Chi Feng (chifeng@mit.edu)

June 26, 2015

Multivariate normal distribution

Evaluating the (log) density

A *d*-dimensional multivariate normal distribution has density

$$f(\boldsymbol{x};\boldsymbol{\mu},\boldsymbol{\Sigma}) = \frac{1}{\sqrt{(2\pi)^d \det(\boldsymbol{\Sigma})}} \exp\left(-\frac{1}{2}(\boldsymbol{x}-\boldsymbol{\mu})^T \boldsymbol{\Sigma}^{-1}(\boldsymbol{x}-\boldsymbol{\mu})\right).$$

and log density

$$\log f(\boldsymbol{x};\boldsymbol{\mu},\boldsymbol{\Sigma}) = \underbrace{-\frac{1}{2}d\log(2\pi)}_{\text{constant}} -\frac{1}{2}\log[\det(\boldsymbol{\Sigma})] - \frac{1}{2}(\boldsymbol{x}-\boldsymbol{\mu})^T\boldsymbol{\Sigma}^{-1}(\boldsymbol{x}-\boldsymbol{\mu}).$$
(1)

Using the Cholesky decomposition $\Sigma = \mathbf{L}\mathbf{L}^T$ of the positive definite (semi-definite) covariance matrix, we can rewrite the determinant in (1) as

$$\det(\mathbf{\Sigma}) = \det(\mathbf{L}) \cdot \det(\mathbf{L}^T) = \det(\mathbf{L})^2,$$

and since **L** is lower-triangular, its determinant is just the product of its diagonal terms, so the log of the determinant can be written as a sum (ℓ_1 -norm) of logs

$$\log[\det(\mathbf{L})^2] = 2 \|\log[\operatorname{diag}(\mathbf{L})]\|_1 \implies \log[\det(\mathbf{\Sigma})] = 2 \|\log[\operatorname{diag}(\mathbf{L})]\|_1$$
(2)

The Cholesky factorization also leads to a Cholesky-like factorization of the inverse $\Sigma^{-1} = \mathbf{S}^T \mathbf{S}$ with the lower triangular matrix $\mathbf{S} = \mathbf{L}^{-1}$. This lets us rewrite the Σ^{-1} term as

$$(\boldsymbol{x} - \boldsymbol{\mu})^T \boldsymbol{\Sigma}^{-1} (\boldsymbol{x} - \boldsymbol{\mu}) = (\boldsymbol{x} - \boldsymbol{\mu})^T \mathbf{L}^{-T} \mathbf{L}^{-1} (\boldsymbol{x} - \boldsymbol{\mu})$$
$$= \| \mathbf{L}^{-1} (\boldsymbol{x} - \boldsymbol{\mu}) \|_2.$$
(3)

By combining (2) and (3), the log density in a more computationally efficient form

$$\log f(\boldsymbol{x};\boldsymbol{\mu},\boldsymbol{\Sigma}) = \text{constant} - \|\log[\text{diag}(\mathbf{L})]\|_1 - \frac{1}{2}\|\mathbf{L}^{-1}(\boldsymbol{x}-\boldsymbol{\mu})\|_2$$
(4)

where the triangular system $\mathbf{L}^{-1}(\boldsymbol{x}-\boldsymbol{\mu})$ can be solved efficiently using forward substitution, e.g., by using the dtrsv subroutine from Level 2 BLAS.

Sampling

We can also draw samples of a random variable $X \sim \mathcal{N}(\mu, \Sigma)$ according to

$$X = \mu + \mathbf{L}Z \tag{5}$$

where $\mathbf{Z} = (Z_1, \ldots, Z_d)$ is a *d*-dimensional random vector with Z_i being independent standard normal random variables.

Multivariate-t distribution

A d-dimensional multivariate-t distribution with ν degrees of freedom has density

$$f(\boldsymbol{x};\boldsymbol{\mu},\boldsymbol{\Sigma},\boldsymbol{\nu}) = \frac{\Gamma[(\boldsymbol{\nu}+d)/2]}{\Gamma(\boldsymbol{\nu}/2)\boldsymbol{\nu}^{d/2}\pi^{d/2}\det(\boldsymbol{\Sigma})^{1/2}[1+\frac{1}{\boldsymbol{\nu}}(\boldsymbol{x}-\boldsymbol{\mu})^T\boldsymbol{\Sigma}^{-1}(\boldsymbol{x}-\boldsymbol{\mu})]^{(\boldsymbol{\nu}+d)/2}}$$

and log density

$$\log f(\boldsymbol{x}; \boldsymbol{\mu}, \boldsymbol{\Sigma}, \nu) = \overbrace{\text{gammaln}[(\nu + d/2)] - \text{gammaln}(\nu/2) - \frac{d}{2}\log\nu - \frac{d}{2}\log\pi}^{\text{constant}} - \frac{1}{2}\log[\det(\boldsymbol{\Sigma})] - \frac{\nu+d}{2}\log[1 + \frac{1}{\nu}(\boldsymbol{x} - \boldsymbol{\mu})^T\boldsymbol{\Sigma}^{-1}(\boldsymbol{x} - \boldsymbol{\mu})]$$

Using the Cholesky decomposition $\Sigma = \mathbf{L}\mathbf{L}^T$, we can rewrite the log density as

$$\log f(\boldsymbol{x}; \boldsymbol{\mu}, \boldsymbol{\Sigma}, \boldsymbol{\nu}) = \text{constant} - \|\log[\text{diag}(\mathbf{L})]\|_1 - \frac{\nu+d}{2}\log \ln\left[\frac{1}{\nu}\|\mathbf{L}^{-1}(\boldsymbol{x}-\boldsymbol{\mu})\|_2\right]$$
(6)

where $\log_{1p}(\cdot)$ is a function found in most numerical libraries that uses the Taylor expansion

$$\log(1+p) = p - \frac{p^2}{2} + \mathcal{O}(p^3)$$

for very small p to avoid numerical underflow.

Sampling

We can draw samples $X \sim t_{\nu}(\mu, \Sigma)$ similarly to (5), but with an inverse χ^2 scaling factor

$$\boldsymbol{X} \sim \boldsymbol{\mu} + \sqrt{\nu/Y} \, \mathbf{L} \, \boldsymbol{Z} \tag{7}$$

where Y is a χ^2 -distributed random variable with ν degrees of freedom and $\mathbf{Z} = (Z_1, \ldots, Z_d)$ is a *d*-dimensional random vector with Z_i being independent standard normal random variables.

Note: The matrix Σ is *not* the covariance matrix of the multivariate-t distribution. Instead, Σ is the "scale matrix." The actual covariance is $\frac{\nu}{\nu-2}\Sigma$ if $\nu > 2$, otherwise it is undefined.