Skip to content
This repository

HTTPS clone URL

Subversion checkout URL

You can clone with HTTPS or Subversion.

Download ZIP
tree: 288d109a91
Fetching contributors…

Cannot retrieve contributors at this time

file 555 lines (439 sloc) 15.843 kb
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555
/*

Copyright (c) 2007-2008 Michael G Schwern

This software originally derived from Paul Sheer's pivotal_gmtime_r.c.

The MIT License:

Permission is hereby granted, free of charge, to any person obtaining a copy
of this software and associated documentation files (the "Software"), to deal
in the Software without restriction, including without limitation the rights
to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
copies of the Software, and to permit persons to whom the Software is
furnished to do so, subject to the following conditions:

The above copyright notice and this permission notice shall be included in
all copies or substantial portions of the Software.

THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN
THE SOFTWARE.

*/

/*

Programmers who have available to them 64-bit time values as a 'long
long' type can use localtime64_r() and gmtime64_r() which correctly
converts the time even on 32-bit systems. Whether you have 64-bit time
values will depend on the operating system.

S_localtime64_r() is a 64-bit equivalent of localtime_r().

S_gmtime64_r() is a 64-bit equivalent of gmtime_r().

*/

#include "time64.h"

static const int days_in_month[2][12] = {
    {31, 28, 31, 30, 31, 30, 31, 31, 30, 31, 30, 31},
    {31, 29, 31, 30, 31, 30, 31, 31, 30, 31, 30, 31},
};

static const int julian_days_by_month[2][12] = {
    {0, 31, 59, 90, 120, 151, 181, 212, 243, 273, 304, 334},
    {0, 31, 60, 91, 121, 152, 182, 213, 244, 274, 305, 335},
};

static const int length_of_year[2] = { 365, 366 };

/* Number of days in a 400 year Gregorian cycle */
static const Year years_in_gregorian_cycle = 400;
static const int days_in_gregorian_cycle = (365 * 400) + 100 - 4 + 1;

/* 28 year calendar cycle between 2010 and 2037 */
#define SOLAR_CYCLE_LENGTH 28
static const int safe_years[SOLAR_CYCLE_LENGTH] = {
    2016, 2017, 2018, 2019,
    2020, 2021, 2022, 2023,
    2024, 2025, 2026, 2027,
    2028, 2029, 2030, 2031,
    2032, 2033, 2034, 2035,
    2036, 2037, 2010, 2011,
    2012, 2013, 2014, 2015
};

static const int dow_year_start[SOLAR_CYCLE_LENGTH] = {
    5, 0, 1, 2, /* 0 2016 - 2019 */
    3, 5, 6, 0, /* 4 */
    1, 3, 4, 5, /* 8 */
    6, 1, 2, 3, /* 12 */
    4, 6, 0, 1, /* 16 */
    2, 4, 5, 6, /* 20 2036, 2037, 2010, 2011 */
    0, 2, 3, 4 /* 24 2012, 2013, 2014, 2015 */
};

/* Let's assume people are going to be looking for dates in the future.
Let's provide some cheats so you can skip ahead.
This has a 4x speed boost when near 2008.
*/
/* Number of days since epoch on Jan 1st, 2008 GMT */
#define CHEAT_DAYS (1199145600 / 24 / 60 / 60)
#define CHEAT_YEARS 108

#define IS_LEAP(n) ((!(((n) + 1900) % 400) || (!(((n) + 1900) % 4) && (((n) + 1900) % 100))) != 0)
#define WRAP(a,b,m) ((a) = ((a) < 0 ) ? ((b)--, (a) + (m)) : (a))

#ifdef USE_SYSTEM_LOCALTIME
# define SHOULD_USE_SYSTEM_LOCALTIME(a) ( \
(a) <= SYSTEM_LOCALTIME_MAX && \
(a) >= SYSTEM_LOCALTIME_MIN \
)
#else
# define SHOULD_USE_SYSTEM_LOCALTIME(a) (0)
#endif

#ifdef USE_SYSTEM_GMTIME
# define SHOULD_USE_SYSTEM_GMTIME(a) ( \
(a) <= SYSTEM_GMTIME_MAX && \
(a) >= SYSTEM_GMTIME_MIN \
)
#else
# define SHOULD_USE_SYSTEM_GMTIME(a) (0)
#endif

