computed using
equation (5.4). To do so, we first consider the products

â±(E)â±(−E)= a2
0,

b̂(E)b̂(−E)= b2
0,

â±(E)b̂(−E)= a0b0e2iθ±(E),

b̂(E)â±(−E)= a0b0e−2iθ±(E),

(6.11)

where we usedlxl p = 2π and thatθ±(−E)= −θ±(E). The diagonal terms ofSf,g are given
simply by

Sa±,a±
(E)=

a2
0

2
, Sb,b(E)=

b2
0

2
, (6.12)

since the Hilbert transform of a constant is zero, i.e.

P
∫

∞

−∞

dt

π i

1

t − E
= 0, E ∈ R. (6.13)

The computation ofSa±,b andSb,a±
uses the analytic properties of e2iθ±(E). Let us focus on the

case of e2iθ+(E) = e2iθ(E). This function converges rapidly to zero as|E| → ∞ in the upper half
plane, and it has poles atEn = i(2n + 1/2) (n = 0,1, . . .) where it behaves like

e2iθ(E)
∼
(−1)n2(2π)2n

(2n)!

1

2n + 1/2 + iE
. (6.14)

We can split e2iθ(E) into the sum

e2iθ(E)
=�+(E)+�−(E), �−(E)=

∞∑
n=0

(−1)n 2(2π)2n

(2n)!

1

2n + 1/2 + iE
, (6.15)

where�+(E) is analytic in the upper half plane and goes to zero at +i∞, while �−(E) has
poles in the upper half plane and behaves as 1/E at infinity. The function�−(E) can also be
written as

�−(E)= 2
∫ 1

0
dx x−1/2+iE cos(2πx)=

4

1 + 2iE
1F2

(
1

4
+ i

E

2
,

1

2
,

5

4
+ i

E

2
,−π2

)
, (6.16)

where1F2 is a hypergeometric function of the type (1,2). From the analyticity properties of�±

one gets immediately their Hilbert transform

P
∫

∞

−∞

dt

π i

�±(t)

t − E
= ±�±(E), E ∈ R. (6.17)
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HenceSa+,b ≡ Sa,b, as given by equation (5.4), becomes

Sa,b(E)=
a0b0

2

[
e2iθ(E) + P

∫
∞

−∞

dt

π i

e2iθ(t)

t − E

]
=

a0b0

2

[
�+(E)+�−(E)+�+(E)−�−(E)

]
= a0b0 �+(E). (6.18)

Similarly one finds

Sb,a(E)= a0b0 �−(−E). (6.19)

Notice that both functions are analytic in the upper half plane. The Jost function finally reads

F(E)= 1 +a0b0(�+(E)−�−(−E))+

(
a0b0

2

)2

− (a0b0)
2�+(E)�−(−E). (6.20)

In the asymptotic limit|E| � 1

�−(E)∼
1

E
→�+(E)= e2iθ(E) + O

(
1

E

)
, (6.21)

which implies

F(E)= 1 +a0b0 e2iθ(E) +

(
a0b0

2

)2

+ O

(
1

E

)
. (6.22)

This Jost function has zeros on the real axis, up to order 1/E, provided

ε =
a0b0

2
= ±1 H⇒ F(E)= 2(1 +εe2iθ(E))+ O

(
1

E

)
. (6.23)

The choiceε = −1 reproduces the smooth part of the Riemann formula (2.6) since,

ε = −1 H⇒ 1− e2iθ(E)
= 1− e2π i〈N (E)〉

= 0, (6.24)

whereE is the average position of the zeros. On the other hand the choiceε = 1 leads to

ε = 1 H⇒ 1 + e2iθ(E)
= 0 H⇒ cosθ(E)= 0 (6.25)

so that the number of zeros in the interval(0, E) is given by

Nsm(E)=
θ(E)

π
+

3

2
, (6.26)

which gives a better numerical approximation than the term〈N (E)〉 that appears in the exact
Riemann formula (2.6) (see also figure2). In the case of the sine boundary function (6.2) one
similarly obtains the smooth part of the zeros of the odd Dirichlet L-functions.

