
‎DCache
‎Documentation

‎basic spec

‎write back

‎write allocation? ‎RC DCache will acquire missing blocks even
‎it's a read

‎write buffer ‎2 entires

‎support MMIO ‎The number of inflight MMIO accesses can
‎be configured by nMMIOs

‎supports AMO
‎load reserve, store conditional

‎general amos

‎only support 1 ongoing acquire ‎nMSHR=1

‎VIPT cache

‎normal routine

‎when a memo ops reaches at s0, metaArray and dataArray(if needed) are accessed. Response from
‎meta and data srams arrive at s1, meanwhile virtual to physical address translation occurs also at s1(
‎DCache in RC is a VIPT cache, the tag stored inside the cache is the upper portion of the physical
‎address), so the cache hit status(meta data) can be obtained in s1(comparing stored tag with the tlb
‎response). Then it will flow to s2 along with other signals. At s2, whether a request will hit or miss can
‎be decided, ecc decoding also occurs at this stage. If there is a cache hit, the result will be responding
‎to the core at s2. If the accessed block is missed, this request will be nacked to the core, causing the
‎core keeping replaying this mem op. Meanwhile, the dcache will try to acquire the missing block, also
‎note that when there is another dirty blocks currently in specific way of a set where the request at s2
‎is about to put the newly obtained block. That block needs to be victimized.
‎The dcache also supports MMIOs, It supports multiple inflight mmios, the quantity is determined by
‎nMMIOs, each mmio is identified by unique sourceIds. It's important to note that there is only one
‎tilelink acquire allowed to be inflight, that is nMSHR=1.
‎This is just a holistic bird view of the purpose of dcache. There are many extra utilities supported, like
‎atomic operation(including load reserve and store condtion), the flushAll(Line), discardAll(line). There
‎are also sophisticated symphony along different tilelink messages. The details will be clarified in
‎subsequent sections of this mind graph.
‎

‎how the cache organizes itself ‎overall

‎metaArray

‎ val (tag_array, omSRAM) = DescribedSRAM(
‎ name = "tag_array",
‎ desc = "DCache Tag Array",
‎ size = nSets,
‎ data = Vec(nWays, metaArb.io.out.bits.
‎data)
‎)
‎

‎an unified sram, each entry in sram includes
‎meta data for nWays

‎format

‎class L1Metadata(implicit p: Parameters)
‎extends L1HellaCacheBundle()(p) {
‎ val coh = new ClientMetadata
‎ val tag = UInt(width = tagBits)
‎}
‎

‎Nothing

‎Branch

‎Trunk ‎readable and writable,
‎but has not been written yet.

‎Dirty

‎arbitration

‎dataArray

‎ val data_arrays = Seq.tabulate(rowBits /
‎subWordBits) {
‎ i =>
‎ DescribedSRAM(
‎ name = s"data_arrays_${i}",
‎ desc = "DCache Data Array",
‎ size = nSets * cacheBlockBytes /
‎rowBytes,//hjr each data sram should be
‎indexed using io.req.bits.addr >> rowOffBits
‎ data = Vec(nWays * (subWordBits /
‎eccBits), UInt(width = encBits))
‎)
‎ }
‎

‎banked sram

‎rationale: it's for reducing the D$ access
‎energy when refill width is larger than the
‎cpu access width

‎row and word
‎row is the refill width ‎the same width as the tl_out.d.data

‎each row spans over multiple word

‎each sub bank includes specific word(
‎indicated by wordMask(i)) of a row from all
‎ways.

‎write

‎wordMask(i) indicates which subsram should
‎be written

‎In terms of data array write, each request
‎comes with a row of data, the valid word is
‎indicated by the wordMask(i) to signal the
‎write ops for a sub SRAM

‎val valid = io.req.valid && (Bool(data_arrays.
‎size == 1) || io.req.bits.wordMask(i))

‎wMask is write Mask for a specific ecc
‎granularity in a word. Since the current
‎orgnization has a specific word from all ways
‎accumulate in one sub sram, We should
‎specify which way this data will go
‎ the wMask flattens eccMask to nWays,
‎whereas the eccMask for unspecified way
‎has been zeroed out by io.req.bits.way_en(i):

‎val wMask = if (nWays == 1) eccMask else (0
‎until nWays).flatMap(i => eccMask.map(_ &&
‎io.req.bits.way_en(i)))

‎treat subWord == Word for now

‎array.write(addr, Vec((0 until nWays).flatMap(
‎i => wData)), wMaskSlice)

‎read

‎return data of row granularity for all ways

‎the unintended word are masked out by
‎wordMask.

‎does not zero out unspecified ways using io.
‎req.bits.way_en

‎filter out the unintended way data using s1_
‎data_way

‎because we can not decide the destination
‎way when reading dataArray at s0. The
‎expected way specified by addr is read at s0,
‎the result comes at s1

‎For write, we know the intended way,
‎therefore way_en takes effect.

‎arbitration

‎probe

‎the process is a lot like normal access. s0->
‎s1->s2

‎s0:access the metaArray at s0 if probe is
‎allowed.

‎ metaArb.io.in(6).valid := tl_out.b.valid && (!
‎block_probe_for_core_progress ||
‎lrscBackingOff)
‎ tl_out.b.ready := metaArb.io.in(6).ready && !(
‎block_probe_for_core_progress || block_probe_
‎for_ordering || s1_valid || s2_valid)
‎ metaArb.io.in(6).bits.write := false
‎ metaArb.io.in(6).bits.idx := probeIdx(tl_out.b.
‎bits)
‎ metaArb.io.in(6).bits.addr := Cat(io.cpu.req.
‎bits.addr >> paddrBits, tl_out.b.bits.address)
‎ metaArb.io.in(6).bits.way_en := metaArb.io.
‎in(4).bits.way_en
‎ metaArb.io.in(6).bits.data := metaArb.io.in(
‎4).bits.data
‎

‎s1:refactor s1_hit_state to represent the probe
‎state

‎ val s2_probe_way = RegEnable(s1_hit_way, s1_
‎probe)
‎ val s2_probe_state = RegEnable(s1_hit_state,
‎s1_probe)

‎s2:decide the reply to probe at C:ProbeAck(
‎Data) and what's the new state stored in the
‎cache after probing
‎and transform to appropriate states after s2.

‎val (s2_prb_ack_data, s2_report_param,
‎probeNewCoh)= s2_probe_state.onProbe(
‎probe_bits.param)

‎probe FSM

‎if the obtained meta data has error, we need
‎to retry the probe process. ‎s_probe_retry

‎the probed block is dirty, therefore needs to
‎probeAckData it back.

‎s2_prb_ack_data

‎the access to tagArray and dataArray are
‎somehow not in sync. In terms of a probe op,
‎the tagArray is accessed first, and the
‎dataArray will only be accessed when
‎needed: the metadata in tagArray indicates
‎the corresponding data needs to be evicted,
‎therefore inWriteback will be asserted,
‎starting access to the dataArray(only when
‎this access can win the arbitration)

‎the probed block is clean
‎we still need to send probeAck

‎s_probe_rep_clean

‎if we can send probeAck this cycle, no need to
‎transform to s_probe_rep_clean
‎directly go to s_probe_write_meta

‎send cleanReleaseMessage

‎if none of above is true, this means the
‎probed Block is not in this cache

‎s_probe_rep_miss

‎if we can send probeAck this cycle, no need
‎to transform to s_probe_rep_clean
‎we don't have to update the metaData of
‎thid block in this scenario, therefore we can
‎directly go to s_ready

‎after sending back the probeAck, the FSM
‎goes to s_probe_write_meta to update the
‎metaArray using probeNewCoh

‎ metaArb.io.in(4).valid := release_state.
‎isOneOf(s_voluntary_write_meta, s_probe_
‎write_meta)
‎ metaArb.io.in(4).bits.write := true
‎ metaArb.io.in(4).bits.way_en := releaseWay
‎ metaArb.io.in(4).bits.idx := probeIdx(probe_
‎bits)
‎ metaArb.io.in(4).bits.addr := Cat(io.cpu.req.
‎bits.addr >> untagBits, probe_bits.address(
‎idxMSB, 0))
‎ metaArb.io.in(4).bits.data := tECC.encode(
‎L1Metadata(tl_out_c.bits.address >> tagLSB,
‎newCoh).asUInt)
‎ when (metaArb.io.in(4).fire()) { release_
‎state := s_ready }

‎the process path for probe and release are a
‎lot alike.

