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 OverView

 s0  send fetch request to ICache module

 val s0_valid = io.cpu.req.valid || s0_fq_has_space

 if the fetch queue between frontend and the 
 Rocket Core has valid slot

   val s0_fq_has_space =
     !fq.io.mask(fq.io.mask.getWidth-3) ||
     (!fq.io.mask(fq.io.mask.getWidth-2) && (!s1_valid || !s2_valid)) ||
     (!fq.io.mask(fq.io.mask.getWidth-1) && (!s1_valid && !s2_valid))

 explicit request from backend  redirection  take_pc

 take_pc_mem
 take_pc_mem := mem_reg_valid && !mem_reg_
 xcpt && (mem_misprediction || mem_reg_
 sfence)

 misprediction

 todo why sfence in MEM stage will redirect 
 the flow

 take_pc_wb  take_pc_wb := replay_wb || wb_xcpt || csr.io.eret || wb_reg_flush_pipe

 accumulated replay along the pipeline

 accumulated exception along the pipeline 

 ecall, ebreak, eret found at WB 

 wb_reg_flush_pipe

 fence.i instruction found at ID

 id_csr_flush  val id_csr_flush = id_system_insn || (id_csr_en && !id_csr_
 ren && csr.io.decode(0).write_flush)

 if a system instruction like ecall or ebreak  is 
 found at ID, mark this insn as a pipeline-
 flushing instruction

 if a csr write to some csrs are found at ID, 
 mark this insn as a pipeline-flushing 
 instruction

     io_dec.write_flush := {
       /*
       * hjr m(s)scratch, m(s)epc,m(s)cause,m(s)tval are among io_dec.csr >= CSRs.
 mscratch && io_dec.csr <= CSRs.mtval
       * todo why writing to these registers will flush the pipeline.
       *
       * */
  
       val addr_m = addr | (PRV.M << CSR.modeLSB)
       !(addr_m >= CSRs.mscratch && addr_m <= CSRs.mtval)
     }

   io.imem.req.valid := take_pc
   io.imem.req.bits.speculative := !take_pc_wb
   io.imem.req.bits.pc :=
     Mux(wb_xcpt || csr.io.eret, csr.io.evec, // exception or [m|s]ret
     Mux(replay_wb,              wb_reg_pc,   // replay
                                 mem_npc))    // flush or branch misprediction

 csr.io.evec returns the right redirection addr 
 for interrupt/exception and the ebreak/ecall/
 eret case

 a csr access op can be detected at ID, but 
 only send this request to CSR module at WB 
 stage. The CSR responds at the same cycle.

   csr.io.rw.addr := wb_reg_inst(31,20)
   csr.io.rw.cmd := CSR.maskCmd(wb_reg_
 valid, wb_ctrl.csr)
   csr.io.rw.wdata := wb_reg_wdata

 the CSR module then docodes the op, and io.
 eret may therefore be asserted 

 io.eret := insn_call || insn_break || insn_ret

 io.evec := tvec

 for replay, just redirect to the pc of insn in 
 WB stage

 mem_npc  it's important to note that this also covers the 
 flush case.  I have trouble understanding the 
 flush case? why flush is needed?
  

 icache.io.req.bits.addr := io.cpu.npc  子主题 1

 s1

 initiates tlb request to obtain physical addr 
 and other permission info

   io.ptw <> tlb.io.ptw
   tlb.io.req.valid := s1_valid && !s2_replay
   tlb.io.req.bits.vaddr := s1_pc
   tlb.io.req.bits.passthrough := Bool(false)
   tlb.io.req.bits.size := log2Ceil(coreInstBytes*fetchWidth)
   tlb.io.req.bits.prv := io.ptw.status.prv
   tlb.io.req.bits.v := io.ptw.status.v
   tlb.io.sfence := io.cpu.sfence
   tlb.io.kill := !s2_valid
  

 if the op at s2 is replayed. this will direct s0 
 to fetch from the addr specified in s2, and 
 kill the one at s1, therefore no need to initiate 
 the tlb request: s1_valid && !s2_replay

 s2_replay := (s2_valid && !fq.io.enq.fire()) || 
 RegNext(s2_replay && !s0_valid, true.B)

 op at s2 should be replayed if there is no 
 valid slot in fq

 there is another signal s2_redirect, it's 
 asserted when there is an explicit redirection 
 request from backend. 
 Or, when the icache module responds to 
 FrontEnd at s2, the obtained instruction can 
 be decoded and if the signal taken is 
 asserted(for example, if the decoded 
 instruction is a jal) while the original 
 execution flow is sequential(!s2_btb_taken  
 this means there is a btb miss or the bht 
 report untaken for this instruction), this 
 means the instruction flow is wrong, 
 therefore s2_redirect is asserted in this case. 

 when s2_redirect is asserted,  the op 
 currently at s1 should be nacked. And direct 
 s0 start to fetch at decoded target

 the op at s2 may proceed if assertion of s2_
 redirect is not caused by backend

 val fq = withReset(reset || io.cpu.req.valid) { 
 Module(new ShiftQueue(new FrontendResp, 
 5, flow = true)) }

 if the s2_redirected is asserted via io.cpu.req.
 valid, the fq will be reset. the op at s2 will 
 take no effect

 my confusion is why tlb.io.req.valid := s1_
 valid && !s2_replay instead of tlb.io.req.
 valid := s1_valid && !s2_replay &&!s2_redirect

 this means that when s2_redirect is asserted, 
 the op at s1 still can initiate a tlb request, 
 even though it will not proceed to s2??

 even thought we know the execution flow is 
 incorrect, but there are chances that we can 
 not figure out the actual target address, For 
 example, a non-return jalr.

 in this case,  the s0 will still begin fetching at 
 pc+4, though this is incorrect. Once the 
 target addr is determined at backend. The 
 redirection request will be initiated to 
 frontend.

 io.cpu.npc is the addr sent to ICache

 io.cpu.npc := alignPC(Mux(io.cpu.req.valid, io.cpu.req.bits.pc, npc))
  
 val npc = Mux(s2_replay, s2_pc, predicted_npc)
  
 val predicted_npc = Wire(init = ntpc)

 when decoding at s2 finds necessary to 
 redirect, it will modify predicrted_npc

 If hit, the TLB will respond at the same cycle.
 If there is a tlb miss, a tlb refill may be 
 initiated 1 cycle later by switching the state to 
 s_request.

