Permalink
Switch branches/tags
Find file Copy path
Fetching contributors…
Cannot retrieve contributors at this time
212 lines (187 sloc) 9.42 KB
function out = EvalFrequencyDomainHRVstats(NN, tNN, sqi, HRVparams, windows_all)
%
% out = EvalFrequencyDomainHRVstats (NN, tNN, , sqi, settings)
%
% OVERVIEW: This function returns frequency domain HRV metrics
% calculated on input NN intervals.
%
% INPUT: MANDATORY:
% NN : a single row of NN (normal normal) interval
% data in seconds
% tNN : a single row of time indices of the rr interval
% data (seconds)
% sqi : (Optional) Signal Quality Index; Requires a
% matrix with at least two columns. Column 1
% should be timestamps of each sqi measure, and
% Column 2 should be SQI on a scale from 0 to 1.
% Additional columns can be included with
% additional sqi at the same timestamps
% HRVparams : struct of settings for hrv_toolbox analysis
% windows_all : vector containing the starting time of each
% windows (in seconds)
%
% OUTPUT: out.ulf : (ms^2) Power in the ultra low frequency range (default < 0.003 Hz)
% out.vlf : (ms^2) Power in very low frequency range (default 0.003 <= vlf < 0.04 Hz)
% out.lf : (ms^2) Power in low frequency range (default 0.04Hz <= lf < 0.15 Hz)
% out.hf : (ms^2) Power in high frequency range (default 0.15 <= hf < 0.4 Hz)
% out.lfhf : Ratio LF [ms^2]/HF [ms^2]
% out.ttlpwr : (ms^2) Total spectral power (approximately <0.4 Hz)
% out.fdflag : 1 - Lomb Periodogram or other method failed
% 2 - Not enough high SQI data
% 3 - Not enough data in the window to analyze
% 4 - Window is missing too much data
% 5 - Success
%
% REPO:
% https://github.com/cliffordlab/PhysioNet-Cardiovascular-Signal-Toolbox
% ORIGINAL SOURCE AND AUTHORS:
% Gari Clifford HRV Tools
% G. Clifford 2001 gari@mit.edu, calc_lfhf.m
% http://www.robots.ox.ac.uk/~gari/CODE/HRV/
% ChengYu Lui
% Adriana Vest
% Dependent scripts written by various authors
% (see functions for details)
% COPYRIGHT (C) 2016
% LICENSE:
% This software is offered freely and without warranty under
% the GNU (v3 or later) public license. See license file for
% more information
%
% 10-28-2017 Modified by Giulia Da Poian:
% Initlialiezed output as NaN
% Removed fft, Welch and Burg method without resampling.
% Added function for resampling when required by the method
% Acceppting only one method at time to make the function output more
% clear
% Removed option to write results on file directly from this function
% Converted output to ms^2
% Verify input arguments
if nargin < 5
error('Eval_FrequencydomainHRVstats: wrong number of input arguments!')
end
if isempty(sqi)
sqi(:,1) = tNN;
sqi(:,2) = ones(length(tNN),1);
end
% Set Defaults
windowlength = HRVparams.windowlength;
fd_threshold1 = HRVparams.sqi.LowQualityThreshold;
fd_threshold2 = HRVparams.RejectionThreshold;
limits = HRVparams.freq.limits;
method = HRVparams.freq.method;
plot_on = HRVparams.freq.plot_on;
debug_sine = HRVparams.freq.debug_sine; % if use the sine wave to debug
f_sine = HRVparams.freq.debug_freq; % the frequency of the added sine wave
weight = HRVparams.freq.debug_weight;
sf = HRVparams.freq.resampling_freq;
% Preallocate arrays before entering the loop
out.ulf = nan(1,length(windows_all));
out.vlf = nan(1,length(windows_all));
out.lf = nan(1,length(windows_all));
out.hf = nan(1,length(windows_all));
out.lfhf = nan(1,length(windows_all));
out.ttlpwr = nan(1,length(windows_all));
out.fdflag = nan(1,length(windows_all));
% Window by Window Analysis
% Loop through each window of RR data
for iWin = 1:length(windows_all)
% Check window for sufficient data
if ~isnan(windows_all(iWin))
% Isolate data in this window