In summary, we have shown that the semiclassical BK boundary conditions have a
quantum counterpart in terms of the boundary wavefunctionsψa,b, and that the average
Riemann zeros become asymptotically bound states of the model or more appropiately
resonances.

New Journal of Physics 10 (2008) 033016 (http://www.njp.org/)

http://www.njp.org/


19

7. The quantum model of the Riemann zeros

In section3, we showed how to incorporate the fluctuations of the energy levels in the heuristic
xp model by means of the functionspcl(x) and xcl(p) which define the boundaries of the
allowed phase space. These functions are given by equation (3.15) in terms of the density of
the fluctuation part of the energy levels. The relation between the wavefunctionsψa andψb and
the boundary wavefunctionspcl(x) andxcl(p) is given by the following conditions:(

log
| p̂|

l p
+πn′

fl(H0)

)
|ψa〉 = 0, (7.1)

(
log

x̂

lx
+πn′

fl(H0)

)
|ψb〉 = 0, (7.2)

wheren′

fl(E)= dnfl(E)/dE andH0 is the non interacting Hamiltonian (4.1). The hat overx and
p stress the fact that they are operators. To solve these equations let us write them as

(log | p̂| +λp +πn′

fl(H0))|ψa〉 = 0, (7.3)

(log x̂ +λx +πn′

fl(H0))|ψb〉 = 0, (7.4)

λp = − log l p, λx = − log lx. (7.5)

It is convenient to expand the states|ψa,b〉 in the basis (4.3)

|ψa,b〉 =

∫
∞

−∞

dEψa,b(E)|φE〉, 〈x|φE〉 =
1

√
2π

1

x1/2−iE
. (7.6)

Let us first consider equation (7.4) which in the basis (7.6) becomes∫
∞

−∞

dE′
〈φE| log x̂|φE′〉ψb(E

′)+ (λx +πn′

fl(E))ψb(E)= 0. (7.7)

The matrix elements of the operator logx̂ can be readily computed,

〈φE| log x̂|φE′〉 = −iδ′(E′
− E), (7.8)

which substituted into (7.7) and upon integration yields

i
dψb(E)

dE
+ (λx +πn′

fl(E))ψb(E)= 0. (7.9)

The solution of (7.9) is simply

ψb(E)= ψb,0 ei(λx E+πnfl(E)), (7.10)

whereψb,0 is an integration constant. Thex-space representation ofψb follows from (7.10)
and (7.6)

ψb(x)=

∫
∞

−∞

dEψb(E)φE(x)= ψb,0

∫
∞

−∞

dE
√

2π
ei(λx E+πnfl(E))x−1/2+iE. (7.11)

Recalling thatψb(x)= b(x)/
√

x one gets

b(x)= ψb,0

∫
∞

−∞

dE
√

2π
ei(λx E+πnfl(E))xiE. (7.12)
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Observing thatb(x) is related to its Fourier transform̂b(E), as

b(x)=

∫
∞

−∞

dE

2π
b̂(E)x−iE, (7.13)

one finally obtains

b̂(E)=
√

2πψb,0e
−i(λx E+πnfl(E)), (7.14)

where we assumed thatnfl(E) is an odd function ofE. If nfl(E)= 0, equation (7.14)
reproduces (6.10), i.e.

nfl(E)= 0 H⇒ b̂(E)=
√

2πψb,0l
iE
x = b0l

iE
x . (7.15)

To simplify the notations we shall write (7.14) as

b̂(E)= b0l
iE
x e−iπnfl(E). (7.16)

Let us now solve the condition (7.3) for the wavefunctionψa. We first need to define the operator
log | p̂| acting in the Hilbert space expanded by the functionsφE(E ∈ R). In this respect it is
worth remembering that the operatorp̂ = −id/dx is self-adjoint in the real line(−∞,∞) and
in the finite intervals(a,b), but not in the half-line(0,∞) [28]. However, the operator̂p2

admits infinitely many self-adjoint extensions in the half-line provide the wavefunctions satisfy
the boundary condition

ψ ′(0)= κψ(0), (7.17)

where κ ∈ R∪ ∞. We shall confine ourselves to the cases whereκ = 0 and ∞, which
correspond to the von Neumann and Dirichlet BCs, respectively,

κ = 0 → ψ ′(0)= 0,
(7.18)

κ = ∞ → ψ(0)= 0.