‎after probe or release, the metaData of that
‎block should be updated
‎releaseWay, probe_bits, and newCoh are
‎rewired to cove these two cases.

‎s_voluntary_write_meta

‎s_probe_write_meta

‎ metaArb.io.in(4).valid := release_state.
‎isOneOf(s_voluntary_write_meta, s_probe_
‎write_meta)
‎ metaArb.io.in(4).bits.write := true
‎ metaArb.io.in(4).bits.way_en := releaseWay
‎ metaArb.io.in(4).bits.idx := probeIdx(probe_
‎bits)
‎ metaArb.io.in(4).bits.addr := Cat(io.cpu.req.
‎bits.addr >> untagBits, probe_bits.address(
‎idxMSB, 0))
‎ metaArb.io.in(4).bits.data := tECC.encode(
‎L1Metadata(tl_out_c.bits.address >> tagLSB,
‎newCoh).asUInt)
‎ when (metaArb.io.in(4).fire()) { release_
‎state := s_ready }
‎

‎when there are data needs to be evicted

‎for probe, the probed block is dirty ‎s_probe_rep_dirty

‎for release, the victim block is data

‎replacement block

‎flushAll/Line

‎s2_valid_data_error

‎s_voluntary_writeback
‎inWriteback ‎access dataArray(s0->s1->s2)

‎send the specified cache block row by row ‎releaseDataBeat indicates the specific beat(
‎row) that should be accessed

‎val releaseDataBeat = Cat(UInt(0), c_count) +
‎Mux(releaseRejected, UInt(0), s1_release_data_
‎valid + Cat(UInt(0), s2_release_data_valid))

‎the process is also pipelined
‎s1_release_data_valid

‎s2_release_data_valid

‎ // release
‎ val (c_first, c_last, releaseDone, c_count) = edge.count(tl_out_c)
‎ val releaseRejected = Wire(Bool())
‎ val s1_release_data_valid = Reg(next = dataArb.io.in(2).fire())
‎ val s2_release_data_valid = Reg(next = s1_release_data_valid && !
‎releaseRejected)
‎ releaseRejected := s2_release_data_valid && !tl_out_c.fire()
‎ val releaseDataBeat = Cat(UInt(0), c_count) + Mux(releaseRejected, UInt(
‎0), s1_release_data_valid + Cat(UInt(0), s2_release_data_valid))
‎
‎
‎
‎dataArb.io.in(2).valid := inWriteback && releaseDataBeat < refillCycles
‎ dataArb.io.in(2).bits := dataArb.io.in(1).bits
‎ dataArb.io.in(2).bits.write := false
‎ dataArb.io.in(2).bits.addr := (probeIdx(probe_bits) << blockOffBits) | (
‎releaseDataBeat(log2Up(refillCycles)-1,0) << rowOffBits)
‎ dataArb.io.in(2).bits.wordMask := ~UInt(0, rowBytes / subWordBytes)
‎ dataArb.io.in(2).bits.eccMask := ~UInt(0, wordBytes / eccBytes)
‎ dataArb.io.in(2).bits.way_en := ~UInt(0, nWays)

‎Except for the probed block is miss in the
‎cache and we can send the probeAck at the
‎same s2 cycle, the probe at s2 normally
‎needs extra cycles to process, we need to
‎nack the following mem ops in the cache
‎pipeline

‎when (probeNack) { s1_nack := true }

‎}.otherwise {
‎ tl_out_c.valid := true
‎ probeNack := !releaseDone
‎ release_state := Mux(releaseDone, s_
‎ready, s_probe_rep_miss)
‎ }

‎if probeNack is deasserted, when shall it be
‎asserted again???todo

‎valid-ready protocol

‎tl_out.b.ready := metaArb.io.in(6).ready && !(
‎block_probe_for_core_progress || block_probe_
‎for_ordering || s1_valid || s2_valid)

‎the meta arbiter input port 6 is ready:
‎metaArb.io.in(6).ready

‎the pipeline stage s1 and s2 are clear

‎we don't have to consider s0, because the
‎probe will win arbitration against metaArb.io.
‎in(7)

‎!s1_valid && !s2_valid

‎!block_probe_for_core_progress:
‎val block_probe_for_core_progress =
‎blockProbeAfterGrantCount > 0 || lrscValid

‎after a cache grant is accepted, we need to
‎spare some cycles to the cpu request:
‎blockProbeAfterGrantCount > 0
‎therefore block probe request for while.

‎the blockProbeAfterGrantCount is set to
‎blockProbeAfterGrantCycles - 1 when the last
‎beat (d_last) of cached grant has been
‎accepted

‎lrscValid ‎during a lr-sc sequence, the probe is blocked:
‎simplest way to maintain coherence

‎!block_probe_for_ordering
‎val block_probe_for_ordering =
‎releaseInFlight || block_probe_for_pending_
‎release_ack || grantInProgress

‎releaseInFlight:
‎val releaseInFlight = s1_probe || s2_probe ||
‎release_state =/= s_ready

‎if there is ongoing probe or release, block
‎the new probe.

‎val block_probe_for_pending_release_ack =
‎release_ack_wait && (tl_out.b.bits.address ^
‎release_ack_addr)(((pgIdxBits + pgLevelBits)
‎min paddrBits) - 1, idxLSB) === 0

‎there is an ongoing release not being acked
‎for the same cache block, block the probe

‎grantInProgress ‎if there is a grant not being received yet,
‎block the probe.

‎the condition mismatch between tl_out.b.
‎ready and metaArb.io.in(6).valid

‎https://github.com/chipsalliance/rocket-
‎chip/pull/1999

‎The arbiter valid signal is high more often
‎than a probe can actually be accepted, as a
‎means of preventing the core (which is the
‎next-lowest priority port into the arbiter)from
‎being able to initiate new accesses when a
‎probe is pending. This prevents a circular-
‎wait condition, because probes can't be
‎accepted while the cache pipeline is busy.

‎write

‎store buffer
‎rationale:write back cache needs extra
‎cycles to perform a write:
‎hit detection and then write.

‎reduce latency by pipelining this

‎RC impl

‎there are 2 entries
‎pstore1

‎pstore2

‎a write op that's not nacked at s1 will not just
‎update s2_xx signals, but also pstore1_xx.

‎ val pstore1_cmd = RegEnable(s1_req.cmd, s1_valid_not_nacked && s1_write)
‎ val pstore1_addr = RegEnable(s1_vaddr, s1_valid_not_nacked && s1_write)
‎ val pstore1_data = RegEnable(io.cpu.s1_data.data, s1_valid_not_nacked && s1_write)
‎ val pstore1_way = RegEnable(s1_hit_way, s1_valid_not_nacked && s1_write)
‎ val pstore1_mask = RegEnable(s1_mask, s1_valid_not_nacked && s1_write)

‎if the write op reaches s2 and is found being
‎a valid hit, s2_store_valid is asserted,
‎indicating the signals at pstore1 are for a
‎valid write, pstore1_valid is combinationally
‎asserted.

