
 TLB and PTW

 TLB

 The tlb caches virtual and physical page
 mapping and corresponding permissions for
 a physical page.

 It is used by ICache or DCache to translate
 virtual address to physical address and
 obtains permission info of that specific page.

 req

 class TLBReq(lgMaxSize: Int)(implicit p:
 Parameters) extends CoreBundle()(p) {
 val vaddr = UInt(width = vaddrBitsExtended)
 val passthrough = Bool()//hjr this actually
 means no translation, but needs some
 permission check.
 val size = UInt(width = log2Ceil(lgMaxSize +
 1))
 val cmd = Bits(width = M_SZ)

 override def cloneType = new TLBReq(
 lgMaxSize).asInstanceOf[this.type]
 }

 size for caculating the misalignment and pmp
 releated permission

 resp

 class TLBResp(implicit p: Parameters)
 extends CoreBundle()(p) {
 // lookup responses
 val miss = Bool()
 val paddr = UInt(width = paddrBits)
 val pf = new TLBExceptions
 val ae = new TLBExceptions
 val ma = new TLBExceptions
 val cacheable = Bool()
 val must_alloc = Bool()
 val prefetchable = Bool()
 }

 exceptions

 pf
 io.resp.pf.ld := (bad_va && cmd_read) || (pf_ld_array & hits).orR
 io.resp.pf.st := (bad_va && cmd_write_perms) || (pf_st_array & hits).orR
 io.resp.pf.inst := bad_va || (pf_inst_array & hits).orR

 for read

 bad va:
 Instruction fetch addresses and load and store effective addresses, which are
 64 bits, must have bits 63–39 all equal to bit 38, or else a page-fault
 exception will occur:

 io.req.bits.vpn(vpnBits) =/= io.req.bits.vpn(vpnBits-1)

 attempts to read an unreadable page(
 decided by the r field in PTE)

 //hjr under specific priv(given by priv_s), whether this page is accessible.
 //For each entry in entries, check if read and write ops can be performed
 under this entry in terms of privilege
 //status.sum means s mode memory access to pages what is marked with u
 asserted is allowed(if sum=1).
 val priv_rw_ok = Mux(!priv_s || io.ptw.status.sum, entries.map(_.u).asUInt, 0.
 U) | Mux(priv_s, ~entries.map(_.u).asUInt, 0.U)
 val priv_x_ok = Mux(priv_s, ~entries.map(_.u).asUInt, entries.map(_.u).asUInt)
 //hjr mxr in mstatus indicates whether load can happen in pages which is
 marked as X.
 //hjr sr doesn't purely mean supervisor readable, it just indicates this page is
 readable,
 //the specific readablity is determined along with the u bit which is
 determined by priv_rw_ok
 //the 3locs below indicate wheter each entry in entries can perform
 corresponding ops in term of permission related to page itself, not including
 pma&pmp
 val r_array = Cat(true.B, priv_rw_ok & (entries.map(_.sr).asUInt | Mux(io.ptw.
 status.mxr, entries.map(_.sx).asUInt, UInt(0))))

 val pf_ld_array = Mux(cmd_read, ~(r_array | ptw_ae_array), 0.U)

 if an entry has ae field being asserted, report
 access exception instead of page fault

 val pf_ld_array = Mux(cmd_read, ~(r_array | ptw_ae_
 array), 0.U)

 for write, it's a lot like the read

 val w_array = Cat(true.B, priv_rw_ok & entries.map(_.sw).asUInt)

 val pf_st_array = Mux(cmd_write_perms, ~(w_array | ptw_ae_array), 0.U)

 io.resp.pf.st := (bad_va && cmd_write_perms) || (pf_st_array & hits).orR

 for insn
 val x_array = Cat(true.B, priv_x_ok & entries.map(_.sx).asUInt)
 val pf_inst_array = ~(x_array | ptw_ae_array)
 io.resp.pf.inst := bad_va || (pf_inst_array & hits).orR

 ae
 io.resp.ae.ld := (ae_ld_array & hits).orR
 io.resp.ae.st := (ae_st_array & hits).orR
 io.resp.ae.inst := (~px_array & hits).orR

 for read

 PTW reports access exception for that pte

 misaligned access on a region with access
 side effects.

 val prot_eff = fastCheck(Seq(RegionType.PUT_EFFECTS, RegionType.GET_EFFECTS) contains _.regionType)
 val eff_array = Cat(Fill(nPhysicalEntries, prot_eff), normal_entries.map(_.eff).asUInt)

 val ae_array =
 Mux(misaligned, eff_array, 0.U) |
 Mux(cmd_lrsc, ~lrscAllowed, 0.U)
 io.resp.ae.ld := (ae_ld_array & hits).orR

 perform lrsc ops on non cacheable regions val lrscAllowed = Mux(Bool(usingDataScratchpad || usingAtomicsOnlyForIO), 0.U, c_array)

 violates pmp permission check

 val pr_array = Cat(Fill(nPhysicalEntries, prot_r), normal_entries.map(_.pr).asUInt) & ~ptw_
 ae_array
 val ae_ld_array = Mux(cmd_read, ae_array | ~pr_array, 0.U)

 note that the PTE in RC impl further expands
 the standard PTE fields, including some other
 auxiliary infos, like the pmp permission

 for write

 PTW reports access exception for that pte

 misaligned access on a region with access
 side effects.