The corresponding eigenstates of the operatorp̂2 with eigenvaluesp2 read{
χ+

p

χ−

p
=

√
2

π

{
cos(px) (p> 0),
sin(px) (p> 0).

(7.19)

These bases are complete in the space of functions defined in(x > 0), i.e.∫
∞

0
dp(χηp(x))

∗χηp(x
′)= δ(x − x′), x, x′ > 0, η = ±. (7.20)

The operator log| p̂| will be defined as1
2 log p̂2, and therefore admits the same self-adjoint

extensions aŝp2. The analogue of equation (7.7) reads now∫
∞

−∞

dE′
〈φE| log | p̂||φE′〉ψa(E

′)+ (λp +πn′

fl(E))ψa(E)= 0. (7.21)

The matrix elements of log| p̂| can be computed introducing the resolution of the identity in the
basis (7.19),

〈φE| log | p̂||φE′〉 =

∫
∞

0
dp log p〈φE|χηp〉〈χ

η
p|φE′〉, (7.22)
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where the overlap of the eigenstates ofp̂2 andH0 are

〈χ±

p |φE〉 =

∫
∞

0

dx

π
x−(1/2)+iE

{
cos(px),
sin(px).

(7.23)

These integrals were already computed in equation (6.6), and the result is

〈χ±

p |φE〉 =
(2π)−1/2+iE

p1/2+iE
e2iθ±(E). (7.24)

Plugging this equation into (7.22), and performing the integral gives

〈φE| log | p̂||φE′〉 = iδ′(E′
− E)(2π)i(E

′
−E)e2i(θη(E′)−θη(E)), (7.25)

which introduced into (7.21) yields a differential equation whose solution is

ψaη(E)= ψa,0(2π)
−iEe−i(λpE+πnfl(E)+2θη(E)). (7.26)

The functionψa(x) reads

ψaη(x)=

∫
∞

−∞

dEψaη(E)φE(x)= ψa,0

∫
∞

−∞

dE
√

2π
(2π)−iEe−i(λpE+πnfl(E)+2θη(E))x−1/2+iE, (7.27)

while

aη(x)= ψa,0

∫
∞

−∞

dE
√

2π
(2π)−iEe−i(λpE+πnfl(E)+2θη(E))xiE, (7.28)

whose Fourier transform is

âη(E)= ψa,0(2π)
1/2+iEei(λpE+πnfl(E)+2θη(E)). (7.29)

If there are no fluctuations, equation (7.29) reduces to

nfl(E)= 0 H⇒ âη(E)=
√

2πψa,0

(
2π

l p

)iE

e2iθη(E), (7.30)

which coincides with equation (6.10). To simplify notations we shall write (7.29) as

âη(E)= a0

(
2π

l p

)iE

ei(πnfl(E)+2θη(E)). (7.31)

The two solutions (7.16) and (7.31) satisfy the duality relation (6.9) and hence the wavefunctions
ψa±

(x) is the cosine or sine Fourier transform ofψb(x) (see equation (6.3)).
Having found the boundary wavefunctions for generic fluctuations we turn into the

computation of the corresponding Jost function. The basic products of theâ and b̂ functions
needed to find theSf,g functions are similar to equation (6.11),

â±(E)â±(−E)= a2
0,

b̂(E)b̂(−E)= b2
0,

â±(E)b̂(−E)= a0b0 e2i(θ±(E)+πnfl(E)),

b̂(E)â±(−E)= a0b0 e−2i(θ±(E)+πnfl(E)).

(7.32)

The diagonal terms ofSf,g are the same as in equation (6.12), i.e.

