
OOPSLA’19:
Prusti

ETH people

Background
Introduction

Deductive Verification
based on Hoare logic

Separation Logic

Prusti
First Words

Key Questions

Mechanism Overview

Evaluation

Conclusion

Leveraging Rust Types for Modular
Specification and Verification

Vytautas Astrauskas,
Peter Müller, Federico Poli,

Alexander J. Summers

ETH Zurich

September 12, 2019

OOPSLA’19:
Prusti

ETH people

Background
Introduction

Deductive Verification
based on Hoare logic

Separation Logic

Prusti
First Words

Key Questions

Mechanism Overview

Evaluation

Conclusion

Plan

1 Background
Introduction
Deductive Verification based on Hoare logic
Separation Logic

2 Prusti
First Words
Key Questions
Mechanism Overview
Evaluation

3 Conclusion

OOPSLA’19:
Prusti

ETH people

Background
Introduction

Deductive Verification
based on Hoare logic

Separation Logic

Prusti
First Words

Key Questions

Mechanism Overview

Evaluation

Conclusion

What is verification like, anyway?

Verification ̸= Absence of bugs

Program
satisfies−−−−→ Property

or, in verification speak:

Implementation
satisfies−−−−→ Specification

OOPSLA’19:
Prusti

ETH people

Background
Introduction

Deductive Verification
based on Hoare logic

Separation Logic

Prusti
First Words

Key Questions

Mechanism Overview

Evaluation

Conclusion

What is verification like, anyway?

Verification ̸= Absence of bugs

Program
satisfies−−−−→ Property

or, in verification speak:

Implementation
satisfies−−−−→ Specification

OOPSLA’19:
Prusti

ETH people

Background
Introduction

Deductive Verification
based on Hoare logic

Separation Logic

Prusti
First Words

Key Questions

Mechanism Overview

Evaluation

Conclusion

What is verification like, anyway?

Properties
⌣

• no null pointer dereferences;
• no integer / buffer overflows;
• no data races;
• some property P(output, input) holds
→ functional specifications

⌢

• does what I want;
• no bugs;
• no vulnerabilities

OOPSLA’19:
Prusti

ETH people

Background
Introduction

Deductive Verification
based on Hoare logic

Separation Logic

Prusti
First Words

Key Questions

Mechanism Overview

Evaluation

Conclusion

What is verification like, anyway?

Properties
⌣

• no null pointer dereferences;
• no integer / buffer overflows;
• no data races;
• some property P(output, input) holds
→ functional specifications

⌢

• does what I want;
• no bugs;
• no vulnerabilities

OOPSLA’19:
Prusti

ETH people

Background
Introduction

Deductive Verification
based on Hoare logic

Separation Logic

Prusti
First Words

Key Questions

Mechanism Overview

Evaluation

Conclusion

A binary search function

1 method Binfind(a: seq<int>, v: int) returns (rv: int)
2 {
3 rv := -1;
4 var l, r := 0, |a|;
5 if |a| = 0 { return; }
6 while l + 1 < r {
7 var mid := (l + r) / 2;
8 if v = a[mid] { rv := mid; return; }
9 else if v < a[mid] { r := mid; }

10 else { l := mid; }
11 }
12 if a[l] = v { rv := l; return; }
13 rv := -1; return;
14 }

OOPSLA’19:
Prusti

ETH people

Background
Introduction

Deductive Verification
based on Hoare logic

Separation Logic

Prusti
First Words

Key Questions

Mechanism Overview

Evaluation

Conclusion

A binary search function cont.

1 method Binfind(a: seq<int>, v: int) returns (rv: int)
2 requires // PRECONDITION: sorted
3 ∀ i, j :: 0 ≤ i ≤ j < |a| → a[i] ≤ a[j]
4 ensures // POSTCONDITION: not found
5 rv = -1 → ∀ j :: 0 ≤ j < |a| → a[j] ̸= v
6 ensures // POSTCONDITION: found
7 rv ≥ 0 → rv < |a| ∧ a[rv] = v
8 {
9 rv := -1;

10 var l, r := 0, |a|;
11 if |a| = 0 { return; }
12 while l + 1 < r {
13 var mid := (l + r) / 2;
14 if v = a[mid] { rv := mid; return; }
15 else if v < a[mid] { r := mid; }
16 else { l := mid; }
17 }
18 if a[l] = v { rv := l; return; }
19 rv := -1; return;
20 }

OOPSLA’19:
Prusti

ETH people

Background
Introduction

Deductive Verification
based on Hoare logic

Separation Logic

Prusti
First Words

Key Questions

Mechanism Overview

Evaluation

Conclusion

A binary search function cont.

