10/21/2018 University of Illinois at Urbana-Champaign IE598 - Machine Learning in Finance

IE598 - MLF FINAL PROJECT

FALL 2018

by Joseph Loss, Yuchen Duan, Ruozhong Yang, Fengkai Xu, and Biao Feng

TABLE OF CONTENTS

Contents

Chapter 1: Moody's Bond Rating Classifier				
Exploratory Data Analysis	1			
Preprocessing & Feature Extraction/Selection	2			
Model Fitting & Evaluation (Binary & multiclass)	3			
Hyperparameter Tuning	3			
Ensembling	4			
Conclusions	4			
Chapter 2: USPHCI Economic Activity Forecast	5			
Exploratory Data Analysis	5			
Preprocessing & Feature Extraction/Selection	6			
Model Fitting & Evaluation	8			
Hyperparameter Tuning	8			
Ensembling	10			
Conclusions	10			
Appendix	11			
Github Repository	11			

Chapter 1: Moody's Bond Rating Classifier

EXPLORATORY DATA ANALYSIS

Here is what our data looks like:

RangeIndex: 1700 entries, 0	to 10	599	
Data columns (total 29 colum	nns):		
Sales/Revenues	1700	non-null	float64
Gross Margin	1700	non-null	float64
EBITDA	1700	non-null	float64
EBITDA Margin	1700	non-null	float64
Net Income Before Extras	1700	non-null	float64
Total Debt	1700	non-null	float64
Net Debt	1700	non-null	float64
LT Debt	1700	non-null	float64
ST Debt	1700	non-null	float64
Cash	1700	non-null	float64
Free Cash Flow	1700	non-null	float64
Total Debt/EBITDA	1700	non-null	float64
Net Debt/EBITDA	1700	non-null	float64
Total MV	1700	non-null	float64
Total Debt/MV	1700	non-null	float64
Net Debt/MV	1700	non-null	float64
CFO/Debt	1700	non-null	float64
CFO	1700	non-null	float64
Interest Coverage	1700	non-null	float64
Total Liquidity	1700	non-null	float64
Current Liquidity	1700	non-null	float64
Current Liabilities	1700	non-null	float64
EPS Before Extras	1700	non-null	float64
PE	1700	non-null	float64
ROA	1700	non-null	float64
ROE	1700	non-null	float64
InvGrd	1700	non-null	int64
Rating	1700	non-null	object
Class	1700	non-null	int64
<pre>dtypes: float64(26), int64(2</pre>	2), oł	oject(1)	
memory usage: 385.2+ KB			

Also, we have a correlation matrix:

PREPROCESSING & FEATURE EXTRACTION/SELECTION

The preprocessing part combine some steps that need to be done before we try to fit our model:

- 1. Split the test and train database via train_test_split (with test_size = 0.1 and random_state = 42)
- 2. Standardize features via StandardScaler for better model performance.

We also calculate the importance of each feature and select 13 of them for our models.

MODEL FITTING & EVALUATION (BINARY & MULTICLASS)

1. Model 1

The first model is the KNN model.

2. Model 2

The second model is the Random Forest model.

3. Model 3

The third model is the Decision Tree model.

4. Model 4

The forth model is the Logistic Regression model.

We will discuss those models in the hyperparameter tuning and ensemble parts.

HYPERPARAMETER TUNING

We deal with different parameters via GridSearchCV function, the range of each model's parameter is from 1 to 100. Here is the best result for each model:

bin	ary	mutic	percents	
KNN	0.8	KNN	0.458823529	0.573529
RandomForest	0.858823529	RandomForest	0.676470588	0.787671
Decision tree	0.794117647	Decision tree	0.447058824	0.562963
Logistic Regression	0.741176471	Logistic Regression	0.247058824	0.333333

From the table, it is easy to find the multi-classes task lead to poor prediction (multi_lr score is about 1/3 compare to the binary one). There are several improvements can be done for better models, we will discuss them at the conclusion.

ENSEMBLING

Our team used the ensemble method for binary classification (chosen method does not support multi-class classification). Result showed below:

binary							
ROC AUC:	0.73(+/-0.05)	[KNN]					
ROC AUC:	0.9(+/-0.02)	[RandomForest]					
ROC AUC:	0.75(+/-0.05)	[Decision tree]					
ROC AUC:	0.89(+/-0.02)	[Majority voting]					

CONCLUSIONS

The best result for binary model is 0.89 (after ensembling) and the best for multiclass is 0.67. There are several things we can do to improve our model:

1. Dimension reduction

We can reduce the dimension of our model for better prediction, but in doing so, we must be careful that we don't accidentally remove important information in doing so.

2. Internal relationships

Some features are highly correlated, we can find them and just use one of them. Besides, many features have internal relationships, thus, some of them may actually talk about the same thing.

