- Goal: Visualize uncertainty in curves and surfaces
\triangleright Specifically: using Gaussian processes (see refresher at bottom)

- Approach: animations

\triangleright Each frame shows one draw from posterior
\triangleright Consecutive frames show similar curves (i.e., continuous animations)
\triangleright Reducible: find single "Gaussian oscillator"; use copies as needed

- New Results:

\triangleright Smooth, keyframe-free animations
\triangleright New framework for all future work in Gaussian animations

Existing approach: interpolate between I.I.D. Gaussian draws

Linear interpolation: variance too small between keyframes

- Ehlschlaeger, Shortridge, Goodchild (ESG) solved in 1997 (see right figure) - Problem with both approaches: keyframes are 'special'
\triangleright Motion changes discontinuously
\triangleright Even at $\Delta t=1$, correlation can be surprisingly high (up to 0.5)

New approach: eliminate keyframes entirely

- Still use I.I.D. normals, $\left\{\epsilon_{i}\right\}$, but de-localize rather than interpolate

$$
f(t)=\frac{1}{\sqrt{N}} \sum_{i=1}^{N}\left[\epsilon_{2 i-1} \sin \left(\frac{\pi i t}{N}\right)+\epsilon_{2 i} \cos \left(\frac{\pi i t}{N}\right)\right]
$$

- Correct statistical properties: $\langle f(t)\rangle=0 ; \quad\left\langle f(t)^{2}\right\rangle=1 \quad \forall t$

Basis function view

Physical motion: basic kinematics

Check velocity and acceleration for a fuller picture of how these animations move

Motion is not different at the keyframes because they do not exist.

The true nature of $f(t)$

- Observations about $f(t)$:
\triangleright Infinite set of Gaussian random variables
\triangleright Indexed by continuous variable, t
\triangleright Well-defined covariance between every pair of points:

$$
\langle f(t) f(t+\tau)\rangle=\frac{1}{N} \sum_{i=1}^{N}\left[\cos \left(\frac{\pi i \tau}{N}\right)\right]
$$

- Implication: $\boldsymbol{f}(\boldsymbol{t})$ is itself a Gaussian process (in the time domain)
- Benefit: Gaussian animations revealed to belong to a
well-studied framework
\triangleright Future animations can leverage existing Gaussian Process work (e.g., try new covariance functions)

R implementation

\# Matrix to turn 2N random values into Gaussian oscillator. GaussianOscillatorMatrix <- function(N, t) \{
(cbind(outer (t, 1:N, function(x, y) cos(pi * x * y / N)), outer(t, N:1, function(x, y) sin(pi * x * y / N))) / sqrt(N))

Conclusions

- First statistically correct Gaussian animations with smooth and natural motion
- Moving beyond interpolation: keyframes entirely eliminated - Time-domain Gaussian Processes enable animated visualization of
Space-domain Gaussian Processes
\triangleright To eliminate keyframes, use stationary covariance function

Gaussian Processes refresher: Probabilities for Functions

- Random curves and surfaces: infinitely many random variables!
- Gaussian Processes:
work with any finite subset
\triangleright Assume joint Gaussian distribution
- Simple example: Start with 2 variables, work up from there.

- Highly correlated \rightarrow close to diagonal
 Specify covariance
of every variable of every variable
- Variables indexed by position

$\begin{array}{lll}8 & i & 4_{1}^{4}\end{array}$

Get continuous random function from I.I.D. normal draws:

- Highly correated \rightarrow horizontal lines
- Highly correlated \rightarrow horizonta
- Works well for more variables...

