
Code development workflow and good
practices

J. Sturdy

Wayne State University

May 15, 2018 GEM Online/Commissioning Meeting

Why a manifesto?

⇒ Goal: Minimize the effects from collaboration with people using the tools
they are comfortable with

Collaborative effort means working with people who may be doing things
differently

Different text editors sometimes treat “basic” things differently, be aware of this

Different operating systems treat line endings differently

We have to work to ensure that the differences in style and mechanics do not
result in a difficult to understand and document codebase, while at the same time
allowing developers the freedom to develop code in a way that is comfortable for
them

Example

newline at end of file

CRLF vs LF

Before adding/committing a change, do a git diff

2.a/11

Why a manifesto?

⇒ Goal: Minimize the effects from collaboration with people using the tools
they are comfortable with

Collaborative effort means working with people who may be doing things
differently

Different text editors sometimes treat “basic” things differently, be aware of this

Different operating systems treat line endings differently

We have to work to ensure that the differences in style and mechanics do not
result in a difficult to understand and document codebase, while at the same time
allowing developers the freedom to develop code in a way that is comfortable for
them

Example

newline at end of file

CRLF vs LF

Before adding/committing a change, do a git diff

2.b/11

C/C++ style

⇒ Goal: Minimize the differences in style from different parts of the code so
the uniformity of the codebase is maintained

Have loosely been following the Google style guide
https://google.github.io/styleguide/cppguide.html

Slowly adapting all our code to adhere to several of the guidelines

3.a/11

https://google.github.io/styleguide/cppguide.html

git workflow

⇒ Goal: Coherent and cohesive development environment

All this style and semantics aside, at the crux, collaborative development requires
cooperation

Our development is primarily based on the git-flow workflow

Primary “central” repository

Primary (protected) branches in the central repository

master

develop

release-<rel-ver>

Secondary branches (possibly) in the central repository, probably in your fork

feature-<some feature>

hotfix-<some hotfix>

bugfix-<some bugfix>

Developers fork the central repository to their own github/gitlab account

Pull requests to central when features have been developed

Pull requests between developers for specific new features not yet pushed to main
repository

4.a/11

http://nvie.com/posts/a-successful-git-branching-model/

git workflow

⇒ Goal: Coherent and cohesive development environment

All this style and semantics aside, at the crux, collaborative development requires
cooperation
Our development is primarily based on the git-flow workflow

Primary “central” repository

Primary (protected) branches in the central repository
master

develop

release-<rel-ver>

Secondary branches (possibly) in the central repository, probably in your fork

feature-<some feature>

hotfix-<some hotfix>

bugfix-<some bugfix>

Branches that are central should not be committed to directly, and should not be
merged in a fork unless special care is taken to avoid extraneous “merge commits”

master and develop are primary and protected

master should always be “stable”, and all (most?) release tags will exist on
master

develop will be the initial branch point for all future release-s

develop branch should be the branch point for (almost) all feature-s

release-<rel-ver> will be protected

If your fork has these branches, there should be no difference between them and
the central repository

4.b/11

http://nvie.com/posts/a-successful-git-branching-model/

git workflow

⇒ Goal: Coherent and cohesive development environment

All this style and semantics aside, at the crux, collaborative development requires
cooperation

Our development is primarily based on the git-flow workflow

Primary “central” repository

Primary (protected) branches in the central repository

master

develop

release-<rel-ver>

Secondary branches (possibly) in the central repository, probably in your fork

feature-<some feature>

hotfix-<some hotfix>

bugfix-<some bugfix>

release-<rel-ver>

Is a protected branch, used as an integration area for features targeting a new release

Is branched off of develop once a release is imminent and new features in this release
are frozen
Specific features may get their own branch from release-

4.c/11

http://nvie.com/posts/a-successful-git-branching-model/

git workflow

⇒ Goal: Coherent and cohesive development environment

All this style and semantics aside, at the crux, collaborative development requires
cooperation