Sa±,a±
(E)=

a2
0

2
, Sb,b(E)=

b2
0

2
, (7.33)
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while the evaluation of the off-diagonal terms depends on the analytic properties of the function
e2π i n±(E) where

n±(E)≡
θ±(E)

π
+ nfl(E). (7.34)

This definition is strongly reminiscent of the Riemann formula (2.6), with n±(E) playing the
role ofNR(E), andnfl(E) that ofNfl(E). However, we must keep in mind thatNR(E) is a step
function while we expectn±(E) to be a continuous interpolating function between the zeros.
The value ofSa±,b is given by the integral

Sa±,b(E)=
a0b0

2

[
e2π in±(E) + P

∫
∞

−∞

dt

π i

e2π in±(t)

t − E

]
. (7.35)

We shall make the asumption that e2π in±(E) is an analytic function in the upper half plane which
goes to zero as|E| → ∞. In this case the Cauchy integral on the RHS of (7.35) is equal to
e2π in±(E) and one finds

Sa±,b(E)= a0b0 e2π in±(E). (7.36)

Similarly Sb,a±
vanishes so that the Jost function reduces to

F(E)= 1 +a0b0 e2π in±(E) +

(
a0b0

2

)2

(7.37)

and under the usual choice

ε =
a0b0

2
= ±1 H⇒ F(E)= 2(1 +εe2π in±(E)). (7.38)

Whennfl = 0 the results of the previous subsection showed thatε = 1 gives a better numerical
estimate to the smooth part of the zeros. In the following we shall also make that choice which
implies that the number of zeros ofF(E) in the interval(0, E) is

NQM(E)=Nsm(E)+ nfl(E)= n±(E)+ 3
2, (7.39)

where Nsm(E) was defined in (6.26) for the particular case of the zeta functionζ(s),
which corresponds ton+(E). Equation (7.39) agrees asymptotically with the semiclassical
formula (3.12), which confirms the ansatz made for the statesψa andψb.

7.1. The connection with the Riemann–Siegel formula

The next problem is to find the functionnfl(E), and thereforeNQM(E), which gives the exact
location of the Riemann zeros. Let us consider the case of the zeta function with the following
choices of parameters:

η = +, ε = 1, a0 = b0 =
√

2, lx = 1, l p = 2π (7.40)

which correspond to the potentials (recall (7.31) and (7.16))

â(t)= ei(2θ(t)+πnfl(t)) = ei(θ(t)+πn(t)),
(7.41)

b̂(t)= e−iπnfl(t)) = ei(θ(t)−πn(t)),
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where we skip a common factor
√

2 and denoten(E)≡ n+(E). These two functions are
interchanged under the transformation

â(t)→ e2iθ(t)â(−t)= b̂(t),
(7.42)

b̂(t)→ e2iθ(t)b̂(−t)= â(t),

so that their sum is left invariant,

â(t)+ b̂(t)→ e2iθ(t)(â(−t)+ b̂(−t))= â(t)+ b̂(t). (7.43)

The functional relation satisfied by the zeta function implies

ζ(1/2− it)→ e2iθ(t)ζ(1/2 + it)= ζ(1/2− it). (7.44)

which suggests to relatêa + b̂ andζ as

ζ(1/2− it)= ρ(t)(â(t)+ b̂(t)), (7.45)

whereρ(t) is a proportionally factor. Using equations (7.42) in (7.45) yields

ζ(1/2− it)= 2ρ(t)eiθ(t) cos(πn(t)). (7.46)

This formula can be compared with the parametrization of the zeta function in terms of the
Riemann–Siegel zeta functionZ(t) and its phaseθ(t),

ζ(1/2− it)= Z(t)eiθ(t), (7.47)

which leads to,

Z(t)= 2ρ(t) cos(πn(t)). (7.48)

This equation is rather interesting since it implies that the zeros of cos(πn(t)), which give the
bound states of the QM model, are also zeros ofZ(t), of course ifρ(t) does not have poles
at those values. Vice versa, the zeros ofZ(t) can be zeros either of cos(πn(t)), or of ρ(t),
or both. The latter possibility would be absent if the Rieman zeros are simple, as is expected
to be the case.