 perform lrsc ops on non cacheable regions

 violates pmp permission check

 conduct put partial ops on regions that doesn'
 t support this

 conduct logical atomic ops on regions that
 doesn't support this

 conduct arithmetic atomic ops on regions
 that doesn't support this

 val c_array = Cat(Fill(nPhysicalEntries, cacheable), normal_entries.map(_.c).asUInt)
 val ppp_array = Cat(Fill(nPhysicalEntries, prot_pp), normal_entries.map(_.ppp).asUInt)
 val paa_array = Cat(Fill(nPhysicalEntries, prot_aa), normal_entries.map(_.paa).asUInt)//hjr AMO legality
 val pal_array = Cat(Fill(nPhysicalEntries, prot_al), normal_entries.map(_.pal).asUInt)//hjr AMO legality
 val ppp_array_if_cached = ppp_array | c_array
 val paa_array_if_cached = paa_array | Mux(usingAtomicsInCache, c_array, 0.U)
 val pal_array_if_cached = pal_array | Mux(usingAtomicsInCache, c_array, 0.U)

 val ae_st_array =
 Mux(cmd_write_perms, ae_array | ~pw_array, 0.U) |
 Mux(cmd_put_partial, ~ppp_array_if_cached, 0.U) |//hjr want to conduct put partial ops on cacheable
 regions that doesn't support this
 Mux(cmd_amo_logical, ~pal_array_if_cached, 0.U) |//hjr want to conduct logical atomic ops on
 cacheable regions that doesn't support this
 Mux(cmd_amo_arithmetic, ~paa_array_if_cached, 0.U)//hjr want to conduct arithmetic atomic ops on
 cacheable regions that doesn't support this

 io.resp.ae.st := (ae_st_array & hits).orR

 for inst
 PTW reports access exception for that pte

 violates pmp permission
 概要

 val px_array = Cat(Fill(nPhysicalEntries, prot_x), normal_entries.map(_.px).asUInt) & ~ptw_
 ae_array
 val prot_x = fastCheck(_.executable) && !deny_access_to_debug && pmp.io.x
 io.resp.ae.inst := (~px_array & hits).orR

 ma

 io.resp.ma.ld := (ma_ld_array & hits).orR
 io.resp.ma.st := (ma_st_array & hits).orR
 io.resp.ma.inst := false // this is up to the
 pipeline to figure out

 for read misaligned access on a region without access
 side effects.

 for write misaligned access on a region without access
 side effects.

 insn this is decided by the core pipeline

 misaligned access to the region with side
 effect will be reported as access exception??

 cacheable
 a use case: if the dcache found a tlb resp
 with cacheable being deasserted, it treats
 that request as a mmio

 Unless there is a tlb miss, the resp comes the
 same cycle with req, If a miss is found, the
 resp.miss signal is asserted the same cycle
 with the req.

 if there is a tlb miss, it will report to the tlb
 request initiator, And also initiate new
 request to PTW module to ask for a TLB refill.

 TLB state machine

 if (usingVM) {
 val sfence = io.sfence.valid
 when (io.req.fire() && tlb_miss) {
 state := s_request
 r_refill_tag := vpn
 //hjr when tlb miss happens, can we guess the superpageality of the vpn??? Seems no
 according to the following 3locs.
 r_superpage_repl_addr := replacementEntry(superpage_entries, superpage_plru.way)
 r_sectored_repl_addr := replacementEntry(sectored_entries(memIdx), sectored_plru.way(
 memIdx))
 r_sectored_hit_addr := OHToUInt(sector_hits)// hjr it's possible of having a sector_hit， but tlb_
 miss(maybe bad_va)
 r_sectored_hit := sector_hits.orR
 }
 when (state === s_request) {
 when (sfence) { state := s_ready }

 when (io.ptw.req.ready) { state := Mux(sfence, s_wait_invalidate, s_wait) }
 when (io.kill) { state := s_ready }
 }
 when (state === s_wait && sfence) {
 state := s_wait_invalidate
 }
 when (io.ptw.resp.valid) {
 state := s_ready
 }

 when (sfence) {
 //hjr why the sfence addr has to be as same as the ongoing tlb request addr???
 assert(!io.sfence.bits.rs1 || (io.sfence.bits.addr >> pgIdxBits) === vpn)
 for (e <- all_real_entries) {
 when (io.sfence.bits.rs1) { e.invalidateVPN(vpn) }
 .elsewhen (io.sfence.bits.rs2) { e.invalidateNonGlobal() }//hjr the asid doesn't take effect
 .otherwise { e.invalidate() }
 }
 }
 when (multipleHits || reset) {
 all_real_entries.foreach(_.invalidate())
 }

 ccover(io.ptw.req.fire(), "MISS", "TLB miss")
 ccover(io.ptw.req.valid && !io.ptw.req.ready, "PTW_STALL", "TLB miss, but PTW busy")
 ccover(state === s_wait_invalidate, "SFENCE_DURING_REFILL", "flush TLB during TLB refill")
 ccover(sfence && !io.sfence.bits.rs1 && !io.sfence.bits.rs2, "SFENCE_ALL", "flush TLB")
 ccover(sfence && !io.sfence.bits.rs1 && io.sfence.bits.rs2, "SFENCE_ASID", "flush TLB ASID")
 ccover(sfence && io.sfence.bits.rs1 && !io.sfence.bits.rs2, "SFENCE_LINE", "flush TLB line")
 ccover(sfence && io.sfence.bits.rs1 && io.sfence.bits.rs2, "SFENCE_LINE_ASID", "flush TLB line/
 ASID")
 ccover(multipleHits, "MULTIPLE_HITS", "Two matching translations in TLB")
 }

 some notes for this state machine

 if a fired request is found miss in the TLB, the
 state machine will switch to s_req, and some
 auxiliary info are stored so that when a refill
 comes, we know where to store that entry

 when (io.req.fire() && tlb_miss) {
 state := s_request
 r_refill_tag := vpn
 //hjr when tlb miss happens, can we guess the superpageality
 of the vpn??? Seems no according to the following 3locs.
 r_superpage_repl_addr := replacementEntry(superpage_entries,
 superpage_plru.way)
 r_sectored_repl_addr := replacementEntry(sectored_entries(
 memIdx), sectored_plru.way(memIdx))
 r_sectored_hit_addr := OHToUInt(sector_hits)// hjr it's possible
 of having a sector_hit， but tlb_miss(maybe bad_va)
 r_sectored_hit := sector_hits.orR
 }

 val vm_enabled = Bool(usingVM) && io.ptw.ptbr.mode(io.ptw.ptbr.mode.getWidth-1) && priv_
 uses_vm && !io.req.bits.passthrough
 val tlb_miss = vm_enabled && !bad_va && !tlb_hit

 a passthrough tlb request will deassert tlb_
 miss, indicating no need to perform TLB refil

 even if tlb_hit is true.B, tlb_miss can be de-
 asserted when bad_va is high. In this case, an
 access exception will be asserted.

