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The Monte Carlo estimate of the p value of the hypergeometric test is described and 
advocated for the testing of the hypothesis that different treatments induce the same 
mutational spectrum. The hypergeometric test is a generalization of Fisher’s “exact” test 
for tables with more than two rows and two columns. Use of the test is demonstrated by 

the analysis of data from the characterization of nonsense mutations in the lac1 gene of 
Escherichia coli 

[Jnlike the chi-square test, the hypergeometric test remains valid when applied to sparse 
cross-classification tables. The hypergeometric test has the most discrimination power of 
any statistical test that could be employed routinely to compare samples from mutational 
spectra. Direct application of the hypergeometric test to large cross-classification tables is 
excessively computation intensive, but estimation of its p value via Monte Carlo techniques 
is practical. 

1. Introduction 

The analysis of the type and location of DNA 
alterations induced by mutagens has become a 
valuable and routine approach in the study of 
mutagenic mechanisms in Escheria coli (Miller, 
1983). Several systems exist that permit the 
determinat,ion of the exact nucleotide change in 
DNA responsible for the appearance of a mutant 
phenotype. The analysis of a number of 
independent mutations induced by a given agent or 
t,reatment yields information on the relative 
probability of inducing each type of nucleotide 
change at each potential site in the DNA. This in 
turn can then be used to infer information about 
the mechanism of mutagenesis, to classify mutagens 
into categories according to the types of changes 
they induce. and to compare different mutagens or 
treatment regimens. 

The most widely used assay is t’he ZacI system in 
which ZacI nonsense mutants are characterized 
genet’ically t,o infer the change in DNA sequence 
(Coulondre & Miller, 1977). Although samples of 
mutants from more than a dozen treatments have 
been characterized in this system, no systematic 
statistical hypothesis testing using this data has 
been reported. 

We present here a statistical model for the 

t Present address: 12820 Beechwood Ct. Raleigh, NC 
27614. l’.S.A. 

analysis of mutational spectra. Based on this 
model, and some other considerations related to the 
sample size, we will advocate the use of a particular 
statistical procedure for testing the hypothesis that 
two treatment conditions have no differential effect 
on the spectrum of detectable mutants induced in a 
gene. Examples using data obtained from the ErccI 
system will be presented. 

2. A Statistical Model for Mutational Spectra 

When a sample of mutant genes is categorized 
according to the specific DNA changes that have 
occurred, the result’ is a 1 x N table where fi is the 
number of different detectable modifications in the 
gene’s DNA sequence. For instance. N = 36 in the 
case of the set of identifiable amber nonsense 
mutants in Iacl. This table can be modeled as a 
sample drawn from a multinomial distribution 
(Hoe1 et al., 1971) with parameters (8: p,, p,, ., 
pN) where pi represents the probability that, a 
mutant will fall into category i, and N represents 
the number of potential categories of mubation. and 
S represents the sample size. 

The term mutational spectra, has been used 
somewhat informally in the literature to refer bot.h 
to the pi values (i.e. the underlying reality) and to 
the classification tables resulting from experiments. 
We prefer to use t,his term to refer only to the 
underlying reality. or what statist,iaians call the 
population parameters. We will call the particular 
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table of classified mutants that results from an 
experiment involving a single treatment a spectral 
sample. Of course, this spectral sample only roughly 
represents the mutational spectrum. The larger the 
number of mutants in the spectral sample, the more 
faithfully it represents the spectrum. 

3. Possible Statistical Tests to Compare 
Spectral Samples 

We wish to choose a statistical procedure to test 
the null hypothesis that two spectral samples were 
drawn from the same population. If the samples are 
collected from cultures treated under differing 
conditions, then this will constitute a test of the 
null hypothesis that the treatment conditions had 
no differential effect on the spectrum. 

To test this hypothesis, we analyze the M x N 
cross-tabulation containing the mutants 
characterized for M treatments cross-classified by 
treatment and type/site of mutation. The factor 
that differs in the treatments could be the 
mutagenic agent, concentration of the agent, 
treatment protocol, strain, laboratory, or any other 
controllable factor of interest. The null hypothesis 
of no effect can be represented by a set of M 
identical multinomial distributions, possibly with 
M different sample sizes. 