 If the op at s1 can not proceed to s2 because 
 s2_replay or s2_redirect,  we should explictly 
 kill the refill

 tlb.io.kill := !s2_valid

 also note that a tlb miss will kill the ongoing 
 icache fetching at s1

 icache.io.s1_kill := s2_redirect || tlb.io.resp.
 miss || s2_replay

 Besides permission, the TLB returns the 
 corresponding ppn. And the physical addr 
 will be passed to ICache

 icache is a virtually index physically tagged 
 cache. The physical addr is passed to icache 
 1 cycle later than the original request.
  

 icache.io.s1_paddr := tlb.io.resp.paddr

 the permission info 

 passed to icache at s2 to decide whether 
 prefetch is doable.

 icache.io.s2_prefetch := s2_tlb_resp.
 prefetchable && !io.ptw.customCSRs.
 asInstanceOf[RocketCustomCSRs].
 disableICachePrefetch

 note that the tlb also returns exception info

 val s2_xcpt = s2_tlb_resp.ae.inst || s2_tlb_resp.
 pf.inst || s2_tlb_resp.gf.inst

 fq.io.enq.bits.xcpt := s2_tlb_resp  flow to backend,  trigger the exception 
 handling process.

 Also , the Frontend may direct TLB to flush 
 the tlb cache if a sfence is met at WB 

   io.imem.sfence.valid := wb_reg_valid && wb_reg_sfence
   io.imem.sfence.bits.rs1 := wb_reg_mem_size(0)
   io.imem.sfence.bits.rs2 := wb_reg_mem_size(1)
   io.imem.sfence.bits.addr := wb_reg_wdata
   io.imem.sfence.bits.asid := wb_reg_rs2
   io.imem.sfence.bits.hv := wb_reg_hfence_v
   io.imem.sfence.bits.hg := wb_reg_hfence_g
   io.ptw.sfence := io.imem.sfence
  

 note that The PTW is reused by DTLB and 
 ITLB. the sfence to PTW comes directly from  
 io.imem.sfence

   io.ptw.sfence := io.imem.sfence
  

 There is separate DTLB  in DCache.  Note that 
 there is no separate sfence interface 
 between RocketCore and DTLB.  Sfence is 
 regarded as a normal dmem op

   tlb.io.sfence.valid := s1_valid && !io.cpu.s1_kill && s1_sfence
   tlb.io.sfence.bits.rs1 := s1_req.size(0)
   tlb.io.sfence.bits.rs2 := s1_req.size(1)
   tlb.io.sfence.bits.asid := io.cpu.s1_data.data
   tlb.io.sfence.bits.addr := s1_req.addr
   tlb.io.sfence.bits.hv := s1_req.cmd === M_HFENCEV
   tlb.io.sfence.bits.hg := s1_req.cmd === M_HFENCEG

 also initiates request to BTB to obtain the 
 takenality 

 request

     when (!s2_replay) {
       btb.io.req.valid := !s2_redirect
       s2_btb_resp_valid := btb.io.resp.valid
       s2_btb_resp_bits := btb.io.resp.bits
     }

 response comes back at the same cycle

 btb.io.resp.valid indicates there is a valid btb hit(the 
 same cycle)  io.resp.valid := (pageHit << 1)(Mux1H(idxHit, idxPages))

 btb.io.resp.bits.taken indicating that the btb predicts 
 that this instruction will cause the execution flow to be 
 changed and the target is at btb.io.resp.bits.target

 therefore, we need to direct icache request 
 at s0 to start fetching at btb.io.resp.bits.
 target.sextTo(vaddrBitsExtended)

     when (btb.io.resp.valid && btb.io.resp.bits.taken) {
       predicted_npc := btb.io.resp.bits.target.sextTo(
 vaddrBitsExtended)
       predicted_taken := Bool(true)
     }
  

 In BTB, resp.taken are true.B for all 
 unconditional jumps

 if this request hits in an BTB entry where the 
 corresponding cfiType is conditional branch. 
 Then the takenality is decided by the current 
 value of BHT

 val isBranch = (idxHit & cfiType.map(_ === CFIType.
 branch).asUInt).orR
  
 val res = bht.get(io.req.bits.addr)
 when (!res.taken && isBranch) { io.resp.bits.taken := 
 false }

 the branch target is normally obtained from 
 the main cache of BTB

 io.resp.bits.target := Cat(pagesMasked(
 Mux1H(idxHit, tgtPages)), Mux1H(idxHit, 
 tgts) << log2Up(coreInstBytes))

 But if a return instruction hits in the BTB, and 
 the RAS has valid items in it, the target is 
 obtained there.

 val ras = new RAS(btbParams.nRAS)
     val doPeek = (idxHit & cfiType.map(_ === 
 CFIType.ret).asUInt).orR//hjr todo confusion: 
 why no need to perform page matching test
     io.ras_head.valid := !ras.isEmpty
     io.ras_head.bits := ras.peek
     when (!ras.isEmpty && doPeek) {
       io.resp.bits.target := ras.peek
     }

 Is it possible that a request to BTB hit an 
 entry with cfiType being return, but the RAS 
 stack is empty? In this case, the target 
 address is obtained directly from the main 
 BTB cache.

 If there is a BTB miss, or the btb predicts a 
 branch being untaken. The execution flow 
 remains unchanged: pc+4

 s2

 an op may flow to s2 if the instruction at 
 then s2 can be "retired" successfully to the 
 intermediate fetch queue and no redirection 
 occured

 s2_replay and s2_redirect should both be 
 false.B

 In s2, normally the ICache will respond with 
 the expected instruction.

 Simple Instruction decoding

 At frontend, we already get the fetched 
 instruction data, therefore we can decode 
 the obtained instruction, if we know the 
 instruction will change the execution flow 
 and could have a way of figuring out the 
 target address, we can start fetching new 
 instructions from the target addr, therefore 
 cycles of latency could be avoided 
 compared with the case that decoding only 
 occurs at ID stage

 It's worth noting that modifying the execution 
 flow at s2 can only occur if the btb doesn't 
 correctly predict taken for this otherwise 
 branch instruction. See the when (!s2_btb_
 taken) {} clause

         when (!s2_btb_taken) {
           when (fq.io.enq.fire() && taken && !predictBranch && !predictJump && !
 predictReturn) {
             wrong_path := true
           }
           when (s2_valid && predictReturn) {
             useRAS := true
           }
           //hjr call is a special jump
           when (s2_valid && (predictBranch || predictJump)) {
             val pc = s2_base_pc | (idx*coreInstBytes)
             val npc =
               if (idx == 0) pc.asSInt + Mux(prevRVI, rviImm -& 2.S, rvcImm)
               else Mux(prevRVI, pc - coreInstBytes, pc).asSInt + Mux(prevRVI, 
 rviImm, rvcImm)
             predicted_npc := npc.asUInt
           }
         }

 if btb predicted not taken at s1, but the 
 decoded instruction is a function return, and 
 RAS has valid item. Redirect the execution 
 flow to the addr given by the RAS

     when (useRAS) {
       predicted_npc := btb.io.ras_head.bits
     }

 if btb predicted not taken at s1, but the decoded 
 instruction is a jump(including function call) or a 
 conditional branch that the bht predicted as 
 taken(that is predict_taken being asserted. This 
 actually confuses me a lot, because the btb 
 predicted takenality for conditional branch purely 
 based on the bht response, there is no way !s2_
 btb_taken and s2_btb_resp_bits.bht.taken are both 
 asserted at the same time. Therefore the only 
 situation that !s2_btb_taken and val 
 predictBranch = predict_taken && (prevRVI && 
 rviBranch || valid && rvcBranch) are both asserted 
 for conditional branch  is that the force_taken 
 inside val predict_taken = s2_btb_resp_bits.bht.
 taken || force_taken is asserted.