A first hint on the structure of the functionsρ(t) and cos(πn(t)) can be obtained using the
Riemann–Siegel formula forZ(t),

Z(t)= 2
ν(t)∑
n=1

n−1/2 cos(θ(t)− t logn)+ R(t), ν(t)=

[√
t

2π

]
, (7.49)

where [x] is the integer part ofx andR(t) is a remainder of ordert−1/4. Combining the last two
equations one finds

Z(t)= 2ρ(t) [cosθ(t) cos(πnfl(t))− sinθ(t) sin(πnfl(t))]

∼ 2

[
cosθ(t)

ν(t)∑
n=1

cos(t logn)

n1/2
+ sinθ(t)

ν(t)∑
n=1

sin(t logn)

n1/2

]
, (7.50)

which suggests the following identifications

ρ(t) cos(πnfl(t))∼

ν(t)∑
n=1

cos(t logn)

n1/2
,

(7.51)

ρ(t) sin(πnfl(t))∼ −

ν(t)∑
n=1

sin(t logn)

n1/2
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Figure 5. In black:NR(E), in red:NQM(E) in the interval (10, 40).

that can be combined into

f (t)≡ ρ(t)eiπnfl(t) ∼

ν(t)∑
n=1

1

n1/2+it
. (7.52)

The fluctuation functionnfl(t) is then given by the phase off (t), i.e.

nfl(t)=
1

π
Im log f (t). (7.53)

In figure 5, we plot the values ofNQM(t) that correspond to the approximate formula (7.52),
which shows an excellent agreement with the Riemann formula (2.6). This is expected from the
fact that the main term of the Riemann–Siegel formula already gives accurate results for the
lowest Riemann zeros. For higher zeros one has to compute more terms of the remainderR(t)
depending on the desired accuracy. Observe thatNQM(t) is a smooth function, except for some
jumps at higher values oft (not shown in figure5) due to the approximation made, unlikeNR(t),
which is a step function.

In figure 6, we plot the values of (7.53) together with those of the fluctuation part of the
Riemann formula (2.6), i.e.

Nfl(t)=
1

π
Im logζ

(
1
2 + it

)
. (7.54)

The jumps inNfl(t) correspond to the Riemann zeros, while those ofnfl(t) correspond, either to
jumps of the functionν(t) appearing in the Riemann Siegel formula (7.49), or to those points
where the curvef (t) cuts the negative real axis in the complex plane.

We gave in section2 a formal expression of equation (7.54) in terms of prime numbers,
equation (2.10), which resembles the fluctuation part (2.11) of a quantum chaotic system.
Equation (2.10) is based on the Euler product formula (2.9) which is not valid in the case
wheres = 1/2 + it , since Res> 1 for convergence of the infinite product. The Euler product
formula does not apply to the truncated sum (7.52), however we shall naively try to establish a
relationship. Let us denote bypn thenth-prime number, e.g.p1 = 2, p2 = 3, etc, and by5(x)
the number of primes less than or equal tox. The sum (7.52) involves all integers up toν(t),
which can be expressed as products of the firstµ(t) prime numbers where

µ(t)=5(ν(t)), pµ(t) = inf{p}< ν(t). (7.55)
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Figure 7. Left: in black: | f (E)|, in red:|ζE(1/2 + iE)| in the interval (50, 100).
Right: in black: Arg f (E), in red: ArgζE(1/2 + iE).

Using these functions we define a truncated Euler product as

ζE(1/2 + it)≡

µ(t)∏
n=1

1

1− p−1/2−it
n

. (7.56)

It is easy to see thatζE(1/2 + it) is not equal tof (t), for there are terms in (7.56) which do not
appear in (7.52), although all the terms appearing in the latter sum also appear in the former
product. The point is that a numerical comparison of these two functions shows a qualitative
agreement as depicted in figure7. Indeed, the minima and maxima of their absolute value are
located around the same points, and the same happens for the zeros of their arguments. The
conclusion we draw from these heuristic considerations is that the functionf (t) contains some
sort of information related to the prime numbers although not in the form of an Euler product
formula as is the case ofζE(1/2 + it). It would be interesting to investigate the consequences of
this result from the point of view of quantum chaos.