/* Multi varadic macros are a C99 thing, alas */
#ifdef TIME_64_DEBUG
# define TIME64_TRACE(format) (fprintf(stderr, format))
# define TIME64_TRACE1(format, var1) (fprintf(stderr, format, var1))
# define TIME64_TRACE2(format, var1, var2) (fprintf(stderr, format, var1, var2))
# define TIME64_TRACE3(format, var1, var2, var3) (fprintf(stderr, format, var1, var2, var3))
#else
# define TIME64_TRACE(format) ((void)0)
# define TIME64_TRACE1(format, var1) ((void)0)
# define TIME64_TRACE2(format, var1, var2) ((void)0)
# define TIME64_TRACE3(format, var1, var2, var3) ((void)0)
#endif

static int S_is_exception_century(Year year)
{
    int is_exception = ((year % 100 == 0) && !(year % 400 == 0));
    TIME64_TRACE1("# is_exception_century: %s\n", is_exception ? "yes" : "no");

    return(is_exception);
}


static Time64_T S_timegm64(struct TM *date) {
    int days = 0;
    Time64_T seconds = 0;
    Year year;

    if( date->tm_year > 70 ) {
        year = 70;
        while( year < date->tm_year ) {
            days += length_of_year[IS_LEAP(year)];
            year++;
        }
    }
    else if ( date->tm_year < 70 ) {
        year = 69;
        do {
            days -= length_of_year[IS_LEAP(year)];
            year--;
        } while( year >= date->tm_year );
    }

    days += julian_days_by_month[IS_LEAP(date->tm_year)][date->tm_mon];
    days += date->tm_mday - 1;

    /* Avoid overflowing the days integer */
    seconds = days;
    seconds = seconds * 60 * 60 * 24;

    seconds += date->tm_hour * 60 * 60;
    seconds += date->tm_min * 60;
    seconds += date->tm_sec;

    return(seconds);
}


#ifdef DEBUGGING
static int S_check_tm(struct TM *tm)
{
    /* Don't forget leap seconds */
    assert(tm->tm_sec >= 0);
    assert(tm->tm_sec <= 61);

    assert(tm->tm_min >= 0);
    assert(tm->tm_min <= 59);

    assert(tm->tm_hour >= 0);
    assert(tm->tm_hour <= 23);

    assert(tm->tm_mday >= 1);
    assert(tm->tm_mday <= days_in_month[IS_LEAP(tm->tm_year)][tm->tm_mon]);

    assert(tm->tm_mon >= 0);
    assert(tm->tm_mon <= 11);

    assert(tm->tm_wday >= 0);
    assert(tm->tm_wday <= 6);

    assert(tm->tm_yday >= 0);
    assert(tm->tm_yday <= length_of_year[IS_LEAP(tm->tm_year)]);

#ifdef HAS_TM_TM_GMTOFF
    assert(tm->tm_gmtoff >= -24 * 60 * 60);
    assert(tm->tm_gmtoff <= 24 * 60 * 60);
#endif

    return 1;
}
#endif


/* The exceptional centuries without leap years cause the cycle to
shift by 16
*/
static Year S_cycle_offset(Year year)
{
    const Year start_year = 2000;
    Year year_diff = year - start_year;
    Year exceptions;

    if( year > start_year )
        year_diff--;

    exceptions = year_diff / 100;
    exceptions -= year_diff / 400;

    TIME64_TRACE3("# year: %lld, exceptions: %lld, year_diff: %lld\n",
          year, exceptions, year_diff);

    return exceptions * 16;
}

/* For a given year after 2038, pick the latest possible matching
year in the 28 year calendar cycle.

A matching year...
1) Starts on the same day of the week.
2) Has the same leap year status.

This is so the calendars match up.

Also the previous year must match. When doing Jan 1st you might
wind up on Dec 31st the previous year when doing a -UTC time zone.

Finally, the next year must have the same start day of week. This
is for Dec 31st with a +UTC time zone.
It doesn't need the same leap year status since we only care about
January 1st.
*/
static int S_safe_year(Year year)
{
    int safe_year;
    Year year_cycle = year + S_cycle_offset(year);

    /* Change non-leap xx00 years to an equivalent */
    if( S_is_exception_century(year) )
        year_cycle += 11;

    /* Also xx01 years, since the previous year will be wrong */
    if( S_is_exception_century(year - 1) )
        year_cycle += 17;

    year_cycle %= SOLAR_CYCLE_LENGTH;
    if( year_cycle < 0 )
        year_cycle = SOLAR_CYCLE_LENGTH + year_cycle;

    assert( year_cycle >= 0 );
    assert( year_cycle < SOLAR_CYCLE_LENGTH );
    safe_year = safe_years[year_cycle];

    assert(safe_year <= 2037 && safe_year >= 2010);