 In this case, the target addr is calculated and 
 the execution flow is redirected to this target

           //hjr call is a special jump
           when (s2_valid && (predictBranch || predictJump)) {
             val pc = s2_base_pc | (idx*coreInstBytes)
             val npc =
               if (idx == 0) pc.asSInt + Mux(prevRVI, rviImm -& 2.S, rvcImm)
               else Mux(prevRVI, pc - coreInstBytes, pc).asSInt + Mux(
 prevRVI, rviImm, rvcImm)
             predicted_npc := npc.asUInt
           }

 it's worth noting that if jalr is at s2 while the 
 btb doesn't predict taken for this insn at s1. 
 The taken signal is asserted at s2, but there is 
 no way to redirect the execution flow to 
 somewhere, because it involves register 
 value to calculated the target addr.  Read of 
 register only occurs at ID stage. So, we just 
 let the ICache fetch at PC+4 even though we 
 know it's incorrect.

 if we are sure the btb gives wrong prediction, 
 we can also update BTB at s2 so that the 
 subsequent predictions can be made more 
 precisely.

 main BTB update 

         when (!s2_btb_resp_valid && (
 predictBranch && s2_btb_resp_bits.bht.
 strongly_taken || predictJump || 
 predictReturn)) {
           updateBTB := true
         }

 Miss in the BTB main cache(!s2_btb_resp_
 valid), but the decoding indicates: 

 The bht predicts that this is a strongly taken 
 branch 

 an unconditional jump

 or a function return while there is valid item 
 in RAS

 not that the it's !s2_btb_resp_valid, not !s2_btb_
 taken

 no need 

 val s2_btb_taken = s2_btb_resp_valid && s2_
 btb_resp_bits.taken

 for unconditional jump, btb always predicts 
 taken if hit

 for conditional branch, btb reports takenality 
 exactly based on bht, if bht reports strongly 
 taken, s2_btb_resp_bits.taken is surely 
 asserted.

     when (!io.cpu.btb_update.valid) {
       val fetch_bubble_likely = !fq.io.mask(1)
       btb.io.btb_update.valid := fq.io.enq.fire() && !wrong_path && fetch_bubble_likely && updateBTB
       btb.io.btb_update.bits.prediction.entry := UInt(tileParams.btb.get.nEntries)
       btb.io.btb_update.bits.isValid := true
       btb.io.btb_update.bits.cfiType := btb.io.ras_update.bits.cfiType
       btb.io.btb_update.bits.br_pc := s2_base_pc | (taken_idx << log2Ceil(coreInstBytes))
       btb.io.btb_update.bits.pc := s2_base_pc
     }
  

 btb.io.btb_update.bits.prediction.entry := UInt(
 tileParams.btb.get.nEntries)

 indicates that we need to randomly find a 
 new entry to replace in the BTB main cache

 Even though the BTBupdate bundle  has 
 target field in it, it's not actually used as far 
 as I know. The actual target addr is sent to 
 BTB module via the BTBReq.addr. This is an 
 excellent example of signal reuse.

 Note the timing mismatch here,  updateBTB 
 is asserted when conduct instruction 
 decoding at s2. At this cycle, the target addr 
 is calculated(that is predicted_npc) and 
 icache fetching will start at s0 using the 
 target addr.  Note that request to btb is 
 initiated at s1, therefore there is one cycle 
 mismatch in terms of BTB update. 
 Consequently, we need to latch the update 
 signal for 1 cycle to sync with the target 
 signal.

 Also note BTB update and BTB request using 
 the target addr can happen at the same 
 time!!!

 RAS update 
 The update to RAS only happens at FrontEnd 
 because all info needed to update the RAS 
 can be fully resolved at frontend.

         //hjr RAS is always updated at FrontEnd
         btb.io.ras_update.valid := fq.io.enq.fire() && !wrong_path && (prevRVI && (rviCall || rviReturn) || 
 valid && (rvcCall || rvcReturn))
         btb.io.ras_update.bits.cfiType := Mux(Mux(prevRVI, rviReturn, rvcReturn), CFIType.ret,
                                           Mux(Mux(prevRVI, rviCall, rvcCall), CFIType.call,
                                           Mux(Mux(prevRVI, rviBranch, rvcBranch) && !force_taken, CFIType.branch,
                                           CFIType.jump)))
 btb.io.ras_update.bits.returnAddr := s2_base_pc + (after_idx << log2Ceil(coreInstBytes))

 BHT update

 There are 2 parts of BHT that needs to be updated. The 
 history register and the actual BHT entry, In RC impl, the 
 history register is updated at frontEnd so that the 
 subsequent conditional branch(if any) can be predicted 
 more precisely(Apparently, we need a way to reverse 
 this update to history register if this insn at s2 is 
 mispredicted by bht).  The takenality of a conditional 
 branch will be fully resolved at MEM staget, therefore 
 the bht main entry will be updated once the actual 
 takenality is resolved.

 At frontend: 

         when (prevRVI && rviBranch || valid && rvcBranch) {
           btb.io.bht_advance.valid := fq.io.enq.fire() && !wrong_path
           btb.io.bht_advance.bits := s2_btb_resp_bits
         }
  
  
     when (io.bht_advance.valid) {
       bht.advanceHistory(io.bht_advance.bits.bht.taken)
     }
  
   def advanceHistory(taken: Bool): Unit = {
     history := Cat(taken, history >> 1)
   }

 At backend:

   io.imem.btb_update.valid := mem_reg_valid && !take_pc_wb && mem_wrong_npc && (!mem_cfi || 
 mem_cfi_taken)
   io.imem.btb_update.bits.isValid := mem_cfi
   io.imem.btb_update.bits.cfiType :=
     Mux((mem_ctrl.jal || mem_ctrl.jalr) && mem_waddr(0), CFIType.call,
     Mux(mem_ctrl.jalr && (mem_reg_inst(19,15) & regAddrMask) === BitPat("b00?01"), CFIType.ret,
     Mux(mem_ctrl.jal || mem_ctrl.jalr, CFIType.jump,
     CFIType.branch)))
   io.imem.btb_update.bits.target := io.imem.req.bits.pc
   io.imem.btb_update.bits.br_pc := (if (usingCompressed) mem_reg_pc + Mux(mem_reg_rvc, UInt(0), 
 UInt(2)) else mem_reg_pc)
   io.imem.btb_update.bits.pc := ~(~io.imem.btb_update.bits.br_pc | (coreInstBytes*fetchWidth-1))
   io.imem.btb_update.bits.prediction := mem_reg_btb_resp
  
   io.imem.bht_update.valid := mem_reg_valid && !take_pc_wb
   io.imem.bht_update.bits.pc := io.imem.btb_update.bits.pc
   io.imem.bht_update.bits.taken := mem_br_taken
   io.imem.bht_update.bits.mispredict := mem_wrong_npc
   io.imem.bht_update.bits.branch := mem_ctrl.branch
   io.imem.bht_update.bits.prediction := mem_reg_btb_resp.bht
  

 some key insights:

 BTB main cache may be updated 
 deterministically at MEM stage

 BHT entry and history register may be 
 updated 

   if (btbParams.bhtParams.nonEmpty) {
     val bht = new BHT(Annotated.params(this, btbParams.bhtParams.get))
     val isBranch = (idxHit & cfiType.map(_ === CFIType.branch).asUInt).orR
     val res = bht.get(io.req.bits.addr)
     when (io.bht_advance.valid) {
       bht.advanceHistory(io.bht_advance.bits.bht.taken)
     }
     when (io.bht_update.valid) {
       when (io.bht_update.bits.branch) {
         bht.updateTable(io.bht_update.bits.pc, io.bht_update.bits.prediction, 
 io.bht_update.bits.taken)
         when (io.bht_update.bits.mispredict) {
           bht.updateHistory(io.bht_update.bits.pc, io.bht_update.bits.
 prediction, io.bht_update.bits.taken)
         }
       }.elsewhen (io.bht_update.bits.mispredict) {
         bht.resetHistory(io.bht_update.bits.prediction)
       }
     }
     when (!res.taken && isBranch) { io.resp.bits.taken := false }
     io.resp.bits.bht := res
   }
  

 The original  bht response at s1 is flowed to 
 backend so that the history register can be 
 correctly restored. 

 If insn at  MEM  stage is a conditional branch, 
 we need to update the main bht entry using 
 the resolved takenality

 note that the bte entry should be indexed 
 using the original history register. The 
 subsequent instructions may be conditional 
 branch  and therefore could modify the 
 history register.

 bht.updateTable(io.bht_update.bits.pc, io.bht_update.bits.prediction, 
 io.bht_update.bits.taken)
  
   def updateTable(addr: UInt, d: BHTResp, taken: Bool): Unit = {
     wen := true
     when (!resetting) {
       waddr := index(addr, d.history)
       wdata := (params.counterLength match {
         case 1 => taken
         case 2 => Cat(taken ^ d.value(0), d.value === 1 || d.value(1) && 
 taken)
       })
     }
   }

 note that if the conditional branch is ever 
 incorrectly predicted by the bht at s1(this mis-
 prediction is determined at MEM). The history 
 register needs to be modified using the 
 correct takenality when it's resolved at MEM 

        when (io.bht_update.bits.mispredict) {
           bht.updateHistory(io.bht_update.bits.pc, io.bht_update.bits.
 prediction, io.bht_update.bits.taken)
         }

 If the insn at MEM is not a branch, but other 
 execution flow changing insns,  and a mem_
 wrong_npc is found. We need to reset the 
 history register so that the conditional branch 
 in the new fetching flow can be predicted 
 more precisely by hashing to the right bht 
 entry.

       }.elsewhen (io.bht_update.bits.mispredict) {
         bht.resetHistory(io.bht_update.bits.prediction)
       }

 Extra complexity when RVC is supported.

 when RVC is supported, since the ICache 
 always return 4Byte instruction data, It's 
 possible that this 4Byte data is 2 RVCs, or 
 1RVI, or, 1RVC and half of RVC. Therefore, 
 extra caution needs to be taken.  

 In RC impl, the returned data from icache is 
 analyzed  in 2-Byte granularity. s2_partial_
 insn_valid and s2_partial_insn are used to 
 indicate that there left half of a RVI in 
 previous cycle needs to be decoded in 
 conjunction with instruction data currently at 
 s2.

 val taken = scanInsns(0, s2_partial_insn_valid, 
 s2_partial_insn, false.B)

 scanInsns is an over-engineered iterative 
 function. Actually, it is iterated only once.

 For one iteration, it decides where this 2Byte 
 granularity goes

 it's a RVC  for a RVC, val valid = fq.io.enq.bits.mask(
 idx) && !prevRVI is always asserted.

 worth noting that the valid is also asserted if 
 the current 2-Byte granularity is the first half 
 of a RVI.

 first half of a RVI

 This half is past to  scanInsns again for 
 further processing or it is cached in s2_partial_
 insn if it's the second half of the instruction(
 idx=fetchWidth-1)

 marked by prevValid and prevBits

 the whole RVI is formed by combing this half 
 with the previous half  that is passed into this 
 round of scanInsns calling as a parameter. 

 the instruction decoding can only be 
 conducted if we have all bytes in hand.

       if (idx == fetchWidth-1) {
         when (fq.io.enq.fire()) {
           s2_partial_insn_valid := false
           when (valid && !prevTaken && !rvc) {
             s2_partial_insn_valid := true
             s2_partial_insn := bits | 0x3
           }
         }
         prevTaken || taken
       } else {
         scanInsns(idx + 1, valid, bits, prevTaken || taken)
       }

 it's worth noting that if the first half of the 
 obtained instruction data(or combined with 
 the fragment in s2_partial_insn) is a valid 
 instruction that will change the execution 
 flow(jal, jalr, or conditional branch, signal 
 taken is asserted in this case ), we should just 
 ignore the left fragment because it will be 
 skipped(see the when(!prevTaken){} clause). 
 We should not cache it in s2_partial_insn_valid 
 and s2_partial_insn either.

       val taken =
         prevRVI && (rviJump || rviJALR || 
 rviBranch && predict_taken) ||
         valid && (rvcJump || rvcJALR || rvcJR || 
 rvcBranch && predict_taken)

 If there is a ICache miss, this means icache.io.
 resp.valid will remain to be low at s2.

 fq.io.enq.valid := RegNext(s1_valid) && s2_
 valid && (icache.io.resp.valid || !s2_tlb_resp.
 miss && icache.io.s2_kill) is de-asserted in 
 this case normally. Therefore the s2_replay is 
 asserted. 

 Even though there is an ICache miss,  But if 
 the op at s2 is speculative and  we can not 
 conduct refill for a speculative request(s2_
 can_speculatively_refill is deasserted), we 
 should not refill the ICache in this situation, 
 also we should assert the fq.io.enq.valid, it's 
 confusing here. But it's worth noting that the  
 fq.io.enq.bits.replay is also asserted. This 
 means that we will replay this instruction 
 cycles later, then it may be doable to let it 
 flow to fetch queue.

 By what condition is an instruction 
 speculative

 My quick guess is that a speculative 
 instruction is an instruction that may not be 
 part of the final determined execution flow. 
 We may speculatively fetch some instruction 
 for the performance gain.

