Permalink
Fetching contributors…
Cannot retrieve contributors at this time
4265 lines (3632 sloc) 109 KB
/*
* Copyright 2012-2013 Andrew Smith
* Copyright 2013-2015 Con Kolivas <kernel@kolivas.org>
*
* This program is free software; you can redistribute it and/or modify it
* under the terms of the GNU General Public License as published by the Free
* Software Foundation; either version 3 of the License, or (at your option)
* any later version. See COPYING for more details.
*/
#include "config.h"
#include <ctype.h>
#include <stdint.h>
#include <stdbool.h>
#include "logging.h"
#include "miner.h"
#include "usbutils.h"
static pthread_mutex_t cgusb_lock;
static pthread_mutex_t cgusbres_lock;
static cglock_t cgusb_fd_lock;
static cgtimer_t usb11_cgt;
#define NODEV(err) ((err) != LIBUSB_SUCCESS && (err) != LIBUSB_ERROR_TIMEOUT)
#define NOCONTROLDEV(err) ((err) < 0 && NODEV(err))
/*
* WARNING - these assume DEVLOCK(cgpu, pstate) is called first and
* DEVUNLOCK(cgpu, pstate) in called in the same function with the same pstate
* given to DEVLOCK.
* You must call DEVUNLOCK(cgpu, pstate) before exiting the function or it will leave
* the thread Cancelability unrestored
*/
#define DEVWLOCK(cgpu, _pth_state) do { \
pthread_setcancelstate(PTHREAD_CANCEL_DISABLE, &_pth_state); \
cg_wlock(&cgpu->usbinfo.devlock); \
} while (0)
#define DEVWUNLOCK(cgpu, _pth_state) do { \
cg_wunlock(&cgpu->usbinfo.devlock); \
pthread_setcancelstate(_pth_state, NULL); \
} while (0)
#define DEVRLOCK(cgpu, _pth_state) do { \
pthread_setcancelstate(PTHREAD_CANCEL_DISABLE, &_pth_state); \
cg_rlock(&cgpu->usbinfo.devlock); \
} while (0)
#define DEVRUNLOCK(cgpu, _pth_state) do { \
cg_runlock(&cgpu->usbinfo.devlock); \
pthread_setcancelstate(_pth_state, NULL); \
} while (0)
#define USB_CONFIG 1
#define BITFURY_TIMEOUT_MS 999
#define DRILLBIT_TIMEOUT_MS 999
#define ICARUS_TIMEOUT_MS 999
// There is no windows version
#define ANT_S1_TIMEOUT_MS 200
#define ANT_S3_TIMEOUT_MS 200
#ifdef WIN32
#define BFLSC_TIMEOUT_MS 999
#define BITFORCE_TIMEOUT_MS 999
#define MODMINER_TIMEOUT_MS 999
#define AVALON_TIMEOUT_MS 999
#define AVALON4_TIMEOUT_MS 999
#define AVALON7_TIMEOUT_MS 999
#define AVALONM_TIMEOUT_MS 999
#define KLONDIKE_TIMEOUT_MS 999
#define COINTERRA_TIMEOUT_MS 999
#define HASHFAST_TIMEOUT_MS 999
#define HASHRATIO_TIMEOUT_MS 999
#define BLOCKERUPTER_TIMEOUT_MS 999
/* The safety timeout we use, cancelling async transfers on windows that fail
* to timeout on their own. */
#define WIN_CALLBACK_EXTRA 40
#define WIN_WRITE_CBEXTRA 5000
#else
#define BFLSC_TIMEOUT_MS 300
#define BITFORCE_TIMEOUT_MS 200
#define MODMINER_TIMEOUT_MS 100
#define AVALON_TIMEOUT_MS 200
#define AVALON4_TIMEOUT_MS 200
#define AVALON7_TIMEOUT_MS 200
#define AVALONM_TIMEOUT_MS 300
#define KLONDIKE_TIMEOUT_MS 200
#define COINTERRA_TIMEOUT_MS 200
#define HASHFAST_TIMEOUT_MS 500
#define HASHRATIO_TIMEOUT_MS 200
#define BLOCKERUPTER_TIMEOUT_MS 300
#endif
#define USB_EPS(_intx, _epinfosx) { \
.interface = _intx, \
.ctrl_transfer = _intx, \
.epinfo_count = ARRAY_SIZE(_epinfosx), \
.epinfos = _epinfosx \
}
#define USB_EPS_CTRL(_inty, _ctrlinty, _epinfosy) { \
.interface = _inty, \
.ctrl_transfer = _ctrlinty, \
.epinfo_count = ARRAY_SIZE(_epinfosy), \
.epinfos = _epinfosy \
}
/* Linked list of all async transfers in progress. Protected by cgusb_fd_lock.
* This allows us to not stop the usb polling thread till all are complete, and
* to find cancellable transfers. */
static struct list_head ut_list;
#ifdef USE_BFLSC
static struct usb_epinfo bflsc_epinfos[] = {
{ LIBUSB_TRANSFER_TYPE_BULK, 512, EPI(1), 0, 0 },
{ LIBUSB_TRANSFER_TYPE_BULK, 512, EPO(2), 0, 0 }
};
static struct usb_intinfo bflsc_ints[] = {
USB_EPS(0, bflsc_epinfos)
};
#endif
#ifdef USE_BITFORCE
// N.B. transfer size is 512 with USB2.0, but only 64 with USB1.1
static struct usb_epinfo bfl_epinfos[] = {
{ LIBUSB_TRANSFER_TYPE_BULK, 64, EPI(1), 0, 0 },
{ LIBUSB_TRANSFER_TYPE_BULK, 64, EPO(2), 0, 0 }
};
static struct usb_intinfo bfl_ints[] = {
USB_EPS(0, bfl_epinfos)
};
#endif
#ifdef USE_BITFURY
static struct usb_epinfo bfu0_epinfos[] = {
{ LIBUSB_TRANSFER_TYPE_INTERRUPT, 8, EPI(2), 0, 0 }
};
static struct usb_epinfo bfu1_epinfos[] = {
{ LIBUSB_TRANSFER_TYPE_BULK, 16, EPI(3), 0, 0 },
{ LIBUSB_TRANSFER_TYPE_BULK, 16, EPO(4), 0, 0 }
};
/* Default to interface 1 */
static struct usb_intinfo bfu_ints[] = {
USB_EPS(1, bfu1_epinfos),
USB_EPS(0, bfu0_epinfos)
};
static struct usb_epinfo bxf0_epinfos[] = {
{ LIBUSB_TRANSFER_TYPE_INTERRUPT, 8, EPI(1), 0, 0 }
};
static struct usb_epinfo bxf1_epinfos[] = {
{ LIBUSB_TRANSFER_TYPE_BULK, 64, EPI(2), 0, 0 },
{ LIBUSB_TRANSFER_TYPE_BULK, 64, EPO(2), 0, 0 }
};
static struct usb_intinfo bxf_ints[] = {
USB_EPS(1, bxf1_epinfos),
USB_EPS(0, bxf0_epinfos)
};
static struct usb_epinfo nfu_epinfos[] = {
{ LIBUSB_TRANSFER_TYPE_INTERRUPT, 64, EPI(1), 0, 0 },
{ LIBUSB_TRANSFER_TYPE_INTERRUPT, 64, EPO(1), 0, 0 },
};
static struct usb_intinfo nfu_ints[] = {
USB_EPS(0, nfu_epinfos)
};
static struct usb_epinfo bxm_epinfos[] = {
{ LIBUSB_TRANSFER_TYPE_BULK, 512, EPI(1), 0, 0 },
{ LIBUSB_TRANSFER_TYPE_BULK, 512, EPO(2), 0, 0 }
};
static struct usb_intinfo bxm_ints[] = {
USB_EPS(0, bxm_epinfos)
};
#endif
#ifdef USE_BLOCKERUPTER
// BlockErupter Device
static struct usb_epinfo bet_epinfos[] = {
{ LIBUSB_TRANSFER_TYPE_BULK, 64, EPI(1), 0, 0 },
{ LIBUSB_TRANSFER_TYPE_BULK, 64, EPO(1), 0, 0 }
};
static struct usb_intinfo bet_ints[] = {
USB_EPS(0, bet_epinfos)
};
#endif
#ifdef USE_DRILLBIT
// Drillbit Bitfury devices
static struct usb_epinfo drillbit_int_epinfos[] = {
{ LIBUSB_TRANSFER_TYPE_INTERRUPT, 8, EPI(3), 0, 0 }
};
static struct usb_epinfo drillbit_bulk_epinfos[] = {
{ LIBUSB_TRANSFER_TYPE_BULK, 16, EPI(1), 0, 0 },
{ LIBUSB_TRANSFER_TYPE_BULK, 16, EPO(2), 0, 0 },
};
/* Default to interface 1 */
static struct usb_intinfo drillbit_ints[] = {
USB_EPS(1, drillbit_bulk_epinfos),
USB_EPS(0, drillbit_int_epinfos)
};
#endif
#ifdef USE_HASHFAST
#include "driver-hashfast.h"
static struct usb_epinfo hfa0_epinfos[] = {
{ LIBUSB_TRANSFER_TYPE_INTERRUPT, 8, EPI(3), 0, 0 }
};
static struct usb_epinfo hfa1_epinfos[] = {
{ LIBUSB_TRANSFER_TYPE_BULK, 64, EPI(1), 0, 0 },
{ LIBUSB_TRANSFER_TYPE_BULK, 64, EPO(2), 0, 0 }
};
/* Default to interface 1 */
static struct usb_intinfo hfa_ints[] = {
USB_EPS(1, hfa1_epinfos),
USB_EPS(0, hfa0_epinfos)
};
#endif
#ifdef USE_HASHRATIO
static struct usb_epinfo hro_epinfos[] = {
{ LIBUSB_TRANSFER_TYPE_BULK, 64, EPI(1), 0, 0 },
{ LIBUSB_TRANSFER_TYPE_BULK, 64, EPO(2), 0, 0 }
};
static struct usb_intinfo hro_ints[] = {
USB_EPS(0, hro_epinfos)
};
#endif
#ifdef USE_MODMINER
static struct usb_epinfo mmq_epinfos[] = {
{ LIBUSB_TRANSFER_TYPE_BULK, 64, EPI(3), 0, 0 },
{ LIBUSB_TRANSFER_TYPE_BULK, 64, EPO(3), 0, 0 }
};
static struct usb_intinfo mmq_ints[] = {
USB_EPS(1, mmq_epinfos)
};
#endif
#ifdef USE_AVALON
static struct usb_epinfo ava_epinfos[] = {
{ LIBUSB_TRANSFER_TYPE_BULK, 64, EPI(1), 0, 0 },
{ LIBUSB_TRANSFER_TYPE_BULK, 64, EPO(2), 0, 0 }
};
static struct usb_intinfo ava_ints[] = {
USB_EPS(0, ava_epinfos)
};
#endif
#ifdef USE_AVALON2
static struct usb_epinfo ava2_epinfos[] = {
{ LIBUSB_TRANSFER_TYPE_BULK, 64, EPI(3), 0, 0 },
{ LIBUSB_TRANSFER_TYPE_BULK, 64, EPO(2), 0, 0 }
};
static struct usb_intinfo ava2_ints[] = {
USB_EPS(0, ava2_epinfos)
};
#endif
#ifdef USE_AVALON4
static struct usb_epinfo ava4_epinfos[] = {
{ LIBUSB_TRANSFER_TYPE_BULK, 64, EPI(1), 0, 0 },
{ LIBUSB_TRANSFER_TYPE_BULK, 64, EPO(1), 0, 0 }
};
static struct usb_intinfo ava4_ints[] = {
USB_EPS(1, ava4_epinfos)
};
#endif
#ifdef USE_AVALON7
static struct usb_epinfo ava7_epinfos[] = {
{ LIBUSB_TRANSFER_TYPE_BULK, 64, EPI(1), 0, 0 },
{ LIBUSB_TRANSFER_TYPE_BULK, 64, EPO(1), 0, 0 }
};
static struct usb_intinfo ava7_ints[] = {
USB_EPS(1, ava7_epinfos)
};
#endif
#ifdef USE_AVALON_MINER
static struct usb_epinfo avam_epinfos[] = {
{ LIBUSB_TRANSFER_TYPE_INTERRUPT, 40, EPI(1), 0, 0 },
{ LIBUSB_TRANSFER_TYPE_INTERRUPT, 40, EPO(1), 0, 0 }
};
static struct usb_intinfo avam_ints[] = {
USB_EPS(1, avam_epinfos)
};
static struct usb_epinfo av3u_epinfos[] = {
{ LIBUSB_TRANSFER_TYPE_INTERRUPT, 40, EPI(1), 0, 0 },
{ LIBUSB_TRANSFER_TYPE_INTERRUPT, 40, EPO(1), 0, 0 }
};
static struct usb_intinfo av3u_ints[] = {
USB_EPS(0, av3u_epinfos)
};
#endif
#ifdef USE_KLONDIKE
static struct usb_epinfo kln_epinfos[] = {
{ LIBUSB_TRANSFER_TYPE_BULK, 64, EPI(1), 0, 0 },
{ LIBUSB_TRANSFER_TYPE_BULK, 64, EPO(1), 0, 0 }
};
static struct usb_intinfo kln_ints[] = {
USB_EPS(0, kln_epinfos)
};
static struct usb_epinfo kli0_epinfos[] = {
{ LIBUSB_TRANSFER_TYPE_INTERRUPT, 8, EPI(1), 0, 0 }
};
static struct usb_epinfo kli1_epinfos[] = {
{ LIBUSB_TRANSFER_TYPE_BULK, 64, EPI(2), 0, 0 },
{ LIBUSB_TRANSFER_TYPE_BULK, 64, EPO(2), 0, 0 }
};
static struct usb_intinfo kli_ints[] = {
USB_EPS(1, kli1_epinfos),
USB_EPS(0, kli0_epinfos)
};
#endif
#ifdef USE_ICARUS
static struct usb_epinfo ica_epinfos[] = {
{ LIBUSB_TRANSFER_TYPE_BULK, 64, EPI(3), 0, 0 },
{ LIBUSB_TRANSFER_TYPE_BULK, 64, EPO(2), 0, 0 }
};
static struct usb_intinfo ica_ints[] = {
USB_EPS(0, ica_epinfos)
};
static struct usb_epinfo ica1_epinfos0[] = {
{ LIBUSB_TRANSFER_TYPE_INTERRUPT, 16, EPI(0x82), 0, 0 }
};
static struct usb_epinfo ica1_epinfos1[] = {
{ LIBUSB_TRANSFER_TYPE_BULK, 64, EPI(0x81), 0, 0 },
{ LIBUSB_TRANSFER_TYPE_BULK, 64, EPO(0x01), 0, 0 }
};
static struct usb_intinfo ica1_ints[] = {
USB_EPS(1, ica1_epinfos1),
USB_EPS(0, ica1_epinfos0)
};
static struct usb_epinfo amu_epinfos[] = {
{ LIBUSB_TRANSFER_TYPE_BULK, 64, EPI(1), 0, 0 },
{ LIBUSB_TRANSFER_TYPE_BULK, 64, EPO(1), 0, 0 }
};
static struct usb_intinfo amu_ints[] = {
USB_EPS(0, amu_epinfos)
};
static struct usb_epinfo llt_epinfos[] = {
{ LIBUSB_TRANSFER_TYPE_BULK, 64, EPI(1), 0, 0 },
{ LIBUSB_TRANSFER_TYPE_BULK, 64, EPO(2), 0, 0 }
};
static struct usb_intinfo llt_ints[] = {
USB_EPS(0, llt_epinfos)
};
static struct usb_epinfo cmr1_epinfos[] = {
{ LIBUSB_TRANSFER_TYPE_BULK, 64, EPI(1), 0, 0 },
{ LIBUSB_TRANSFER_TYPE_BULK, 64, EPO(2), 0, 0 }
};
static struct usb_intinfo cmr1_ints[] = {
USB_EPS(0, cmr1_epinfos)
};
static struct usb_epinfo cmr2_epinfos0[] = {
{ LIBUSB_TRANSFER_TYPE_BULK, 64, EPI(1), 0, 0 },
{ LIBUSB_TRANSFER_TYPE_BULK, 64, EPO(2), 0, 0 }
};
static struct usb_epinfo cmr2_epinfos1[] = {
{ LIBUSB_TRANSFER_TYPE_BULK, 64, EPI(3), 0, 0 },
{ LIBUSB_TRANSFER_TYPE_BULK, 64, EPO(4), 0, 0 },
};
static struct usb_epinfo cmr2_epinfos2[] = {
{ LIBUSB_TRANSFER_TYPE_BULK, 64, EPI(5), 0, 0 },
{ LIBUSB_TRANSFER_TYPE_BULK, 64, EPO(6), 0, 0 },
};
static struct usb_epinfo cmr2_epinfos3[] = {
{ LIBUSB_TRANSFER_TYPE_BULK, 64, EPI(7), 0, 0 },
{ LIBUSB_TRANSFER_TYPE_BULK, 64, EPO(8), 0, 0 }
};
static struct usb_intinfo cmr2_ints[] = {
USB_EPS_CTRL(0, 1, cmr2_epinfos0),
USB_EPS_CTRL(1, 2, cmr2_epinfos1),
USB_EPS_CTRL(2, 3, cmr2_epinfos2),
USB_EPS_CTRL(3, 4, cmr2_epinfos3)
};
#endif
#ifdef USE_COINTERRA
static struct usb_epinfo cointerra_epinfos[] = {
{ LIBUSB_TRANSFER_TYPE_BULK, 64, EPI(1), 0, 0 },
{ LIBUSB_TRANSFER_TYPE_BULK, 64, EPO(1), 0, 0 }
};
static struct usb_intinfo cointerra_ints[] = {
USB_EPS(0, cointerra_epinfos)
};
#endif
#ifdef USE_ANT_S1
