ECE 362 — Experiment 5 Rev —9/16

Experiment 5: Logic and Bit Instructions, Hex Keypad, Stepper Motor

Instructional Objectives:

e To implement logic, bit, and shift instructions to use more complicated 1/O peripherals.
e To use bit test instructions to change the output of an I/O peripheral given an input.
e To learn how to properly debounce inputs from mechanical switches.

Introduction:

The following procedure will introduce students to logic and bitwise operations that are
necessary to implement more complex 1/O peripherals, such as the keypad, and learn how to use
these instructions to set and clear bits and implement if-else, and while structures.

Logic, Shift, and Rotate Instructions:

Table 5-8. Boolean Logic Instructions

Mnemonic Function Operation
AMDA AMD A with memaory (A) = (M) = A
ANDEB AMD B with memory (B)e{M)=B

ANDCC AND CCR with memaory (clear CCR bits) (CCR) » (M) =+ CCR
EORA Exclusive OR A with memory (4) @ (M) = A
ECRE Exclusive OR B with memory (B) & (M) =B
ORAA OR A with memory (A) + (M) = A
ORAB OR B with memory B+ (M) =B
DRCC DR CCR with memory (set CCR bits) (CCR) + (M) = CCR

Logic instructions are instructions that allow for logic operations to be performed between an 8-
bit register and the contents of a memory location or immediate value. These instructions allow
for individual bits to be set or cleared to start or end events, or to set or clear specific bits of an
output port. In addition, individual bits can be checked to determine the status of individual bits
of an input port.

An AND instruction allows for specific bits to be cleared. To clear or mask a specific bit, perform
an AND operation with a 0 on that specific bit. To check the status of a specific bit, mask off
unnecessary bits and examine only specific bits. See the example below.

LF: 1DaAh FTT ;Thi=s instruction loads accumulator A with the contents of Fort T
ANDA #3508 This instruction masks bits 0-2 and bits 4-7 of Port T
EHE LP ;This instruction branches back to LP if bit 3 of Port T i= =et

[1] © J. Lee, C. Glick, N. Wheeler

ECE 362 — Experiment 5 Rev —9/16

An OR instruction allows for specific bits to be set. To set a specific bit, perform an OR operation
with a 1 on that specific bit. See the example below.

LE: LDAAL FTS ;Thi= instruction loads accumulator A with the contents of Port S
CREAA #510 ;This instruction sets bit 4 of Port 5 while leaving the other bits alone
STAA FTS ;This instruction stores the new walus back to Port 5

An XOR instruction allows for specific bits to be toggled. To toggle a specific bit, perform an
XOR operation with a 1 on that specific bit. See the example below.

LF: LDk PTS This instruction load=s accumnulator & with the contents of Port S
EORA #5544 Thi= instruction toggles bit= 1.3.5.7 of Port S while leaving the other bits alone
STid FTS ;Thi=z instruction stores the new valus bacl to Fort S

Table 5-12. Shift and Rotate Instructions

Mnemonic Function I Operation
Logical Shifts
LSL Logic shift left memory —
LSLA Logic shift left A Eh—Eljjjjj:Hd—u
L5LE Logic shift left B
o -—
LSLD Logic shift left D IE!—H_ITI_H!H_LB_I_H!—U
L3R Logic shift right memory ——
LSRA Logic shift right A 0
LSRE Logic shift right B L
— -

LSRD Logic shift right D GW

Arithmetic Shifts
ASL Arithmetic shift left memory E

ASLA Arithmetic shift left A |E|4—E:|:|:|:I:|:E<—ﬂ'
ASLB

Arithmetic shift left B

ASLD Arithmetic shift left D %H—H_ITLHGH_LELHI—O
ASR Arithmetic shift right memaory —_—
ASHA Arithmetic shift right A %EEEEEEEI—HEI

ASRE Arithmetic shift ight B
Rotates
ROL Hotate left memory through carry
ROLA Rotate lefl A through cany g
ROLE Fotate left B through carry
ROR Rotate right memory through camy
RORA Rotate right A through carry Loy
RORE FHotate right B through carry

[2] © J. Lee, C. Glick, N. Wheeler

ECE 362 — Experiment 5

Rev —9/16

Shift and rotate instructions simultaneously shift all bits either right right or left. Shift
instructions can be used to double a value in an accumulator by shifting to the left or halving a
value in an accumulator by shifting to the right. Logical shift instructions are for unsigned values
while arithmetic shift instructions are for signed values. Rotate instructions can be used to check
each and every bit of a register sequentially. To do this, shift and check the carry flag of the CCR
using BCC or BCS. See the example below.