1 method Binfind(a: seq<int>, v: int) returns (rv: int)
2 // requires and ensures ...
3 {
4 rv := -1;
5 var l, r := 0, |a|;
6 if |a| = 0 { return; }
7 while l + 1 < r
8 // LOOP INVARIANTS
9 invariant 0 ≤ l < r ≤ |a|

10 invariant ∀ i :: 0 ≤ i < l → a[i] < v
11 invariant ∀ i :: r ≤ i < |a| → v < a[i]
12 {
13 var mid := (l + r) / 2;
14 if v = a[mid] { rv := mid; return; }
15 else if v < a[mid] { r := mid; }
16 else { l := mid; }
17 }
18 if a[l] = v { rv := l; return; }
19 rv := -1; return;
20 }

OOPSLA’19:
Prusti

ETH people

Background
Introduction

Deductive Verification
based on Hoare logic

Separation Logic

Prusti
First Words

Key Questions

Mechanism Overview

Evaluation

Conclusion

A binary search function cont.

1 method Binfind(a: seq<int>, v: int) returns (rv: int)
2 // requires and ensures ...
3 {
4 rv := -1;
5 var l, r := 0, |a|;
6 if |a| = 0 { return; }
7 while l + 1 < r
8 // loop invariants
9 {

10 var mid := (l + r) / 2;
11 if v = a[mid] { rv := mid; return; }
12 else if v < a[mid] { r := mid; }
13 else { l := mid; }
14 }
15 if a[l] = v { rv := l; return; }
16 assert l + 1 = r // ASSERTION
17 rv := -1; return;
18 }

OOPSLA’19:
Prusti

ETH people

Background
Introduction

Deductive Verification
based on Hoare logic

Separation Logic

Prusti
First Words

Key Questions

Mechanism Overview

Evaluation

Conclusion

The language

Elements

• Basic expressions / statements
• Preconditions, postconditions
• Loop invariants
• Assertions
• Propositions : FOF (∧,∨,¬,∀,∃)

Characteristics

• Imperative.
• No pointers. No dynamic memory allocation.

Bad for systems programming.

OOPSLA’19:
Prusti

ETH people

Background
Introduction

Deductive Verification
based on Hoare logic

Separation Logic

Prusti
First Words

Key Questions

Mechanism Overview

Evaluation

Conclusion

Verification Mechanism
Encode the conditions into a logical formula. Prove the formula
is always true.

1 method NonzeroSquare(a: int) returns (rv: int)
2 requires a ̸= 0
3 ensures rv > 0
4 {
5

6 rv := a * a;
7

8 }

OOPSLA’19:
Prusti

ETH people

Background
Introduction

Deductive Verification
based on Hoare logic

Separation Logic

Prusti
First Words

Key Questions

Mechanism Overview

Evaluation

Conclusion

Verification Mechanism cont.
Automatically synthesis Hoare triples {P} s {Q}.
P and Q: propositions. s: statement.

1 method NonzeroSquare(a: int) returns (rv: int)
2 requires a ̸= 0
3 ensures rv > 0
4 {
5 // { a ̸= 0 ∧ a * a = a * a }
6 rv := a * a;
7 // { a ̸= 0 ∧ rv = a * a }
8 }

Hoare triple of assignment: {Q[x 7→ e]} x := e {Q}

Prove the validity of

(a ̸= 0 ∧ rv = a× a) → (rv > 0)

OOPSLA’19:
Prusti

ETH people

Background
Introduction

Deductive Verification
based on Hoare logic

Separation Logic

Prusti
First Words

Key Questions

Mechanism Overview

Evaluation

Conclusion

Verification Mechanism cont.
Automatically synthesis Hoare triples {P} s {Q}.
P and Q: propositions. s: statement.

