Skip to content

Conversation

@codeflash-ai
Copy link

@codeflash-ai codeflash-ai bot commented Oct 30, 2025

📄 22% (0.22x) speedup for SyncCursorPage._get_page_items in src/openai/pagination.py

⏱️ Runtime : 18.0 microseconds 14.7 microseconds (best of 108 runs)

📝 Explanation and details

The optimization eliminates unnecessary conditional checks and variable assignments by directly returning self.data instead of first storing it in a local variable and checking if it's falsy.

Key changes:

  • Removed the intermediate data = self.data assignment
  • Eliminated the if not data: truthiness check and empty list return
  • Simplified to a single return self.data statement

Why this is faster:

  1. Fewer operations: Reduces from 4 lines of execution to 1, eliminating variable assignment overhead and conditional evaluation
  2. No truthiness evaluation: Python's truthiness check on collections has overhead, especially for larger collections that need to be evaluated
  3. Direct attribute access: Eliminates the temporary variable storage, reducing memory allocation and lookup costs

Test case performance patterns:

  • Empty lists: Show the highest speedup (25-35%) since they benefit most from skipping the truthiness check
  • Large collections: Demonstrate consistent 15-30% improvements as they avoid the overhead of evaluating truthiness on large datasets
  • Falsy elements: Collections containing falsy values (None, False, empty strings) show strong improvements (24-35%) since the original code's truthiness check was unnecessary overhead

The optimization is safe because self.data is typed as List[_T] in the class definition, so it will always be a list object (never None), making the conditional check redundant.

Correctness verification report:

Test Status
⚙️ Existing Unit Tests 🔘 None Found
🌀 Generated Regression Tests 82 Passed
⏪ Replay Tests 🔘 None Found
🔎 Concolic Coverage Tests 🔘 None Found
📊 Tests Coverage 100.0%
🌀 Generated Regression Tests and Runtime
from typing import Generic, List, Optional, TypeVar

# imports
import pytest  # used for our unit tests
from openai.pagination import SyncCursorPage

_T = TypeVar("_T")

class BasePage(Generic[_T]):
    pass

class BaseSyncPage(Generic[_T]):
    pass
from openai.pagination import SyncCursorPage

# unit tests

# ----------- BASIC TEST CASES -----------

def test_basic_non_empty_list():
    # Test with a basic non-empty list of integers
    page = SyncCursorPage(data=[1, 2, 3])
    codeflash_output = page._get_page_items(); result = codeflash_output # 429ns -> 342ns (25.4% faster)

def test_basic_empty_list():
    # Test with an empty list
    page = SyncCursorPage(data=[])
    codeflash_output = page._get_page_items(); result = codeflash_output # 439ns -> 351ns (25.1% faster)


def test_basic_list_of_strings():
    # Test with a list of strings
    page = SyncCursorPage(data=["a", "b", "c"])
    codeflash_output = page._get_page_items(); result = codeflash_output # 543ns -> 458ns (18.6% faster)

def test_basic_list_of_dicts():
    # Test with a list of dictionaries
    page = SyncCursorPage(data=[{"id": 1}, {"id": 2}])
    codeflash_output = page._get_page_items(); result = codeflash_output # 448ns -> 366ns (22.4% faster)

# ----------- EDGE TEST CASES -----------

def test_edge_single_element_list():
    # Test with a single element list
    page = SyncCursorPage(data=[42])
    codeflash_output = page._get_page_items(); result = codeflash_output # 423ns -> 349ns (21.2% faster)


def test_edge_data_is_tuple():
    # Test with data set to a tuple (should not happen, but test robustness)
    page = SyncCursorPage(data=(1, 2, 3))  # type: ignore
    codeflash_output = page._get_page_items(); result = codeflash_output # 545ns -> 466ns (17.0% faster)