7.2. The BK formula of Z(t)

The main term of the Riemann–Siegel formula (7.49) is not analytic int due to the discontinuity
in the main sum. This problem was solved by Berry and Keating who found an alternative
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expression forZ(t) [29]. The formula is

Z(t)=

∞∑
n=1

(Tn(t)+ Tn(−t)), (7.57)

where

Tn(t)= T∗

n (−t)=
eiθ(t)

n1/2+it
βn(t),

(7.58)

βn(t)=
1

2π i

∫
C−

dz

z
e−z2K 2/(2|t |)ei[θ(z+t)−θ(t)−z logn]

and C− is an integration contour in the lower half plane with Im<−1/2 that avoids a cut
starting at the branch pointz = −t − i/2. The constantK in (7.58) can be chosen at will and
it is related to the number of terms of the RS formula that has been smoothed for large values
of t . Using equation (7.57) one can write the zeta function as

ζ(1/2− it)= e2iθ(t)
∞∑

n=1

βn(t)

n1/2+it
+

∞∑
n=1

βn(−t)

n1/2−it
, (7.59)

which can be compared with (7.45) obtaining

f (t)= ρ(t)eiπnfl(t) =

∞∑
n=1

βn(t)

n1/2+it
(7.60)

so that (7.59) can be written as

ζ(1/2− it)= e2iθ(t) f (t)+ f (−t). (7.61)

Equation (7.60) gives an exact expression off (t), which is, in fact, a smooth version of (7.52).
BK also found a series forZ(t) which improves the RS series. The first term of that series
corresponds to the following value of theβn(t) functions

β(0)n (t)=
1
2Erfc

(
ξ(n, t)

Q(K , t)

√
t/2

)
,

ξ(n, t)= logn − θ ′(t), Q2(K , t)= K 2
− itθ ′′(t),

(7.62)

where Erfc is the complementary error function. Using these formulae one can find a better
numerical evaluation of the functionsNQM(t) andnfl(t).

It is perhaps worth mentioning that equation (7.61), with the approximate value off (t)
given by (7.52), is a particular case of the so-called approximate functional relation due to
Hardy and Littlewood [1, 2]

ζ(s)=

∑
n6x

n−s +π s−1/20((1− s)/2)

0(s/2)

∑
n6y

n1−s + O(x−σ )+ O(|t |1/2−σ yσ−1), (7.63)

where s = σ + it , |t | = 2πxy, 0< σ < 1. Recalling that in our modelt is the energyE,
then equation|t | = 2πxy becomes the hyperbola|E| = xp with p = 2πy = l py so that the
sums in (7.63) run over the integer values of the positions and momenta in units oflx and
l p, respectively. Equation (7.63) also suggests that the case whereσ 6= 1/2 could be related
to the non hermitean HamiltonianH0 = (xp+ px)/2− i(σ − 1/2) whose right (resp. left)
eigenfunctions are given by 1/xσ−iE (resp. 1/x1−σ−iE).
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On more general grounds, we would like to mention two important points. Firstly, one still
needs to show that the functionn(t), defined in equation (7.34), is such that e2π in(t) is analytic
in the upper-half plane and that it goes to zero as|t | → ∞, so that the Jost function is indeed
given by equation (7.39), as we have assumed so far. Secondly, and related to the latter point,
the functionnfl(t) is well defined providedf (t) does not vanish fort real, in which case (7.61)
also reads

ζ(1/2− it)= f (−t)

(
1 + e2iθ(t) f (t)

f (−t)

)
= f (−t)F(t), (7.64)

which shows that our construction of a QM model of the Riemann zeros relies on the absence of
zeros of the functionf (t) on the critical line. These zeros were investigated by Bombieri long
ago in an attempt to improve the existing lower bounds for the number of Riemann zeros on the
critical line [30]. In this regard our results give further support to, but not proof of, the RH. As
suggested in [19, 20] that proof would follow if the zeta functionζ(1/2− it) can be realized
as the Jost function of a QM model of the sort discussed so far, due to its special analyticity
properties. Equation (7.64) gives a partial realization of this idea but the functionf (t) lacks a
physical interpretation so far. The latter approach is analogous to the ones proposed in the past
by several authors where the zeta function gives the scattering phase shift of some quantum
mechanical model, particularly on the line Res = 1 [31]–[39].