idx_NN_in_win = find(tNN >= windows_all(iWin) & tNN < windows_all(iWin) + windowlength);
idx_sqi_win = find(sqi(:,1) >= windows_all(iWin) & sqi(:,1) < windows_all(iWin) + windowlength);
sqi_win = sqi(idx_sqi_win,:);
t_win = tNN(idx_NN_in_win);
nn_win = NN(idx_NN_in_win);
% Analysis of SQI for the window
lowqual_idx = find(sqi_win(:,2) < fd_threshold1);
% If enough data has an adequate SQI, perform the calculations
if numel(lowqual_idx)/length(sqi_win(:,2)) < fd_threshold2
% Initialize variables
% maxF=fs/2; % This calculation works for regularly sampled data
N = length(nn_win); % RR interval series length
% m_fs = 1/mean(nn_win); % mean frequency of heart rate, i.e., the mean sample rate (fs) of RR sereis
% max_f = .5/(min(nn_win)); % max frequency of RR interval series
% nfft = 2^nextpow2(N); % Next power of 2 from N
nfft = 1024;
%F = [1/nfft:1/nfft:m_fs]; % setting up frequency vector
F = [1/nfft:1/nfft:.5]; % setting up frequency vector
% add sine wave to RR signal
if debug_sine
s_sin = weight*sin(2*pi*f_sine*t);
nn_win = nn_win + s_sin;
end
% subtract mean of segment
if HRVparams.freq.zero_mean
rr_0 = nn_win - mean(nn_win); %rudimentary detrending
else
rr_0 = nn_win;
end
switch method
% 1. Lomb-Scargle Periodogram (no resampling)
case 'lomb'
try
[PSDlomb,Flomb] = CalcLomb(t_win,rr_0,F,nfft,HRVparams.freq.normalize_lomb);
% plomb equivalent to CalcLomb when normalized
% lomb-scargle periodogram
%[PSDmatlablomb,fplombout] = plomb(vv,tt,F,'normalized');
[out.ulf(iWin), out.vlf(iWin), out.lf(iWin), out.hf(iWin), out.lfhf(iWin),...
out.ttlpwr(iWin)] = CalcLfHfParams(PSDlomb, Flomb, limits, plot_on);
out.fdflag(iWin) = 5; %'sucess';
catch
out.fdflag(iWin) = 1; %'lomb_failed'
end
% 2. Pwelch (after resampling)
case 'welch'
% Resampling
rr_int = ApplyResamplingToRR(t_win,rr_0,HRVparams);
try
[PSDwelch,Fwelch] = pwelch(rr_int,[],[],2^nextpow2(length(rr_int)),sf);
[out.ulf(iWin), out.vlf(iWin), out.lf(iWin), out.hf(iWin), out.lfhf(iWin),...
out.ttlpwr(iWin)] = CalcLfHfParams(PSDwelch, Fwelch, limits, plot_on) ;
out.fdflag(iWin) = 5; %'sucess';
catch
out.fdflag(iWin) = 1; %'Pwelch faild';
end
% 3. FFT (after resampling)
case 'fft'
% Resampling
rr_int = ApplyResamplingToRR(t_win,rr_0,HRVparams);
try
Y_FFT2 = fft(rr_int); % fft using the original sample length
PSDfft = Y_FFT2.*conj(Y_FFT2)/length(rr_int);
Ffft = sf*(0:floor(length(rr_int)/2)+1)/length(rr_int);
[out.ulf(iWin), out.vlf(iWin), out.lf(iWin), out.hf(iWin), out.lfhf(iWin),...
out.ttlpwr(iWin)] = CalcLfHfParams(PSDfft(1:length(Ffft)), Ffft, limits, plot_on);
out.fdflag(iWin) = 5; %'sucess';
catch
out.fdflag(iWin) = 1; %'fft faild';
end
% 4. Burg (after resampling)
case 'burg'
% Resampling
rr_int = ApplyResamplingToRR(t_win,rr_0,HRVparams);
try
% ChengYu's Burg Method with resampled data
pb = HRVparams.freq.resampled_burg_poles; % pole setting
[PSD_Burg1,f_Burg1] = pburg(rr_int,pb,2^nextpow2(length(rr_int)),sf);
[out.ulf(iWin), out.vlf(iWin), out.lf(iWin), out.hf(iWin), out.lfhf(iWin),...
out.ttlpwr(iWin)] = CalcLfHfParams(PSD_Burg1,f_Burg1, limits, plot_on);
out.fdflag(iWin) = 5; %'sucess';
catch
out.fdflag(iWin) = 1; %'Burg faild';
end
end
else
out.fdflag(iWin) = 2; %'nt_enuf_hi_sqi_data'
end % end conditional statements that run only if SQI is adequate
else
out.fdflag(iWin) = 3; %'nt_enuf_data_in_win';
end % end check for sufficient data
end % end of loop through windows
% References:
% 5 minutes is the shortest period that HRV spectral metrics
% should be calculated according to 184(Clifford Thesis). With a 5 min
% window, the lowest frequency that can be theoretically resolved is
% 1/300 (.003 Hz).