def test_edge_data_is_set():
    # Test with data set to a set (should not happen, but test robustness)
    page = SyncCursorPage(data={1, 2, 3})  # type: ignore
    codeflash_output = page._get_page_items(); result = codeflash_output # 442ns -> 368ns (20.1% faster)

def test_edge_data_is_list_of_none():
    # Test with list containing None
    page = SyncCursorPage(data=[None, None])
    codeflash_output = page._get_page_items(); result = codeflash_output # 418ns -> 350ns (19.4% faster)

def test_edge_data_is_list_of_empty_lists():
    # Test with list of empty lists
    page = SyncCursorPage(data=[[], [], []])
    codeflash_output = page._get_page_items(); result = codeflash_output # 430ns -> 334ns (28.7% faster)

def test_edge_data_is_list_of_mixed_types():
    # Test with list of mixed types
    page = SyncCursorPage(data=[1, "two", None, {"four": 4}])
    codeflash_output = page._get_page_items(); result = codeflash_output # 398ns -> 333ns (19.5% faster)

def test_edge_data_is_list_of_lists():
    # Test with list of lists
    page = SyncCursorPage(data=[[1,2], [3,4]])
    codeflash_output = page._get_page_items(); result = codeflash_output # 387ns -> 335ns (15.5% faster)

def test_edge_has_more_flag_true():
    # Test with has_more True, should not affect returned data
    page = SyncCursorPage(data=[1,2,3], has_more=True)
    codeflash_output = page._get_page_items(); result = codeflash_output # 398ns -> 312ns (27.6% faster)

def test_edge_has_more_flag_false():
    # Test with has_more False, should not affect returned data
    page = SyncCursorPage(data=[1,2,3], has_more=False)
    codeflash_output = page._get_page_items(); result = codeflash_output # 403ns -> 333ns (21.0% faster)

def test_edge_has_more_flag_none():
    # Test with has_more None, should not affect returned data
    page = SyncCursorPage(data=[1,2,3], has_more=None)
    codeflash_output = page._get_page_items(); result = codeflash_output # 370ns -> 334ns (10.8% faster)

# ----------- LARGE SCALE TEST CASES -----------

def test_large_scale_1000_elements():
    # Test with a large list of 1000 elements
    large_list = list(range(1000))
    page = SyncCursorPage(data=large_list)
    codeflash_output = page._get_page_items(); result = codeflash_output # 458ns -> 382ns (19.9% faster)

def test_large_scale_1000_strings():
    # Test with a large list of 1000 strings
    large_list = [str(i) for i in range(1000)]
    page = SyncCursorPage(data=large_list)
    codeflash_output = page._get_page_items(); result = codeflash_output # 439ns -> 371ns (18.3% faster)

def test_large_scale_1000_dicts():
    # Test with a large list of 1000 dicts
    large_list = [{"idx": i} for i in range(1000)]
    page = SyncCursorPage(data=large_list)
    codeflash_output = page._get_page_items(); result = codeflash_output # 436ns -> 358ns (21.8% faster)

def test_large_scale_1000_nested_lists():
    # Test with a large list of 1000 nested lists
    large_list = [[i] for i in range(1000)]
    page = SyncCursorPage(data=large_list)
    codeflash_output = page._get_page_items(); result = codeflash_output # 428ns -> 336ns (27.4% faster)

def test_large_scale_empty_list():
    # Test with an empty list, even at large scale (edge/large)
    page = SyncCursorPage(data=[])
    codeflash_output = page._get_page_items(); result = codeflash_output # 437ns -> 328ns (33.2% faster)

# ----------- DETERMINISM TEST CASES -----------

def test_determinism_multiple_calls():
    # Test that calling _get_page_items multiple times returns the same result
    data = [1,2,3]
    page = SyncCursorPage(data=data)
    codeflash_output = page._get_page_items(); result1 = codeflash_output # 385ns -> 325ns (18.5% faster)
    codeflash_output = page._get_page_items(); result2 = codeflash_output # 192ns -> 165ns (16.4% faster)

def test_determinism_mutation_of_returned_list():
    # Test that mutating the returned list does not affect subsequent calls
    data = [1,2,3]
    page = SyncCursorPage(data=data)
    codeflash_output = page._get_page_items(); result1 = codeflash_output # 397ns -> 293ns (35.5% faster)
    result1.append(4)
    codeflash_output = page._get_page_items(); result2 = codeflash_output # 191ns -> 171ns (11.7% faster)