static struct usb_epinfo ants1_epinfos[] = {
{ LIBUSB_TRANSFER_TYPE_BULK, 64, EPI(1), 0, 0 },
{ LIBUSB_TRANSFER_TYPE_BULK, 64, EPO(1), 0, 0 }
};
static struct usb_intinfo ants1_ints[] = {
USB_EPS(0, ants1_epinfos)
};
#endif
#ifdef USE_ANT_S3
static struct usb_epinfo ants3_epinfos[] = {
{ LIBUSB_TRANSFER_TYPE_BULK, 64, EPI(1), 0, 0 },
{ LIBUSB_TRANSFER_TYPE_BULK, 64, EPO(1), 0, 0 }
};
static struct usb_intinfo ants3_ints[] = {
USB_EPS(0, ants3_epinfos)
};
#endif
#define IDVENDOR_FTDI 0x0403
#define INTINFO(_ints) \
.intinfo_count = ARRAY_SIZE(_ints), \
.intinfos = _ints
#define USBEP(_usbdev, _intinfo, _epinfo) (_usbdev->found->intinfos[_intinfo].epinfos[_epinfo].ep)
#define THISIF(_found, _this) (_found->intinfos[_this].interface)
#define USBIF(_usbdev, _this) THISIF(_usbdev->found, _this)
static struct usb_find_devices find_dev[] = {
#ifdef USE_BFLSC
/* Wish these guys would be more consistent with setting these fields */
{
.drv = DRIVER_bflsc,
.name = "BAS",
.ident = IDENT_BAS,
.idVendor = IDVENDOR_FTDI,
.idProduct = 0x6014,
.iManufacturer = "FTDI",
.iProduct = "BitFORCE SHA256 SC",
.config = 1,
.timeout = BFLSC_TIMEOUT_MS,
.latency = LATENCY_STD,
INTINFO(bflsc_ints) },
{
.drv = DRIVER_bflsc,
.name = "BAS",
.ident = IDENT_BAS,
.idVendor = IDVENDOR_FTDI,
.idProduct = 0x6014,
.iManufacturer = "Butterfly Labs",
.iProduct = "BitFORCE SHA256 SC",
.config = 1,
.timeout = BFLSC_TIMEOUT_MS,
.latency = LATENCY_STD,
INTINFO(bflsc_ints) },
{
.drv = DRIVER_bflsc,
.name = "BMA",
.ident = IDENT_BMA,
.idVendor = IDVENDOR_FTDI,
.idProduct = 0x6014,
.iManufacturer = "BUTTERFLY LABS",
.iProduct = "BitFORCE SHA256 SC",
.config = 1,
.timeout = BFLSC_TIMEOUT_MS,
.latency = LATENCY_STD,
INTINFO(bflsc_ints) },
{
.drv = DRIVER_bflsc,
.name = "BMA",
.ident = IDENT_BMA,
.idVendor = IDVENDOR_FTDI,
.idProduct = 0x6014,
.iManufacturer = "BUTTERFLY LABS",
.iProduct = "BitFORCE SC-28nm",
.config = 1,
.timeout = BFLSC_TIMEOUT_MS,
.latency = LATENCY_STD,
INTINFO(bflsc_ints) },
{
.drv = DRIVER_bflsc,
.name = "BMA",
.ident = IDENT_BMA,
.idVendor = IDVENDOR_FTDI,
.idProduct = 0x6014,
.iManufacturer = "BUTTERFLY LABS",
.iProduct = "BitFORCE SHA256",
.config = 1,
.timeout = BFLSC_TIMEOUT_MS,
.latency = LATENCY_STD,
INTINFO(bflsc_ints) },
#endif
#ifdef USE_BITFORCE
{
.drv = DRIVER_bitforce,
.name = "BFL",
.ident = IDENT_BFL,
.idVendor = IDVENDOR_FTDI,
.idProduct = 0x6014,
.iManufacturer = "Butterfly Labs Inc.",
.iProduct = "BitFORCE SHA256",
.config = 1,
.timeout = BITFORCE_TIMEOUT_MS,
.latency = LATENCY_STD,
INTINFO(bfl_ints) },
#endif
#ifdef USE_BITFURY
{
.drv = DRIVER_bitfury,
.name = "BF1",
.ident = IDENT_BF1,
.idVendor = 0x03eb,
.idProduct = 0x204b,
.config = 1,
.timeout = BITFURY_TIMEOUT_MS,
.latency = LATENCY_UNUSED,
//.iManufacturer = "BPMC",
.iProduct = "Bitfury BF1",
INTINFO(bfu_ints)
},
{
.drv = DRIVER_bitfury,
.name = "BXF",
.ident = IDENT_BXF,
.idVendor = 0x198c,
.idProduct = 0xb1f1,
.config = 1,
.timeout = BITFURY_TIMEOUT_MS,
.latency = LATENCY_UNUSED,
.iManufacturer = "c-scape",
.iProduct = "bi?fury",
INTINFO(bxf_ints)
},
{
.drv = DRIVER_bitfury,
.name = "OSM",
.ident = IDENT_OSM,
.idVendor = 0x198c,
.idProduct = 0xb1f1,
.config = 1,
.timeout = BITFURY_TIMEOUT_MS,
.latency = LATENCY_UNUSED,
.iManufacturer = "c-scape",
.iProduct = "OneString",
INTINFO(bxf_ints)
},
{
.drv = DRIVER_bitfury,
.name = "NFU",
.ident = IDENT_NFU,
.idVendor = 0x04d8,
.idProduct = 0x00de,
.config = 1,
.timeout = BITFURY_TIMEOUT_MS,
.latency = LATENCY_UNUSED,
INTINFO(nfu_ints)
},
{
.drv = DRIVER_bitfury,
.name = "BXM",
.ident = IDENT_BXM,
.idVendor = 0x0403,
.idProduct = 0x6014,
.config = 1,
.timeout = BITFURY_TIMEOUT_MS,
.latency = LATENCY_UNUSED,
INTINFO(bxm_ints)
},
#endif
#ifdef USE_DRILLBIT
{
.drv = DRIVER_drillbit,
.name = "DRB",
.ident = IDENT_DRB,
.idVendor = 0x03eb,
.idProduct = 0x2404,
.config = 1,
.timeout = DRILLBIT_TIMEOUT_MS,
.latency = LATENCY_UNUSED,
.iManufacturer = "Drillbit Systems",
.iProduct = NULL, /* Can be Thumb or Eight, same driver */
INTINFO(drillbit_ints)
},
#endif
#ifdef USE_MODMINER
{
.drv = DRIVER_modminer,
.name = "MMQ",
.ident = IDENT_MMQ,
.idVendor = 0x1fc9,
.idProduct = 0x0003,
.config = 1,
.timeout = MODMINER_TIMEOUT_MS,
.latency = LATENCY_UNUSED,
INTINFO(mmq_ints) },
#endif
#ifdef USE_AVALON
{
.drv = DRIVER_avalon,
.name = "BTB",
.ident = IDENT_BTB,
.idVendor = IDVENDOR_FTDI,
.idProduct = 0x6001,
.iManufacturer = "Burnin Electronics",
.iProduct = "BitBurner",
.config = 1,
.timeout = AVALON_TIMEOUT_MS,
.latency = 10,
INTINFO(ava_ints) },
{
.drv = DRIVER_avalon,
.name = "BBF",
.ident = IDENT_BBF,
.idVendor = IDVENDOR_FTDI,
.idProduct = 0x6001,
.iManufacturer = "Burnin Electronics",
.iProduct = "BitBurner Fury",
.config = 1,
.timeout = AVALON_TIMEOUT_MS,
.latency = 10,
INTINFO(ava_ints) },
{
.drv = DRIVER_avalon,
.name = "AVA",
.ident = IDENT_AVA,
.idVendor = IDVENDOR_FTDI,
.idProduct = 0x6001,
.config = 1,
.timeout = AVALON_TIMEOUT_MS,
.latency = 10,
INTINFO(ava_ints) },
#endif
#ifdef USE_AVALON2
{
.drv = DRIVER_avalon2,
.name = "AV2",
.ident = IDENT_AV2,
.idVendor = 0x067b,
.idProduct = 0x2303,
.config = 1,
.timeout = AVALON_TIMEOUT_MS,
.latency = LATENCY_UNUSED,
INTINFO(ava2_ints) },
#endif
#ifdef USE_AVALON4
{
.drv = DRIVER_avalon4,
.name = "AV4",
.ident = IDENT_AV4,
.idVendor = 0x29f1,
.idProduct = 0x33f2,
.iManufacturer = "CANAAN",
.iProduct = "USB2IIC Converter",
.config = 1,
.timeout = AVALON4_TIMEOUT_MS,
.latency = LATENCY_UNUSED,
INTINFO(ava4_ints) },
#endif
#ifdef USE_AVALON7
{
.drv = DRIVER_avalon7,
.name = "AV7",
.ident = IDENT_AV7,
.idVendor = 0x29f1,
.idProduct = 0x33f2,
.iManufacturer = "CANAAN",
.iProduct = "USB2IIC Converter",
.config = 1,
.timeout = AVALON7_TIMEOUT_MS,
.latency = LATENCY_UNUSED,
INTINFO(ava7_ints) },
#endif
#ifdef USE_AVALON_MINER
{
.drv = DRIVER_avalonm,
.name = "AV4M",
.ident = IDENT_AVM,
.idVendor = 0x29f1,
.idProduct = 0x40f1,
.iManufacturer = "CANAAN",
.iProduct = "Avalon4 mini",
.config = 1,
.timeout = AVALONM_TIMEOUT_MS,
.latency = LATENCY_UNUSED,
INTINFO(avam_ints) },
{
.drv = DRIVER_avalonm,
.name = "AV3U",
.ident = IDENT_AVM,
.idVendor = 0x29f1,
.idProduct = 0x33f3,
.iManufacturer = "CANAAN",
.iProduct = "Avalon nano",
.config = 1,
.timeout = AVALONM_TIMEOUT_MS,
.latency = LATENCY_UNUSED,
INTINFO(av3u_ints) },
#endif
#ifdef USE_HASHFAST
{
.drv = DRIVER_hashfast,
.name = "HFA",
.ident = IDENT_HFA,
.idVendor = HF_USB_VENDOR_ID,
.idProduct = HF_USB_PRODUCT_ID_G1,
.iManufacturer = "HashFast LLC",
.iProduct = "M1 Module",
.config = 1,
.timeout = HASHFAST_TIMEOUT_MS,
.latency = LATENCY_UNUSED,
INTINFO(hfa_ints) },
#endif
#ifdef USE_HASHRATIO
{
.drv = DRIVER_hashratio,
.name = "HRO",
.ident = IDENT_HRO,
.idVendor = IDVENDOR_FTDI,
.idProduct = 0x6001,
.config = 1,
.timeout = HASHRATIO_TIMEOUT_MS,
.latency = LATENCY_UNUSED,
INTINFO(hro_ints) },
#endif
#ifdef USE_KLONDIKE
{
.drv = DRIVER_klondike,
.name = "KLN",
.ident = IDENT_KLN,
.idVendor = 0x04D8,
.idProduct = 0xF60A,
.config = 1,
.timeout = KLONDIKE_TIMEOUT_MS,
.latency = 10,
INTINFO(kln_ints) },
{
.drv = DRIVER_klondike,
.name = "KLI",
.ident = IDENT_KLN,
.idVendor = 0x04D8,
.idProduct = 0xF60A,
.config = 1,
.timeout = KLONDIKE_TIMEOUT_MS,
.latency = 10,
INTINFO(kli_ints) },
#endif
#ifdef USE_ICARUS
{
.drv = DRIVER_icarus,
.name = "ICA",
.ident = IDENT_ICA,
.idVendor = 0x067b,
.idProduct = 0x2303,
.config = 1,
.timeout = ICARUS_TIMEOUT_MS,
.latency = LATENCY_UNUSED,
INTINFO(ica_ints) },
{
.drv = DRIVER_icarus,
.name = "ICA",
.ident = IDENT_AVA,
.idVendor = 0x1fc9,
.idProduct = 0x0083,
.config = 1,
.timeout = ICARUS_TIMEOUT_MS,
.latency = LATENCY_UNUSED,
INTINFO(ica1_ints) },
{
.drv = DRIVER_icarus,
.name = "BSC",
.ident = IDENT_BSC,
.idVendor = 0x10c4,
.idProduct = 0xea60,
.iManufacturer = "bitshopperde",
.iProduct = "Compac BM1384 Bitcoin Miner",
.config = 1,
.timeout = ICARUS_TIMEOUT_MS,
.latency = LATENCY_UNUSED,
INTINFO(amu_ints) },
{
.drv = DRIVER_icarus,
.name = "GSC",
.ident = IDENT_GSC,
.idVendor = 0x10c4,
.idProduct = 0xea60,
.iManufacturer = "GekkoScience",
.iProduct = "Compac BM1384 Bitcoin Miner",
.config = 1,
.timeout = ICARUS_TIMEOUT_MS,
.latency = LATENCY_UNUSED,
INTINFO(amu_ints) },
{
.drv = DRIVER_icarus,
.name = "AMU",
.ident = IDENT_AMU,
.idVendor = 0x10c4,
.idProduct = 0xea60,
.config = 1,
.timeout = ICARUS_TIMEOUT_MS,
.latency = LATENCY_UNUSED,
INTINFO(amu_ints) },
{
.drv = DRIVER_icarus,
.name = "LIN",
.ident = IDENT_LIN,
.idVendor = 0x10c4,
.idProduct = 0xea60,
.config = 1,
.timeout = ICARUS_TIMEOUT_MS,
.latency = LATENCY_UNUSED,
INTINFO(amu_ints) },
{
.drv = DRIVER_icarus,
.name = "ANU",
.ident = IDENT_ANU,
.idVendor = 0x10c4,
.idProduct = 0xea60,
.config = 1,
.timeout = ICARUS_TIMEOUT_MS,
.latency = LATENCY_UNUSED,
INTINFO(amu_ints) },
{
.drv = DRIVER_icarus,
.name = "BLT",
.ident = IDENT_BLT,
.idVendor = IDVENDOR_FTDI,
.idProduct = 0x6001,
.iProduct = "FT232R USB UART",
.config = 1,
.timeout = ICARUS_TIMEOUT_MS,
.latency = LATENCY_STD,
INTINFO(llt_ints) },
// For any that don't match the above "BLT"
{
.drv = DRIVER_icarus,
.name = "LLT",
.ident = IDENT_LLT,
.idVendor = IDVENDOR_FTDI,
.idProduct = 0x6001,
.config = 1,
.timeout = ICARUS_TIMEOUT_MS,
.latency = LATENCY_STD,
INTINFO(llt_ints) },
{
.drv = DRIVER_icarus,
.name = "CMR",
.ident = IDENT_CMR1,
.idVendor = IDVENDOR_FTDI,
.idProduct = 0x6014,
.iProduct = "Cairnsmore1",
.config = 1,
.timeout = ICARUS_TIMEOUT_MS,
.latency = LATENCY_STD,
INTINFO(cmr1_ints) },
{
.drv = DRIVER_icarus,
.name = "CMR",
.ident = IDENT_CMR2,
.idVendor = IDVENDOR_FTDI,
.idProduct = 0x8350,
.iProduct = "Cairnsmore1",
.config = 1,
.timeout = ICARUS_TIMEOUT_MS,
.latency = LATENCY_STD,
INTINFO(cmr2_ints) },
#endif
#ifdef USE_COINTERRA
{
.drv = DRIVER_cointerra,
.name = "CTA",
.ident = IDENT_CTA,
.idVendor = 0x1cbe,
.idProduct = 0x0003,
.config = 1,
.timeout = COINTERRA_TIMEOUT_MS,
.latency = LATENCY_STD,
INTINFO(cointerra_ints) },
#endif
#ifdef USE_ANT_S1
{
.drv = DRIVER_ants1,
.name = "ANT",
.ident = IDENT_ANT,
.idVendor = 0x4254,
.idProduct = 0x4153,
.config = 1,
.timeout = ANT_S1_TIMEOUT_MS,
.latency = LATENCY_ANTS1,
INTINFO(ants1_ints) },
#endif
#ifdef USE_ANT_S3
{
.drv = DRIVER_ants3,
.name = "AS3",
.ident = IDENT_AS3,
.idVendor = 0x4254,
.idProduct = 0x4153,
.config = 1,
.timeout = ANT_S3_TIMEOUT_MS,
.latency = LATENCY_ANTS3,
INTINFO(ants3_ints) },
#endif
#ifdef USE_BLOCKERUPTER
{
.drv = DRIVER_blockerupter,
.name = "BET",
.ident = IDENT_BET,
.idVendor = 0x10c4,
.idProduct = 0xea60,
.config = 1,
.timeout = BLOCKERUPTER_TIMEOUT_MS,
.latency = LATENCY_UNUSED,
INTINFO(bet_ints) },
#endif
{ DRIVER_MAX, NULL, 0, 0, 0, NULL, NULL, 0, 0, 0, 0, NULL }
};
#define STRBUFLEN 256
static const char *BLANK = "";
static const char *space = " ";
static const char *nodatareturned = "no data returned ";
#if 0 // enable USBDEBUG - only during development testing
static const char *debug_true_str = "true";
static const char *debug_false_str = "false";
static const char *nodevstr = "=NODEV";
#define bool_str(boo) ((boo) ? debug_true_str : debug_false_str)
#define isnodev(err) (NODEV(err) ? nodevstr : BLANK)
#define USBDEBUG(fmt, ...) applog(LOG_WARNING, fmt, ##__VA_ARGS__)
#else
#define USBDEBUG(fmt, ...)
