
Josh Martin

ECE 362

Pre-Lab #5

Introduction:
In this lab, we were continuing to build our skill with assembly and applying what we have

learned in the past to more applicable things with the board. The first thing we did was use

logical operators. The second thing we did was use bset and bclr and understand how that was

working, while also using a delay. And the last thing we did was use loops to make the stepper

spin in different directions and apply changing conditions to it.

Lab 5.1.1:
Objective/Purpose:

The goal of this program was to learn how to use logical operators and incorporate that idea into

our code.

Expected Results:

Change EC to CC.

Code:
; variable/data se ction
MY_EXTENDED_RAM: SECTION
; Insert here your data definition.

Var_1 ds.b 1
MY_EXTENDED_ROM:
port_t equ $240 ; initialize all the things I need
ddr_s equ $24A
port_s equ $248
; code section
MyCode: SECTION
main:
_Startup:
Entry:
 movb #$FF,ddr_s ; start by clearing everything in the led
 movb #$EC,Var_1 ; load the first value wich is $EC
 LDAA Var_1; load value of Var_1 into accumulator a
 ANDA #%11011111 ; clears the sixth bit while keeping it in Accumulator A
 STAA Var_1; stores in var_a
 ANDA #%11110111 ; this will set the forth bit in and it is still stored in var_1
 STAA Var_1; stores in var_a
Redo:LDAB port_t ; this checks to see if bit 1 Is high and if its it will continue in the loop. IF it is ls low, it will
break and store the value in Port_s
 andb #$04
 BNE Redo
 staa port_s
 nop

Lab 5.1.2:
Objective/Purpose:

The goal of this part was to pretty much create the same program from 5.1.1 but using bset and

bclr. We learned how that worked and why it worked.

Expected Results:

Using bset we created a program that waits for the second switch to go low and then display the

lights.

Code:

Var_1 ds.b 1

MY_EXTENDED_ROM:

port_t equ $240

ddr_s equ $24A

port_s equ $248

; code section

MyCode: SECTION

main:

_Startup:

Entry:

 bset ddr_s, #$FF ; used to set port s. Intializing the value

 bclr port_s, #$FF ; used to clr all the values in port s ($248)

loop1: brclr port_t, #%00000010, loop1;this waits till the second bit goes high and

then it exits the loop

loop2: brset port_t, #%00000010, loop2; waits till the bit goes low and then it moves

 bset port_s, #%00001100 ; sets all the leds to empty.

 nop

Lab 5.2:
Objective/Purpose:

The goal of this lab was to have the lights display one value and if we pressed the switch again

we would display the same value shifted over by 4 bits. Overall we practiced multiple different

things like creating loops and using subroutines. We also used a flag to design the checking

system.

Expected Results:

The lights should display values back and forth.

Code:
; variable/data section
MY_EXTENDED_RAM: SECTION
; Insert here your data definition.
; code section
MY_EXTENDED_RAM: SECTION
; Insert here your data definition.
var_a ds.b 1
var_b ds.b 1
var_c ds.b 1

MY_EXTENDED_ROM: SECTION
port_t equ $240
ddr_s equ $24A
port_s equ $248
port_u equ $268
ddr_port_u equ $26A
psr_port_u equ $26D
pde_port_u equ $26C
SEQ: dc.b $70,$B0,$D0, $E0
var1: dc.b $EB, $77, $7B, $7D, $B7, $BB, $BD, $D7, $DB, $DD, $E7, $ED, $7E, $BE, $DE,$EE, $00

; code section

MyCode: SECTION

main:

_Startup:

Entry:

;first bullet point

 ; this section is setting the value $F0 to the DDR, PSR, and PDE

begin: lds #__SEG_END_SSTACK ;used to intiliaze the stack

 bset ddr_s, #$FF ; used to intiliaze the LED display

 bset ddr_port_u, #$F0; used to intiliaze the hex keys

 bset psr_port_u, #$F0

 bset pde_port_u, #$0F

 bclr var_a, #$FF ; intiliaze the variables

 bclr var_b, #$FF

 bclr var_c, #$FF

looop2: jsr looop1 ; subroutine for my loop.

 brclr var_a, #$FF, move;

 bclr var_b, #$F0

 lslb

 lslb

 lslb

 lslb

 orab var_b

 stab port_s

 stab var_b

 bclr var_a,#$FF

 bra looop2

move: bclr var_b,#$0F

 orab var_b

 stab port_s

 stab var_b

 bset var_a,#$FF

 bra looop2;