The traditional tool for testing this null 
hypothesis is Pearson’s chi-square test (see, for 
instance, Upton, 1978). However, assuring the 
accuracy of the p value from this test requires 
certain minimum numbers of mutants in each cell 
of the cross-tabulation, because the test is based on 
an approximation that is not valid for small 
samples. Fienberg (1980) recommends an average 
cell size of at least ten counts. The small sample 
adequacy of the chi-square approximation is still an 
active research topic, and opinions differ on the 
minimum sample size below which the chi-square is 
too inaccurate t,o be useful. Fingleton (1984) 
indicates that an average cell count of five might be 
adequate, unless the counts are highly concentrated 
in a few categories. Simulations by Roscoe & Byars 
(1971) show that a 40% error can occur in the chi- 
square significance level when testing a 2 x 5 table 
with an average cell count of four in a situation 
where the counts tended to be concentrated in a few 
(1 to 3) of the five categories, Most of the spectral 
samples obtained from ZacI nonsense mutants and 
all of the spectral samples obtained thus far by 
direct sequencing do not meet the most liberal 
sample size criterion for application of the chi- 
square test. 

There is another statistical test, which we will 
call the hypergeometric test, that is suitable for 
testing this null hypothesis. The hypergeometric 
test is a generalization of the well known Fisher’s 
“exact” test (two-tailed) to tables with more than 
two rows and columns. The hypergeometric test 
was described by Freeman & Halton (1951). Tocher 
(1951) proved that the hypergeometric test yields 
results almost identical with the uniformly most 

powerful unbiased (UMPU)? test, except when 
applied to extremely sparse tables. In this context, 
a cross-classification table would not be considered 
extremely sparse if each of the spectral samples to 
be compared had at least one category that 
contained four or more mutants. The fact that the 
hypergeometric test is almost identical with the 
UMPU test means that the hypergeometric test has 
virtually optimal discrimination power when used 
to compare spectral samples. (One might ask “Why 
not just use t’he UMPU test?” The GMPU test, 
although of theoretical importance, is not 
considered to be suitable for routine use because it 
yields odd results in certain degenerate cases.) 

However, the hypergeometric test is extremely 
computation intensive when applied to tables with 
sample sizes as large as any of the EacI spectral 
samples thus far published (n > 40). A computer 
subroutine for the hypergeometric test is available 
in the Tnternational Mathematical and Statistical 
Library (1984). A much more efficient computer 
program for this test, based on an algorithm 
developed by Pagan0 & Halvorsen (1981), is 
available from Pagano.$ Neither implementation is 
fast enough to be applied to cross-tabulations of 
most of the published spectral samples because 
of the computation-int’ensive nature of the 
algorithms. 

Although t,he hypergeomet’ric test cannot be 
applied directly, the p value resulting from this test 
can be estimated using Monte Carlo techniques 
(Agresti et al., 1979). This estimation procedure is 
the one we have chosen to use to compare spectral 
samples. 

The algorithm for Monte Carlo estimation of the 
p value of the hypergeometric test is as follows. 

(1) Calculate the hypergeometric probability of 
t.he N x M table representing the mutants observed 
in the experiments cross-classified by the M 
treatments and the 3 types and sites of mutation. 

The hypergeometric probability of the observed 
table. p, is given by the formula 

N M 

P= 

inl tRi!) jnl Ccj!) 

T! fi fi (X,!) 
i=l j=l 

where the Ri and Cj values are the row and column 
marginal totals, T is the total number of observed 
mutants, and the X, values are frequencies of 
mutants in each cell. 

For example, the components of this equation for 
Table 1 are as follows. N indicates the number of 
rows in the table, i.e. N = 36. R, through R,, 
would represent the combined number of mutants 
in each category from both of the spectral samples 
being compared; for instance, R,, = 14. M = 2, 

t Abbreviations used: UMPU, uniformly most 
powerful unbiased: u.v.. ultraviolet; CPPE, 3,4-epoxy- 
cyclopenta[cd]-pyrene. 