#endif
// For device limits by driver
static struct driver_count {
int count;
int limit;
} drv_count[DRIVER_MAX];
// For device limits by list of bus/dev
static struct usb_busdev {
int bus_number;
int device_address;
#ifdef WIN32
void *resource1;
void *resource2;
#else
int fd;
#endif
} *busdev;
static int busdev_count = 0;
// Total device limit
static int total_count = 0;
static int total_limit = 999999;
struct usb_in_use_list {
struct usb_busdev in_use;
struct usb_in_use_list *prev;
struct usb_in_use_list *next;
};
// List of in use devices
static struct usb_in_use_list *in_use_head = NULL;
static struct usb_in_use_list *blacklist_head = NULL;
struct resource_work {
bool lock;
const char *dname;
uint8_t bus_number;
uint8_t device_address;
struct resource_work *next;
};
// Pending work for the reslock thread
struct resource_work *res_work_head = NULL;
struct resource_reply {
uint8_t bus_number;
uint8_t device_address;
bool got;
struct resource_reply *next;
};
// Replies to lock requests
struct resource_reply *res_reply_head = NULL;
// Some stats need to always be defined
#define SEQ0 0
#define SEQ1 1
// NONE must be 0 - calloced
#define MODE_NONE 0
#define MODE_CTRL_READ (1 << 0)
#define MODE_CTRL_WRITE (1 << 1)
#define MODE_BULK_READ (1 << 2)
#define MODE_BULK_WRITE (1 << 3)
// Set this to 0 to remove stats processing
#define DO_USB_STATS 1
static bool stats_initialised = false;
#if DO_USB_STATS
#define MODE_SEP_STR "+"
#define MODE_NONE_STR "X"
#define MODE_CTRL_READ_STR "cr"
#define MODE_CTRL_WRITE_STR "cw"
#define MODE_BULK_READ_STR "br"
#define MODE_BULK_WRITE_STR "bw"
// One for each CMD, TIMEOUT, ERROR
struct cg_usb_stats_item {
uint64_t count;
double total_delay;
double min_delay;
double max_delay;
struct timeval first;
struct timeval last;
};
#define CMD_CMD 0
#define CMD_TIMEOUT 1
#define CMD_ERROR 2
// One for each C_CMD
struct cg_usb_stats_details {
int seq;
uint32_t modes;
struct cg_usb_stats_item item[CMD_ERROR+1];
};
// One for each device
struct cg_usb_stats {
char *name;
int device_id;
struct cg_usb_stats_details *details;
};
static struct cg_usb_stats *usb_stats = NULL;
static int next_stat = USB_NOSTAT;
#define SECTOMS(s) ((int)((s) * 1000))
#define USB_STATS(sgpu_, sta_, fin_, err_, mode_, cmd_, seq_, tmo_) \
stats(sgpu_, sta_, fin_, err_, mode_, cmd_, seq_, tmo_)
#define STATS_TIMEVAL(tv_) cgtime(tv_)
#define USB_REJECT(sgpu_, mode_) rejected_inc(sgpu_, mode_)
#else
#define USB_STATS(sgpu_, sta_, fin_, err_, mode_, cmd_, seq_, tmo_)
#define STATS_TIMEVAL(tv_)
#define USB_REJECT(sgpu_, mode_)
#endif // DO_USB_STATS
/* Create usb_commands array from USB_PARSE_COMMANDS macro in usbutils.h */
char *usb_commands[] = {
USB_PARSE_COMMANDS(JUMPTABLE)
"Null"
};
#ifdef EOL
#undef EOL
#endif
#define EOL "\n"
static const char *DESDEV = "Device";
static const char *DESCON = "Config";
static const char *DESSTR = "String";
static const char *DESINT = "Interface";
static const char *DESEP = "Endpoint";
static const char *DESHID = "HID";
static const char *DESRPT = "Report";
static const char *DESPHY = "Physical";
static const char *DESHUB = "Hub";
static const char *EPIN = "In: ";
static const char *EPOUT = "Out: ";
static const char *EPX = "?: ";
static const char *CONTROL = "Control";
static const char *ISOCHRONOUS_X = "Isochronous+?";
static const char *ISOCHRONOUS_N_X = "Isochronous+None+?";
static const char *ISOCHRONOUS_N_D = "Isochronous+None+Data";
static const char *ISOCHRONOUS_N_F = "Isochronous+None+Feedback";
static const char *ISOCHRONOUS_N_I = "Isochronous+None+Implicit";
static const char *ISOCHRONOUS_A_X = "Isochronous+Async+?";
static const char *ISOCHRONOUS_A_D = "Isochronous+Async+Data";
static const char *ISOCHRONOUS_A_F = "Isochronous+Async+Feedback";
static const char *ISOCHRONOUS_A_I = "Isochronous+Async+Implicit";
static const char *ISOCHRONOUS_D_X = "Isochronous+Adaptive+?";
static const char *ISOCHRONOUS_D_D = "Isochronous+Adaptive+Data";
static const char *ISOCHRONOUS_D_F = "Isochronous+Adaptive+Feedback";
static const char *ISOCHRONOUS_D_I = "Isochronous+Adaptive+Implicit";
static const char *ISOCHRONOUS_S_X = "Isochronous+Sync+?";
static const char *ISOCHRONOUS_S_D = "Isochronous+Sync+Data";
static const char *ISOCHRONOUS_S_F = "Isochronous+Sync+Feedback";
static const char *ISOCHRONOUS_S_I = "Isochronous+Sync+Implicit";
static const char *BULK = "Bulk";
static const char *INTERRUPT = "Interrupt";
static const char *UNKNOWN = "Unknown";
static const char *destype(uint8_t bDescriptorType)
{
switch (bDescriptorType) {
case LIBUSB_DT_DEVICE:
return DESDEV;
case LIBUSB_DT_CONFIG:
return DESCON;
case LIBUSB_DT_STRING:
return DESSTR;
case LIBUSB_DT_INTERFACE:
return DESINT;
case LIBUSB_DT_ENDPOINT:
return DESEP;
case LIBUSB_DT_HID:
return DESHID;
case LIBUSB_DT_REPORT:
return DESRPT;
case LIBUSB_DT_PHYSICAL:
return DESPHY;
case LIBUSB_DT_HUB:
return DESHUB;
}
return UNKNOWN;
}
static const char *epdir(uint8_t bEndpointAddress)
{
switch (bEndpointAddress & LIBUSB_ENDPOINT_DIR_MASK) {
case LIBUSB_ENDPOINT_IN:
return EPIN;
case LIBUSB_ENDPOINT_OUT:
return EPOUT;
}
return EPX;
}
static const char *epatt(uint8_t bmAttributes)
{
switch(bmAttributes & LIBUSB_TRANSFER_TYPE_MASK) {
case LIBUSB_TRANSFER_TYPE_CONTROL:
return CONTROL;
case LIBUSB_TRANSFER_TYPE_BULK:
return BULK;
case LIBUSB_TRANSFER_TYPE_INTERRUPT:
return INTERRUPT;
case LIBUSB_TRANSFER_TYPE_ISOCHRONOUS:
switch(bmAttributes & LIBUSB_ISO_SYNC_TYPE_MASK) {
case LIBUSB_ISO_SYNC_TYPE_NONE:
switch(bmAttributes & LIBUSB_ISO_USAGE_TYPE_MASK) {
case LIBUSB_ISO_USAGE_TYPE_DATA:
return ISOCHRONOUS_N_D;
case LIBUSB_ISO_USAGE_TYPE_FEEDBACK:
return ISOCHRONOUS_N_F;
case LIBUSB_ISO_USAGE_TYPE_IMPLICIT:
return ISOCHRONOUS_N_I;
}
return ISOCHRONOUS_N_X;
case LIBUSB_ISO_SYNC_TYPE_ASYNC:
switch(bmAttributes & LIBUSB_ISO_USAGE_TYPE_MASK) {
case LIBUSB_ISO_USAGE_TYPE_DATA:
return ISOCHRONOUS_A_D;
case LIBUSB_ISO_USAGE_TYPE_FEEDBACK:
return ISOCHRONOUS_A_F;
case LIBUSB_ISO_USAGE_TYPE_IMPLICIT:
return ISOCHRONOUS_A_I;
}
return ISOCHRONOUS_A_X;
case LIBUSB_ISO_SYNC_TYPE_ADAPTIVE:
switch(bmAttributes & LIBUSB_ISO_USAGE_TYPE_MASK) {
case LIBUSB_ISO_USAGE_TYPE_DATA:
return ISOCHRONOUS_D_D;
case LIBUSB_ISO_USAGE_TYPE_FEEDBACK:
return ISOCHRONOUS_D_F;
case LIBUSB_ISO_USAGE_TYPE_IMPLICIT:
return ISOCHRONOUS_D_I;
}
return ISOCHRONOUS_D_X;
case LIBUSB_ISO_SYNC_TYPE_SYNC:
switch(bmAttributes & LIBUSB_ISO_USAGE_TYPE_MASK) {
case LIBUSB_ISO_USAGE_TYPE_DATA:
return ISOCHRONOUS_S_D;
case LIBUSB_ISO_USAGE_TYPE_FEEDBACK:
return ISOCHRONOUS_S_F;
case LIBUSB_ISO_USAGE_TYPE_IMPLICIT:
return ISOCHRONOUS_S_I;
}
return ISOCHRONOUS_S_X;
}
return ISOCHRONOUS_X;
}
return UNKNOWN;
}
static void append(char **buf, char *append, size_t *off, size_t *len)
{
int new = strlen(append);
if ((new + *off) >= *len)
{
*len *= 2;
*buf = cgrealloc(*buf, *len);
}
strcpy(*buf + *off, append);
*off += new;
}
static bool setgetdes(ssize_t count, libusb_device *dev, struct libusb_device_handle *handle, struct libusb_config_descriptor **config, int cd, char **buf, size_t *off, size_t *len)
{
char tmp[512];
int err;
err = libusb_set_configuration(handle, cd);
if (err) {
snprintf(tmp, sizeof(tmp), EOL " ** dev %d: Failed to set config descriptor to %d, err %d",
(int)count, cd, err);
append(buf, tmp, off, len);
return false;
}
err = libusb_get_active_config_descriptor(dev, config);
if (err) {
snprintf(tmp, sizeof(tmp), EOL " ** dev %d: Failed to get active config descriptor set to %d, err %d",
(int)count, cd, err);
append(buf, tmp, off, len);
return false;
}
snprintf(tmp, sizeof(tmp), EOL " ** dev %d: Set & Got active config descriptor to %d, err %d",
(int)count, cd, err);
append(buf, tmp, off, len);
return true;
}
static void usb_full(ssize_t *count, libusb_device *dev, char **buf, size_t *off, size_t *len, int level)
{
struct libusb_device_descriptor desc;
uint8_t bus_number;
uint8_t device_address;
struct libusb_device_handle *handle;
struct libusb_config_descriptor *config;
const struct libusb_interface_descriptor *idesc;
const struct libusb_endpoint_descriptor *epdesc;
unsigned char man[STRBUFLEN+1];
unsigned char prod[STRBUFLEN+1];
unsigned char ser[STRBUFLEN+1];
char tmp[512];
int err, i, j, k;
err = libusb_get_device_descriptor(dev, &desc);
if (opt_usb_list_all && err) {
snprintf(tmp, sizeof(tmp), EOL ".USB dev %d: Failed to get descriptor, err %d",
(int)(++(*count)), err);
append(buf, tmp, off, len);
return;
}
bus_number = libusb_get_bus_number(dev);
device_address = libusb_get_device_address(dev);
if (!opt_usb_list_all) {
bool known = false;
for (i = 0; find_dev[i].drv != DRIVER_MAX; i++)
if ((find_dev[i].idVendor == desc.idVendor) &&
(find_dev[i].idProduct == desc.idProduct)) {
known = true;
break;
}
if (!known)
return;
}
(*count)++;
if (level == 0) {
snprintf(tmp, sizeof(tmp), EOL ".USB dev %d: Bus %d Device %d ID: %04x:%04x",
(int)(*count), (int)bus_number, (int)device_address,
desc.idVendor, desc.idProduct);
} else {
snprintf(tmp, sizeof(tmp), EOL ".USB dev %d: Bus %d Device %d Device Descriptor:" EOL "\tLength: %d" EOL
"\tDescriptor Type: %s" EOL "\tUSB: %04x" EOL "\tDeviceClass: %d" EOL
"\tDeviceSubClass: %d" EOL "\tDeviceProtocol: %d" EOL "\tMaxPacketSize0: %d" EOL
"\tidVendor: %04x" EOL "\tidProduct: %04x" EOL "\tDeviceRelease: %x" EOL
"\tNumConfigurations: %d",
(int)(*count), (int)bus_number, (int)device_address,
(int)(desc.bLength), destype(desc.bDescriptorType),
desc.bcdUSB, (int)(desc.bDeviceClass), (int)(desc.bDeviceSubClass),
(int)(desc.bDeviceProtocol), (int)(desc.bMaxPacketSize0),
desc.idVendor, desc.idProduct, desc.bcdDevice,
(int)(desc.bNumConfigurations));
}
append(buf, tmp, off, len);
err = libusb_open(dev, &handle);
if (err) {
snprintf(tmp, sizeof(tmp), EOL " ** dev %d: Failed to open, err %d", (int)(*count), err);
append(buf, tmp, off, len);
return;
}
err = libusb_get_string_descriptor_ascii(handle, desc.iManufacturer, man, STRBUFLEN);
if (err < 0)
snprintf((char *)man, sizeof(man), "** err:(%d) %s", err, libusb_error_name(err));
err = libusb_get_string_descriptor_ascii(handle, desc.iProduct, prod, STRBUFLEN);
if (err < 0)
snprintf((char *)prod, sizeof(prod), "** err:(%d) %s", err, libusb_error_name(err));
if (level == 0) {
libusb_close(handle);
snprintf(tmp, sizeof(tmp), EOL " Manufacturer: '%s'" EOL " Product: '%s'", man, prod);
append(buf, tmp, off, len);
return;
}
if (libusb_kernel_driver_active(handle, 0) == 1) {
snprintf(tmp, sizeof(tmp), EOL " * dev %d: kernel attached", (int)(*count));
append(buf, tmp, off, len);
}
err = libusb_get_active_config_descriptor(dev, &config);
if (err) {
if (!setgetdes(*count, dev, handle, &config, 1, buf, off, len)
&& !setgetdes(*count, dev, handle, &config, 0, buf, off, len)) {
libusb_close(handle);
snprintf(tmp, sizeof(tmp), EOL " ** dev %d: Failed to set config descriptor to %d or %d",
(int)(*count), 1, 0);
append(buf, tmp, off, len);
return;
}
}
snprintf(tmp, sizeof(tmp), EOL " dev %d: Active Config:" EOL "\tDescriptorType: %s" EOL
"\tNumInterfaces: %d" EOL "\tConfigurationValue: %d" EOL
"\tAttributes: %d" EOL "\tMaxPower: %d",
(int)(*count), destype(config->bDescriptorType),
(int)(config->bNumInterfaces), (int)(config->iConfiguration),
(int)(config->bmAttributes), (int)(config->MaxPower));
append(buf, tmp, off, len);
for (i = 0; i < (int)(config->bNumInterfaces); i++) {
for (j = 0; j < config->interface[i].num_altsetting; j++) {
idesc = &(config->interface[i].altsetting[j]);
