
 FrontEnd

 OverView

 s0 send fetch request to ICache module

 val s0_valid = io.cpu.req.valid || s0_fq_has_space

 if the fetch queue between frontend and the
 Rocket Core has valid slot

 val s0_fq_has_space =
 !fq.io.mask(fq.io.mask.getWidth-3) ||
 (!fq.io.mask(fq.io.mask.getWidth-2) && (!s1_valid || !s2_valid)) ||
 (!fq.io.mask(fq.io.mask.getWidth-1) && (!s1_valid && !s2_valid))

 explicit request from backend redirection take_pc

 take_pc_mem
 take_pc_mem := mem_reg_valid && !mem_reg_
 xcpt && (mem_misprediction || mem_reg_
 sfence)

 misprediction

 todo why sfence in MEM stage will redirect
 the flow

 take_pc_wb take_pc_wb := replay_wb || wb_xcpt || csr.io.eret || wb_reg_flush_pipe

 accumulated replay along the pipeline

 accumulated exception along the pipeline

 ecall, ebreak, eret found at WB

 wb_reg_flush_pipe

 fence.i instruction found at ID

 id_csr_flush val id_csr_flush = id_system_insn || (id_csr_en && !id_csr_
 ren && csr.io.decode(0).write_flush)

 if a system instruction like ecall or ebreak is
 found at ID, mark this insn as a pipeline-
 flushing instruction

 if a csr write to some csrs are found at ID,
 mark this insn as a pipeline-flushing
 instruction

 io_dec.write_flush := {
 /*
 * hjr m(s)scratch, m(s)epc,m(s)cause,m(s)tval are among io_dec.csr >= CSRs.
 mscratch && io_dec.csr <= CSRs.mtval
 * todo why writing to these registers will flush the pipeline.
 *
 * */

 val addr_m = addr | (PRV.M << CSR.modeLSB)
 !(addr_m >= CSRs.mscratch && addr_m <= CSRs.mtval)
 }

 io.imem.req.valid := take_pc
 io.imem.req.bits.speculative := !take_pc_wb
 io.imem.req.bits.pc :=
 Mux(wb_xcpt || csr.io.eret, csr.io.evec, // exception or [m|s]ret
 Mux(replay_wb, wb_reg_pc, // replay
 mem_npc)) // flush or branch misprediction

 csr.io.evec returns the right redirection addr
 for interrupt/exception and the ebreak/ecall/
 eret case

 a csr access op can be detected at ID, but
 only send this request to CSR module at WB
 stage. The CSR responds at the same cycle.

 csr.io.rw.addr := wb_reg_inst(31,20)
 csr.io.rw.cmd := CSR.maskCmd(wb_reg_
 valid, wb_ctrl.csr)
 csr.io.rw.wdata := wb_reg_wdata

 the CSR module then docodes the op, and io.
 eret may therefore be asserted

 io.eret := insn_call || insn_break || insn_ret

 io.evec := tvec

 for replay, just redirect to the pc of insn in
 WB stage

 mem_npc it's important to note that this also covers the
 flush case. I have trouble understanding the
 flush case? why flush is needed?

 icache.io.req.bits.addr := io.cpu.npc 子主题 1

 s1

 initiates tlb request to obtain physical addr
 and other permission info

 io.ptw <> tlb.io.ptw
 tlb.io.req.valid := s1_valid && !s2_replay
 tlb.io.req.bits.vaddr := s1_pc
 tlb.io.req.bits.passthrough := Bool(false)
 tlb.io.req.bits.size := log2Ceil(coreInstBytes*fetchWidth)
 tlb.io.req.bits.prv := io.ptw.status.prv
 tlb.io.req.bits.v := io.ptw.status.v
 tlb.io.sfence := io.cpu.sfence
 tlb.io.kill := !s2_valid

 if the op at s2 is replayed. this will direct s0
 to fetch from the addr specified in s2, and
 kill the one at s1, therefore no need to initiate
 the tlb request: s1_valid && !s2_replay

 s2_replay := (s2_valid && !fq.io.enq.fire()) ||
 RegNext(s2_replay && !s0_valid, true.B)

 op at s2 should be replayed if there is no
 valid slot in fq

 there is another signal s2_redirect, it's
 asserted when there is an explicit redirection
 request from backend.
 Or, when the icache module responds to
 FrontEnd at s2, the obtained instruction can
 be decoded and if the signal taken is
 asserted(for example, if the decoded
 instruction is a jal) while the original
 execution flow is sequential(!s2_btb_taken
 this means there is a btb miss or the bht
 report untaken for this instruction), this
 means the instruction flow is wrong,
 therefore s2_redirect is asserted in this case.

 when s2_redirect is asserted, the op
 currently at s1 should be nacked. And direct
 s0 start to fetch at decoded target

 the op at s2 may proceed if assertion of s2_
 redirect is not caused by backend

 val fq = withReset(reset || io.cpu.req.valid) {
 Module(new ShiftQueue(new FrontendResp,
 5, flow = true)) }

 if the s2_redirected is asserted via io.cpu.req.
 valid, the fq will be reset. the op at s2 will
 take no effect

 my confusion is why tlb.io.req.valid := s1_
 valid && !s2_replay instead of tlb.io.req.
 valid := s1_valid && !s2_replay &&!s2_redirect

 this means that when s2_redirect is asserted,
 the op at s1 still can initiate a tlb request,
 even though it will not proceed to s2??

 even thought we know the execution flow is
 incorrect, but there are chances that we can
 not figure out the actual target address, For
 example, a non-return jalr.

 in this case, the s0 will still begin fetching at
 pc+4, though this is incorrect. Once the
 target addr is determined at backend. The
 redirection request will be initiated to
 frontend.

 io.cpu.npc is the addr sent to ICache

 io.cpu.npc := alignPC(Mux(io.cpu.req.valid, io.cpu.req.bits.pc, npc))

 val npc = Mux(s2_replay, s2_pc, predicted_npc)

 val predicted_npc = Wire(init = ntpc)

 when decoding at s2 finds necessary to
 redirect, it will modify predicrted_npc

 If hit, the TLB will respond at the same cycle.
 If there is a tlb miss, a tlb refill may be
 initiated 1 cycle later by switching the state to
 s_request.