$ M. Pagano, Sidney Farber Cancer Institute. 
677 Huntington Ave., Boston MA 02115. U.S.A. 
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Table 1 
Distribution of lacl amber nonsense mutations 

induced by CPPE in two strains of E. coli 

hsr substit.utions Site -pKMlOl +pKMlOl 

t: .(’ -+A,T A5 0 0 
A6 1 0 
A49 1 0 
Al.5 0 0 
A 16 0 0 
Al9 1 0 
A21 1 0 
823 0 0 
AH 0 0 
,426 0 0 
831 0 0 
L433 0 0 
A34 2 3 
A3<5 0 0 

(:.(‘+T’&d A2 8 1 
A7 0 5 
410 1 3 
Al2 5 4 
413 3 2 
A17 10 4 
‘420 5 9 
A25 0 0 
Ad7 0 1 
A28 3 ,- 

A T -+ T A All 1 ;r 
Al8 2 1 
A32 0 3 
A36 0 0 

A T -+ (‘ G A3 0 0 
A4 2 0 
All 0 0 
A22 0 1 
‘430 1 0 

c: (‘ -+ (’ c: Al 1 0 
A8 0 0 
829 0 0 

Total 36 sites 48 42 

Data from Eisenstadt et al. (1962). 

since two spectral samples are tabulated for 
comparison: C, = 48 and C, = 42; T = 90. The X,, 
(i = 1. .: 36; j = 1, 2) are the incidence of mutants 
in each sample. For instance, X,,, 1, which is the 
incidence of amber nonsense mutants at site 17 in 
t,he -pKMlOl strain, is equal to 10. 

(2) Simulate the drawing of tables at random 
from the same hypergeometric distribution (i.e. the 
hypergeometric distribution parameterized by the 
row and column marginal totals of the observed 
table) using the method presented by Agresti et al. 
(1979, p. 77). The hypergeometric probability of 
each simulated table is calculated. 

(3) The proportion of the simulated tables as 
improbable or more improbable than the observed 
table is t’he estimate of the p value of the observed 
table under the null hypothesis. This estimate will 
be close to the p value of the hypergeometric test if 
the number of simulated samples is sufficiently 
large. 

4. Comparison of Spectral Samples 

We have surveyed the literature to find spectral 
samples to compare using the Monte Carlo 
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Figure 1. Frequency histogram of spontaneously 
occurring amber nonsense mutations in the ZacI gene in 
E. co&, characterized by Coulondre & Miller (1977) 
(above) and Glickman et al. (1980) (below. inverted). No 
significant difference. 

hypergeometric test. Most of the differential 
responses of mutational spectra to treatments in 
the lacl system are obvious without statistical 
analysis. The sole fact that these treatments had 
differential effects on the mutational spectra could 
have been established with much smaller samples. 
We will present three historical comparisons of 
published spectral samples in order to demonstrate 
the usefulness of the hypergeometric test. We will 
consider a p value less than 0.05 significant. A total 
of 1500 simulated samples was used to obtain the 
estimated p values. The basis for calculating 
confidence intervals for this estimated p value was 
presented by Agresti et al. (1979). 

Coulondre & Miller (1977) and Glickman et al. 
(1980) have performed independent experiments in 
different laboratories to characterize samples of 
spontaneous lac1 nonsense mutations. The 2 x 36 
cross-tabulation of amber mutants from these two 
experiments, presented graphically here (Fig. I), 
was tested with the Monte Carlo hypergeometric 
test. No significant difference was found. Also, no 
significant difference was found when the ochre 
samples from these same experiments were 
compared. 

Coulondre & Miller (1977) and Todd & Glickman 
(1982) characterized nonsense mutations induced by 
similar doses of U.V. in two independent 
experiments. The experiment of Todd & Glickman 
was not a reproduction of the original Miller 
protocol. In the Todd & Glickman experiment, the 
bacteria were grown in minimal media after 
exposure to U.V. light. In the Coulondre & Miller 
experiment, the bacteria were allowed to resume 
replication after exposure in a rich media. The 
2 x 36 table of amber and ochre mutations 
occurring in these experiments were compared with 
the Monte Carlo hypergeometric test. The amber 
spectral samples (Fig. 2) were found t)o be signifi- 
cantly different. The p value from t’his test is an 
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Figure 2. Frequency histogram of u.v.-induced amber 
nonsense mutations in the lac1 gene in E. coli charac- 
terized by Coulondre & Miller (1977) (above) and Todd & 
Glickman (1982) (below, inverted). The spectra are 
different (p < O-01). 

