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Multivariate normal distribution

Evaluating the (log) density

A d-dimensional multivariate normal distribution has density

f(x;µ,Σ) =
1√

(2π)d det(Σ)
exp

(
−1

2
(x− µ)TΣ−1(x− µ)

)
.

and log density

log f(x;µ,Σ) = −1
2d log(2π)︸ ︷︷ ︸
constant

−1
2 log[det(Σ)]− 1

2(x− µ)TΣ−1(x− µ). (1)

Using the Cholesky decomposition Σ = LLT of the positive definite (semi-definite) covariance
matrix, we can rewrite the determinant in (1) as

det(Σ) = det(L) · det(LT ) = det(L)2,

and since L is lower-triangular, its determinant is just the product of its diagonal terms, so the log
of the determinant can be written as a sum (`1-norm) of logs

log[det(L)2] = 2‖ log[diag(L)]‖1 =⇒ log[det(Σ)] = 2‖ log[diag(L)]‖1 (2)

The Cholesky factorization also leads to a Cholesky-like factorization of the inverse Σ−1 = STS
with the lower triangular matrix S = L−1. This lets us rewrite the Σ−1 term as

(x− µ)TΣ−1(x− µ) = (x− µ)TL−TL−1(x− µ)

= ‖L−1(x− µ)‖2. (3)

By combining (2) and (3), the log density in a more computationally efficient form

log f(x;µ,Σ) = constant− ‖ log[diag(L)]‖1 − 1
2‖L

−1(x− µ)‖2 (4)

where the triangular system L−1(x − µ) can be solved efficiently using forward substitution, e.g.,
by using the dtrsv subroutine from Level 2 BLAS.

Sampling

We can also draw samples of a random variable X ∼ N (µ,Σ) according to

X = µ+ LZ (5)

where Z = (Z1, . . . , Zd) is a d-dimensional random vector with Zi being independent standard
normal random variables.



Multivariate-t distribution

A d-dimensional multivariate-t distribution with ν degrees of freedom has density

f(x;µ,Σ, ν) =
Γ[(ν + d)/2]

Γ(ν/2)νd/2πd/2 det(Σ)1/2[1 + 1
ν (x− µ)TΣ−1(x− µ)](ν+d)/2

and log density

log f(x;µ,Σ, ν) =

constant︷ ︸︸ ︷
gammaln[(ν + d/2)]− gammaln(ν/2)− d

2 log ν − d
2 log π

− 1
2 log[det(Σ)]− ν+d

2 log
[
1 + 1

ν (x− µ)TΣ−1(x− µ)
]

Using the Cholesky decomposition Σ = LLT , we can rewrite the log density as

log f(x;µ,Σ, ν) = constant− ‖ log[diag(L)]‖1 − ν+d
2 log1p

[
1
ν ‖L

−1(x− µ)‖2
]

(6)

where log1p( · ) is a function found in most numerical libraries that uses the Taylor expansion

log(1 + p) = p− p2

2
+O(p3)

for very small p to avoid numerical underflow.

Sampling

We can draw samples X ∼ tν(µ,Σ) similarly to (5), but with an inverse χ2 scaling factor

X ∼ µ+
√
ν/Y LZ (7)

where Y is a χ2-distributed random variable with ν degrees of freedom and Z = (Z1, . . . , Zd) is a
d-dimensional random vector with Zi being independent standard normal random variables.

Note: The matrix Σ is not the covariance matrix of the multivariate-t distribution. Instead, Σ
is the “scale matrix.” The actual covariance is ν

ν−2Σ if ν > 2, otherwise it is undefined.


