
Improvements in the Cellular Automaton

Felice Pantaleo

EP-CMG-CO

Outline

• Fake rate: xy plane cut, hard pt cut

• Timing: all in one

• Future plans

Cells creation and connection

• At the moment a Cell is constructed using the legacy Doublet

Generator

– given a region (pT_min, beamspot, LIP, TIP..) it matches two hits from

different layers if they are compatible with the region

– in the near future a cell will be constructed when a doublet is found

• When a Cell is created, the compatibility

with all the cells in the previous layer pair

that are sharing the same outer hit is checked

Cells creation and connection

• At the moment a Cell is constructed using the legacy Doublet

Generator

– given a region (pT_min, beamspot, LIP, TIP..) it matches two hits from

different layers if they are compatible with the region

– in the near future a cell will be constructed when a doublet is found

• When a Cell is created, the compatibility

with all the cells in the previous layer pair

that are sharing the same outer hit is checked

Cells creation and connection

• At the moment a Cell is constructed using the legacy Doublet

Generator

– given a region (pT_min, beamspot, LIP, TIP..) it matches two hits from

different layers if they are compatible with the region

– in the near future a cell will be constructed when a doublet is found

• When a Cell is created, the compatibility

with all the cells in the previous layer pair

that are sharing the same outer hit is checked

Cells creation and connection

• At the moment a Cell is constructed using the legacy Doublet

Generator

– given a region (pT_min, beamspot, LIP, TIP..) it matches two hits from

different layers if they are compatible with the region

– in the near future a cell will be constructed when a doublet is found

• When a Cell is created, the compatibility

with all the cells in the previous layer pair

that are sharing the same outer hit is checked

Compatibility

• The area of the triangle ABC in the RZ plane

is given by:

𝐴 = 𝑧𝐴 𝑟𝐵 − 𝑟𝐶 + 𝑧𝐵 𝑟𝐶 − 𝑟𝐴 + 𝑧𝐶 𝑟𝐴 − 𝑟𝐵
Hence the tangent of the angle in A is given

by:

𝑡𝑔 𝜗 = 2𝐴/𝑑𝐴𝐶
2 → 𝜗

𝜗 * pmin < cut

• If two cells are found compatible they are pushed in each others’ outer

and inner neighbors vectors

7

Compatibility

• Intersection between perpendicular bisectors of the two cells is found.

• Radius of the circle is then found

• No need to know where this circle
and the circle given by
(center=beamspot, radius = TIP)
intersect

• They intersect if the distance
between the centers d(c1,c2)
satisfies:
r1-r2 < d(c1,c2) < r1+r2

• Hard pT cut:

– If the triplet’s radius is less
than a threshold(pTmin),
the triplet is discarded

– default 0 GeV/c

8

All-in-one

• The quadruplet generator was taking sets of 4 layers and run a
different CA for each layer set

layerList = cms.vstring(

'BPix1+BPix2+BPix3+BPix4',

'BPix1+BPix2+BPix3+FPix1_pos',

'BPix1+BPix2+BPix3+FPix1_neg',

'BPix1+BPix2+FPix1_pos+FPix2_pos',

'BPix1+BPix2+FPix1_neg+FPix2_neg',

'BPix1+FPix1_pos+FPix2_pos+FPix3_pos',

'BPix1+FPix1_neg+FPix2_neg+FPix3_neg’
)

This would result in many doublets, checks, evolutions run twice (or
more)

All-in-one ctd.

• In order to run only one CA for all the layer combinations, the hard

dependency on the number of layers (as template parameter and in

loops), had to be removed

• CAGraph was introduced to store the connections and the ordering

between layers

• Given the input string from the Configuration it builds:

– Layer Graph (vertices visitor)

– Layer Pair Graph (edges visitor)

• Applied to out layer list it would result in...