LF:

Bit Test, Manipulation, and Condition Branch Instructions:

Lbar PTT :Thi=s instruction load=s sccumulator & with the contents of Port T

LDAE #0 ;Thiz instruction initializes a counter in accumulator B

IHCE ;This instruction increments the counter by 1

ROLA ;This instruction performs a rotate operation on Fort T

BCC LP ;This instruction branches back to LFP if the nth bit of Port T is clear

chccumulator B will hawve the walue of the rightmost =witch that i= on

Table 5-11. Bit Test and Manipulation Instructions

Mnemonic Function Cperation
BCLR Clear bits in memory (M) » (mm) = M
BITA Bit test A (A) » (M)
BITB Bit test B (B)» (M)
BSET Set bits in memory (M) + (mm) == M

In addition to logic operations, there are also instructions that bit test instructions that can check
a bit of a register without changing that specific bit of the destination register. There are also bit
modify instructions that can set or clear specific bits in memory. See the example below.

HyConstants:
DDRSHASE
MASEEITO
MASKEEIT1

HyCode:
Entry :BSET
LF: LDAA
BITA
EEQ
BITA
EEQ
ERA
LEDLl: BCLE

SECTION
EQU sFF
EQU s01
EQU 502

SECTION
PTS, ¥DDESHASE :Thi= instruction initializes all pins of Port S as outputs
FTT ;Thi=z instruction loads accumulator A with the contents of Port T
#4501 . Thi= instruction checks the statusz of switch 1 and only switch 1
LED1 ;Thi=z instruction branches 1f switch 1 i= low
#502 . Thi= instruction checks the =s=tatus of =witch 2 and only =swtich 2
LEDZ Thi=z instruction branches if switch 2 i= low
LF ;Thi= instruction branches back to LP to checlk the switches again
PTS, ¥MASKEITO :Thi= instruction clear= the rightmost LED {bit 0 of Port S)

LEDZ:

[3]

ERA LF

BCLR DTS, #MACHEITL

ERA LF

;Thi= instruction branches back to LP to check the switches again

;Thi= instruction clears= the next LED (bit 1 of Port S5)

;Thi=z instruction branches back to LP to checl the switches again

© J. Lee, C. Glick, N. Wheeler

ECE 362 — Experiment 5

Rev —9/16

Table 5-19. Bit Condition Branch Instructions

Mnemonic Function Equation or Operation
BRCLR Branch if selected bits clear (M) (mm) =0
BRSET Branch if selected bits set (M) » (mm) =0

There are also bit condition branch instructions that allows for the program to check the specific
value of a memory location or port and branch if the necessary condition is met. The following
code is identical to the example above.

MyConstants:

LDRSHASE EQI
HASKEITO EQU
HMASKEIT1 EQU

HyCode:
Entrv:BSET FTS,
LF: ERCLE PTT.
ERCLE FTT.
ERA LP
LED1: BCLRE FTS.
ERA LF
LEDZ: BCLR FPTS.
ERA LF

SECTION
SFF
s01
02

SECTION

#DDRSEMASK ;This instruction initializes all pins of Port S as outputs
MASKEITO,LEDL :This instruction branches if =switch 1 is low
HASKEIT1,LED? ;This instruction branches if switch 2 i= low
;This instruction branches back to LP to check the switches again
¥MASKEITO ;This instruction clesrs the rightmo=t LED (bit 0 of Fort 53
;Thi= instruction branches baclk to LP to checl the switches again
#MASKEITL ;Thi= instruction clears the next LED (bit 1 of Port S)
;Thi= instruction branches back to LP to checlk the switches again

Switch Debouncing, Pull up/down devices, and the Hex Keypad

All mechanical contacts bounce when making and breaking connections, including mechanical
switches and the pushbuttons used for the keypad on the lab boards. Bouncing means that for one
switching event, several changes may be noticed by the CPU. See the figure below.