Our development is primarily based on the git-flow workflow

Primary “central” repository

Primary (protected) branches in the central repository

master

develop

release-<rel-ver>

Secondary branches (possibly) in the central repository, probably in your fork

feature-<some feature>

hotfix-<some hotfix>

bugfix-<some bugfix>

Included into appropriate upstream branch via pull request

feature- branches are for starting development of a new feature to be added to
the code, they are made off of the develop branch

hotfix- branches are for specific bugs discovered in master

bugfix- branches are for specific bugs discovered in other protected branches,
and should be created appropriately

4.d/11

http://nvie.com/posts/a-successful-git-branching-model/

git workflow

⇒ Goal: Coherent and cohesive development environment

All this style and semantics aside, at the crux, collaborative development requires
cooperation

Our development is primarily based on the git-flow workflow

Primary “central” repository

Primary (protected) branches in the central repository

master

develop

release-<rel-ver>

Secondary branches (possibly) in the central repository, probably in your fork

feature-<some feature>

hotfix-<some hotfix>

bugfix-<some bugfix>

Included into appropriate upstream branch via pull request

feature- branches are for starting development of a new feature to be added to
the code, they are made off of the develop branch

hotfix- branches are for specific bugs discovered in master

bugfix- branches are for specific bugs discovered in other protected branches,
and should be created appropriately

4.e/11

http://nvie.com/posts/a-successful-git-branching-model/

git workflow

⇒ Goal: Coherent and cohesive development environment

All this style and semantics aside, at the crux, collaborative development requires
cooperation

Our development is primarily based on the git-flow workflow

Primary “central” repository

Primary (protected) branches in the central repository

master

develop

release-<rel-ver>

Secondary branches (possibly) in the central repository, probably in your fork

feature-<some feature>

hotfix-<some hotfix>

bugfix-<some bugfix>

Included into appropriate upstream branch via pull request

feature- branches are for starting development of a new feature to be added to
the code, they are made off of the develop branch

hotfix- branches are for specific bugs discovered in master

bugfix- branches are for specific bugs discovered in other protected branches,
and should be created appropriately

4.f/11

http://nvie.com/posts/a-successful-git-branching-model/

Hotfix example

⇒ Goal: Fix specific known problem and reintegrate as quickly as possible
with minimal extraneous changes

Suppose a bug is found in some current “stable” tag

Obtain the up-to-date master branch

Create a new branch “hotfix-some-bug”

Find and fix the bug modifying nothing else

Push the hotfix branch to github

Create a pull request to the central master

Create a pull request to the central develop or current release- branch (maintainers
should perform the appropriate cherry-pick/patch application)

Command examples

5.a/11

Hotfix example

⇒ Goal: Fix specific known problem and reintegrate as quickly as possible
with minimal extraneous changes

Suppose a bug is found in some current “stable” tag

Obtain the up-to-date master branch

Create a new branch “hotfix-some-bug”

Find and fix the bug modifying nothing else

Push the hotfix branch to github

Create a pull request to the central master

Create a pull request to the central develop or current release- branch (maintainers
should perform the appropriate cherry-pick/patch application)

Command examples

git remote add gemdaq git@github.com:cms-gem-daq-project/<repo>.git
git checkout -b gemdaq-master gemdaq/master

5.b/11

Hotfix example

⇒ Goal: Fix specific known problem and reintegrate as quickly as possible
with minimal extraneous changes

Suppose a bug is found in some current “stable” tag

Obtain the up-to-date master branch

Create a new branch “hotfix-some-bug”

Find and fix the bug modifying nothing else

Push the hotfix branch to github

Create a pull request to the central master

Create a pull request to the central develop or current release- branch (maintainers
should perform the appropriate cherry-pick/patch application)

Command examples

git checkout -b hotfix-some-bug

5.c/11

Hotfix example

⇒ Goal: Fix specific known problem and reintegrate as quickly as possible
with minimal extraneous changes

Suppose a bug is found in some current “stable” tag

Obtain the up-to-date master branch

Create a new branch “hotfix-some-bug”

