
 DCache
 Documentation

 basic spec

 write back

 write allocation? RC DCache will acquire missing blocks even
 it's a read

 write buffer 2 entires

 support MMIO The number of inflight MMIO accesses can
 be configured by nMMIOs

 supports AMO
 load reserve, store conditional

 general amos

 only support 1 ongoing acquire nMSHR=1

 VIPT cache

 normal routine

 when a memo ops reaches at s0, metaArray and dataArray(if needed) are accessed. Response from
 meta and data srams arrive at s1, meanwhile virtual to physical address translation occurs also at s1(
 DCache in RC is a VIPT cache, the tag stored inside the cache is the upper portion of the physical
 address), so the cache hit status(meta data) can be obtained in s1(comparing stored tag with the tlb
 response). Then it will flow to s2 along with other signals. At s2, whether a request will hit or miss can
 be decided, ecc decoding also occurs at this stage. If there is a cache hit, the result will be responding
 to the core at s2. If the accessed block is missed, this request will be nacked to the core, causing the
 core keeping replaying this mem op. Meanwhile, the dcache will try to acquire the missing block, also
 note that when there is another dirty blocks currently in specific way of a set where the request at s2
 is about to put the newly obtained block. That block needs to be victimized.
 The dcache also supports MMIOs, It supports multiple inflight mmios, the quantity is determined by
 nMMIOs, each mmio is identified by unique sourceIds. It's important to note that there is only one
 tilelink acquire allowed to be inflight, that is nMSHR=1.
 This is just a holistic bird view of the purpose of dcache. There are many extra utilities supported, like
 atomic operation(including load reserve and store condtion), the flushAll(Line), discardAll(line). There
 are also sophisticated symphony along different tilelink messages. The details will be clarified in
 subsequent sections of this mind graph.

 how the cache organizes itself overall

 metaArray

 val (tag_array, omSRAM) = DescribedSRAM(
 name = "tag_array",
 desc = "DCache Tag Array",
 size = nSets,
 data = Vec(nWays, metaArb.io.out.bits.
 data)
)

 an unified sram, each entry in sram includes
 meta data for nWays

 format

 class L1Metadata(implicit p: Parameters)
 extends L1HellaCacheBundle()(p) {
 val coh = new ClientMetadata
 val tag = UInt(width = tagBits)
 }

 Nothing

 Branch

 Trunk readable and writable,
 but has not been written yet.

 Dirty

 arbitration

 dataArray

 val data_arrays = Seq.tabulate(rowBits /
 subWordBits) {
 i =>
 DescribedSRAM(
 name = s"data_arrays_${i}",
 desc = "DCache Data Array",
 size = nSets * cacheBlockBytes /
 rowBytes,//hjr each data sram should be
 indexed using io.req.bits.addr >> rowOffBits
 data = Vec(nWays * (subWordBits /
 eccBits), UInt(width = encBits))
)
 }

 banked sram

 rationale: it's for reducing the D$ access
 energy when refill width is larger than the
 cpu access width

 row and word
 row is the refill width the same width as the tl_out.d.data

 each row spans over multiple word

 each sub bank includes specific word(
 indicated by wordMask(i)) of a row from all
 ways.

 write

 wordMask(i) indicates which subsram should
 be written

 In terms of data array write, each request
 comes with a row of data, the valid word is
 indicated by the wordMask(i) to signal the
 write ops for a sub SRAM

 val valid = io.req.valid && (Bool(data_arrays.
 size == 1) || io.req.bits.wordMask(i))

 wMask is write Mask for a specific ecc
 granularity in a word. Since the current
 orgnization has a specific word from all ways
 accumulate in one sub sram, We should
 specify which way this data will go
 the wMask flattens eccMask to nWays,
 whereas the eccMask for unspecified way
 has been zeroed out by io.req.bits.way_en(i):

 val wMask = if (nWays == 1) eccMask else (0
 until nWays).flatMap(i => eccMask.map(_ &&
 io.req.bits.way_en(i)))

 treat subWord == Word for now

 array.write(addr, Vec((0 until nWays).flatMap(
 i => wData)), wMaskSlice)

 read

 return data of row granularity for all ways

 the unintended word are masked out by
 wordMask.

 does not zero out unspecified ways using io.
 req.bits.way_en

 filter out the unintended way data using s1_
 data_way

 because we can not decide the destination
 way when reading dataArray at s0. The
 expected way specified by addr is read at s0,
 the result comes at s1

 For write, we know the intended way,
 therefore way_en takes effect.

 arbitration

 probe

 the process is a lot like normal access. s0->
 s1->s2

 s0:access the metaArray at s0 if probe is
 allowed.

 metaArb.io.in(6).valid := tl_out.b.valid && (!
 block_probe_for_core_progress ||
 lrscBackingOff)
 tl_out.b.ready := metaArb.io.in(6).ready && !(
 block_probe_for_core_progress || block_probe_
 for_ordering || s1_valid || s2_valid)
 metaArb.io.in(6).bits.write := false
 metaArb.io.in(6).bits.idx := probeIdx(tl_out.b.
 bits)
 metaArb.io.in(6).bits.addr := Cat(io.cpu.req.
 bits.addr >> paddrBits, tl_out.b.bits.address)
 metaArb.io.in(6).bits.way_en := metaArb.io.
 in(4).bits.way_en
 metaArb.io.in(6).bits.data := metaArb.io.in(
 4).bits.data

 s1:refactor s1_hit_state to represent the probe
 state

 val s2_probe_way = RegEnable(s1_hit_way, s1_
 probe)
 val s2_probe_state = RegEnable(s1_hit_state,
 s1_probe)

 s2:decide the reply to probe at C:ProbeAck(
 Data) and what's the new state stored in the
 cache after probing
 and transform to appropriate states after s2.

 val (s2_prb_ack_data, s2_report_param,
 probeNewCoh)= s2_probe_state.onProbe(
 probe_bits.param)

 probe FSM

 if the obtained meta data has error, we need
 to retry the probe process. s_probe_retry

 the probed block is dirty, therefore needs to
 probeAckData it back.

 s2_prb_ack_data

 the access to tagArray and dataArray are
 somehow not in sync. In terms of a probe op,
 the tagArray is accessed first, and the
 dataArray will only be accessed when
 needed: the metadata in tagArray indicates
 the corresponding data needs to be evicted,
 therefore inWriteback will be asserted,
 starting access to the dataArray(only when
 this access can win the arbitration)

 the probed block is clean
 we still need to send probeAck

 s_probe_rep_clean

 if we can send probeAck this cycle, no need to
 transform to s_probe_rep_clean
 directly go to s_probe_write_meta

 send cleanReleaseMessage

 if none of above is true, this means the
 probed Block is not in this cache

 s_probe_rep_miss

 if we can send probeAck this cycle, no need
 to transform to s_probe_rep_clean
 we don't have to update the metaData of
 thid block in this scenario, therefore we can
 directly go to s_ready

 after sending back the probeAck, the FSM
 goes to s_probe_write_meta to update the
 metaArray using probeNewCoh

 metaArb.io.in(4).valid := release_state.
 isOneOf(s_voluntary_write_meta, s_probe_
 write_meta)
 metaArb.io.in(4).bits.write := true
 metaArb.io.in(4).bits.way_en := releaseWay
 metaArb.io.in(4).bits.idx := probeIdx(probe_
 bits)
 metaArb.io.in(4).bits.addr := Cat(io.cpu.req.
 bits.addr >> untagBits, probe_bits.address(
 idxMSB, 0))
 metaArb.io.in(4).bits.data := tECC.encode(
 L1Metadata(tl_out_c.bits.address >> tagLSB,
 newCoh).asUInt)
 when (metaArb.io.in(4).fire()) { release_
 state := s_ready }

 the process path for probe and release are a
 lot alike.