 If the op at s1 can not proceed to s2 because
 s2_replay or s2_redirect, we should explictly
 kill the refill

 tlb.io.kill := !s2_valid

 also note that a tlb miss will kill the ongoing
 icache fetching at s1

 icache.io.s1_kill := s2_redirect || tlb.io.resp.
 miss || s2_replay

 Besides permission, the TLB returns the
 corresponding ppn. And the physical addr
 will be passed to ICache

 icache is a virtually index physically tagged
 cache. The physical addr is passed to icache
 1 cycle later than the original request.

 icache.io.s1_paddr := tlb.io.resp.paddr

 the permission info

 passed to icache at s2 to decide whether
 prefetch is doable.

 icache.io.s2_prefetch := s2_tlb_resp.
 prefetchable && !io.ptw.customCSRs.
 asInstanceOf[RocketCustomCSRs].
 disableICachePrefetch

 note that the tlb also returns exception info

 val s2_xcpt = s2_tlb_resp.ae.inst || s2_tlb_resp.
 pf.inst || s2_tlb_resp.gf.inst

 fq.io.enq.bits.xcpt := s2_tlb_resp flow to backend, trigger the exception
 handling process.

 Also , the Frontend may direct TLB to flush
 the tlb cache if a sfence is met at WB

 io.imem.sfence.valid := wb_reg_valid && wb_reg_sfence
 io.imem.sfence.bits.rs1 := wb_reg_mem_size(0)
 io.imem.sfence.bits.rs2 := wb_reg_mem_size(1)
 io.imem.sfence.bits.addr := wb_reg_wdata
 io.imem.sfence.bits.asid := wb_reg_rs2
 io.imem.sfence.bits.hv := wb_reg_hfence_v
 io.imem.sfence.bits.hg := wb_reg_hfence_g
 io.ptw.sfence := io.imem.sfence

 note that The PTW is reused by DTLB and
 ITLB. the sfence to PTW comes directly from
 io.imem.sfence

 io.ptw.sfence := io.imem.sfence

 There is separate DTLB in DCache. Note that
 there is no separate sfence interface
 between RocketCore and DTLB. Sfence is
 regarded as a normal dmem op

 tlb.io.sfence.valid := s1_valid && !io.cpu.s1_kill && s1_sfence
 tlb.io.sfence.bits.rs1 := s1_req.size(0)
 tlb.io.sfence.bits.rs2 := s1_req.size(1)
 tlb.io.sfence.bits.asid := io.cpu.s1_data.data
 tlb.io.sfence.bits.addr := s1_req.addr
 tlb.io.sfence.bits.hv := s1_req.cmd === M_HFENCEV
 tlb.io.sfence.bits.hg := s1_req.cmd === M_HFENCEG

 also initiates request to BTB to obtain the
 takenality

 request

 when (!s2_replay) {
 btb.io.req.valid := !s2_redirect
 s2_btb_resp_valid := btb.io.resp.valid
 s2_btb_resp_bits := btb.io.resp.bits
 }

 response comes back at the same cycle

 btb.io.resp.valid indicates there is a valid btb hit(the
 same cycle) io.resp.valid := (pageHit << 1)(Mux1H(idxHit, idxPages))

 btb.io.resp.bits.taken indicating that the btb predicts
 that this instruction will cause the execution flow to be
 changed and the target is at btb.io.resp.bits.target

 therefore, we need to direct icache request
 at s0 to start fetching at btb.io.resp.bits.
 target.sextTo(vaddrBitsExtended)

 when (btb.io.resp.valid && btb.io.resp.bits.taken) {
 predicted_npc := btb.io.resp.bits.target.sextTo(
 vaddrBitsExtended)
 predicted_taken := Bool(true)
 }

 In BTB, resp.taken are true.B for all
 unconditional jumps

 if this request hits in an BTB entry where the
 corresponding cfiType is conditional branch.
 Then the takenality is decided by the current
 value of BHT

 val isBranch = (idxHit & cfiType.map(_ === CFIType.
 branch).asUInt).orR

 val res = bht.get(io.req.bits.addr)
 when (!res.taken && isBranch) { io.resp.bits.taken :=
 false }

 the branch target is normally obtained from
 the main cache of BTB

 io.resp.bits.target := Cat(pagesMasked(
 Mux1H(idxHit, tgtPages)), Mux1H(idxHit,
 tgts) << log2Up(coreInstBytes))

 But if a return instruction hits in the BTB, and
 the RAS has valid items in it, the target is
 obtained there.

 val ras = new RAS(btbParams.nRAS)
 val doPeek = (idxHit & cfiType.map(_ ===
 CFIType.ret).asUInt).orR//hjr todo confusion:
 why no need to perform page matching test
 io.ras_head.valid := !ras.isEmpty
 io.ras_head.bits := ras.peek
 when (!ras.isEmpty && doPeek) {
 io.resp.bits.target := ras.peek
 }

 Is it possible that a request to BTB hit an
 entry with cfiType being return, but the RAS
 stack is empty? In this case, the target
 address is obtained directly from the main
 BTB cache.

 If there is a BTB miss, or the btb predicts a
 branch being untaken. The execution flow
 remains unchanged: pc+4

 s2

 an op may flow to s2 if the instruction at
 then s2 can be "retired" successfully to the
 intermediate fetch queue and no redirection
 occured

 s2_replay and s2_redirect should both be
 false.B

 In s2, normally the ICache will respond with
 the expected instruction.

 Simple Instruction decoding

 At frontend, we already get the fetched
 instruction data, therefore we can decode
 the obtained instruction, if we know the
 instruction will change the execution flow
 and could have a way of figuring out the
 target address, we can start fetching new
 instructions from the target addr, therefore
 cycles of latency could be avoided
 compared with the case that decoding only
 occurs at ID stage

 It's worth noting that modifying the execution
 flow at s2 can only occur if the btb doesn't
 correctly predict taken for this otherwise
 branch instruction. See the when (!s2_btb_
 taken) {} clause

 when (!s2_btb_taken) {
 when (fq.io.enq.fire() && taken && !predictBranch && !predictJump && !
 predictReturn) {
 wrong_path := true
 }
 when (s2_valid && predictReturn) {
 useRAS := true
 }
 //hjr call is a special jump
 when (s2_valid && (predictBranch || predictJump)) {
 val pc = s2_base_pc | (idx*coreInstBytes)
 val npc =
 if (idx == 0) pc.asSInt + Mux(prevRVI, rviImm -& 2.S, rvcImm)
 else Mux(prevRVI, pc - coreInstBytes, pc).asSInt + Mux(prevRVI,
 rviImm, rvcImm)
 predicted_npc := npc.asUInt
 }
 }

 if btb predicted not taken at s1, but the
 decoded instruction is a function return, and
 RAS has valid item. Redirect the execution
 flow to the addr given by the RAS

 when (useRAS) {
 predicted_npc := btb.io.ras_head.bits
 }

 if btb predicted not taken at s1, but the decoded
 instruction is a jump(including function call) or a
 conditional branch that the bht predicted as
 taken(that is predict_taken being asserted. This
 actually confuses me a lot, because the btb
 predicted takenality for conditional branch purely
 based on the bht response, there is no way !s2_
 btb_taken and s2_btb_resp_bits.bht.taken are both
 asserted at the same time. Therefore the only
 situation that !s2_btb_taken and val
 predictBranch = predict_taken && (prevRVI &&
 rviBranch || valid && rvcBranch) are both asserted
 for conditional branch is that the force_taken
 inside val predict_taken = s2_btb_resp_bits.bht.
 taken || force_taken is asserted.