snprintf(tmp, sizeof(tmp), EOL " _dev %d: Interface Descriptor %d:" EOL
"\tDescriptorType: %s" EOL "\tInterfaceNumber: %d" EOL
"\tNumEndpoints: %d" EOL "\tInterfaceClass: %d" EOL
"\tInterfaceSubClass: %d" EOL "\tInterfaceProtocol: %d",
(int)(*count), j, destype(idesc->bDescriptorType),
(int)(idesc->bInterfaceNumber),
(int)(idesc->bNumEndpoints),
(int)(idesc->bInterfaceClass),
(int)(idesc->bInterfaceSubClass),
(int)(idesc->bInterfaceProtocol));
append(buf, tmp, off, len);
for (k = 0; k < (int)(idesc->bNumEndpoints); k++) {
epdesc = &(idesc->endpoint[k]);
snprintf(tmp, sizeof(tmp), EOL " __dev %d: Interface %d Endpoint %d:" EOL
"\tDescriptorType: %s" EOL
"\tEndpointAddress: %s0x%x" EOL
"\tAttributes: %s" EOL "\tMaxPacketSize: %d" EOL
"\tInterval: %d" EOL "\tRefresh: %d",
(int)(*count), (int)(idesc->bInterfaceNumber), k,
destype(epdesc->bDescriptorType),
epdir(epdesc->bEndpointAddress),
(int)(epdesc->bEndpointAddress),
epatt(epdesc->bmAttributes),
epdesc->wMaxPacketSize,
(int)(epdesc->bInterval),
(int)(epdesc->bRefresh));
append(buf, tmp, off, len);
}
}
}
libusb_free_config_descriptor(config);
config = NULL;
err = libusb_get_string_descriptor_ascii(handle, desc.iSerialNumber, ser, STRBUFLEN);
if (err < 0)
snprintf((char *)ser, sizeof(ser), "** err:(%d) %s", err, libusb_error_name(err));
snprintf(tmp, sizeof(tmp), EOL " dev %d: More Info:" EOL "\tManufacturer: '%s'" EOL
"\tProduct: '%s'" EOL "\tSerial '%s'",
(int)(*count), man, prod, ser);
append(buf, tmp, off, len);
libusb_close(handle);
}
// Function to dump all USB devices
void usb_all(int level)
{
libusb_device **list;
ssize_t count, i, j;
char *buf;
size_t len, off;
count = libusb_get_device_list(NULL, &list);
if (count < 0) {
applog(LOG_ERR, "USB all: failed, err:(%d) %s", (int)count, libusb_error_name((int)count));
return;
}
if (count == 0)
applog(LOG_WARNING, "USB all: found no devices");
else
{
len = 10000;
buf = malloc(len+1);
if (unlikely(!buf))
quit(1, "USB failed to malloc buf in usb_all");
sprintf(buf, "USB all: found %d devices", (int)count);
off = strlen(buf);
if (!opt_usb_list_all)
append(&buf, " - listing known devices", &off, &len);
j = -1;
for (i = 0; i < count; i++)
usb_full(&j, list[i], &buf, &off, &len, level);
_applog(LOG_WARNING, buf, false);
free(buf);
if (j == -1)
applog(LOG_WARNING, "No known USB devices");
else
applog(LOG_WARNING, "%d %sUSB devices",
(int)(++j), opt_usb_list_all ? BLANK : "known ");
}
libusb_free_device_list(list, 1);
}
static void cgusb_check_init()
{
mutex_lock(&cgusb_lock);
if (stats_initialised == false) {
// N.B. environment LIBUSB_DEBUG also sets libusb_set_debug()
if (opt_usbdump >= 0) {
libusb_set_debug(NULL, opt_usbdump);
usb_all(opt_usbdump);
}
stats_initialised = true;
}
mutex_unlock(&cgusb_lock);
}
const char *usb_cmdname(enum usb_cmds cmd)
{
cgusb_check_init();
return usb_commands[cmd];
}
void usb_applog(struct cgpu_info *cgpu, enum usb_cmds cmd, char *msg, int amount, int err)
{
if (msg && !*msg)
msg = NULL;
if (!msg && amount == 0 && err == LIBUSB_SUCCESS)
msg = (char *)nodatareturned;
applog(LOG_ERR, "%s%i: %s failed%s%s (err=%d amt=%d)",
cgpu->drv->name, cgpu->device_id,
usb_cmdname(cmd),
msg ? space : BLANK, msg ? msg : BLANK,
err, amount);
}
#ifdef WIN32
static void in_use_store_ress(uint8_t bus_number, uint8_t device_address, void *resource1, void *resource2)
{
struct usb_in_use_list *in_use_tmp;
bool found = false, empty = true;
mutex_lock(&cgusb_lock);
in_use_tmp = in_use_head;
while (in_use_tmp) {
if (in_use_tmp->in_use.bus_number == (int)bus_number &&
in_use_tmp->in_use.device_address == (int)device_address) {
found = true;
if (in_use_tmp->in_use.resource1)
empty = false;
in_use_tmp->in_use.resource1 = resource1;
if (in_use_tmp->in_use.resource2)
empty = false;
in_use_tmp->in_use.resource2 = resource2;
break;
}
in_use_tmp = in_use_tmp->next;
}
mutex_unlock(&cgusb_lock);
if (found == false)
applog(LOG_ERR, "FAIL: USB store_ress not found (%d:%d)",
(int)bus_number, (int)device_address);
if (empty == false)
applog(LOG_ERR, "FAIL: USB store_ress not empty (%d:%d)",
(int)bus_number, (int)device_address);
}
static void in_use_get_ress(uint8_t bus_number, uint8_t device_address, void **resource1, void **resource2)
{
struct usb_in_use_list *in_use_tmp;
bool found = false, empty = false;
mutex_lock(&cgusb_lock);
in_use_tmp = in_use_head;
while (in_use_tmp) {
if (in_use_tmp->in_use.bus_number == (int)bus_number &&
in_use_tmp->in_use.device_address == (int)device_address) {
found = true;
if (!in_use_tmp->in_use.resource1)
empty = true;
*resource1 = in_use_tmp->in_use.resource1;
in_use_tmp->in_use.resource1 = NULL;
if (!in_use_tmp->in_use.resource2)
empty = true;
*resource2 = in_use_tmp->in_use.resource2;
in_use_tmp->in_use.resource2 = NULL;
break;
}
in_use_tmp = in_use_tmp->next;
}
mutex_unlock(&cgusb_lock);
if (found == false)
applog(LOG_ERR, "FAIL: USB get_lock not found (%d:%d)",
(int)bus_number, (int)device_address);
if (empty == true)
applog(LOG_ERR, "FAIL: USB get_lock empty (%d:%d)",
(int)bus_number, (int)device_address);
}
#else
static void in_use_store_fd(uint8_t bus_number, uint8_t device_address, int fd)
{
struct usb_in_use_list *in_use_tmp;
bool found = false;
mutex_lock(&cgusb_lock);
in_use_tmp = in_use_head;
while (in_use_tmp) {
if (in_use_tmp->in_use.bus_number == (int)bus_number &&
in_use_tmp->in_use.device_address == (int)device_address) {
found = true;
in_use_tmp->in_use.fd = fd;
break;
}
in_use_tmp = in_use_tmp->next;
}
mutex_unlock(&cgusb_lock);
if (found == false) {
applog(LOG_ERR, "FAIL: USB store_fd not found (%d:%d)",
(int)bus_number, (int)device_address);
}
}
static int in_use_get_fd(uint8_t bus_number, uint8_t device_address)
{
struct usb_in_use_list *in_use_tmp;
bool found = false;
int fd = -1;
mutex_lock(&cgusb_lock);
in_use_tmp = in_use_head;
while (in_use_tmp) {
if (in_use_tmp->in_use.bus_number == (int)bus_number &&
in_use_tmp->in_use.device_address == (int)device_address) {
found = true;
fd = in_use_tmp->in_use.fd;
break;
}
in_use_tmp = in_use_tmp->next;
}
mutex_unlock(&cgusb_lock);
if (found == false) {
applog(LOG_ERR, "FAIL: USB get_lock not found (%d:%d)",
(int)bus_number, (int)device_address);
}
return fd;
}
#endif
static bool _in_use(struct usb_in_use_list *head, uint8_t bus_number,
uint8_t device_address)
{
struct usb_in_use_list *in_use_tmp;
bool ret = false;
in_use_tmp = head;
while (in_use_tmp) {
if (in_use_tmp->in_use.bus_number == (int)bus_number &&
in_use_tmp->in_use.device_address == (int)device_address) {
ret = true;
break;
}
in_use_tmp = in_use_tmp->next;
if (in_use_tmp == head)
break;
}
return ret;
}
static bool __is_in_use(uint8_t bus_number, uint8_t device_address)
{
if (_in_use(in_use_head, bus_number, device_address))
return true;
if (_in_use(blacklist_head, bus_number, device_address))
return true;
return false;
}
static bool is_in_use_bd(uint8_t bus_number, uint8_t device_address)
{
bool ret;
mutex_lock(&cgusb_lock);
ret = __is_in_use(bus_number, device_address);
mutex_unlock(&cgusb_lock);
return ret;
}
static bool is_in_use(libusb_device *dev)
{
return is_in_use_bd(libusb_get_bus_number(dev), libusb_get_device_address(dev));
}
static bool how_in_use(uint8_t bus_number, uint8_t device_address, bool *blacklisted)
{
bool ret;
mutex_lock(&cgusb_lock);
ret = _in_use(in_use_head, bus_number, device_address);
if (!ret) {
if (_in_use(blacklist_head, bus_number, device_address))
*blacklisted = true;
}
mutex_unlock(&cgusb_lock);
return ret;
}
void usb_list(void)
{
struct libusb_device_descriptor desc;
struct libusb_device_handle *handle;
uint8_t bus_number;
uint8_t device_address;
libusb_device **list;
ssize_t count, i, j;
int err, total = 0;
count = libusb_get_device_list(NULL, &list);
if (count < 0) {
applog(LOG_ERR, "USB list: failed, err:(%d) %s", (int)count, libusb_error_name((int)count));
return;
}
if (count == 0) {
applog(LOG_WARNING, "USB list: found no devices");
return;
}
for (i = 0; i < count; i++) {
bool known = false, blacklisted = false, active;
unsigned char manuf[256], prod[256];
libusb_device *dev = list[i];
err = libusb_get_device_descriptor(dev, &desc);
if (err) {
applog(LOG_WARNING, "USB list: Failed to get descriptor %d", (int)i);
break;
}
bus_number = libusb_get_bus_number(dev);
device_address = libusb_get_device_address(dev);
for (j = 0; find_dev[j].drv != DRIVER_MAX; j++) {
if ((find_dev[j].idVendor == desc.idVendor) &&
(find_dev[j].idProduct == desc.idProduct)) {
known = true;
break;
}
}
if (!known)
continue;
err = libusb_open(dev, &handle);
if (err) {
applog(LOG_WARNING, "USB list: Failed to open %d", (int)i);
break;
}
libusb_get_string_descriptor_ascii(handle, desc.iManufacturer, manuf, 255);
libusb_get_string_descriptor_ascii(handle, desc.iProduct, prod, 255);
total++;
active = how_in_use(bus_number, device_address, &blacklisted);
simplelog(LOG_WARNING, "Bus %u Device %u ID: %04x:%04x %s %s %sactive %s",
bus_number, device_address, desc.idVendor, desc.idProduct,
manuf, prod, active ? "" : "in", blacklisted ? "blacklisted" : "");
}
libusb_free_device_list(list, 1);
simplelog(LOG_WARNING, "%d total known USB device%s", total, total > 1 ? "s": "");
}
static void add_in_use(uint8_t bus_number, uint8_t device_address, bool blacklist)
{
struct usb_in_use_list *in_use_tmp, **head;
bool found = false;
mutex_lock(&cgusb_lock);
if (unlikely(!blacklist && __is_in_use(bus_number, device_address))) {
found = true;
goto nofway;
}
if (blacklist)
head = &blacklist_head;
else
head = &in_use_head;
in_use_tmp = cgcalloc(1, sizeof(*in_use_tmp));
in_use_tmp->in_use.bus_number = (int)bus_number;
in_use_tmp->in_use.device_address = (int)device_address;
in_use_tmp->next = in_use_head;
if (*head)
(*head)->prev = in_use_tmp;
*head = in_use_tmp;
nofway:
mutex_unlock(&cgusb_lock);
if (found)
applog(LOG_ERR, "FAIL: USB add already in use (%d:%d)",
(int)bus_number, (int)device_address);
}
static void __remove_in_use(uint8_t bus_number, uint8_t device_address, bool blacklist)
{
struct usb_in_use_list *in_use_tmp, **head;
bool found = false;
mutex_lock(&cgusb_lock);
if (blacklist)
head = &blacklist_head;
else
head = &in_use_head;
in_use_tmp = *head;
while (in_use_tmp) {
if (in_use_tmp->in_use.bus_number == (int)bus_number &&
in_use_tmp->in_use.device_address == (int)device_address) {
found = true;
if (in_use_tmp == *head) {
*head = (*head)->next;
if (*head)
(*head)->prev = NULL;
} else {
in_use_tmp->prev->next = in_use_tmp->next;
if (in_use_tmp->next)
in_use_tmp->next->prev = in_use_tmp->prev;
}
free(in_use_tmp);
break;
}
in_use_tmp = in_use_tmp->next;
if (in_use_tmp == *head)
break;
}
mutex_unlock(&cgusb_lock);
if (!found) {
applog(LOG_ERR, "FAIL: USB remove not already in use (%d:%d)",
(int)bus_number, (int)device_address);
}
}
static void remove_in_use(uint8_t bus_number, uint8_t device_address)
{
__remove_in_use(bus_number, device_address, false);
}
static bool cgminer_usb_lock_bd(struct device_drv *drv, uint8_t bus_number, uint8_t device_address)
{
struct resource_work *res_work;
bool ret;
applog(LOG_DEBUG, "USB lock %s %d-%d", drv->dname, (int)bus_number, (int)device_address);
res_work = cgcalloc(1, sizeof(*res_work));
res_work->lock = true;
res_work->dname = (const char *)(drv->dname);
res_work->bus_number = bus_number;
res_work->device_address = device_address;
mutex_lock(&cgusbres_lock);
res_work->next = res_work_head;
res_work_head = res_work;
mutex_unlock(&cgusbres_lock);
cgsem_post(&usb_resource_sem);
// TODO: add a timeout fail - restart the resource thread?