 after probe or release, the metaData of that
 block should be updated
 releaseWay, probe_bits, and newCoh are
 rewired to cove these two cases.

 s_voluntary_write_meta

 s_probe_write_meta

 metaArb.io.in(4).valid := release_state.
 isOneOf(s_voluntary_write_meta, s_probe_
 write_meta)
 metaArb.io.in(4).bits.write := true
 metaArb.io.in(4).bits.way_en := releaseWay
 metaArb.io.in(4).bits.idx := probeIdx(probe_
 bits)
 metaArb.io.in(4).bits.addr := Cat(io.cpu.req.
 bits.addr >> untagBits, probe_bits.address(
 idxMSB, 0))
 metaArb.io.in(4).bits.data := tECC.encode(
 L1Metadata(tl_out_c.bits.address >> tagLSB,
 newCoh).asUInt)
 when (metaArb.io.in(4).fire()) { release_
 state := s_ready }

 when there are data needs to be evicted

 for probe, the probed block is dirty s_probe_rep_dirty

 for release, the victim block is data

 replacement block

 flushAll/Line

 s2_valid_data_error

 s_voluntary_writeback
 inWriteback access dataArray(s0->s1->s2)

 send the specified cache block row by row releaseDataBeat indicates the specific beat(
 row) that should be accessed

 val releaseDataBeat = Cat(UInt(0), c_count) +
 Mux(releaseRejected, UInt(0), s1_release_data_
 valid + Cat(UInt(0), s2_release_data_valid))

 the process is also pipelined
 s1_release_data_valid

 s2_release_data_valid

 // release
 val (c_first, c_last, releaseDone, c_count) = edge.count(tl_out_c)
 val releaseRejected = Wire(Bool())
 val s1_release_data_valid = Reg(next = dataArb.io.in(2).fire())
 val s2_release_data_valid = Reg(next = s1_release_data_valid && !
 releaseRejected)
 releaseRejected := s2_release_data_valid && !tl_out_c.fire()
 val releaseDataBeat = Cat(UInt(0), c_count) + Mux(releaseRejected, UInt(
 0), s1_release_data_valid + Cat(UInt(0), s2_release_data_valid))

 dataArb.io.in(2).valid := inWriteback && releaseDataBeat < refillCycles
 dataArb.io.in(2).bits := dataArb.io.in(1).bits
 dataArb.io.in(2).bits.write := false
 dataArb.io.in(2).bits.addr := (probeIdx(probe_bits) << blockOffBits) | (
 releaseDataBeat(log2Up(refillCycles)-1,0) << rowOffBits)
 dataArb.io.in(2).bits.wordMask := ~UInt(0, rowBytes / subWordBytes)
 dataArb.io.in(2).bits.eccMask := ~UInt(0, wordBytes / eccBytes)
 dataArb.io.in(2).bits.way_en := ~UInt(0, nWays)

 Except for the probed block is miss in the
 cache and we can send the probeAck at the
 same s2 cycle, the probe at s2 normally
 needs extra cycles to process, we need to
 nack the following mem ops in the cache
 pipeline

 when (probeNack) { s1_nack := true }

 }.otherwise {
 tl_out_c.valid := true
 probeNack := !releaseDone
 release_state := Mux(releaseDone, s_
 ready, s_probe_rep_miss)
 }

 if probeNack is deasserted, when shall it be
 asserted again???todo

 valid-ready protocol

 tl_out.b.ready := metaArb.io.in(6).ready && !(
 block_probe_for_core_progress || block_probe_
 for_ordering || s1_valid || s2_valid)

 the meta arbiter input port 6 is ready:
 metaArb.io.in(6).ready

 the pipeline stage s1 and s2 are clear

 we don't have to consider s0, because the
 probe will win arbitration against metaArb.io.
 in(7)

 !s1_valid && !s2_valid

 !block_probe_for_core_progress:
 val block_probe_for_core_progress =
 blockProbeAfterGrantCount > 0 || lrscValid

 after a cache grant is accepted, we need to
 spare some cycles to the cpu request:
 blockProbeAfterGrantCount > 0
 therefore block probe request for while.

 the blockProbeAfterGrantCount is set to
 blockProbeAfterGrantCycles - 1 when the last
 beat (d_last) of cached grant has been
 accepted

 lrscValid during a lr-sc sequence, the probe is blocked:
 simplest way to maintain coherence

 !block_probe_for_ordering
 val block_probe_for_ordering =
 releaseInFlight || block_probe_for_pending_
 release_ack || grantInProgress

 releaseInFlight:
 val releaseInFlight = s1_probe || s2_probe ||
 release_state =/= s_ready

 if there is ongoing probe or release, block
 the new probe.

 val block_probe_for_pending_release_ack =
 release_ack_wait && (tl_out.b.bits.address ^
 release_ack_addr)(((pgIdxBits + pgLevelBits)
 min paddrBits) - 1, idxLSB) === 0

 there is an ongoing release not being acked
 for the same cache block, block the probe

 grantInProgress if there is a grant not being received yet,
 block the probe.

 the condition mismatch between tl_out.b.
 ready and metaArb.io.in(6).valid

 https://github.com/chipsalliance/rocket-
 chip/pull/1999

 The arbiter valid signal is high more often
 than a probe can actually be accepted, as a
 means of preventing the core (which is the
 next-lowest priority port into the arbiter)from
 being able to initiate new accesses when a
 probe is pending. This prevents a circular-
 wait condition, because probes can't be
 accepted while the cache pipeline is busy.

 write

 store buffer
 rationale:write back cache needs extra
 cycles to perform a write:
 hit detection and then write.

 reduce latency by pipelining this

 RC impl

 there are 2 entries
 pstore1

 pstore2

 a write op that's not nacked at s1 will not just
 update s2_xx signals, but also pstore1_xx.

 val pstore1_cmd = RegEnable(s1_req.cmd, s1_valid_not_nacked && s1_write)
 val pstore1_addr = RegEnable(s1_vaddr, s1_valid_not_nacked && s1_write)
 val pstore1_data = RegEnable(io.cpu.s1_data.data, s1_valid_not_nacked && s1_write)
 val pstore1_way = RegEnable(s1_hit_way, s1_valid_not_nacked && s1_write)
 val pstore1_mask = RegEnable(s1_mask, s1_valid_not_nacked && s1_write)

 if the write op reaches s2 and is found being
 a valid hit, s2_store_valid is asserted,
 indicating the signals at pstore1 are for a
 valid write, pstore1_valid is combinationally
 asserted.

