Smooth Animations to Visualize Gaussian Uncertainty

Introduction

» Goal: Visualize uncertainty in curves and surfaces
> Specifically: using Gaussian processes (see refresher at bottom)
» Approach: animations
> Each frame shows one draw from posterior
> Consecutive frames show similar curves (i.e., continuous animations)
> Reducible: find single “Gaussian oscillator”; use copies as needed
» New Results:

> Smooth, keyframe-free animations
> New framework for all future work in Gaussian animations

Existing approach: interpolate between |.1.D. Gaussian draws

Linear interpolation: variance too small between keyframes
ESG interpolation
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» Ehlschlaeger, Shortridge, Goodchild (ESG) solved in 1997 (see right figure)

» Problem with both approaches: keyframes are ‘special’

> Motion changes discontinuously
> Even at At = 1, correlation can be surprisingly high (up to 0.5)

New approach: eliminate keyframes entirely

» Still use I.1.D. normals, {€;}, but de-localize rather than interpolate
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» Correct statistical properties: {f(t)) = O;

Gaussian Processes refresher: Probabilities for Functions

» Random curves and surfaces:
infinitely many random variables!

» Gaussian Processes: BN
work with any finite subset R eh O
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Start with 2 variables, |
work up from there... 2 0 5

Basis function view
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The true nature of f(t)

» Observations about f(t):
> Infinite set of Gaussian random variables

Animation Method Statistically

Correct

> Indexed by continuous variable, £

> Well-defined covariance between every pair of points:
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Naive linear interpolation
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» Implication: f(t) is itself a Gaussian process (in the time domain)

» Benefit: Gaussian animations revealed to belong to a

ESG interpolation
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well-studied framework
> Future animations can leverage existing Gaussian Process work
(e.g., try new covariance functions)

Smooth timetraces
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R implementation

GaussianOscillatorMatrix <- function(N, t) {

Physical motion: basic kinematics

(cbind(outer(t, 1:N, function(x, y) cos(pi * x x y / N)),
outer(t, N:1, function(x, y) sin(pi * x *x y / N)))
/ sqrt(N))

Check velocity and acceleration for a fuller picture of how these animations move:
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Motion is not different at the keyframes because they do not exist.

"Side—by-side" view Many variables, side—by-side
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» Highly correlated — close to diagonal

» Works well for two variables

http://chogg.name/projects/smooth-animation

variable

» Highly correlated — horizontal lines

» Works well for more variables...

variable

» Variables indexed by position

Acceleration

Conclusions

» First statistically correct Gaussian animations with smooth and
natural motion

» Moving beyond interpolation: keyframes entirely eliminated

> Time-domain Gaussian Processes
enable animated visualization of
Space-domain Gaussian Processes

> To eliminate keyframes, use stationary covariance function

| | Get continuous random function from [.I.D. normal draws:
Specify covariance

of every variable
with every other variable
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