
Memory Protection 
in Kernel Space



What’s wrong with kernel?
• Most of kernel written in C -> lead to memory buggy


• Faulty: a bug happens in driver may halts whole kernel


• Security: a vulnerability in driver may break hurts whole 
kernel.



Mitigate Memory Bug(Or its 
influence)
• Code pointer integrity


• Kernel data flow integrity


• KASLR


• DEP(KR^2)


• None executable to user code in privileged level. 



Memory bugs are hard to 
eliminate

Memory Safety

make a pointer wrong

Date Execute 
protection Data flow integrity CFI/Code pointer 

integrity …

Write code …Write control data Write Code pointer



Monolithic kernel 
propagates bugs



Isolation in monolithic 
kernel

Hardware based Software based

Heiser SUD BGI XFI LXFI

Microdriver/Decaf

Develop effort?

Performance?

VirtuOS 

Rust 
driver(hotos19)



Address space isolation
• Provide kernel driver execute environment


• Driver need to access kernel data.


• Context switch



SUD



SUD
• Develop effort


• User mode Linux(UML), proxy driver


• Performance: context switch



Use EPT:
• Context switch between user and kernel are too heavy


• Use EPT(VirtuOS)?



Use EPT:
• Context switch between user and kernel are too heavy


• Use EPT(VirtuOS)?


• NO, it’s still too heavy to switch context:


• LXDs: use async queue(cache line sync)



LXDs

• Do not switch context(driver threads always resides in)


• Wait others to feed from last level cache



LXDs
• Performance test on 8 core machine:



LXDs
• Performance test on 8 core machine:

Q: why up to 6 thread on 8 core machine?



LXDs: cons
• Burn extra cores


• ASYNC are not suitable to complex driver(like usb driver)


• EPT only count the direct cost: nested virtualization 
needed.



Any other good way?
• Single address space isolation:


• Domain page model



Domain page model
• Protection domain = accessible pages + page permission


• Each page is belongs to a domain. 

Page 1 Page 2 Page 3 Page 4 Page 5 Page 6

Domain A R RW RWX

Domain B R-X R R R

Domain C RWX R-X RW



State-of art protection 
mechanism
• ARM domain access control register


• Intel memory protection keys



State-of art protection 
mechanism
• ARM domain access control register (DACR)


• Each page entry has a 4 bits fields, indicate the domain it 
belongs. Totally 2^4 = 16 domains.


• DACR (32 bits) has two bits for each domain, means 
currently the cpu can/cannot access which domain.



DACR usage currently
• User level sandbox: shred and ARMlock


• Save page table for shared libraries on Android: 


• Kernel drivers: DIKernel



Limitions
• Only 16 domains support, easy to swap in 64 bits page 

table but…


• DACR only on arm 32, while MPK only for user space.



Still thinking…
• Why write to CR3 are slower than vmfunc?


• Address space isolation: more than direct cost.


• Similar problem: speed up IPC in microkernel(Skybridge)


