Skip to content


Folders and files

Last commit message
Last commit date

Latest commit



91 Commits

Repository files navigation


Git repository for software associated with the 2016 ACL paper "Identifying Causal Relations Using Parallel Wikipedia Articles."





How To

Causality Prediction

To run the model on a plain text file, use the predictCausality script:

python altlex/misc/ $text_file


For the entire pipeline, start at step 0.1 using the Simple and English Wikipedia dumps in the format "Parallel Wikipedia Format". (The paper used the Wikipedia dumps from September 2015).

Given the data provided with the ACL submission (altlex_train_paraphrases.tsv), parse the paraphrase pairs in the format "Parsed Pairs Format", save the files into $parsed_pairs_directory, and start at step 3.

  1. Preprocess data

    1. Parse data and save in the format "Parsed Wikipedia Format" in the directory $parsed_wikipedia_directory (there can be multiple files in this directory).
    2. Create word and sentence embeddings using gensim and save the model file as $embeddings_file.
  2. Find paraphrase pairs from English and Simple Wikipedia

    1. Start the embeddings server (it may take a while to load the embeddings and data):

    python altlex/embeddings/

    1. Determine possible paraphrase pairs and create the file $matches_file:

    python altlex/misc/ $embeddings_file $parallel_wikipedia_file $parsed_wikipedia_directory $matches_file $num_processes (optional) $start_point (optional)

    1. Restrict the output to be above the thresholds and make sure all pairs are 1-to-1.

    python altlex/misc/ $matches_file $min_doc2vec_score $min_wiknet_score $wiknet_penalty > $reduced_matches_file

    1. Create the directory $parsed_pairs_directory with files of the format "Parsed Pairs Format" using the output of 1c.
  3. Format pairs for input to MOSES (version 2.1 was used for all experiments):

python altlex/misc/ $parsed_pairs_directory corpus/$english_sentences corpus/$simple_sentences
lmplz -o 3 < $english_sentences > $english_language_model
perl train-model.perl --external-bin-dir moses/RELEASE-2.1/binaries/linux-64bit/training-tools/ --corpus corpus --f $english_sentences --e $simple_sentences --root-dir . --lm 0:3:$english_language_model -mgiza
  1. Determine possible new altlexes by using the word alignments to determine phrases that align with known connectives ($binary_flag should be 1 if predicting causal vs non-causal and 0 if predicting causal vs reason vs result):

python altlex/misc/ $parsed_pairs_directory model/aligned.grow-diag-final $session_name $binary_flag

  1. Make KLD weights

python altlex/misc/ <parsed_pairs_directory> model/aligned.grow-diag-final ${session_name}_initLabels.json.gz ${kld_name}.kldt $binary_flag

  1. Make feature set (see "Feature Extractor Config Format" for $json_config)

python altlex/misc/ parsed_pairs model/aligned.grow-diag-final ${session_name}_initLabels.json.gz $features_file $json_config

  1. Train model (see the ablation directory for example commands run)

python altlex/misc/ $features_file

  1. Train model with bootstrapping

python altlex/misc/ $features_file $parsed_pairs_directory ${session_name}_initLabels.json.gz

Data Format

Parallel Wikipedia Format

This is a gzipped, JSON-formatted file. The "titles" array is the shared title name of the English and Simple Wikipedia articles. The "articles" array consists of two arrays and each of those arrays must be the same length as the "titles" array and the indices into these arrays must point to the aligned articles and titles. Each article within the articles array is an array of tokenized sentence strings (but not word tokenized).

The format of the dictionary is as follows:

{"files": [english_name, simple_name],
 "articles": [
              [[article_1_sentence_1_string, article_1_sentence_2_string, ...],
               [article_2_sentence_1_string, article_2_sentence_2_string, ...],
              [[article_1_sentence_1_string, article_1_sentence_2_string, ...],
               [article_2_sentence_1_string, article_2_sentence_2_string, ...],
  "titles": [title_1_string, title_2_string, ...]

Parsed Wikipedia Format

This is a gzipped, JSON-formatted list of parsed Wikipedia article pairs. The list stored at 'sentences' is of length 2 and stores each version of the English and Wikipedia article with the same title.

The data is formatted as follows:

  "index": article_index,
  "title": article_title_string,
  "sentences": [[parsed_sentence_1, parsed_sentence_2, ...],
                [parsed_sentence_1, parsed_sentence_2, ...]

Parsed Pairs Format

This is a gzipped, JSON-formatted list of parsed sentences. Paraphrase pairs are consecutive even and odd indices. For the parsed sentence, see "Parsed Sentence Format."

The data is formatted as follows:


Parsed Sentence Format

Each parsed sentence is of the following format:

   "dep": [[[governor_index, dependent_index, relation_string], ...], ...], 
   "lemmas": [[lemma_1_string, lemma_2_string, ...], ...],
   "pos": [[pos_1_string, pos_2_string, ...], ...],
   "parse": [parenthesized_parse_1_string, ...], 
   "words": [[word_1_string, word_2_string, ...], ...] , 
   "ner": [[ner_1_string, ner_2_string, ...], ...]

Feature Extractor Config Format

   {"binary": true/false}, 
   "arguments_cat_curr": true/false, 
   "arguments_verbnet_prev": true/false, 
   "head_word_cat_curr": true/false, 
   "head_word_verbnet_prev": true/false, 
   "head_word_verbnet_altlex": true/false, 
   "head_word_cat_prev": true/false, 
   "head_word_cat_altlex": true/false, 
   "kld_score": true/false, 
   "head_word_verbnet_curr": true/false, 
   "arguments_verbnet_curr": true/false, 
   "framenet": true/false, 
   "arguments_cat_prev": true/false, 
   "connective": true/false
   {"kldDir": $kld_name}

Data Point Format

It is also possible to run the feature extractor directly on a single data point. From the featureExtraction module create a FeatureExtractor object and call the method addFeatures on a DataPoint object (note that this does not create any interaction features, for that you will also need to call makeInteractionFeatures). The DataPoint class takes a dictionary as input, in the following format:

"sentences": {[{"ner": [...], "pos": [...], "words": [...], "stems": [...], "lemmas": [...], "dependencies": [...]}, {...}]}
"altlexLength": integer,
"altlex": {"dependencies": [...]}

The sentences list is the pair of sentences/spans where the first span begins with the altlex. Dependencies must be a list where at index i there is a dependency relation string and governor index integer or a NoneType. Index i into the words list is the dependent of this relation. To split single sentence dependency relations, use the function splitDependencies in utils.dependencyUtils.


No description, website, or topics provided.






No releases published


No packages published