Another important question is: where are the prime numbers in our construction? As
suggested by the quantum chaos scenario, the prime numbers may well be classical objects
hidden in the quantum model, so the next question is: what is the classical limit of the
Hamiltonian? The free part is of course given byxp, but the interacting part is an antisymmetric
matrix with no obvious classical version. The existence of such a classical Hamiltonian may
help to answer theprime question but it may also lead to a real physical realization of the
model. Work along this direction is in progress [40].
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Appendix A. Wavefunctions and norms

In this appendix, we shall derive alternative expressions of the eigenfunctions of the model
and compute their norm. Let us start from equation (4.12) for the eigenfunctions of the
Hamiltonian (4.5),

ψE(q)= e−(1/2−iE)q

[
C0 +

∫ q

−∞

dq′e−iEq′

(Ba(q′)− Ab(q′))

]
. (A.1)

Replacinga(q) andb(q) by their Fourier transform, and using equation (5.3) one finds∫ q

−∞

dq′e−iEq′

a(q′)=
â(−E)

2
+ e−iq E

∫
∞

−∞

dω

2π i

eiqωâ(−ω)

ω− E
(A.2)
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and a similar expression for the integral ofb(q). All the singular integrals appearing in this
appendix must be understood in the Cauchy sense. Plugging the latter expressions into (A.1)
yields

ψE(q)= e−(1/2−iE)q

[
C0 + 1

2(Bâ(−E)− Ab̂(−E))+ e−iq E

∫
∞

−∞

dω

2π i
eiqω Bâ(−ω)− Ab̂(−ω)

ω− E

]
.

(A.3)

Using equations (4.14), (4.32) and (4.33), the first term in the rhs becomes

C0 + 1
2(Bâ(−E)− Ab̂(−E))=

C0+C∞

2 = ReF(E) (A.4)

so thatψ(x) is given by

ψE(x)=
ReF(E)
x1/2−iE

+
∫

∞

−∞

dω

2π i
x−1/2+iω B(E)â(−ω)− A(E)b̂(−ω)

ω− E
, (A.5)

whereA(E) andB(E) are given by the equations (4.32) and (4.33). The function (A.5) can also
be expanded in the basis (4.3) of eigenfunctions ofH0, i.e.

|ψE〉 =

∫
∞

−∞

dωψE(ω)|φω〉 (A.6)

namely

ψE(x)=

∫
∞

−∞

dωψE(ω)
x−1/2+iω

√
2π

. (A.7)

The result is

ψE(ω)=
√

2πδ(E −ω)ReF(E)+
1

√
2π i

B(E)â(−ω)− A(E)b̂(−ω)

ω− E
, (A.8)

which shows that the delocalized states, i.e.F(E) 6= 0, have to be normalized in the
distributional sense, while the localized states, i.e.F(Em)= 0, have a norm given by

〈ψEm|ψEm〉 =

∫
∞

−∞

dω

2π

|B(Em)â(−ω)− A(Em)b̂(−ω)|2

(ω− Em)2
. (A.9)

In the examples discussed throughout the paper the functionsâ(t), b̂(t) are phase factors, up to
overall constants. Moreover, if the functionâ(t)b̂(−t) is analytic in the upper half-plane and
vanishes when|t | → ∞,Ret > 0, then theS-functions and the associated Jost function take a
particular simple form if we allow for the existence of bound states,