‎def s2_store_valid_pre_kill = s2_valid_hit && s2_write && !s2_sc_fail
‎def s2_store_valid = s2_store_valid_pre_kill && !io.cpu.s2_kill
‎val pstore1_valid = s2_store_valid || pstore1_held

‎the item in pstore1 may advance to pstore2
‎when specific conditions are met

‎val advance_pstore1 = (pstore1_valid || s2_valid_
‎correct) && (pstore2_valid === pstore_drain)

‎we have something to advance

‎the pstore1 has valid item

‎in place correction

‎rationale:
‎A read op will have the obtained value
‎decoded at s2, if correctable error is found,
‎we can use store buffer as a proxy to write
‎the corrected value back to cache if some
‎conditions are met.

‎only available in scratchpad mode ‎why ‎maybe purely for tradeoffs.

‎if the store buffer is not void, don't perform
‎in place correction ‎there is possible structural hazard.

‎if there is a recent stored which has been
‎drained, don't perform in place correction

‎There is a potential RAW hazard,
‎When the store buffer is not empty or there
‎is a recent drained store. The subsequent
‎read does not obtained the newest value that'
‎s written(by a recent drained store) or will be
‎written(by a write op that's currently in the
‎store buffer).

‎val s2_correct = s2_data_error && !any_pstore_valid && !
‎RegNext(any_pstore_valid || s2_valid) && Bool(
‎usingDataScratchpad)
‎val s2_valid_correct = s2_valid_hit_pre_data_ecc_and_
‎waw && s2_correct && !io.cpu.s2_kill
‎val advance_pstore1 = (pstore1_valid || s2_valid_
‎correct) && (pstore2_valid === pstore_drain)

‎since the ecc is conducted at s2(same timing
‎with p1), therefore the corrected data should
‎be put at pstore2.

‎will write op that has access width is less
‎than the eccBytes also perform in place
‎correction if the data read from cache for
‎this write op is found error but yet
‎correctable?

‎from my understanding, the answer is no.

‎if that write is missed in the cache, s2_valid_
‎correct is false, No IPC will perform

‎If that write is valid hit, when it's at s2 and
‎found the data obtained is error correctable,
‎the pstore1_valid is also asserted, therefore
‎s2_correct is deasserted, ipc won't be
‎performed.

‎See this commit
‎according to :any_pstore_valid := pstore1_
‎held || pstore2_valid
‎the any_pstore_valid is not asserted when a
‎write that needs read is at s2 when the
‎pstore2 is void(pstore1_held is deasserted).
‎Therefore the s2_correct is asserted,
‎meaning that we can ipc this.read value.
‎This makes sense, because this write op will
‎be nacked because assertion of s2_data_
‎error, therefore only the original value stored
‎in cache will be corrected, this write op will
‎come again cycles later.
‎



‎As far as I can see, the ipc is just a bonus.
‎Any correctable or uncorrectable error will
‎be reported via specific schemes.

‎conceptionally, in place correction has
‎nothing to do with the eccByte>1 situation.
‎But this commit changes that, the corrected
‎data drives pstore1_storegen_data only when
‎usingRMW ‎If this is a bug? 

‎the pstore2 is void;
‎Or there is valid item in pstore2 but
‎meanwhile the pstore_drain is asserted,
‎indicating the pstore2 will be drained out to
‎cache next cycle, therefore it's reasonable to
‎advance the pstore1 uitem.

‎the item in pstore1 may be held still if it can
‎not advance to pstore2

‎pstore1_held := (s2_store_valid && !s2_store_
‎merge || pstore1_held) && pstore2_valid && !
‎pstore_drain

‎the pstore2 can not be drained

‎there is item in pstore1 that can not be
‎merged with that of pstore2

‎If pstore1_held is true, what about the write
‎ops at s1???? Will it advance to s2(which will
‎overwrite the previous write at s2 since it can
‎not advance to p2）？？

‎Maybe the pstore buffer will be forcefully
‎drained in this scenario？ because structural
‎hazard?

‎If the store buffer are full(p1 and p2 are all
‎valid), And drain signal is deasserted. The
‎pstore1_held will keep asserting in this case. If
‎there is a unsaturated write at s0, this
‎unsaturated write at s0 will not cause drain
‎signal asserting, because maybe there is a
‎merge opportunity ahead, When it flows into
‎s1 however, there is a structural hazard
‎happening, therefore drain signal will be
‎asserted this cycle. This will cause the
‎pstore1_held being deasserted next cycle,
‎indicating a new item is now in p1.
‎The original p2 will be drained out, p1->p2,
‎s1->p1.

‎the item in pstore1 may be merged into
‎pstore2

‎The RC supports error detection using
‎configurable scheme, like SECDEC. The ecc
‎granularity can also be configured. The impl
‎groups a word by ecc granularity, and apply
‎ecc encoding or decoding for each sub
‎chunk. This may raise an interesting issue:
‎
‎ if a write op has access width less than the
‎ecc granularity(maybe we should call this
‎unsaturated write). Since we have to perform
‎ecc encoding before writing to cache, we will
‎have to read the original data stored in the
‎cache, or-combined with the value to be
‎written so that ecc can be rightly applied.
‎Therefore, when eccByte>1, there is a
‎situation we need to consider: WAW hazard:
‎
‎If an unsaturated write is at s1, and it writes
‎the same ecc granularity of the same word
‎with write ops in pstore1 or pstore2. This
‎means the write op at s1 conducts ecc
‎encoding at s2 by or-combined the written
‎value and data value obtained from cache
‎before the store buffer drain. This forms a
‎write after write hazard, because the
‎unsaturated write at s1 will wipe out the
‎effects of writes in pstore buffer. Therefore，
‎the original RC impl before merge is
‎introduced had a very conservative draining
‎criteria: the pstore buffer will be flushed if
‎there is a sub word hazard.(I have trouble to
‎figure out which part of legacy code that's in
‎charge of this)
‎
‎

‎WAW detection only takes effect for
‎eccByte>1, If eccByte =1, then any write will
‎saturate the whole ecc granularity.

‎ s1_waw_hazard := (if (eccBytes == 1) false.B else {
‎ ccover(s1_valid_not_nacked && s1_waw_hazard, "WAW_
‎HAZARD", "D$ write-after-write hazard")
‎ s1_write && (s1_hazard || needsRead(s1_req) && !s1_did_
‎read)
‎ })

‎merge can reduced latency further by
‎combining ongoing writes 

‎Previously before this commit, the pstore
‎pipeline might be early drained. 

‎Before this commit:
‎val pstore_drain_opportunistic = !(io.cpu.req.valid && s0_
‎read)
‎val pstore_drain =
‎ Bool(usingRMW) && pstore_drain_structural ||
‎ (((pstore1_valid && !pstore1_rmw) || pstore2_
‎valid) && (pstore_drain_opportunistic || pstore_drain_on_
‎miss))
‎After this commit:
‎val pstore_drain_opportunistic = !(io.cpu.req.valid && s0_
‎needsRead)
‎ val pstore_drain = !pstore1_merge &&
‎ (Bool(usingRMW) && pstore_drain_structural ||
‎ (((pstore1_valid && !pstore1_rmw) || pstore2_
‎valid) && (pstore_drain_opportunistic || pstore_drain_on_
‎miss)))

‎we can have a less conservative draining
‎criteria if we can merge p1 and p2.

‎the unsaturated writes at s0 doesn't have to
‎cause the pstore buffer to drain.

‎if write ops at s1 has waw hazard with p1 or
‎p2, don't drain, maybe there is a merging
‎oppurtunity

‎val pstore_drain_opportunistic = !(io.cpu.req.
‎valid && likelyNeedsRead(io.cpu.req.
‎bits)) && !(s1_valid && s1_waw_hazard)

‎if pstore1 and pstore2 are writes to the same
‎ecc granularity of the same word. These two
‎can be merged as one write into pstore2.

