
CPU Performance Study of
HGCalorimeter Code
Abhishek Das
Advisor- Dr. Mike Hildreth
University of Notre Dame

To summarise the work -

We modified the way the HGCDigitizerBase produces gaussian noise and adds it
to the Simhits in the digitization step of a MC Simulation workflow to make it run
faster.

What we found in the original HGCDigitizer Code

HGCalSimProducer has 4 subdigitizer modules - HEFrontDigitizer, HFNoseDigitizer
EEDigitizer, HEBackDigitizer(HGCDigitizerBase runs on first 3 modules).

HFNoseDigitizer has 910300 active cell units(with unique DetIds) ;
910300 x 15=13,654,500 simhits/event

EEDigitizer has 4126824 active cell units ; 4126824 x 15 = 61,902,360 simhits/event

HEFrontDigitizer has 1882950 active cell units ; 1882950 x 15 = 28,244,250
simhits/event

In the original Digitizer code, for the digitization step these subdigitizers generate
random gaussian noise(mean=0,stddev=1) for each simhit for each event to mix with
the simhits.

Our modification...

We recognized the redundancy of generating millions of random numbers freshly
for each event, especially when we saw from the CPU performance profiler that the
random number generator consumes nearly 13.3%(for zero pileup case) of the total
CPU time and worsening the time complexity of the digitizer step in the workflow.

Performance worsens further when we run the code for realistic high PU workflow.

Instead of generating random gaussian noise on the fly, we precompute and store
10000x15 = 150,000 random gaussian numbers(separately for each of the 3
digitizers mentioned) in a vector before starting to process the events.

In the digitization step, we hash each simhit uniformly to one of the random
numbers stored in the vector and use that random number as noise for each event.

Workflow specification(for zero PU and classical mixing of PU) :

We experimented with the performance of the HGCal code in the digitization
step on TTbar MC events at 13/14 TeV with a varied number of pileup mixing.

For zero pileup - step2 --conditions auto:phase2_realistic -s
DIGI:pdigi_valid,L1,L1TrackTrigger,DIGI2RAW,HLT:@fake2 --datatier
GEN-SIM-DIGI-RAW -n 10 --geometry Extended2023D31 --era Phase2C6
--eventcontent FEVTDEBUGHLT

For finite pileup mixing - step2 --conditions auto:phase2_realistic --pileup_input
das:/RelValMinBias_14TeV/1/GEN-SIM -n 10 --era Phase2C6 --eventcontent
FEVTDEBUGHLT -s DIGI:pdigi_valid,L1,L1TrackTrigger,DIGI2RAW,HLT:@fake2
--datatier GEN-SIM-DIGI-RAW --pileup AVE_35_BX_25ns --geometry
Extended2023D31

Workflow specification(for premixing of PU on data) :

Step 3 - step3 --datamix PreMix --conditions auto:phase2_realistic
--pileup_input file:step2.root -n 10 --era Phase2C8_timing_layer_bar
--eventcontent FEVTDEBUGHLT --procModifiers premix_stage2 --filein
file:step1.root -s
DIGI:pdigi_valid,DATAMIX,L1,L1TrackTrigger,DIGI2RAW,HLT:@fake2 --datatier
GEN-SIM-DIGI-RAW --geometry Extended2023D41

We used both Allinea MAP and igprof to study the performance of CPU
while running the cmsRun job as a single process on 2 cores on a single
node.

For 100 events with zero pileup -

The step2 with original version of the HGCal code took 2449.2 seconds.

The modified version of the HGCal code helped finish the step 2 in 1846
seconds.(~75% of the time taken by original code)

cmsRun job specification

Screenshot from MAP Profiler for Original Digitization Code(PU=0)

Screenshot from MAP Profiler for Modified Digitization Code(PU=0)

Performance Plots(classical mixing)

We also ran tests to compare the
performance of our modified code for
different number of pileup mixing -
5,15,35,75,105,175.

The run-time for 25 events for step 2 with
original and modified HGCal Digitizer
Code is shown in the plot.

Performance Plots(classical mixing)

For lower number of pileup mixing,
the digitization step using the
modified HGCal digitizer code shows
improved performance over time.

With increasing number of pileup
mixing, the advantage is lost as
increased number of IO operations
significantly increases the overhead.

(our initial guess!!!)

Performance for Premix Workflow

For mean PU no. 175, the step 3 of premix workflow took 11646 seconds to run
on 100 events with original HGCal-digi code, whereas our modified digitization
helped it finish in 11050-11182 seconds, i.e. it helps run job ~5.2-4% faster.

The average time taken by the digitizer subroutine and the function calling
Random number generator is also lowered significantly.

Screenshot from MAP Profiler for Original Digitization Code in Premix workflow(PU=175)

Screenshot from MAP Profiler for Modified Digitization Code in Premix workflow(PU=175)

Comparable result at Digi and Reco level(classical Mixing)

For the HESiliconSensitive module, we
compared the validation plots of energy &
HitOccupancy(at RecHit lavel) and ADC &
DigiOccupancy(at digi level) obtained
using our modified HGCal Digitizer code
with those obtained using original HGCal
code and found them to be nearly similar.

Thus, according to our finding, our
modified noise infusion model for the
HGCal digitizer does not alter the physics
output of the detector.

Comparable result at Reco level

Comparable result at Digi level

Thank You !!

