Useful Scripts

xml2png.py

Converts xml data file output from the Tecan Infinite m1000 Pro plate reader and allows for the quick visual inspection of raw absorbance and fluorescence data.

```
$ python python xml2png.py *.xml
```

quickmodel.py

Builds quick Bayesian model of both spectra and single wavelength two component binding experiments.

As input, it requires xml output files of the experiment form plate reader and a python script(*inputs.py*) that includes all experimental design details.

- 1. Run *calculate_L_stated_array.py* to generate ligand concentration array and copy it into *inputs.py*.
- 2. Construct inputs.py script based on experimental design.
- 3. Run`quickmodel.py`.

```
$ python quickmodel.py --inputs 'inputs' --type 'singlet' --nsamples 10000
```

inputs.py

inputs.py should be manually constructed to record experimental design details, following the layout of of inputs_example.py file. Ligand concentration array (Lstated section) can be constructed using calculate_L_stated_array.py script.

Sections of `inputs.py`

- xml_file_path: relative path to xml plate reader output files.
- file_set: option to group multiple experimental sets with a dictionary key.
- *ligand_order*. List of ligand names per each experiment set (one protein, one buffer row). If *skip* is specified as ligand name in this list, *quickmodel* analysis will skip the analysis of that experiment.
- *section*: Data section label of Tecan Infinite M1000 Pro plate reader as specified in its method.
- wavelength: Emission wavelength picked for analysis (nm).
- Lstated: Experimental value of ligand concentration (M), in NumPy array form. It can be constructed using calculate_L_stated_array.py script.
- *L_error*: Estimated % error in stated ligand concentrations.
- Pstated: Experimental value of protein concentration (M).
- *P_error*: Estimated % error in stated protein concentration.
- assay_volume: Volume of each assay sample (L).
- well_area: Area of microtiter plate well (cm^2)

calculate_L_stated_array.py

Generates Numpy array of stated ligand concentration (Lstated) for logarithmic or linear dilution along a row. This numpy array is necessary to construct *inputs.py* file for *quickmodel.py* analysis. Provide information on how ligand titration is constructed: number of wells in each titration ($-n_wells$), highest and lowest ligand concentrations in molar units ($-h_conc$ and $-l_conc$), and serial dilution mode (-dilution, linear or logarithmic) as inputs.

```
$ python calculate_Lstated_array.py --n_wells 12 --h_conc 8e-06 --l_conc 2.53e-09 --
dilution logarithmic
```

The numpy array this script prints out must be directly copied to *Lstated* section of *inputs.py*.