‎ s2_store_merge := (if (eccBytes == 1) false.B
‎else {
‎ ccover(pstore1_merge, "STORE_MERGED", "
‎D$ store merged")
‎ // only merge stores to ECC granules that
‎are already stored-to, to avoid
‎ // WAW hazards
‎ val wordMatch = (eccMask(pstore2_
‎storegen_mask) | ~eccMask(pstore1_mask)).
‎andR
‎ val idxMatch = s2_vaddr(untagBits-1,
‎log2Ceil(wordBytes)) === pstore2_addr(
‎untagBits-1, log2Ceil(wordBytes))
‎ val tagMatch = (s2_hit_way & pstore2_way).
‎orR
‎ pstore2_valid && wordMatch &&
‎idxMatch && tagMatch
‎ })

‎if the mem ops at s1 has waw hazard relation
‎with that of p1 and p2, but when it's pipelined
‎into p1/s2 and s2_store_merge is deasserted.
‎This means that the write ops that's write
‎hazarded with it has been drained(structural
‎hazard???), therefore write in p1 now can not
‎be merged, it should be nacked.

‎val s2_valid_hit_pre_data_ecc = s2_valid_hit_
‎pre_data_ecc_and_waw && (!s2_waw_hazard ||
‎s2_store_merge)
‎
‎val s2_valid_hit = s2_valid_hit_pre_data_
‎ecc && !s2_data_error
‎
‎io.cpu.s2_nack := s2_valid_no_xcpt && !s2_
‎dont_nack_uncached && !s2_dont_nack_
‎misc && !s2_valid_hit
‎
‎
‎def s2_store_valid_pre_kill = s2_valid_hit && s2_
‎write && !s2_sc_fail

‎If the p1 and p2 can be merged, the effect of
‎waw hazard between write op in p1 and that
‎of p2 is benign. The write effect of p2 will
‎not be wiped out by p1.

‎the data and write mask will be merged into
‎corresponding signals of p2

‎ val pstore2_storegen_data = {
‎ for (i <- 0 until wordBytes)
‎ yield RegEnable(pstore1_storegen_data(8*(i+1)-1, 8*i), advance_pstore1 ||
‎pstore1_merge && pstore1_mask(i))
‎ }.asUInt
‎ val pstore2_storegen_mask = {
‎ val mask = Reg(UInt(width = wordBytes))
‎ when (advance_pstore1 || pstore1_merge) {
‎ val mergedMask = pstore1_mask | Mux(pstore1_merge, mask, 0.U)
‎ mask := ~Mux(s2_correct, 0.U, ~mergedMask)
‎ }
‎ mask
‎ }

‎pstore buffer draining

‎ def should_pstore_drain(truly: Bool) = {
‎ val s2_kill = truly && io.cpu.s2_kill
‎ !pstore1_merge_likely &&
‎ (Bool(usingRMW) && pstore_drain_
‎structural ||
‎ (((pstore1_valid_not_rmw(s2_kill) && !
‎pstore1_rmw) || pstore2_valid) && (pstore_
‎drain_opportunistic || pstore_drain_on_miss)))
‎ }
‎ val pstore_drain = should_pstore_drain(true)

‎If the pstore1_merge_likely is asserted,
‎indicating the occurring of a merge. Don't
‎drain in this case.

‎structural hazard ‎Bool(usingRMW) && pstore_drain_structural

‎p1 p2 are all valid, and there is write op at s1

‎some ops must drain at p2(pstore1_rmw), and
‎p2 now had valid item

‎amo ops

‎write ops whose access width is less than
‎eccByte

‎the in place correction case

‎if usingRMW is false, then pstore_drain_
‎structural will be de-effected.

‎if the pstore buffer has valid item, the drain
‎action will purely decided by pstore_drain_
‎opportunistic or pstore_drain_on_miss

‎pstore_drain_opportunistic

‎if a write op is at s0, since usingRMW is false,
‎this means the eccBytes=1, therefore pstore_
‎drain_opportunistic is asserted.
‎If there is a valid item in store buffer, drain.

‎this means the store buffer will never be full?

‎pstore_drain_opportunistic
‎val pstore_drain_opportunistic = !(io.cpu.req.
‎valid && likelyNeedsRead(io.cpu.req.
‎bits)) && !(s1_valid && s1_waw_hazard)

‎when usingRMW is false

‎when usingRMW is true(specifically: eccByte>
‎1)

‎if there is an unsaturated write at s0, don't
‎drain the store buffer.

‎if there is write op at s1 that may be WAW
‎hazarded with any items in the store buffer,
‎don't drain,

‎there is opportunistic merge

‎pstore_drain_on_miss = releaseInFlight ||
‎RegNext(io.cpu.s2_nack)

‎if there is an ongoing probe or release. drain
‎the store buffer first

‎a miss will also cause the store buffer
‎draining

‎why the s2_nack is reg-ed?

‎read data that's in the store buffer will cause
‎that load insn being nacked.

‎val s1_raw_hazard = s1_read && s1_hazard
‎when (s1_valid && s1_raw_hazard) { s1_nack :=
‎true }

‎some write-related mem ops must be
‎drained at p2

‎amos

‎in place correction

‎unsaturated write

‎the data is not ready till the end of p1

‎all 3 can be processed by a generalized path

‎ // AMOs
‎ if (usingRMW) {//hjr now the in-place-correction happens only when usingRMW is true
‎ val amoalus = (0 until coreDataBits / xLen).map { i =>
‎ val amoalu = Module(new AMOALU(xLen))
‎ amoalu.io.mask := pstore1_mask >> (i * xBytes)
‎ amoalu.io.cmd := (if (usingAtomicsInCache) pstore1_cmd else M_XWR)
‎ amoalu.io.lhs := s2_data_word >> (i * xLen)
‎ amoalu.io.rhs := pstore1_data >> (i * xLen)
‎ amoalu
‎ }
‎ //hjr in place correction only occurs at DataScratchpad mode
‎ /*
‎ * hjr pstore1_storegen_data will drain at pstore2
‎ *
‎ * */
‎ pstore1_storegen_data := (if (!usingDataScratchpad) amoalus.map(_.io.out).asUInt else {
‎ val mask = FillInterleaved(8, Mux(s2_correct, 0.U, pstore1_mask))
‎ //hjr todo when usingDataScratchpad&(writeGranularity<eccByte), does the following code still work?
‎ //yeah
‎ amoalus.map(_.io.out_unmasked).asUInt & mask | s2_data_word_corrected & ~mask
‎ })
‎ } else if (!usingAtomics) {
‎ assert(!(s1_valid_masked && s1_read && s1_write), "unsupported D$ operation")
‎ }

‎now the in-place-correction happens only
‎when usingRMW is true. The corresponding
‎logic is put inside the if()

‎For in place correction for scratchpad mode,
‎pstore1_storegen_data is just s2_data_word_corrected:
‎_.io.out_unmasked will be masked out:
‎val mask = FillInterleaved(8, Mux(s2_correct, 0.U, pstore1_mask))

‎for normal amo ops. in cache mode ‎amoalus.map(_.io.out).asUInt just contains
‎the expected result.

‎io.lhs is the data obtained from dcache

‎io.rhs is the data carried by amo ops: another
‎operand of amo

‎amoalu.io.lhs := s2_data_word >> (i * xLen)
‎amoalu.io.rhs := pstore1_data >> (i * xLen)
‎
‎io.out := wmask & out | ~wmask & io.lhs ‎why the amo result has to be masked???

‎normal amo ops, in scratchpad mode
‎it still works!!!