 def s2_store_valid_pre_kill = s2_valid_hit && s2_write && !s2_sc_fail
 def s2_store_valid = s2_store_valid_pre_kill && !io.cpu.s2_kill
 val pstore1_valid = s2_store_valid || pstore1_held

 the item in pstore1 may advance to pstore2
 when specific conditions are met

 val advance_pstore1 = (pstore1_valid || s2_valid_
 correct) && (pstore2_valid === pstore_drain)

 we have something to advance

 the pstore1 has valid item

 in place correction

 rationale:
 A read op will have the obtained value
 decoded at s2, if correctable error is found,
 we can use store buffer as a proxy to write
 the corrected value back to cache if some
 conditions are met.

 only available in scratchpad mode why maybe purely for tradeoffs.

 if the store buffer is not void, don't perform
 in place correction there is possible structural hazard.

 if there is a recent stored which has been
 drained, don't perform in place correction

 There is a potential RAW hazard,
 When the store buffer is not empty or there
 is a recent drained store. The subsequent
 read does not obtained the newest value that'
 s written(by a recent drained store) or will be
 written(by a write op that's currently in the
 store buffer).

 val s2_correct = s2_data_error && !any_pstore_valid && !
 RegNext(any_pstore_valid || s2_valid) && Bool(
 usingDataScratchpad)
 val s2_valid_correct = s2_valid_hit_pre_data_ecc_and_
 waw && s2_correct && !io.cpu.s2_kill
 val advance_pstore1 = (pstore1_valid || s2_valid_
 correct) && (pstore2_valid === pstore_drain)

 since the ecc is conducted at s2(same timing
 with p1), therefore the corrected data should
 be put at pstore2.

 will write op that has access width is less
 than the eccBytes also perform in place
 correction if the data read from cache for
 this write op is found error but yet
 correctable?

 from my understanding, the answer is no.

 if that write is missed in the cache, s2_valid_
 correct is false, No IPC will perform

 If that write is valid hit, when it's at s2 and
 found the data obtained is error correctable,
 the pstore1_valid is also asserted, therefore
 s2_correct is deasserted, ipc won't be
 performed.

 See this commit
 according to :any_pstore_valid := pstore1_
 held || pstore2_valid
 the any_pstore_valid is not asserted when a
 write that needs read is at s2 when the
 pstore2 is void(pstore1_held is deasserted).
 Therefore the s2_correct is asserted,
 meaning that we can ipc this.read value.
 This makes sense, because this write op will
 be nacked because assertion of s2_data_
 error, therefore only the original value stored
 in cache will be corrected, this write op will
 come again cycles later.

 As far as I can see, the ipc is just a bonus.
 Any correctable or uncorrectable error will
 be reported via specific schemes.

 conceptionally, in place correction has
 nothing to do with the eccByte>1 situation.
 But this commit changes that, the corrected
 data drives pstore1_storegen_data only when
 usingRMW If this is a bug?

 the pstore2 is void;
 Or there is valid item in pstore2 but
 meanwhile the pstore_drain is asserted,
 indicating the pstore2 will be drained out to
 cache next cycle, therefore it's reasonable to
 advance the pstore1 uitem.

 the item in pstore1 may be held still if it can
 not advance to pstore2

 pstore1_held := (s2_store_valid && !s2_store_
 merge || pstore1_held) && pstore2_valid && !
 pstore_drain

 the pstore2 can not be drained

 there is item in pstore1 that can not be
 merged with that of pstore2

 If pstore1_held is true, what about the write
 ops at s1???? Will it advance to s2(which will
 overwrite the previous write at s2 since it can
 not advance to p2）？？

 Maybe the pstore buffer will be forcefully
 drained in this scenario？ because structural
 hazard?

 If the store buffer are full(p1 and p2 are all
 valid), And drain signal is deasserted. The
 pstore1_held will keep asserting in this case. If
 there is a unsaturated write at s0, this
 unsaturated write at s0 will not cause drain
 signal asserting, because maybe there is a
 merge opportunity ahead, When it flows into
 s1 however, there is a structural hazard
 happening, therefore drain signal will be
 asserted this cycle. This will cause the
 pstore1_held being deasserted next cycle,
 indicating a new item is now in p1.
 The original p2 will be drained out, p1->p2,
 s1->p1.

 the item in pstore1 may be merged into
 pstore2

 The RC supports error detection using
 configurable scheme, like SECDEC. The ecc
 granularity can also be configured. The impl
 groups a word by ecc granularity, and apply
 ecc encoding or decoding for each sub
 chunk. This may raise an interesting issue:

 if a write op has access width less than the
 ecc granularity(maybe we should call this
 unsaturated write). Since we have to perform
 ecc encoding before writing to cache, we will
 have to read the original data stored in the
 cache, or-combined with the value to be
 written so that ecc can be rightly applied.
 Therefore, when eccByte>1, there is a
 situation we need to consider: WAW hazard:

 If an unsaturated write is at s1, and it writes
 the same ecc granularity of the same word
 with write ops in pstore1 or pstore2. This
 means the write op at s1 conducts ecc
 encoding at s2 by or-combined the written
 value and data value obtained from cache
 before the store buffer drain. This forms a
 write after write hazard, because the
 unsaturated write at s1 will wipe out the
 effects of writes in pstore buffer. Therefore，
 the original RC impl before merge is
 introduced had a very conservative draining
 criteria: the pstore buffer will be flushed if
 there is a sub word hazard.(I have trouble to
 figure out which part of legacy code that's in
 charge of this)

 WAW detection only takes effect for
 eccByte>1, If eccByte =1, then any write will
 saturate the whole ecc granularity.

 s1_waw_hazard := (if (eccBytes == 1) false.B else {
 ccover(s1_valid_not_nacked && s1_waw_hazard, "WAW_
 HAZARD", "D$ write-after-write hazard")
 s1_write && (s1_hazard || needsRead(s1_req) && !s1_did_
 read)
 })

 merge can reduced latency further by
 combining ongoing writes

 Previously before this commit, the pstore
 pipeline might be early drained.

 Before this commit:
 val pstore_drain_opportunistic = !(io.cpu.req.valid && s0_
 read)
 val pstore_drain =
 Bool(usingRMW) && pstore_drain_structural ||
 (((pstore1_valid && !pstore1_rmw) || pstore2_
 valid) && (pstore_drain_opportunistic || pstore_drain_on_
 miss))
 After this commit:
 val pstore_drain_opportunistic = !(io.cpu.req.valid && s0_
 needsRead)
 val pstore_drain = !pstore1_merge &&
 (Bool(usingRMW) && pstore_drain_structural ||
 (((pstore1_valid && !pstore1_rmw) || pstore2_
 valid) && (pstore_drain_opportunistic || pstore_drain_on_
 miss)))

 we can have a less conservative draining
 criteria if we can merge p1 and p2.

 the unsaturated writes at s0 doesn't have to
 cause the pstore buffer to drain.

 if write ops at s1 has waw hazard with p1 or
 p2, don't drain, maybe there is a merging
 oppurtunity

 val pstore_drain_opportunistic = !(io.cpu.req.
 valid && likelyNeedsRead(io.cpu.req.
 bits)) && !(s1_valid && s1_waw_hazard)

 if pstore1 and pstore2 are writes to the same
 ecc granularity of the same word. These two
 can be merged as one write into pstore2.