Sa,a = Sb,b = 1, Sa,b = â(t)b̂(−t)Sb,a = 0 H⇒ F(t)= 2 + â(t)b̂(−t). (A.10)

The integration constantsA andB, corresponding to a bound state, can be chosen as

A(Em)= −B(Em)= −1 (A.11)

which differ with respect to (4.33) in an unimportant overall sign. The wavefunction (A.5) also
simplifies

ψEm(x)=

∫
∞

−∞

dω

2π i
x−1/2+iω â(−ω)+ b̂(−ω)

ω− Em
(A.12)
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and the scalar product of two bound state wavefunctions becomes

〈ψEm1
|ψEm2

〉 =

∫
∞

−∞

dω

2π

F(ω)+F(−ω)
(ω− Em1)(ω− Em2)

. (A.13)

The analiticity of the Jost functionF(E) in the upper-half plane implies the dispersion relation

F(E)= F∞ +
∫

∞

−∞

dω

π i

F(ω)
ω− Em

, (A.14)

whereF∞ is the value ofF(E) at E = +i∞. From this equation, and the fact thatF(Em1)=

F(Em2)= 0, one can show thatψEm1
andψEm1

are orthogonal. Furthermore, equation (A.14)
yields also a simple expression for the norm ofψEm

〈ψEm|ψEm〉 =

∫
∞

−∞

dω

π

ReF(ω)
(ω− Em)2

= −ImF ′(Em). (A.15)

Finally, writingF(E) as in equation (7.38), i.e.

F(E)= 2(1 +εe2π in(E)), (A.16)

wheren(E) is the number of states, up to a constant, one derives that the norm ofψEm is
proportional to the density of states atEm,

〈ψEm|ψEm〉 = 4πn′(Em). (A.17)

A.1. Wavefunctions associated with the smooth and exact Riemann zeros

The Mellin transforms of the boundary wavefunctions associated with the smooth Riemann
zeros were given in equation (6.10). Choosinglx = 1, l p = 2π anda0 = b0 =

√
2 we have

â(t)=
√

2e2iθ(t), b̂(t)= 1. (A.18)

The wavefunctions (A.12) in this case become,

ψEm(x)=

∫
∞

−∞

dω
√

2π i
x−1/2+iωe−2iθ(ω) + 1

ω− Em
. (A.19)

The integrals can be performed using the residue theorem obtaining

1
√

2
ψEm(x)=

H(x − 1)

x1/2−iEm
+

1

1/4− (iEm/2)1

F2

(
1

4
−

iEm

2
;

1

2
,

5

4
−

iEm

2
,−π2x2

)
, (A.20)

whereH(x − 1)= 1, if x > 1 and 0, if 0< x < 1. One can show that
√

xψEm → 0 asx → ∞,
if 1 + e2iθ(Em) = 0. In figureA.1, we plot the absolute values of (A.20) for those energies that
correspond to the three lowest Riemann zeros. Notice that the functions are very small in the
classical forbidden region 0< x < 1. The amplitude has a high frequency component common
to the three waves plus a low frequency one that depends on the level.
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Figure A.1. Plot of |ψEm| for the energiesEm = 14.5179, 20.654 and 25.4915,
corresponding to the lowest smooth Riemann zeros (see equation (A.20)). The
wavefunctions are normalized using equation (A.17).
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Figure A.2. Plot of |ψEm| for the energies Riemann zeros: 14.1347, 21.022
and 25.0109 evaluated with equation (A.21) for 3= 60. The wavefunctions are
normalized using equation (A.17).

The wavefunctions associated with the exact Riemann zeros can be computed from
equation (A.12) with â(t) and b̂(t) given by equation (7.41). We do not have an analytic
expression for this integral, however a numerical estimate can be obtained truncating
(A.12) as

ψEm(x)∼

∫ Em+3

Em−3

dω

2π i
x−1/2+iω â(−ω)+ b̂(−ω)

ω− Em
. (A.21)

In figure A.2, we plot the result for the lowest Riemann zeros. The wavefunctions have some
common features with those of figureA.1, but they also exhibit a random behaviour.
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