DBI Background

Spec update was done to fix the DBI location bits

	- 3	20	NOVELL XXXIII SPECIFICATION FOR FILE OFFI TO YOU Z
4/8/2021	2.0.1	26	Updated CONF_DONE description
ASAC ACTIVISION		27	Updated ns. mac_rdy description
		28	Clarified reset and standby conditions
		29	Updated dual, mode, select description
	_	31	Corrected Word Mark bit recommended location
		32	Added detail about the DBI bit location in the full rate word

According to this the location should be as shown below (half rate example):

	159	158	157	156	120	119	118	117	80	79	78	77	76	40	39	38	37	2	1	0
Leader to Follower 297b with	DBI	DBI	Mark=1	D[29	6:260]	DBI	DBI	D[259	:122]	DBI	DBI	Mark=0	D[221	:185]	DBI	DBI	D[184	1:149]	Strobe	D[148]
TVALID on AIB2.0Gen2 Half									AIB	Channel	N+1									
Rate	159	158	157	156	120	119	118	117	80	79	78	77	76	40	39	38		2	1	0
	DBI	DBI	Mark=1	D[14	7:111]	DBI	DBI	D[11	0:73]	DBI	DBI	Mark=0	D[72	:36]	DBI	DBI	D[3	5:0]	Strobe	Push
									Ale	Channe	el N									

As described in spec the data comes on AIB/IO as even, odd, even, odd format.

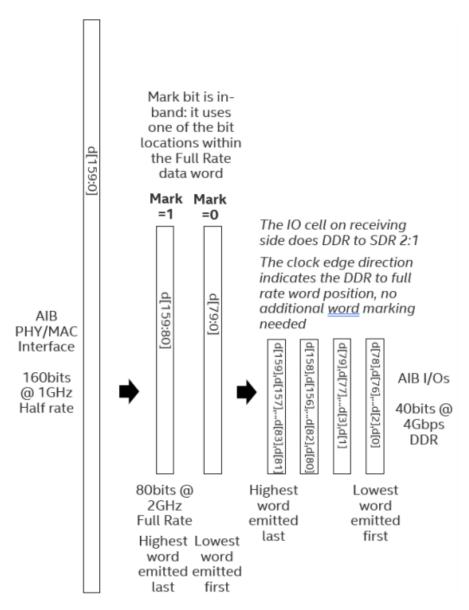


Figure 31. Word Marking Example, Half Rate PC Mode, 40 Tx Bits per Channel

DBI bits are present on the DDR'ed bits. AIB IO 19 and 39 are physical DBI IOs but the logical bit location corresponding to this D[38], D[39], D[78]. D[79], as shown below (**correct mapping**)

	AIB Chan	nel Data			10
159	158	79	78	\leftrightarrow	10 39
157	156	77	76	\leftrightarrow	10 38
155	154	75	74	\leftrightarrow	10 37
153	152	73	72	\leftrightarrow	10 36
151	150	71	70	\leftrightarrow	10 35
149	148	69	68	\leftrightarrow	10 34
147	146	67	66	\leftrightarrow	10 33
145	144	65	64	\leftrightarrow	10 32
143	142	63	62	\leftrightarrow	IO 31
141	140	61	60	\leftrightarrow	10 30
139	138	59	58	\leftrightarrow	10 29
137	136	57	56	\leftrightarrow	10 28
135	134	55	54	\leftrightarrow	10 27
133	132	53	52	\leftrightarrow	10 26
131	130	51	50	\leftrightarrow	10 25
129	128	49	48	\leftrightarrow	10 24
127	126	47	46	\leftrightarrow	10 23
125	124	45	44	\leftrightarrow	10 22
123	122	43	42	\leftrightarrow	IO 21
121	120	41	40	\leftrightarrow	10 20
119	118	39	38	\leftrightarrow	10 19
117	116	37	36	\leftrightarrow	IO 18
115	114	35	34	\leftrightarrow	10 17
113	112	33	32	\leftrightarrow	10 16
111	110	31	30	\leftrightarrow	10 15
109	108	29	28	\leftrightarrow	IO 14
107	106	27	26	\leftrightarrow	IO 13
105	104	25	24	\leftrightarrow	IO 12
103	102	23	22	\leftrightarrow	IO 11
101	100	21	20	\leftrightarrow	IO 10
99	98	19	18	\leftrightarrow	10 9
97	96	17	16	\leftrightarrow	10 8
95	94	15	14	\leftrightarrow	10 7
93	92	13	12	\leftrightarrow	10 6
91	90	11	10	\leftrightarrow	10 5
89	88	9	8	\leftrightarrow	10 4
87	86	7	6	\leftrightarrow	10 3
85	84	5	4	\leftrightarrow	10 2
83	82	3	2	\leftrightarrow	IO 1
81	80	1	0	\leftrightarrow	10 0

