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Figure 1. Outline of DeepFlow.

variational optical flow approach termed DeepFlow. Fi-

nally, we present experimental results in Section 5.

2. Related work

Large displacement in optical flow estimation. Varia-

tional methods are the state-of-the-art family of methods for

optical flow estimation. Since the pioneering work of Horn

and Schunck [1], research has focused on alleviating the

drawbacks of this method. A series of improvements were

proposed over the years [4, 31, 7, 21, 2, 25, 29]. Brox et

al. [5] combine most of them into a variational approach.

Energy minimization is performed by solving the Euler-

Lagrange equations, then reducing the problem to solving

a sequence of large and structured linear systems.

To handle large displacements, a descriptor match-

ing component is incorporated in the variational approach

in [6]. One major drawback of this method is that local

descriptors are reliable only at salient locations and are lo-

cally rigid. Adding a matching component challenges the

energy formulation as it could deteriorate performance at

small displacement locations. Indeed, matching can give

false matches, ambiguous matches, and has low precision (a

pixel). In a different context, namely scene correspondence,

descriptors or small patches were used in SIFT-flow [17]

and PatchMatch [3] algorithms. Xu et al. [33] integrate

matching of SIFT [26] and PatchMatch [3] to refine the

flow initialization at each level. Excellent results were ob-

tained, yet at the cost of expensive fusion steps. Leordeanu

et al. [16] propose to extend sparse matching, with locally

affine constraint, to dense matching before using a total

variation algorithm to refine the flow estimation. We present

here a computationally efficient, yet competitive approach

for large displacement optical flow using a deep convolu-

tional matching procedure.

Descriptor matching. Image matching consists of two

steps: extraction of local descriptors and matching them.

Initial image descriptors were extracted at sparse, scale-

invariant or affine-invariant image locations [26, 20]. For

the purpose of optical flow estimation, recent work showed

that dense descriptor sampling improves performance [27,

6, 17]. In all cases, descriptors are extracted in rigid (gen-

erally square) local frames. Matching descriptors is then

generally reduced to a nearest-neighbor problem [26, 3,

6]. Methods such as reciprocal nearest-neighbors allow to

prune lots of false matches, but as a side effect also elim-

inate correct matches in weakly to moderately textured re-

gions. We show here that (i) extraction of descriptors in

non-rigid frames and (ii) dense matching in all image re-

gions, yields a competitive approach, with a significant per-

formance boost on MPI-Sintel [8] and KITTI [10] datasets.

Non-rigid matching. Our proposed matching algorithm,

called deep matching, is strongly inspired by non-rigid 2D

warping and deep convolutional networks [15, 28, 12]. It

also bears similarity with non-rigid matching approaches

developed in different contexts. In [9], Ecker and Ullman

proposed a similar pipeline to ours (albeit more complex)

to measure the similarity of small images. However, their

method lacks a way of merging correspondences belong-

ing to objects with contradictory motions (e.g., on differ-

ent focal planes). In a different context, Wills et al. [32]

estimated optical flow by robustly fitting smooth paramet-

ric models (homography and splines) to local descriptor

matches. In contrast, our approach is non-parametric and

model-free. More recently, Kim et al. [13] proposed a hi-

erarchical matching to obtain dense correspondences, but

their method works in a coarse-to-fine (top-down) fashion,

whereas deep matching works bottom-up. In addition, their

method requires inexact inference using loopy belief prop-

agation.

3. Deep Matching

In this section, we present the matching algorithm,

termed deep matching, and discuss its main features. The

matching algorithm builds upon a multi-stage architecture
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