Delay: PSHX

 LDX #1000

DLoop: DEX

 BNE DLoop

 PULX

 RTS

looop1: ldx #SEQ ; load the sequence in to x

next: ldaa 1,x+ ; load one, and incrament it by x

 beq looop1 ; if equal then branch

 staa port_u ; display the value

 jsr Delay ; my delay counter

 ldaa port_u ; load value from port_u in to a

 staa var_c ; store that value in var_c

 anda #$0F ; checks if the button is pressed or not; uses logical anda to make check if

is on or not

 cmpa #$0F ; compares whats in a to this memory value

 beq next ; if they are not eq

up: ldaa port_u ;load port_u

 anda #$0F ; use logical and operator to check if it is pushed or not

 cmpa #$0F ; compare to the same value.

 bne up ; branch up if equal

 ; look up table

 ldy #var1; ; load the look up table with the table

 ldab #0 ; set up incrament

redo: ldaa 1, y+ ; incrament after each time through

 beq looop1; ; if equal it loops up

 incb ; if not equal incrament b.

 cmpa var_c; ; compare if it is or isnt

 bne redo ; if not equal you redo

 decb ; decrement to set b back to orginial value

 rts

Lab 5.3:
Objective/Purpose:

Create a sort of menu for the stepper motor. This one was interesting. I used for loops to go

through and check values and to output the required outcome.

Expected Results:

When switch 0 and 1 were on or off the stepper motor should not work. When switch 2 was high

it would spin fast, when low it would spin slowly. When 1 is high it would go counter clock

wise. When 0 was high it would spin clockwise.

Code:

; variable/data section

MY_EXTENDED_RAM: SECTION

; Insert here your data definition.

val ds.b 1

highorlow ds.w 2

DelayCount ds.w 1

MY_CONSTANT_RAM: SECTION

port_t: equ $240

port_p: equ $258

port_p_ddr: equ $25A

vals: dc.b $0A, $12, $14, $0C, $0

vals1: dc.b $0C, $14, $12, $0A, $0

; code section

MyCode: SECTION

main:

_Startup:

Entry:

top: movb #%00011110, port_p_ddr ; intialize the motor

 LDS #__SEG_END_SSTACK ; intiliaze the stack

 ldaa port_t ; load port-t into a

 anda #%00000100 ; clear out all the other values except the 3 bit

 cmpa #$4 ; compare to 4

 beq higher; ; if it is equal it branches to the higher loop

 bne lowest; ; if it is not equal it branches to the lowest loop

higher: movw #9000, highorlow ; since higher changes the delay counter to a lower value to

spin faster

 bra skip ; skips over the lower branch

lowest: movw #30000, highorlow ; since lower changes delay counter to higher value so it

moves slower

 bra skip ; not necessary, i just like it there to make me feel better

skip: ldaa port_t ; load port_t into a again

 anda #%00000011; clear everything except for the first 2 bits

 cmpa #$3 ; compares to 3 if it is equal to 3 it skips

 beq nope

 cmpa #$0 ; compares to 0 if it is equal to 0 it will skip

 beq nope

 cmpa #$2 ; if equal to 2 it will send vals in to x

 beq clock

 cmpa #$1 ; if equal to 1 it will send vals1 into x

 beq counter

;alternate from clock wise to counter clock wise

clock: LDX #vals ;clock wise

 Bra again1

counter: LDX #vals1 ; counter clock wise

 BRA again1

again1:

again: LDAA 1,x+

 STAA port_p

 cmpa $0

 beq top ; goes back to top to check if it has changed

 jsr Delay

 bra again

nope: bra top

Delay: PSHX ; my delay

 LDX highorlow ; depends on if bit 3 is high or low

LOOP DEX

 BNE LOOP

 PULX

 RTS

Conclusion:
The conclusion should consist of 2 parts:

We built our understanding of flags and conditions and how they are implemented and how to

use them. We also learned on how to apply logical operators to isolate an LED which is more

applicable than just being able to do it.

The hard part about this lab was setting up the switch. I had a lot of help from a lot of people

setting that up and using operands that I do not know well,

Note:
• Pay attention to grammatical and spelling errors

• Use your own words (don’t copy the slides)

• Single spaced

• Code should be commented (useful and meaningful comments)

• Fonts and sizes:

o Use the “Times New Roman” font or any similar font

o Use font size 14 bold for headings

o Use font size 12 for subheadings

o Use font size 12 for text

o Use the “Courier New” font for the code and the size should be 10

