
ECE 362 – Experiment 5 Rev – 9/16

[1] © J. Lee, C. Glick, N. Wheeler

Experiment 5: Logic and Bit Instructions, Hex Keypad, Stepper Motor

Instructional Objectives:

 To implement logic, bit, and shift instructions to use more complicated I/O peripherals.

 To use bit test instructions to change the output of an I/O peripheral given an input.

 To learn how to properly debounce inputs from mechanical switches.

Introduction:

The following procedure will introduce students to logic and bitwise operations that are

necessary to implement more complex I/O peripherals, such as the keypad, and learn how to use

these instructions to set and clear bits and implement if-else, and while structures.

Logic, Shift, and Rotate Instructions:

Logic instructions are instructions that allow for logic operations to be performed between an 8-

bit register and the contents of a memory location or immediate value. These instructions allow

for individual bits to be set or cleared to start or end events, or to set or clear specific bits of an

output port. In addition, individual bits can be checked to determine the status of individual bits

of an input port.

An AND instruction allows for specific bits to be cleared. To clear or mask a specific bit, perform

an AND operation with a 0 on that specific bit. To check the status of a specific bit, mask off

unnecessary bits and examine only specific bits. See the example below.

ECE 362 – Experiment 5 Rev – 9/16

[2] © J. Lee, C. Glick, N. Wheeler

An OR instruction allows for specific bits to be set. To set a specific bit, perform an OR operation

with a 1 on that specific bit. See the example below.

An XOR instruction allows for specific bits to be toggled. To toggle a specific bit, perform an

XOR operation with a 1 on that specific bit. See the example below.

ECE 362 – Experiment 5 Rev – 9/16

[3] © J. Lee, C. Glick, N. Wheeler

Shift and rotate instructions simultaneously shift all bits either right right or left. Shift

instructions can be used to double a value in an accumulator by shifting to the left or halving a

value in an accumulator by shifting to the right. Logical shift instructions are for unsigned values

while arithmetic shift instructions are for signed values. Rotate instructions can be used to check

each and every bit of a register sequentially. To do this, shift and check the carry flag of the CCR

using BCC or BCS. See the example below.

Bit Test, Manipulation, and Condition Branch Instructions:

In addition to logic operations, there are also instructions that bit test instructions that can check

a bit of a register without changing that specific bit of the destination register. There are also bit

modify instructions that can set or clear specific bits in memory. See the example below.

ECE 362 – Experiment 5 Rev – 9/16

[4] © J. Lee, C. Glick, N. Wheeler

There are also bit condition branch instructions that allows for the program to check the specific

value of a memory location or port and branch if the necessary condition is met. The following

code is identical to the example above.

Switch Debouncing, Pull up/down devices, and the Hex Keypad

All mechanical contacts bounce when making and breaking connections, including mechanical

switches and the pushbuttons used for the keypad on the lab boards. Bouncing means that for one

switching event, several changes may be noticed by the CPU. See the figure below.

To deal with bouncing, it is required to add a routine to debounce the value of the mechanical

switch. This involves adding a short software delay that delays until the bouncing subsides

whenever a change in the switch is detected for the first time. For most switches, a one

millisecond delay is sufficient.

ECE 362 – Experiment 5 Rev – 9/16

[5] © J. Lee, C. Glick, N. Wheeler

Inputs can be configured to function as a pull up device or a pull down device. For a pull up

device, when the switch is open, the value of Vout will equal Vin. When the switch is closed, the

value of Vout will equal zero. For a pull down device, when the switch is open, the value of

Vout will equal zero. When the switch is closed, the value of Vout will equal Vin.

ECE 362 – Experiment 5 Rev – 9/16

[6] © J. Lee, C. Glick, N. Wheeler

In addition to the Data Direction Register (DDR), each I/O port has a Pull Device Enable

Register (PER) and a Polarity Select Register (PPS). The Pull Device Enable Register enables a

pull-up or pull-down device. To enable a pull device on an input pin of an I/O port, write a 1 to

the corresponding bit of the port’s PER. The Polarity Select Register decides whether the pull

device is pull-up or pull-down. To make a pull device a pull-up, write a 0 to the corresponding

bit of the port’s PPS. To make a pull device a pull-down, write a 1 to the corresponding bit of the

port’s PER.