 There is a confusion here, according to io.
 imem.req.bits.speculative := !take_pc_wb
 we can see that even though a branch 
 instruction is fully resolved at MEM stage and 
 find that branch was preveiously predicted 
 wrongly in Frontend, therefore direct the 
 frontend to  re-fetch at the correct location, 
 the speculative signal is still asserted in this 
 case. I feel like this is incorrect, the branch or 
 jump has been fully resolved here at MEM, so 
 the calculated target must be the right one, 
 This target instruction should not be 
 regarded as speculative

   // consider RVC fetches across blocks to be non-speculative if 
 the first part was non-speculative
   val s0_speculative =
     if (usingCompressed) s1_speculative || s2_valid && !s2_
 speculative || predicted_taken
     else Bool(true)

 The current impl in RC is that for 
 configuration in which RVC is not supported, 
 we regard every instruction fetching being 
 speculative unless the fetch request is 
  explicitly from WB  stage.This is reasonable 
 because when we fetch an instruction at 
 Frontend, we don't know for sure that this 
 one will be finally executed.  

 But If the RVC is supported, it's possible that  
 4-byte instructions can straddle cache-line
 boundaries, we need to be able to issue a 
 miss to the next line when fetching the last 
 two bytes in the current line. Otherwise,
 we will make no progress, because the cache 
 miss will never be satisfied. Therefore, if the 
 instruction at s1 is not speculative, we regard 
 the one at s0 being none-speculative either, 
 so that the missed block can be refilled.

 https://github.com/chipsalliance/rocket-
 chip/issues/2051 

 I still have trouble figuring out the rationale 
 for s2_valid && !s2_speculative || predicted_
 taken

 another case where the refill to icache is 
 disallowed is that the corresponding tlb 
 response comes back with exceptions. In this 
 case, s2_kill is asserted, therefore fq.io.enq.
 valid is also asserted. The instruction will flow 
 to the fetch queue. The replay signal is de-
 asserted, but fq.io.enq.bits.xcpt is pulled 
 high  so that this instruction will be processed 
 further in the backend as instruction with 
 exceptions.

 ICache

 request to icache at s0, resp at s1 or s2 decided by icacheParams.latency

 case 1: conduct no parity checking. 

     case 1 =>
       require(tECC.isInstanceOf[IdentityCode])
       require(dECC.isInstanceOf[IdentityCode])
       require(outer.icacheParams.itimAddr.isEmpty)
       io.resp.bits.data := Mux1H(s1_tag_hit, s1_dout)
       io.resp.bits.ae := s1_tl_error.asUInt.orR
       io.resp.valid := s1_valid && s1_hit
  

 case 2: conduct parity checking against the 
 data 

 request from the core fired at s0, the data 
 and tag SRAM is accessed. These 2 are of 
 syncMem. The result arrives at s1. Data parity 
 checking is conducted at s2, and respond to 
 the initiator. 

 The logic for handling tl_in case lives under 
 the case 2. That means icacheParams.
 latency must be set to 2 if the ITIM mode is 
 supported.

 since the itimAddr and icacheParams.latency 
 are all scala parameters =, can we require 
 that if itimAddr is configured, the latency 
 must be 2?

 cache organization

 The cache organization of icache is a lot like 
 dcache. The data and tag are separate 
 srams. It's banked to save access energy if 
 the access width is less than refill width(tl.d 
 data width), which is often true.

 tag sram are stereotyped

   val (tag_array, omSRAM) = DescribedSRAM(
     name = "tag_array",
     desc = "ICache Tag Array",
     size = nSets,
     data = Vec(nWays, UInt(width = tECC.width(1 + 
 tagBits)))//hjr +1 for cacheing tl_out.d tilelink erros in 
 the tag sram.
   )

 note that each tag has one extra bit to store 
 if this cache block has tilelink d channel 
 error (tl_out.d.bits.corrupt)when refilling

   //hjr if refill_done is asserted, that means the tag sram will be written by refilling, 
 therefore there is a structural hazard.
   val tag_rdata = tag_array.read(s0_vaddr(untagBits-1,blockOffBits), !refill_done && s0_
 valid)
   val accruedRefillError = Reg(Bool())
   val refillError = tl_out.d.bits.corrupt || (refill_cnt > 0 && accruedRefillError)
   when (refill_done) {
     // For AccessAckData, denied => corrupt
     val enc_tag = tECC.encode(Cat(refillError, refill_tag))
     tag_array.write(refill_idx, Vec.fill(nWays)(enc_tag), Seq.tabulate(nWays)(repl_
 way === _))
  
     ccover(refillError, "D_CORRUPT", "I$ D-channel corrupt")
   }
   io.errors.bus.valid := tl_out.d.fire() && (tl_out.d.bits.denied || tl_out.d.bits.corrupt)
   io.errors.bus.bits  := (refill_paddr >> blockOffBits) << blockOffBits
  

 it's important to note that the tl_out.d.bits.
 corrupt error is also directly reported through 
 io.errors.bus signal
 And this signal will go to the BEU unit.

 the error bit stored in the tag array is used to 
 respond to the initiator that an access 
 exception happens(ae)

 val (tl_error, tag) = Split(enc_tag.uncorrected, tagBits)
  
 s1_tl_error(i) := tagMatch && tl_error.asBool
  
 val s2_tl_error = RegEnable(s1_tl_error.asUInt.orR, s1_clk_en)
  
 io.resp.bits.ae := s2_tl_error

 this ae signal will flow downwards to the 
 backend to trigger standard exception 
 handling

   val (id_xcpt, id_cause) = checkExceptions(List(
     (csr.io.interrupt, csr.io.interrupt_cause),
     (bpu.io.debug_if,  UInt(CSR.debugTriggerCause)),
     (bpu.io.xcpt_if,   UInt(Causes.breakpoint)),
     (id_xcpt0.pf.inst, UInt(Causes.fetch_page_fault)),
     (id_xcpt0.gf.inst, UInt(Causes.fetch_guest_page_fault)),
     (id_xcpt0.ae.inst, UInt(Causes.fetch_access)),
     (id_xcpt1.pf.inst, UInt(Causes.fetch_page_fault)),
     (id_xcpt1.gf.inst, UInt(Causes.fetch_guest_page_fault)),
     (id_xcpt1.ae.inst, UInt(Causes.fetch_access)),
     (id_virtual_insn,  UInt(Causes.virtual_instruction)),
     (id_illegal_insn,  UInt(Causes.illegal_instruction))))
  

 ICache is virtually indexed and physically 
 tagged, the paddr is passed from tlb at s1.  
 Hit detection process is simple. 
 But there are some extra considerations: 