1 method NonzeroSquare(a: int) returns (rv: int)
2 requires a ̸= 0
3 ensures rv > 0
4 {
5 // { a ̸= 0 ∧ a * a = a * a }
6 rv := a * a;
7 // { a ̸= 0 ∧ rv = a * a }
8 }

Hoare triple of assignment: {Q[x 7→ e]} x := e {Q}
Prove the validity of

(a ̸= 0 ∧ rv = a× a) → (rv > 0)

OOPSLA’19:
Prusti

ETH people

Background
Introduction

Deductive Verification
based on Hoare logic

Separation Logic

Prusti
First Words

Key Questions

Mechanism Overview

Evaluation

Conclusion

Verification Mechanism cont.
Prove the validity of

(a ̸= 0 ∧ rv = a× a) → (rv > 0)

• Automatic: SMT solvers → z3
• Semi-automatic: theorem provers → coq

• Manual:

OOPSLA’19:
Prusti

ETH people

Background
Introduction

Deductive Verification
based on Hoare logic

Separation Logic

Prusti
First Words

Key Questions

Mechanism Overview

Evaluation

Conclusion

Pointers aliasing is bad for verification

Problem with Hoare logic
No pointers. No heaps i.e. dynamically allocated memory.

We could extend Hoare logic with pointers in some way …

OOPSLA’19:
Prusti

ETH people

Background
Introduction

Deductive Verification
based on Hoare logic

Separation Logic

Prusti
First Words

Key Questions

Mechanism Overview

Evaluation

Conclusion

A binary tree example

1 method FreeBinTree(a: BinTree*) returns ()
2 {
3 if a = NIL { return; }
4 FreeBinTree(a->lc);
5 FreeBinTree(a->rc);
6 free(a);
7 }

Seems ok. But what if …

lc
rc

pa
yl
oa
d

lc
rc

pa
yl
oa
d

lc
rc

pa
yl
oa
d

N
IL

→ Double free!

OOPSLA’19:
Prusti

ETH people

Background
Introduction

Deductive Verification
based on Hoare logic

Separation Logic

Prusti
First Words

Key Questions

Mechanism Overview

Evaluation

Conclusion

A binary tree example

1 method FreeBinTree(a: BinTree*) returns ()
2 {
3 if a = NIL { return; }
4 FreeBinTree(a->lc);
5 FreeBinTree(a->rc);
6 free(a);
7 }

Seems ok. But what if …

lc
rc

pa
yl
oa
d

lc
rc

pa
yl
oa
d

lc
rc

pa
yl
oa
d

N
IL

→ Double free!

OOPSLA’19:
Prusti

ETH people

Background
Introduction

Deductive Verification
based on Hoare logic

Separation Logic

Prusti
First Words

Key Questions

Mechanism Overview

Evaluation

Conclusion

A binary tree example

1 method FreeBinTree(a: BinTree*) returns ()
2 {
3 if a = NIL { return; }
4 FreeBinTree(a->lc);
5 FreeBinTree(a->rc);
6 free(a);
7 }

Seems ok. But what if …

lc
rc

pa
yl
oa
d

lc
rc

pa
yl
oa
d

lc
rc

pa
yl
oa
d

N
IL

→ Double free!

OOPSLA’19:
Prusti

ETH people

Background
Introduction

Deductive Verification
based on Hoare logic

Separation Logic

Prusti
First Words

Key Questions

Mechanism Overview

Evaluation

Conclusion

A binary tree example cont.
Add a precondition

1 method FreeBinTree(a: BinTree*) returns ()
2 requires IsBinTree(a)
3 {
4 if a = NIL { return; }
5 FreeBinTree(a->lc);
6 FreeBinTree(a->rc);
7 free(a);
8 }

Naively, ∧ (logical and)
1 predicate IsBinTree(a: BinTree*)
2 { a = NIL ∨ (IsBinTree(a->lc) ∧ IsBinTree(a->rc)) }