‎amoalus.map(_.io.out_unmasked).asUInt is
‎the amo op result that's not masked yet

‎amoalus.map(_.io.out_unmasked).asUInt &
‎mask | s2_data_word_corrected & ~mask

‎unsaturated write in dcache mode

‎ If io.cmd is M_XWR, the io.out is the effective part of pstore1_data(rhs) that's masked by each asserted bit in
‎FillInterleaved(8, io.mask) combined(bitwise-or) with the bits of s2_data_word(io.lhs) that's ~wmask marked.
‎This is vital to understand the rationale of cache read when performing a data write whose size is less than the
‎ecc granularity. When eccByte>1 is supported and a write ops with size less than eccByte is performed, since
‎ecc validation happens in granularity of eccByte, when only a portion of that eccByte chunk is modified, we
‎need to obtain the extra portion of that chunk that's already stored in cache, and combined that portion with
‎the newly modified part(bitwise-ored), and encoding this data with specified ECC scheme, and then write
‎this combined chunk of data back to cache. Consequently, when we perform write with size of less-than
‎eccByte, performing read is not a bonus, it's a must-do

‎unsaturated write in scratch mode ‎it still works!!!

‎amoalus.map(_.io.out_unmasked).asUInt &
‎mask is the effective part of pstore1_data(rhs)

‎s2_data_word_corrected & ~mask is the
‎stored part in the cache

‎amoalu.io.cmd := (if (usingAtomicsInCache) pstore1_cmd else M_XWR)

‎if usingRMW is false, this means eccBytes = 1
‎and no AMO ops is supported in cache.
‎

‎In RC impl now, there is no write-related ops
‎that must be drained in p2, including the in
‎place correction

‎originally, the in place correction is correctly
‎worked even when eccByte=1. But now it
‎only worked when usingRMW is true.

‎val pstore1_storegen_data = Wire(init =
‎pstore1_data)
‎ no further processing needed for pstore1_
‎storegen_data

‎uncached request

‎If an access is decided to be an request to
‎uncached regions via pma checker at s1. We
‎should initiate a get/put through the A
‎channel, and waiting response in D.

‎val s2_pma = Reg(tlb.io.resp.cloneType)
‎
‎
‎ when (s1_valid_not_nacked || s1_flush_valid) {
‎ s2_req := s1_req
‎ s2_req.addr := s1_paddr
‎ s2_tlb_xcpt := tlb.io.resp
‎ s2_pma := Mux(s1_tlb_req_valid, pma_
‎checker.io.resp, tlb.io.resp)
‎ }

‎val s2_uncached = !s2_pma.cacheable || s2_
‎req.no_alloc && !s2_pma.must_alloc && !s2_
‎hit_valid

‎indicating access at s2 is for uncached
‎regions.

‎this means this access will never hit in cache.‎val s2_valid_cached_miss = s2_valid_miss && !
‎s2_uncached && !uncachedInFlight.asUInt.orR

‎this is an indicator for a valid miss that will
‎initiate an acquire message

‎there is a miss‎s2_valid_miss

‎this access is not for uncached

‎there is no in flight mmio request

‎If there is ongoing uncached request(
‎indicated by uncachedInFlight.asUInt.orR),
‎that means an unexpected uncached resp
‎may come back,
‎and possibly clash with the cached response(
‎they both will write s2_req related signals).
‎For simplicity, just disallow initiating new
‎acquire transactions when there is an
‎ongoing mmio request.

‎The RC impl allows to initiate multiple
‎ongoing mmio requests, each mmio request
‎is identified via unique sourceId

‎there is one port in the diplomatic client node, multiple clients
‎in this port, each of them can be distingusihed by sourceId:
‎clients = cacheClientParameters ++ mmioClientParameters,

‎if an uncached is pending on s2, and there is
‎aviliable slots in the uncachedInFlight

‎val s2_valid_uncached_pending = s2_valid_
‎miss && s2_uncached && !uncachedInFlight.
‎asUInt.andR

‎we can pull high the tl_out.a.valid, indicating
‎an A channel transaction.

‎

‎ tl_out_a.valid := !io.cpu.s2_kill &&
‎ (s2_valid_uncached_pending ||
‎ (s2_valid_cached_miss &&
‎ !(release_ack_wait && (s2_req.addr ^ release_ack_
‎addr)(((pgIdxBits + pgLevelBits) min paddrBits) - 1,
‎idxLSB) === 0) &&
‎ (cacheParams.acquireBeforeRelease && !release_ack_
‎wait && release_queue_empty || !s2_victim_dirty)))

‎when the A channel is fired under this
‎circumstance, the corresponding slot will be
‎marked as being occupied:

‎ // Set pending bits for outstanding TileLink
‎transaction
‎ val a_sel = UIntToOH(a_source,
‎maxUncachedInFlight+mmioOffset) >>
‎mmioOffset
‎ when (tl_out_a.fire()) {
‎ when (s2_uncached) {
‎ (a_sel.asBools zip (uncachedInFlight zip
‎uncachedReqs)) foreach { case (s, (f, r)) =>
‎ when (s) {
‎ f := Bool(true)
‎ r := s2_req
‎ r.cmd := Mux(s2_write, Mux(s2_req.
‎cmd === M_PWR, M_PWR, M_XWR), M_XRD)
‎ }
‎ }
‎ }.otherwise {
‎ cached_grant_wait := true
‎ refill_way := s2_victim_or_hit_way
‎ }
‎ }
‎

‎ corresponding slot in unCachedInFlight and
‎uncachedReqs will be updated. so that when
‎an uncached resp comes back, we can
‎match the response to the original request

‎side note here: since there is only one
‎acquire allowed in terms of cache miss. We
‎just have a holistic signal indicating the
‎existence of an ongoing acquire(cached_
‎grant_wait), and also refill_way to indicate
‎which way we should put the response in the
‎cache

‎for an uncached request at s2, don't s2_nack
‎it if it can be sent via A channel

‎val s2_dont_nack_uncached = s2_valid_
‎uncached_pending && tl_out_a.ready

‎when the response for an uncached request
‎fires at channel D

‎if the uncached response carries data--for
‎get‎therefore we need to reply this back to cpu‎how??

‎send back data to cpu via seperate Interface‎therefore there is no structural hazard with
‎s2_req

‎ val uncachedRespIdxOH = UIntToOH(tl_out.d.bits.source,
‎maxUncachedInFlight+mmioOffset) >> mmioOffset
‎ uncachedResp := Mux1H(uncachedRespIdxOH, uncachedReqs)
‎
‎
‎io.cpu.uncached_resp.map { resp =>
‎ resp.valid := tl_out.d.valid && grantIsUncachedData
‎ resp.bits.tag := uncachedResp.tag
‎ resp.bits.size := uncachedResp.size
‎ resp.bits.signed := uncachedResp.signed
‎ resp.bits.data := new LoadGen(uncachedResp.size, uncachedResp.
‎signed, uncachedResp.addr, s1_uncached_data_word, false.B,
‎wordBytes).data
‎ resp.bits.data_raw := s1_uncached_data_word
‎ when (grantIsUncachedData && !resp.ready) {
‎ tl_out.d.ready := false
‎ }
‎ }

‎if the cached and uncached response share
‎a single response interface to cpu

‎For cached response, the s2_req will be sent
‎back to cpu along with other added response
‎fields.

‎ // cached response
‎ io.cpu.resp.bits <> s2_req
‎ io.cpu.resp.bits.has_data := s2_read
‎ io.cpu.resp.bits.replay := false//hjr replay
‎here actually means mmio resp
‎ io.cpu.s2_uncached := s2_uncached && !s2_
‎hit
‎ io.cpu.s2_paddr := s2_req.addr
‎ io.cpu.s2_gpa := s2_tlb_xcpt.gpa
‎ io.cpu.s2_gpa_is_pte := s2_tlb_xcpt.gpa_is_pte
‎

‎it's worth noting that if an access at s2 is
‎found miss, the corresponding signal of that
‎access will remain at s2???