Find and fix the bug modifying nothing else

Push the hotfix branch to github

Create a pull request to the central master

Create a pull request to the central develop or current release- branch (maintainers
should perform the appropriate cherry-pick/patch application)

Command examples

5.d/11

Hotfix example

⇒ Goal: Fix specific known problem and reintegrate as quickly as possible
with minimal extraneous changes

Suppose a bug is found in some current “stable” tag

Obtain the up-to-date master branch

Create a new branch “hotfix-some-bug”

Find and fix the bug modifying nothing else

Push the hotfix branch to github

Create a pull request to the central master

Create a pull request to the central develop or current release- branch (maintainers
should perform the appropriate cherry-pick/patch application)

Command examples

git commit -m "fixed #N"
git push --set-upstream origin hotfix-some-bug:hotfix-some-bug

5.e/11

Hotfix example

⇒ Goal: Fix specific known problem and reintegrate as quickly as possible
with minimal extraneous changes

Suppose a bug is found in some current “stable” tag

Obtain the up-to-date master branch

Create a new branch “hotfix-some-bug”

Find and fix the bug modifying nothing else

Push the hotfix branch to github

Create a pull request to the central master

Create a pull request to the central develop or current release- branch (maintainers
should perform the appropriate cherry-pick/patch application)

Command examples

5.f/11

Hotfix example

⇒ Goal: Fix specific known problem and reintegrate as quickly as possible
with minimal extraneous changes

Suppose a bug is found in some current “stable” tag

Obtain the up-to-date master branch

Create a new branch “hotfix-some-bug”

Find and fix the bug modifying nothing else

Push the hotfix branch to github

Create a pull request to the central master

Create a pull request to the central develop or current release- branch (maintainers
should perform the appropriate cherry-pick/patch application)

Command examples

5.g/11

Feature development example

⇒ Goal: Isolate different features and the code required to develop them,
streamlines the simultaneous parallel developments by different people on
different features

Decide to develop “cool new feature” for some future release

Branch off of develop

The feature should be compartmentalized as much as possible

Including changes from other concurrent developments is fine if they go through the
develop branch, or the upstream protected branch from which your feature- branch
was created

When finished, push your feature- branch and create a pull request to the
appropriate upstream branch

Command examples

6.a/11

Feature development example

⇒ Goal: Isolate different features and the code required to develop them,
streamlines the simultaneous parallel developments by different people on
different features

Decide to develop “cool new feature” for some future release

Branch off of develop

The feature should be compartmentalized as much as possible

Including changes from other concurrent developments is fine if they go through the
develop branch, or the upstream protected branch from which your feature- branch
was created

When finished, push your feature- branch and create a pull request to the
appropriate upstream branch

Command examples

git remote add gemdaq git@github.com:cms-gem-daq-project/<repo>.git
git checkout -b gemdaq-develop gemdaq/develop
git checkout -b cool-new-feature

6.b/11

Feature development example

⇒ Goal: Isolate different features and the code required to develop them,
streamlines the simultaneous parallel developments by different people on
different features

Decide to develop “cool new feature” for some future release

Branch off of develop

The feature should be compartmentalized as much as possible

Including changes from other concurrent developments is fine if they go through the
develop branch, or the upstream protected branch from which your feature- branch
was created

When finished, push your feature- branch and create a pull request to the
appropriate upstream branch

Command examples

6.c/11

Feature development example

⇒ Goal: Isolate different features and the code required to develop them,
streamlines the simultaneous parallel developments by different people on
different features

Decide to develop “cool new feature” for some future release

Branch off of develop

The feature should be compartmentalized as much as possible

Including changes from other concurrent developments is fine if they go through the
develop branch, or the upstream protected branch from which your feature- branch
was created

When finished, push your feature- branch and create a pull request to the
appropriate upstream branch

Command examples

git fetch -p --all
git checkout gemdaq-develop
git pull
git checkout cool-new-feature
git rebase gemdaq-develop