 s2_store_merge := (if (eccBytes == 1) false.B
 else {
 ccover(pstore1_merge, "STORE_MERGED", "
 D$ store merged")
 // only merge stores to ECC granules that
 are already stored-to, to avoid
 // WAW hazards
 val wordMatch = (eccMask(pstore2_
 storegen_mask) | ~eccMask(pstore1_mask)).
 andR
 val idxMatch = s2_vaddr(untagBits-1,
 log2Ceil(wordBytes)) === pstore2_addr(
 untagBits-1, log2Ceil(wordBytes))
 val tagMatch = (s2_hit_way & pstore2_way).
 orR
 pstore2_valid && wordMatch &&
 idxMatch && tagMatch
 })

 if the mem ops at s1 has waw hazard relation
 with that of p1 and p2, but when it's pipelined
 into p1/s2 and s2_store_merge is deasserted.
 This means that the write ops that's write
 hazarded with it has been drained(structural
 hazard???), therefore write in p1 now can not
 be merged, it should be nacked.

 val s2_valid_hit_pre_data_ecc = s2_valid_hit_
 pre_data_ecc_and_waw && (!s2_waw_hazard ||
 s2_store_merge)

 val s2_valid_hit = s2_valid_hit_pre_data_
 ecc && !s2_data_error

 io.cpu.s2_nack := s2_valid_no_xcpt && !s2_
 dont_nack_uncached && !s2_dont_nack_
 misc && !s2_valid_hit

 def s2_store_valid_pre_kill = s2_valid_hit && s2_
 write && !s2_sc_fail

 If the p1 and p2 can be merged, the effect of
 waw hazard between write op in p1 and that
 of p2 is benign. The write effect of p2 will
 not be wiped out by p1.

 the data and write mask will be merged into
 corresponding signals of p2

 val pstore2_storegen_data = {
 for (i <- 0 until wordBytes)
 yield RegEnable(pstore1_storegen_data(8*(i+1)-1, 8*i), advance_pstore1 ||
 pstore1_merge && pstore1_mask(i))
 }.asUInt
 val pstore2_storegen_mask = {
 val mask = Reg(UInt(width = wordBytes))
 when (advance_pstore1 || pstore1_merge) {
 val mergedMask = pstore1_mask | Mux(pstore1_merge, mask, 0.U)
 mask := ~Mux(s2_correct, 0.U, ~mergedMask)
 }
 mask
 }

 pstore buffer draining

 def should_pstore_drain(truly: Bool) = {
 val s2_kill = truly && io.cpu.s2_kill
 !pstore1_merge_likely &&
 (Bool(usingRMW) && pstore_drain_
 structural ||
 (((pstore1_valid_not_rmw(s2_kill) && !
 pstore1_rmw) || pstore2_valid) && (pstore_
 drain_opportunistic || pstore_drain_on_miss)))
 }
 val pstore_drain = should_pstore_drain(true)

 If the pstore1_merge_likely is asserted,
 indicating the occurring of a merge. Don't
 drain in this case.

 structural hazard Bool(usingRMW) && pstore_drain_structural

 p1 p2 are all valid, and there is write op at s1

 some ops must drain at p2(pstore1_rmw), and
 p2 now had valid item

 amo ops

 write ops whose access width is less than
 eccByte

 the in place correction case

 if usingRMW is false, then pstore_drain_
 structural will be de-effected.

 if the pstore buffer has valid item, the drain
 action will purely decided by pstore_drain_
 opportunistic or pstore_drain_on_miss

 pstore_drain_opportunistic

 if a write op is at s0, since usingRMW is false,
 this means the eccBytes=1, therefore pstore_
 drain_opportunistic is asserted.
 If there is a valid item in store buffer, drain.

 this means the store buffer will never be full?

 pstore_drain_opportunistic
 val pstore_drain_opportunistic = !(io.cpu.req.
 valid && likelyNeedsRead(io.cpu.req.
 bits)) && !(s1_valid && s1_waw_hazard)

 when usingRMW is false

 when usingRMW is true(specifically: eccByte>
 1)

 if there is an unsaturated write at s0, don't
 drain the store buffer.

 if there is write op at s1 that may be WAW
 hazarded with any items in the store buffer,
 don't drain,

 there is opportunistic merge

 pstore_drain_on_miss = releaseInFlight ||
 RegNext(io.cpu.s2_nack)

 if there is an ongoing probe or release. drain
 the store buffer first

 a miss will also cause the store buffer
 draining

 why the s2_nack is reg-ed?

 read data that's in the store buffer will cause
 that load insn being nacked.

 val s1_raw_hazard = s1_read && s1_hazard
 when (s1_valid && s1_raw_hazard) { s1_nack :=
 true }

 some write-related mem ops must be
 drained at p2

 amos

 in place correction

 unsaturated write

 the data is not ready till the end of p1

 all 3 can be processed by a generalized path

 // AMOs
 if (usingRMW) {//hjr now the in-place-correction happens only when usingRMW is true
 val amoalus = (0 until coreDataBits / xLen).map { i =>
 val amoalu = Module(new AMOALU(xLen))
 amoalu.io.mask := pstore1_mask >> (i * xBytes)
 amoalu.io.cmd := (if (usingAtomicsInCache) pstore1_cmd else M_XWR)
 amoalu.io.lhs := s2_data_word >> (i * xLen)
 amoalu.io.rhs := pstore1_data >> (i * xLen)
 amoalu
 }
 //hjr in place correction only occurs at DataScratchpad mode
 /*
 * hjr pstore1_storegen_data will drain at pstore2
 *
 * */
 pstore1_storegen_data := (if (!usingDataScratchpad) amoalus.map(_.io.out).asUInt else {
 val mask = FillInterleaved(8, Mux(s2_correct, 0.U, pstore1_mask))
 //hjr todo when usingDataScratchpad&(writeGranularity<eccByte), does the following code still work?
 //yeah
 amoalus.map(_.io.out_unmasked).asUInt & mask | s2_data_word_corrected & ~mask
 })
 } else if (!usingAtomics) {
 assert(!(s1_valid_masked && s1_read && s1_write), "unsupported D$ operation")
 }

 now the in-place-correction happens only
 when usingRMW is true. The corresponding
 logic is put inside the if()

 For in place correction for scratchpad mode,
 pstore1_storegen_data is just s2_data_word_corrected:
 _.io.out_unmasked will be masked out:
 val mask = FillInterleaved(8, Mux(s2_correct, 0.U, pstore1_mask))

 for normal amo ops. in cache mode amoalus.map(_.io.out).asUInt just contains
 the expected result.

 io.lhs is the data obtained from dcache

 io.rhs is the data carried by amo ops: another
 operand of amo

 amoalu.io.lhs := s2_data_word >> (i * xLen)
 amoalu.io.rhs := pstore1_data >> (i * xLen)

 io.out := wmask & out | ~wmask & io.lhs why the amo result has to be masked???

 normal amo ops, in scratchpad mode
 it still works!!!

 amoalus.map(_.io.out_unmasked).asUInt is
 the amo op result that's not masked yet

 amoalus.map(_.io.out_unmasked).asUInt &
 mask | s2_data_word_corrected & ~mask

 unsaturated write in dcache mode

 If io.cmd is M_XWR, the io.out is the effective part of pstore1_data(rhs) that's masked by each asserted bit in
 FillInterleaved(8, io.mask) combined(bitwise-or) with the bits of s2_data_word(io.lhs) that's ~wmask marked.
 This is vital to understand the rationale of cache read when performing a data write whose size is less than the
 ecc granularity. When eccByte>1 is supported and a write ops with size less than eccByte is performed, since
 ecc validation happens in granularity of eccByte, when only a portion of that eccByte chunk is modified, we
 need to obtain the extra portion of that chunk that's already stored in cache, and combined that portion with
 the newly modified part(bitwise-ored), and encoding this data with specified ECC scheme, and then write
 this combined chunk of data back to cache. Consequently, when we perform write with size of less-than
 eccByte, performing read is not a bonus, it's a must-do

 unsaturated write in scratch mode it still works!!!

 amoalus.map(_.io.out_unmasked).asUInt &
 mask is the effective part of pstore1_data(rhs)

 s2_data_word_corrected & ~mask is the
 stored part in the cache

 amoalu.io.cmd := (if (usingAtomicsInCache) pstore1_cmd else M_XWR)

 if usingRMW is false, this means eccBytes = 1
 and no AMO ops is supported in cache.

