Arabella Martelli 21/01/20

Imperial College London

ToA in HGCAL - bug fix and validation -

thanks Abhishek Das for spotting the bug

Time of Arrival in the HGCROC

• The HGCROC provides a time of arrival (ToA) for signals above a given threshold

 a dedicated ToA TDC circuit fires the ToA, when the integrated charge is > 12fC

- In the CMSSW simulation, the signal formation in every cell (detID) is obtained integrating all the energy deposits, from G4+propagation, that fall in the given cell in the considered time interval (BX usually)
 - G4 energy deposits are sim-hits: each with a detID, position, energy, time
 - i.e. total charge = accumulation of sim-hits from signal and PU, in a given detID in the proper BX
- HGCAL (electronics simulation) digitization has not a full description of the signal shaping
 deal with time-sorted sim-hits in each cell to get a gen-level information
 - inject needed realism (jitter effects, noise...) afterwords

Time of Arrival in the digitiser

- For each Silicon cell in the HGCAL
 - consider all the time-ordered sim-hits
 that contribute to the total charge cumulated
 in the triggering BX (signal + PU)

 fired ToA = the interpolation at threshold between the two consecutive sim-hits, or the time of the sim-hit itself if its charge is already above threshold

- Bug found from Abhishek Das in the interpolation step (while studying the code to implement the premixing version)
 - charge was re-cumulated
 - time sample earlier in time is identified as the one just-before-threshold
 - earlier time and higher charge are used as the start-point of the interpolation
 - end point of the interpolation is not recomputed, so remains unaffected by the bug
 - number of cells above threshold unaffected: flagged before the interpolation (=> no impact on efficiency)

• Expect major impact with non-linear cumulation of charge (high PU)

CMSSW_11_1_X (v10)

recHit by recHit comparison

- genToA difference (bug fix)
 - main effect at high PU as expected

recHit by recHit comparison

- genToA difference vs recHit charge
 - effect mainly at low charge.
 - Reminder: the genToA is then smeared according to the expected resolution

looking at recHits

• On average same distributions

Full validation

- Repeat analysis done for the TDR: performance of full shower looking at recHits in a cylinder around the shower axis
 - shower axis from gen direction
 - 2cm radius
 - ≥ 3 hits requirement, truncation + average time on the surviving hits
- Just focus on 200PU: single photon and single K0L at pt = 5GeV
 - neutral particles to exploit directly the direction from the gen-particle

- In the following:
 - efficiency = fraction of events with \geq 3 hits with time
 - => fraction of showers for which a timing information can be computed
 - resolution = sigma of the gaussian fit to the distribution of the times of the showers over all the events (time-of-flight corrected)

Plots from TDR

New performance

9

Summary

- Observed worst performance at low eta (Si 300um mainly)
- Change observed also on the efficiency: this is not related to the bug!
- Could be related to the change in the noise and the geometry configuration...
 - from https://github.com/cms-sw/cmssw/blob/master/SimCalorimetry/HGCalSimProducers/ python/hgcalDigitizer_cfi.py#L9-L10
 - 9 nonAgedNoises = [2100.0,2100.0,1600.0] #100,200,300 um (in electrons)
 - 10 nonAgedNoises_v9 = [2000.0,2400.0,2000.0] # 120,200,300 um (in electrons)

2100, 2100, 1600 => TDR version

2000, 2400, 200 => same as v10, corresponding to noise [0.32041, 0.384492, 0.32041] fC

Impact of the bug under control, and on the whole negligible

