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What is verification like, anyway?

Verification ̸= Absence of bugs

Program
satisfies−−−−→ Property

or, in verification speak:

Implementation
satisfies−−−−→ Specification
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What is verification like, anyway?

Properties
⌣

• no null pointer dereferences;
• no integer / buffer overflows;
• no data races;
• some property P(output, input) holds
→ functional specifications

⌢

• does what I want;
• no bugs;
• no vulnerabilities
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What is verification like, anyway?

Properties
⌣

• no null pointer dereferences;
• no integer / buffer overflows;
• no data races;
• some property P(output, input) holds
→ functional specifications

⌢

• does what I want;
• no bugs;
• no vulnerabilities
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A binary search function

1 method Binfind(a: seq<int>, v: int) returns (rv: int)
2 {
3 rv := -1;
4 var l, r := 0, |a|;
5 if |a| = 0 { return; }
6 while l + 1 < r {
7 var mid := (l + r) / 2;
8 if v = a[mid] { rv := mid; return; }
9 else if v < a[mid] { r := mid; }

10 else { l := mid; }
11 }
12 if a[l] = v { rv := l; return; }
13 rv := -1; return;
14 }
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A binary search function cont.

1 method Binfind(a: seq<int>, v: int) returns (rv: int)
2 requires // PRECONDITION: sorted
3 ∀ i, j :: 0 ≤ i ≤ j < |a| → a[i] ≤ a[j]
4 ensures // POSTCONDITION: not found
5 rv = -1 → ∀ j :: 0 ≤ j < |a| → a[j] ̸= v
6 ensures // POSTCONDITION: found
7 rv ≥ 0 → rv < |a| ∧ a[rv] = v
8 {
9 rv := -1;

10 var l, r := 0, |a|;
11 if |a| = 0 { return; }
12 while l + 1 < r {
13 var mid := (l + r) / 2;
14 if v = a[mid] { rv := mid; return; }
15 else if v < a[mid] { r := mid; }
16 else { l := mid; }
17 }
18 if a[l] = v { rv := l; return; }
19 rv := -1; return;
20 }
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A binary search function cont.

1 method Binfind(a: seq<int>, v: int) returns (rv: int)
2 // requires and ensures ...
3 {
4 rv := -1;
5 var l, r := 0, |a|;
6 if |a| = 0 { return; }
7 while l + 1 < r
8 // LOOP INVARIANTS
9 invariant 0 ≤ l < r ≤ |a|

10 invariant ∀ i :: 0 ≤ i < l → a[i] < v
11 invariant ∀ i :: r ≤ i < |a| → v < a[i]
12 {
13 var mid := (l + r) / 2;
14 if v = a[mid] { rv := mid; return; }
15 else if v < a[mid] { r := mid; }
16 else { l := mid; }
17 }
18 if a[l] = v { rv := l; return; }
19 rv := -1; return;
20 }
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A binary search function cont.

1 method Binfind(a: seq<int>, v: int) returns (rv: int)
2 // requires and ensures ...
3 {
4 rv := -1;
5 var l, r := 0, |a|;
6 if |a| = 0 { return; }
7 while l + 1 < r
8 // loop invariants
9 {

10 var mid := (l + r) / 2;
11 if v = a[mid] { rv := mid; return; }
12 else if v < a[mid] { r := mid; }
13 else { l := mid; }
14 }
15 if a[l] = v { rv := l; return; }
16 assert l + 1 = r // ASSERTION
17 rv := -1; return;
18 }
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The language

Elements

• Basic expressions / statements
• Preconditions, postconditions
• Loop invariants
• Assertions
• Propositions : FOF (∧,∨,¬,∀,∃)

Characteristics

• Imperative.
• No pointers. No dynamic memory allocation.

Bad for systems programming.
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Verification Mechanism
Encode the conditions into a logical formula. Prove the formula
is always true.

1 method NonzeroSquare(a: int) returns (rv: int)
2 requires a ̸= 0
3 ensures rv > 0
4 {
5

6 rv := a * a;
7

8 }
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Verification Mechanism cont.
Automatically synthesis Hoare triples {P} s {Q}.
P and Q: propositions. s: statement.

1 method NonzeroSquare(a: int) returns (rv: int)
2 requires a ̸= 0
3 ensures rv > 0
4 {
5 // { a ̸= 0 ∧ a * a = a * a }
6 rv := a * a;
7 // { a ̸= 0 ∧ rv = a * a }
8 }

Hoare triple of assignment: {Q[x 7→ e]} x := e {Q}

Prove the validity of

(a ̸= 0 ∧ rv = a× a) → (rv > 0)
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Verification Mechanism cont.
Automatically synthesis Hoare triples {P} s {Q}.
P and Q: propositions. s: statement.

1 method NonzeroSquare(a: int) returns (rv: int)
2 requires a ̸= 0
3 ensures rv > 0
4 {
5 // { a ̸= 0 ∧ a * a = a * a }
6 rv := a * a;
7 // { a ̸= 0 ∧ rv = a * a }
8 }

Hoare triple of assignment: {Q[x 7→ e]} x := e {Q}
Prove the validity of

(a ̸= 0 ∧ rv = a× a) → (rv > 0)
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Verification Mechanism cont.
Prove the validity of

(a ̸= 0 ∧ rv = a× a) → (rv > 0)

• Automatic: SMT solvers → z3
• Semi-automatic: theorem provers → coq

• Manual:
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Pointers aliasing is bad for verification

Problem with Hoare logic
No pointers. No heaps i.e. dynamically allocated memory.