 In this case, the target addr is calculated and
 the execution flow is redirected to this target

 //hjr call is a special jump
 when (s2_valid && (predictBranch || predictJump)) {
 val pc = s2_base_pc | (idx*coreInstBytes)
 val npc =
 if (idx == 0) pc.asSInt + Mux(prevRVI, rviImm -& 2.S, rvcImm)
 else Mux(prevRVI, pc - coreInstBytes, pc).asSInt + Mux(
 prevRVI, rviImm, rvcImm)
 predicted_npc := npc.asUInt
 }

 it's worth noting that if jalr is at s2 while the
 btb doesn't predict taken for this insn at s1.
 The taken signal is asserted at s2, but there is
 no way to redirect the execution flow to
 somewhere, because it involves register
 value to calculated the target addr. Read of
 register only occurs at ID stage. So, we just
 let the ICache fetch at PC+4 even though we
 know it's incorrect.

 if we are sure the btb gives wrong prediction,
 we can also update BTB at s2 so that the
 subsequent predictions can be made more
 precisely.

 main BTB update

 when (!s2_btb_resp_valid && (
 predictBranch && s2_btb_resp_bits.bht.
 strongly_taken || predictJump ||
 predictReturn)) {
 updateBTB := true
 }

 Miss in the BTB main cache(!s2_btb_resp_
 valid), but the decoding indicates:

 The bht predicts that this is a strongly taken
 branch

 an unconditional jump

 or a function return while there is valid item
 in RAS

 not that the it's !s2_btb_resp_valid, not !s2_btb_
 taken

 no need

 val s2_btb_taken = s2_btb_resp_valid && s2_
 btb_resp_bits.taken

 for unconditional jump, btb always predicts
 taken if hit

 for conditional branch, btb reports takenality
 exactly based on bht, if bht reports strongly
 taken, s2_btb_resp_bits.taken is surely
 asserted.

 when (!io.cpu.btb_update.valid) {
 val fetch_bubble_likely = !fq.io.mask(1)
 btb.io.btb_update.valid := fq.io.enq.fire() && !wrong_path && fetch_bubble_likely && updateBTB
 btb.io.btb_update.bits.prediction.entry := UInt(tileParams.btb.get.nEntries)
 btb.io.btb_update.bits.isValid := true
 btb.io.btb_update.bits.cfiType := btb.io.ras_update.bits.cfiType
 btb.io.btb_update.bits.br_pc := s2_base_pc | (taken_idx << log2Ceil(coreInstBytes))
 btb.io.btb_update.bits.pc := s2_base_pc
 }

 btb.io.btb_update.bits.prediction.entry := UInt(
 tileParams.btb.get.nEntries)

 indicates that we need to randomly find a
 new entry to replace in the BTB main cache

 Even though the BTBupdate bundle has
 target field in it, it's not actually used as far
 as I know. The actual target addr is sent to
 BTB module via the BTBReq.addr. This is an
 excellent example of signal reuse.

 Note the timing mismatch here, updateBTB
 is asserted when conduct instruction
 decoding at s2. At this cycle, the target addr
 is calculated(that is predicted_npc) and
 icache fetching will start at s0 using the
 target addr. Note that request to btb is
 initiated at s1, therefore there is one cycle
 mismatch in terms of BTB update.
 Consequently, we need to latch the update
 signal for 1 cycle to sync with the target
 signal.

 Also note BTB update and BTB request using
 the target addr can happen at the same
 time!!!

 RAS update
 The update to RAS only happens at FrontEnd
 because all info needed to update the RAS
 can be fully resolved at frontend.

 //hjr RAS is always updated at FrontEnd
 btb.io.ras_update.valid := fq.io.enq.fire() && !wrong_path && (prevRVI && (rviCall || rviReturn) ||
 valid && (rvcCall || rvcReturn))
 btb.io.ras_update.bits.cfiType := Mux(Mux(prevRVI, rviReturn, rvcReturn), CFIType.ret,
 Mux(Mux(prevRVI, rviCall, rvcCall), CFIType.call,
 Mux(Mux(prevRVI, rviBranch, rvcBranch) && !force_taken, CFIType.branch,
 CFIType.jump)))
 btb.io.ras_update.bits.returnAddr := s2_base_pc + (after_idx << log2Ceil(coreInstBytes))

 BHT update

 There are 2 parts of BHT that needs to be updated. The
 history register and the actual BHT entry, In RC impl, the
 history register is updated at frontEnd so that the
 subsequent conditional branch(if any) can be predicted
 more precisely(Apparently, we need a way to reverse
 this update to history register if this insn at s2 is
 mispredicted by bht). The takenality of a conditional
 branch will be fully resolved at MEM staget, therefore
 the bht main entry will be updated once the actual
 takenality is resolved.

 At frontend:

 when (prevRVI && rviBranch || valid && rvcBranch) {
 btb.io.bht_advance.valid := fq.io.enq.fire() && !wrong_path
 btb.io.bht_advance.bits := s2_btb_resp_bits
 }

 when (io.bht_advance.valid) {
 bht.advanceHistory(io.bht_advance.bits.bht.taken)
 }

 def advanceHistory(taken: Bool): Unit = {
 history := Cat(taken, history >> 1)
 }

 At backend:

 io.imem.btb_update.valid := mem_reg_valid && !take_pc_wb && mem_wrong_npc && (!mem_cfi ||
 mem_cfi_taken)
 io.imem.btb_update.bits.isValid := mem_cfi
 io.imem.btb_update.bits.cfiType :=
 Mux((mem_ctrl.jal || mem_ctrl.jalr) && mem_waddr(0), CFIType.call,
 Mux(mem_ctrl.jalr && (mem_reg_inst(19,15) & regAddrMask) === BitPat("b00?01"), CFIType.ret,
 Mux(mem_ctrl.jal || mem_ctrl.jalr, CFIType.jump,
 CFIType.branch)))
 io.imem.btb_update.bits.target := io.imem.req.bits.pc
 io.imem.btb_update.bits.br_pc := (if (usingCompressed) mem_reg_pc + Mux(mem_reg_rvc, UInt(0),
 UInt(2)) else mem_reg_pc)
 io.imem.btb_update.bits.pc := ~(~io.imem.btb_update.bits.br_pc | (coreInstBytes*fetchWidth-1))
 io.imem.btb_update.bits.prediction := mem_reg_btb_resp

 io.imem.bht_update.valid := mem_reg_valid && !take_pc_wb
 io.imem.bht_update.bits.pc := io.imem.btb_update.bits.pc
 io.imem.bht_update.bits.taken := mem_br_taken
 io.imem.bht_update.bits.mispredict := mem_wrong_npc
 io.imem.bht_update.bits.branch := mem_ctrl.branch
 io.imem.bht_update.bits.prediction := mem_reg_btb_resp.bht

 some key insights:

 BTB main cache may be updated
 deterministically at MEM stage

 BHT entry and history register may be
 updated

 if (btbParams.bhtParams.nonEmpty) {
 val bht = new BHT(Annotated.params(this, btbParams.bhtParams.get))
 val isBranch = (idxHit & cfiType.map(_ === CFIType.branch).asUInt).orR
 val res = bht.get(io.req.bits.addr)
 when (io.bht_advance.valid) {
 bht.advanceHistory(io.bht_advance.bits.bht.taken)
 }
 when (io.bht_update.valid) {
 when (io.bht_update.bits.branch) {
 bht.updateTable(io.bht_update.bits.pc, io.bht_update.bits.prediction,
 io.bht_update.bits.taken)
 when (io.bht_update.bits.mispredict) {
 bht.updateHistory(io.bht_update.bits.pc, io.bht_update.bits.
 prediction, io.bht_update.bits.taken)
 }
 }.elsewhen (io.bht_update.bits.mispredict) {
 bht.resetHistory(io.bht_update.bits.prediction)
 }
 }
 when (!res.taken && isBranch) { io.resp.bits.taken := false }
 io.resp.bits.bht := res
 }

 The original bht response at s1 is flowed to
 backend so that the history register can be
 correctly restored.

 If insn at MEM stage is a conditional branch,
 we need to update the main bht entry using
 the resolved takenality

 note that the bte entry should be indexed
 using the original history register. The
 subsequent instructions may be conditional
 branch and therefore could modify the
 history register.

 bht.updateTable(io.bht_update.bits.pc, io.bht_update.bits.prediction,
 io.bht_update.bits.taken)

 def updateTable(addr: UInt, d: BHTResp, taken: Bool): Unit = {
 wen := true
 when (!resetting) {
 waddr := index(addr, d.history)
 wdata := (params.counterLength match {
 case 1 => taken
 case 2 => Cat(taken ^ d.value(0), d.value === 1 || d.value(1) &&
 taken)
 })
 }
 }

 note that if the conditional branch is ever
 incorrectly predicted by the bht at s1(this mis-
 prediction is determined at MEM). The history
 register needs to be modified using the
 correct takenality when it's resolved at MEM

 when (io.bht_update.bits.mispredict) {
 bht.updateHistory(io.bht_update.bits.pc, io.bht_update.bits.
 prediction, io.bht_update.bits.taken)
 }

 If the insn at MEM is not a branch, but other
 execution flow changing insns, and a mem_
 wrong_npc is found. We need to reset the
 history register so that the conditional branch
 in the new fetching flow can be predicted
 more precisely by hashing to the right bht
 entry.

 }.elsewhen (io.bht_update.bits.mispredict) {
 bht.resetHistory(io.bht_update.bits.prediction)
 }

 Extra complexity when RVC is supported.

 when RVC is supported, since the ICache
 always return 4Byte instruction data, It's
 possible that this 4Byte data is 2 RVCs, or
 1RVI, or, 1RVC and half of RVC. Therefore,
 extra caution needs to be taken.

 In RC impl, the returned data from icache is
 analyzed in 2-Byte granularity. s2_partial_
 insn_valid and s2_partial_insn are used to
 indicate that there left half of a RVI in
 previous cycle needs to be decoded in
 conjunction with instruction data currently at
 s2.

 val taken = scanInsns(0, s2_partial_insn_valid,
 s2_partial_insn, false.B)

 scanInsns is an over-engineered iterative
 function. Actually, it is iterated only once.

 For one iteration, it decides where this 2Byte
 granularity goes

 it's a RVC for a RVC, val valid = fq.io.enq.bits.mask(
 idx) && !prevRVI is always asserted.

 worth noting that the valid is also asserted if
 the current 2-Byte granularity is the first half
 of a RVI.

 first half of a RVI

 This half is past to scanInsns again for
 further processing or it is cached in s2_partial_
 insn if it's the second half of the instruction(
 idx=fetchWidth-1)

 marked by prevValid and prevBits

 the whole RVI is formed by combing this half
 with the previous half that is passed into this
 round of scanInsns calling as a parameter.

 the instruction decoding can only be
 conducted if we have all bytes in hand.

 if (idx == fetchWidth-1) {
 when (fq.io.enq.fire()) {
 s2_partial_insn_valid := false
 when (valid && !prevTaken && !rvc) {
 s2_partial_insn_valid := true
 s2_partial_insn := bits | 0x3
 }
 }
 prevTaken || taken
 } else {
 scanInsns(idx + 1, valid, bits, prevTaken || taken)
 }

 it's worth noting that if the first half of the
 obtained instruction data(or combined with
 the fragment in s2_partial_insn) is a valid
 instruction that will change the execution
 flow(jal, jalr, or conditional branch, signal
 taken is asserted in this case), we should just
 ignore the left fragment because it will be
 skipped(see the when(!prevTaken){} clause).
 We should not cache it in s2_partial_insn_valid
 and s2_partial_insn either.

 val taken =
 prevRVI && (rviJump || rviJALR ||
 rviBranch && predict_taken) ||
 valid && (rvcJump || rvcJALR || rvcJR ||
 rvcBranch && predict_taken)

 If there is a ICache miss, this means icache.io.
 resp.valid will remain to be low at s2.

 fq.io.enq.valid := RegNext(s1_valid) && s2_
 valid && (icache.io.resp.valid || !s2_tlb_resp.
 miss && icache.io.s2_kill) is de-asserted in
 this case normally. Therefore the s2_replay is
 asserted.

 Even though there is an ICache miss, But if
 the op at s2 is speculative and we can not
 conduct refill for a speculative request(s2_
 can_speculatively_refill is deasserted), we
 should not refill the ICache in this situation,
 also we should assert the fq.io.enq.valid, it's
 confusing here. But it's worth noting that the
 fq.io.enq.bits.replay is also asserted. This
 means that we will replay this instruction
 cycles later, then it may be doable to let it
 flow to fetch queue.

 By what condition is an instruction
 speculative

 My quick guess is that a speculative
 instruction is an instruction that may not be
 part of the final determined execution flow.
 We may speculatively fetch some instruction
 for the performance gain.

