Skip to content

chuan/chmm

master
Switch branches/tags

Name already in use

A tag already exists with the provided branch name. Many Git commands accept both tag and branch names, so creating this branch may cause unexpected behavior. Are you sure you want to create this branch?
Code

Latest commit

 

Git stats

Files

Permalink
Failed to load latest commit information.
Type
Name
Latest commit message
Commit time
 
 
 
 
 
 
 
 
 
 
 
 

Introduction

This is an implementation of hidden Markov model (HMM) training and classification for NVIDIA CUDA platform. A serial implementation in C is also included for comparison.

The implementation of HMM follows the tutorial paper by Rabiner. The three problem for HMM defined in the paper are:

  1. compute the probability of the observation sequence
  2. compute the most probable sequence
  3. train hidden Markov mode parameters

This implementation supports all the three problems. However there is no support for continuous densities.

Usage

The command line usage is as follows.

$ ./hmm -h
hmm [-hnt] [-c config] [-p(1|2|3)]
usage:
  -h   help
  -c   configuration file
  -t   output computation time
  -p1  compute the probability of the observation sequence
  -p2  compute the most probable sequence (Viterbi)
  -p3  train hidden Markov mode parameters (Baum-Welch)
  -n   number of iterations

Configuration

The configuration format is same for all the three problems. For problem 1, the forward probabilities for all input sequences are computed from the given model parameters. For problem 2, decoding is performed for all sequences based on the given parameters. For problem 3, the given input are used as training data.

The following example shows a 16 states HMM with 2 observation symbols and 32 input sequences. Empty line and line begins with # will be ignored. The order of parameters follows the example.

# a HMM model configuration for testing purpose

# number of states
16

# number of output
2

# initial state probability
0.04 0.02 0.06 0.04 0.11 0.11 0.01 0.09 0.03 0.05 0.06 0.11 0.05 0.11 0.03 0.08 

# state transition probability
0.08 0.02 0.10 0.05 0.07 0.08 0.07 0.04 0.08 0.10 0.07 0.02 0.01 0.10 0.09 0.01 
0.06 0.10 0.11 0.01 0.04 0.11 0.04 0.07 0.08 0.10 0.08 0.02 0.09 0.05 0.02 0.02 
0.08 0.07 0.08 0.07 0.01 0.03 0.10 0.02 0.07 0.03 0.06 0.08 0.03 0.10 0.10 0.08 
0.08 0.04 0.04 0.05 0.07 0.08 0.01 0.08 0.10 0.07 0.11 0.01 0.05 0.04 0.11 0.06 
0.03 0.03 0.08 0.10 0.11 0.04 0.06 0.03 0.03 0.08 0.03 0.07 0.10 0.11 0.07 0.03 
0.02 0.05 0.01 0.09 0.05 0.09 0.05 0.12 0.09 0.07 0.01 0.07 0.05 0.05 0.11 0.06 
0.11 0.05 0.10 0.07 0.01 0.08 0.05 0.03 0.03 0.10 0.01 0.10 0.08 0.09 0.07 0.02 
0.03 0.02 0.16 0.01 0.05 0.01 0.14 0.14 0.02 0.05 0.01 0.09 0.07 0.14 0.03 0.01 
0.01 0.09 0.13 0.01 0.02 0.04 0.05 0.03 0.10 0.05 0.06 0.06 0.11 0.06 0.03 0.14 
0.09 0.03 0.04 0.05 0.04 0.03 0.12 0.04 0.07 0.02 0.07 0.10 0.11 0.03 0.06 0.09 
0.09 0.04 0.06 0.06 0.05 0.07 0.05 0.01 0.05 0.10 0.04 0.08 0.05 0.08 0.08 0.10 
0.07 0.06 0.01 0.07 0.06 0.09 0.01 0.06 0.07 0.07 0.08 0.06 0.01 0.11 0.09 0.05 
0.03 0.04 0.06 0.06 0.06 0.05 0.02 0.10 0.11 0.07 0.09 0.05 0.05 0.05 0.11 0.08 
0.04 0.03 0.04 0.09 0.10 0.09 0.08 0.06 0.04 0.07 0.09 0.02 0.05 0.08 0.04 0.09 
0.05 0.07 0.02 0.08 0.06 0.08 0.05 0.05 0.07 0.06 0.10 0.07 0.03 0.05 0.06 0.10 
0.11 0.03 0.02 0.11 0.11 0.01 0.02 0.08 0.05 0.08 0.11 0.03 0.02 0.10 0.01 0.11 

# state output probability
0.01 0.99 
0.58 0.42 
0.48 0.52 
0.58 0.42 
0.37 0.63 
0.33 0.67 
0.51 0.49 
0.28 0.72 
0.35 0.65 
0.61 0.39 
0.97 0.03 
0.87 0.13 
0.46 0.54 
0.55 0.45 
0.23 0.77 
0.76 0.24 

# data size
32 10

# data
0 0 0 0 0 0 1 0 1 1 
1 1 0 0 1 1 1 0 0 0 
1 1 0 1 0 0 0 1 0 1 
1 1 1 1 1 0 1 1 1 0 
0 1 0 1 1 0 1 1 1 1 
1 0 1 1 0 1 0 1 1 1 
1 0 1 1 1 1 0 0 1 1 
0 1 0 1 1 1 0 0 0 0 
0 1 1 0 0 0 1 1 1 1 
0 1 1 0 0 0 0 1 1 0 
1 1 1 1 1 0 1 1 0 0 
0 0 0 0 1 1 0 1 1 1 
1 0 1 0 1 1 1 1 1 0 
1 0 0 1 1 1 0 0 0 0 
0 0 1 1 1 0 0 0 0 1 
1 0 1 1 0 1 0 1 0 0 
1 0 1 0 1 0 0 1 0 1 
0 0 0 1 0 0 0 1 0 1 
1 1 1 0 0 0 0 1 0 0 
0 1 0 1 1 1 1 1 1 1 
0 0 0 0 1 1 1 0 1 0 
0 1 1 1 0 1 0 1 0 0 
1 1 0 1 1 0 0 0 0 1 
0 0 0 0 1 1 0 0 1 1 
0 1 0 1 1 1 1 1 0 0 
0 1 1 1 0 1 1 0 1 1 
1 1 1 1 0 0 1 1 0 0 
1 1 0 1 1 0 0 0 0 0 
0 1 0 0 0 0 0 0 0 1 
1 0 0 1 0 1 0 0 1 1 
0 1 0 1 0 0 1 1 0 0 
0 0 1 0 1 1 1 1 0 0 

Further Information

For more detailed information, please refer to the report at http://liuchuan.org/pub/cuHMM.pdf

About

CUDA implementation of hidden Markov model training and classification

Resources

Stars

Watchers

Forks

Releases

No releases published

Packages

No packages published