Skip to content
master
Switch branches/tags
Code

Latest commit

…un (#93)

- fix: stack overflow in double2string, dtoa_milo may generate string
       with at most 26 charactors
- fix: simple_run.cpp: verbose always true, shouldn't set default_value
75f31b8

Git stats

Files

Permalink
Failed to load latest commit information.
Type
Name
Latest commit message
Commit time
 
 
 
 
 
 
 
 
src
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

CityFlow

Documentation Status Build Status

CityFlow is a multi-agent reinforcement learning environment for large-scale city traffic scenario.

Checkout these features!

  • A microscopic traffic simulator which simulates the behavior of each vehicle, providing highest level detail of traffic evolution.
  • Supports flexible definitions for road network and traffic flow
  • Provides friendly python interface for reinforcement learning
  • Fast! Elaborately designed data structure and simulation algorithm with multithreading. Capable of simulating city-wide traffic. See the performance comparison with SUMO [1].
performance compared with SUMO

Performance comparison between CityFlow with different number of threads (1, 2, 4, 8) and SUMO. From small 1x1 grid roadnet to city-level 30x30 roadnet. Even faster when you need to interact with the simulator through python API.

Screencast

demo

Featured Research and Projects Using CityFlow

Links

[1]SUMO home page
[2]Tianrang Intelligence home page