The asterisk indicates that a difference in the relative 
mutation rate at site 35 would fully account for the 
overall difference. 

estimate that has a confidence interval. The p value 
was estimated to be 0 with a 90% confidence 
interval of 0.002 to 0. The ochre spectral samples 
from the same experiments were not significantly 
different. It was found that the difference in the 
amber spectral samples could be explained by a 
change in the relative mutation rate at amber site 
35. When the data for amber site 35 are set aside 
and the remaining 2 x 35 cross-tabulation was 
tested, there was no significant difference. No other 
explanation based on a mutation rate change at a 
single site can account for difference in these 
spectral samples. 

Eisenstadt et al. (1982) characterized nonsense 
mutations induced in the ZacI gene by 3,4-epoxy- 
cyclopenta[cd]-pyrene (CPPE) in two strains of 
E. coli, one with and one without the pKMlO1 
mutation-enhancing plasmid. The estimate of the p 
value of the hypergeometric test of the 2 x 36 table 
(Table 1) of CPPE-induced amber mutations in 
+pKMlOl and -pKMlOl strains was O-019, with a 
9O”/b confidence interval of O-026 to 0.013. The test 
of the ochre mutants showed no significant 
difference. The Bonferroni correction should be used 
to correct for the fact that two hypothesis tests (i.e. 
the comparison of the amber samples and the 
independent comparison of the ochre samples) were 
performed. The correction consists of multiplying 
each p value by the total number of hypothesis 
tests performed. This results in a p value of 0.038. 
So, the spectral samples are significantly different. 

5. Discussion 

The comparison of the spontaneous spectral 
samples shows a good level of interlaboratory 

reproducibility for the spontaneous spectrum. Of 
course, the hypothesis test does not prove that the 
null hypothesis is true. Larger samples would 
provide more discrimination power. The result 
shows good operational reproducibility up to a 
Sample size of 100, at least. It would be interesting 
to see if relative probabilities of nonsense mutations 
in the ZacI gene have such a high level of 
reproducibility for other treatments. The results of 
the comparison of the u.v.-induced spectral samples 
leads to the conclusion that the different media in 
which the bacteria were grown after exposure or 
some other unreported difference in the experiments 
had an effect on the relative mutation rates at some 
sites. In the study of CPPE-induced mutants, there 
was a 15fold increase in the number of lad 
nonsense mutants in the +pKMlOl strain. 
Considering this, it is surprising that the spectral 
samples are so similar. The difference in the spectra 
could be an indirect effect of this large increase in 
induced mutagenesis. In an attempt to interpret the 
results of the comparison of the CPPE-induced 
spectral samples, the 2 x 36 table of amber mutants 
classified by site was collapsed to a 2 x 5 table 
classified only by type, and this table was tested. 
No significant difference was found. This means 
that the result cannot be explained as a change in 
the type-specific mutation rates. The statistical 
analysis was not taken further, but inspection of 
the G. C -+ T * A base substitutions classified by site 
suggests that the difference in the CPPE-induced 
spectral samples could be explained by changes in 
the relative mutation rates among the sites where 
G. C * T. A base substitutions can be detected. 

In the experiments analyzed above, each 
spontaneous mutant was taken from a different 
culture. However, groups of the u.v.-induced and 
CPPE-induced mutants were taken from the same 
treated cultures. This means that the observed 
distribution of u.v.-induced and CPPE-induced 
mutants would not reflect any interculture 
variability that may exist in these experiments. We 
have assumed that the microbe is the experimental 
unit in our analysis, but this is appropriate only if 
there is no interculture variability in spectra. All 
the posit,ive results we have reported could be 
explained by excess interculture variance. In the 
next. section we will present an experimental design 
for the researcher who is willing to go to some extra 
effort, to avoid having to make the assumption that 
no interculture variability exists. 