Switch off moment

sV

o

0.01-100mS
- >

Jl

To deal with bouncing, it is required to add a routine to debounce the value of the mechanical
switch. This involves adding a short software delay that delays until the bouncing subsides
whenever a change in the switch is detected for the first time. For most switches, a one

millisecond delay

[4]

is sufficient.

© J. Lee, C. Glick, N. Wheeler

ECE 362 — Experiment 5 Rev —9/16

Vin
vin

Pullup
Resistor

Switch

Vout
Vaout

Logic Gate

Logic Gate (B uffer)
(Buffer) Pulldown

Switch Resistor

Ground Ground

Inputs can be configured to function as a pull up device or a pull down device. For a pull up
device, when the switch is open, the value of Vout will equal Vin. When the switch is closed, the
value of Vout will equal zero. For a pull down device, when the switch is open, the value of
Vout will equal zero. When the switch is closed, the value of Vout will equal Vin.

Port U Pull Device Enable Register (PERU)

3.3.7.5
T E 5 Bl a i 1 q
R
ol PERYT PERUS PERUS PERU4 PERUZ PERU2 PERU PERUC
Resat 0 0 0 0 0 0 0 0

Figure 3-46. Port T Pull Device Enable Register (PERT)

Read: Anytime. Write: Anytime.
This register configures whether a pull-up or a pull-down device is activated on configured input pins. IF
a pin is configured as output, the corresponding Pull Device Enable Register bit has no effect.

Table 3-33. PERT Field Descriptions

Field Description
70 Pull Device Enable Port U
FERU[FD] |0 Pull-up or pul-down device is disabled.
1 Pull-up or pulbdosn devics is enabled.

[5] © J. Lee, C. Glick, N. Wheeler

ECE 362 — Experiment 5 Rev —9/16

3.3.7.6 Port U Polarity Select Register (PP5U)

7 & 5 4 3 2 1 a
W PREUT PPREUE PPSUS PPSUM PPSUZ PPEL2 PRSI PPSUG
Resst 0 a a 4] Q 0 a0 a

Figure 3-47. Port U Polarity Select Register (PP SU)
Read: Anytime. Write: Anytime.

The Port LI Polarity Select Register selects whether a pull-down or a pull-up device is connected to the pin.
The Port U Polarity Select Register is effective only when the corresponding Data Direction Repister bit
is set to 0 (input) and the corresponding Pull Device Enable Register bit is set to 1.

Table 3-34. PPST Field Descriptions

Field Description

70 Pull Salect Port U
FEIUTO] |0 A pullup device is connecied to the associated port T pin.
1 & pulldown device is connecied to the associated port T pin.

In addition to the Data Direction Register (DDR), each /O port has a Pull Device Enable
Register (PER) and a Polarity Select Register (PPS). The Pull Device Enable Register enables a
pull-up or pull-down device. To enable a pull device on an input pin of an 1/O port, write a 1 to
the corresponding bit of the port’s PER. The Polarity Select Register decides whether the pull
device is pull-up or pull-down. To make a pull device a pull-up, write a 0 to the corresponding
bit of the port’s PPS. To make a pull device a pull-down, write a 1 to the corresponding bit of the
port’s PER.