3. Weight adjustment

Although those models adjust weights of each feature automatically, people from accounting major may hold different view of those weights.

Chapter 2: USPHCI Economic Activity Forecast

EXPLORATORY DATA ANALYSIS

Our dataframe is composed of:

<pre>Int64Index: 2</pre>	23 ent	ries, 0 t	to 222
Data columns	(tota]	l 16 colum	nns):
T1Y Index	223	non-null	float64
T2Y Index	223	non-null	float64
T3Y Index	223	non-null	float64
T5Y Index	223	non-null	float64
T7Y Index	223	non-null	float64
T10Y Index	223	non-null	float64
CP1M	223	non-null	float64
CP3M	223	non-null	float64
CP6M	223	non-null	float64
CP1M_T1Y	223	non-null	float64
CP3M_T1Y	223	non-null	float64
CP6M_T1Y	223	non-null	float64
USPHCI	223	non-null	float64
PCT 3MO FWD	223	non-null	float64
PCT 6MO FWD	223	non-null	float64
PCT 9MO FWD	223	non-null	float64
dtypes: float	64(16))	
memory usage:	29.6	КВ	

Figure 1: Plotting variables to get a feel for the relationships of the dataset

Also, we plotted a matrix to see the relationships for the entire dataset:

T1Y Index -	1.0	1.0	1.0	1.0	0.9	0.9	1.0	1.0	1.0	0.2	0.2	0.0	-0.8	-0.4	-0.5	-0.5
T2Y Index -	1.0	1.0	1.0	1.0	1.0	1.0	0.9	0.9	1.0	0.1	0.1	-0.0	-0.8	-0.4	-0.4	-0.4
T3Y Index -	1.0	1.0	1.0	1.0	1.0	1.0	0.9	0.9	0.9	0.1	0.1	-0.1	-0.8	-0.4	-0.4	-0.4
T5Y Index -	1.0	1.0	1.0	1.0	1.0	1.0	0.9	0.9	0.9	0.1	0.0	-0.1	-0.8	-0.4	-0.4	-0.4
T7Y Index -	0.9	1.0	1.0	1.0	1.0	1.0	0.9	0.9	0.9	0.0	0.0	-0.1	-0.8	-0.3	-0.4	-0.4
T10Y Index -	0.9	1.0	1.0	1.0	1.0	1.0	0.9	0.9	0.9	0.0	-0.0	-0.1	-0.8	-0.3	-0.4	-0.4
CP1M -	1.0	0.9	0.9	0.9	0.9	0.9	1.0	1.0	1.0	0.5	0.4	0.2	-0.7	-0.4	-0.5	-0.5
CP3M ·	1.0	0.9	0.9	0.9	0.9	0.9	1.0	1.0	1.0	0.4	0.4	0.2	-0.7	-0.4	-0.5	-0.5
CP6M -	1.0	1.0	0.9	0.9	0.9	0.9	1.0	1.0	1.0	0.4	0.4	0.2	-0.8	-0.4	-0.5	-0.5
CP1M T1Y	0.2	0.1	0.1	0.1	0.0	0.0	0.5	0.4	0.4	1.0	1.0	0.8	-0.1	-0.2	-0.2	-0.3
CP3M T1Y ·	0.2	0.1	0.1	0.0	0.0	-0.0	0.4	0.4	0.4	1.0	1.0	0.9	-0.1	-0.1	-0.2	-0.3
CP6M T1Y -	0.0	-0.0	-0.1	-0.1	-0.1	-0.1	0.2	0.2	0.2	0.8	0.9	1.0	0.0	0.0	-0.1	-0.2
USPHCI ·	-0.8	-0.8	-0.8	-0.8	-0.8	-0.8	-0.7	-0.7	-0.8	-0.1	-0.1	0.0	1.0	0.2	0.2	0.2
PCT 3MO FWD -	-0.4	-0.4	-0.4	-0.4	-0.3	-0.3	-0.4	-0.4	-0.4	-0.2	-0.1	0.0	0.2	1.0	0.9	0.9
PCT 6MO FWD ·	-0.5	-0.4	-0.4	-0.4	-0.4	-0.4	-0.5	-0.5	-0.5	-0.2	-0.2	-0.1	0.2	0.9	1.0	1.0
PCT 9MO FWD -	-0.5	-0.4	-0.4	-0.4	-0.4	-0.4	-0.5	-0.5	-0.5	-0.3	-0.3	-0.2	0.2	0.9	1.0	1.0
	×	× -	X -	x -	x -	× -	-	-	-	· -	- '	- '			<u>'</u>	<u>'</u>
	de	de	de	de	de	de	12	ΜΩ.	<u>6</u>	Ē	Ê	É	모	N	N	N
	<u>_</u>	<u>_</u>	<u>_</u>	<u>_</u>	Ē	<u> </u>	9	9	9	'≥'	Σ	'≥'	SР	Ë	Ë	Ë
	Σ	77	Ě	57	È	2				Ъl	БЗ	P6		Ĭ	M	M
						F				0	0	0		Ē	T 6	E E
														2	2	2

