# Validation of bias weighting



#### A. de Wit



HELMHOLTZ RESEARCH FOR GRAND CHALLENGES

#### Introduction

- Bias weight function in aMC@NLO allows us to generate more events in a particular area of phase space of an inclusive sample (at LHE-level)
  - Saves having to stitch e.g. inclusive and  $p_T$  binned samples together
- We want to apply this to DY+up to 2 jets (and W+up to 2 jets)
  - Start validation with DY+ up to 1 jet as this can be run locally (ie DY +0 and DY+1)
- In these slides: validation with a total of 100k LHE events for several scenarios\*:
  - **No bias weight** (unbiased, default aMC@NLO production)
  - **Biased, function 1:**  $(25+(Z p_T)^2)*10^{njets}$  (This from the example bias weight cards)
    - As we will see this function really weights down the 0-jet events so much that the uncertainties on these events become very large. Try to mitigate this by:
  - Biased, function 2: 1000 + (Z p<sub>T</sub>)<sup>2</sup>\*10<sup>njets</sup>
  - **Biased, function 3:** 1000 + [(Z p<sub>T</sub>)<sup>3</sup>\*10<sup>njets</sup>]/1000

#### \*cards:

unbiased: <a href="https://github.com/adewit/genproductions/tree/bias-cards/bin/MadGraph5\_aMCatNLO/cards/examples/dyellell01j\_5f\_NLO\_FXFX\_bias">https://github.com/adewit/genproductions/tree/bias-cards/bin/MadGraph5\_aMCatNLO/cards/examples/dyellell01j\_5f\_NLO\_FXFX\_bias</a> bias function 2: <a href="https://github.com/adewit/genproductions/tree/bias-cards/bin/MadGraph5\_aMCatNLO/cards/examples/dyellell01j\_5f\_NLO\_FXFX\_bias\_2">https://github.com/adewit/genproductions/tree/bias-cards/bin/MadGraph5\_aMCatNLO/cards/examples/dyellell01j\_5f\_NLO\_FXFX\_bias\_2</a> bias function 3: <a href="https://github.com/adewit/genproductions/tree/bias-cards/bin/MadGraph5\_aMCatNLO/cards/examples/dyellell01j\_5f\_NLO\_FXFX\_bias\_2">https://github.com/adewit/genproductions/tree/bias-cards/bin/MadGraph5\_aMCatNLO/cards/examples/dyellell01j\_5f\_NLO\_FXFX\_bias\_2</a> bias function 3: <a href="https://github.com/adewit/genproductions/tree/bias-cards/bin/MadGraph5\_aMCatNLO/cards/examples/dyellell01j\_5f\_NLO\_FXFX\_bias\_2">https://github.com/adewit/genproductions/tree/bias-cards/bin/MadGraph5\_aMCatNLO/cards/examples/dyellell01j\_5f\_NLO\_FXFX\_bias\_2</a> bias function 3: <a href="https://github.com/adewit/genproductions/tree/bias-cards/bin/MadGraph5\_aMCatNLO/cards/examples/dyellell01j\_5f\_NLO\_FXFX\_bias\_3</a>

## **Settings**

• Note: I reduced the integration grid accuracy from the default to speed the process up a bit. Should not affect the global picture we get from these slides

#### PYTHIA fragment:

processParameters = cms.vstring(

'JetMatching:setMad = off',

'JetMatching:scheme = 1',

'JetMatching:merge = on',

'JetMatching:jetAlgorithm = 2',

'JetMatching:etaJetMax = 999.',

'JetMatching:coneRadius = 1.',

'JetMatching:slowJetPower = 1',

'JetMatching:qCut = 30.', #this is the actual merging scale

'JetMatching:doFxFx = on',

'JetMatching:qCutME = 10.',#this must match the ptj cut in the lhe generation step

'JetMatching:nQmatch = 5', #4 corresponds to 4-flavour scheme (no matching of b-quarks), 5 for 5-flavour scheme

'JetMatching:nJetMax = 1', #number of partons in born matrix element for highest multiplicity

),

• I realise "TimeShower:mMaxGamma = 4.0" is missing from the fragment. Will fix this for future studies.

## **PYTHIA shower matching efficiency**

 Before comparing distributions, have a look at the matching efficiency reported by PYTHIA

|                   | N <sub>evts</sub> tried | N <sub>evts</sub><br>accepted | N <sub>evts</sub> tried, 0-<br>jet | N <sub>evts</sub><br>accepted, 0-<br>jet | N <sub>evts</sub> tried, 1-<br>jet | N <sub>evts</sub><br>accepted, 1-<br>jet |
|-------------------|-------------------------|-------------------------------|------------------------------------|------------------------------------------|------------------------------------|------------------------------------------|
| No bias<br>weight | 100000                  | 51836                         | 42230                              | 36901                                    | 57770                              | 14935                                    |
| Function 1        | 100000                  | 74147                         | 3239                               | 635                                      | 96761                              | 73512                                    |
| Function 2        | 100000                  | 72419                         | 7945                               | 4981                                     | 92055                              | 67438                                    |
| Function 3        | 100000                  | 66347                         | 26580                              | 22117                                    | 53130                              | 44230                                    |

Function 1 leads to a vast reduction in the number of 0-jet events at LHE level. The other two functions also reduce the number of 0-jet events (expected as LHE Z  $p_T$  is 0 in such events) - but due to larger constant term in the function the reduction isn't as pronounced. This is important for the uncertainties on 0-jet events.

## LHE-level comparisons: Z pT



Here we see the behaviour that function 1 leads to very large weights at very low LHE p<sub>T</sub> (0 jet evts)

#### LHE-level comparisons: Z pT



Note: ratio taken with respect to default, unbiased sample (in blue)

a.u.

#### **Gen-level comparisons**

- Next few slides show ~same comparisons, but now using gen-level quantities (ie postshower)
  - Di-lepton p<sub>T</sub> and mass calculated using leptons from the genParticle collection, which satisfy:
    - Electrons/Muons: status flag IsPrompt OR IsDirectPromptTauDecayProduct, in addition status flag IsLastCopy
    - **Hadronic taus:** rebuild the hadronic taus by summing four-vectors of gen-level tau decay products (unless the tau decays leptonically).

## **Gen-level comparisons: Z p**T



Here we see the behaviour that function 1 leads to very large weights at very low  $p_T$  (0 jet evts)

#### **Gen-level comparisons: Z p**T



Full weight applied (ie including bias weights) Note: ratio taken with respect to default, unbiased sample (in blue)

#### **Summary**

- On a technical level the bias weighting does what it promises
- Definition of the bias function to be used should still be tuned
  - Would still like to test the functions used here without the 10<sup>njet</sup> factor before going to more complicated functions
  - Should always be careful to generate enough 0-jet (@ME-level) events so as not to have huge uncertainties at low boson p<sub>T</sub>