while (true) {
cgsleep_ms(50);
mutex_lock(&cgusbres_lock);
if (res_reply_head) {
struct resource_reply *res_reply_prev = NULL;
struct resource_reply *res_reply = res_reply_head;
while (res_reply) {
if (res_reply->bus_number == bus_number &&
res_reply->device_address == device_address) {
if (res_reply_prev)
res_reply_prev->next = res_reply->next;
else
res_reply_head = res_reply->next;
mutex_unlock(&cgusbres_lock);
ret = res_reply->got;
free(res_reply);
return ret;
}
res_reply_prev = res_reply;
res_reply = res_reply->next;
}
}
mutex_unlock(&cgusbres_lock);
}
}
static bool cgminer_usb_lock(struct device_drv *drv, libusb_device *dev)
{
return cgminer_usb_lock_bd(drv, libusb_get_bus_number(dev), libusb_get_device_address(dev));
}
static void cgminer_usb_unlock_bd(struct device_drv *drv, uint8_t bus_number, uint8_t device_address)
{
struct resource_work *res_work;
applog(LOG_DEBUG, "USB unlock %s %d-%d", drv->dname, (int)bus_number, (int)device_address);
res_work = cgcalloc(1, sizeof(*res_work));
res_work->lock = false;
res_work->dname = (const char *)(drv->dname);
res_work->bus_number = bus_number;
res_work->device_address = device_address;
mutex_lock(&cgusbres_lock);
res_work->next = res_work_head;
res_work_head = res_work;
mutex_unlock(&cgusbres_lock);
cgsem_post(&usb_resource_sem);
return;
}
static void cgminer_usb_unlock(struct device_drv *drv, libusb_device *dev)
{
cgminer_usb_unlock_bd(drv, libusb_get_bus_number(dev), libusb_get_device_address(dev));
}
static struct cg_usb_device *free_cgusb(struct cg_usb_device *cgusb)
{
applog(LOG_DEBUG, "USB free %s", cgusb->found->name);
if (cgusb->serial_string && cgusb->serial_string != BLANK)
free(cgusb->serial_string);
if (cgusb->manuf_string && cgusb->manuf_string != BLANK)
free(cgusb->manuf_string);
if (cgusb->prod_string && cgusb->prod_string != BLANK)
free(cgusb->prod_string);
if (cgusb->descriptor)
free(cgusb->descriptor);
free(cgusb->found);
free(cgusb);
return NULL;
}
static void _usb_uninit(struct cgpu_info *cgpu)
{
int ifinfo;
// May have happened already during a failed initialisation
// if release_cgpu() was called due to a USB NODEV(err)
if (!cgpu->usbdev)
return;
applog(LOG_DEBUG, "USB uninit %s%i",
cgpu->drv->name, cgpu->device_id);
if (cgpu->usbdev->handle) {
for (ifinfo = cgpu->usbdev->found->intinfo_count - 1; ifinfo >= 0; ifinfo--) {
libusb_release_interface(cgpu->usbdev->handle,
THISIF(cgpu->usbdev->found, ifinfo));
#ifdef LINUX
libusb_attach_kernel_driver(cgpu->usbdev->handle, THISIF(cgpu->usbdev->found, ifinfo));
#endif
}
cg_wlock(&cgusb_fd_lock);
libusb_close(cgpu->usbdev->handle);
cgpu->usbdev->handle = NULL;
cg_wunlock(&cgusb_fd_lock);
}
cgpu->usbdev = free_cgusb(cgpu->usbdev);
}
void usb_uninit(struct cgpu_info *cgpu)
{
int pstate;
DEVWLOCK(cgpu, pstate);
_usb_uninit(cgpu);
DEVWUNLOCK(cgpu, pstate);
}
/* We have dropped the read devlock before entering this function but we pick
* up the write lock to prevent any attempts to work on dereferenced code once
* the nodev flag has been set. */
static bool __release_cgpu(struct cgpu_info *cgpu)
{
struct cg_usb_device *cgusb = cgpu->usbdev;
bool initted = cgpu->usbinfo.initialised;
struct cgpu_info *lookcgpu;
int i;
// It has already been done
if (cgpu->usbinfo.nodev)
return false;
applog(LOG_DEBUG, "USB release %s%i",
cgpu->drv->name, cgpu->device_id);
if (initted) {
zombie_devs++;
total_count--;
drv_count[cgpu->drv->drv_id].count--;
}
cgpu->usbinfo.nodev = true;
cgpu->usbinfo.nodev_count++;
cgtime(&cgpu->usbinfo.last_nodev);
// Any devices sharing the same USB device should be marked also
for (i = 0; i < total_devices; i++) {
lookcgpu = get_devices(i);
if (lookcgpu != cgpu && lookcgpu->usbdev == cgusb) {
if (initted) {
total_count--;
drv_count[lookcgpu->drv->drv_id].count--;
}
lookcgpu->usbinfo.nodev = true;
lookcgpu->usbinfo.nodev_count++;
cg_memcpy(&(lookcgpu->usbinfo.last_nodev),
&(cgpu->usbinfo.last_nodev), sizeof(struct timeval));
lookcgpu->usbdev = NULL;
}
}
_usb_uninit(cgpu);
return true;
}
static void release_cgpu(struct cgpu_info *cgpu)
{
if (__release_cgpu(cgpu))
cgminer_usb_unlock_bd(cgpu->drv, cgpu->usbinfo.bus_number, cgpu->usbinfo.device_address);
}
void blacklist_cgpu(struct cgpu_info *cgpu)
{
if (cgpu->blacklisted) {
applog(LOG_WARNING, "Device already blacklisted");
return;
}
cgpu->blacklisted = true;
add_in_use(cgpu->usbinfo.bus_number, cgpu->usbinfo.device_address, true);
if (__release_cgpu(cgpu))
cgminer_usb_unlock_bd(cgpu->drv, cgpu->usbinfo.bus_number, cgpu->usbinfo.device_address);
}
void whitelist_cgpu(struct cgpu_info *cgpu)
{
if (!cgpu->blacklisted) {
applog(LOG_WARNING, "Device not blacklisted");
return;
}
__remove_in_use(cgpu->usbinfo.bus_number, cgpu->usbinfo.device_address, true);
cgpu->blacklisted = false;
}
/*
* Force a NODEV on a device so it goes back to hotplug
*/
void usb_nodev(struct cgpu_info *cgpu)
{
int pstate;
DEVWLOCK(cgpu, pstate);
release_cgpu(cgpu);
DEVWUNLOCK(cgpu, pstate);
}
/*
* Use the same usbdev thus locking is across all related devices
*/
struct cgpu_info *usb_copy_cgpu(struct cgpu_info *orig)
{
struct cgpu_info *copy;
int pstate;
DEVWLOCK(orig, pstate);
copy = cgcalloc(1, sizeof(*copy));
copy->name = orig->name;
copy->drv = copy_drv(orig->drv);
copy->deven = orig->deven;
copy->threads = orig->threads;
copy->usbdev = orig->usbdev;
cg_memcpy(&(copy->usbinfo), &(orig->usbinfo), sizeof(copy->usbinfo));
copy->usbinfo.nodev = (copy->usbdev == NULL);
DEVWUNLOCK(orig, pstate);
return copy;
}
struct cgpu_info *usb_alloc_cgpu(struct device_drv *drv, int threads)
{
struct cgpu_info *cgpu = cgcalloc(1, sizeof(*cgpu));
cgpu->drv = drv;
cgpu->deven = DEV_ENABLED;
cgpu->threads = threads;
cgpu->usbinfo.nodev = true;
cglock_init(&cgpu->usbinfo.devlock);
return cgpu;
}
struct cgpu_info *usb_free_cgpu(struct cgpu_info *cgpu)
{
if (cgpu->drv->copy)
free(cgpu->drv);
free(cgpu->device_path);
free(cgpu);
return NULL;
}
#define USB_INIT_FAIL 0
#define USB_INIT_OK 1
#define USB_INIT_IGNORE 2
static int _usb_init(struct cgpu_info *cgpu, struct libusb_device *dev, struct usb_find_devices *found)
{
unsigned char man[STRBUFLEN+1], prod[STRBUFLEN+1];
struct cg_usb_device *cgusb = NULL;
struct libusb_config_descriptor *config = NULL;
const struct libusb_interface_descriptor *idesc;
const struct libusb_endpoint_descriptor *epdesc;
unsigned char strbuf[STRBUFLEN+1];
char devpath[32];
char devstr[STRBUFLEN+1];
int err, ifinfo, epinfo, alt, epnum, pstate;
int bad = USB_INIT_FAIL;
int cfg, claimed = 0, i;
DEVWLOCK(cgpu, pstate);
cgpu->usbinfo.bus_number = libusb_get_bus_number(dev);
cgpu->usbinfo.device_address = libusb_get_device_address(dev);
if (found->intinfo_count > 1) {
snprintf(devpath, sizeof(devpath), "%d:%d-i%d",
(int)(cgpu->usbinfo.bus_number),
(int)(cgpu->usbinfo.device_address),
THISIF(found, 0));
} else {
snprintf(devpath, sizeof(devpath), "%d:%d",
(int)(cgpu->usbinfo.bus_number),
(int)(cgpu->usbinfo.device_address));
}
cgpu->device_path = strdup(devpath);
snprintf(devstr, sizeof(devstr), "- %s device %s", found->name, devpath);
cgusb = cgcalloc(1, sizeof(*cgusb));
cgusb->found = found;
if (found->idVendor == IDVENDOR_FTDI)
cgusb->usb_type = USB_TYPE_FTDI;
cgusb->ident = found->ident;
cgusb->descriptor = cgcalloc(1, sizeof(*(cgusb->descriptor)));
err = libusb_get_device_descriptor(dev, cgusb->descriptor);
if (err) {
applog(LOG_DEBUG,
"USB init failed to get descriptor, err %d %s",
err, devstr);
goto dame;
}
cg_wlock(&cgusb_fd_lock);
err = libusb_open(dev, &(cgusb->handle));
cg_wunlock(&cgusb_fd_lock);
if (err) {
switch (err) {
case LIBUSB_ERROR_ACCESS:
applog(LOG_ERR,
"USB init, open device failed, err %d, "
"you don't have privilege to access %s",
err, devstr);
applog(LOG_ERR, "See README file included for help");
break;
#ifdef WIN32
// Windows specific message
case LIBUSB_ERROR_NOT_SUPPORTED:
applog(LOG_ERR, "USB init, open device failed, err %d, ", err);
applog(LOG_ERR, "You need to install a WinUSB driver for %s", devstr);
applog(LOG_ERR, "And associate %s with WinUSB using zadig", devstr);
applog(LOG_ERR, "See README.txt file included for help");
break;
#endif
default:
applog(LOG_DEBUG,
"USB init, open failed, err %d %s",
err, devstr);
}
goto dame;
}
#ifdef LINUX
for (ifinfo = 0; ifinfo < found->intinfo_count; ifinfo++) {
if (libusb_kernel_driver_active(cgusb->handle, THISIF(found, ifinfo)) == 1) {
applog(LOG_DEBUG, "USB init, kernel attached ... %s", devstr);
err = libusb_detach_kernel_driver(cgusb->handle, THISIF(found, ifinfo));
if (err == 0) {
applog(LOG_DEBUG,
"USB init, kernel detached ifinfo %d interface %d"
" successfully %s",
ifinfo, THISIF(found, ifinfo), devstr);
} else {
applog(LOG_WARNING,
"USB init, kernel detach ifinfo %d interface %d failed,"
" err %d in use? %s",
ifinfo, THISIF(found, ifinfo), err, devstr);
goto nokernel;
}
}
}
#endif
err = libusb_get_string_descriptor_ascii(cgusb->handle,
cgusb->descriptor->iManufacturer,
man, STRBUFLEN);
if (err < 0) {
applog(LOG_DEBUG,
"USB init, failed to get iManufacturer, err %d %s",
err, devstr);
goto cldame;
}
if (found->iManufacturer) {
if (strcmp((char *)man, found->iManufacturer)) {
applog(LOG_DEBUG, "USB init, iManufacturer mismatch %s",
devstr);
applog(LOG_DEBUG, "Found %s vs %s", man, found->iManufacturer);
bad = USB_INIT_IGNORE;
goto cldame;
}
} else {
for (i = 0; find_dev[i].drv != DRIVER_MAX; i++) {
const char *iManufacturer = find_dev[i].iManufacturer;
/* If other drivers has an iManufacturer set that match,
* don't try to claim this device. */
if (!iManufacturer)
continue;
/* If the alternative driver also has an iProduct, only
* use that for comparison. */
if (find_dev[i].iProduct)
continue;
if (!strcmp((char *)man, iManufacturer)) {
applog(LOG_DEBUG, "USB init, alternative iManufacturer match %s",
devstr);
applog(LOG_DEBUG, "Found %s", iManufacturer);
bad = USB_INIT_IGNORE;
goto cldame;
}
}
}
err = libusb_get_string_descriptor_ascii(cgusb->handle,
cgusb->descriptor->iProduct,
prod, STRBUFLEN);
if (err < 0) {
applog(LOG_DEBUG,
"USB init, failed to get iProduct, err %d %s",
err, devstr);
goto cldame;
}
if (found->iProduct) {
if (strcasecmp((char *)prod, found->iProduct)) {
applog(LOG_DEBUG, "USB init, iProduct mismatch %s",
devstr);
applog(LOG_DEBUG, "Found %s vs %s", prod, found->iProduct);
bad = USB_INIT_IGNORE;
goto cldame;
}
} else {
for (i = 0; find_dev[i].drv != DRIVER_MAX; i++) {
const char *iProduct = find_dev[i].iProduct;
/* Do same for iProduct as iManufacturer above */
if (!iProduct)
continue;
if (!strcasecmp((char *)prod, iProduct)) {
applog(LOG_DEBUG, "USB init, alternative iProduct match %s",
devstr);
applog(LOG_DEBUG, "Found %s", iProduct);
bad = USB_INIT_IGNORE;
goto cldame;
}
}
}
cfg = -1;
err = libusb_get_configuration(cgusb->handle, &cfg);
if (err)
cfg = -1;
// Try to set it if we can't read it or it's different
if (cfg != found->config) {
err = libusb_set_configuration(cgusb->handle, found->config);
if (err) {
switch(err) {
case LIBUSB_ERROR_BUSY:
applog(LOG_WARNING,
"USB init, set config %d in use %s",
found->config, devstr);
break;
default:
applog(LOG_DEBUG,
"USB init, failed to set config to %d, err %d %s",
found->config, err, devstr);
}
goto cldame;
}
}
err = libusb_get_active_config_descriptor(dev, &config);
if (err) {
applog(LOG_DEBUG,
"USB init, failed to get config descriptor, err %d %s",
err, devstr);
goto cldame;
}
int imax = -1;
for (ifinfo = 0; ifinfo < found->intinfo_count; ifinfo++)
if (found->intinfos[ifinfo].interface > imax)
imax = found->intinfos[ifinfo].interface;
if ((int)(config->bNumInterfaces) <= imax) {
applog(LOG_DEBUG, "USB init bNumInterfaces %d <= interface max %d for %s",
(int)(config->bNumInterfaces), imax, devstr);
goto cldame;
}
for (ifinfo = 0; ifinfo < found->intinfo_count; ifinfo++)
for (epinfo = 0; epinfo < found->intinfos[ifinfo].epinfo_count; epinfo++)
found->intinfos[ifinfo].epinfos[epinfo].found = false;
for (ifinfo = 0; ifinfo < found->intinfo_count; ifinfo++) {
int interface = found->intinfos[ifinfo].interface;
for (alt = 0; alt < config->interface[interface].num_altsetting; alt++) {
idesc = &(config->interface[interface].altsetting[alt]);
for (epnum = 0; epnum < (int)(idesc->bNumEndpoints); epnum++) {
struct usb_epinfo *epinfos = found->intinfos[ifinfo].epinfos;
epdesc = &(idesc->endpoint[epnum]);
for (epinfo = 0; epinfo < found->intinfos[ifinfo].epinfo_count; epinfo++) {
if (!epinfos[epinfo].found) {
if (epdesc->bmAttributes == epinfos[epinfo].att
&& epdesc->wMaxPacketSize >= epinfos[epinfo].size
&& epdesc->bEndpointAddress == epinfos[epinfo].ep) {
epinfos[epinfo].found = true;
epinfos[epinfo].wMaxPacketSize = epdesc->wMaxPacketSize;
break;
}
}
}
}
}
}
for (ifinfo = 0; ifinfo < found->intinfo_count; ifinfo++)
for (epinfo = 0; epinfo < found->intinfos[ifinfo].epinfo_count; epinfo++)
if (found->intinfos[ifinfo].epinfos[epinfo].found == false) {
applog(LOG_DEBUG, "USB init found (%d,%d) == false %s",
ifinfo, epinfo, devstr);
goto cldame;
}
claimed = 0;
for (ifinfo = 0; ifinfo < found->intinfo_count; ifinfo++) {
err = libusb_claim_interface(cgusb->handle, THISIF(found, ifinfo));
if (err == 0)
claimed++;
else {
switch(err) {
case LIBUSB_ERROR_BUSY:
applog(LOG_WARNING,
"USB init, claim ifinfo %d interface %d in use %s",
ifinfo, THISIF(found, ifinfo), devstr);
break;
default:
applog(LOG_DEBUG,
"USB init, claim ifinfo %d interface %d failed,"
" err %d %s",
ifinfo, THISIF(found, ifinfo), err, devstr);
}
goto reldame;
}
}
cfg = -1;
err = libusb_get_configuration(cgusb->handle, &cfg);
if (err)
cfg = -1;
if (cfg != found->config) {
applog(LOG_WARNING,
"USB init, incorrect config (%d!=%d) after claim of %s",
cfg, found->config, devstr);
goto reldame;
}
cgusb->usbver = cgusb->descriptor->bcdUSB;
if (cgusb->usbver < 0x0200) {
cgusb->usb11 = true;
cgusb->tt = true;
}
// TODO: allow this with the right version of the libusb include and running library
// cgusb->speed = libusb_get_device_speed(dev);
err = libusb_get_string_descriptor_ascii(cgusb->handle,
cgusb->descriptor->iProduct, strbuf, STRBUFLEN);
if (err > 0)
cgusb->prod_string = strdup((char *)strbuf);
else
cgusb->prod_string = (char *)BLANK;
err = libusb_get_string_descriptor_ascii(cgusb->handle,
cgusb->descriptor->iManufacturer, strbuf, STRBUFLEN);
if (err > 0)
cgusb->manuf_string = strdup((char *)strbuf);
else
cgusb->manuf_string = (char *)BLANK;
err = libusb_get_string_descriptor_ascii(cgusb->handle,
cgusb->descriptor->iSerialNumber, strbuf, STRBUFLEN);
if (err > 0)
cgusb->serial_string = strdup((char *)strbuf);
else
cgusb->serial_string = (char *)BLANK;
// TODO: ?