    TIME64_TRACE3("# year: %lld, year_cycle: %lld, safe_year: %d\n",
          year, year_cycle, safe_year);

    return safe_year;
}


static void S_copy_little_tm_to_big_TM(const struct tm *src, struct TM *dest) {
    if( src == NULL ) {
        memset(dest, 0, sizeof(*dest));
    }
    else {
# ifdef USE_TM64
            dest->tm_sec = src->tm_sec;
            dest->tm_min = src->tm_min;
            dest->tm_hour = src->tm_hour;
            dest->tm_mday = src->tm_mday;
            dest->tm_mon = src->tm_mon;
            dest->tm_year = (Year)src->tm_year;
            dest->tm_wday = src->tm_wday;
            dest->tm_yday = src->tm_yday;
            dest->tm_isdst = src->tm_isdst;

# ifdef HAS_TM_TM_GMTOFF
                dest->tm_gmtoff = src->tm_gmtoff;
# endif

# ifdef HAS_TM_TM_ZONE
                dest->tm_zone = src->tm_zone;
# endif

# else
            /* They're the same type */
            memcpy(dest, src, sizeof(*dest));
# endif
    }
}


#ifndef HAS_LOCALTIME_R
/* Simulate localtime_r() to the best of our ability */
static struct tm * S_localtime_r(const time_t *clock, struct tm *result) {
    dTHX; /* in case the following is defined as Perl_my_localtime(aTHX_ ...) */
    const struct tm *static_result = localtime(clock);

    assert(result != NULL);

    if( static_result == NULL ) {
        memset(result, 0, sizeof(*result));
        return NULL;
    }
    else {
        memcpy(result, static_result, sizeof(*result));
        return result;
    }
}
#endif

#ifndef HAS_GMTIME_R
/* Simulate gmtime_r() to the best of our ability */
static struct tm * S_gmtime_r(const time_t *clock, struct tm *result) {
    dTHX; /* in case the following is defined as Perl_my_gmtime(aTHX_ ...) */
    const struct tm *static_result = gmtime(clock);

    assert(result != NULL);

    if( static_result == NULL ) {
        memset(result, 0, sizeof(*result));
        return NULL;
    }
    else {
        memcpy(result, static_result, sizeof(*result));
        return result;
    }
}
#endif

static struct TM *S_gmtime64_r (const Time64_T *in_time, struct TM *p)
{
    int v_tm_sec, v_tm_min, v_tm_hour, v_tm_mon, v_tm_wday;
    Time64_T v_tm_tday;
    int leap;
    Time64_T m;
    Time64_T time = *in_time;
    Year year = 70;
    int cycles = 0;

    assert(p != NULL);

    /* Use the system gmtime() if time_t is small enough */
    if( SHOULD_USE_SYSTEM_GMTIME(*in_time) ) {
        time_t safe_time = (time_t)*in_time;
        struct tm safe_date;
        GMTIME_R(&safe_time, &safe_date);

        S_copy_little_tm_to_big_TM(&safe_date, p);
        assert(S_check_tm(p));

        return p;
    }

#ifdef HAS_TM_TM_GMTOFF
    p->tm_gmtoff = 0;
#endif
    p->tm_isdst = 0;

#ifdef HAS_TM_TM_ZONE
    p->tm_zone = "UTC";
#endif

    v_tm_sec = (int)fmod(time, 60.0);
    time = time >= 0 ? floor(time / 60.0) : ceil(time / 60.0);
    v_tm_min = (int)fmod(time, 60.0);
    time = time >= 0 ? floor(time / 60.0) : ceil(time / 60.0);
    v_tm_hour = (int)fmod(time, 24.0);
    time = time >= 0 ? floor(time / 24.0) : ceil(time / 24.0);
    v_tm_tday = (int)time;

    WRAP (v_tm_sec, v_tm_min, 60);
    WRAP (v_tm_min, v_tm_hour, 60);
    WRAP (v_tm_hour, v_tm_tday, 24);

    v_tm_wday = (int)fmod((v_tm_tday + 4.0), 7.0);
    if (v_tm_wday < 0)
        v_tm_wday += 7;
    m = v_tm_tday;

    if (m >= CHEAT_DAYS) {
        year = CHEAT_YEARS;
        m -= CHEAT_DAYS;
    }

    if (m >= 0) {
        /* Gregorian cycles, this is huge optimization for distant times */
        cycles = (int)floor(m / (Time64_T) days_in_gregorian_cycle);
        if( cycles ) {
            m -= (cycles * (Time64_T) days_in_gregorian_cycle);
            year += (cycles * years_in_gregorian_cycle);
        }

        /* Years */
        leap = IS_LEAP (year);
        while (m >= (Time64_T) length_of_year[leap]) {
            m -= (Time64_T) length_of_year[leap];
            year++;
            leap = IS_LEAP (year);
        }