 once the state is in s_request, a request to
 PTW will be initiated,

 io.ptw.req.valid := state === s_request
 io.ptw.req.bits.valid := !io.kill
 io.ptw.req.bits.bits.addr := r_refill_tag

 also note that if a sfence comes during s_
 request, we should literally cancel the
 request to PTW, that is: switching state to s_
 ready, therefore pull low the request to PTW.
 But It's worth noting that if the ptw interface
 is already ready when the state is in s_
 request(io.ptw.req.ready), the request can
 not be canceled. in this case just switch state
 to s_wait_invalidate,according to val
 invalidate_refill = state.isOneOf(s_request /*
 don't care */, s_wait_invalidate) || io.sfence.
 valid. If a refill comes, that refilling entry will
 be invalidated.

 when (state === s_request) {
 when (sfence) { state := s_ready }

 when (io.ptw.req.ready) { state := Mux(
 sfence, s_wait_invalidate, s_wait) }
 when (io.kill) { state := s_ready }
 }

 I actually feel confused about the impl here:
 If a sfence is asserted, it will immediately
 invalidate all current related entries in the
 TLB and PTW. Meanwhile, if there is an
 ongoing refill in flight, when the refilling
 entry comes back, just invalidate this entry. I
 think the more appropriate handling path is
 that we should invalidate the refilled entry
 only when it conflicts with the sfence. For
 example, if the sfence specifies rs1, when
 the refill is for a different page, just keep it

 if no sfence comes along at this state,
 switching state to s_wait, waiting for the refill
 happening

 when the state is in s_wait or s_wait_
 invalidate, and the ptw resp comes. do_refill
 is asserted, indicating an leaf PTE entry
 insertion

 val do_refill = Bool(usingVM) && io.ptw.resp.
 valid

 when (do_refill) {
 //hjr not only page specific info stored at pte entry, also the pmp protection thing.
 val pte = io.ptw.resp.bits.pte
 val newEntry = Wire(new TLBEntryData)
 //ppn clarification:
 //for normal page ->ppn[2]ppn[1]ppn[0]
 //for non-fragmented superpage-> ppn[2]ppn[1][00..00]
 //for fragmented superpage, it is located in the normal sector entries: the PTW therefore handles this for you: ppn[2]
 ppn[1]vpn[0]
 //an important note: the stored pte.ppn is not normalized. Call ppn(data) to normalize it.
 newEntry.ppn := pte.ppn
 newEntry.c := cacheable//hjr if this page is somehow cacheable.
 newEntry.u := pte.u//hjr whether this page is accessable to user mode.
 newEntry.g := pte.g && pte.v
 newEntry.ae := io.ptw.resp.bits.ae
 newEntry.sr := pte.sr()
 newEntry.sw := pte.sw()
 newEntry.sx := pte.sx()
 newEntry.pr := prot_r//hjr pmp readable
 newEntry.pw := prot_w//hjr pmp writable
 newEntry.px := prot_x//hjr pmp executable
 newEntry.ppp := prot_pp
 newEntry.pal := prot_al
 newEntry.paa := prot_aa
 newEntry.eff := prot_eff
 newEntry.fragmented_superpage := io.ptw.resp.bits.fragmented_superpage
 //hjr the r_refill_tag is registered as the whole vpn, not just the "tag" part;
 //It is registered when the state machine is changed to the state of s_req

 //hjr the tlb entry in sepecial_entry is not homogeneous.(normal page or superpage can be stored here)
 when (special_entry.nonEmpty && !io.ptw.resp.bits.homogeneous) {
 special_entry.foreach { e =>
 e.insert(r_refill_tag, io.ptw.resp.bits.level, newEntry)
 when (invalidate_refill) { e.invalidate() }
 }
 //normal homo superpage goes here in the superpage_entries
 }.elsewhen (io.ptw.resp.bits.level < pgLevels-1) {
 for ((e, i) <- superpage_entries.zipWithIndex) when (r_superpage_repl_addr === i) {
 e.insert(r_refill_tag, io.ptw.resp.bits.level, newEntry)
 when (invalidate_refill) { e.invalidate() }
 }
 }.otherwise {
 val r_memIdx = r_refill_tag.extract(cfg.nSectors.log2 + cfg.nSets.log2 - 1, cfg.nSectors.log2)
 val waddr = Mux(r_sectored_hit, r_sectored_hit_addr, r_sectored_repl_addr)//hjr the waddr here specifies which *way*
 for ((e, i) <- sectored_entries(r_memIdx).zipWithIndex) when (waddr === i) {
 ////hjr todo why? When there are no existing sector hits, the valid has already been lowered. Maybe just for
 precaution.
 when (!r_sectored_hit) { e.invalidate() }
 //hjr todo when both e.invalidate() and e.insert(r_refill_tag, 0.U, newEntry) executes, they all set the valid, which
 one takes effecs?
 //todo maybe the last connections wins?
 e.insert(r_refill_tag, 0.U, newEntry)
 when (invalidate_refill) { e.invalidate() }
 }
 }
 }

 where to insert

 if the page that refilled pte indicates is not
 homogeneous in terms of PMP permission,
 the pte goes to special entry

 the page that special entry indicates may or
 may not be a superpage.

 if a tlb request hits in special entry, the pmp
 permission and some of the other auxiliary
 infos needs to be decided just in time based
 on the addr this request specifies since this
 page is not homogeneous in terms of pmp
 permission check, so real time checking is
 needed.