 Data SRAM is banked like the one of DCache

   val data_arrays = Seq.tabulate(tl_out.d.bits.data.getWidth / 
 wordBits) {
     i =>
       DescribedSRAM(
         name = s"data_arrays_${i}",
         desc = "ICache Data Array",
         size = nSets * refillCycles,
         data = Vec(nWays, UInt(width = dECC.width(wordBits)))
       )
   }

 data sram read and write 

   //hjr L1 instruction cache is somehow banked, the same as data cache
   for (((data_array, omSRAM), i) <- data_arrays zipWithIndex) {
     def wordMatch(addr: UInt) = addr.extract(log2Ceil(tl_out.d.bits.data.getWidth/8)-1, log2Ceil(wordBits/8)) === i
     def row(addr: UInt) = addr(untagBits-1, blockOffBits-log2Ceil(refillCycles))
     val s0_ren = (s0_valid && wordMatch(s0_vaddr)) || (s0_slaveValid && wordMatch(s0_slaveAddr))
     val wen = (refill_one_beat && !invalidated) || (s3_slaveValid && wordMatch(s1s3_slaveAddr))
     val mem_idx = Mux(refill_one_beat, (refill_idx << log2Ceil(refillCycles)) | refill_cnt,
                   Mux(s3_slaveValid, row(s1s3_slaveAddr),
                   Mux(s0_slaveValid, row(s0_slaveAddr),
                   row(s0_vaddr))))
     when (wen) {
       val data = Mux(s3_slaveValid, s1s3_slaveData, tl_out.d.bits.data(wordBits*(i+1)-1, wordBits*i))
       val way = Mux(s3_slaveValid, scratchpadWay(s1s3_slaveAddr), repl_way)
       data_array.write(mem_idx, Vec.fill(nWays)(dECC.encode(data)), (0 until nWays).map(way === _))
     }
     val dout = data_array.read(mem_idx, !wen && s0_ren)
     when (wordMatch(Mux(s1_slaveValid, s1s3_slaveAddr, io.s1_paddr))) {
       s1_dout := dout
     }
   }

 each cache block is divided into rows. Each 
 row is the same width of refill width from tl_
 out.d. A row is further divided into words. 
 Each word are stored in separate bank

 note the val way = Mux(s3_slaveValid, scratchpadWay(
 s1s3_slaveAddr), repl_way), when write to the data 
 sram, if it's a refill, we just randomly choose the way 
 for the refilling word.
 But if it's a data sram write regulated by s3_slaveValid, 
 we need to obtain the specific way from 
 scratchpadWay(s1s3_slaveAddr)

 Note this works for in-place-correction of 
 cache access(not just ITIM access)

 cache refill

 errors

 ITIM

 The complexity of ICache mainly originates 
 from the ITIM mode and the on-fly 
 reconfiguration of it. The idea of ITIM is well 
 clarified in U54MC manual, but the main idea 
 is simple: we can spare some part of the 
 icache as ITIM region and mark the region as 
 always-hit. An addr range is assigned to the 
 ITIM, any accesses in that range will be 
 treated as a cache hit. We can treat  nWays-1 
 ways of ICache at maximum as ITIM Mem 
 regions, the last way of ICache should always 
 be treated as the ICache iteself. The U54MC 
 manual names this part of ICache as being 
 the control region of ITIM, who knows why... 
 Maybe it's because that write to this region 
 will cause the ITIM being deallocated and the 
 deallocated ITIM space is automatically 
 returned to the instruction cache.

 which access goes to ITIM 2 ports

 general cpu<->FrontEnd<->ICache interface

 ready-only request

 may access the ITIM memory region

 access that goes to the effective ITIM 
 memory region(see addrInScratchpad) will 
 return the corresponding data 

 access that goes above the effective ITIM 
 region, but still lays in the ITIM region range(
 including control region) will return 
 unspecified data

 access that does not lay in the ITIM region(
 Mem and Ctrl) is decided by the normal 
 cache hit detection. And may initiate a refill 
 request if a valid miss is found

 a specialized slave port tl_in

 read access that goes to the effective ITIM 
 memory region(see addrInScratchpad) will 
 return the corresponding data 

 read access that is not in the range of ITIM 
 effective memory region will return 
 unspecified data.

 write through the port can be used to 
 reconfigure the ITIM

 All these read access behavior through tl_in 
 or the general cpu<->FrontEnd<->ICache 
 interface are determined by the tag match 
 logic 

   for (i <- 0 until nWays) {
     val s1_idx = index(s1_vaddr, io.s1_paddr)
     val s1_tag = io.s1_paddr >> pgUntagBits
     val scratchpadHit = scratchpadWayValid(i) &&
       Mux(s1_slaveValid,
         lineInScratchpad(scratchpadLine(s1s3_slaveAddr)) && scratchpadWay(s1s3_
 slaveAddr) === i,
         addrInScratchpad(io.s1_paddr) && scratchpadWay(io.s1_paddr) === i)
     val s1_vb = vb_array(Cat(UInt(i), s1_idx)) && !s1_slaveValid
     val enc_tag = tECC.decode(tag_rdata(i))
     val (tl_error, tag) = Split(enc_tag.uncorrected, tagBits)
     val tagMatch = s1_vb && tag === s1_tag
     s1_tag_disparity(i) := s1_vb && enc_tag.error
     s1_tl_error(i) := tagMatch && tl_error.asBool
     s1_tag_hit(i) := tagMatch || scratchpadHit
   }

 An important note here:
 s1_tag_hit only determines whether a cache 
 access(not an ITIM access) hit in the cache. 
 An access to the ITIM(MEM or CTRL region) 
 will always hit, even though it may return 
 unspeicifed data

 val s1_hit = s1_tag_hit.reduce(_||_) || Mux(s1_slaveValid, true.B, 
 addrMaybeInScratchpad(io.s1_paddr))

 access from tl_in always "hit", but may return 
 unspecified data

 access from the general interface that goes 
 to ITIM(CTRL or MEM; See 
 addrMaybeInScratchpad(io.s1_paddr)) region 
 always hit, but may return unspecified data

 whether an access returns valid data instead 
 of unspecified one depends on if there is a 
 real hit in s1_tag_hit
 s1_hit just flows to s2, and informs the 
 initiator that an actual cache miss happens, 
 therefore a refill is needed 

 This means that an access to the ITIM region 
 no matter from general or the specialized 
 interface will never trigger a cache refill. 
 That is,  an addr that lays in the ITIM region 
 never actually hit in cache.

 addrMaybeInScratchpad

 an access that goes to the ITIM region(
 Control or Memory)

 def addrMaybeInScratchpad(addr: UInt) = scratchpadBase.map(
 base => addr >= base && addr < base + outer.size).getOrElse(
 false.B)

 addrInScratchpad

 an access that goes to the effective memory 
 region of ITIM

 def addrInScratchpad(addr: UInt) = 
 addrMaybeInScratchpad(addr) && 
 lineInScratchpad(addr(untagBits+log2Ceil(
 nWays)-1, blockOffBits))

 scratchpadWay

 def scratchpadWay(addr: UInt) = addr.extract(
 untagBits+log2Ceil(nWays)-1, untagBits)

 An very important insight to understand ITIM 
 is that extra bits in the addr are used to index 
 the specific way of the ICache:
 scratchpadWay.
 In normal cache, these bits are part of the 
 tag and  are used for tag compare, not 
 indexing.