// cgusb->fwVersion <- for temp1/temp2 decision? or serial? (driver-modminer.c)
// cgusb->interfaceVersion
applog(LOG_DEBUG,
"USB init %s usbver=%04x prod='%s' manuf='%s' serial='%s'",
devstr, cgusb->usbver, cgusb->prod_string,
cgusb->manuf_string, cgusb->serial_string);
cgpu->usbdev = cgusb;
cgpu->usbinfo.nodev = false;
libusb_free_config_descriptor(config);
// Allow a name change based on the idVendor+idProduct
// N.B. must be done before calling add_cgpu()
if (strcasecmp(cgpu->drv->name, found->name)) {
if (!cgpu->drv->copy)
cgpu->drv = copy_drv(cgpu->drv);
cgpu->drv->name = (char *)(found->name);
}
bad = USB_INIT_OK;
goto out_unlock;
reldame:
ifinfo = claimed;
while (ifinfo-- > 0)
libusb_release_interface(cgusb->handle, THISIF(found, ifinfo));
cldame:
#ifdef LINUX
libusb_attach_kernel_driver(cgusb->handle, THISIF(found, ifinfo));
nokernel:
#endif
cg_wlock(&cgusb_fd_lock);
libusb_close(cgusb->handle);
cgusb->handle = NULL;
cg_wunlock(&cgusb_fd_lock);
dame:
if (config)
libusb_free_config_descriptor(config);
cgusb = free_cgusb(cgusb);
out_unlock:
DEVWUNLOCK(cgpu, pstate);
return bad;
}
bool usb_init(struct cgpu_info *cgpu, struct libusb_device *dev, struct usb_find_devices *found_match)
{
struct usb_find_devices *found_use = NULL;
int uninitialised_var(ret);
int i;
for (i = 0; find_dev[i].drv != DRIVER_MAX; i++) {
if (find_dev[i].drv == found_match->drv &&
find_dev[i].idVendor == found_match->idVendor &&
find_dev[i].idProduct == found_match->idProduct) {
found_use = cgmalloc(sizeof(*found_use));
cg_memcpy(found_use, &(find_dev[i]), sizeof(*found_use));
ret = _usb_init(cgpu, dev, found_use);
if (ret != USB_INIT_IGNORE)
break;
}
}
if (ret == USB_INIT_FAIL) {
applog(LOG_ERR, "%s detect (%d:%d) failed to initialise (incorrect device?), resetting",
cgpu->drv->dname,
(int)(cgpu->usbinfo.bus_number),
(int)(cgpu->usbinfo.device_address));
if (cgpu->usbdev && cgpu->usbdev->handle)
libusb_reset_device(cgpu->usbdev->handle);
}
return (ret == USB_INIT_OK);
}
static bool usb_check_device(struct device_drv *drv, struct libusb_device *dev, struct usb_find_devices *look)
{
struct libusb_device_descriptor desc;
int bus_number, device_address;
int err, i;
bool ok;
err = libusb_get_device_descriptor(dev, &desc);
if (err) {
applog(LOG_DEBUG, "USB check device: Failed to get descriptor, err %d", err);
return false;
}
if (desc.idVendor != look->idVendor || desc.idProduct != look->idProduct) {
applog(LOG_DEBUG, "%s looking for %s %04x:%04x but found %04x:%04x instead",
drv->name, look->name, look->idVendor, look->idProduct, desc.idVendor, desc.idProduct);
return false;
}
if (busdev_count > 0) {
bus_number = (int)libusb_get_bus_number(dev);
device_address = (int)libusb_get_device_address(dev);
ok = false;
for (i = 0; i < busdev_count; i++) {
if (bus_number == busdev[i].bus_number) {
if (busdev[i].device_address == -1 ||
device_address == busdev[i].device_address) {
ok = true;
break;
}
}
}
if (!ok) {
applog(LOG_DEBUG, "%s rejected %s %04x:%04x with bus:dev (%d:%d)",
drv->name, look->name, look->idVendor, look->idProduct,
bus_number, device_address);
return false;
}
}
applog(LOG_DEBUG, "%s looking for and found %s %04x:%04x",
drv->name, look->name, look->idVendor, look->idProduct);
return true;
}
static struct usb_find_devices *usb_check_each(int drvnum, struct device_drv *drv, struct libusb_device *dev)
{
struct usb_find_devices *found;
int i;
for (i = 0; find_dev[i].drv != DRIVER_MAX; i++)
if (find_dev[i].drv == drvnum) {
if (usb_check_device(drv, dev, &(find_dev[i]))) {
found = cgmalloc(sizeof(*found));
cg_memcpy(found, &(find_dev[i]), sizeof(*found));
return found;
}
}
return NULL;
}
#define DRIVER_USB_CHECK_EACH(X) if (drv->drv_id == DRIVER_##X) \
return usb_check_each(DRIVER_##X, drv, dev);
static struct usb_find_devices *usb_check(__maybe_unused struct device_drv *drv, __maybe_unused struct libusb_device *dev)
{
if (drv_count[drv->drv_id].count >= drv_count[drv->drv_id].limit) {
applog(LOG_DEBUG,
"USB scan devices3: %s limit %d reached",
drv->dname, drv_count[drv->drv_id].limit);
return NULL;
}
DRIVER_PARSE_COMMANDS(DRIVER_USB_CHECK_EACH)
return NULL;
}
void __usb_detect(struct device_drv *drv, struct cgpu_info *(*device_detect)(struct libusb_device *, struct usb_find_devices *),
bool single)
{
libusb_device **list;
ssize_t count, i;
struct usb_find_devices *found;
struct cgpu_info *cgpu;
applog(LOG_DEBUG, "USB scan devices: checking for %s devices", drv->name);
if (total_count >= total_limit) {
applog(LOG_DEBUG, "USB scan devices: total limit %d reached", total_limit);
return;
}
if (drv_count[drv->drv_id].count >= drv_count[drv->drv_id].limit) {
applog(LOG_DEBUG,
"USB scan devices: %s limit %d reached",
drv->dname, drv_count[drv->drv_id].limit);
return;
}
count = libusb_get_device_list(NULL, &list);
if (count < 0) {
applog(LOG_DEBUG, "USB scan devices: failed, err %d", (int)count);
return;
}
if (count == 0)
applog(LOG_DEBUG, "USB scan devices: found no devices");
else
cgsleep_ms(166);
for (i = 0; i < count; i++) {
if (total_count >= total_limit) {
applog(LOG_DEBUG, "USB scan devices2: total limit %d reached", total_limit);
break;
}
if (drv_count[drv->drv_id].count >= drv_count[drv->drv_id].limit) {
applog(LOG_DEBUG,
"USB scan devices2: %s limit %d reached",
drv->dname, drv_count[drv->drv_id].limit);
break;
}
found = usb_check(drv, list[i]);
if (found != NULL) {
bool new_dev = false;
if (is_in_use(list[i]) || cgminer_usb_lock(drv, list[i]) == false)
free(found);
else {
cgpu = device_detect(list[i], found);
if (!cgpu)
cgminer_usb_unlock(drv, list[i]);
else {
new_dev = true;
cgpu->usbinfo.initialised = true;
total_count++;
drv_count[drv->drv_id].count++;
}
free(found);
}
if (single && new_dev)
break;
}
}
libusb_free_device_list(list, 1);
}
#if DO_USB_STATS
static void modes_str(char *buf, uint32_t modes)
{
bool first;
*buf = '\0';
if (modes == MODE_NONE)
strcpy(buf, MODE_NONE_STR);
else {
first = true;
if (modes & MODE_CTRL_READ) {
strcpy(buf, MODE_CTRL_READ_STR);
first = false;
}
if (modes & MODE_CTRL_WRITE) {
if (!first)
strcat(buf, MODE_SEP_STR);
strcat(buf, MODE_CTRL_WRITE_STR);
first = false;
}
if (modes & MODE_BULK_READ) {
if (!first)
strcat(buf, MODE_SEP_STR);
strcat(buf, MODE_BULK_READ_STR);
first = false;
}
if (modes & MODE_BULK_WRITE) {
if (!first)
strcat(buf, MODE_SEP_STR);
strcat(buf, MODE_BULK_WRITE_STR);
first = false;
}
}
}
#endif
// The stat data can be spurious due to not locking it before copying it -
// however that would require the stat() function to also lock and release
// a mutex every time a usb read or write is called which would slow
// things down more
struct api_data *api_usb_stats(__maybe_unused int *count)
{
#if DO_USB_STATS
struct cg_usb_stats_details *details;
struct cg_usb_stats *sta;
struct api_data *root = NULL;
int device;
int cmdseq;
char modes_s[32];
if (next_stat == USB_NOSTAT)
return NULL;
while (*count < next_stat * C_MAX * 2) {
device = *count / (C_MAX * 2);
cmdseq = *count % (C_MAX * 2);
(*count)++;
sta = &(usb_stats[device]);
details = &(sta->details[cmdseq]);
// Only show stats that have results
if (details->item[CMD_CMD].count == 0 &&
details->item[CMD_TIMEOUT].count == 0 &&
details->item[CMD_ERROR].count == 0)
continue;
root = api_add_string(root, "Name", sta->name, false);
root = api_add_int(root, "ID", &(sta->device_id), false);
root = api_add_const(root, "Stat", usb_commands[cmdseq/2], false);
root = api_add_int(root, "Seq", &(details->seq), true);
modes_str(modes_s, details->modes);
root = api_add_string(root, "Modes", modes_s, true);
root = api_add_uint64(root, "Count",
&(details->item[CMD_CMD].count), true);
root = api_add_double(root, "Total Delay",
&(details->item[CMD_CMD].total_delay), true);
root = api_add_double(root, "Min Delay",
&(details->item[CMD_CMD].min_delay), true);
root = api_add_double(root, "Max Delay",
&(details->item[CMD_CMD].max_delay), true);
root = api_add_uint64(root, "Timeout Count",
&(details->item[CMD_TIMEOUT].count), true);
root = api_add_double(root, "Timeout Total Delay",
&(details->item[CMD_TIMEOUT].total_delay), true);
root = api_add_double(root, "Timeout Min Delay",
&(details->item[CMD_TIMEOUT].min_delay), true);
root = api_add_double(root, "Timeout Max Delay",
&(details->item[CMD_TIMEOUT].max_delay), true);
root = api_add_uint64(root, "Error Count",
&(details->item[CMD_ERROR].count), true);
root = api_add_double(root, "Error Total Delay",
&(details->item[CMD_ERROR].total_delay), true);
root = api_add_double(root, "Error Min Delay",
&(details->item[CMD_ERROR].min_delay), true);
root = api_add_double(root, "Error Max Delay",
&(details->item[CMD_ERROR].max_delay), true);
root = api_add_timeval(root, "First Command",
&(details->item[CMD_CMD].first), true);
root = api_add_timeval(root, "Last Command",
&(details->item[CMD_CMD].last), true);
root = api_add_timeval(root, "First Timeout",
&(details->item[CMD_TIMEOUT].first), true);
root = api_add_timeval(root, "Last Timeout",
&(details->item[CMD_TIMEOUT].last), true);
root = api_add_timeval(root, "First Error",
&(details->item[CMD_ERROR].first), true);
root = api_add_timeval(root, "Last Error",
&(details->item[CMD_ERROR].last), true);
return root;
}
#endif
return NULL;
}
#if DO_USB_STATS
static void newstats(struct cgpu_info *cgpu)
{
int i;
mutex_lock(&cgusb_lock);
cgpu->usbinfo.usbstat = next_stat + 1;
usb_stats = cgrealloc(usb_stats, sizeof(*usb_stats) * (next_stat+1));
usb_stats[next_stat].name = cgpu->drv->name;
usb_stats[next_stat].device_id = -1;
usb_stats[next_stat].details = cgcalloc(2, sizeof(struct cg_usb_stats_details) * (C_MAX + 1));
for (i = 1; i < C_MAX * 2; i += 2)
usb_stats[next_stat].details[i].seq = 1;
next_stat++;
mutex_unlock(&cgusb_lock);
}
#endif
void update_usb_stats(__maybe_unused struct cgpu_info *cgpu)
{
#if DO_USB_STATS
if (cgpu->usbinfo.usbstat < 1)
newstats(cgpu);
// we don't know the device_id until after add_cgpu()
usb_stats[cgpu->usbinfo.usbstat - 1].device_id = cgpu->device_id;
#endif
}
#if DO_USB_STATS
static void stats(struct cgpu_info *cgpu, struct timeval *tv_start, struct timeval *tv_finish, int err, int mode, enum usb_cmds cmd, int seq, int timeout)
{
struct cg_usb_stats_details *details;
double diff;
int item, extrams;
if (cgpu->usbinfo.usbstat < 1)
newstats(cgpu);
cgpu->usbinfo.tmo_count++;
// timeout checks are only done when stats are enabled
extrams = SECTOMS(tdiff(tv_finish, tv_start)) - timeout;
if (extrams >= USB_TMO_0) {
uint32_t totms = (uint32_t)(timeout + extrams);
int offset = 0;
if (extrams >= USB_TMO_2) {
applog(LOG_INFO, "%s%i: TIMEOUT %s took %dms but was %dms",
cgpu->drv->name, cgpu->device_id,
usb_cmdname(cmd), totms, timeout) ;
offset = 2;
} else if (extrams >= USB_TMO_1)
offset = 1;
cgpu->usbinfo.usb_tmo[offset].count++;
cgpu->usbinfo.usb_tmo[offset].total_over += extrams;
cgpu->usbinfo.usb_tmo[offset].total_tmo += timeout;
if (cgpu->usbinfo.usb_tmo[offset].min_tmo == 0) {
cgpu->usbinfo.usb_tmo[offset].min_tmo = totms;
cgpu->usbinfo.usb_tmo[offset].max_tmo = totms;
} else {
if (cgpu->usbinfo.usb_tmo[offset].min_tmo > totms)
cgpu->usbinfo.usb_tmo[offset].min_tmo = totms;
if (cgpu->usbinfo.usb_tmo[offset].max_tmo < totms)
cgpu->usbinfo.usb_tmo[offset].max_tmo = totms;
}
}
details = &(usb_stats[cgpu->usbinfo.usbstat - 1].details[cmd * 2 + seq]);
details->modes |= mode;
diff = tdiff(tv_finish, tv_start);
switch (err) {
case LIBUSB_SUCCESS:
item = CMD_CMD;
break;
case LIBUSB_ERROR_TIMEOUT:
item = CMD_TIMEOUT;
break;
default:
item = CMD_ERROR;
break;
}
if (details->item[item].count == 0) {
details->item[item].min_delay = diff;
cg_memcpy(&(details->item[item].first), tv_start, sizeof(*tv_start));
