-
Notifications
You must be signed in to change notification settings - Fork 1
/
SmoothTurningVehicle.ts
288 lines (230 loc) · 6.56 KB
/
SmoothTurningVehicle.ts
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
import { IVehicle, VEHICLE_LENGTH, VEHICLE_WIDTH } from './IVehicle';
import { Waypoint } from './Waypoint';
import { degreesToRadians, sign0 } from './mathutil';
import { getDistance } from './trig';
import { Point, Circle } from './types';
import cloneDeep from 'lodash/cloneDeep';
type TurnDecision = 1 | 0 | -1;
const FRICTION = 1 / 20;
function dot(a: Point, b: Point): number {
return a.x * b.x + a.y * b.y;
}
function normalizedDot(
a: Point,
aLength: number,
b: Point,
bLength: number
): number {
if (aLength <= 0) {
throw new Error(`normalizedDot: invalid aLength: ${aLength}`);
}
if (bLength <= 0) {
throw new Error(`normalizedDot: invalid bLength: ${bLength}`);
}
const d = dot(a, b);
const lens = aLength * bLength;
return d / lens;
}
class SmoothTurningVehicle implements IVehicle {
static DRIFT_BOOST_FACTOR = 10;
x: number;
y: number;
prevX: number;
prevY: number;
targetWaypoint = 0;
velocityAngle = 0;
accelValue: number;
speed = 0;
velocity: Point = { x: 0, y: 0 };
color = 'white';
boundingCircle: Circle = { x: 0, y: 0, radius: 0 };
steerAwayFromPoint: Point | null = null;
calcedTurnDecisionDots = [];
constructor(x: number, y: number, accelValue: number, color: string) {
this.x = x;
this.y = y;
this.accelValue = accelValue;
this.color = color;
}
calcTurnDecision(waypoint: Point): TurnDecision {
if (this.speed === 0) {
// not moving? no need to turn
return 0;
}
const distanceToWp = getDistance(this.x, this.y, waypoint.x, waypoint.y);
const vectorMagnitude = distanceToWp / 2;
// translate the waypoint's center vector to be based off the vehicle's location,
// so that the vectors can be compared
const translatedWaypoint: Point = {
x: waypoint.x - this.x,
y: waypoint.y - this.y,
};
let bestD = Number.MIN_SAFE_INTEGER;
let bestTurnResult = 0;
this.calcedTurnDecisionDots = [];
for (let t = 1; t >= -1; t -= 1) {
const turnedAngle = this.velocityAngle + degreesToRadians(t * 15);
const turnedCos = Math.cos(turnedAngle);
const turnedSin = Math.sin(turnedAngle);
// form a new hypothetical velocity vector based on the hypothetical turn
const turnedVelocity: Point = {
x: vectorMagnitude * turnedCos,
y: vectorMagnitude * turnedSin,
};
// and calculate a new dot
const turnedD = dot(turnedVelocity, translatedWaypoint);
if (turnedD > bestD) {
bestD = turnedD;
bestTurnResult = t;
}
this.calcedTurnDecisionDots.push({
turnedAngle,
magnitude: vectorMagnitude,
best: false,
turn: t,
});
}
this.calcedTurnDecisionDots.forEach((ctd) => {
ctd.best = ctd.turn === bestTurnResult;
});
return bestTurnResult as TurnDecision;
}
calcVelocityAngleChangeRate(
waypoint: Waypoint,
turnDecision: TurnDecision
): number {
const distanceToWp = getDistance(this.x, this.y, waypoint.x, waypoint.y);
const framesTillWp = (distanceToWp - waypoint.radius) / this.speed;
const translatedWaypoint = {
x: waypoint.x - this.x,
y: waypoint.y - this.y,
};
const normD = normalizedDot(
this.velocity,
this.speed,
translatedWaypoint,
distanceToWp
);
if (normD < -1 || normD > 1) {