 normal homogeneous super page goes to
 the superpage_entries

 homogeneous normal page goes to normal
 entries

 important note: sub-page of fragmented
 superpage is regard as normal page.

 since val pageGranularityPMPs =
 pmpGranularity >= (1 << pgIdxBits) is true,
 even the original superpage is not
 homogeneous, but each 4KiB sub-page is
 surely homogeneous. Therefore,

 the homogeneity of a page is decided by the
 PTW resp: homogeneous

 io.requestor(i).resp.bits.homogeneous :=
 homogeneous || pageGranularityPMPs

 we can see that even if a superpage is not
 homogeneous, but pageGranularityPMPs will
 pull high the homogeneous, because we
 treat each fragment of a superpage being a
 normal homogeneous page.

 once do_refill is asserted, that indicates a
 successful query from PTW, and a new entry
 will be inserted. Some of the fields are from
 PTW response, while others needs to be
 calculated using mpu_phys addr(refill_ppn) in
 real time.

 sr sw sx: directly from PTW response

 pr, pw, px: pmp permission is caculated when
 conducting insertion

 val prot_r = fastCheck(_.supportsGet) && !deny_
 access_to_debug && pmp.io.r
 val prot_w = fastCheck(_.supportsPutFull) && !
 deny_access_to_debug && pmp.io.w

 newEntry.pr := prot_r//hjr pmp readable
 newEntry.pw := prot_w//hjr pmp writable
 newEntry.px := prot_x//hjr pmp executable

 sfence sfence flush any corresponding address
 translation caches

 flush cache in pte and ptw module so that
 some coherence in terms of addr translation
 can be maintained..

 rs1!=0 only flush the leaf pte entry that corresponds
 to the page where addr in rs1 is located.

 rs2!=0

 only flush pte entry (leaf or not) that
 corresponds to the asid address space in rs2

 but for RC impl, only flush all non-global
 entries in this case

 when (sfence) {
 //hjr why the sfence addr has to be as same as the ongoing tlb request addr???
 assert(!io.sfence.bits.rs1 || (io.sfence.bits.addr >> pgIdxBits) === vpn)
 for (e <- all_real_entries) {
 when (io.sfence.bits.rs1) { e.invalidateVPN(vpn) }
 .elsewhen (io.sfence.bits.rs2) { e.invalidateNonGlobal() }//hjr the asid doesn't take effect
 .otherwise { e.invalidate() }
 }
 }

 if a refill is ongoing and a sfence comes, that
 refill should be invalidated.

 val invalidate_refill = state.isOneOf(s_request /* don't care */, s_wait_
 invalidate) || io.sfence.valid

 note the io.sfence.valid case,:
 https://github.com/chipsalliance/rocket-
 chip/commit/
 5da05dbb496ffb75323d4245028337ed99b4
 53bf

 the passthrough

 when a tlb request has the passthrough
 being asserted, only perform permission
 check, vaddr->phy_addr mapping is skipped

 a use case is that A TLB miss will direct PTW
 module to perform page tree walking. If the
 PTW request doen't hit in PTW cache, a
 request to dcache module is initiated. In this
 request, the phys field is true.B(the PTW
 already has the physical address from TLB
 module)

 io.mem.req.valid := state === s_req ||
 state === s_dummy1
 io.mem.req.bits.phys := Bool(true)//hjr no
 need to conduct virtual addr<->phys addr
 translation for this dcache request
 io.mem.req.bits.cmd := M_XRD
 io.mem.req.bits.size := log2Ceil(xLen/8)
 io.mem.req.bits.signed := false
 io.mem.req.bits.addr := pte_addr
 io.mem.req.bits.idx.foreach(_ := pte_addr)
 io.mem.req.bits.dprv := PRV.S.U // PTW
 accesses are S-mode by definition
 //hjr note the naming convention, s1_kill of
 mem comes actually at s2(in terms of PTW
 timming convention)
 io.mem.s1_kill := l2_hit || state =/= s_wait1
 io.mem.s2_kill := Bool(false)

 if phys is asserted. the dcache's request to
 TLB will assert the passthrough

 when (!tlb_port.req.fire()) {
 s0_tlb_req.passthrough := s0_req.phys
 s0_tlb_req.vaddr := s0_req.addr
 s0_tlb_req.size := s0_req.size
 s0_tlb_req.cmd := s0_req.cmd
 s0_tlb_req.prv := s0_req.dprv
 s0_tlb_req.v := s0_req.dv
 }

 when passthrough is asserted, vm_enabled
 is de-asserted, Therefore the first item in hits
 is true.B

 /*
 * hjr !vm_enabled corresponds to the passthrough case.
 * */
 val hits = Cat(!vm_enabled, real_hits)
 //for the passthru case, the ppn is just vpn: but extra note: vaddrBits has 1
 bit more that paddrBits when virtual memory is disabled.
 val ppn = Mux1H(hitsVec :+ !vm_enabled, all_entries.map(_.ppn(vpn)) :+ vpn(
 ppnBits-1, 0))

 Therefore, the passthrough request is
 regarded as a special hit in a special slot

 val nPhysicalEntries = 1 + special_entry.size

 mpu_ppn is rewired to represent the physical
 addr from the passthrough request

 mpu_ppn

 this ppn is used to calculate pmp related
 permissions

 situations where just in time calculation of
 pmp related permission is needed

 when a refill happens, the page-wise
 permission that is originally indicated by pte
 entry can be directly obtained from PTW
 response. Whereas the pmp related
 permissions is stored in the TLB entry in
 terms of RC impl, these permission needs be
 calculated and can not be obtained from
 PTW response.