Section 2.2.4 in the spec is with respect to the IOs so it is consistent with the logical location shown above

2.2.4 Data Bus Inversion

Data Bus Inversion (DBI) is intended to reduce the power delivery network load of an AIB PHY by limiting the number of AIB data bits that can switch between immediate data transfer cycles. In Gen2 mode (DDR data transfers), AIB shall support DBI-AC in groups of 20 RX and 20 TX data wires. Channels may have multiple DBI data groups, for example a channel with 40 RX and 40 TX has a total of 4 DBI data groups. DBI shall be configurable on or off. When DBI is configured on, the AIB adapter shall process both RX and TX data for DBI. With DBI off, the data inside RX and TX are unaffected.

With DBI on, DBI bits replace certain data bits. The example below shows a 40 bit TX channel. RX wires have DBI at the same bit locations. Channels with more IOs continue with same 19 data bits + 1 DBI bit increment.

```
DBI Off: TX[39:0] = data[39:0]
DBI On: TX[39:0] = {DBI[1], data[38:20], DBI[0], data[18:0]}
```

The MAC data_in and data_out (section 1.3.5) contains even and odd bits that are multiplexed at the DDR transmitter and demultiplexed at DDR receiver (sections 2.1.1, 2.1.2 and 2.1.3). The "data" in the above example is selected from the MAC data_in, anticipating DDR transmission. With DBI On, the data bits at the DBI locations are not used.

2.2.4.1 TX DBI with DBI Enabled

Within a group of 19 data signals, the TX DBI logic calculates the DBI bit based on the number of data signals changing from their previous state on the AIB data bus.

The DBI logic below uses "+" to indicate arithmetic addition, "^" to indicate exclusive OR, and "?" as a ternary IF. "Current" refers to the new data word being prepared for sending on TX. "Prev" refers to the data immediately preceding the current data, that is the data issued onto the AIB bus before the current data.

```
DBIcurrent = ((data[18]current ^ data[18]prev)
+ (data[17]current ^ data[17]prev)
...
+ (data[1]current ^ data[1]prev)
+ (data[0]current ^ data[0]prev)) > 9 ? 1 : 0);
```

Within a group of 19 data signals, if the DBI bit=1 then the TX DBI logic inverts the data signals. Each calculated DBI bit replaces one data bit in TX as described previously.

<u>Issue</u>

aib-phy-hardware/v2.0/rev1/rtl/aib_adapttxdbi_txdp.v uses non-DDR version which should be fixed (incorrect mapping shown below)

	AIB Chan		10		
159	139	79	59	\leftrightarrow	10 39
158	138	78	58	\leftrightarrow	10 38
157	137	77	57	\leftrightarrow	10 37
156	136	76	56	\leftrightarrow	10 36
155	135	75	55	\leftrightarrow	10 35
154	134	74	54	\leftrightarrow	10 34
153	133	73	53	\leftrightarrow	10 33
152	132	72	52	\leftrightarrow	10 32
151	131	71	51	\leftrightarrow	IO 31
150	130	70	50	\leftrightarrow	10 30
149	129	69	49	\leftrightarrow	10 29
148	128	68	48	\leftrightarrow	10 28
147	127	67	47	\leftrightarrow	10 27
146	126	66	46	\leftrightarrow	10 26
145	125	65	45	\leftrightarrow	10 25
144	124	64	44	\leftrightarrow	10 24
143	123	63	43	\leftrightarrow	IO 23
142	122	62	42	\leftrightarrow	10 22
141	121	61	41	\leftrightarrow	IO 21
140	120	60	40	\leftrightarrow	IO 20
119	99	39	19	\leftrightarrow	IO 19
118	98	38	18	\leftrightarrow	IO 18
117	97	37	17	\leftrightarrow	IO 17
116	96	36	16	\leftrightarrow	IO 16
115	95	35	15	\leftrightarrow	IO 15
114	94	34	14	\leftrightarrow	IO 14
113	93	33	13	\leftrightarrow	IO 13
112	92	32	12	\leftrightarrow	IO 12
111	91	31	11	\leftrightarrow	IO 11
110	90	30	10	\leftrightarrow	IO 10
109	89	29	9	\leftrightarrow	10 9
108	88	28	8	\leftrightarrow	10 8
107	87	27	7	\leftrightarrow	10 7
106	86	26	6	\leftrightarrow	10 6
105	85	25	5	\leftrightarrow	10 5
104	84	24	4	\leftrightarrow	10 4
103	83	23	3	\leftrightarrow	10 3
102	82	22	2	\leftrightarrow	10 2
101	81	21	1	\leftrightarrow	101
100	80	20	0	\leftrightarrow	10 0