 There is a confusion here, according to io.
 imem.req.bits.speculative := !take_pc_wb
 we can see that even though a branch
 instruction is fully resolved at MEM stage and
 find that branch was preveiously predicted
 wrongly in Frontend, therefore direct the
 frontend to re-fetch at the correct location,
 the speculative signal is still asserted in this
 case. I feel like this is incorrect, the branch or
 jump has been fully resolved here at MEM, so
 the calculated target must be the right one,
 This target instruction should not be
 regarded as speculative

 // consider RVC fetches across blocks to be non-speculative if
 the first part was non-speculative
 val s0_speculative =
 if (usingCompressed) s1_speculative || s2_valid && !s2_
 speculative || predicted_taken
 else Bool(true)

 The current impl in RC is that for
 configuration in which RVC is not supported,
 we regard every instruction fetching being
 speculative unless the fetch request is
 explicitly from WB stage.This is reasonable
 because when we fetch an instruction at
 Frontend, we don't know for sure that this
 one will be finally executed.

 But If the RVC is supported, it's possible that
 4-byte instructions can straddle cache-line
 boundaries, we need to be able to issue a
 miss to the next line when fetching the last
 two bytes in the current line. Otherwise,
 we will make no progress, because the cache
 miss will never be satisfied. Therefore, if the
 instruction at s1 is not speculative, we regard
 the one at s0 being none-speculative either,
 so that the missed block can be refilled.

 https://github.com/chipsalliance/rocket-
 chip/issues/2051

 I still have trouble figuring out the rationale
 for s2_valid && !s2_speculative || predicted_
 taken

 another case where the refill to icache is
 disallowed is that the corresponding tlb
 response comes back with exceptions. In this
 case, s2_kill is asserted, therefore fq.io.enq.
 valid is also asserted. The instruction will flow
 to the fetch queue. The replay signal is de-
 asserted, but fq.io.enq.bits.xcpt is pulled
 high so that this instruction will be processed
 further in the backend as instruction with
 exceptions.

 ICache

 request to icache at s0, resp at s1 or s2 decided by icacheParams.latency

 case 1: conduct no parity checking.

 case 1 =>
 require(tECC.isInstanceOf[IdentityCode])
 require(dECC.isInstanceOf[IdentityCode])
 require(outer.icacheParams.itimAddr.isEmpty)
 io.resp.bits.data := Mux1H(s1_tag_hit, s1_dout)
 io.resp.bits.ae := s1_tl_error.asUInt.orR
 io.resp.valid := s1_valid && s1_hit

 case 2: conduct parity checking against the
 data

 request from the core fired at s0, the data
 and tag SRAM is accessed. These 2 are of
 syncMem. The result arrives at s1. Data parity
 checking is conducted at s2, and respond to
 the initiator.

 The logic for handling tl_in case lives under
 the case 2. That means icacheParams.
 latency must be set to 2 if the ITIM mode is
 supported.

 since the itimAddr and icacheParams.latency
 are all scala parameters =, can we require
 that if itimAddr is configured, the latency
 must be 2?

 cache organization

 The cache organization of icache is a lot like
 dcache. The data and tag are separate
 srams. It's banked to save access energy if
 the access width is less than refill width(tl.d
 data width), which is often true.

 tag sram are stereotyped

 val (tag_array, omSRAM) = DescribedSRAM(
 name = "tag_array",
 desc = "ICache Tag Array",
 size = nSets,
 data = Vec(nWays, UInt(width = tECC.width(1 +
 tagBits)))//hjr +1 for cacheing tl_out.d tilelink erros in
 the tag sram.
)

 note that each tag has one extra bit to store
 if this cache block has tilelink d channel
 error (tl_out.d.bits.corrupt)when refilling

 //hjr if refill_done is asserted, that means the tag sram will be written by refilling,
 therefore there is a structural hazard.
 val tag_rdata = tag_array.read(s0_vaddr(untagBits-1,blockOffBits), !refill_done && s0_
 valid)
 val accruedRefillError = Reg(Bool())
 val refillError = tl_out.d.bits.corrupt || (refill_cnt > 0 && accruedRefillError)
 when (refill_done) {
 // For AccessAckData, denied => corrupt
 val enc_tag = tECC.encode(Cat(refillError, refill_tag))
 tag_array.write(refill_idx, Vec.fill(nWays)(enc_tag), Seq.tabulate(nWays)(repl_
 way === _))

 ccover(refillError, "D_CORRUPT", "I$ D-channel corrupt")
 }
 io.errors.bus.valid := tl_out.d.fire() && (tl_out.d.bits.denied || tl_out.d.bits.corrupt)
 io.errors.bus.bits := (refill_paddr >> blockOffBits) << blockOffBits

 it's important to note that the tl_out.d.bits.
 corrupt error is also directly reported through
 io.errors.bus signal
 And this signal will go to the BEU unit.

 the error bit stored in the tag array is used to
 respond to the initiator that an access
 exception happens(ae)

 val (tl_error, tag) = Split(enc_tag.uncorrected, tagBits)

 s1_tl_error(i) := tagMatch && tl_error.asBool

 val s2_tl_error = RegEnable(s1_tl_error.asUInt.orR, s1_clk_en)

 io.resp.bits.ae := s2_tl_error

 this ae signal will flow downwards to the
 backend to trigger standard exception
 handling

 val (id_xcpt, id_cause) = checkExceptions(List(
 (csr.io.interrupt, csr.io.interrupt_cause),
 (bpu.io.debug_if, UInt(CSR.debugTriggerCause)),
 (bpu.io.xcpt_if, UInt(Causes.breakpoint)),
 (id_xcpt0.pf.inst, UInt(Causes.fetch_page_fault)),
 (id_xcpt0.gf.inst, UInt(Causes.fetch_guest_page_fault)),
 (id_xcpt0.ae.inst, UInt(Causes.fetch_access)),
 (id_xcpt1.pf.inst, UInt(Causes.fetch_page_fault)),
 (id_xcpt1.gf.inst, UInt(Causes.fetch_guest_page_fault)),
 (id_xcpt1.ae.inst, UInt(Causes.fetch_access)),
 (id_virtual_insn, UInt(Causes.virtual_instruction)),
 (id_illegal_insn, UInt(Causes.illegal_instruction))))

 ICache is virtually indexed and physically
 tagged, the paddr is passed from tlb at s1.
 Hit detection process is simple.
 But there are some extra considerations:

 Data SRAM is banked like the one of DCache

 val data_arrays = Seq.tabulate(tl_out.d.bits.data.getWidth /
 wordBits) {
 i =>
 DescribedSRAM(
 name = s"data_arrays_${i}",
 desc = "ICache Data Array",
 size = nSets * refillCycles,
 data = Vec(nWays, UInt(width = dECC.width(wordBits)))
)
 }

 data sram read and write

 //hjr L1 instruction cache is somehow banked, the same as data cache
 for (((data_array, omSRAM), i) <- data_arrays zipWithIndex) {
 def wordMatch(addr: UInt) = addr.extract(log2Ceil(tl_out.d.bits.data.getWidth/8)-1, log2Ceil(wordBits/8)) === i
 def row(addr: UInt) = addr(untagBits-1, blockOffBits-log2Ceil(refillCycles))
 val s0_ren = (s0_valid && wordMatch(s0_vaddr)) || (s0_slaveValid && wordMatch(s0_slaveAddr))
 val wen = (refill_one_beat && !invalidated) || (s3_slaveValid && wordMatch(s1s3_slaveAddr))
 val mem_idx = Mux(refill_one_beat, (refill_idx << log2Ceil(refillCycles)) | refill_cnt,
 Mux(s3_slaveValid, row(s1s3_slaveAddr),
 Mux(s0_slaveValid, row(s0_slaveAddr),
 row(s0_vaddr))))
 when (wen) {
 val data = Mux(s3_slaveValid, s1s3_slaveData, tl_out.d.bits.data(wordBits*(i+1)-1, wordBits*i))
 val way = Mux(s3_slaveValid, scratchpadWay(s1s3_slaveAddr), repl_way)
 data_array.write(mem_idx, Vec.fill(nWays)(dECC.encode(data)), (0 until nWays).map(way === _))
 }
 val dout = data_array.read(mem_idx, !wen && s0_ren)
 when (wordMatch(Mux(s1_slaveValid, s1s3_slaveAddr, io.s1_paddr))) {
 s1_dout := dout
 }
 }

 each cache block is divided into rows. Each
 row is the same width of refill width from tl_
 out.d. A row is further divided into words.
 Each word are stored in separate bank

 note the val way = Mux(s3_slaveValid, scratchpadWay(
 s1s3_slaveAddr), repl_way), when write to the data
 sram, if it's a refill, we just randomly choose the way
 for the refilling word.
 But if it's a data sram write regulated by s3_slaveValid,
 we need to obtain the specific way from
 scratchpadWay(s1s3_slaveAddr)

 Note this works for in-place-correction of
 cache access(not just ITIM access)

 cache refill

 errors

 ITIM

 The complexity of ICache mainly originates
 from the ITIM mode and the on-fly
 reconfiguration of it. The idea of ITIM is well
 clarified in U54MC manual, but the main idea
 is simple: we can spare some part of the
 icache as ITIM region and mark the region as
 always-hit. An addr range is assigned to the
 ITIM, any accesses in that range will be
 treated as a cache hit. We can treat nWays-1
 ways of ICache at maximum as ITIM Mem
 regions, the last way of ICache should always
 be treated as the ICache iteself. The U54MC
 manual names this part of ICache as being
 the control region of ITIM, who knows why...
 Maybe it's because that write to this region
 will cause the ITIM being deallocated and the
 deallocated ITIM space is automatically
 returned to the instruction cache.

 which access goes to ITIM 2 ports

 general cpu<->FrontEnd<->ICache interface

 ready-only request

 may access the ITIM memory region

 access that goes to the effective ITIM
 memory region(see addrInScratchpad) will
 return the corresponding data

 access that goes above the effective ITIM
 region, but still lays in the ITIM region range(
 including control region) will return
 unspecified data

 access that does not lay in the ITIM region(
 Mem and Ctrl) is decided by the normal
 cache hit detection. And may initiate a refill
 request if a valid miss is found

 a specialized slave port tl_in

 read access that goes to the effective ITIM
 memory region(see addrInScratchpad) will
 return the corresponding data

 read access that is not in the range of ITIM
 effective memory region will return
 unspecified data.

 write through the port can be used to
 reconfigure the ITIM

 All these read access behavior through tl_in
 or the general cpu<->FrontEnd<->ICache
 interface are determined by the tag match
 logic

 for (i <- 0 until nWays) {
 val s1_idx = index(s1_vaddr, io.s1_paddr)
 val s1_tag = io.s1_paddr >> pgUntagBits
 val scratchpadHit = scratchpadWayValid(i) &&
 Mux(s1_slaveValid,
 lineInScratchpad(scratchpadLine(s1s3_slaveAddr)) && scratchpadWay(s1s3_
 slaveAddr) === i,
 addrInScratchpad(io.s1_paddr) && scratchpadWay(io.s1_paddr) === i)
 val s1_vb = vb_array(Cat(UInt(i), s1_idx)) && !s1_slaveValid
 val enc_tag = tECC.decode(tag_rdata(i))
 val (tl_error, tag) = Split(enc_tag.uncorrected, tagBits)
 val tagMatch = s1_vb && tag === s1_tag
 s1_tag_disparity(i) := s1_vb && enc_tag.error
 s1_tl_error(i) := tagMatch && tl_error.asBool
 s1_tag_hit(i) := tagMatch || scratchpadHit
 }

 An important note here:
 s1_tag_hit only determines whether a cache
 access(not an ITIM access) hit in the cache.
 An access to the ITIM(MEM or CTRL region)
 will always hit, even though it may return
 unspeicifed data

 val s1_hit = s1_tag_hit.reduce(_||_) || Mux(s1_slaveValid, true.B,
 addrMaybeInScratchpad(io.s1_paddr))

 access from tl_in always "hit", but may return
 unspecified data

 access from the general interface that goes
 to ITIM(CTRL or MEM; See
 addrMaybeInScratchpad(io.s1_paddr)) region
 always hit, but may return unspecified data

 whether an access returns valid data instead
 of unspecified one depends on if there is a
 real hit in s1_tag_hit
 s1_hit just flows to s2, and informs the
 initiator that an actual cache miss happens,
 therefore a refill is needed

 This means that an access to the ITIM region
 no matter from general or the specialized
 interface will never trigger a cache refill.
 That is, an addr that lays in the ITIM region
 never actually hit in cache.

 addrMaybeInScratchpad

 an access that goes to the ITIM region(
 Control or Memory)

 def addrMaybeInScratchpad(addr: UInt) = scratchpadBase.map(
 base => addr >= base && addr < base + outer.size).getOrElse(
 false.B)

 addrInScratchpad

 an access that goes to the effective memory
 region of ITIM

 def addrInScratchpad(addr: UInt) =
 addrMaybeInScratchpad(addr) &&
 lineInScratchpad(addr(untagBits+log2Ceil(
 nWays)-1, blockOffBits))

 scratchpadWay

 def scratchpadWay(addr: UInt) = addr.extract(
 untagBits+log2Ceil(nWays)-1, untagBits)

 An very important insight to understand ITIM
 is that extra bits in the addr are used to index
 the specific way of the ICache:
 scratchpadWay.
 In normal cache, these bits are part of the
 tag and are used for tag compare, not
 indexing.

