Skip to content
master
Switch branches/tags
Code

Latest commit

 

Git stats

Files

Permalink
Failed to load latest commit information.
Type
Name
Latest commit message
Commit time
 
 
lib
 
 
 
 
 
 
 
 

Quantitative Evaluation of Disentangled Representations

Code to reproduce the results in our ICLR 2018 paper: A Framework for the Quantitative Evaluation of Disentangled Representations.

Prerequisites

  • Python 2.7.5+/3.5+, NumPy, TensorFlow 1.0+, SciPy, Matplotlib, Scikit-learn

Data

  • Download here.
    • If RAM < 10GB, convert .npz to .jpeg before training to load batches of images into memory (rather than entire dataset)
      • python npz_to_jpeg.py (after editing paths)
  • Generated using this renderer.

Models

Train

  • PYTHONPATH=[/path/to/qedr/] python main.py

Save codes

  • PYTHONPATH=[/path/to/qedr/] python main.py --save_codes

Quantitative Evaluation

  • quantify.ipynb

About

Quantitative evaluation of disentangled representations

Resources

License

Releases

No releases published

Packages

No packages published