OOPSLA’19:
Prusti

ETH people

Background
Introduction

Deductive Verification
based on Hoare logic

Separation Logic

Prusti
First Words

Key Questions

Mechanism Overview

Evaluation

Conclusion

A binary tree example cont.
Add a precondition

1 method FreeBinTree(a: BinTree*) returns ()
2 requires IsBinTree(a)
3 {
4 if a = NIL { return; }
5 FreeBinTree(a->lc);
6 FreeBinTree(a->rc);
7 free(a);
8 }

Separation logic: ∗ (and, separately)
1 predicate IsBinTree(a: BinTree*)
2 { a = NIL ∨ (IsBinTree(a->lc) ∗ IsBinTree(a->rc)) }

a->lc and a->rc must not alias.

OOPSLA’19:
Prusti

ETH people

Background
Introduction

Deductive Verification
based on Hoare logic

Separation Logic

Prusti
First Words

Key Questions

Mechanism Overview

Evaluation

Conclusion

Separation Logic

Key insight
Aliasing needs special attention!

→ Rust’s exclusive ownership

OOPSLA’19:
Prusti

ETH people

Background
Introduction

Deductive Verification
based on Hoare logic

Separation Logic

Prusti
First Words

Key Questions

Mechanism Overview

Evaluation

Conclusion

Plan

1 Background
Introduction
Deductive Verification based on Hoare logic
Separation Logic

2 Prusti
First Words
Key Questions
Mechanism Overview
Evaluation

3 Conclusion

OOPSLA’19:
Prusti

ETH people

Background
Introduction

Deductive Verification
based on Hoare logic

Separation Logic

Prusti
First Words

Key Questions

Mechanism Overview

Evaluation

Conclusion

Status
Still a prototype. ⌢

OOPSLA’19:
Prusti

ETH people

Background
Introduction

Deductive Verification
based on Hoare logic

Separation Logic

Prusti
First Words

Key Questions

Mechanism Overview

Evaluation

Conclusion

Closer look

OOPSLA’19:
Prusti

ETH people

Background
Introduction

Deductive Verification
based on Hoare logic

Separation Logic

Prusti
First Words

Key Questions

Mechanism Overview

Evaluation

Conclusion

Research Question
Deductive verification in Rust.

Key Questions

• How automatic? → “fully automatic”
• Mechanism overview → program translation
• Infrastructures? → bottom-most: z3
• Why Rust? How about C? → controlled aliasing
• Dealing with libraries? → wrappers

OOPSLA’19:
Prusti

ETH people

Background
Introduction

Deductive Verification
based on Hoare logic

Separation Logic

Prusti
First Words

Key Questions

Mechanism Overview

Evaluation

Conclusion

Flow graph

translate

Original Program Verification Annotations
requires	ensures
assert	invariant

Viper
engine

Core Proof

Rust

encode

Rust (#[requires="..."])

ViperMemory safety
Type safety

...

Viper
engine

Proof

User defined
properties

Viper

OOPSLA’19:
Prusti

ETH people

Background
Introduction

Deductive Verification
based on Hoare logic

Separation Logic

Prusti
First Words

Key Questions

Mechanism Overview

Evaluation

Conclusion

Infrastructure

Verification Language: Viper

• Implicit Dynamic Frames Logic → Separation Logic
• Pointers, heaps!
• Resource capability

The bottom-most

• Symbolic execution verifier
• z3

OOPSLA’19:
Prusti

ETH people

Background
Introduction

Deductive Verification
based on Hoare logic

Separation Logic

Prusti
First Words

Key Questions

Mechanism Overview

Evaluation

Conclusion

Why Rust?
Reason: what logic do we use for verification?

Separation
logic:aliasing!
struct Node {

val: i32,
l: Box<Tree>,
rc: Box<Tree>

}

Node.lc and Node.rc must not alias.

OOPSLA’19:
Prusti

ETH people

Background
Introduction

Deductive Verification
based on Hoare logic

Separation Logic

Prusti
First Words

Key Questions

Mechanism Overview

Evaluation

Conclusion

Why Rust?
Reason: what logic do we use for verification? Separation
logic:

aliasing!
struct Node {

val: i32,
l: Box<Tree>,
rc: Box<Tree>

}

Node.lc and Node.rc must not alias.