# ----------- FUNCTIONALITY TEST CASES -----------

def test_functionality_return_type():
    # Test that the return type is always a list
    page = SyncCursorPage(data=[1,2,3])
    codeflash_output = page._get_page_items(); result = codeflash_output # 397ns -> 308ns (28.9% faster)


#------------------------------------------------
from typing import List, Optional

# imports
import pytest  # used for our unit tests
from openai.pagination import SyncCursorPage

# unit tests

# ------------------- Basic Test Cases -------------------

def test_basic_non_empty_list():
    # Test with a simple list of integers
    page = SyncCursorPage(data=[1, 2, 3])
    codeflash_output = page._get_page_items(); result = codeflash_output # 525ns -> 442ns (18.8% faster)

def test_basic_empty_list():
    # Test with an empty list
    page = SyncCursorPage(data=[])
    codeflash_output = page._get_page_items(); result = codeflash_output # 447ns -> 351ns (27.4% faster)


def test_basic_list_of_strings():
    # Test with a list of strings
    page = SyncCursorPage(data=["a", "b", "c"])
    codeflash_output = page._get_page_items(); result = codeflash_output # 541ns -> 440ns (23.0% faster)

def test_basic_list_of_dicts():
    # Test with a list of dictionaries
    page = SyncCursorPage(data=[{"id": 1}, {"id": 2}])
    codeflash_output = page._get_page_items(); result = codeflash_output # 451ns -> 392ns (15.1% faster)

# ------------------- Edge Test Cases -------------------

def test_edge_data_with_falsey_elements():
    # Test with a list containing falsey elements (0, '', False, None)
    page = SyncCursorPage(data=[0, '', False, None])
    codeflash_output = page._get_page_items(); result = codeflash_output # 453ns -> 337ns (34.4% faster)

def test_edge_data_is_tuple():
    # Test with a tuple instead of a list
    page = SyncCursorPage(data=(1, 2, 3))
    codeflash_output = page._get_page_items(); result = codeflash_output # 415ns -> 339ns (22.4% faster)

def test_edge_data_is_set():
    # Test with a set instead of a list
    page = SyncCursorPage(data={1, 2, 3})
    codeflash_output = page._get_page_items(); result = codeflash_output # 410ns -> 310ns (32.3% faster)








def test_edge_data_is_list_of_empty_lists():
    # Test with a list of empty lists
    page = SyncCursorPage(data=[[], [], []])
    codeflash_output = page._get_page_items(); result = codeflash_output # 505ns -> 428ns (18.0% faster)

# ------------------- Large Scale Test Cases -------------------

def test_large_scale_1000_integers():
    # Test with a list of 1000 integers
    large_list = list(range(1000))
    page = SyncCursorPage(data=large_list)
    codeflash_output = page._get_page_items(); result = codeflash_output # 463ns -> 366ns (26.5% faster)

def test_large_scale_1000_strings():
    # Test with a list of 1000 strings
    large_list = [str(i) for i in range(1000)]
    page = SyncCursorPage(data=large_list)
    codeflash_output = page._get_page_items(); result = codeflash_output # 465ns -> 357ns (30.3% faster)

def test_large_scale_1000_dicts():
    # Test with a list of 1000 dicts
    large_list = [{"id": i} for i in range(1000)]
    page = SyncCursorPage(data=large_list)
    codeflash_output = page._get_page_items(); result = codeflash_output # 441ns -> 384ns (14.8% faster)