6. The Design of Experiments for the 
Comparison of Spectral Samples 

In this section we describe an experimental 
design that will test the null hypothesis that a 
single factor has no effect on the spectrum of 
detectable mutations in a gene. This design is 
applicable to both the lac1 nonsense mutation 
characterization and to the classification of 
mutations by direct sequence analysis. 

Treatment 1 and treatment 2 are assumed to 
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differ by only the factor of interest. S is the sample essential for a thorough statistical analysis of 
size in each treatment. spectral samples collected in this manner. 

(1) 
(2) 
(3) 

(4) 
(5) 

(6) 

Prepare 2 x S tubes of media. 
Inoculate the tubes with bacteria. 
Select S of the cultures at random. Apply 
treament I to these selected S cultures. Apply 
treatment 2 to the remaining cultures. 
Characterize one mutant per culture. 
Cross-tabulate the results by treatment versus 
type of modification to the DNA sequence. 
Estimate the p value under the null 
hypothesis using Monte Carlo estimation of 
the p value of the hypergeometric test. 

It is assumed that the cultures are handled in an 
equivalent manner. 

We propose t,his experimental design for the 
following reasons. 

(1) 

(2) 

(3) 

(4) 

(5) 

(6) 

Two mutants selected from the same culture 
may have arisen from the same mutagenic 
event. The possibility of this can be reduced 
by applying the treatment for less than a full 
rell cycle a.t the end of the culture’s growth, if 
the treatment is mutagenic enough to render 
the spontaneous background negligible. It 
ran also be reduced by selecting only a small 
percentage of the mutants generated in each 
culture. The possibility is eliminated by 
selecting a single mutant per culture. 
This protocol is not much more labor 
intensive t)han some protocols used in past 
experiments, e.g. ,the selection of a single 
mutant per culture. The proposed protocol 
would require, in addition, that each culture 
be individually treated. 
We have presented a statistical method that 
can detect smaller differences in spectral 
sample than have heretofore been revealed. It 
is appropriate t,o concern ourselves with the 
elimination of subtle confounders of the 
results. 
This experimental design may result in better 
interlaboratory reproducibility of spectral 
samples. Any interculture variance will be 
tnaximizetl within, rather than between, 
spectral samples. 
The characterizat.ion of the selected mutants 
is labor intensive, particularly when direct 
sequencing is employed. Using this experi- 
mental design will not significantly increase 
the total work involved in the project. 
I.‘se of this protocol ensures that the chosen 
significance level represents the probability of 
incorrectly finding a significant difference 
between spectral samples when the 
treatments in fact have no differential effect 
on the mutat,ional spectra. 

Researchers who use experimental designs that 
involve the selection of multiple mutants per 
culture should retain and make available the 
classification of the mutants by culture as well as 
by type/site and treatment. This information is 

7. Conclusion 

The hypothesis that two treatments induce the 
same mutational spectra can be tested by the 
application of the Monte Carlo estimate of the p 
value of the hypergeometric test to the results of 
properly designed experiments. This provides a 
means of assessing the interlaboratory and intra- 
laboratory reproducibility of spectral samples, and 
early results concerning reproducibility are good. 
Also, researchers will be able to distinguish the 
differences in mutation spectra with smaller sets of 
mutants. 

We have not presented a general method for 
forming an assessment of what the differences are in 
spectra induced by two treatments. The difference 
in the U.V. spectra was a special, and easy, case. A 
general method for statistical assessment of the 
theories about mutational spectra is a matter for 
future research. 

A computer program that implements the Monte 
Carlo estimation of the p value of the hyper- 
geometric test is available from the authors. The 
VAX-l 1 FORTRAN-77 program utilizes sub- 
routines from the International Mathematical and 
Statistical Library. 

We gratefully acknowledge helpful discussions with 
Barry Margolin, Kerrie Boyle, Tom Starr. Ray Buck and 
Nancy Adams. We thank Jeffrey Miller and Barry 
Glickman for clarifying the differences in t.he experiments 
that yielded the u.v.-induced spectral samples. 

The description of the experimental design we have 
presented drew some wording and concepts from the 
description of the fluctuation test by Collings et nl. (1981). 
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