 In RC impl now, there is no write-related ops
 that must be drained in p2, including the in
 place correction

 originally, the in place correction is correctly
 worked even when eccByte=1. But now it
 only worked when usingRMW is true.

 val pstore1_storegen_data = Wire(init =
 pstore1_data)
 no further processing needed for pstore1_
 storegen_data

 uncached request

 If an access is decided to be an request to
 uncached regions via pma checker at s1. We
 should initiate a get/put through the A
 channel, and waiting response in D.

 val s2_pma = Reg(tlb.io.resp.cloneType)

 when (s1_valid_not_nacked || s1_flush_valid) {
 s2_req := s1_req
 s2_req.addr := s1_paddr
 s2_tlb_xcpt := tlb.io.resp
 s2_pma := Mux(s1_tlb_req_valid, pma_
 checker.io.resp, tlb.io.resp)
 }

 val s2_uncached = !s2_pma.cacheable || s2_
 req.no_alloc && !s2_pma.must_alloc && !s2_
 hit_valid

 indicating access at s2 is for uncached
 regions.

 this means this access will never hit in cache. val s2_valid_cached_miss = s2_valid_miss && !
 s2_uncached && !uncachedInFlight.asUInt.orR

 this is an indicator for a valid miss that will
 initiate an acquire message

 there is a miss s2_valid_miss

 this access is not for uncached

 there is no in flight mmio request

 If there is ongoing uncached request(
 indicated by uncachedInFlight.asUInt.orR),
 that means an unexpected uncached resp
 may come back,
 and possibly clash with the cached response(
 they both will write s2_req related signals).
 For simplicity, just disallow initiating new
 acquire transactions when there is an
 ongoing mmio request.

 The RC impl allows to initiate multiple
 ongoing mmio requests, each mmio request
 is identified via unique sourceId

 there is one port in the diplomatic client node, multiple clients
 in this port, each of them can be distingusihed by sourceId:
 clients = cacheClientParameters ++ mmioClientParameters,

 if an uncached is pending on s2, and there is
 aviliable slots in the uncachedInFlight

 val s2_valid_uncached_pending = s2_valid_
 miss && s2_uncached && !uncachedInFlight.
 asUInt.andR

 we can pull high the tl_out.a.valid, indicating
 an A channel transaction.

 tl_out_a.valid := !io.cpu.s2_kill &&
 (s2_valid_uncached_pending ||
 (s2_valid_cached_miss &&
 !(release_ack_wait && (s2_req.addr ^ release_ack_
 addr)(((pgIdxBits + pgLevelBits) min paddrBits) - 1,
 idxLSB) === 0) &&
 (cacheParams.acquireBeforeRelease && !release_ack_
 wait && release_queue_empty || !s2_victim_dirty)))

 when the A channel is fired under this
 circumstance, the corresponding slot will be
 marked as being occupied:

 // Set pending bits for outstanding TileLink
 transaction
 val a_sel = UIntToOH(a_source,
 maxUncachedInFlight+mmioOffset) >>
 mmioOffset
 when (tl_out_a.fire()) {
 when (s2_uncached) {
 (a_sel.asBools zip (uncachedInFlight zip
 uncachedReqs)) foreach { case (s, (f, r)) =>
 when (s) {
 f := Bool(true)
 r := s2_req
 r.cmd := Mux(s2_write, Mux(s2_req.
 cmd === M_PWR, M_PWR, M_XWR), M_XRD)
 }
 }
 }.otherwise {
 cached_grant_wait := true
 refill_way := s2_victim_or_hit_way
 }
 }

 corresponding slot in unCachedInFlight and
 uncachedReqs will be updated. so that when
 an uncached resp comes back, we can
 match the response to the original request

 side note here: since there is only one
 acquire allowed in terms of cache miss. We
 just have a holistic signal indicating the
 existence of an ongoing acquire(cached_
 grant_wait), and also refill_way to indicate
 which way we should put the response in the
 cache

 for an uncached request at s2, don't s2_nack
 it if it can be sent via A channel

 val s2_dont_nack_uncached = s2_valid_
 uncached_pending && tl_out_a.ready

 when the response for an uncached request
 fires at channel D

 if the uncached response carries data--for
 get therefore we need to reply this back to cpu how??

 send back data to cpu via seperate Interface therefore there is no structural hazard with
 s2_req

 val uncachedRespIdxOH = UIntToOH(tl_out.d.bits.source,
 maxUncachedInFlight+mmioOffset) >> mmioOffset
 uncachedResp := Mux1H(uncachedRespIdxOH, uncachedReqs)

 io.cpu.uncached_resp.map { resp =>
 resp.valid := tl_out.d.valid && grantIsUncachedData
 resp.bits.tag := uncachedResp.tag
 resp.bits.size := uncachedResp.size
 resp.bits.signed := uncachedResp.signed
 resp.bits.data := new LoadGen(uncachedResp.size, uncachedResp.
 signed, uncachedResp.addr, s1_uncached_data_word, false.B,
 wordBytes).data
 resp.bits.data_raw := s1_uncached_data_word
 when (grantIsUncachedData && !resp.ready) {
 tl_out.d.ready := false
 }
 }

 if the cached and uncached response share
 a single response interface to cpu

 For cached response, the s2_req will be sent
 back to cpu along with other added response
 fields.

 // cached response
 io.cpu.resp.bits <> s2_req
 io.cpu.resp.bits.has_data := s2_read
 io.cpu.resp.bits.replay := false//hjr replay
 here actually means mmio resp
 io.cpu.s2_uncached := s2_uncached && !s2_
 hit
 io.cpu.s2_paddr := s2_req.addr
 io.cpu.s2_gpa := s2_tlb_xcpt.gpa
 io.cpu.s2_gpa_is_pte := s2_tlb_xcpt.gpa_is_pte

 it's worth noting that if an access at s2 is
 found miss, the corresponding signal of that
 access will remain at s2???

