Determinant quantum Monte Carlo applied to the Hubbard model
Switch branches/tags
Nothing to show
Clone or download
Fetching latest commit…
Cannot retrieve the latest commit at this time.
Failed to load latest commit information.

Determinant quantum Monte Carlo implementation

C implementation and test files of the determinant quantum Monte Carlo (DQMC) method applied to Hubbard-type models.

A Makefile is available in the bin subfolder, assuming that the Intel C compiler and MKL are available.

To run the code, call hubbard_dqmc <paramfile>; some example parameter files are provided in the bin subfolder.

The Mathematica unit test notebooks can be opened by Mathematica or the free CDF player.

Copyright (c) 2015-2017, Edwin Huang and Christian B. Mendl

This code was developed at Stanford University with support from the U.S. Department of Energy (DOE), Office of Basic Energy Sciences, Division of Materials Sciences and Engineering, under Contract No. DE-AC02-76SF00515.


  1. R. Blankenbecler, D. J. Scalapino, R. L. Sugar
    Monte Carlo calculations of coupled boson-fermion systems. I
    Phys. Rev. D 24, 2278 (1981) DOI
  2. S. R. White, D. J. Scalapino, R. L. Sugar, E. Y. Loh, J. E. Gubernatis, and R. T. Scalettar
    Numerical study of the two-dimensional Hubbard model
    Phys. Rev. B 40, 506-516 (1989) DOI
  3. Z. Bai, C.-R. Lee, R.-C. Li, S. Xu
    Stable solutions of linear systems involving long chain of matrix multiplications
    Linear Algebra Appl. 435, 659-673 (2011) DOI
  4. A. Tomas, C.-C. Chang, R. Scalettar, Z. Bai
    Advancing large scale many-body QMC simulations on GPU accelerated multicore systems
    IEEE 26th International Parallel & Distributed Processing Symposium (IPDPS) 308-319 (2012) DOI
  5. S. Gogolenko, Z. Bai, R. Scalettar
    Structured orthogonal inversion of block p-cyclic matrices on multicore with GPU accelerators
    Euro-Par 2014 Parallel Processing, LNCS 8632, pages 524-535 (2014) DOI
  6. C. Jiang, Z. Bai, R. Scalettar
    A fast selected inversion algorithm for Green's function calculation in many-body quantum Monte Carlo simulations
    IEEE International Parallel and Distributed Processing Symposium, 2016 DOI