 ITIM (re)configuration it's done by writing to the ITIM through tl_in
 port

 when (s0_slaveValid) {
 val a = tl.a.bits
 s1s3_slaveAddr := tl.a.bits.address
 s1s3_slaveData := tl.a.bits.data
 when (edge_in.get.hasData(a)) {
 val enable = scratchpadWayValid(scratchpadWay(a.address))
 when (!lineInScratchpad(scratchpadLine(a.address))) {
 scratchpadMax.get := scratchpadLine(a.address)
 invalidate := true
 }
 scratchpadOn := enable

 val itim_allocated = !scratchpadOn && enable
 val itim_deallocated = scratchpadOn && !enable
 val itim_increase = scratchpadOn && enable && scratchpadLine(a.address) > scratchpadMax.get
 val refilling = refill_valid && refill_cnt > 0
 ccover(itim_allocated, "ITIM_ALLOCATE", "ITIM allocated")
 ccover(itim_allocated && refilling, "ITIM_ALLOCATE_WHILE_REFILL", "ITIM allocated while I$ refill")
 ccover(itim_deallocated, "ITIM_DEALLOCATE", "ITIM deallocated")
 ccover(itim_deallocated && refilling, "ITIM_DEALLOCATE_WHILE_REFILL", "ITIM deallocated while I$ refill")
 ccover(itim_increase, "ITIM_SIZE_INCREASE", "ITIM size increased")
 ccover(itim_increase && refilling, "ITIM_SIZE_INCREASE_WHILE_REFILL", "ITIM size increased while I$ refill")
 }
 }

 A write from the tl_in port that lays in the
 control region of ITIM(that is: the last way of
 ICache) should turn off the ITIM mode, and
 return these ITIM back to ICache

 val enable = scratchpadWayValid(
 scratchpadWay(a.address))
 enable is deasserted, therefore the
 scratchpadOn will be deasserted.

 Noth that the impl in RC code base does not
 fully support this depiction:
 There is no wrapper like when(
 addrMaybeInScratchpad(a.address)){} around
 the scratchpadOn := enable. This means that
 a write from tl_in that does not even lay in
 ITIM memory or control region could enable
 or disable the ITIM???

 A write from the tl_in port that exceeds the
 current ITIM scratchpadMax but still lays in
 the memory region of ITIM will cause the size
 of the ITIM(indicated by scratchpadMax)
 expanding to the scratchpadLine(a.address)

 Write to the current effective ITIM memory
 region will do nothing special, just a
 successful write. Then just for curiosity: how to shrink the size

 of the ITIM???

 From the current code base, maybe write to
 ctrl region first, then write to a specific addr
 in the ITIM memory region.

 A little mismatch from the U54 manual

 The ITIM is allocated simply by
 writing to it. A store to the nth byte of the
 ITIM memory map reallocates the first n+1
 bytes of
 instruction cache as ITIM, rounded up to the
 next cache block

 Only write from tl_in port can configure the
 ITIM

 ITIM Write Except for the configuration case, an real-hit
 ITIM write is implemented as RMW

 Maybe the rationale for this has some thing
 to do with the ECC granularity. See DCache
 Documentation for further detail.

 read the stored data out, Modify bytes that
 will be written

 when (s2_slaveValid) {
 when (edge_in.get.hasData(s1_a) || s2_data_decoded.error) { s3_slaveValid := true }
 def byteEn(i: Int) = !(edge_in.get.hasData(s1_a) && s1_a.mask(i))
 s1s3_slaveData := (0 until wordBits/8).map(i => Mux(byteEn(i), s2_data_decoded.
 corrected, s1s3_slaveData)(8*(i+1)-1, 8*i)).asUInt
 }

 note the when(s2_data_decoded.error){} case:

 this is in-place-correction like the one
 depicted in DCache.

 This means even if it's an ITIM read, if there is
 an ECC error found, we can correct it

 why it's s2_data_decoded.error instead of s2_
 data_decoded.correctable

 I don't know, but see this commit:

 https://github.com/chipsalliance/rocket-
 chip/commit/
 bb9d8264e279eae3c2220ce47b6a7730c11c
 940a

 Also note that in-place-correction is
 supported even for access from the general
 interface(no matter it's for normal cache or
 ITIM access)

 when (!(tl.a.valid || s1_slaveValid || s2_slaveValid || respValid)
 && s2_valid && s2_data_decoded.error && !s2_tag_disparity) {
 // handle correctable errors on CPU accesses to the scratchpad.
 // if there is an in-flight slave-port access to the scratchpad,
 // report the a miss but don't correct the error (as there is
 // a structural hazard on s1s3_slaveData/s1s3_slaveAddress).
 s3_slaveValid := true
 s1s3_slaveData := s2_data_decoded.corrected
 //hjr in this case, s1s3_slaveAddr(log2Ceil(wordBits/8)-1, 0) portion of the s1s3_
 slaveAddr is meaningless for a cache correction
 s1s3_slaveAddr := s2_scratchpad_word_addr | s1s3_slaveAddr(log2Ceil(
 wordBits/8)-1, 0)
 }

 Note that the write to data SRAM(unless it's for
 cache refill) no matter the reason(ITIM write from tl_
 in, s2_data_decoded.error from tl_in or the general
 interface) are signaled via
 s3_slaveValid, s1s3_slaveData and s1s3_slaveAddr

 For the tl_in access, s1s3_slaveAddr is just
 s1s3_slaveAddr := tl.a.bits.address

 For access from the general interface:
 s1s3_slaveAddr := s2_scratchpad_word_addr | s1s3_slaveAddr(
 log2Ceil(wordBits/8)-1, 0)

 In this case, s1s3_slaveAddr(log2Ceil(wordBits/8)-1, 0) portion of the
 s1s3_slaveAddr is meaningless for a cache correction, word granularity!

 val s2_scratchpad_word_addr = Cat(s2_hit_way, Mux(s2_slaveValid, s1s3_
 slaveAddr, io.s2_vaddr)(untagBits-1, log2Ceil(wordBits/8)), UInt(0,
 log2Ceil(wordBits/8)))

 (untagBits-1, log2Ceil(wordBits/8)) part of the access addr does not include the way index of an ITIM
 access, the way index is val s2_hit_way = OHToUInt(s2_tag_hit). This is why we have to put s2_hit_
 way in front of Mux(s2_slaveValid, s1s3_slaveAddr, io.s2_vaddr)(untagBits-1, log2Ceil(wordBits/8)),
 UInt(0, log2Ceil(wordBits/8))

 s2_scratchpad_word_addr(more specifically
 s2_hit_way) covers both normal cache and
 ITIM access.

 s1 and s3 signals of tl_in ports are partially
 reused.

 block newly initiated tl.a request if there is an
 ongoing one

 tl.a.ready := !(tl_out.d.valid || s1_slaveValid || s2_slaveValid || s3_
 slaveValid || respValid || !io.clock_enabled)

 note that If an ITIM access writes to all Bytes,
 see this commit for further info

 https://github.com/chipsalliance/rocket-
 chip/commit/
 153ee88017b66aa6842ab36bb31d88fedad98d
 be

 ITIM response latched for 1 cycle, why???