PREPROCESSING & FEATURE EXTRACTION/SELECTION

We can see the importance of each feature in relation to the 3MO, 6Mo, and 9MO Forward Rate:

3MO	FWD RATE - F	eature	Importance	
1)	T1Y Index			0.163890
2)	CP1M_T1Y			0.121097
3)	T10Y Index			0.114853
4)	T3Y Index			0.104408
5)	T2Y Index			0.085722
6)	CP1M			0.075296
7)	СРЗМ			0.067459
8)	CP6M T1Y			0.065129
9)	T5Y Index			0.057837
10)	T7Y Index			0.057455
11)	CP6M			0.049308
12)	CP3M_T1Y			0.037545
6MO	EWD RATE - F	eature	Importance	
1)	T1V Index	cucure	Impor curice	0 195985
2)	CP1M			0.117591
3)	CP3M			0.112635
4)	T10Y Index			0.110856
5)	CP1M T1Y			0.096567
6)	CP6M			0.095394
7)	T3Y Index			0.061621
8)	T5Y Index			0.053676
9)́	T7Y Index			0.048926
10)	T2Y Index			0.038705
11)	CP6M T1Y			0.037129
12)	CP3M_T1Y			0.030916
9MO	FWD RATE - F	Feature	Importance	
1)	CP1M			0.186953
2)	СРЗМ			0.164119
3)	CP6M			0.148786
4)	T10Y Index			0.121164
5)	T1Y Index			0.095936
6)	CP1M_T1Y			0.067408
7)	T7Y Index			0.063060
8)	T5Y Index			0.044385
9)	T3Y Index			0.037779
10)	CP6M_T1Y			0.028688
11)	CP3M_T1Y			0.024268
12)	T2Y Index			0.017453

MODEL FITTING & EVALUATION

Model 1
We use Linear Regression for 3-month prediction.
Model 2

We use Ridge Regression for 6-month prediction.

3. Model 3

We use Lasso Regression for 9-month prediction.

We will go into detail about the performance of each model with their predictions in the following chapter on HyperParameter Tuning & Evaluating on the Test Set.

HYPERPARAMETER TUNING

In the first case (linear regression), we cannot change the parameter, in the second and third cases, we change the alpha(ridge from 10^{-3} to 10^{0} , lasso from 10^{-6} to 10^{-3}). We only show those images for the best model of each case and show the rest of them in a table.

Linear Regression:

Ridge Regression: (Ridgealpha: 0.010)

Lasso Regression: (Lassoalpha: 0.000100)

ridge								
alpha	MSE train	MSE test	R^2 Train	R^2 test	Slope	Intercept		
0.001	0.769	0.477	0.248	0.398	-1.022	-0.018		
0.01	0.774	0.471	0.243	0.405	-0.599	-0.017		
0.1	0.788	0.496	0.229	0.374	-0.202	-0.016		
1	0.808	0.543	0.209	0.314	-0.087	-0.015		
			Lasso					
alpha	MSE train	MSE test	R^2 Train	R^2 test	Slope	Intercept		
0.000001	0.715	0.416	0.296	0.509	-0.825	-0.014		
0.00001	0.715	0.416	0.296	0.509	-0.816	-0.014		
0.0001	0.716	0.414	0.295	0.512	-0.714	-0.014		
0.001	0.726	0.425	0.286	0.499	-0.264	-0.013		
	Linear							
MSE train	MSE test	R^2 Train	R^2 test	Slope	Intercept			
0.823	0.619	0.194	0.239	-3.219	-0.02			

The following table contains the performance metrics for each model:

ENSEMBLING

We utilized a Gradient Boosting Regressor for our Ensemble Learning Methodology. After some parameter tweaking, we found that the Boosting algorithm vastly outperformed all previous models. In stark contrast to the table above, the ensembled GBR model reported a mean-squared-error of 0.31, and impressively scored an R-Squared value of 0.64 (nearly doubling the performance of the Linear and Ridge Regression models)

CONCLUSIONS

In conclusion, we found that out of the three original models, Lasso performed the best. This is likely attributed to the fact that LASSO can reduce some (if not all) of the coefficients of the model to zero, depending upon its regularization parameter, lambda. Ridge regression can only penalize the coefficient sizes; it will not remove them from the model.

Our final model, the ensemble learning methodology in which we used Gradient Boosting Regression, clearly performed the greatest. This is due to key concept of boosting, which is to focus on the training samples that are harder to classify and learn from misclassified training samples, thus teaching itself through trial-and-error to improve the ensemble performance.

APPENDIX

Appendix

GITHUB REPOSITORY

IE598 F18 MLF GROUP PROJECT (LINK)