 ITIM (re)configuration it's done by writing to the ITIM through tl_in 
 port 

         when (s0_slaveValid) {
           val a = tl.a.bits
           s1s3_slaveAddr := tl.a.bits.address
           s1s3_slaveData := tl.a.bits.data
           when (edge_in.get.hasData(a)) {
             val enable = scratchpadWayValid(scratchpadWay(a.address))
             when (!lineInScratchpad(scratchpadLine(a.address))) {
               scratchpadMax.get := scratchpadLine(a.address)
               invalidate := true
             }
             scratchpadOn := enable
  
             val itim_allocated = !scratchpadOn && enable
             val itim_deallocated = scratchpadOn && !enable
             val itim_increase = scratchpadOn && enable && scratchpadLine(a.address) > scratchpadMax.get
             val refilling = refill_valid && refill_cnt > 0
             ccover(itim_allocated, "ITIM_ALLOCATE", "ITIM allocated")
             ccover(itim_allocated && refilling, "ITIM_ALLOCATE_WHILE_REFILL", "ITIM allocated while I$ refill")
             ccover(itim_deallocated, "ITIM_DEALLOCATE", "ITIM deallocated")
             ccover(itim_deallocated && refilling, "ITIM_DEALLOCATE_WHILE_REFILL", "ITIM deallocated while I$ refill")
             ccover(itim_increase, "ITIM_SIZE_INCREASE", "ITIM size increased")
             ccover(itim_increase && refilling, "ITIM_SIZE_INCREASE_WHILE_REFILL", "ITIM size increased while I$ refill")
           }
         }
  

 A write from the tl_in port that lays in the 
 control region of ITIM(that is: the last way of 
 ICache) should turn off the ITIM mode, and 
 return these ITIM back to ICache

  val enable = scratchpadWayValid(
 scratchpadWay(a.address))
 enable is deasserted, therefore the 
 scratchpadOn will be deasserted.

 Noth that the impl in RC code base does not 
 fully support this depiction: 
 There is no wrapper like when(
 addrMaybeInScratchpad(a.address)){} around 
 the scratchpadOn := enable. This means that 
 a write from tl_in that does not even  lay in 
 ITIM memory or control region could enable 
 or disable the ITIM???

 A write from the tl_in port that exceeds the 
 current ITIM scratchpadMax but still lays in 
 the memory region of ITIM will cause the size 
 of the ITIM(indicated by scratchpadMax) 
 expanding to the scratchpadLine(a.address)

 Write to the current effective ITIM memory 
 region will do nothing special, just a 
 successful write.  Then just for curiosity: how to shrink the size 

 of the ITIM???

 From the current code base, maybe write to 
 ctrl region first, then write to a specific addr 
 in the ITIM memory region.

 A little mismatch from the U54 manual 

 The ITIM is allocated simply by
 writing to it. A store to the nth byte of the 
 ITIM memory map reallocates the first n+1 
 bytes of
 instruction cache as ITIM, rounded up to the 
 next cache block

 Only write from tl_in port can configure the 
 ITIM

 ITIM Write  Except for the configuration case, an real-hit 
 ITIM write is implemented as RMW

 Maybe the rationale for this has some thing 
 to do with the ECC granularity. See DCache 
 Documentation for further detail.

 read the stored data out, Modify bytes that 
 will be written

         when (s2_slaveValid) {
           when (edge_in.get.hasData(s1_a) || s2_data_decoded.error) { s3_slaveValid := true }
           def byteEn(i: Int) = !(edge_in.get.hasData(s1_a) && s1_a.mask(i))
           s1s3_slaveData := (0 until wordBits/8).map(i => Mux(byteEn(i), s2_data_decoded.
 corrected, s1s3_slaveData)(8*(i+1)-1, 8*i)).asUInt
         }
  

 note the when(s2_data_decoded.error){} case:
  
 this is in-place-correction like the one 
 depicted in DCache.

 This means even if it's an ITIM read, if there is 
 an ECC error found, we can correct it 

 why it's s2_data_decoded.error instead of s2_
 data_decoded.correctable 

 I don't know, but see this commit:
  
 https://github.com/chipsalliance/rocket-
 chip/commit/
 bb9d8264e279eae3c2220ce47b6a7730c11c
 940a



 Also note that in-place-correction is 
 supported even for access from the general 
 interface(no matter it's for normal cache or 
 ITIM access)

         when (!(tl.a.valid || s1_slaveValid || s2_slaveValid || respValid)
               && s2_valid && s2_data_decoded.error && !s2_tag_disparity) {
           // handle correctable errors on CPU accesses to the scratchpad.
           // if there is an in-flight slave-port access to the scratchpad,
           // report the a miss but don't correct the error (as there is
           // a structural hazard on s1s3_slaveData/s1s3_slaveAddress).
           s3_slaveValid := true
           s1s3_slaveData := s2_data_decoded.corrected
           //hjr in this case, s1s3_slaveAddr(log2Ceil(wordBits/8)-1, 0) portion of the s1s3_
 slaveAddr is meaningless for a cache correction
           s1s3_slaveAddr := s2_scratchpad_word_addr | s1s3_slaveAddr(log2Ceil(
 wordBits/8)-1, 0)
         }
  

 Note that the write to data SRAM(unless it's for 
 cache refill) no matter the reason(ITIM write from tl_
 in, s2_data_decoded.error from tl_in or the general 
 interface) are signaled via
 s3_slaveValid, s1s3_slaveData and s1s3_slaveAddr

 For the tl_in access, s1s3_slaveAddr is just 
 s1s3_slaveAddr := tl.a.bits.address

 For access from the general interface:
 s1s3_slaveAddr := s2_scratchpad_word_addr | s1s3_slaveAddr(
 log2Ceil(wordBits/8)-1, 0)

 In this case, s1s3_slaveAddr(log2Ceil(wordBits/8)-1, 0) portion of the 
 s1s3_slaveAddr is meaningless for a cache correction, word granularity!

 val s2_scratchpad_word_addr = Cat(s2_hit_way, Mux(s2_slaveValid, s1s3_
 slaveAddr, io.s2_vaddr)(untagBits-1, log2Ceil(wordBits/8)), UInt(0, 
 log2Ceil(wordBits/8)))

 (untagBits-1, log2Ceil(wordBits/8)) part of the access addr does not include the way index of an ITIM 
 access, the way  index is val s2_hit_way = OHToUInt(s2_tag_hit). This is why we have to put s2_hit_
 way in front of Mux(s2_slaveValid, s1s3_slaveAddr, io.s2_vaddr)(untagBits-1, log2Ceil(wordBits/8)), 
 UInt(0, log2Ceil(wordBits/8))

 s2_scratchpad_word_addr(more specifically 
 s2_hit_way) covers both  normal cache  and 
 ITIM access.

 s1 and s3 signals of tl_in ports are partially  
 reused.

 block newly initiated tl.a request if there is an 
 ongoing one

 tl.a.ready := !(tl_out.d.valid || s1_slaveValid || s2_slaveValid || s3_
 slaveValid || respValid || !io.clock_enabled)

 note that If an ITIM access writes to all Bytes, 
 see this commit for further info

 https://github.com/chipsalliance/rocket-
 chip/commit/
 153ee88017b66aa6842ab36bb31d88fedad98d
 be



 ITIM response  latched for 1 cycle, why???