 the rationale for store pmp related
 permission in page-based entry

 pages can be homogeneous!!!!
 Therefore all words in that page will share
 the same pmp permission. No need to
 conduct just-in-time calculation of pmp
 permission in this case

 a hit in the special entry

 the page indicated by special entry is non-
 homogeneous. Therefore we need to
 conduct just-in-time calculations of pmp
 permission for each tlb request

 a hit in the special slot for passthrough case

 val mpu_ppn = Mux(do_refill, refill_ppn,
 Mux(vm_enabled && special_entry.nonEmpty, special_
 entry.map(_.ppn(vpn)).getOrElse(0.U), io.req.bits.vaddr >> pgIdxBits))
 val mpu_physaddr = Cat(mpu_ppn, io.req.bits.vaddr(pgIdxBits-1, 0))
 val mpu_priv = Mux[UInt](Bool(usingVM) && (do_refill || io.req.bits.
 passthrough /* PTW */), PRV.S, Cat(io.ptw.status.debug, priv))
 val pmp = Module(new PMPChecker(lgMaxSize))
 pmp.io.addr := mpu_physaddr
 pmp.io.size := io.req.bits.size
 pmp.io.pmp := (io.ptw.pmp: Seq[PMP])
 pmp.io.prv := mpu_priv
 val legal_address = edge.manager.findSafe(mpu_physaddr).
 reduce(_||_)

 cache organization 3 kinds of entries

 superpage entry
 caches only homogeneous superpage

 val superpage_entries = Reg(Vec(cfg.nSuperpageEntries, new TLBEntry(1, true, true)))

 normal entry

 caches normal homogeneous page

 also sub fragment of the fragmented page in this case pageGranularityPMPs must be
 true

 this type of entry is sectored.
 val sectored_entries = Reg(Vec(cfg.nSets,
 Vec(cfg.nWays / cfg.nSectors, new TLBEntry(
 cfg.nSectors, false, false))))

 special entry
 super or normal non-homogeneous page

 val special_entry = (!pageGranularityPMPs).
 option(Reg(new TLBEntry(1, true, false)))

 only exists when pmp granularity is less than
 a page

 These 3 type of entries are represented by a
 single class: TLBEntry

 class TLBEntry(val nSectors: Int, val superpage: Boolean, val superpageOnly: Boolean)(implicit p: Parameters) extends CoreBundle()(
 p) {
 require(nSectors == 1 || !superpage) //hjr if the nSectors is not 1, the page this tlbentry represents must not be a superpage
 require(!superpageOnly || superpage)

 val level = UInt(width = log2Ceil(pgLevels))
 val tag = UInt(width = vpnBits)
 val data = Vec(nSectors, UInt(width = new TLBEntryData().getWidth))
 val valid = Vec(nSectors, Bool())
 def entry_data = data.map(_.asTypeOf(new TLBEntryData))

 private def sectorIdx(vpn: UInt) = vpn.extract(nSectors.log2-1, 0)
 def getData(vpn: UInt) = OptimizationBarrier(data(sectorIdx(vpn)).asTypeOf(new TLBEntryData))
 def sectorHit(vpn: UInt) = valid.orR && sectorTagMatch(vpn)//hjr why not this: def sectorHit(vpn: UInt) = valid[sectorIdx(vpn)] &&
 sectorTagMatch(vpn)
 def sectorTagMatch(vpn: UInt) = ((tag ^ vpn) >> nSectors.log2) === 0
 def hit(vpn: UInt) = {
 if (superpage && usingVM) {
 //hjr for superpage, only check the corresponding ppn,like ppn[2] will only be checked if the level is 0
 var tagMatch = valid.head
 for (j <- 0 until pgLevels) {
 val base = vpnBits - (j + 1) * pgLevelBits
 val ignore = level < j || superpageOnly && j == pgLevels - 1
 tagMatch = tagMatch && (ignore || tag(base + pgLevelBits - 1, base) === vpn(base + pgLevelBits - 1, base))
 }
 tagMatch
 } else {
 //hjr note here: the sectorId match only checks whether the corresponding valid for one sector is asserted
 val idx = sectorIdx(vpn)
 valid(idx) && sectorTagMatch(vpn)
 }
 }
 //hjr get the corresponding portion of the ppn according to the page level of one superpage-this is confusing
 //get the actual ppn of this TLBEntry, if this entry represent a superpage, then the part of the orignal vpn that doesn't
 //engage into the ppn retrival process should be regard as part of the "ppn"
 def ppn(vpn: UInt) = {
 val data = getData(vpn)
 if (superpage && usingVM) {
 var res = data.ppn >> pgLevelBits*(pgLevels - 1)
 for (j <- 1 until pgLevels) {
 val ignore = level < j || superpageOnly && j == pgLevels - 1
 // hjr todo if ignore is true, we have to pick bits from vpn | data.ppn??
 // maybe the entry in tlb has already handles this, when inserting new entry
 // the super page's ppn is just the right one
 res = Cat(res, (Mux(ignore, vpn, 0.U) | data.ppn)(vpnBits - j*pgLevelBits - 1, vpnBits - (j + 1)*pgLevelBits))
 }
 res
 } else {
 data.ppn
 }
 }

 def insert(tag: UInt, level: UInt, entry: TLBEntryData): Unit = {
 this.tag := tag
 this.level := level.extract(log2Ceil(pgLevels - superpageOnly.toInt)-1, 0)

 val idx = sectorIdx(tag)
 valid(idx) := true
 data(idx) := entry.asUInt
 }

 def invalidate(): Unit = { valid.foreach(_ := false) }
 def invalidateVPN(vpn: UInt): Unit = {
 if (superpage) {//for superpage, there must only be one sector. There is no need to call sector related functions: sectorTagMatch
 when (hit(vpn)) { invalidate() }
 } else {
 when (sectorTagMatch(vpn)) { valid(sectorIdx(vpn)) := false }
 // hjr todo Have no clue what fragmented superpage is
 // For fragmented superpage mappings, we assume the worst (largest)
 // case, and zap entries whose most-significant VPNs match
 when (((tag ^ vpn) >> (pgLevelBits * (pgLevels - 1))) === 0) {
 for ((v, e) <- valid zip entry_data)
 when (e.fragmented_superpage) { v := false }//hjr todo which means fragmented_superpage is not superpage????
 }
 }
 }
 def invalidateNonGlobal(): Unit = {
 for ((v, e) <- valid zip entry_data)
 when (!e.g) { v := false }
 }
 }

 when deciding whether a tlb request(vpn)
 hits in a TLBEntry, call tlbEntry.hit(vpn)

 for superpage, only check the corresponding
 ppn section that corresponds to the page
 number.
 For example, if the level of a TLBEntry is 0,
 only ppn[2] among ppn[2]ppn[1]ppn[0] is
 matched.

