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1 Introduction

For better or worse, linear regression models serve as the workhorse of social
science. “They are simple and often provide an adequate and interpretable de-
scription of how inputs affect the ouput.” [2] The parsimony of the linear model
allows researchers to not only assign factor loadings to the various phenomena
which may affect an outcome of interest, but also to straightforwardly convey
the results to a wide variety of audiences. For those who wish to design policy,
digestibly understanding the relationship between inputs and output is essential.

The linear regression model seeks to interpret the joint distribution of a
response Y and related variables X1, X2, . . . , Xp that may or may not have a
causal relationship with Y.

A linear model is
linear in the
coefficient

vector β, but
not necessarily in

the feature
matrix X .

We impose linearity to ease the separability of effect.
Each observation is a function of p linearly integrated regressors:

yi = β0 + Σpj=1βjxij = Xiβ (1)

We estimate the mapping from X to Y because we do not actually know
the underlying data generating process and true functional form of f(X). Con-

sequently, we collect many observations and fit the p-dimensional vector β̂ such
that the distance between Y and Xβ is minimized. Assuming we choose the
2-norm as the distance measurement, ||y − Xβ||2, linear regression is classic
least squares approximation. [7] The challenge addressed in this paper is that

the estimation of β̂ assumes we can observe all of the relevant regressors!

Ŷ = E(Y |X)E(X) (2)

Latent features
or factors are

inputs to a
model we cannot
directly observe.

If this assumption is violated, what recourse do we have? Ideally, we would
want to find some way to include latent features into the analysis. The Super-
vised Principal Components (SPC) approach combines Principal Com-
ponents Analysis (PCA) and linear regression together in a way that yields
estimates of latent factors, which can then be used directly in the estimation of
the full model.
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1.1 Hypothetical Grounding

Suppose that we seek to study structural changes in consumption activity during
the COVID-19 pandemic using a sample of people, and we can only observe
attributes of their financial transactions. Some members of the sample have
lost their jobs while others have not. We want to understand the impact of job
loss, but we cannot directly observe which parties lost their jobs. The ability
to maintain spending levels depends on income, but the separability between
the employed and unemployed groups is obscured because everyone is reducing
their consumption due to the pandemic. If we could observe job loss, we could
include it directly in our regression specification. Since we cannot, how should
we proceed?

We expect that each person, i, in the sample will have a consumption re-
sponse to that is a function of unobserved job loss, ui, and a vector of other
factors. We must consider a set of observable regressors, Xi = xi1+xi2+· · ·+xip,
we believe have some relationship to job loss.

For simplicity,
suppose that the

consumption
response is

entirely a
function of job

loss.

Y = β0 + β1U + ε =
[
1 U

]
B + ε (3)

Xj = α0j + α1jU + ηj =
[
1 U

]
A+ ηj (4)

On average, people who keep their jobs are more likely to maintain higher
levels of spending, but since everyone is generally changing their spending be-
havior the distribution of spending change in the newly unemployed portion of
the sample is likely to overlap strongly with the distribution of spending change
among those who retained their jobs. While administrative data on financial
account activity provides a very broad set of indicators, many of them will be
well correlated with each other. We could use PCA to identify covariance among
features, but there is no guarantee that the features that belong to the domi-
nant components are related to job loss or changes in consumption in general.
SPC provides a way of sifting through the principal components of the regressor
data to identify the direction of variation that best aligns with changes in the
response. In the remainder of this paper we will discuss the mechanics behind
PCA, explain how PCA can be used jointly with linear regression, and use that
foundation to present the SPC estimation approach.

The response
variable is the

variable to
predicted or

estimated Y.

2 Principal Components Analysis

The big idea that motivates PCA is the desire to collapse the information con-
tained in n-dimensional data into a m-dimensional space without materially
affecting the information content, for some m < n.

For instance, if
there are 100

features in our
input data, can

we reduce to 10?

Getting new, information
rich features can be accomplished by changing the basis of our matrix to match
the orthogonal set of eigenvectors that characterize our data. Once we have
identified the set of eigenvectors, we can simply select the subset we feel cap-
tures an adequate proportion of overall variation.
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2.1 Overview

Collapsing information from n to m dimensions starts with selecting a new
n-dimensional basis in the codomain and then selecting a subset of m basis
vectors. Once we have restricted the dimensional representation, we then map
the reduced data back to the original basis to complete the process.

A
transformation
T : A→ B maps
values from the

domain A to
values in the

codomain B. For now, assume the existence of a known linear transformation T : Cn →
Cn that maps values from the domain to a codomain that retains all previous
information, but now with a new basis. Assume also that the inverse T−1 exists
that maps the data back from the codomain to the original basis T−1 : Cm →
Cm. Let f represent the algorithm for selecting the m dimensions from the total
set of n: f : Xn → Xm. The following provides a high-level view of the overall
PCA dimension reduction algorithm (where the data matrix X is indexed by
domain/codomain and n-/m-dimensions):

The input
features X define

the basis in the
domain, while

the eigenbasis of
the features

defines the basis
in the codomain.