MCU_P
PP3 PP2 PP1 PPO
*46 .47 *48 #49

MCU_P
= |__PP7 #a2
 J2 \3_J

o A |___PPG %43
'6

TS | __PPS %44
 Jo \1_/

[PP4 #45

[6] © J. Lee, C. Glick, N. Wheeler

ECE 362 — Experiment 5 Rev —9/16

Above is the keypad used in Laboratory 5.2. Since there are sixteen keys on the keypad, it is not
possible to read each single distinctively as an input on an 8-bit I/O port. To efficiently read the
sixteen keys, the lower nibble (bits 0-3) of Port U (at address $268) are connected to the four
columns of the keypad and are configured as inputs. The upper nibble (bits 4-7) of Port U are
connected to the four rows of the keypad and configured as outputs. The bits of the Pull Up
Enable Register of Port U (at address $26C) that correspond to the input pins of Port U must be
set to enable pull devices on that pin. If using the inputs of the keypad as a pull-up device, write
a 0 to the corresponding bits of the Polarity Select Register of Port U (at address $26D). If using
the inputs of the keypad as a pull-down device, write a 1 to the corresponding bits of the Polarity
Select Register of Port U.

Reading the keypad is a two-step process. First, continuously sent a sequence to Port U to check
each row of the keypad. For a pull-up configuration, the first sequence value to read row 1 is
$01110000=$F0. For a pull-down configuration, the first sequence value is to read row 1 is
$10000000=%80. After a sequence value is written to the keypad, debounce and read the value
back from Port U.

In between each sequence value, read back the value from Port U. The value in the lower nibble
of Port U will determine if a key is pressed or not. For example, for a pull-up configuration, the
value on the lower nibble corresponding with the four columns of the keypad will read $0111.
For a pull-down configuration, the value on the lower nibble will read $1000. If no key is
pressed, for a pull-up configuration, the value on the lower nibble corresponding with the four
columns of the keypad will read $1111. For a pull-down configuration, the value on the lower
nibble will read $0000. In that case, the next sequence value must be written to the upper nibble
of Port U.

After writing a value, the program must wait for the key to be released before going back to scan
for the next key. This is because the E-Clock of the HC(S)12 is so fast, that multiple keypresses
can be read as one press. This problem can be overcome by debouncing and then checking the
lower nibble of Port U to see if a key has been released.

Note: Save the keypad routine from Laboratory 5.2 step 2 below. This routine will be used again
for the final project.

[7] © J. Lee, C. Glick, N. Wheeler

ECE 362 — Experiment 5 Rev —9/16

Experimental Procedure:

Laboratory 5.1.1: Logic Instructions

1. Write a program which will read variable VAR 1 (with initial value set to $EC) into
accumulator A, then clear bit 6 of VAR 1 (and only bit 6) and then store this value back
into VAR 1. Use a logic operation to clear the bit. Verify that the program works
properly. VAR 1 must be initialized each time the program is run (either in the assembly
code or by editing the value in the debugger).

2. Add code to the above program to set bit 4 of VAR 1 and store it back in VAR 1.

3. Using an AND instruction and the appropriate branch instruction add code to the above
program which will wait for bit 1, and only bit 1 (switch 2) of the dipswitches at Port T
(address $240). When switch 2 goes low, send VAR _1 to the LEDs at Port S (at address
$248)

4. Modify the above program to wait for switch 2 to go high after going low.

Laboratory 5.1.2: Bit Instructions
1. Using the BSET instruction, initialize the DDR for Port S (address $241).
2. Using the BCLR instruction, turn off the LEDs at Port S (address $248).
3. Using either the BRSET or BRCLR instruction, write a program that waits for switch 2
(bit 1) to go low, then high, then lights LED 6 (Using either the BSET or BCLR

instruction).

4. Puta NOP instruction at the end of the program. Set a breakpoint to stop the program
after the wait loop.

[8] © J. Lee, C. Glick, N. Wheeler

ECE 362 — Experiment 5 Rev —9/16

Laboratory 5.2: Hex Keypad

1. Initialize Port U (address $268) so the upper four bits are outputs and the lower four bits
are inputs.

Write value $F0 to the Data Direction Register of Port U (address $262) to make
bits 0-3 inputs and bits 4-7 outputs.

Write value $FO to the Polarity Select Register of Port U (address $26D) to set
the pins 0-3 as a pull-up device.

Write value $OF to the Pull Device Enable Register of Port U (address $26C) to
activate the pull-up device on pins 0-3.