 ppn method in TLBEntry

 for superpage, if the level is 0, ppn[2] is the
 actual page number, but ppn method return
 ppn[2]vpn[1]vpn[0]. this is used to calculate
 the actual physical addr

 val ppn = Mux1H(hitsVec :+ !vm_enabled, all_
 entries.map(_.ppn(vpn)) :+ vpn(ppnBits-1, 0))

 each TLBEntry has a TLBEntryData

 class TLBEntryData(implicit p: Parameters)
 extends CoreBundle()(p) {
 val ppn = UInt(width = ppnBits)
 val u = Bool()
 val g = Bool()
 val ae = Bool()
 val sw = Bool()
 val sx = Bool()
 val sr = Bool()
 val pw = Bool()
 val px = Bool()
 val pr = Bool()
 val ppp = Bool() // PutPartial
 val pal = Bool() // AMO logical
 val paa = Bool() // AMO arithmetic
 val eff = Bool() // get/put effects
 val c = Bool()
 val fragmented_superpage = Bool()
 }

 not just including original PTE fields, but also
 some pmp related ones.

 the rationale for sector cache

 PTW

 when there is a TLB miss, the TLB state
 machine will switch to s_request, and begin
 sending request to PTW, asking PTW module
 to perform page tree walking.

 PTW state machine

 switch (state) {
 is (s_ready) {
 when (arb.io.out.fire()) {
 next_state := Mux(arb.io.out.bits.valid, s_req, s_ready)
 }
 count := pgLevels - minPgLevels - io.dpath.ptbr.additionalPgLevels //
 hjr todo count here(init) is a static value which only depends on the
 pgLevel config
 }
 //hjr state s_req is the state that sends mem request.
 is (s_req) {
 when (pte_cache_hit) {
 count := count + 1
 pte_hit := true
 }.otherwise {
 next_state := Mux(io.mem.req.ready, s_wait1, s_req)
 }
 }
 is (s_wait1) {
 // hjr the comment below is actually very helpful. ---hmm, how?
 // This Mux is for the l2_error case; the l2_hit && !l2_error case is
 overridden below
 // todo still have trouble figuring out why have to reverse s_state to s_
 req when l2_hit & l2_error
 next_state := Mux(l2_hit, s_req, s_wait2)
 }
 is (s_wait2) {
 next_state := s_wait3
 //hjr https://github.com/chipsalliance/rocket-chip/commit/
 630600d860a0ff0ec1e290931d301cc6f2b96fe0
 io.dpath.perf.pte_miss := count < pgLevels-1//hjr todo confusion on
 this why assert pte_miss here?
 when (io.mem.s2_xcpt.ae.ld) {
 resp_ae := true
 next_state := s_ready
 resp_valid(r_req_dest) := true
 }
 }
 //hjr the rationale for this extra state:
 //to balance the cycle workload: maybe the computation of
 homogeneous is intensive--This is wrong, the
 //the homogenrous related computation happened everywhere.
 is (s_fragment_superpage) {
 next_state := s_ready
 resp_valid(r_req_dest) := true
 resp_ae := false
 when (!homogeneous) {//hjr todo have trouble making this clear.
 count := pgLevels-1
 resp_fragmented_superpage := true
 }
 }
 }

 access to l2tlb begins at s_ready s_ready->s0

 request to DCache is initiated at s_req if the
 dcache interface is ready, and next state will
 switch to s_wait1(if and only if there is no pte_
 cache_hit). However, if the interface is not
 ready, the state will remain in s_req,

 io.mem.req.valid := state === s_req || state === s_dummy1
 io.mem.req.bits.phys := Bool(true)//hjr no need to conduct
 virtual addr<->phys addr translation for this dcache request
 io.mem.req.bits.cmd := M_XRD
 io.mem.req.bits.size := log2Ceil(xLen/8)
 io.mem.req.bits.signed := false
 io.mem.req.bits.addr := pte_addr
 io.mem.req.bits.idx.foreach(_ := pte_addr)
 io.mem.req.bits.dprv := PRV.S.U // PTW accesses are S-mode
 by definition
 //hjr note the naming convention, s1_kill of mem comes actually
 at s2(in terms of PTW timming convention)
 io.mem.s1_kill := l2_hit || state =/= s_wait1
 io.mem.s2_kill := Bool(false)

 access to dcache from PTW has its phys
 asserted, indicating no need to perform addr
 translation in this case.

 page tree walk always happen under S-mode

 In s_req, the pte_cache is also effectively
 accessed, if there is a pte_cache hit, keep the
 state at s_req, increase count. Act as if this
 round of page walking is done, initiate
 another round of s_req.

 it's possible that when s_req has pte_cache_
 hit asserted, meanwhile a dcache request is
 successfully initiated

 when the state is in s_wait1, the req to dcache
 is ongoing(it's at s1), Also, the l2hit for L2TLB
 may be asserted (note that the effective
 request to L2TLB happens at s_ready when
 arb.io.out.fire), when l2hit is asserted, we
 need to kill the ongoing dcache request.