T (Xd,n) = Xc,n (5)

f(Xc,n) = Xc,m (6)

T−1(Xc,m) = Xd,m (7)

2.2 Choice of Basis

How should we identify the basis that will best capture the information in our
data? To the extent that we can consider variation as information, the variance-
covariance matrix, V [X] = XTX is a reasonable choice. To see why, consider
the following minimal example in which the matrix X is comprised of two n× 1
column vectors x1 and x2.

X =
[
x1 x2

]
(8)

XTX =

[
x1
x2

] [
x1 x2

]
(9)

=

[
x1 · x1 x1 · x2
x2 · x1 x2 · x2

]
(10)

The absolute value of each dot product in the final matrix is maximized
when the input vectors are colinear. The diagonal elements directly return the
variance scaled by n, Σnj=1x

2
ij , for the column vectors (assuming E[Xi] = 0). The

off-diagonal elements return the scaled covariance Σnj=1x1jx2j . The variance-
covariance matrix contains all relevant information about how the columns in
our matrix are related to each other. [6]

We assume that
all features are

standardized to
µ = 0 and σ = 1.

In the case of PCA, our goal is to define a lower-dimensional basis that allows
us to retain as much of the original variance as possible. [3] That is, we want
to maximize the variance of each coordinate zi for z ∈ Rn for i = 1, 2, . . . , n.
Assuming we have identified the eigenbasis A for our input features X, a full
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vector in the codomain is given by the following:

zn = ATxn =


aT1
aT2
...
aTn

xn (11)

The first scalar coordinate z1n of the transformed xn is given by z1n = aT1 xn.
We can maximize the variance in the first coordinate across all vectors xi for i =
1, 2, . . . , n by maximizing the following expression:

σ1 =
1

n
Σni=1z

2
1n (12)

=
1

n
Σni=1(aT1 xi)

2 (13)

=
1

n
Σni=1a

T
1 xix

T
i a1 (14)

= aT1 (
1

n
Σni=1xix

T
i )a1 (15)

(16)

But what is 1
nΣni=1xix

T
i ? It is the variance of the entire input feature

set, X, which we will label S. Therefore, we are seeking some vector a1 that
maximizes σ1 = aT1 Sa1. Now we can picture a normal vector a1 sweeping
about in n-dimensional space, all the while being projected onto the vectors
xi for i = 1, 2, . . . , n. That projection is maximized when a1 and all xi are
most colinear in aggregate, and correspondingly, aT1 Sa1 is also maximized. We
can use the maximization of aT1 Sa1 to identify the direction of greatest varia-
tion, which now reduces to straightforward constrained optimization problem:
max aT1 Sa1 s.t. ||a1||2 = 1. To resolve it, we need the partial derivatives of the
following Lagrangian:

We normalize a1
to length 1 so

that only its
direction affects
aT1 Sa1 and not
its magnitude.

L(a1, λ) = aT1 Sa1 + λ1(1− aT1 a1) (17)

First for a1 ...

δL
δa1

= 2a1S − 2λa1 = 0 (18)

→ aT1 S = λaT1 (19)

(aT1 S)T = (λaT1 )T (20)

Sa1 = λa1 (21)

... and then λ:
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δL
δλ

= 1− aT1 a1 (22)

→ aT1 a1 = 1 (23)

Upon resolution of the Lagrangian, it becomes clear that a1 is an eigenvector
of the variance-covariance matrix, S, of X. The constraint term, λ, is the asso-
ciated eigenvalue. Furthermore, it can be seen that σ1 = aT1 Sa1 = aT1 λ1a1 =
λ1(aT1 a1) = λ1, so the eigenvalue is also the associated variance of X in the
direction of the eigenvector a1, our first principal component.

2.3 Singular Value Decomposition

We have established that principal components of a given matrix X are the
eigenvectors of the associated variance-covariance matrix, but we still need a
reliable method of extracting those eigenvectors: singular value decomposition.

Singular Value
Decomposition:

Every p× q
matrix X can be

decomposed as
X = UΣV T

where U is p× p
and unitary, V is
q× q and unitary,

and Σ is p× q
and diagonal.

Given SVD, the following is implied:

S = XTX = (UΣV T )T (UΣV T ) (24)

= (V ΣTUT )(UΣV T ) (25)

= V ΣTΣV T (26)

→ ΣTΣ = V T (XTX)V (27)

= V TSV (28)

The diagonalization of S into D = ΣTΣ, which must contain real, non-
negative values along the diagonal, implies that V is comprised of the eigen-
vectors of S. [5] To be precise, each eigenvector v1, v2, . . . vq ∈ V and associated
eigenvalue σ1, σ2, . . . , σq ∈ Σ represent a principal component of X and the as-
sociated variance, respectively. The components are ordered by the magnitude
of the variance, with the largest being defined as the first principal component,
insofar as it captures the direction of most variance in X.

2.4 Dimension Reduction

Once we have our ordered set of principal components, a choice must be made
about tolerable error. The full set contains all of the variance information in the
input data matrix X, but the amount of variation in each subsequent component
decreases. We can choose a subset of m < n components to approximate the
information contained in X, and that process of subset selection is how we
achieve dimension reduction. The variance contained in the first m principal
components is simply the sum of the associate variances.