We could extend Hoare logic with pointers in some way …
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A binary tree example

1 method FreeBinTree(a: BinTree*) returns ()
2 {
3 if a = NIL { return; }
4 FreeBinTree(a->lc);
5 FreeBinTree(a->rc);
6 free(a);
7 }

Seems ok. But what if …

lc
rc

pa
yl
oa
d

lc
rc

pa
yl
oa
d

lc
rc

pa
yl
oa
d

N
IL

→ Double free!
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A binary tree example cont.
Add a precondition

1 method FreeBinTree(a: BinTree*) returns ()
2 requires IsBinTree(a)
3 {
4 if a = NIL { return; }
5 FreeBinTree(a->lc);
6 FreeBinTree(a->rc);
7 free(a);
8 }

Naively, ∧ (logical and)
1 predicate IsBinTree(a: BinTree*)
2 { a = NIL ∨ (IsBinTree(a->lc) ∧ IsBinTree(a->rc)) }
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A binary tree example cont.
Add a precondition

1 method FreeBinTree(a: BinTree*) returns ()
2 requires IsBinTree(a)
3 {
4 if a = NIL { return; }
5 FreeBinTree(a->lc);
6 FreeBinTree(a->rc);
7 free(a);
8 }

Separation logic: ∗ (and, separately)
1 predicate IsBinTree(a: BinTree*)
2 { a = NIL ∨ (IsBinTree(a->lc) ∗ IsBinTree(a->rc)) }

a->lc and a->rc must not alias.
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Separation Logic

Key insight
Aliasing needs special attention!

→ Rust’s exclusive ownership
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Status
Still a prototype. ⌢
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Closer look
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Research Question
Deductive verification in Rust.

Key Questions

• How automatic? → “fully automatic”
• Mechanism overview → program translation
• Infrastructures? → bottom-most: z3
• Why Rust? How about C? → controlled aliasing
• Dealing with libraries? → wrappers
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Flow graph

translate

Original Program Verification Annotations
requires	ensures
assert	invariant

Viper
engine

Core Proof

Rust

encode

Rust (#[requires="..."])

ViperMemory safety
Type safety

...

Viper
engine

Proof

User defined
properties

Viper
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Infrastructure

Verification Language: Viper

• Implicit Dynamic Frames Logic → Separation Logic
• Pointers, heaps!
• Resource capability

The bottom-most

• Symbolic execution verifier
• z3
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Why Rust?
Reason: what logic do we use for verification?

Separation
logic:aliasing!
struct Node {

val: i32,
l: Box<Tree>,
rc: Box<Tree>

}

Node.lc and Node.rc must not alias.
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Why Rust?
Reason: what logic do we use for verification? Separation
logic:

aliasing!
struct Node {

val: i32,
l: Box<Tree>,
rc: Box<Tree>

}

Node.lc and Node.rc must not alias.
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Why Rust?
Reason: what logic do we use for verification? Separation
logic:aliasing!
struct Node {

val: i32,
l: Box<Tree>,
rc: Box<Tree>

}

Node.lc and Node.rc must not alias.



OOPSLA’19:
Prusti

ETH people

Background
Introduction

Deductive Verification
based on Hoare logic

Separation Logic

Prusti
First Words

Key Questions

Mechanism Overview

Evaluation

Conclusion

Libraries

• #[trusted]
• wrappers
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Evaluation questions

Core proof

• 500 popular crates
• automatic generation
• verification time: 90% < 2 sec

Overflow & panic freedom

• filtered, 519 functions
• automatic assertion generation
• error in 467 functions

Functional specification

• Hand constructed data, 11 files
• e.g. binary search



OOPSLA’19:
Prusti

ETH people

Background
Introduction

Deductive Verification
based on Hoare logic

Separation Logic

Prusti
First Words

Key Questions

Mechanism Overview

Evaluation

Conclusion

Evaluation questions

Core proof

• 500 popular crates
• automatic generation
• verification time: 90% < 2 sec

Overflow & panic freedom

• filtered, 519 functions
• automatic assertion generation
• error in 467 functions

Functional specification

• Hand constructed data, 11 files
• e.g. binary search



OOPSLA’19:
Prusti

ETH people

Background
Introduction

Deductive Verification
based on Hoare logic

Separation Logic

Prusti
First Words

Key Questions

Mechanism Overview

Evaluation

Conclusion

Evaluation questions

Core proof

• 500 popular crates
• automatic generation
• verification time: 90% < 2 sec

Overflow & panic freedom

• filtered, 519 functions
• automatic assertion generation
• error in 467 functions

Functional specification

• Hand constructed data, 11 files
• e.g. binary search



OOPSLA’19:
Prusti

ETH people

Background
Introduction

Deductive Verification
based on Hoare logic

Separation Logic

Prusti
First Words

Key Questions

Mechanism Overview

Evaluation

Conclusion

Plan

1 Background
Introduction
Deductive Verification based on Hoare logic
Separation Logic

2 Prusti
First Words
Key Questions
Mechanism Overview
Evaluation

3 Conclusion



OOPSLA’19:
Prusti

ETH people

Background
Introduction

Deductive Verification
based on Hoare logic

Separation Logic

Prusti
First Words

Key Questions

Mechanism Overview

Evaluation

Conclusion

Main takeaways

• Automatic verification: z3

• Throw work to infrastructure
• Aliasing with mutability is bad → Rust, SL
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