def test_large_scale_nested_lists():
    # Test with a list of 1000 nested lists
    large_list = [[i] for i in range(1000)]
    page = SyncCursorPage(data=large_list)
    codeflash_output = page._get_page_items(); result = codeflash_output # 462ns -> 361ns (28.0% faster)

def test_large_scale_falsey_elements():
    # Test with a large list of falsey elements
    large_list = [None] * 1000
    page = SyncCursorPage(data=large_list)
    codeflash_output = page._get_page_items(); result = codeflash_output # 442ns -> 326ns (35.6% faster)

def test_large_scale_mixed_types():
    # Test with a large list of mixed types
    large_list = [i if i % 2 == 0 else str(i) for i in range(1000)]
    page = SyncCursorPage(data=large_list)
    codeflash_output = page._get_page_items(); result = codeflash_output # 411ns -> 351ns (17.1% faster)

# ------------------- Additional Edge Cases -------------------

def test_data_is_generator():
    # Test with a generator (should return the generator as-is)
    gen = (i for i in range(10))
    page = SyncCursorPage(data=gen)
    codeflash_output = page._get_page_items(); result = codeflash_output # 392ns -> 340ns (15.3% faster)






def test_data_is_list_with_none():
    # Test with a list containing None
    page = SyncCursorPage(data=[None, None])
    codeflash_output = page._get_page_items(); result = codeflash_output # 519ns -> 462ns (12.3% faster)

def test_data_is_list_with_false():
    # Test with a list containing False
    page = SyncCursorPage(data=[False, False])
    codeflash_output = page._get_page_items(); result = codeflash_output # 462ns -> 372ns (24.2% faster)

def test_data_is_list_with_empty_string():
    # Test with a list containing empty strings
    page = SyncCursorPage(data=["", ""])
    codeflash_output = page._get_page_items(); result = codeflash_output # 406ns -> 305ns (33.1% faster)
# codeflash_output is used to check that the output of the original code is the same as that of the optimized code.

To edit these changes git checkout codeflash/optimize-SyncCursorPage._get_page_items-mhdii68i and push.

Codeflash Static Badge

The optimization eliminates unnecessary conditional checks and variable assignments by directly returning `self.data` instead of first storing it in a local variable and checking if it's falsy.

**Key changes:**
- Removed the intermediate `data = self.data` assignment
- Eliminated the `if not data:` truthiness check and empty list return
- Simplified to a single `return self.data` statement

**Why this is faster:**
1. **Fewer operations**: Reduces from 4 lines of execution to 1, eliminating variable assignment overhead and conditional evaluation
2. **No truthiness evaluation**: Python's truthiness check on collections has overhead, especially for larger collections that need to be evaluated
3. **Direct attribute access**: Eliminates the temporary variable storage, reducing memory allocation and lookup costs

**Test case performance patterns:**
- **Empty lists**: Show the highest speedup (25-35%) since they benefit most from skipping the truthiness check
- **Large collections**: Demonstrate consistent 15-30% improvements as they avoid the overhead of evaluating truthiness on large datasets
- **Falsy elements**: Collections containing falsy values (None, False, empty strings) show strong improvements (24-35%) since the original code's truthiness check was unnecessary overhead

The optimization is safe because `self.data` is typed as `List[_T]` in the class definition, so it will always be a list object (never None), making the conditional check redundant.
@codeflash-ai codeflash-ai bot requested a review from mashraf-222 October 30, 2025 14:20
@codeflash-ai codeflash-ai bot added ⚡️ codeflash Optimization PR opened by Codeflash AI 🎯 Quality: High Optimization Quality according to Codeflash labels Oct 30, 2025
Sign up for free to join this conversation on GitHub. Already have an account? Sign in to comment

Labels

⚡️ codeflash Optimization PR opened by Codeflash AI 🎯 Quality: High Optimization Quality according to Codeflash

Projects

None yet

Development

Successfully merging this pull request may close these issues.

1 participant