Navigation Menu

Skip to content

Commit

Permalink
Added the root space decomposition.
Browse files Browse the repository at this point in the history
  • Loading branch information
cionx committed Apr 22, 2019
1 parent be42a78 commit 5407edf
Show file tree
Hide file tree
Showing 10 changed files with 816 additions and 387 deletions.
3 changes: 3 additions & 0 deletions generalstyle.sty
Expand Up @@ -221,6 +221,7 @@
\newcommand{\hlie}{\mathfrak{h}}
\newcommand{\klie}{\mathfrak{k}}
\newcommand{\gllie}{\mathfrak{gl}}
\newcommand{\rlie}{\mathfrak{r}}
\newcommand{\sllie}{\mathfrak{sl}}
\newcommand{\tlie}{\mathfrak{t}}
\newcommand{\nlie}{\mathfrak{n}}
Expand Down Expand Up @@ -289,6 +290,8 @@

% delimiters
\DeclarePairedDelimiter{\abs}{\lvert}{\rvert}
\DeclarePairedDelimiter{\bil}{\langle}{\rangle}
\DeclarePairedDelimiter{\norm}{\lVert}{\rVert}
\DeclarePairedDelimiter{\pair}{\langle}{\rangle}
\NewDocumentCommand{\restrict}{smmO{}}{
\IfBooleanTF{#1}
Expand Down
34 changes: 34 additions & 0 deletions sections/abstract_jordan_decomposition.tex
Expand Up @@ -212,6 +212,40 @@ \section{The Abstract Jordan Decomposition}
\end{example}


\begin{lemma}
\label{commuting via abstract jd}
Let~$\glie$ be a finite dimensional semisimple Lie~algebra and let~$x \in \glie$.
Then any other element~$y \in \glie$ commutes with~$x$ if and only if both~$y_s$ and~$y_n$ commute with~$x$.
\end{lemma}


\begin{proof}
We may assume that~$\glie$ is linear by using the adjoint representation, which is faithful.
Then the assertion follows from \cref{concrete jordan decomposition} because the concrete and abstract Jordan decompositions coincide.
\end{proof}


\begin{lemma}
\label{abstract jordan decomposition of sum}
Let~$x$ and~$y$ be two commuting elements of a finite dimensional semisimple Lie~algebra~$\glie$.
Then the Jordan decomposition of~$x+y$ can be computed from the Jordan decompositions of~$x$ and~$y$ via
\[
(x + y)_s
=
x_s + y_s
\quad\text{and}\quad
(x + y)_n
=
x_n + y_n \,.
\]
\end{lemma}


\begin{proof}
We may assume that~$\glie$ is linear and then apply \cref{concrete jordan decomposition of sum}.
\end{proof}


%
% \begin{proof}[Proof of \cref{abstract jordan decomposition}]
% \leavevmode
Expand Down
382 changes: 0 additions & 382 deletions sections/cartan_subalgebras.tex

This file was deleted.

1 change: 1 addition & 0 deletions sections/definition_of_semisimple_lie_algebras.tex
Expand Up @@ -314,6 +314,7 @@ \subsection{More on Bilinear Forms}


\begin{recall}[Orthogonals and non-degeneracy]
\label{reviewing orthogonals}
If~$V$ is a finite dimensional (real or complex) inner product space then for every linear subspace~$U$ of~$V$ the restriction of the inner product to~$U$ is again an inner product,~$V = U \oplus U^\perp$ and~$(U^\perp)^\perp = U$.
That the restriction is again an inner product holds because positive definiteness is a pointwise property.
That~$U \cap U^\perp = 0$ also follows from the positive definiteness, and that~$V = U \oplus U^\perp$ can then be concluded from the dimension formula~$\dim V = \dim U + \dim U^\perp$.
Expand Down
22 changes: 22 additions & 0 deletions sections/killing_form_and_cartans_criterion.tex
Expand Up @@ -696,6 +696,28 @@ \subsection{Concrete Jordan Decomposition}
\end{warning}


\begin{lemma}
\label{concrete jordan decomposition of sum}
Let~$x$ and~$y$ be two commuting endomorphisms of a finite dimensional~{\vectorspace{$\kf$}}.
Then the Jordan decomposition of~$x+y$ can be computed from that of~$x$ and~$y$ via
\[
(x + y)_s
=
x_s + y_s
\quad\text{and}\quad
(x + y)_n
=
x_n + y_n \,.
\]
\end{lemma}


\begin{proof}
It follows from the commutativity of~$x$ and~$y$ that each part~$x_s$ and~$x_n$ of~$x$ commutes with each part~$y_s$ and~$y_n$ of~$y$.
It follows that~$x_s + y_s$ is again semisimple and that~$x_n + y_n$ is again nilpotent.
\end{proof}


\begin{definition}
An element~$x \in \glie$ of a finite dimensional Lie~algebra~$\glie$ is~\defemph{\adsemisimple} if the endomorphism~$\ad(x)$ of~$\glie$ is semisimple.
\end{definition}
Expand Down

0 comments on commit 5407edf

Please sign in to comment.