 Since the uncached and cached response
 share the same response interface, therefore
 the fire of an uncahced response will cause
 s2_req being updated using the
 corresponding slots in uncachedReqs

 when (grantIsUncachedData) {
 if (!cacheParams.
 separateUncachedResp) {
 if (!cacheParams.pipelineWayMux)
 s1_data_way := 1.U << nWays
 s2_req.cmd := M_XRD
 s2_req.size := uncachedResp.size
 s2_req.signed := uncachedResp.signed
 s2_req.tag := uncachedResp.tag
 s2_req.addr := {
 require(rowOffBits >= beatOffBits)
 val dontCareBits = s1_paddr >>
 rowOffBits << rowOffBits
 dontCareBits | uncachedResp.addr(
 beatOffBits-1, 0)
 }
 s2_uncached_resp_addr :=
 uncachedResp.addr
 }
 }

 This will have a structural hazard with the
 request at s1 slot. Because normally, it's the
 signal at s1 will flow to s2.

 blockUncachedGrant

 In !separateUncachedResp case, the uncache grant will
 be blocked if there is a valid request at s1 from cpu, or :
 (grantIsUncachedData && (blockUncachedGrant || s1_
 valid))

 if (!cacheParams.separateUncachedResp) {
 // don't accept uncached grants if there's a structural hazard on s2_data...
 val blockUncachedGrant = Reg(Bool())
 blockUncachedGrant := dataArb.io.out.valid
 when (grantIsUncachedData && (blockUncachedGrant || s1_valid)) {
 tl_out.d.ready := false
 // ...but insert bubble to guarantee grant's eventual forward progress
 when (tl_out.d.valid) {
 io.cpu.req.ready := false
 //hjr todo the next 3 loc are just confusing
 dataArb.io.in(1).valid := true//hjr assert dataArb.io.in(1).valid so that the
 dataArb will never give priority to dataArb.io.in(3), that is cpu read
 dataArb.io.in(1).bits.write := false//hjr de-effect dataArb.io.in(1) operation
 blockUncachedGrant := !dataArb.io.in(1).ready//hjr todo why?
 }
 }
 }

 Reg(dataArb.io.out.valid)

 some ops that will read data Array like pstore
 drain or release dirty data. In this case, we
 just let the drain or release proceed, block
 the uncached response for cycles.

 there is a valid item in s1 now from the cpu
 core s1_valid

 概要

 But we also have to guarantee that the
 uncached response will progress eventually,
 therefore we need to insert some bubbles in
 the dcache pipeline

 where to get the uncached data surely it's in the tl_out.d.data but the timing is subtle

 at s1 muxing between data.io.resp and tl_d_data_
 encoded if pipelineWayMux is false.

 when pipelineWayMux is false, the mmio
 resp is obtained from the last item in s1_all_
 data_ways

 val s1_all_data_ways = Vec(data.io.resp ++ (!cacheParams.
 separateUncachedResp).option(tl_d_data_encoded))

 when (grantIsUncachedData) {
 if (!cacheParams.separateUncachedResp) {
 if (!cacheParams.pipelineWayMux)
 s1_data_way := 1.U << nWays
 ...
 }
 }

 since the existence of blockUncachedGrant,
 when the uncached response is able to
 progress, data.io.resp carries grabage data

 at s2
 when the pipelineWayMux is true, that
 means way mux to select among different
 ways of data.io.resp is pipeline at s2.

 the mmio resp is obtained directly from s2_
 uncached_data_word

 val s2_data_word_possibly_uncached = Mux(
 cacheParams.pipelineWayMux &&
 doUncachedResp, s2_uncached_data_word, 0.
 U) | s2_data_word

 pipelineWayMux
 * Bump to chisel 3.5.4 (https://github.com/
 chipsalliance/rocket-chip/pull/3105)

 pipelineWayMux is for pipelining the mux
 that selects effective way data among all
 ways in the data sram, retiming it to s2 so
 that the workload among cycles can be more
 balanced. It's not originally for uncached
 data.

 support Mux Pipelining even when nWays = 1
 Even though there's not really a way mux
 when nWays = 1, there's still
 a mux between the SRAM and TL.D for
 uncached load responses. It's
 sometimes profitable to pipeline that.

 replay_next

 If an uncachedData resp is fired. In RC impl,
 the uncached data will be write into
 destination register 1 cycle later at WB stage,
 Therefore, if there is a load instruction that
 has the same destination register with the
 uncachedData resp at MEM stage, there will
 be a structural hazard.
 Consequently, we assert replay_next when
 the uncachedData Resp is fired, this signal
 could kill the load at MEM that aims to the
 same destination register, preventing a
 structural hazard.

 io.cpu.resp.bits.replay

 when (doUncachedResp) {
 assert(!s2_valid_hit)
 io.cpu.resp.bits.replay := true
 io.cpu.resp.bits.addr := s2_uncached_resp_
 addr
 }

 The replay signal indicates to the core that
 this is an async uncachedData response

 clear corresponding bits in scoreboard, so
 that specific subsequent mem ops can be
 emited.

 if it doesn't carry data--for put it's wired, the mmio put does not send any
 response back to cpu??

 io.cpu.resp.valid := (s2_valid_hit_pre_data_
 ecc || doUncachedResp) && !s2_data_error

 seems that uncached data free response will
 not drive io.cpu.resp.valid high

 maybe it's ok, the core does not need any
 response to finish the mmio write(but when
 the mmio write can not fire at A, this write op
 should be nacked.)

 write ops are "wxd" free this is the same as the cache hit write.

 flushAll/flushLine

 flush line it‘s treated as normal mem ops at s0 and s1

 If the cache block intended to be flushed is
 inside the cache.

 val s2_valid_flush_line = s2_valid_hit_maybe_
 flush_pre_data_ecc_and_waw && s2_cmd_flush_
 line

 just initiates the victimization process

 if the cache block intended to be flushed is
 not inside the cache just do nothing, do not nack this "miss" even

 val s2_dont_nack_misc = s2_valid_
 masked && !s2_meta_error &&
 (supports_flush && s2_cmd_flush_all &&
 flushed && !flushing ||
 supports_flush && s2_cmd_flush_line && !
 s2_hit ||
 s2_req.cmd === M_WOK)

 because the intention of flush is just evict the
 specified cache block, if it's not inside the
 cache, the flush line ops is implictly
 successful.

 flushAll

 First, the cache only needs to be flushed if there was ever TL A channel transactions(
 indicating there are some cache blocks retrieved in the cache: when (tl_out_a.fire() && !s2_
 uncached) { flushed := false }), when a flush_all ops is detected at s2(s2_valid_masked && s2_
 cmd_flush_all), and the flush ops can be conducted(!flushed && !io.cpu.s2_kill && !release_ack_
 wait && !uncachedInFlight.asUInt.orR), the flush_all transactions will begin by firstly asserting
 flushing := true. This will fire metaArb.io.in(5).valid at s0, asking for metadata of a cache block
 specified by flushCounter(idxBits-1, 0)
 The corresponding metadata will flow to s1 and assert s1_flush_valid, note that if s1_flush_valid
 is asserted the s1_hit_state will always be Nothing:
 * val s1_meta_hit_state = ClientMetadata.onReset.fromBits(
 * s1_meta_uncorrected.map(r => Mux(r.tag === s1_tag && !s1_flush_valid, r.coh.asUInt,
 UInt(0)))
 * .reduce (_|_))
 The RC impl is slick at handling this, when flush_all ops is being handled, s1_victim_way :=
 flushCounter >> log2Up(nSets). Therefore the s1_victim_state will be the metadata positioned
 by the flushCounter(idxBits-1, 0) and flushCounter >> log2Up(nSets). This metadata is used as
 victim state under the s2_victimize scenario.