throw new Error(`Invalid normalized dot: ${normD}`);
}
let velocityAngleSpan = Math.acos(normD) * 1.5;
if (velocityAngleSpan > 2 * Math.PI) {
velocityAngleSpan -= 2 * Math.PI;
turnDecision = -turnDecision as TurnDecision;
}
return (velocityAngleSpan / framesTillWp) * turnDecision;
}
determineAngleChangeRate(waypoint: Waypoint) {
let turnDecision: TurnDecision = 0;
if (this.steerAwayFromPoint) {
turnDecision = (this.calcTurnDecision(this.steerAwayFromPoint) *
-1) as TurnDecision;
this.steerAwayFromPoint = null;
} else {
turnDecision = this.calcTurnDecision(waypoint);
}
if (turnDecision !== 0) {
return this.calcVelocityAngleChangeRate(waypoint, turnDecision);
} else {
return 0;
}
}
updateCurrentWaypoint(waypoints: Waypoint[]) {
const currentWaypoint = waypoints[this.targetWaypoint];
const distance = getDistance(
this.x,
this.y,
currentWaypoint.x,
currentWaypoint.y
);
if (distance <= currentWaypoint.radius) {
this.targetWaypoint += 1;
if (this.targetWaypoint >= waypoints.length) {
this.targetWaypoint = 0;
}
}
}
getAirDrag(speed: number) {
return (1 / 12) * speed;
}
handleAcceleration() {
const airDrag = this.getAirDrag(this.speed);
const acceleration = this.accelValue - FRICTION - airDrag;
this.speed = Math.max(0, this.speed + acceleration);
const cos = Math.cos(this.velocityAngle);
const sin = Math.sin(this.velocityAngle);
this.velocity.x = this.speed * cos;
this.velocity.y = this.speed * sin;
this.x += this.velocity.x;
this.y += this.velocity.y;
}
update(waypoints: Waypoint[]) {
this.prevX = this.x;
this.prevY = this.y;
// move onto the next waypoint if we have
// arrived at the current one
this.updateCurrentWaypoint(waypoints);
// grab the current waypoint
const currentWaypoint = waypoints[this.targetWaypoint];
// figure out how much to turn each frame to smoothly
// arrive at that waypoint
const angleChangeRate = this.determineAngleChangeRate(currentWaypoint);
// update our turning accordingly
this.velocityAngle += angleChangeRate;
// and move the car
this.handleAcceleration();
this.boundingCircle = this.calcBoundingCircle();
}
calcBoundingCircle(): Circle {
return {
x: this.x,
y: this.y,
radius: Math.max(VEHICLE_WIDTH, VEHICLE_LENGTH) / 2,
};
}
steerAwayFrom(p: Point) {
this.steerAwayFromPoint = p;
}
draw(context: CanvasRenderingContext2D, shouldDrawBoundingCircle: boolean) {
context.save();
context.translate(this.x, this.y);
context.rotate(this.velocityAngle);
context.fillStyle = this.color;
context.fillRect(
-VEHICLE_LENGTH / 2,
-VEHICLE_WIDTH / 2,
VEHICLE_LENGTH,
VEHICLE_WIDTH
);
context.restore();
context.save();
context.fillStyle = 'green';
context.fillRect(this.x, this.y, 1, 1);
context.restore();
if (shouldDrawBoundingCircle) {
context.save();
context.translate(this.x, this.y);
context.strokeStyle = 'white';
context.beginPath();
context.arc(0, 0, this.boundingCircle.radius, 0, 2 * Math.PI);
context.stroke();
context.restore();
}
}
clone(): IVehicle {
const clone = new SmoothTurningVehicle(
this.x,
this.y,
this.accelValue,
this.color
);
(Object.keys(this) as Array<keyof SmoothTurningVehicle>).forEach((key) => {
if (typeof this[key] !== 'function') {
(clone[key] as any) = cloneDeep(this[key]) as any;
}
});
return clone;
}
}
export { SmoothTurningVehicle };