OOPSLA’19:
Prusti

ETH people

Background
Introduction

Deductive Verification
based on Hoare logic

Separation Logic

Prusti
First Words

Key Questions

Mechanism Overview

Evaluation

Conclusion

Why Rust?
Reason: what logic do we use for verification? Separation
logic:aliasing!
struct Node {

val: i32,
l: Box<Tree>,
rc: Box<Tree>

}

Node.lc and Node.rc must not alias.

OOPSLA’19:
Prusti

ETH people

Background
Introduction

Deductive Verification
based on Hoare logic

Separation Logic

Prusti
First Words

Key Questions

Mechanism Overview

Evaluation

Conclusion

Libraries

• #[trusted]
• wrappers

OOPSLA’19:
Prusti

ETH people

Background
Introduction

Deductive Verification
based on Hoare logic

Separation Logic

Prusti
First Words

Key Questions

Mechanism Overview

Evaluation

Conclusion

Evaluation questions

Core proof

• 500 popular crates
• automatic generation
• verification time: 90% < 2 sec

Overflow & panic freedom

• filtered, 519 functions
• automatic assertion generation
• error in 467 functions

Functional specification

• Hand constructed data, 11 files
• e.g. binary search

OOPSLA’19:
Prusti

ETH people

Background
Introduction

Deductive Verification
based on Hoare logic

Separation Logic

Prusti
First Words

Key Questions

Mechanism Overview

Evaluation

Conclusion

Evaluation questions

Core proof

• 500 popular crates
• automatic generation
• verification time: 90% < 2 sec

Overflow & panic freedom

• filtered, 519 functions
• automatic assertion generation
• error in 467 functions

Functional specification

• Hand constructed data, 11 files
• e.g. binary search

OOPSLA’19:
Prusti

ETH people

Background
Introduction

Deductive Verification
based on Hoare logic

Separation Logic

Prusti
First Words

Key Questions

Mechanism Overview

Evaluation

Conclusion

Evaluation questions

Core proof

• 500 popular crates
• automatic generation
• verification time: 90% < 2 sec

Overflow & panic freedom

• filtered, 519 functions
• automatic assertion generation
• error in 467 functions

Functional specification

• Hand constructed data, 11 files
• e.g. binary search

OOPSLA’19:
Prusti

ETH people

Background
Introduction

Deductive Verification
based on Hoare logic

Separation Logic

Prusti
First Words

Key Questions

Mechanism Overview

Evaluation

Conclusion

Plan

1 Background
Introduction
Deductive Verification based on Hoare logic
Separation Logic

2 Prusti
First Words
Key Questions
Mechanism Overview
Evaluation

3 Conclusion

OOPSLA’19:
Prusti

ETH people

Background
Introduction

Deductive Verification
based on Hoare logic

Separation Logic

Prusti
First Words

Key Questions

Mechanism Overview

Evaluation

Conclusion

Main takeaways

• Automatic verification: z3

• Throw work to infrastructure
• Aliasing with mutability is bad → Rust, SL

OOPSLA’19:
Prusti

ETH people

Background
Introduction

Deductive Verification
based on Hoare logic

Separation Logic

Prusti
First Words

Key Questions

Mechanism Overview

Evaluation

Conclusion

Main takeaways

• Automatic verification: z3
• Throw work to infrastructure

• Aliasing with mutability is bad → Rust, SL

OOPSLA’19:
Prusti

ETH people

Background
Introduction

Deductive Verification
based on Hoare logic

Separation Logic

Prusti
First Words

Key Questions

Mechanism Overview

Evaluation

Conclusion

Main takeaways

• Automatic verification: z3
• Throw work to infrastructure
• Aliasing with mutability is bad → Rust, SL

	Background
	Introduction
	Deductive Verification based on Hoare logic
	Separation Logic

	Prusti
	First Words
	Key Questions
	Mechanism Overview
	Evaluation

	Conclusion