 BTB

 main BTB

 BHT

 RAS

 These 3 modules and interconnections
 among them are depicted in this post by me:
 https://github.com/chipsalliance/rocket-
 chip/issues/2993

 Refill only occurs for cache access. Access to ITIM region will
 never trigger a refill: since s1_hit is always asserted for ITIM
 access from any port:
 val s1_hit = s1_tag_hit.reduce(_||_) || Mux(s1_slaveValid, true.B,
 addrMaybeInScratchpad(io.s1_paddr))

 there is only one ongoing refill transaction
 allowed.

 Since data SRAM can be used both by
 normal cache and ITIM, there is one signal
 indicating whether a cache block is currently
 used as a normal cache block or an ITIM
 block

 val vb_array = Reg(init=Bits(0, nSets*nWays))
 when (refill_one_beat) {
 accruedRefillError := refillError
 // clear bit when refill starts so hit-under-miss doesn't
 fetch bad data
 vb_array := vb_array.bitSet(Cat(repl_way, refill_idx), refill_
 done && !invalidated)
 }

 vb_array is only set when a cache block is
 being refilled.

 Note that fence_i instruction will flush the
 instruction cache. This is done by de-
 asserting the vb_array.

 val invalidate = Wire(init = io.invalidate)
 when (invalidate) {
 vb_array := Bits(0)
 invalidated := Bool(true)
 }

 io.invalidate will be combinationally asserted
 if a fence.i is in WB stage

 Other situations that may cause invalidate be
 asserted, and therefore flush all cache block.

 ITIM reconfiguration, if the access from slave
 port goes beyond scratchpadMax

 when (s0_slaveValid) {
 val a = tl.a.bits
 s1s3_slaveAddr := tl.a.bits.address
 s1s3_slaveData := tl.a.bits.data
 when (edge_in.get.hasData(a)) {
 val enable = scratchpadWayValid(scratchpadWay(a.
 address))
 when (!lineInScratchpad(scratchpadLine(a.address))) {
 scratchpadMax.get := scratchpadLine(a.address)
 invalidate := true
 }

 }

 If there is a parity error occur for an access val s2_disparity = s2_tag_disparity || s2_data_decoded.error
 when (s2_valid && s2_disparity) { invalidate := true }

 There are error signals sending to BEU
 through io.errors

 Note that when refilling a cache block, there
 may be D channel error being asserted for
 some specific reason. There is one extra bit
 in the tag field of a cache block to stash this
 error state. When an access hits in that block,
 a hit is still reported to the initiator, but with
 ae field being asserted.

 io.resp.bits.data := s2_data_decoded.uncorrected
 io.resp.bits.ae := s2_tl_error
 io.resp.bits.replay := s2_disparity
 io.resp.valid := s2_valid && s2_hit

 The pipeline will capture this exception

 io.errors.correctable.foreach { c =>
 c.valid := (s2_valid || s2_slaveValid) && s2_disparity && !s2_report_
 uncorrectable_error
 c.bits := s2_error_addr
 }
 io.errors.uncorrectable.foreach { u =>
 u.valid := s2_report_uncorrectable_error
 u.bits := s2_error_addr
 }

 my confusion is that s2_error_addr is always 0
 for cache access.

 val s2_error_addr = scratchpadBase.map(base => Mux(s2_scratchpad_hit, base +
 s2_scratchpad_word_addr, 0.U)).getOrElse(0.U)

 Maybe error happens for cache access are
 reported through io.resp.ae???

 The confusion is that why there are different
 path for ITIM and cache access in terms of
 error handling

 According to the U54 MC manual, seems
 only the uncorrectable ECC error of ITIM
 access will be reported through the BEU Then where to report uncorrectable error of

 cache access

 According to the U54 manual, if the physical
 addr of the access is unknow, return 0 is
 doable. But The physical addr is apparently
 known for cache access case.

 Error Reporting Path is just a pain in the ass
 for me

 Maybe there are other units that will decode
 the returned data from icache

 Just return the raw data:
 io.resp.bits.data := s2_data_decoded.
 uncorrected

 Prefetch is supported

 if (cacheParams.prefetch) {
 val (crosses_page, next_block) = Split(refill_paddr(pgIdxBits-1,
 blockOffBits) +& 1, pgIdxBits-blockOffBits)
 when (tl_out.a.fire()) {
 send_hint := !hint_outstanding && io.s2_prefetch && !crosses_page
 when (send_hint) {
 send_hint := false
 hint_outstanding := true
 }
 }
 when (refill_done) {
 send_hint := false
 }
 when (tl_out.d.fire() && !refill_one_beat) {
 hint_outstanding := false
 }

 when (send_hint) {
 tl_out.a.valid := true
 tl_out.a.bits := edge_out.Hint(
 fromSource = UInt(1),
 toAddress = Cat(refill_paddr >> pgIdxBits, next_block) <<
 blockOffBits,
 lgSize = lgCacheBlockBytes,
 param = TLHints.PREFETCH_READ)._2
 }

 ccover(send_hint && !tl_out.a.ready, "PREFETCH_A_STALL", "I$ prefetch
 blocked by A-channel")
 ccover(refill_valid && (tl_out.d.fire() && !refill_one_beat), "PREFETCH_D_
 BEFORE_MISS_D", "I$ prefetch resolves before miss")
 ccover(!refill_valid && (tl_out.d.fire() && !refill_one_beat), "PREFETCH_D_
 AFTER_MISS_D", "I$ prefetch resolves after miss")
 ccover(tl_out.a.fire() && hint_outstanding, "PREFETCH_D_AFTER_MISS_A", "
 I$ prefetch resolves after second miss")
 }

 When sending a refill request, if prefetch is
 supported(cacheParams.prefetch), there is
 no on-going prefetch(!hint_outstanding), and
 the next cache block is within the same page
 with the current block getting refilled. We
 should assert send_hint, then tl_out.a.valid will
 keep asserting even after sending refill
 request of current blcok. If tl_out.a.ready is
 asserted, then a PREFETCH_READ request will
 be sent.

 a lot alike

 s2_kill is asserted

https://github.com/chipsalliance/rocket-chip/issues/2051
https://github.com/chipsalliance/rocket-chip/commit/bb9d8264e279eae3c2220ce47b6a7730c11c940a
https://github.com/chipsalliance/rocket-chip/commit/153ee88017b66aa6842ab36bb31d88fedad98dbe

