
<u>SCENARIO</u> – Two simulations involving AIB to AIB traffic. One simulation behaving correctly according to spec. One simulation broken due to half cycle data misalignment.

<u>Code Block in Question</u> -- <u>aib_ioring.sv</u>

WORKING SIMULATION

- INCLK transitions to 0 (falling edge)
- IO_PAD transitions to 0 on the falling edge
- As a result, iopad_nreg transitions to 0

D− inclk				
👁 io_pad				
🛛 iopad_nreg				

BROKEN SIMULATION

- INCLK transitions to 0 (falling edge)
- IO_PAD transitions to 0 on the falling edge
- iopad_nreg transitions to 1 (race condition!)

Name	4 1 1 1 1 1 1 1 1 1	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	63774300p0 63773
aib_io_buffer			
- D- inclk			
beq_oi ⊕ …			
🛛 iopad_nreg			

SOLUTION – Adding the following modification to aib_io_buffer.sv fixed the race condition presenting itself within iopad_nreg on the receive clock. However, one of our architects noted that the receive-side DLL in the AIB block should delay fs_fwd_clk by 90 degrees before using it to sample io_pad. Can you please investigate this and provide a more permanent solution?