} else if (diff < details->item[item].min_delay)
details->item[item].min_delay = diff;
if (diff > details->item[item].max_delay)
details->item[item].max_delay = diff;
details->item[item].total_delay += diff;
cg_memcpy(&(details->item[item].last), tv_start, sizeof(*tv_start));
details->item[item].count++;
}
static void rejected_inc(struct cgpu_info *cgpu, uint32_t mode)
{
struct cg_usb_stats_details *details;
int item = CMD_ERROR;
if (cgpu->usbinfo.usbstat < 1)
newstats(cgpu);
details = &(usb_stats[cgpu->usbinfo.usbstat - 1].details[C_REJECTED * 2 + 0]);
details->modes |= mode;
details->item[item].count++;
}
#endif
#define USB_RETRY_MAX 5
struct usb_transfer {
cgsem_t cgsem;
struct libusb_transfer *transfer;
bool cancellable;
struct list_head list;
};
bool async_usb_transfers(void)
{
bool ret;
cg_rlock(&cgusb_fd_lock);
ret = !list_empty(&ut_list);
cg_runlock(&cgusb_fd_lock);
return ret;
}
/* Cancellable transfers should only be labelled as such if it is safe for them
* to effectively mimic timing out early. This flag is usually used to signify
* a read is waiting on a non-critical response that takes a long time and the
* driver wishes it be aborted if work restart message has been sent. */
void cancel_usb_transfers(void)
{
struct usb_transfer *ut;
int cancellations = 0;
cg_wlock(&cgusb_fd_lock);
list_for_each_entry(ut, &ut_list, list) {
if (ut->cancellable) {
ut->cancellable = false;
libusb_cancel_transfer(ut->transfer);
cancellations++;
}
}
cg_wunlock(&cgusb_fd_lock);
if (cancellations)
applog(LOG_DEBUG, "Cancelled %d USB transfers", cancellations);
}
static void init_usb_transfer(struct usb_transfer *ut)
{
cgsem_init(&ut->cgsem);
ut->transfer = libusb_alloc_transfer(0);
if (unlikely(!ut->transfer))
quit(1, "Failed to libusb_alloc_transfer");
ut->transfer->user_data = ut;
ut->cancellable = false;
}
static void complete_usb_transfer(struct usb_transfer *ut)
{
cg_wlock(&cgusb_fd_lock);
list_del(&ut->list);
cg_wunlock(&cgusb_fd_lock);
cgsem_destroy(&ut->cgsem);
libusb_free_transfer(ut->transfer);
}
static void LIBUSB_CALL transfer_callback(struct libusb_transfer *transfer)
{
struct usb_transfer *ut = transfer->user_data;
ut->cancellable = false;
cgsem_post(&ut->cgsem);
}
static int usb_transfer_toerr(int ret)
{
if (ret <= 0)
return ret;
switch (ret) {
default:
case LIBUSB_TRANSFER_COMPLETED:
ret = LIBUSB_SUCCESS;
break;
case LIBUSB_TRANSFER_ERROR:
ret = LIBUSB_ERROR_IO;
break;
case LIBUSB_TRANSFER_TIMED_OUT:
case LIBUSB_TRANSFER_CANCELLED:
ret = LIBUSB_ERROR_TIMEOUT;
break;
case LIBUSB_TRANSFER_STALL:
ret = LIBUSB_ERROR_PIPE;
break;
case LIBUSB_TRANSFER_NO_DEVICE:
ret = LIBUSB_ERROR_NO_DEVICE;
break;
case LIBUSB_TRANSFER_OVERFLOW:
ret = LIBUSB_ERROR_OVERFLOW;
break;
}
return ret;
}
/* Wait for callback function to tell us it has finished the USB transfer, but
* use our own timer to cancel the request if we go beyond the timeout. */
static int callback_wait(struct usb_transfer *ut, int *transferred, unsigned int timeout)
{
struct libusb_transfer *transfer= ut->transfer;
int ret;
ret = cgsem_mswait(&ut->cgsem, timeout);
if (ret == ETIMEDOUT) {
/* We are emulating a timeout ourself here */
libusb_cancel_transfer(transfer);
/* Now wait for the callback function to be invoked. */
cgsem_wait(&ut->cgsem);
}
ret = transfer->status;
ret = usb_transfer_toerr(ret);
/* No need to sort out mutexes here since they won't be reused */
*transferred = transfer->actual_length;
return ret;
}
static int usb_submit_transfer(struct usb_transfer *ut, struct libusb_transfer *transfer,
bool cancellable, bool tt)
{
int err;
INIT_LIST_HEAD(&ut->list);
cg_wlock(&cgusb_fd_lock);
/* Imitate a transaction translator for writes to usb1.1 devices */
if (tt)
cgsleep_ms_r(&usb11_cgt, 1);
err = libusb_submit_transfer(transfer);
if (likely(!err))
ut->cancellable = cancellable;
list_add(&ut->list, &ut_list);
if (tt)
cgtimer_time(&usb11_cgt);
cg_wunlock(&cgusb_fd_lock);
return err;
}
static int
usb_perform_transfer(struct cgpu_info *cgpu, struct cg_usb_device *usbdev, int intinfo,
int epinfo, unsigned char *data, int length, int *transferred,
unsigned int timeout, __maybe_unused int mode, enum usb_cmds cmd,
__maybe_unused int seq, bool cancellable, bool tt)
{
int bulk_timeout, callback_timeout = timeout, err_retries = 0;
struct libusb_device_handle *dev_handle = usbdev->handle;
struct usb_epinfo *usb_epinfo;
struct usb_transfer ut;
unsigned char endpoint;
bool interrupt;
int err, errn;
#if DO_USB_STATS
struct timeval tv_start, tv_finish;
#endif
unsigned char buf[512];
#ifdef WIN32
/* On windows the callback_timeout is a safety mechanism only. */
bulk_timeout = timeout;
callback_timeout += WIN_CALLBACK_EXTRA;
#else
/* We give the transfer no timeout since we manage timeouts ourself on
* non windows. */
bulk_timeout = 0;
#endif
usb_epinfo = &(usbdev->found->intinfos[intinfo].epinfos[epinfo]);
interrupt = usb_epinfo->att == LIBUSB_TRANSFER_TYPE_INTERRUPT;
endpoint = usb_epinfo->ep;
if (unlikely(!data)) {
applog(LOG_ERR, "USB error: usb_perform_transfer sent NULL data (%s,intinfo=%d,epinfo=%d,length=%d,timeout=%u,mode=%d,cmd=%s,seq=%d) endpoint=%d",
cgpu->drv->name, intinfo, epinfo, length, timeout, mode, usb_cmdname(cmd), seq, (int)endpoint);
err = LIBUSB_ERROR_IO;
goto out_fail;
}
/* Avoid any async transfers during shutdown to allow the polling
* thread to be shut down after all existing transfers are complete */
if (opt_lowmem || cgpu->shutdown)
return libusb_bulk_transfer(dev_handle, endpoint, data, length, transferred, timeout);
err_retry:
init_usb_transfer(&ut);
if ((endpoint & LIBUSB_ENDPOINT_DIR_MASK) == LIBUSB_ENDPOINT_OUT) {
cg_memcpy(buf, data, length);
#ifndef HAVE_LIBUSB
/* Older versions may not have this feature so only enable it
* when we know we're compiling with included static libusb. We
* only do this for bulk transfer, not interrupt. */
if (!cgpu->nozlp && !interrupt)
ut.transfer->flags |= LIBUSB_TRANSFER_ADD_ZERO_PACKET;
#endif
#ifdef WIN32
/* Writes on windows really don't like to be cancelled, but
* are prone to timeouts under heavy USB traffic, so make this
* a last resort cancellation delayed long after the write
* would have timed out on its own. */
callback_timeout += WIN_WRITE_CBEXTRA;
#endif
}
USBDEBUG("USB debug: @usb_perform_transfer(%s (nodev=%s),intinfo=%d,epinfo=%d,data=%p,length=%d,timeout=%u,mode=%d,cmd=%s,seq=%d) endpoint=%d", cgpu->drv->name, bool_str(cgpu->usbinfo.nodev), intinfo, epinfo, data, length, timeout, mode, usb_cmdname(cmd), seq, (int)endpoint);
if (interrupt) {
libusb_fill_interrupt_transfer(ut.transfer, dev_handle, endpoint,
buf, length, transfer_callback, &ut,
bulk_timeout);
} else {
libusb_fill_bulk_transfer(ut.transfer, dev_handle, endpoint, buf,
length, transfer_callback, &ut, bulk_timeout);
}
STATS_TIMEVAL(&tv_start);
err = usb_submit_transfer(&ut, ut.transfer, cancellable, tt);
errn = errno;
if (!err)
err = callback_wait(&ut, transferred, callback_timeout);
else
err = usb_transfer_toerr(err);
complete_usb_transfer(&ut);
STATS_TIMEVAL(&tv_finish);
USB_STATS(cgpu, &tv_start, &tv_finish, err, mode, cmd, seq, timeout);
if (err < 0) {
applog(LOG_DEBUG, "%s%i: %s (amt=%d err=%d ern=%d)",
cgpu->drv->name, cgpu->device_id,
usb_cmdname(cmd), *transferred, err, errn);
}
if (err == LIBUSB_ERROR_PIPE) {
int pipeerr, retries = 0;
do {
cgpu->usbinfo.last_pipe = time(NULL);
cgpu->usbinfo.pipe_count++;
applog(LOG_INFO, "%s%i: libusb pipe error, trying to clear",
cgpu->drv->name, cgpu->device_id);
pipeerr = libusb_clear_halt(dev_handle, endpoint);
applog(LOG_DEBUG, "%s%i: libusb pipe error%scleared",
cgpu->drv->name, cgpu->device_id, err ? " not " : " ");
if (pipeerr)
cgpu->usbinfo.clear_fail_count++;
} while (pipeerr && ++retries < USB_RETRY_MAX);
if (!pipeerr && ++err_retries < USB_RETRY_MAX)
goto err_retry;
}
if (err == LIBUSB_ERROR_IO && ++err_retries < USB_RETRY_MAX)
goto err_retry;
out_fail:
if (NODEV(err))
*transferred = 0;
else if ((endpoint & LIBUSB_ENDPOINT_DIR_MASK) == LIBUSB_ENDPOINT_IN && *transferred)
cg_memcpy(data, buf, *transferred);
return err;
}
void usb_reset(struct cgpu_info *cgpu)
{
int pstate, err = 0;
DEVWLOCK(cgpu, pstate);
if (!cgpu->usbinfo.nodev) {
err = libusb_reset_device(cgpu->usbdev->handle);
applog(LOG_WARNING, "%s %i attempted reset got err:(%d) %s",
cgpu->drv->name, cgpu->device_id, err, libusb_error_name(err));
}
if (NODEV(err))
release_cgpu(cgpu);
DEVWUNLOCK(cgpu, pstate);
}
int _usb_read(struct cgpu_info *cgpu, int intinfo, int epinfo, char *buf, size_t bufsiz,
int *processed, int timeout, const char *end, enum usb_cmds cmd, bool readonce, bool cancellable)
{
unsigned char *ptr, usbbuf[USB_READ_BUFSIZE];
struct timeval read_start, tv_finish;
int bufleft, err, got, tot, pstate, tried_reset;
struct cg_usb_device *usbdev;
unsigned int initial_timeout;
bool first = true;
size_t usbbufread;
int endlen = 0;
char *eom = NULL;
double done;
bool ftdi;
memset(usbbuf, 0, USB_READ_BUFSIZE);
memset(buf, 0, bufsiz);
if (end)
endlen = strlen(end);
DEVRLOCK(cgpu, pstate);
if (cgpu->usbinfo.nodev) {
*processed = 0;
USB_REJECT(cgpu, MODE_BULK_READ);
err = LIBUSB_ERROR_NO_DEVICE;
goto out_noerrmsg;
}
usbdev = cgpu->usbdev;
/* Interrupt transfers are guaranteed to be of an expected size (we hope) */
if (usbdev->found->intinfos[intinfo].epinfos[epinfo].att == LIBUSB_TRANSFER_TYPE_INTERRUPT)
usbbufread = bufsiz;
else
usbbufread = 512;
ftdi = (usbdev->usb_type == USB_TYPE_FTDI);
USBDEBUG("USB debug: _usb_read(%s (nodev=%s),intinfo=%d,epinfo=%d,buf=%p,bufsiz=%d,proc=%p,timeout=%u,end=%s,cmd=%s,ftdi=%s,readonce=%s)", cgpu->drv->name, bool_str(cgpu->usbinfo.nodev), intinfo, epinfo, buf, (int)bufsiz, processed, timeout, end ? (char *)str_text((char *)end) : "NULL", usb_cmdname(cmd), bool_str(ftdi), bool_str(readonce));
if (bufsiz > USB_MAX_READ)
quit(1, "%s USB read request %d too large (max=%d)", cgpu->drv->name, (int)bufsiz, USB_MAX_READ);
if (timeout == DEVTIMEOUT)
timeout = usbdev->found->timeout;
tot = usbdev->bufamt;
bufleft = bufsiz - tot;
if (tot)
cg_memcpy(usbbuf, usbdev->buffer, tot);
ptr = usbbuf + tot;
usbdev->bufamt = 0;
err = LIBUSB_SUCCESS;
if (end != NULL)
eom = strstr((const char *)usbbuf, end);
initial_timeout = timeout;
cgtime(&read_start);
tried_reset = 0;
while (bufleft > 0 && !eom) {
err = usb_perform_transfer(cgpu, usbdev, intinfo, epinfo, ptr, usbbufread,
&got, timeout, MODE_BULK_READ, cmd,
first ? SEQ0 : SEQ1, cancellable, false);
if (NODEV(err))
goto out_noerrmsg;
cgtime(&tv_finish);
ptr[got] = '\0';
USBDEBUG("USB debug: @_usb_read(%s (nodev=%s)) first=%s err=%d%s got=%d ptr='%s' usbbufread=%d", cgpu->drv->name, bool_str(cgpu->usbinfo.nodev), bool_str(first), err, isnodev(err), got, (char *)str_text((char *)ptr), (int)usbbufread);
if (ftdi) {
// first 2 bytes returned are an FTDI status
if (got > 2) {
got -= 2;
memmove(ptr, ptr+2, got+1);
} else {
got = 0;
*ptr = '\0';
}
}
tot += got;
if (end != NULL)
eom = strstr((const char *)usbbuf, end);
/* Attempt a usb reset for an error that will otherwise cause
* this device to drop out provided we know the device still
* might exist. */
if (err && err != LIBUSB_ERROR_TIMEOUT) {
applog(LOG_WARNING, "%s %i %s usb read err:(%d) %s", cgpu->drv->name,
cgpu->device_id, usb_cmdname(cmd), err, libusb_error_name(err));
if (err != LIBUSB_ERROR_NO_DEVICE && !tried_reset) {
err = libusb_reset_device(usbdev->handle);
tried_reset = 1; // don't call reset twice in a row
applog(LOG_WARNING, "%s %i attempted reset got err:(%d) %s",
cgpu->drv->name, cgpu->device_id, err, libusb_error_name(err));
}
} else {
tried_reset = 0;
}
if (NODEV(err))
goto out_noerrmsg;
ptr += got;