 BTB

 main BTB

 BHT

 RAS

 These 3 modules and interconnections 
 among them are depicted in this post by me: 
 https://github.com/chipsalliance/rocket-
 chip/issues/2993 

 Refill only occurs for cache access. Access to ITIM region will 
 never trigger a refill: since s1_hit is always asserted for ITIM 
 access from any port:
 val s1_hit = s1_tag_hit.reduce(_||_) || Mux(s1_slaveValid, true.B, 
 addrMaybeInScratchpad(io.s1_paddr))

 there is only one ongoing refill transaction 
 allowed.

 Since data SRAM can be used both by 
 normal cache and ITIM, there is one signal 
 indicating whether a cache block is currently 
 used as a normal cache block or an ITIM 
 block

   val vb_array = Reg(init=Bits(0, nSets*nWays))
   when (refill_one_beat) {
     accruedRefillError := refillError
     // clear bit when refill starts so hit-under-miss doesn't 
 fetch bad data
     vb_array := vb_array.bitSet(Cat(repl_way, refill_idx), refill_
 done && !invalidated)
   }

 vb_array is only set when a cache block is 
 being refilled.

 Note that fence_i instruction will flush the 
 instruction cache. This is done by de-
 asserting the vb_array.

   val invalidate = Wire(init = io.invalidate)
   when (invalidate) {
     vb_array := Bits(0)
     invalidated := Bool(true)
   }
  

 io.invalidate will be combinationally asserted 
 if a fence.i is in WB stage

 Other situations that may cause invalidate be 
 asserted, and therefore flush all cache block.

 ITIM reconfiguration, if the access from slave 
 port goes beyond scratchpadMax

         when (s0_slaveValid) {
           val a = tl.a.bits
           s1s3_slaveAddr := tl.a.bits.address
           s1s3_slaveData := tl.a.bits.data
           when (edge_in.get.hasData(a)) {
             val enable = scratchpadWayValid(scratchpadWay(a.
 address))
             when (!lineInScratchpad(scratchpadLine(a.address))) {
               scratchpadMax.get := scratchpadLine(a.address)
               invalidate := true
             }
 ........
 }

 If there is a parity error occur for an access val s2_disparity = s2_tag_disparity || s2_data_decoded.error
 when (s2_valid && s2_disparity) { invalidate := true }

 There are error signals sending to BEU 
 through io.errors

 Note that when refilling a cache block, there 
 may be D channel error being asserted for 
 some specific reason. There is one extra bit 
 in the tag field of a cache block to stash this 
 error state. When an access hits in that block, 
 a hit is still reported to the initiator, but with 
 ae field being asserted.

       io.resp.bits.data := s2_data_decoded.uncorrected
       io.resp.bits.ae := s2_tl_error
       io.resp.bits.replay := s2_disparity
       io.resp.valid := s2_valid && s2_hit

 The pipeline will capture this exception

       io.errors.correctable.foreach { c =>
         c.valid := (s2_valid || s2_slaveValid) && s2_disparity && !s2_report_
 uncorrectable_error
         c.bits := s2_error_addr
       }
       io.errors.uncorrectable.foreach { u =>
         u.valid := s2_report_uncorrectable_error
         u.bits := s2_error_addr
       }
  

 my confusion is that s2_error_addr is always 0 
 for cache access.

   val s2_error_addr = scratchpadBase.map(base => Mux(s2_scratchpad_hit, base + 
 s2_scratchpad_word_addr, 0.U)).getOrElse(0.U)
  

 Maybe error happens for cache access are 
 reported through io.resp.ae???

 The confusion is that why there are different 
 path for ITIM and cache access in terms of 
 error handling

 According to the U54 MC manual, seems 
 only the uncorrectable ECC error of ITIM  
 access will be reported through the BEU Then where to report uncorrectable error of 

 cache access

 According to the U54 manual, if the physical 
 addr of the access is unknow, return 0 is 
 doable. But The physical addr is apparently 
 known for cache access case. 

 Error Reporting Path is just a pain in the ass 
 for me 

 Maybe there are other units that will decode 
 the returned data from icache

 Just return the raw data:
 io.resp.bits.data := s2_data_decoded.
 uncorrected

 Prefetch is supported 

   if (cacheParams.prefetch) {
     val (crosses_page, next_block) = Split(refill_paddr(pgIdxBits-1, 
 blockOffBits) +& 1, pgIdxBits-blockOffBits)
     when (tl_out.a.fire()) {
       send_hint := !hint_outstanding && io.s2_prefetch && !crosses_page
       when (send_hint) {
         send_hint := false
         hint_outstanding := true
       }
     }
     when (refill_done) {
       send_hint := false
     }
     when (tl_out.d.fire() && !refill_one_beat) {
       hint_outstanding := false
     }
  
     when (send_hint) {
       tl_out.a.valid := true
       tl_out.a.bits := edge_out.Hint(
                         fromSource = UInt(1),
                         toAddress = Cat(refill_paddr >> pgIdxBits, next_block) << 
 blockOffBits,
                         lgSize = lgCacheBlockBytes,
                         param = TLHints.PREFETCH_READ)._2
     }
  
     ccover(send_hint && !tl_out.a.ready, "PREFETCH_A_STALL", "I$ prefetch 
 blocked by A-channel")
     ccover(refill_valid && (tl_out.d.fire() && !refill_one_beat), "PREFETCH_D_
 BEFORE_MISS_D", "I$ prefetch resolves before miss")
     ccover(!refill_valid && (tl_out.d.fire() && !refill_one_beat), "PREFETCH_D_
 AFTER_MISS_D", "I$ prefetch resolves after miss")
     ccover(tl_out.a.fire() && hint_outstanding, "PREFETCH_D_AFTER_MISS_A", "
 I$ prefetch resolves after second miss")
   }

 When sending a refill request, if prefetch is 
 supported(cacheParams.prefetch), there is 
 no on-going prefetch(!hint_outstanding),  and 
 the next cache block is within the same page 
 with the current block getting refilled. We 
 should assert send_hint, then tl_out.a.valid will 
 keep asserting even after sending refill 
 request of current blcok. If tl_out.a.ready is 
 asserted, then a PREFETCH_READ request will 
 be sent.

 a lot alike

 s2_kill is asserted 

https://github.com/chipsalliance/rocket-chip/issues/2051
https://github.com/chipsalliance/rocket-chip/commit/bb9d8264e279eae3c2220ce47b6a7730c11c940a
https://github.com/chipsalliance/rocket-chip/commit/153ee88017b66aa6842ab36bb31d88fedad98dbe