 io.mem.s1_kill := l2_hit || state =/= s_wait1

 there is another case that we need to kill the
 dcache request:
 when a dcache request is already ongoing at
 the s1 stage and state of PTW is s_req, it's
 because there is a pte cache hit at s_req so
 the state remains at s_req to request next
 level pte. In this case, we need to kill the
 dcache request initiated previously

 the L2TLB hit indicates this is the expected
 leaf PTE entry. There is no need to perform
 further page tree walking. In this case, just
 return to TLB module the cached pte, switch
 state back to s_ready

 when (l2_hit && !l2_error) {
 assert(state === s_req || state === s_wait1) // hjr s_
 req ==> pte_cache_hit or mem interface is not ready; s_
 wait1 ==> !pte_cache_hit
 next_state := s_ready
 resp_valid(r_req_dest) := true
 resp_ae := false
 count := pgLevels-1
 }

 for (i <- 0 until io.requestor.size) {
 io.requestor(i).resp.valid := resp_valid(i)
 io.requestor(i).resp.bits.ae := resp_ae
 io.requestor(i).resp.bits.pte := r_pte
 io.requestor(i).resp.bits.level := count
 //hjr this naming convention confuses me a lot
 //io.requestor(i).resp.bits.homogeneous really means base page
 homegeneous, even this base page is subpage of a non-
 homogeneous superpage when
 //pageGranularityPMPs is true(that is a fragmented superpage)
 io.requestor(i).resp.bits.homogeneous := homogeneous ||
 pageGranularityPMPs
 io.requestor(i).resp.bits.fragmented_superpage := resp_fragmented_
 superpage && pageGranularityPMPs
 io.requestor(i).ptbr := io.dpath.ptbr
 io.requestor(i).customCSRs := io.dpath.customCSRs
 io.requestor(i).status := io.dpath.status
 io.requestor(i).pmp := io.dpath.pmp
 }

 note that when l2_hit is asserted, but there is
 an error in the l2TLB: l2_error is asserted. In
 this case, In this case, just switch state to s_
 req

 what's the rationale for this?

 normally, s_wait1 will become s_wait2 next
 cycle. In this cycle, the dcache will normally
 assert its resp. But PTW registers that for one
 cycle. Therefore, the valid response is
 handled at s_wait3

 But if there is an access exception during the
 dcache access(io.mem.s2_xcpt.ae.ld is
 asserted), no need to wait until s_wait3 to
 report this ae to TLB, just do it at this s_wait2

 is (s_wait2) {
 next_state := s_wait3
 //hjr https://github.com/chipsalliance/rocket-chip/commit/
 630600d860a0ff0ec1e290931d301cc6f2b96fe0
 io.dpath.perf.pte_miss := count < pgLevels-1//hjr todo confusion on this
 why assert pte_miss here?
 when (io.mem.s2_xcpt.ae.ld) {
 resp_ae := true
 next_state := s_ready
 resp_valid(r_req_dest) := true
 }

 what's the rationale for registering the
 dcache response for 1 cycle.

 at s_wait3, the registered dcache response is
 asserted

 val mem_resp_valid = RegNext(io.mem.resp.valid)
 val mem_resp_data = RegNext(io.mem.resp.bits.data)
 io.mem.uncached_resp.map { resp =>
 assert(!(resp.valid && io.mem.resp.valid))
 resp.ready := true
 when (resp.valid) {
 mem_resp_valid := true
 mem_resp_data := resp.bits.data
 }
 }

 different handling path based on the
 response

 when (mem_resp_valid) {
 assert(state === s_wait3)//hjr this means mem resp asserted
 at s_wait2
 //hjr if the returned pte is non-leaf, should sending fetch
 request again(next_state := s_req) and increment the count
 when (traverse) {
 next_state := s_req
 count := count + 1
 }.otherwise {
 //hjr if the returned pte is leaf pte, update l2 tlb using the
 returned pte.
 //hjr the l2pte only caches the leaf pte for un-superpage
 l2_refill := pte.v && !invalid_paddr && count === pgLevels-1
 val ae = pte.v && invalid_paddr
 resp_ae := ae
 when (pageGranularityPMPs && count =/= pgLevels-1 && !
 ae) {
 next_state := s_fragment_superpage
 }.otherwise {
 next_state := s_ready
 resp_valid(r_req_dest) := true
 }
 }
 }

 if the returned pte is non-leaf, should
 sending fetch request again(next_state := s_
 req) and increment the count

 if the returned pte is leaf pte of a normal
 page, update l2 tlb using the returned pte.

 PTW is reused by ICache and DCache TLB,
 therefore arbitration is needed

 There is also cache facility inside the PTW to
 minimize the opportunity of real PTE miss

 l2TLB

 caches only normal(non-superpage) page
 leaf PTE

 set-associative
 ways nL2TLBWays

 sets val nL2TLBSets = coreParams.
 nL2TLBEntries / coreParams.nL2TLBWays

 Parity Encoding

 timming

 If the effective request is initiated at s0, since
 l2TLB is a sync mem, the response comes at
 s1, and hit detection and parity decoding is
 at s2.

 val s0_valid = !l2_refill && arb.io.out.fire()
 val s1_valid = RegNext(s0_valid && arb.io.out.bits.valid)
 val s2_valid = RegNext(s1_valid)
 val s1_rdata = ram.read(arb.io.out.bits.bits.addr(idxBits-1, 0), s0_valid)
 val s2_rdata = s1_rdata.map(s1_rdway => code.decode(RegEnable(s1_rdway, s1_
 valid)))//hjr parity decoding happens at s2.
 val s2_valid_vec = RegEnable(r_valid_vec, s1_valid)
 val s2_g_vec = RegEnable(Vec(g.map(_(r_idx))), s1_valid)
 val s2_error = (0 until coreParams.nL2TLBWays).map(way => s2_valid_vec(
 way) && s2_rdata(way).error).orR
 when (s2_valid && s2_error) { valid.foreach { _ := 0.U }}//hjr if there is error in 1
 way, invalidate all the cache line. Hmmm