        /* Months */
        v_tm_mon = 0;
        while (m >= (Time64_T) days_in_month[leap][v_tm_mon]) {
            m -= (Time64_T) days_in_month[leap][v_tm_mon];
            v_tm_mon++;
        }
    } else {
        year--;

        /* Gregorian cycles */
        cycles = (int)ceil((m / (Time64_T) days_in_gregorian_cycle) + 1);
        if( cycles ) {
            m -= (cycles * (Time64_T) days_in_gregorian_cycle);
            year += (cycles * years_in_gregorian_cycle);
        }

        /* Years */
        leap = IS_LEAP (year);
        while (m < (Time64_T) -length_of_year[leap]) {
            m += (Time64_T) length_of_year[leap];
            year--;
            leap = IS_LEAP (year);
        }

        /* Months */
        v_tm_mon = 11;
        while (m < (Time64_T) -days_in_month[leap][v_tm_mon]) {
            m += (Time64_T) days_in_month[leap][v_tm_mon];
            v_tm_mon--;
        }
        m += (Time64_T) days_in_month[leap][v_tm_mon];
    }

    p->tm_year = year;
    if( p->tm_year != year ) {
#ifdef EOVERFLOW
        errno = EOVERFLOW;
#endif
        return NULL;
    }

    /* At this point m is less than a year so casting to an int is safe */
    p->tm_mday = (int) m + 1;
    p->tm_yday = julian_days_by_month[leap][v_tm_mon] + (int)m;
    p->tm_sec = v_tm_sec;
    p->tm_min = v_tm_min;
    p->tm_hour = v_tm_hour;
    p->tm_mon = v_tm_mon;
    p->tm_wday = v_tm_wday;

    assert(S_check_tm(p));

    return p;
}


static struct TM *S_localtime64_r (const Time64_T *time, struct TM *local_tm)
{
    time_t safe_time;
    struct tm safe_date;
    struct TM gm_tm;
    Year orig_year;
    int month_diff;

    assert(local_tm != NULL);

    /* Use the system localtime() if time_t is small enough */
    if( SHOULD_USE_SYSTEM_LOCALTIME(*time) ) {
        safe_time = (time_t)*time;

        TIME64_TRACE1("Using system localtime for %lld\n", *time);

        LOCALTIME_R(&safe_time, &safe_date);

        S_copy_little_tm_to_big_TM(&safe_date, local_tm);
        assert(S_check_tm(local_tm));

        return local_tm;
    }

    if( S_gmtime64_r(time, &gm_tm) == NULL ) {
        TIME64_TRACE1("gmtime64_r returned null for %lld\n", *time);
        return NULL;
    }

    orig_year = gm_tm.tm_year;

    if (gm_tm.tm_year > (2037 - 1900) ||
        gm_tm.tm_year < (1970 - 1900)
       )
    {
        TIME64_TRACE1("Mapping tm_year %lld to safe_year\n", (Year)gm_tm.tm_year);
        gm_tm.tm_year = S_safe_year((Year)(gm_tm.tm_year + 1900)) - 1900;
    }

    safe_time = (time_t)S_timegm64(&gm_tm);
    if( LOCALTIME_R(&safe_time, &safe_date) == NULL ) {
        TIME64_TRACE1("localtime_r(%d) returned NULL\n", (int)safe_time);
        return NULL;
    }

    S_copy_little_tm_to_big_TM(&safe_date, local_tm);

    local_tm->tm_year = orig_year;
    if( local_tm->tm_year != orig_year ) {
        TIME64_TRACE2("tm_year overflow: tm_year %lld, orig_year %lld\n",
              (Year)local_tm->tm_year, (Year)orig_year);

#ifdef EOVERFLOW
        errno = EOVERFLOW;
#endif
        return NULL;
    }


    month_diff = local_tm->tm_mon - gm_tm.tm_mon;

    /* When localtime is Dec 31st previous year and
gmtime is Jan 1st next year.
*/
    if( month_diff == 11 ) {
        local_tm->tm_year--;
    }

    /* When localtime is Jan 1st, next year and
gmtime is Dec 31st, previous year.
*/
    if( month_diff == -11 ) {
        local_tm->tm_year++;
    }

    /* GMT is Jan 1st, xx01 year, but localtime is still Dec 31st
in a non-leap xx00. There is one point in the cycle
we can't account for which the safe xx00 year is a leap
year. So we need to correct for Dec 31st comming out as
the 366th day of the year.
*/
    if( !IS_LEAP(local_tm->tm_year) && local_tm->tm_yday == 365 )
        local_tm->tm_yday--;

    assert(S_check_tm(local_tm));

    return local_tm;
}
Something went wrong with that request. Please try again.