‎Since the uncached and cached response
‎share the same response interface, therefore
‎the fire of an uncahced response will cause
‎s2_req being updated using the
‎corresponding slots in uncachedReqs

‎ when (grantIsUncachedData) {
‎ if (!cacheParams.
‎separateUncachedResp) {
‎ if (!cacheParams.pipelineWayMux)
‎ s1_data_way := 1.U << nWays
‎ s2_req.cmd := M_XRD
‎ s2_req.size := uncachedResp.size
‎ s2_req.signed := uncachedResp.signed
‎ s2_req.tag := uncachedResp.tag
‎ s2_req.addr := {
‎ require(rowOffBits >= beatOffBits)
‎ val dontCareBits = s1_paddr >>
‎rowOffBits << rowOffBits
‎ dontCareBits | uncachedResp.addr(
‎beatOffBits-1, 0)
‎ }
‎ s2_uncached_resp_addr :=
‎uncachedResp.addr
‎ }
‎ }

‎This will have a structural hazard with the
‎request at s1 slot. Because normally, it's the
‎signal at s1 will flow to s2.

‎blockUncachedGrant
‎
‎In !separateUncachedResp case, the uncache grant will
‎be blocked if there is a valid request at s1 from cpu, or :
‎(grantIsUncachedData && (blockUncachedGrant || s1_
‎valid))

‎ if (!cacheParams.separateUncachedResp) {
‎ // don't accept uncached grants if there's a structural hazard on s2_data...
‎ val blockUncachedGrant = Reg(Bool())
‎ blockUncachedGrant := dataArb.io.out.valid
‎ when (grantIsUncachedData && (blockUncachedGrant || s1_valid)) {
‎ tl_out.d.ready := false
‎ // ...but insert bubble to guarantee grant's eventual forward progress
‎ when (tl_out.d.valid) {
‎ io.cpu.req.ready := false
‎ //hjr todo the next 3 loc are just confusing
‎ dataArb.io.in(1).valid := true//hjr assert dataArb.io.in(1).valid so that the
‎dataArb will never give priority to dataArb.io.in(3), that is cpu read
‎ dataArb.io.in(1).bits.write := false//hjr de-effect dataArb.io.in(1) operation
‎ blockUncachedGrant := !dataArb.io.in(1).ready//hjr todo why?
‎ }
‎ }
‎ }

‎Reg(dataArb.io.out.valid)

‎some ops that will read data Array like pstore
‎drain or release dirty data. In this case, we
‎just let the drain or release proceed, block
‎the uncached response for cycles.

‎there is a valid item in s1 now from the cpu
‎core‎s1_valid

‎概要

‎But we also have to guarantee that the
‎uncached response will progress eventually,
‎therefore we need to insert some bubbles in
‎the dcache pipeline

‎where to get the uncached data‎surely it's in the tl_out.d.data‎but the timing is subtle

‎at s1‎muxing between data.io.resp and tl_d_data_
‎encoded if pipelineWayMux is false.

‎when pipelineWayMux is false, the mmio
‎resp is obtained from the last item in s1_all_
‎data_ways

‎val s1_all_data_ways = Vec(data.io.resp ++ (!cacheParams.
‎separateUncachedResp).option(tl_d_data_encoded))
‎
‎ when (grantIsUncachedData) {
‎ if (!cacheParams.separateUncachedResp) {
‎ if (!cacheParams.pipelineWayMux)
‎ s1_data_way := 1.U << nWays
‎...
‎}
‎}

‎since the existence of blockUncachedGrant,
‎when the uncached response is able to
‎progress, data.io.resp carries grabage data

‎at s2
‎when the pipelineWayMux is true, that
‎means way mux to select among different
‎ways of data.io.resp is pipeline at s2.

‎the mmio resp is obtained directly from s2_
‎uncached_data_word

‎val s2_data_word_possibly_uncached = Mux(
‎cacheParams.pipelineWayMux &&
‎doUncachedResp, s2_uncached_data_word, 0.
‎U) | s2_data_word

‎pipelineWayMux
‎* Bump to chisel 3.5.4 (https://github.com/
‎chipsalliance/rocket-chip/pull/3105)
‎

‎pipelineWayMux is for pipelining the mux
‎that selects effective way data among all
‎ways in the data sram, retiming it to s2 so
‎that the workload among cycles can be more
‎balanced. It's not originally for uncached
‎data.

‎support Mux Pipelining even when nWays = 1
‎Even though there's not really a way mux
‎when nWays = 1, there's still
‎a mux between the SRAM and TL.D for
‎uncached load responses. It's
‎sometimes profitable to pipeline that.



‎replay_next

‎If an uncachedData resp is fired. In RC impl,
‎the uncached data will be write into
‎destination register 1 cycle later at WB stage,
‎Therefore, if there is a load instruction that
‎has the same destination register with the
‎uncachedData resp at MEM stage, there will
‎be a structural hazard.
‎Consequently, we assert replay_next when
‎the uncachedData Resp is fired, this signal
‎could kill the load at MEM that aims to the
‎same destination register, preventing a
‎structural hazard.

‎io.cpu.resp.bits.replay

‎ when (doUncachedResp) {
‎ assert(!s2_valid_hit)
‎ io.cpu.resp.bits.replay := true
‎ io.cpu.resp.bits.addr := s2_uncached_resp_
‎addr
‎ }
‎

‎The replay signal indicates to the core that
‎this is an async uncachedData response

‎clear corresponding bits in scoreboard, so
‎that specific subsequent mem ops can be
‎emited.

‎if it doesn't carry data--for put‎it's wired, the mmio put does not send any
‎response back to cpu??

‎io.cpu.resp.valid := (s2_valid_hit_pre_data_
‎ecc || doUncachedResp) && !s2_data_error

‎seems that uncached data free response will
‎not drive io.cpu.resp.valid high

‎maybe it's ok, the core does not need any
‎response to finish the mmio write(but when
‎the mmio write can not fire at A, this write op
‎should be nacked.)

‎write ops are "wxd" free‎this is the same as the cache hit write.

‎flushAll/flushLine

‎flush line‎it‘s treated as normal mem ops at s0 and s1

‎If the cache block intended to be flushed is
‎inside the cache.

‎val s2_valid_flush_line = s2_valid_hit_maybe_
‎flush_pre_data_ecc_and_waw && s2_cmd_flush_
‎line

‎just initiates the victimization process

‎if the cache block intended to be flushed is
‎not inside the cache ‎just do nothing, do not nack this "miss" even

‎ val s2_dont_nack_misc = s2_valid_
‎masked && !s2_meta_error &&
‎ (supports_flush && s2_cmd_flush_all &&
‎flushed && !flushing ||
‎ supports_flush && s2_cmd_flush_line && !
‎s2_hit ||
‎ s2_req.cmd === M_WOK)

‎because the intention of flush is just evict the
‎specified cache block, if it's not inside the
‎cache, the flush line ops is implictly
‎successful.

‎flushAll

‎First, the cache only needs to be flushed if there was ever TL A channel transactions(
‎indicating there are some cache blocks retrieved in the cache: when (tl_out_a.fire() && !s2_
‎uncached) { flushed := false }), when a flush_all ops is detected at s2(s2_valid_masked && s2_
‎cmd_flush_all), and the flush ops can be conducted(!flushed && !io.cpu.s2_kill && !release_ack_
‎wait && !uncachedInFlight.asUInt.orR), the flush_all transactions will begin by firstly asserting
‎flushing := true. This will fire metaArb.io.in(5).valid at s0, asking for metadata of a cache block
‎specified by flushCounter(idxBits-1, 0)
‎The corresponding metadata will flow to s1 and assert s1_flush_valid, note that if s1_flush_valid
‎is asserted the s1_hit_state will always be Nothing:
‎ * val s1_meta_hit_state = ClientMetadata.onReset.fromBits(
‎ * s1_meta_uncorrected.map(r => Mux(r.tag === s1_tag && !s1_flush_valid, r.coh.asUInt,
‎UInt(0)))
‎ * .reduce (_|_))
‎The RC impl is slick at handling this, when flush_all ops is being handled, s1_victim_way :=
‎flushCounter >> log2Up(nSets). Therefore the s1_victim_state will be the metadata positioned
‎by the flushCounter(idxBits-1, 0) and flushCounter >> log2Up(nSets). This metadata is used as
‎victim state under the s2_victimize scenario.
‎
‎ Todo, I still struggled to figuring out the initial value of flushCounter, why it's nSets*(nWays-1)
‎instead of plain 0.