 Todo, I still struggled to figuring out the initial value of flushCounter, why it's nSets*(nWays-1)
 instead of plain 0.

 flushAll will flush all blocks inside a cache
 line by line

 lr-sc

 The lr-sc scheme is for atomic memory transaction. Refer to RISC-V spec A extension for detailed info. In short summary,
 when lr is executed on one hart, the RC implementation registers a reservation area, the subsequent sc adjacent to the earlier
 lr should only succeed if that reservation area is not "damaged" by an intermediate sc or normal memory ops of this hart or
 from other harts devices(in terms of device access, that reservation area is only damaged iff the accessed area is overlapped
 with what the specific data chunk that the lr is reading instead of the whole reservation area). When the sc fails, it will return a
 non-zero(1) to the core, and the software may have a for loop to retry the lr-sc.
 In terms of RC impl, the lr-sc is implemented mainly in D Cache, a missed lr will raise the s2_nack and replay that lr untill the
 corresponding block is refilled. Once a hit lr is met, the impl will set up a counter lrscCount and the the block addr the lr
 accesses will be registered(therefore the reservation area in RC impl is just the corresponding cache block where the lr addr
 lays), the sc will fail if
 1:the counter goes below or equals a specific value(lrscBackoff)
 2: the location that sc specifies is not in the reservation area(val lrscAddrMatch = lrscAddr === (s2_req.addr >> blockOffBits)).
 It's worth noting that when a lr instruction resets the counter lrscCount to lrscCycles - 1, all in-bound probe will be blocked to
 maintain the coherence, this is a simplified way to make sure the reservation area is not damaged by other harts.
 The reason why RC uses a counter to indicate the success of a sc instruction is a little bit confusing, my guess is that this may
 satisfy the requirement of the constrained lr-sc loop in ISA spec: the ISA A extension requires 16-insns in a LRSC sequence to
 succeed. Intuitively, blocking all in bound probe messages in a short time(lrscCount) is RC's way of maintaining the atomic
 ops.
 There are some extra note here:
 1.The RC only supports lr-sc in cacheable memory(it's not supported in DTIM mode), see this commit:
 https://github.com/chipsalliance/rocket-chip/commit/c366007a0d04193ae60988efb5d730e01333eef8
 2.The rationale of lrscBackoff being configurable and is pre-set to def lrscBackoff = 3 instead of 0 is to make sure the
 blocked probe will progress during LR storm, when a long lr-sc sequence is in the flow, the in-bound probe will be blocked
 and starve other harts. We can fail this lr-sc sequence to progress the in-bound probe, and retry this lr-sc later.
 3.The previous code base blocks the probe in the very moment when a lr is in s2. This commit
 https://github.com/chipsalliance/rocket-chip/commit/587badd5261ac6a2824f9d70fafc26f60020fb33 changes the behavior
 so that the bus is not held so aggressively, when a probe is valid when a lr is at s2, the probe will win arbitration (block_probe
 not being asserted)and the lr also successfully set the lrscCount and lrscAddr, but 2 cycles later, the lrscCount will be reset to
 0 so that this lr-sc sequence will fail for sure
 4.Echo with the requirement for a constrained lr-sc loop, any intermidate mem ops in a lr-sc sequence will fail that sequence:
 https://github.com/chipsalliance/rocket-chip/commit/28beb339437925b7d0fa8a28871f6e3e79e4f99b
 5.https://github.com/chipsalliance/rocket-chip/commit/75ee5f01df63437244079718a23d1ddde716ad13 Todo why
 lrscBackingOff is introduced? Note that only the interleaved mem ops between lr and sc will set lrscCount := lrscBackoff and
 start backing-off, during these backing off cycles, the blockProbeAfterGrantCount > 0 may be true, but metaArb.io.in(6).valid
 is still asserted (because of lrscBackingOff is asserted)to block newly initiated mem ops(todo the confusion is that why this
 blockage is needed). This is just my gibbering word

 victimization

 if the dcache gives up possession of a cache
 block(dirty or clean), the RC impl names this
 procedure as victimization

 s2_victimize situations that a block should be victimized

 val s2_want_victimize = Bool(!usingDataScratchpad) && (s2_
 valid_cached_miss || s2_valid_flush_line || s2_valid_data_error || s2_
 flush_valid)
 //hjr a kill at s2 from the core will cancel the victimization
 process, if the insn at s2 here is not a flush
 // that is to say, a flush(All) operation will never be canceled
 by core. If it goes, it goes.
 val s2_cannot_victimize = !s2_flush_valid && io.cpu.s2_kill

 first thing first, the dcache has to work under
 cache mode instead of scratchpad.

 there is indeed an cache miss. The original
 block therefore needs to be victimized.

 it's subtle here. When s2_hit is deasserted for
 a cache block, it's possible the cache block is
 actually in the cache (tag match), but the
 corresponding permission just doesn't
 mismatch: for example: the core wants write
 to the block, the cache only have Branch.
 In this situation, the s2_hit is deasserted,
 indicating we need to initiate an A channel
 acquire to obtain the expected Permission:
 NtoT. We also need to conduct the
 victimization process for this block(the
 general order is sending release first, then
 acquire once release is complete. RC impl
 provides the acquireBeforeRelease option).
 In this situation, the victim_tag, victim_way,
 victim_state is the same with the hit_tag,hit_
 way and hit_state。

 val s2_hit_valid = s2_hit_state.isValid()

 cache block that request at s2 wants to
 access may be in the cache, but there is a
 permission mismtach, in this case s2_hit is
 false, while the s2_hit_state is true.

 Not all permission mismatch will cause s2_hit
 being asserted therefore initiating A channel
 acquire. For example, a write when the cache
 block is of Trunk instead of Branch will be a
 hit, s2_update_meta will be asserted,
 modifying the corresponding permission to
 Dirty.

 val (s2_hit, s2_grow_param, s2_new_hit_state) = s2_hit_state.onAccess(s2_req.cmd)

 def onAccess(cmd: UInt): (Bool, UInt, ClientMetadata) = {
 val r = growStarter(cmd)
 (r._1, r._2, ClientMetadata(r._2))
 }

 private def growStarter(cmd: UInt): (Bool, UInt) = {
 import MemoryOpCategories._
 import TLPermissions._
 import ClientStates._
 val c = categorize(cmd)
 MuxTLookup(Cat(c, state), (Bool(false), UInt(0)), Seq(
 //(effect, am now) -> (was a hit, next)
 Cat(rd, Dirty) -> (Bool(true), Dirty),
 Cat(rd, Trunk) -> (Bool(true), Trunk),
 Cat(rd, Branch) -> (Bool(true), Branch),
 //hjr write intent doen't modify the metastate
 Cat(wi, Dirty) -> (Bool(true), Dirty),
 Cat(wi, Trunk) -> (Bool(true), Trunk),
 Cat(wr, Dirty) -> (Bool(true), Dirty),
 Cat(wr, Trunk) -> (Bool(true), Dirty),
 //(effect, am now) -> (was a miss, param)
 Cat(rd, Nothing) -> (Bool(false), NtoB),
 Cat(wi, Branch) -> (Bool(false), BtoT),
 Cat(wi, Nothing) -> (Bool(false), NtoT),
 /*
 * hjr
 * when a write request misses, that write instruction will be replayed(s2_nack sends to
 core), an acquire will be sent via A channel, the params
 * sent to downstream will be BtoT.
 *
 * */
 Cat(wr, Branch) -> (Bool(false), BtoT),
 Cat(wr, Nothing) -> (Bool(false), NtoT)))
 }

 No victimzation is needed.
 If there is just a permission mismatch that
 causes s2_hit being deasserted, the s2_
 victimize is asserted, indicating that we
 should victimize this block. But according to
 the onAccess method, this only happens
 when the current permission is ready only(
 Branch) while the attempted ops is write(or
 write intent), in this case, no victimization is
 actually needed. We only initiate the acquire
 for permission in channel A.