bufleft -= got;
if (bufleft < 1)
err = LIBUSB_SUCCESS;
if (err || readonce)
break;
first = false;
done = tdiff(&tv_finish, &read_start);
// N.B. this is: return last err with whatever size has already been read
timeout = initial_timeout - (done * 1000);
if (timeout <= 0)
break;
}
/* If we found the end of message marker, just use that data and
* return success. */
if (eom) {
size_t eomlen = (void *)eom - (void *)usbbuf + endlen;
if (eomlen < bufsiz) {
bufsiz = eomlen;
err = LIBUSB_SUCCESS;
}
}
// N.B. usbdev->buffer was emptied before the while() loop
if (tot > (int)bufsiz) {
usbdev->bufamt = tot - bufsiz;
cg_memcpy(usbdev->buffer, usbbuf + bufsiz, usbdev->bufamt);
tot -= usbdev->bufamt;
usbbuf[tot] = '\0';
applog(LOG_DEBUG, "USB: %s%i read1 buffering %d extra bytes",
cgpu->drv->name, cgpu->device_id, usbdev->bufamt);
}
*processed = tot;
cg_memcpy((char *)buf, (const char *)usbbuf, (tot < (int)bufsiz) ? tot + 1 : (int)bufsiz);
out_noerrmsg:
if (NODEV(err)) {
cg_ruwlock(&cgpu->usbinfo.devlock);
release_cgpu(cgpu);
DEVWUNLOCK(cgpu, pstate);
} else
DEVRUNLOCK(cgpu, pstate);
return err;
}
int _usb_write(struct cgpu_info *cgpu, int intinfo, int epinfo, char *buf, size_t bufsiz, int *processed, int timeout, enum usb_cmds cmd)
{
struct timeval write_start, tv_finish;
struct cg_usb_device *usbdev;
unsigned int initial_timeout;
int err, sent, tot, pstate, tried_reset;
bool first = true;
double done;
DEVRLOCK(cgpu, pstate);
USBDEBUG("USB debug: _usb_write(%s (nodev=%s),intinfo=%d,epinfo=%d,buf='%s',bufsiz=%d,proc=%p,timeout=%u,cmd=%s)", cgpu->drv->name, bool_str(cgpu->usbinfo.nodev), intinfo, epinfo, (char *)str_text(buf), (int)bufsiz, processed, timeout, usb_cmdname(cmd));
*processed = 0;
if (cgpu->usbinfo.nodev) {
USB_REJECT(cgpu, MODE_BULK_WRITE);
err = LIBUSB_ERROR_NO_DEVICE;
goto out_noerrmsg;
}
usbdev = cgpu->usbdev;
if (timeout == DEVTIMEOUT)
timeout = usbdev->found->timeout;
tot = 0;
err = LIBUSB_SUCCESS;
initial_timeout = timeout;
cgtime(&write_start);
tried_reset = 0;
while (bufsiz > 0) {
int tosend = bufsiz;
/* USB 1.1 devices don't handle zero packets well so split them
* up to not have the final transfer equal to the wMaxPacketSize
* or they will stall waiting for more data. */
if (usbdev->usb11) {
struct usb_epinfo *ue = &usbdev->found->intinfos[intinfo].epinfos[epinfo];
if (tosend == ue->wMaxPacketSize) {
tosend >>= 1;
if (unlikely(!tosend))
tosend = 1;
}
}
err = usb_perform_transfer(cgpu, usbdev, intinfo, epinfo, (unsigned char *)buf,
tosend, &sent, timeout, MODE_BULK_WRITE,
cmd, first ? SEQ0 : SEQ1, false, usbdev->tt);
if (NODEV(err))
goto out_noerrmsg;
cgtime(&tv_finish);
USBDEBUG("USB debug: @_usb_write(%s (nodev=%s)) err=%d%s sent=%d", cgpu->drv->name, bool_str(cgpu->usbinfo.nodev), err, isnodev(err), sent);
tot += sent;
/* Unlike reads, even a timeout error is unrecoverable on
* writes. */
if (err) {
applog(LOG_WARNING, "%s %i %s usb write err:(%d) %s", cgpu->drv->name,
cgpu->device_id, usb_cmdname(cmd), err, libusb_error_name(err));
if (err != LIBUSB_ERROR_NO_DEVICE && !tried_reset) {
err = libusb_reset_device(usbdev->handle);
tried_reset = 1; // don't try reset twice in a row
applog(LOG_WARNING, "%s %i attempted reset got err:(%d) %s",
cgpu->drv->name, cgpu->device_id, err, libusb_error_name(err));
}
} else {
tried_reset = 0;
}
if (err)
break;
buf += sent;
bufsiz -= sent;
first = false;
done = tdiff(&tv_finish, &write_start);
// N.B. this is: return last err with whatever size was written
timeout = initial_timeout - (done * 1000);
if (timeout <= 0)
break;
}
*processed = tot;
out_noerrmsg:
if (NODEV(err)) {
cg_ruwlock(&cgpu->usbinfo.devlock);
release_cgpu(cgpu);
DEVWUNLOCK(cgpu, pstate);
} else
DEVRUNLOCK(cgpu, pstate);
return err;
}
/* As we do for bulk reads, emulate a sync function for control transfers using
* our own timeouts that takes the same parameters as libusb_control_transfer.
*/
static int usb_control_transfer(struct cgpu_info *cgpu, libusb_device_handle *dev_handle, uint8_t bmRequestType,
uint8_t bRequest, uint16_t wValue, uint16_t wIndex,
unsigned char *buffer, uint16_t wLength, unsigned int timeout)
{
struct usb_transfer ut;
unsigned char buf[70];
int err, transferred;
bool tt = false;
if (unlikely(cgpu->shutdown))
return libusb_control_transfer(dev_handle, bmRequestType, bRequest, wValue, wIndex, buffer, wLength, timeout);
init_usb_transfer(&ut);
libusb_fill_control_setup(buf, bmRequestType, bRequest, wValue,
wIndex, wLength);
if ((bmRequestType & LIBUSB_ENDPOINT_DIR_MASK) == LIBUSB_ENDPOINT_OUT) {
if (wLength)
cg_memcpy(buf + LIBUSB_CONTROL_SETUP_SIZE, buffer, wLength);
if (cgpu->usbdev->descriptor->bcdUSB < 0x0200)
tt = true;
}
libusb_fill_control_transfer(ut.transfer, dev_handle, buf, transfer_callback,
&ut, 0);
err = usb_submit_transfer(&ut, ut.transfer, false, tt);
if (!err)
err = callback_wait(&ut, &transferred, timeout);
if (err == LIBUSB_SUCCESS && transferred) {
if ((bmRequestType & LIBUSB_ENDPOINT_DIR_MASK) == LIBUSB_ENDPOINT_IN)
cg_memcpy(buffer, libusb_control_transfer_get_data(ut.transfer),
transferred);
err = transferred;
goto out;
}
err = usb_transfer_toerr(err);
out:
complete_usb_transfer(&ut);
return err;
}
int __usb_transfer(struct cgpu_info *cgpu, uint8_t request_type, uint8_t bRequest, uint16_t wValue, uint16_t wIndex, uint32_t *data, int siz, unsigned int timeout, __maybe_unused enum usb_cmds cmd)
{
struct cg_usb_device *usbdev;
#if DO_USB_STATS
struct timeval tv_start, tv_finish;
#endif
unsigned char buf[64];
uint32_t *buf32 = (uint32_t *)buf;
int err, i, bufsiz;
USBDEBUG("USB debug: _usb_transfer(%s (nodev=%s),type=%"PRIu8",req=%"PRIu8",value=%"PRIu16",index=%"PRIu16",siz=%d,timeout=%u,cmd=%s)", cgpu->drv->name, bool_str(cgpu->usbinfo.nodev), request_type, bRequest, wValue, wIndex, siz, timeout, usb_cmdname(cmd));
if (cgpu->usbinfo.nodev) {
USB_REJECT(cgpu, MODE_CTRL_WRITE);
err = LIBUSB_ERROR_NO_DEVICE;
goto out_;
}
usbdev = cgpu->usbdev;
if (timeout == DEVTIMEOUT)
timeout = usbdev->found->timeout;
USBDEBUG("USB debug: @_usb_transfer() data=%s", bin2hex((unsigned char *)data, (size_t)siz));
if (siz > 0) {
bufsiz = siz - 1;
bufsiz >>= 2;
bufsiz++;
for (i = 0; i < bufsiz; i++)
buf32[i] = htole32(data[i]);
}
USBDEBUG("USB debug: @_usb_transfer() buf=%s", bin2hex(buf, (size_t)siz));
STATS_TIMEVAL(&tv_start);
err = usb_control_transfer(cgpu, usbdev->handle, request_type, bRequest,
wValue, wIndex, buf, (uint16_t)siz, timeout);
STATS_TIMEVAL(&tv_finish);
USB_STATS(cgpu, &tv_start, &tv_finish, err, MODE_CTRL_WRITE, cmd, SEQ0, timeout);
USBDEBUG("USB debug: @_usb_transfer(%s (nodev=%s)) err=%d%s", cgpu->drv->name, bool_str(cgpu->usbinfo.nodev), err, isnodev(err));
if (err < 0 && err != LIBUSB_ERROR_TIMEOUT) {
applog(LOG_WARNING, "%s %i usb transfer err:(%d) %s", cgpu->drv->name, cgpu->device_id,
err, libusb_error_name(err));
}
out_:
return err;
}
/* We use the write devlock for control transfers since some control transfers
* are rare but may be changing settings within the device causing problems
* if concurrent transfers are happening. Using the write lock serialises
* any transfers. */
int _usb_transfer(struct cgpu_info *cgpu, uint8_t request_type, uint8_t bRequest, uint16_t wValue, uint16_t wIndex, uint32_t *data, int siz, unsigned int timeout, enum usb_cmds cmd)
{
int pstate, err;
DEVWLOCK(cgpu, pstate);
err = __usb_transfer(cgpu, request_type, bRequest, wValue, wIndex, data, siz, timeout, cmd);
if (NOCONTROLDEV(err))
release_cgpu(cgpu);
DEVWUNLOCK(cgpu, pstate);
return err;
}
int _usb_transfer_read(struct cgpu_info *cgpu, uint8_t request_type, uint8_t bRequest, uint16_t wValue, uint16_t wIndex, char *buf, int bufsiz, int *amount, unsigned int timeout, __maybe_unused enum usb_cmds cmd)
{
struct cg_usb_device *usbdev;
#if DO_USB_STATS
struct timeval tv_start, tv_finish;
#endif
unsigned char tbuf[64];
int err, pstate;
DEVWLOCK(cgpu, pstate);
USBDEBUG("USB debug: _usb_transfer_read(%s (nodev=%s),type=%"PRIu8",req=%"PRIu8",value=%"PRIu16",index=%"PRIu16",bufsiz=%d,timeout=%u,cmd=%s)", cgpu->drv->name, bool_str(cgpu->usbinfo.nodev), request_type, bRequest, wValue, wIndex, bufsiz, timeout, usb_cmdname(cmd));
if (cgpu->usbinfo.nodev) {
USB_REJECT(cgpu, MODE_CTRL_READ);
err = LIBUSB_ERROR_NO_DEVICE;
goto out_noerrmsg;
}
usbdev = cgpu->usbdev;
if (timeout == DEVTIMEOUT)
timeout = usbdev->found->timeout;
*amount = 0;
memset(tbuf, 0, 64);
STATS_TIMEVAL(&tv_start);
err = usb_control_transfer(cgpu, usbdev->handle, request_type, bRequest,
wValue, wIndex, tbuf, (uint16_t)bufsiz, timeout);
STATS_TIMEVAL(&tv_finish);
USB_STATS(cgpu, &tv_start, &tv_finish, err, MODE_CTRL_READ, cmd, SEQ0, timeout);
cg_memcpy(buf, tbuf, bufsiz);
USBDEBUG("USB debug: @_usb_transfer_read(%s (nodev=%s)) amt/err=%d%s%s%s", cgpu->drv->name, bool_str(cgpu->usbinfo.nodev), err, isnodev(err), err > 0 ? " = " : BLANK, err > 0 ? bin2hex((unsigned char *)buf, (size_t)err) : BLANK);
if (err > 0) {
*amount = err;
err = 0;
}
if (err < 0 && err != LIBUSB_ERROR_TIMEOUT) {
applog(LOG_WARNING, "%s %i usb transfer read err:(%d) %s", cgpu->drv->name, cgpu->device_id,
err, libusb_error_name(err));
}
out_noerrmsg:
if (NOCONTROLDEV(err))
release_cgpu(cgpu);
DEVWUNLOCK(cgpu, pstate);
return err;
}
#define FTDI_STATUS_B0_MASK (FTDI_RS0_CTS | FTDI_RS0_DSR | FTDI_RS0_RI | FTDI_RS0_RLSD)
#define FTDI_RS0_CTS (1 << 4)
#define FTDI_RS0_DSR (1 << 5)
#define FTDI_RS0_RI (1 << 6)
#define FTDI_RS0_RLSD (1 << 7)
/* Clear to send for FTDI */
int usb_ftdi_cts(struct cgpu_info *cgpu)
{
char buf[2], ret;
int err, amount;
err = _usb_transfer_read(cgpu, (uint8_t)FTDI_TYPE_IN, (uint8_t)5,
(uint16_t)0, (uint16_t)0, buf, 2,
&amount, DEVTIMEOUT, C_FTDI_STATUS);
/* We return true in case drivers are waiting indefinitely to try and
* write to something that's not there. */
if (err)
return true;
ret = buf[0] & FTDI_STATUS_B0_MASK;
return (ret & FTDI_RS0_CTS);
}
int _usb_ftdi_set_latency(struct cgpu_info *cgpu, int intinfo)
{
int err = 0;
int pstate;
DEVWLOCK(cgpu, pstate);
if (cgpu->usbdev) {
if (cgpu->usbdev->usb_type != USB_TYPE_FTDI) {
applog(LOG_ERR, "%s: cgid %d latency request on non-FTDI device",
cgpu->drv->name, cgpu->cgminer_id);
err = LIBUSB_ERROR_NOT_SUPPORTED;
} else if (cgpu->usbdev->found->latency == LATENCY_UNUSED) {
applog(LOG_ERR, "%s: cgid %d invalid latency (UNUSED)",
cgpu->drv->name, cgpu->cgminer_id);
err = LIBUSB_ERROR_NOT_SUPPORTED;
}
if (!err)
err = __usb_transfer(cgpu, FTDI_TYPE_OUT, FTDI_REQUEST_LATENCY,
cgpu->usbdev->found->latency,
USBIF(cgpu->usbdev, intinfo),
NULL, 0, DEVTIMEOUT, C_LATENCY);
}
DEVWUNLOCK(cgpu, pstate);
applog(LOG_DEBUG, "%s: cgid %d %s got err %d",
cgpu->drv->name, cgpu->cgminer_id,
usb_cmdname(C_LATENCY), err);
return err;
}
void usb_buffer_clear(struct cgpu_info *cgpu)
{
int pstate;
DEVWLOCK(cgpu, pstate);
if (cgpu->usbdev)
cgpu->usbdev->bufamt = 0;
DEVWUNLOCK(cgpu, pstate);
}
uint32_t usb_buffer_size(struct cgpu_info *cgpu)
{
uint32_t ret = 0;
int pstate;
DEVRLOCK(cgpu, pstate);
if (cgpu->usbdev)
ret = cgpu->usbdev->bufamt;
DEVRUNLOCK(cgpu, pstate);
return ret;
}
/*
* The value returned (0) when usbdev is NULL
* doesn't matter since it also means the next call to
* any usbutils function will fail with a nodev
* N.B. this is to get the interface number to use in a control_transfer
* which for some devices isn't actually the interface number
*/
int _usb_interface(struct cgpu_info *cgpu, int intinfo)
{
int interface = 0;
int pstate;
DEVRLOCK(cgpu, pstate);
if (cgpu->usbdev)
interface = cgpu->usbdev->found->intinfos[intinfo].ctrl_transfer;
DEVRUNLOCK(cgpu, pstate);
return interface;
}
enum sub_ident usb_ident(struct cgpu_info *cgpu)
{