ECE 362 – Experiment 5 Rev – 9/16

[7] © J. Lee, C. Glick, N. Wheeler

Above is the keypad used in Laboratory 5.2. Since there are sixteen keys on the keypad, it is not

possible to read each single distinctively as an input on an 8-bit I/O port. To efficiently read the

sixteen keys, the lower nibble (bits 0-3) of Port U (at address $268) are connected to the four

columns of the keypad and are configured as inputs. The upper nibble (bits 4-7) of Port U are

connected to the four rows of the keypad and configured as outputs. The bits of the Pull Up

Enable Register of Port U (at address $26C) that correspond to the input pins of Port U must be

set to enable pull devices on that pin. If using the inputs of the keypad as a pull-up device, write

a 0 to the corresponding bits of the Polarity Select Register of Port U (at address $26D). If using

the inputs of the keypad as a pull-down device, write a 1 to the corresponding bits of the Polarity

Select Register of Port U.

Reading the keypad is a two-step process. First, continuously sent a sequence to Port U to check

each row of the keypad. For a pull-up configuration, the first sequence value to read row 1 is

%01110000=$F0. For a pull-down configuration, the first sequence value is to read row 1 is

%10000000=%80. After a sequence value is written to the keypad, debounce and read the value

back from Port U.

In between each sequence value, read back the value from Port U. The value in the lower nibble

of Port U will determine if a key is pressed or not. For example, for a pull-up configuration, the

value on the lower nibble corresponding with the four columns of the keypad will read %0111.

For a pull-down configuration, the value on the lower nibble will read %1000. If no key is

pressed, for a pull-up configuration, the value on the lower nibble corresponding with the four

columns of the keypad will read %1111. For a pull-down configuration, the value on the lower

nibble will read %0000. In that case, the next sequence value must be written to the upper nibble

of Port U.

After writing a value, the program must wait for the key to be released before going back to scan

for the next key. This is because the E-Clock of the HC(S)12 is so fast, that multiple keypresses

can be read as one press. This problem can be overcome by debouncing and then checking the

lower nibble of Port U to see if a key has been released.

Note: Save the keypad routine from Laboratory 5.2 step 2 below. This routine will be used again

for the final project.

ECE 362 – Experiment 5 Rev – 9/16

[8] © J. Lee, C. Glick, N. Wheeler

Experimental Procedure:

Laboratory 5.1.1: Logic Instructions

1. Write a program which will read variable VAR_1 (with initial value set to $EC) into

accumulator A, then clear bit 6 of VAR_1 (and only bit 6) and then store this value back

into VAR_1. Use a logic operation to clear the bit. Verify that the program works

properly. VAR_1 must be initialized each time the program is run (either in the assembly

code or by editing the value in the debugger).

2. Add code to the above program to set bit 4 of VAR_1 and store it back in VAR_1.

3. Using an AND instruction and the appropriate branch instruction add code to the above

program which will wait for bit 1, and only bit 1 (switch 2) of the dipswitches at Port T

(address $240). When switch 2 goes low, send VAR_1 to the LEDs at Port S (at address

$248)

4. Modify the above program to wait for switch 2 to go high after going low.

Laboratory 5.1.2: Bit Instructions

1. Using the BSET instruction, initialize the DDR for Port S (address $24A).

2. Using the BCLR instruction, turn off the LEDs at Port S (address $248).

3. Using either the BRSET or BRCLR instruction, write a program that waits for switch 2

(bit 1) to go low, then high, then lights LED 6 (Using either the BSET or BCLR

instruction).

4. Put a NOP instruction at the end of the program. Set a breakpoint to stop the program

after the wait loop.

ECE 362 – Experiment 5 Rev – 9/16

[9] © J. Lee, C. Glick, N. Wheeler

Laboratory 5.2: Hex Keypad

1. Initialize Port U (address $268) so the upper four bits are outputs and the lower four bits

are inputs.

 Write value $F0 to the Data Direction Register of Port U (address $26A) to make
bits 0-3 inputs and bits 4-7 outputs.

 Write value $F0 to the Polarity Select Register of Port U (address $26D) to set
the pins 0-3 as a pull-up device.