CAGraph - CALayer

layerList = cms.vstring(

'BPix1+BPix2+BPix3+BPix4',

'BPix1+BPix2+BPix3+FPix1_pos',

'BPix1+BPix2+BPix3+FPix1_neg',

'BPix1+BPix2+FPix1_pos+FPix2_pos',

'BPix1+BPix2+FPix1_neg+FPix2_neg',

'BPix1+FPix1_pos+FPix2_pos+FPix3_pos',

'BPix1+FPix1_neg+FPix2_neg+FPix3_neg’

)

For each hit on the layer, pointers to

cells having that his as outer hit

CAGraph - CALayerPair

layerList = cms.vstring(

'BPix1+BPix2+BPix3+BPix4',

'BPix1+BPix2+BPix3+FPix1_pos',

'BPix1+BPix2+BPix3+FPix1_neg',

'BPix1+BPix2+FPix1_pos+FPix2_pos',

'BPix1+BPix2+FPix1_neg+FPix2_neg',

'BPix1+FPix1_pos+FPix2_pos+FPix3_pos',

'BPix1+FPix1_neg+FPix2_neg+FPix3_neg’

)

Cells are stored in a CALayerPair and

are evaluated once.

Cell construction, matching,

evolution is done using a BFS on this

graph.

CAGraph - CALayerPair

layerList = cms.vstring(

'BPix1+BPix2+BPix3+BPix4',

'BPix1+BPix2+BPix3+FPix1_pos',

'BPix1+BPix2+BPix3+FPix1_neg',

'BPix1+BPix2+FPix1_pos+FPix2_pos',

'BPix1+BPix2+FPix1_neg+FPix2_neg',

'BPix1+FPix1_pos+FPix2_pos+FPix3_pos',

'BPix1+FPix1_neg+FPix2_neg+FPix3_neg’

)

Cells are stored in a CALayerPair and

are evaluated once.

Cell construction, matching,

evolution is done using a BFS on this

graph.

CAGraph - CALayerPair

layerList = cms.vstring(

'BPix1+BPix2+BPix3+BPix4',

'BPix1+BPix2+BPix3+FPix1_pos',

'BPix1+BPix2+BPix3+FPix1_neg',

'BPix1+BPix2+FPix1_pos+FPix2_pos',

'BPix1+BPix2+FPix1_neg+FPix2_neg',

'BPix1+FPix1_pos+FPix2_pos+FPix3_pos',

'BPix1+FPix1_neg+FPix2_neg+FPix3_neg’

)

Cells are stored in a CALayerPair and

are evaluated once.

Cell construction, matching,

evolution is done using a BFS on this

graph.

CAGraph - CALayerPair

layerList = cms.vstring(

'BPix1+BPix2+BPix3+BPix4',

'BPix1+BPix2+BPix3+FPix1_pos',

'BPix1+BPix2+BPix3+FPix1_neg',

'BPix1+BPix2+FPix1_pos+FPix2_pos',

'BPix1+BPix2+FPix1_neg+FPix2_neg',

'BPix1+FPix1_pos+FPix2_pos+FPix3_pos',

'BPix1+FPix1_neg+FPix2_neg+FPix3_neg’

)

Cells are stored in a CALayerPair and

are evaluated once.

Cell construction, matching,

evolution is done using a BFS on this

graph.

Filtering

• Approximate independent fits

– in the R-z plane, straight line + bending corrections

– in the x-y plane, circumference

• Reject quadruplets whose chi2 exceeds a threshold

Performance

• See other attachment

Conclusion

• A solid and performant version of the CA is now being pushed in
the release

– https://github.com/cms-sw/cmssw/pull/15751

• Although it would have been easier to implement graphs and
manipulate strings using pointers, std::set, std::maps etc, this is not
portable to CUDA. Everything was implemented using integral
indeces and std::vectors

• I’ll work until the end of the month to port all this new
implementation to CUDA, and update the hackaton branch

– show the results at CHEP

• Run this CUDA+CMSSW prototype on different architectures

– Minsky (NVIDIA Pascal P100+ PPC)

– show the results at CHEP

https://github.com/cms-sw/cmssw/pull/15751

