
EECS 442 Computer Vision: Homework 5

Instructions

• This homework is due due at 5:00:00 p.m. on April 17, 2023.

• The submission includes two parts:

1. To Canvas: submit a zip file of all of your code.
We have indicated questions where you have to do something in code in red.
We have indicated questions where we will definitely use an autograder in purple.
Please be especially careful on the autograded assignments to follow the instructions. Don’t
swap the order of arguments and do not return extra values.
If we’re talking about autograding a filename, we will be pulling out these files with a script.
Please be careful about the name.
Your zip file should contain a single directory which has the same name as your uniqname. If I
(David, uniqname fouhey) were submitting my code, the zip file should contain a single folder
fouhey/ containing all required files.
What should I submit? At the end of the homework, there is a canvas submission checklist
provided. We provide a script that validates the submission format here. If we don’t ask you for
it, you don’t need to submit it; while you should clean up the directory, don’t panic about having
an extra file or two.

2. To Gradescope: submit a pdf file as your write-up, including your answers to all the questions
and key choices you made.
We have indicated questions where you have to do something in the report in blue.
You might like to combine several files to make a submission. Here is an example online link
for combining multiple PDF files: https://combinepdf.com/.
The write-up must be an electronic version. No handwriting, including plotting questions.
LATEX is recommended but not mandatory.

Python Environment
We are using Python 3.7 for this course. You can find references for the Python standard library here:
https://docs.python.org/3.7/library/index.html. To make your life easier, we recommend you to install the
latest Anaconda for Python 3.7 (https://www.anaconda.com/download/). This is a Python package manager
that includes most of the modules you need for this course.

We will make use of the following packages extensively in this course:

• Numpy (https://docs.scipy.org/doc/numpy-dev/user/quickstart.html).

• Matplotlib (http://matplotlib.org/users/pyplot tutorial.html).

• OpenCV (https://opencv.org/).

1

https://raw.githubusercontent.com/eecs442/utils/master/check_submission.py
https://combinepdf.com/
https://docs.python.org/3.7/library/index.html
https://www.anaconda.com/download/
https://docs.scipy.org/doc/numpy-dev/user/quickstart.html
http://matplotlib.org/users/pyplot_tutorial.html
https://opencv.org/

1 Camera Calibration

Temple zrtrans reallyInwards

Figure 1: Epipolar lines for some of the datasets.

Task 1: Estimating M [35 points]

We will give you a set of 3D points {Xi}i and corresponding 2D points {pi}i. The goal is to compute the
projection matrix M that maps from world 3D coordinates to 2D image coordinates. Recall that

p ≡MX, (1)

and (see foreword) by deriving an optimization problem. The script task1.py shows you how to load the
data. The data we want you to use is in task1/, but we show you how to use data from Task 2 and 3 as
well. Credit: The data from task 1 and an early version of the problem comes from James Hays’s Georgia
Tech CS 6476.

(a) (15 points) Fill in find projection in task1.py.

(b) (5 points) Report M for the data in task1/.

(c) (10 points) Fill in compute distance in task1.py. In this question, you need to compute the
average distance in the image plane (i.e., pixel locations) between the homogeneous points MXi and
2D image coordinates pi, or

1

N

N∑
i

||proj(MXi)− pi||2. (2)

where proj([x, y, w]) = [x/w, y/w]. The distance quantifies how well the projection maps the points
Xi to pi. You should use find projection from part a). Note: You should feel good about the
distance if it is less than 0.01 for the given sample data. If you plug in different data, this threshold will
of course vary.

(d) (5 points) Describe what relationship, if any, there is between Equation 2 as above and Equation
6 in the HW5 Notes Note that the points we’ve given you are well-described by a linear projection –
there’s no noise in the measurements – but in practice, there will be an error that has to minimize. Both
equations represent objectives that could be used. If they are the same, show it; if they are not the same,
report which one makes more sense to minimize. Things to consider include whether the equations
directly represent anything meaningful.

2

2 Estimation of the Fundamental Matrix and Reconstruction

Data: we give you a series of datasets that are nicely bundled in the folder task23/. Each dataset con-
tains two images img1.png and img2.png and a numpy file data.npz containing a whole bunch of
variables. The script task23.py shows how to load the data.

Credit: temple comes from Middlebury’s Multiview Stereo dataset. The images shown in the synthetic
images are described in HW1’s credits.

Task 2: Estimating F [35 points]

(a) (15 points) Fill in find fundamental matrix in task23.py. You should implement the eight-
point algorithm. Remember to normalize the data and to reduce the rank of F. For normalization, you
can scale the image size and center the data at 0.

(b) (10 points) Fill in compute epipoles. This should return the homogeneous coordinates of the
epipoles – remember they can be infinitely far away!

(c) (5 points) Show epipolar lines for temple, reallyInwards, and another dataset of your choice.

(d) (5 points) Report the epipoles for reallyInwards and xtrans.

3

Task 3: Triangulating X [30 points]

Figure 2: Visualizations of reallyInwards reconstructions

The next step is extracting 3D points from 2D points and camera matrices, which is called triangulation. Let
X be a point in 3D.

p = M1X p′ = M2X (3)

Triangulation solves for X given p,p′,M1,M2. We’ll use OpenCV’s algorithms to do this.

(a) (5 points) Compute the Essential Matrix E for the Fundamental Matrix F. You should do this for
the dataset reallyInwards. Recall that

F = K′−TEK−1 (4)

and that K,K′ are always invertible (for reasonable cameras), so you can compute E straightforwardly.

(b) (15 points) Fill in find triangulation in task23.py.
The first camera’s projection matrix is K[I,0]. The second camera’s projection matrix can be obtained
by decomposing E into a rotation and translation via cv2.decomposeEssentialMat. (Note: E
can be obtained using the formula from part a) This function returns two matrices R1 and R2 and a
translation t. The four possible camera matrices for M2 are:

M1
2 = K′[R1, t], M2

2 = K′[R1,−t], M3
2 = K′[R2, t], M4

2 = K′[R2,−t] (5)

You can identify which projection is correct by picking the one for which the most 3D points are in
front of both cameras. You’ll have to run cv2.triangulatePoints in order to do this. Once you
have the 3D point X and a potential camera matrix M2, you can compute M2X and then check the last
entry w of the resulting homogeneous coordinate [u, v, w] = M2X. The reason why this works is that
the extrinsics put the 3D point in the camera’s frame, where z < 0 is behind the camera, and the last
row of K is [0, 0, 1] so this does not change things.

Then, triangulate the 2D points using cv2.triangulatePoints using the M2 that makes the most
points positive.

4

Note: you can approach this in two ways: (1) try all the M2 and figure out which one puts the most
points in front of the camera; then do the triangulation to get the final set of points; or (2) try all the
M2 options and keep track of both the “best” set of points and the M2, and then return “the best” set of
points. Either is fine.

(c) (10 points) Put a visualization of the point cloud for reallyInwards in your report. You can use
visualize pcd in utils.py or implement your own.

References and Credits

• Temple dataset used in Tasks 2 and 3: http://vision.middlebury.edu/mview/data/.

• Part of the homework are taken from Georgia Tech CS 6476 by James Hays and CMU 16-385. Please
feel free to similarly re-use our problems while similarly crediting us.

5

http://vision.middlebury.edu/mview/data/

	Camera Calibration
	Estimation of the Fundamental Matrix and Reconstruction