 Write value $0F to the Pull Device Enable Register of Port U (address $26C) to
activate the pull-up device on pins 0-3.

2. Check each row of the keypad by writing a logic low to the output pin of Port U

connected to that row and a logic high to the other output pins of Port U. Then read back

the value and check for a match.

 The sequence that needs to be sent to Port U continuously to scan all four rows of

the keypad is $70, $B0, $D0, $E0.

 After sending a value from the sequence to Port U, wait for Port U to debounce

(use a 1 millisecond delay), then read back the value in Port U.

 If no key in that row is pressed, value $xF will be read from the lower nibble

(bits 0-3) of Port U. Use an AND instruction to mask the upper nibble (bits 4-7) of

Port U. If this value is read, branch back and scan the next row using the sequence

above.

 If a key is pressed use the lookup table routine from Laboratory 4.2 to check for a

match. The index value of this sequence corresponds to the key that is being

pressed (i.e., if a two is pressed on the keypad, the upper nibble with read value

%0111 and the lower nibble will read %1011). If a key is selected, send the

index value to Port S (address $248). This value should be displayed on the

lower nibble of the LEDs (bits 0-3 of Port S), and nothing should be read on the

upper nibble of the LEDs (bits 4-7 of Port S). THE LEDS SHOULD NOT

FLICKER!!!

 After sending the value, wait for the key to be released before returning to scan

the keypad. To do this, wait for Port U to debounce, then read the value from Port

U and use an AND instruction to mask the upper nibble. If value $xF is read from

the lower nibble, then the key has been released and the program should branch

back to read the four rows of Port U continuously again. If any other value is read

ECE 362 – Experiment 5 Rev – 9/16

[10] © J. Lee, C. Glick, N. Wheeler

from Port U, then the key has not been released and the program should wait for

Port U to debounce again.

3. Alter the code above so that the index value is shown on the left four LEDs while

keeping the right four LEDs off. This can be accomplished by using a shift or rotate

instruction.

4. Alter the code above so that the first keypress value displays on the right four LEDs, the

second keypress displays on the left four LEDs while maintaining the value of the first

keypress, the third keypress displays on the right four LED while maintain the value of

the second keypress, and so on. This can be accomplished using AND, OR, and shift

instructions.

5. A subroutine MUST BE used for the debounce delay. In addition, the main keypad

subroutine MUST BE contained in its own subroutine.

Extra Credit: perform the following two tasks:

1. Configure the keypad to function as a pull-down device instead of a pull-up device.

2. Not counting pushing and pulling registers to the stack, or the lines of code executed by a

subroutine, write the keypad in 20 lines of code or less.

ECE 362 – Experiment 5 Rev – 9/16

[11] © J. Lee, C. Glick, N. Wheeler

Laboratory 5.3: Stepper Motor

1. Modify the code from Laboratory 4.4 to add direction and speed control. The program

should read the value from the dipswitches at Port T (address $240).

 If switch 1 (bit 0) and switch 2 (bit 1) are both high or both low, the motor should

not turn.

 If switch 1 is low, the motor should turn clockwise. If switch 2 is low, the motor

should turn couter-clockwise.

 Give the motor two speeds. If switch 3 (bit 2) is low, the motor should turn

slowly. If switch 3 is high, the motor should turn fast.

2. For the speed, use a delay of 15 milliseconds between each step of the sequence for the

fast speed and a delay of 60 milliseconds between each step for the slow speed. Check

switch 3 and load a 16-bit register with the count to generate a proper delay. An if-else

structure can perform this task. The same delay subroutine must be used for both speeds.

3. For the direction, put the sequence from Laboratory 4.4 into an array and use an index

register (X or Y) to step through the data. This pointer will track the motor sequence

value even if the direction changes. If the motor is to step counter-clockwise, decrement

the index register as the sequence values are being sent to Port P (address $258). If the

motor is to step clockwise, increment the index register as sequence values are being

sent. The best way to do this is to place a terminator at each end of the sequence. If the

terminator value is read, reset the index register to point to the end of the sequence if

turning counter-clockwise, or at the beginning of the sequence if turning clockwise, and

then decrementing or incrementing the index register accordingly.