 Since the current permission is Branch. it's
 never dirty

 s2_victim_dirty being false. no victimization

 if the current state is Trunk, a write will
 transform the state into Dirty, In this case, s2_
 hit is actually asserted, therefore s2_victimize
 is false. Asserts s2_update_meta

 Mux(!cacheParams.silentDrop && !release_
 ack_wait && release_queue_empty && s2_
 victim_state.isValid() && (s2_valid_flush_line ||
 s2_flush_valid || s2_readwrite && !s2_hit_
 valid), s_voluntary_release,

 if noisy drop is required. This means even if a
 cache block is clean, but when the cache is
 about to victimize it, we should initiate C
 channel transactions. But in this case(Branch
 Vs. Write), no victimization is virtually
 needed, therefore no clean release is
 needed. Note the s2_readwrite && !s2_hit_
 valid

 go to s_voluntary_write_meta, updating meta

 Another case is the victimized block is
 different with the acquire block. a real miss(hit state being Nothing)

 flushLine if a intended line to be flushed is hit in the
 cache, we need to victimize that block s2_valid_flush_line

 flushAll the flushAll ops flushes all existing cache
 blocks in cache

 each of the blocks needs to be victimized.

 s2_flush_valid

 s2_valid_data_error

 if the access has a valid hit in the cache, but
 the data obtained has correctable errors. We
 should victimize this cache block,

 when the cache block is dirty, evicted the
 dirty block using corrected valud

 if the error can not be corrected, assert
 corrupt of tilelink C for each beat.

 when the cache block is clean(Branch Trunk
 Nothing), even if Noisy drop is required, don't
 initiate the clean release.

 val s2_valid_data_error = s2_valid_hit_pre_data_
 ecc_and_waw && s2_data_error

 note that uncorrectable errors will also assert
 the s2_valid_error

 val s2_cannot_victimize = !s2_flush_valid &&
 io.cpu.s2_kill

 a kill at s2 from the core will cancel the
 victimization process, if the insn at s2 here is
 not a flushAll
 that is to say, a flush(All) operation will never
 be canceled by core. If it goes, it goes.

 the general processing path for a
 victimization

 for all victimizing cases, we need to decided
 what next state of the meta data will be after
 victimization? Whether there is dirty data?
 And what specific permission parameters
 should be sent throught C channel if
 needed ?

 Essentially, the victimization is a flush: M_
 FLUSH

 val (s2_victim_dirty, s2_shrink_param, voluntaryNewCoh) = s2_victim_state.
 onCacheControl(M_FLUSH)

 def onCacheControl(cmd: UInt): (Bool, UInt, ClientMetadata) = {
 val r = shrinkHelper(cmdToPermCap(cmd))
 (r._1, r._2, ClientMetadata(r._3))
 }

 private def shrinkHelper(param: UInt): (Bool, UInt, UInt) = {
 import ClientStates._
 import TLPermissions._
 MuxTLookup(Cat(param, state), (Bool(false), UInt(0), UInt(0)), Seq(
 //(wanted, am now) -> (hasDirtyData resp, next)
 Cat(toT, Dirty) -> (Bool(true), TtoT, Trunk),
 Cat(toT, Trunk) -> (Bool(false), TtoT, Trunk),
 Cat(toT, Branch) -> (Bool(false), BtoB, Branch),
 Cat(toT, Nothing) -> (Bool(false), NtoN, Nothing),
 Cat(toB, Dirty) -> (Bool(true), TtoB, Branch),
 Cat(toB, Trunk) -> (Bool(false), TtoB, Branch), // Policy: Don't notify
 on clean downgrade
 Cat(toB, Branch) -> (Bool(false), BtoB, Branch),
 Cat(toB, Nothing) -> (Bool(false), NtoN, Nothing),
 Cat(toN, Dirty) -> (Bool(true), TtoN, Nothing),
 Cat(toN, Trunk) -> (Bool(false), TtoN, Nothing), // Policy: Don't notify
 on clean downgrade
 Cat(toN, Branch) -> (Bool(false), BtoN, Nothing), // Policy: Don't notify
 on clean downgrade
 Cat(toN, Nothing) -> (Bool(false), NtoN, Nothing)))
 }

 if the victim block is dirty s_voluntary_writeback

 if the victim block is clean, but noisy drop is
 required?

 s_voluntary_release

 there are cases that no clean release should
 be initiated even when the victimized cache
 block is clean and noisy drop is required

 Otherwise, just update the metadata using
 the voluntaryNewCoh, the effective way is
 specified by releaseWay := s2_victim_or_hit_
 way

 metaArb.io.in(4).valid := release_state.isOneOf(s_voluntary_write_meta, s_probe_
 write_meta)
 metaArb.io.in(4).bits.write := true
 metaArb.io.in(4).bits.way_en := releaseWay
 metaArb.io.in(4).bits.idx := probeIdx(probe_bits)
 metaArb.io.in(4).bits.addr := Cat(io.cpu.req.bits.addr >> untagBits, probe_bits.
 address(idxMSB, 0))
 metaArb.io.in(4).bits.data := tECC.encode(L1Metadata(tl_out_c.bits.address >>
 tagLSB, newCoh).asUInt)
 when (metaArb.io.in(4).fire()) { release_state := s_ready }

 merge is intrudced

 Both these two cases will update the meta

 I can understand no clean release is required in
 the Branch/Write permission mismatch case.
 But for the s2_valid_data_error case, if a clean

 cache block with data error is inside the cache, it'
 s reasonable to notifying to the system that the

 dcache is giving up the corresponding
 permission, therefore a clean-release is

 reasonable in this case if the noisyDrop option is
 on..

 hjr when there is a valid hit, but the retrieved
 data is incorrect(s2_valid_data_error), we need to

 victimize that entry if that entry is dirty, the
 corrected data should be sent back. If that data
 is uncorrectable, we need to assert the C channel

 corrupt field to indicate this is a corrupt beat:

 tl_out_c.bits.data := s2_data_corrected
 tl_out_c.bits.corrupt := inWriteback && s2_data_

 error_uncorrectable

https://github.com/chipsalliance/rocket-chip/commit/c00874c3702165033a3310274ce7c0ee321b2465
https://github.com/chipsalliance/rocket-chip/commit/6dba20af8a6af7b17298eedcf640d3f1b6fd3468
https://github.com/chipsalliance/rocket-chip/commit/2e8b02e780ad725934745a86ea7535651830f327
https://github.com/chipsalliance/rocket-chip/commit/2e8b02e780ad725934745a86ea7535651830f327
https://github.com/chipsalliance/rocket-chip/commit/4e893321caef2271321433c32efea9d38beec4c9