‎flushAll will flush all blocks inside a cache
‎line by line

‎lr-sc

‎The lr-sc scheme is for atomic memory transaction. Refer to RISC-V spec A extension for detailed info. In short summary,
‎when lr is executed on one hart, the RC implementation registers a reservation area, the subsequent sc adjacent to the earlier
‎lr should only succeed if that reservation area is not "damaged" by an intermediate sc or normal memory ops of this hart or
‎from other harts devices(in terms of device access, that reservation area is only damaged iff the accessed area is overlapped
‎with what the specific data chunk that the lr is reading instead of the whole reservation area). When the sc fails, it will return a
‎non-zero(1) to the core, and the software may have a for loop to retry the lr-sc.
‎In terms of RC impl, the lr-sc is implemented mainly in D Cache, a missed lr will raise the s2_nack and replay that lr untill the
‎corresponding block is refilled. Once a hit lr is met, the impl will set up a counter lrscCount and the the block addr the lr
‎accesses will be registered(therefore the reservation area in RC impl is just the corresponding cache block where the lr addr
‎lays), the sc will fail if
‎1:the counter goes below or equals a specific value(lrscBackoff)
‎2: the location that sc specifies is not in the reservation area(val lrscAddrMatch = lrscAddr === (s2_req.addr >> blockOffBits)).
‎It's worth noting that when a lr instruction resets the counter lrscCount to lrscCycles - 1, all in-bound probe will be blocked to
‎maintain the coherence, this is a simplified way to make sure the reservation area is not damaged by other harts.
‎The reason why RC uses a counter to indicate the success of a sc instruction is a little bit confusing, my guess is that this may
‎satisfy the requirement of the constrained lr-sc loop in ISA spec: the ISA A extension requires 16-insns in a LRSC sequence to
‎succeed. Intuitively, blocking all in bound probe messages in a short time(lrscCount) is RC's way of maintaining the atomic
‎ops.
‎There are some extra note here:
‎ 1.The RC only supports lr-sc in cacheable memory(it's not supported in DTIM mode), see this commit:
‎ https://github.com/chipsalliance/rocket-chip/commit/c366007a0d04193ae60988efb5d730e01333eef8
‎ 2.The rationale of lrscBackoff being configurable and is pre-set to def lrscBackoff = 3 instead of 0 is to make sure the
‎blocked probe will progress during LR storm, when a long lr-sc sequence is in the flow, the in-bound probe will be blocked
‎and starve other harts. We can fail this lr-sc sequence to progress the in-bound probe, and retry this lr-sc later.
‎ 3.The previous code base blocks the probe in the very moment when a lr is in s2. This commit
‎https://github.com/chipsalliance/rocket-chip/commit/587badd5261ac6a2824f9d70fafc26f60020fb33 changes the behavior
‎so that the bus is not held so aggressively, when a probe is valid when a lr is at s2, the probe will win arbitration (block_probe
‎not being asserted)and the lr also successfully set the lrscCount and lrscAddr, but 2 cycles later, the lrscCount will be reset to
‎0 so that this lr-sc sequence will fail for sure
‎4.Echo with the requirement for a constrained lr-sc loop, any intermidate mem ops in a lr-sc sequence will fail that sequence:
‎https://github.com/chipsalliance/rocket-chip/commit/28beb339437925b7d0fa8a28871f6e3e79e4f99b
‎5.https://github.com/chipsalliance/rocket-chip/commit/75ee5f01df63437244079718a23d1ddde716ad13 Todo why
‎lrscBackingOff is introduced? Note that only the interleaved mem ops between lr and sc will set lrscCount := lrscBackoff and
‎start backing-off, during these backing off cycles, the blockProbeAfterGrantCount > 0 may be true, but metaArb.io.in(6).valid
‎is still asserted (because of lrscBackingOff is asserted)to block newly initiated mem ops(todo the confusion is that why this
‎blockage is needed). This is just my gibbering word

‎victimization

‎if the dcache gives up possession of a cache
‎block(dirty or clean), the RC impl names this
‎procedure as victimization

‎s2_victimize‎situations that a block should be victimized

‎ val s2_want_victimize = Bool(!usingDataScratchpad) && (s2_
‎valid_cached_miss || s2_valid_flush_line || s2_valid_data_error || s2_
‎flush_valid)
‎ //hjr a kill at s2 from the core will cancel the victimization
‎process, if the insn at s2 here is not a flush
‎ // that is to say, a flush(All) operation will never be canceled
‎by core. If it goes, it goes.
‎ val s2_cannot_victimize = !s2_flush_valid && io.cpu.s2_kill

‎first thing first, the dcache has to work under
‎cache mode instead of scratchpad.

‎there is indeed an cache miss. The original
‎block therefore needs to be victimized.

‎it's subtle here. When s2_hit is deasserted for
‎a cache block, it's possible the cache block is
‎actually in the cache (tag match), but the
‎corresponding permission just doesn't
‎mismatch: for example: the core wants write
‎to the block, the cache only have Branch.
‎In this situation, the s2_hit is deasserted,
‎indicating we need to initiate an A channel
‎acquire to obtain the expected Permission:
‎NtoT. We also need to conduct the
‎victimization process for this block(the
‎general order is sending release first, then
‎acquire once release is complete. RC impl
‎provides the acquireBeforeRelease option).
‎In this situation, the victim_tag, victim_way,
‎victim_state is the same with the hit_tag,hit_
‎way and hit_state。

‎val s2_hit_valid = s2_hit_state.isValid()

‎cache block that request at s2 wants to
‎access may be in the cache, but there is a
‎permission mismtach, in this case s2_hit is
‎false, while the s2_hit_state is true.

‎Not all permission mismatch will cause s2_hit
‎being asserted therefore initiating A channel
‎acquire. For example, a write when the cache
‎block is of Trunk instead of Branch will be a
‎hit, s2_update_meta will be asserted,
‎modifying the corresponding permission to
‎Dirty.

‎val (s2_hit, s2_grow_param, s2_new_hit_state) = s2_hit_state.onAccess(s2_req.cmd)
‎
‎ def onAccess(cmd: UInt): (Bool, UInt, ClientMetadata) = {
‎ val r = growStarter(cmd)
‎ (r._1, r._2, ClientMetadata(r._2))
‎ }
‎
‎
‎
‎ private def growStarter(cmd: UInt): (Bool, UInt) = {
‎ import MemoryOpCategories._
‎ import TLPermissions._
‎ import ClientStates._
‎ val c = categorize(cmd)
‎ MuxTLookup(Cat(c, state), (Bool(false), UInt(0)), Seq(
‎ //(effect, am now) -> (was a hit, next)
‎ Cat(rd, Dirty) -> (Bool(true), Dirty),
‎ Cat(rd, Trunk) -> (Bool(true), Trunk),
‎ Cat(rd, Branch) -> (Bool(true), Branch),
‎ //hjr write intent doen't modify the metastate
‎ Cat(wi, Dirty) -> (Bool(true), Dirty),
‎ Cat(wi, Trunk) -> (Bool(true), Trunk),
‎ Cat(wr, Dirty) -> (Bool(true), Dirty),
‎ Cat(wr, Trunk) -> (Bool(true), Dirty),
‎ //(effect, am now) -> (was a miss, param)
‎ Cat(rd, Nothing) -> (Bool(false), NtoB),
‎ Cat(wi, Branch) -> (Bool(false), BtoT),
‎ Cat(wi, Nothing) -> (Bool(false), NtoT),
‎ /*
‎ * hjr
‎ * when a write request misses, that write instruction will be replayed(s2_nack sends to
‎core), an acquire will be sent via A channel, the params
‎ * sent to downstream will be BtoT.
‎ *
‎ * */
‎ Cat(wr, Branch) -> (Bool(false), BtoT),
‎ Cat(wr, Nothing) -> (Bool(false), NtoT)))
‎ }
‎
‎

‎No victimzation is needed.
‎If there is just a permission mismatch that
‎causes s2_hit being deasserted, the s2_
‎victimize is asserted, indicating that we
‎should victimize this block. But according to
‎the onAccess method, this only happens
‎when the current permission is ready only(
‎Branch) while the attempted ops is write(or
‎write intent), in this case, no victimization is
‎actually needed. We only initiate the acquire
‎for permission in channel A.