6.d/11

Feature development example

⇒ Goal: Isolate different features and the code required to develop them,
streamlines the simultaneous parallel developments by different people on
different features

Decide to develop “cool new feature” for some future release

Branch off of develop

The feature should be compartmentalized as much as possible

Including changes from other concurrent developments is fine if they go through the
develop branch, or the upstream protected branch from which your feature- branch
was created

When finished, push your feature- branch and create a pull request to the
appropriate upstream branch

Command examples

git checkout cool-new-feature
git push --set-upstream origin cool-new-feature:cool-new-feature

6.e/11

Release example

⇒ Goal: Bring in all features up to a certain point to target a new stable
release of the software

release-<rel-ver> branches will be created only by repository maintainers when
a new release is being targeted

After the branch is made, feature branches merge into the release branch (done
via pull requests)

When finalized, the release-<rel-ver> branch is merged into develop, and
then into master and tagged

Command examples

git checkout develop
git checkout -b release-1.2

7.a/11

Release example

⇒ Goal: Bring in all features up to a certain point to target a new stable
release of the software

release-<rel-ver> branches will be created only by repository maintainers when
a new release is being targeted

After the branch is made, feature branches merge into the release branch (done
via pull requests)

When finalized, the release-<rel-ver> branch is merged into develop, and
then into master and tagged

Command examples

git merge --no-ff feature-1.2-cool-1
git commit -m "merging feature-1.2-cool-1 into release-1.2"
git merge --no-ff feature-1.2-cool-2
git commit -m "merging feature-1.2-cool-2 into release-1.2"

7.b/11

Release example

⇒ Goal: Bring in all features up to a certain point to target a new stable
release of the software

release-<rel-ver> branches will be created only by repository maintainers when
a new release is being targeted

After the branch is made, feature branches merge into the release branch (done
via pull requests)

When finalized, the release-<rel-ver> branch is merged into develop, and
then into master and tagged

Command examples

git checkout develop
git merge --no-ff release-1.2
git commit -m "merging release-1.2 into develop"
git checkout master
git merge --no-ff release-1.2
git commit -m "merging release-1.2 into master"
git tag -a -m "tagging release-1.2 as v1.2.0" v1.2.0

7.c/11

General contribution guidelines

⇒ Goal: Behaviours that will make everyone’s lives easier, list to be added to

Do not git rebase a branch which you have pushed which others are now using

Do not git commit -a without verifying that you haven’t added unexpected or
unnecessary files

Especially don’t do this and subsequently git push

8.a/11

Backup

9.a/11

Important Links

github organization (if you want develop, subscribe, fork, and issue pull requests)
https://github.com/cms-gem-daq-project

gitlab organization (will probably migrate fully here at some point)
https://gitlab.cern.ch/groups/cms-gem-daq-project/

Based on the following workflow
http://nvie.com/posts/a-successful-git-branching-model/

10.a/11

https://github.com/cms-gem-daq-project
https://gitlab.cern.ch/groups/cms-gem-daq-project/
http://nvie.com/posts/a-successful-git-branching-model/

Updating github repositories to new structure

⇒ Goal: Create new github repository for each of the split repositories, while
keeping commit history

gemdaq-testing (cmsgemos) and gem-light-dqm are now separate repositories

To update your github to reflect the new behaviour do the following

Ensure that your gem-daq-code repository is up to date with the central gem-daq-code

This means that your develop, master, and release branches are concurrent
Any unmerged branches that have ongoing developments should be pushed to your
gem-daq-code github repository

Fork the new repositories from the central into your own github

Clone your gem-daq-project repository somewhere

Example
git clone git@github.com:jsturdy/gem-daq-code.git cmsgemos

split-em-up.sh $PWD/cmsgemos gemdaq-testing git@github.com:jsturdy/cmsgemos.git js

git clone git@github.com:jsturdy/gem-daq-code.git gem-light-dqm

split-em-up.sh $PWD/gem-light-dqm gem-light-dqm

git@github.com:jsturdy/gem-light-dqm.git js

11.a/11

	Motivation