σm = Σmi=1λi (29)
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The variance lost is that contained in the n−m components:

σlost = Σni=m+1λi (30)

Once this selection takes place, we transform the data from the codomain
back to the domain by multiplying the reduced data by V −1, which is just V T

since V is unitary.

3 PCA and Linear Regression

Given a set of data X and observed outcomes Y one can find the least squares
solution β for the system Xβ = Y so long as X is of full rank:

Xβ = Y (31)

XTXβ = XT y (32)

β = (XTX)−1XT y (33)

This approach to approximation has wide application in social science, but
when dealing with real data, ideal conditions are often not met. Among other
considerations, one may have a variety of measures that are related to each other,
thereby violating the full rank assumption. PCA is one approach to reducing the
number of columns needed in the regression specification while also removing
any existing collinearity across columns. Specifically, we can find the principal
components of the input data X and use them to calculate our new observations
in the regression. Each new column zi would be some linear combination of the
input columns zi = γ1a1 + γ2a2 + · · · + γqaq. Since 〈zi, zj〉 = 0 ∀ i 6= j, the
regression resolves to the sum of univariate regressions of b on each principal
component zi. [4]

The inner

product 〈·, ·〉
between two

real-valued
vectors is just

the dot
product:
〈x1, x2〉 =

Σn
i=1x1ix2i.

b = Σmi=1

〈zi, b〉
〈zi, zi〉

zi (34)

PCA regression of this sort can be useful for both prediction and estimation
of relationships. With respect to the latter, however, we want some way of
recovering the importance of the original inputs in X. The score for each input
factor xi can be recovered by projecting it onto the principal components to
determine the extent to which it covaries with them. [1]

4 Supervised Principal Components

As discussed above, a primary advantage of PCA is the ability to decide which
components are most useful for the estimation in question. Quite frequently, we
are concerned with only those components that capture most of the variation in
the input matrix X, so we select the top m components sorted by their associ-
ated singular values. However, SPC envisions a different scenario in which our
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ability to observe all relevant inputs is impaired in some way. The hypothetical
grounding in Section 1.1 is one such scenario, insofar as we could not directly
observe job loss. Reconsider the initial model:

Y = β0 + β1U + ε =
[
1 U

]
B + ε (35)

Xj = α0j + α1jU + ηj =
[
1 U

]
A+ ηj , ∀ j ∈ P (36)

In this system, all other observed regressors Xk ∀ k 6= j are independent of
U. The set of regressors P can be thought of as indirect observations of U, and
can therefore be used to estimate its value so long as we can isolate the set. If
we can estimate U, we can use the Û to estimate Y.

4.1 Why Subset the Feature Set?

In many cases we use PCA regression to avoid collinearity issues and increase the
efficiency of our estimation by simply regressing Y on the principal components
of the entire input set X. Screening out some of the features prior to PCA
is a notable departure. The key consideration is that PCA on input features
does not incorporate any information about the relationship between Y and X,
which means there is no guarantee that the first principal component will have
any relationship to our response variable of interest Y or the underlying latent
variable U. Insofar as we seek to explicitly model our latent variable for use in
estimating Y, subsetting the feature set allows us to isolate the features that
enable estimation of Û . We are also able to identify the principal components
that are most related to Y itself.

4.2 The Supervised Principal Components Procedure

The algorithm proceeds as follows [1]:

1. Compute the univariate standard regression coefficients for each feature
in the input data matrix A.

2. Identify a threshold value θ for comparison with the regression coefficients
from the previous step. The set of regressors in P̂, our estimate of P, is
comprised of the features that have regression coefficients greater than θ.

3. Perform SVD on the subset of X in P̂, Xθ. The largest principal compo-
nent uθ1 is Û , our estimate of U.

4. Fit the original regression with Û and estimate Y.

5. Calculate the importance scores for each xj ∈ Xθ as the inner product

between each feature and Û . The larger the score, the greater the contri-
bution to the prediction of Y.

Once the features xj with the highest importance scores are identified, they
can be used as inputs to policy design or downstream analysis.
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5 Conclusion

SPC can be a powerful approach to estimating a wide range of models. The
flexibility to restrict the feature set provides a structured way for researchers to
address latent factors that might be otherwise obscured with conventional PCA
regression.

That being said, there are a couple notable limitations to consider when one
seeks to deploy the approach. First, Bair et al [1] do not offer a theoretical
grounding to ensure that the univariate regression screening approach for se-
lecting a subset of features will always select the “correct” features. It cannot,
for example, be guaranteed that they are all functions of the latent variable U
(even if selection tends to work well in practice). Second, the procedure largely
rests on the assumption that marginal dependence of the response on individ-
ual features implies marginal dependence on the joint distribution of features,
and vice versa. Should this assumption be violated in some way, the procedure
would fail.

Despite these limitations, SPC can be a formidable tool. The utility of the
approach lies in the flexibility of the general linear model, and the incorporation
of unsupervised learning (via PCA) to identify feature relationships that can be
used to model latent features that cannot be observed. Just as important, the
procedure is quite straightforward, which makes it easy to deploy in practice.
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