‎Since the current permission is Branch. it's
‎never dirty

‎s2_victim_dirty being false.‎no victimization

‎if the current state is Trunk, a write will
‎transform the state into Dirty, In this case, s2_
‎hit is actually asserted, therefore s2_victimize
‎is false. Asserts s2_update_meta

‎Mux(!cacheParams.silentDrop && !release_
‎ack_wait && release_queue_empty && s2_
‎victim_state.isValid() && (s2_valid_flush_line ||
‎s2_flush_valid || s2_readwrite && !s2_hit_
‎valid), s_voluntary_release,

‎if noisy drop is required. This means even if a
‎cache block is clean, but when the cache is
‎about to victimize it, we should initiate C
‎channel transactions. But in this case(Branch
‎Vs. Write), no victimization is virtually
‎needed, therefore no clean release is
‎needed. Note the s2_readwrite && !s2_hit_
‎valid

‎go to s_voluntary_write_meta, updating meta

‎Another case is the victimized block is
‎different with the acquire block.‎a real miss(hit state being Nothing)

‎flushLine‎if a intended line to be flushed is hit in the
‎cache, we need to victimize that block‎s2_valid_flush_line

‎flushAll‎the flushAll ops flushes all existing cache
‎blocks in cache

‎each of the blocks needs to be victimized.

‎s2_flush_valid

‎s2_valid_data_error

‎if the access has a valid hit in the cache, but
‎the data obtained has correctable errors. We
‎should victimize this cache block,

‎when the cache block is dirty, evicted the
‎dirty block using corrected valud

‎if the error can not be corrected, assert
‎corrupt of tilelink C for each beat.

‎when the cache block is clean(Branch Trunk
‎Nothing), even if Noisy drop is required, don't
‎initiate the clean release.

‎val s2_valid_data_error = s2_valid_hit_pre_data_
‎ecc_and_waw && s2_data_error

‎note that uncorrectable errors will also assert
‎the s2_valid_error

‎val s2_cannot_victimize = !s2_flush_valid &&
‎io.cpu.s2_kill

‎a kill at s2 from the core will cancel the
‎victimization process, if the insn at s2 here is
‎not a flushAll
‎that is to say, a flush(All) operation will never
‎be canceled by core. If it goes, it goes.

‎the general processing path for a
‎victimization

‎for all victimizing cases, we need to decided
‎what next state of the meta data will be after
‎victimization? Whether there is dirty data?
‎And what specific permission parameters
‎should be sent throught C channel if
‎needed ?

‎Essentially, the victimization is a flush: M_
‎FLUSH

‎val (s2_victim_dirty, s2_shrink_param, voluntaryNewCoh) = s2_victim_state.
‎onCacheControl(M_FLUSH)
‎
‎ def onCacheControl(cmd: UInt): (Bool, UInt, ClientMetadata) = {
‎ val r = shrinkHelper(cmdToPermCap(cmd))
‎ (r._1, r._2, ClientMetadata(r._3))
‎ }
‎
‎ private def shrinkHelper(param: UInt): (Bool, UInt, UInt) = {
‎ import ClientStates._
‎ import TLPermissions._
‎ MuxTLookup(Cat(param, state), (Bool(false), UInt(0), UInt(0)), Seq(
‎ //(wanted, am now) -> (hasDirtyData resp, next)
‎ Cat(toT, Dirty) -> (Bool(true), TtoT, Trunk),
‎ Cat(toT, Trunk) -> (Bool(false), TtoT, Trunk),
‎ Cat(toT, Branch) -> (Bool(false), BtoB, Branch),
‎ Cat(toT, Nothing) -> (Bool(false), NtoN, Nothing),
‎ Cat(toB, Dirty) -> (Bool(true), TtoB, Branch),
‎ Cat(toB, Trunk) -> (Bool(false), TtoB, Branch), // Policy: Don't notify
‎on clean downgrade
‎ Cat(toB, Branch) -> (Bool(false), BtoB, Branch),
‎ Cat(toB, Nothing) -> (Bool(false), NtoN, Nothing),
‎ Cat(toN, Dirty) -> (Bool(true), TtoN, Nothing),
‎ Cat(toN, Trunk) -> (Bool(false), TtoN, Nothing), // Policy: Don't notify
‎on clean downgrade
‎ Cat(toN, Branch) -> (Bool(false), BtoN, Nothing), // Policy: Don't notify
‎on clean downgrade
‎ Cat(toN, Nothing) -> (Bool(false), NtoN, Nothing)))
‎ }
‎
‎
‎

‎if the victim block is dirty‎s_voluntary_writeback

‎if the victim block is clean, but noisy drop is
‎required?

‎s_voluntary_release

‎there are cases that no clean release should
‎be initiated even when the victimized cache
‎block is clean and noisy drop is required

‎Otherwise, just update the metadata using
‎the voluntaryNewCoh, the effective way is
‎specified by releaseWay := s2_victim_or_hit_
‎way

‎ metaArb.io.in(4).valid := release_state.isOneOf(s_voluntary_write_meta, s_probe_
‎write_meta)
‎ metaArb.io.in(4).bits.write := true
‎ metaArb.io.in(4).bits.way_en := releaseWay
‎ metaArb.io.in(4).bits.idx := probeIdx(probe_bits)
‎ metaArb.io.in(4).bits.addr := Cat(io.cpu.req.bits.addr >> untagBits, probe_bits.
‎address(idxMSB, 0))
‎ metaArb.io.in(4).bits.data := tECC.encode(L1Metadata(tl_out_c.bits.address >>
‎tagLSB, newCoh).asUInt)
‎ when (metaArb.io.in(4).fire()) { release_state := s_ready }
‎

‎merge is intrudced

‎Both these two cases will update the meta

‎I can understand no clean release is required in
‎the Branch/Write permission mismatch case.
‎But for the s2_valid_data_error case, if a clean

‎cache block with data error is inside the cache, it'
‎s reasonable to notifying to the system that the

‎dcache is giving up the corresponding
‎permission, therefore a clean-release is

‎reasonable in this case if the noisyDrop option is
‎on..

‎hjr when there is a valid hit, but the retrieved
‎data is incorrect(s2_valid_data_error), we need to

‎victimize that entry if that entry is dirty, the
‎corrected data should be sent back. If that data
‎is uncorrectable, we need to assert the C channel

‎corrupt field to indicate this is a corrupt beat:
‎
‎

‎ tl_out_c.bits.data := s2_data_corrected
‎ tl_out_c.bits.corrupt := inWriteback && s2_data_

‎error_uncorrectable

https://github.com/chipsalliance/rocket-chip/commit/c00874c3702165033a3310274ce7c0ee321b2465
https://github.com/chipsalliance/rocket-chip/commit/6dba20af8a6af7b17298eedcf640d3f1b6fd3468
https://github.com/chipsalliance/rocket-chip/commit/2e8b02e780ad725934745a86ea7535651830f327
https://github.com/chipsalliance/rocket-chip/commit/2e8b02e780ad725934745a86ea7535651830f327
https://github.com/chipsalliance/rocket-chip/commit/4e893321caef2271321433c32efea9d38beec4c9