 val s2_entry_vec = s2_rdata.map(_.uncorrected.asTypeOf(new L2TLBEntry(
 nL2TLBSets)))
 val s2_hit_vec = (0 until coreParams.nL2TLBWays).map(way => s2_valid_vec(
 way) && (r_tag === s2_entry_vec(way).tag))
 val s2_hit = s2_valid && s2_hit_vec.orR
 io.dpath.perf.l2miss := s2_valid && !(s2_hit_vec.orR)
 io.dpath.perf.l2hit := s2_hit
 when (s2_hit) {
 l2_plru.access(r_idx, OHToUInt(s2_hit_vec))
 assert((PopCount(s2_hit_vec) === 1.U) || s2_error, "L2 TLB multi-hit")
 }

 val s2_pte = Wire(new PTE)
 s2_pte := Mux1H(s2_hit_vec, s2_entry_vec)
 s2_pte.g := Mux1H(s2_hit_vec, s2_g_vec)
 s2_pte.v := true

 val (ram, omSRAM) = DescribedSRAM(
 name = "l2_tlb_ram",
 desc = "L2 TLB",
 size = nL2TLBSets,
 data = Vec(coreParams.nL2TLBWays, UInt(
 width = code.width(new L2TLBEntry(
 nL2TLBSets).getWidth)))
)

 The way valid and g is organized is a little bit
 wired

 val g = Reg(Vec(coreParams.nL2TLBWays, UInt(width = nL2TLBSets)))
 val valid = RegInit(Vec(Seq.fill(coreParams.nL2TLBWays)(0.U(
 nL2TLBSets.W))))

 pte_cache
 caches only the non-leaf pte

 a fully associative cache

 l2_refill := pte.v && !invalid_paddr &&
 count === pgLevels-1

 if the returned data represents a leaf pte for a superpage,
 while the pageGranularityPMPs is asserted. We could treat
 each fragment of this superpage as a homegeneous normal
 page. Since the pte.ppn returned by dcache for a superpgae
 will always has lower part the ppn being 0, we need extra
 state to calculate the actual ppn for that normal sub-
 fragment. This is the rationale for s_fragment_superpage

 is (s_fragment_superpage) {
 next_state := s_ready
 resp_valid(r_req_dest) := true
 resp_ae := false
 when (!homogeneous) {//hjr todo have
 trouble making this clear.
 count := pgLevels-1
 resp_fragmented_superpage := true
 }
 }

 If the original superpage is homogeneous,
 just reply to TLB module here

 if the original superpage is not
 homogeneous, reply to TLB here, marking
 that this is a normal page with fragmented_
 superpage being asserted

 io.requestor(i).resp.bits.homogeneous := homogeneous ||
 pageGranularityPMPs

 io.requestor(i).resp.bits.fragmented_superpage := resp_
 fragmented_superpage && pageGranularityPMPs

 if there is a dcache miss, s2_nack is asserted,
 just redirect the state to s_req, re-initiating
 this request again

 when (io.mem.s2_nack) {
 assert(state === s_wait2)
 next_state := s_req
 }

 val arb = Module(new Arbiter(Valid(new PTWReq), n))
 arb.io.in <> io.requestor.map(_.req)
 arb.io.out.ready := (state === s_ready) && !l2_refill_wire

 therefore we need a signal indicating where
 to response val r_req_dest = Reg(Bits())

 the rewire of r_pte

 r_pte := OptimizationBarrier(
 Mux(mem_resp_valid, pte,
 Mux(l2_hit && !l2_error, l2_pte,
 Mux(state === s_fragment_superpage && !
 homogeneous, makePTE(fragmented_superpage_ppn,
 r_pte),
 Mux(state === s_req && pte_cache_hit, makePTE(
 pte_cache_data, l2_pte),//hjr here, l2_pte is just a
 puppet, I am clever.
 Mux(arb.io.out.fire(), makePTE(io.dpath.ptbr.ppn, r_
 pte),
 r_pte))))))

 depending on the timming, r_pte could
 indicate different type of PTE entries.

 when mem_resp_valid is asserted, r_pte will
 be the obtained raw pte from dcache. It is
 used to calculate pte_addr, the address of
 next page table entry

 //hjr the addr of pte entry(no matter leaf or not) in
 memory
 val pte_addr = if (!usingVM) 0.U else {
 val vpn_idxs = (0 until pgLevels).map(i => (r_req.
 addr >> (pgLevels-i-1)*pgLevelBits)(pgLevelBits-1,0))
 val vpn_idx = vpn_idxs(count)
 Cat(r_pte.ppn, vpn_idx) << log2Ceil(xLen/8)//hjr this is
 just code form of baseaddr + va.vpn[i] * PTESIZE, it's a
 plain phys addr.
 }

 the r_pte in this case can also be inserted into
 the pte_cache or the L2TLB depending on
 whether it's an non-leaf pte or a normal leaf
 pte

 when l2_hit && !l2_error is asserted, the r_pte
 will be the entry obtained from l2_tlb cache

 r_pte is the final pte that will be sent back to
 the initiator from ICache or DCache

 it is also used to hold the non-leaf pte
 obtained from dcache response or the pte_
 cache

 the result obtained from dcache or l2Tlb

 when state === s_fragment_superpage && !
 homogeneous

 we just need to update the existing r_pte
 using newly calculated fragmented_
 superpage_ppn

 when state === s_req && pte_cache_hit

 in this case, we have a non-leaf pte cache
 hit, we only care about the ppn stored in pte
 cache. Note that the pte cache in PTW does
 not store all fields of a valid pte entry. It just
 stores the ppn

 arb.io.out.fire() the r_pte caches a fake pte where only the
 ppn is valid. It comes from the satp

 actually only caches the ppn

 makePTE(pte_cache_data, l2_pte)

 we have a non-leaf pte hit, this means we
 still need to perform another level page tree
 walking, therefore we need just calculate the
 pte_addr, ppn is all what we care about

https://github.com/chipsalliance/rocket-chip/commit/5da05dbb496ffb75323d4245028337ed99b453bf
https://github.com/chipsalliance/rocket-chip/commit/9dd8666f6fc749f9f9cac4e95504489003e63abd