2. Check each row of the keypad by writing a logic low to the output pin of Port U
connected to that row and a logic high to the other output pins of Port U. Then read back
the value and check for a match.

[9]

The sequence that needs to be sent to Port U continuously to scan all four rows of
the keypad is $70, $BO, $DO, SEO.

After sending a value from the sequence to Port U, wait for Port U to debounce
(use a 1 millisecond delay), then read back the value in Port U.

If no key in that row is pressed, value $xF will be read from the lower nibble
(bits 0-3) of Port U. Use an AND instruction to mask the upper nibble (bits 4-7) of
Port U. If this value is read, branch back and scan the next row using the sequence
above.

If a key is pressed use the lookup table routine from Laboratory 4.2 to check for a
match. The index value of this sequence corresponds to the key that is being
pressed (i.e., if a two is pressed on the keypad, the upper nibble with read value
$0111 and the lower nibble will read $1011). If a key is selected, send the
index value to Port S (address $2438). This value should be displayed on the
lower nibble of the LEDs (bits 0-3 of Port S), and nothing should be read on the
upper nibble of the LEDs (bits 4-7 of Port S). THE LEDS SHOULD NOT
FLICKER!!

After sending the value, wait for the key to be released before returning to scan
the keypad. To do this, wait for Port U to debounce, then read the value from Port
U and use an AND instruction to mask the upper nibble. If value $xF is read from
the lower nibble, then the key has been released and the program should branch
back to read the four rows of Port U continuously again. If any other value is read

© J. Lee, C. Glick, N. Wheeler

ECE 362 — Experiment 5 Rev —9/16

from Port U, then the key has not been released and the program should wait for
Port U to debounce again.

3. Alter the code above so that the index value is shown on the left four LEDs while
keeping the right four LEDs off. This can be accomplished by using a shift or rotate
instruction.

4. Alter the code above so that the first keypress value displays on the right four LEDs, the
second keypress displays on the left four LEDs while maintaining the value of the first
keypress, the third keypress displays on the right four LED while maintain the value of
the second keypress, and so on. This can be accomplished using AND, OR, and shift
instructions.

5. A subroutine MUST BE used for the debounce delay. In addition, the main keypad
subroutine MUST BE contained in its own subroutine.

Extra Credit: perform the following two tasks:

1. Configure the keypad to function as a pull-down device instead of a pull-up device.

2. Not counting pushing and pulling registers to the stack, or the lines of code executed by a
subroutine, write the keypad in 20 lines of code or less.

[10] © J. Lee, C. Glick, N. Wheeler

ECE 362 — Experiment 5 Rev —9/16

Laboratory 5.3: Stepper Motor

1. Modify the code from Laboratory 4.4 to add direction and speed control. The program
should read the value from the dipswitches at Port T (address $240).

e If switch 1 (bit 0) and switch 2 (bit 1) are both high or both low, the motor should
not turn.

e |f switch 1 is low, the motor should turn clockwise. If switch 2 is low, the motor
should turn couter-clockwise.

e Give the motor two speeds. If switch 3 (bit 2) is low, the motor should turn
slowly. If switch 3 is high, the motor should turn fast.

2. For the speed, use a delay of 15 milliseconds between each step of the sequence for the
fast speed and a delay of 60 milliseconds between each step for the slow speed. Check
switch 3 and load a 16-bit register with the count to generate a proper delay. An if-else
structure can perform this task. The same delay subroutine must be used for both speeds.

3. For the direction, put the sequence from Laboratory 4.4 into an array and use an index
register (X or Y) to step through the data. This pointer will track the motor sequence
value even if the direction changes. If the motor is to step counter-clockwise, decrement
the index register as the sequence values are being sent to Port P (address $258). If the
motor is to step clockwise, increment the index register as sequence values are being
sent. The best way to do this is to place a terminator at each end of the sequence. If the
terminator value is read, reset the index register to point to the end of the sequence if
turning counter-clockwise, or at the beginning of the sequence if turning clockwise, and
then decrementing or incrementing the index register accordingly.

[11] © J. Lee, C. Glick, N. Wheeler

