diff --git a/STRUCTURE.md b/STRUCTURE.md deleted file mode 100644 index e1887cc..0000000 --- a/STRUCTURE.md +++ /dev/null @@ -1,167 +0,0 @@ -# Structuring Codegen Examples - -This guide explains how to structure examples for the Codegen library. A well-structured example helps both humans and AI understand the code's purpose and how to use it effectively. - -## Core Principles - -1. **Single Responsibility**: Each example should demonstrate one clear use case -2. **Self-Contained**: Examples should work independently with minimal setup -3. **Clear Structure**: Follow a consistent file organization pattern -4. **Good Documentation**: Include README.md with clear explanations and examples - -## Standard File Structure - -``` -example-name/ -├── README.md # Documentation and usage examples -├── run.py # Main implementation -└── input_repo/ # (Optional) Sample code for transformation -``` - -## Code Organization in `run.py` - -Your `run.py` should follow this structure, demonstrated well in the `generate_training_data` example: - -1. **Imports at the top** - ```python - import codegen - from codegen import Codebase - from codegen.sdk.core import Function - # ... other imports - ``` - -2. **Utility functions with clear docstrings** - ```python - def hop_through_imports(imp: Import) -> Symbol | ExternalModule: - """Finds the root symbol for an import""" - # Implementation... - ``` - -3. **Main Codegen function with decorator** - ```python - @codegen.function("your-function-name") - def run(codebase: Codebase): - """Clear docstring explaining what the function does. - - Include: - 1. Purpose of the function - 2. Key steps or transformations - 3. Expected output - """ - # Implementation... - ``` - -4. **Entry point at bottom** - ```python - if __name__ == "__main__": - # Initialize codebase - # Run transformation - # Save/display results - ``` - -## Working with Codebases - -Prefer using public repositories for examples when possible. However, sometimes you need a specific code structure to demonstrate a concept clearly. Here's how to handle both cases: - -```python -# Preferred: Use a well-known public repo that demonstrates the concept well -codebase = Codebase.from_repo("fastapi/fastapi") - -# Alternative: Create a minimal example repo when you need specific code structure -# 1. Create an input_repo/ directory in your example -# 2. Add minimal code that clearly demonstrates the transformation -codebase = Codebase("./input_repo") -``` - -For example: -``` -example-name/ -├── README.md -├── run.py -└── input_repo/ # Your minimal example code - ├── app.py - └── utils.py -``` - -Choose between these approaches based on: -1. Can you find a public repo that clearly shows the concept? -2. Is the transformation specific enough that a custom example would be clearer? -3. Would a minimal example be more educational than a complex real-world one? - -## Best Practices - -1. **Function Decorator** - - Always use `@codegen.function()` with a descriptive name - - Name should match the example's purpose - -2. **Utility Functions** - - Break down complex logic into smaller, focused functions - - Each utility should demonstrate one clear concept - - Include type hints and docstrings - -3. **Main Function** - - Name it `run()` for consistency - - Include comprehensive docstring explaining the transformation - - Return meaningful data that can be used programmatically - -4. **Entry Point** - - Include a `__name__ == "__main__"` block - - Show both initialization and execution - - Add progress messages for better UX - -5. **Error Handling** - - Include appropriate error handling for common cases - - Provide clear error messages - -## Example Reference Implementation - -The `generate_training_data` example demonstrates these principles well: - -```python -# Focused utility function -def get_function_context(function) -> dict: - """Get the implementation, dependencies, and usages of a function.""" - # Clear, focused implementation... - -# Main transformation with decorator -@codegen.function("generate-training-data") -def run(codebase: Codebase): - """Generate training data using a node2vec-like approach... - - This codemod: - 1. Finds all functions... - 2. For each function... - 3. Outputs structured JSON... - """ - # Clear implementation with good structure... - -# Clean entry point -if __name__ == "__main__": - print("Initializing codebase...") - codebase = Codebase.from_repo("fastapi/fastapi") - run(codebase) - # ... rest of execution -``` - -## Documentation Requirements - -Every example should include: - -1. **README.md** - - Clear explanation of purpose - - Explains key syntax and program function - - Code examples showing the transformation (before/after) - - If using `input_repo/`, explain its structure and contents - - Output format (if applicable) - - Setup and running instructions - -## Testing Your Example - -Before submitting: - -1. Test with a fresh environment -2. Verify all dependencies are listed -3. Ensure the example runs with minimal setup -4. Check that documentation is clear and accurate - -Remember: Your example might be used by both humans and AI to understand Codegen's capabilities. Clear structure and documentation help everyone use your code effectively. diff --git a/examples/cyclomatic_complexity/README.md b/examples/cyclomatic_complexity/README.md deleted file mode 100644 index d6cc647..0000000 --- a/examples/cyclomatic_complexity/README.md +++ /dev/null @@ -1,137 +0,0 @@ -# Cyclomatic Complexity Analyzer - -This example demonstrates how to analyze the cyclomatic complexity of Python codebases using Codegen. The script provides detailed insights into code complexity by analyzing control flow structures and providing a comprehensive report. - -> [!NOTE] -> The cyclomatic complexity metric helps identify complex code that might need refactoring. A higher score indicates more complex code with multiple decision points. - -## How the Analysis Script Works - -The script (`run.py`) performs the complexity analysis in several key steps: - -1. **Codebase Loading** - ```python - codebase = Codebase.from_repo("fastapi/fastapi") - ``` - - Loads any Python codebase into Codegen's analysis engine - - Works with local or remote Git repositories - - Supports analyzing specific commits - -2. **Complexity Calculation** - ```python - def calculate_cyclomatic_complexity(code_block): - complexity = 1 # Base complexity - for statement in code_block.statements: - if isinstance(statement, IfBlockStatement): - complexity += 1 + len(statement.elif_statements) - ``` - - Analyzes control flow structures (if/elif/else, loops, try/except) - - Calculates complexity based on decision points - - Handles nested structures appropriately - -3. **Function Analysis** - ```python - callables = codebase.functions + [m for c in codebase.classes for m in c.methods] - for function in callables: - complexity = calculate_cyclomatic_complexity(function.code_block) - ``` - - Processes both standalone functions and class methods - - Calculates complexity for each callable - - Tracks file locations and function names - -4. **Report Generation** - ```python - print("\n📊 Cyclomatic Complexity Analysis") - print(f" • Total Functions: {total_functions}") - print(f" • Average Complexity: {average:.2f}") - ``` - - Provides comprehensive complexity statistics - - Shows distribution of complexity across functions - - Identifies the most complex functions - -## Output -``` -📊 Cyclomatic Complexity Analysis -============================================================ - -📈 Overall Stats: - • Total Functions: 3538 - • Average Complexity: 1.27 - • Total Complexity: 4478 - -🔍 Top 10 Most Complex Functions: ------------------------------------------------------------- - • jsonable_encoder 16 | fastapi/encoders.py - • get_openapi 13 | fastapi/openapi/utils.py - • __init__ 12 | fastapi/routing.py - • solve_dependencies 10 | fastapi/dependencies/utils.py - • main 9 | scripts/notify_translations.py - • analyze_param 9 | fastapi/dependencies/utils.py - • __init__ 8 | fastapi/params.py - • __init__ 8 | fastapi/params.py - • main 7 | scripts/deploy_docs_status.py - • create_model_field 7 | fastapi/utils.py - -📉 Complexity Distribution: - • Low (1-5): 3514 functions (99.3%) - • Medium (6-10): 21 functions (0.6%) - • High (>10): 3 functions (0.1%) -``` - -## Complexity Metrics - -The analyzer tracks several key metrics: - -### Complexity Sources -- If statements (+1) -- Elif statements (+1 each) -- Else statements (+1) -- Loops (while/for) (+1) -- Try-except blocks (+1 per except) - -### Complexity Categories -- Low (1-5): Generally clean and maintainable code -- Medium (6-10): Moderate complexity, may need attention -- High (>10): Complex code that should be reviewed - -## Running the Analysis - -```bash -# Install Codegen -pip install codegen - -# Run the analysis -python run.py -``` - -## Example Output - -``` -📊 Cyclomatic Complexity Analysis -============================================================ - -📈 Overall Stats: - • Total Functions: 150 - • Average Complexity: 3.45 - • Total Complexity: 518 - -🔍 Top 10 Most Complex Functions: ------------------------------------------------------------- - • validate_response 12 | ...api/endpoints/auth.py - • process_request 10 | ...core/middleware.py - • handle_exception 9 | ...utils/error_handlers.py - -📉 Complexity Distribution: - • Low (1-5): 105 functions (70.0%) - • Medium (6-10): 35 functions (23.3%) - • High (>10): 10 functions (6.7%) -``` - -## Learn More - -- [About Cyclomatic Complexity](https://en.wikipedia.org/wiki/Cyclomatic_complexity) -- [Codegen Documentation](https://docs.codegen.com) - -## Contributing - -Feel free to submit issues and enhancement requests! diff --git a/examples/cyclomatic_complexity/run.py b/examples/cyclomatic_complexity/run.py deleted file mode 100644 index 0b5943a..0000000 --- a/examples/cyclomatic_complexity/run.py +++ /dev/null @@ -1,88 +0,0 @@ -import codegen -from codegen import Codebase -from codegen.sdk.enums import ProgrammingLanguage -from codegen.sdk.core.statements.for_loop_statement import ForLoopStatement -from codegen.sdk.core.statements.if_block_statement import IfBlockStatement -from codegen.sdk.core.statements.try_catch_statement import TryCatchStatement -from codegen.sdk.core.statements.while_statement import WhileStatement - - -@codegen.function("cyclomatic-complexity") -def run(codebase: Codebase): - def calculate_cyclomatic_complexity(code_block): - # Initialize cyclomatic complexity count - complexity = 1 # Start with one for the default path - - # Count decision points - for statement in code_block.statements: - if isinstance(statement, IfBlockStatement): - complexity += 1 + len(statement.elif_statements) # +1 for if, each elif adds another path - if statement.else_statement: - complexity += 1 - elif isinstance(statement, WhileStatement) or isinstance(statement, ForLoopStatement): - complexity += 1 # Loops introduce a new path - elif isinstance(statement, TryCatchStatement): - complexity += 1 # try-catch introduces a new path - # Count except blocks by counting nested code blocks after the first one (try block) - complexity += len(statement.nested_code_blocks) - 1 # -1 to exclude the try block itself - - return complexity - - # Initialize total complexity - total_complexity = 0 - # Count total functions - total_functions = 0 - # Store results for sorting - results = [] - - # Get all functions or methods - callables = codebase.functions + [m for c in codebase.classes for m in c.methods] - - # Analyze each function - for function in callables: - complexity = calculate_cyclomatic_complexity(function.code_block) - results.append((function.name, complexity, function.filepath)) - total_complexity += complexity - total_functions += 1 - - # Sort by complexity (highest first) - results.sort(key=lambda x: x[1], reverse=True) - - # Print summary - print("\n📊 Cyclomatic Complexity Analysis") - print("=" * 60) - - if total_functions > 0: - average = total_complexity / total_functions - print("\n📈 Overall Stats:") - print(f" • Total Functions: {total_functions}") - print(f" • Average Complexity: {average:.2f}") - print(f" • Total Complexity: {total_complexity}") - - print("\n🔍 Top 10 Most Complex Functions:") - print("-" * 60) - for name, complexity, filepath in results[:10]: - # Truncate filepath if too long - if len(filepath) > 40: - filepath = "..." + filepath[-37:] - print(f" • {name:<30} {complexity:>3} | {filepath}") - - # Complexity distribution - low = sum(1 for _, c, _ in results if c <= 5) - medium = sum(1 for _, c, _ in results if 5 < c <= 10) - high = sum(1 for _, c, _ in results if c > 10) - - print("\n📉 Complexity Distribution:") - print(f" • Low (1-5): {low} functions ({low / total_functions * 100:.1f}%)") - print(f" • Medium (6-10): {medium} functions ({medium / total_functions * 100:.1f}%)") - print(f" • High (>10): {high} functions ({high / total_functions * 100:.1f}%)") - else: - print("❌ No functions found in the codebase to analyze.") - - -if __name__ == "__main__": - print("🔍 Analyzing codebase...") - codebase = Codebase.from_repo("fastapi/fastapi", commit="887270ff8a54bb58c406b0651678a27589793d2f", programming_language=ProgrammingLanguage.PYTHON) - - print("Running analysis...") - run(codebase) diff --git a/examples/delete_dead_code/README.md b/examples/delete_dead_code/README.md deleted file mode 100644 index 6a05064..0000000 --- a/examples/delete_dead_code/README.md +++ /dev/null @@ -1,77 +0,0 @@ -# Delete Dead Code - -This example demonstrates how to identify and remove dead code from a codebase using Codegen. The script efficiently cleans up unused functions and variables, helping maintain a lean and efficient codebase. - -> [!NOTE] -> Dead code refers to code that is not being used or referenced anywhere in your codebase. However, some code might appear unused but should not be deleted, such as test files, functions with decorators, public API endpoints, and event handlers. - -## How the Dead Code Removal Script Works - -The script (`run.py`) performs the dead code removal in several key steps: - -1. **Codebase Loading** - ```python - codebase = Codebase.from_repo("tox-dev/tox", programming_language=ProgrammingLanguage.PYTHON) - ``` - - Loads a codebase using the `Codebase.from_repo` method - - This example uses the `tox-dev/tox` repository because it is mostly self-contained - -2. **Function Removal** - ```python - for function in codebase.functions: - if "test" in function.file.filepath: - continue - if function.decorators: - continue - if not function.usages and not function.call_sites: - print(f"🗑️ Removing unused function: {function.name}") - function.remove() - ``` - - Skips test files and decorated functions - - Removes functions with no usages or call sites - -3. **Variable Cleanup** - ```python - for func in codebase.functions: - for var_assignments in func.code_block.local_var_assignments: - if not var_assignments.local_usages: - print(f"🧹 Removing unused variable: {var_assignments.name}") - var_assignments.remove() - ``` - - Iterates through local variable assignments - - Removes variables with no local usages - -## Running the Script - -```bash -# Install Codegen -pip install codegen - -# Run the script -python run.py -``` - -## Example Output - -``` -� Deleting dead code... - -🗑️ Removing unused function: _get_parser_doc -🧹 Removing unused variable: decoded -🧹 Removing unused variable: shebang_line -... -🧹 Removing unused variable: _ - -🔧 Total functions removed: 2 -📦 Total variables removed: 240 -``` - - -## Learn More - -- [Deleting Dead Code](https://docs.codegen.com/tutorials/deleting-dead-code) -- [Codegen Documentation](https://docs.codegen.com) - -## Contributing - -Feel free to submit issues and enhancement requests! diff --git a/examples/delete_dead_code/run.py b/examples/delete_dead_code/run.py deleted file mode 100644 index 888cc40..0000000 --- a/examples/delete_dead_code/run.py +++ /dev/null @@ -1,44 +0,0 @@ -import codegen -from codegen import Codebase -from codegen.sdk.enums import ProgrammingLanguage - - -@codegen.function("delete-dead-code") -def run(codebase: Codebase): - removed_functions_count = 0 - removed_variables_count = 0 - - for function in codebase.functions: - # Skip test files - if "test" in function.file.filepath: - continue - - # Skip decorated functions - if function.decorators: - continue - - # Check if the function has no usages and no call sites - if not function.usages and not function.call_sites: - print(f"🗑️ Removing unused function: {function.name}") - function.remove() - removed_functions_count += 1 - - # Clean up unused variables - for func in codebase.functions: - for var_assignments in func.code_block.local_var_assignments: - if not var_assignments.local_usages: - print(f"🧹 Removing unused variable: {var_assignments.name}") - var_assignments.remove() - removed_variables_count += 1 - - print("\n") - print(f"🔧 Total functions removed: {removed_functions_count}") - print(f"📦 Total variables removed: {removed_variables_count}") - - -if __name__ == "__main__": - print("🔍 Analyzing codebase...") - codebase = Codebase.from_repo("tox-dev/tox", programming_language=ProgrammingLanguage.PYTHON, commit="b588b696e0940c1813014b31b68d7660d8a1914f") - - print("🚮 Deleting dead code...") - run(codebase) diff --git a/examples/dict_to_schema/README.md b/examples/dict_to_schema/README.md deleted file mode 100644 index 7882e03..0000000 --- a/examples/dict_to_schema/README.md +++ /dev/null @@ -1,96 +0,0 @@ -# Dict to Schema - -This example demonstrates how to automatically convert Python dictionary literals into Pydantic models. The codemod makes this process simple by handling all the tedious manual updates automatically. - -> [!NOTE] -> View example transformations created by this codemod on the `modal-labs/modal-client` repository [here](https://www.codegen.sh/codemod/6b5f2dfa-948a-4953-b283-9bd4b8545632/public/diff). - -## How the Conversion Script Works - -The script (`run.py`) automates the entire conversion process in a few key steps: - -1. **Codebase Loading** - ```python - codebase = Codebase.from_repo("modal-labs/modal-client") - ``` - - Loads your codebase into Codegen's intelligent code analysis engine - - Provides a simple SDK for making codebase-wide changes - - Supports any Git repository as input - -2. **Dictionary Detection** - ```python - if "{" in global_var.source and "}" in global_var.source: - dict_content = global_var.value.source.strip("{}") - ``` - - Automatically identifies dictionary literals in your code - - Processes both global variables and class attributes - - Skips empty dictionaries to avoid unnecessary conversions - -3. **Schema Creation** - ```python - class_name = global_var.name.title() + "Schema" - model_def = f"""class {class_name}(BaseModel): - {dict_content.replace(",", "\n ")}""" - ``` - - Generates meaningful model names based on variable names - - Converts dictionary key-value pairs to class attributes - - Maintains proper Python indentation - -4. **Code Updates** - ```python - global_var.insert_before(model_def + "\n\n") - global_var.set_value(f"{class_name}(**{global_var.value.source})") - ``` - - Inserts new Pydantic models in appropriate locations - - Updates dictionary assignments to use the new models - - Automatically adds required Pydantic imports - - -## Common Conversion Patterns - -### Global Variables -```python -# Before -config = {"host": "localhost", "port": 8080} - -# After -class ConfigSchema(BaseModel): - host: str = "localhost" - port: int = 8080 - -config = ConfigSchema(**{"host": "localhost", "port": 8080}) -``` - -### Class Attributes -```python -# Before -class Service: - defaults = {"timeout": 30, "retries": 3} - -# After -class DefaultsSchema(BaseModel): - timeout: int = 30 - retries: int = 3 - -class Service: - defaults = DefaultsSchema(**{"timeout": 30, "retries": 3}) -``` - -## Running the Conversion - -```bash -# Install Codegen -pip install codegen - -# Run the conversion -python run.py -``` - -## Learn More - -- [Pydantic Documentation](https://docs.pydantic.dev/) -- [Codegen Documentation](https://docs.codegen.com) - -## Contributing - -Feel free to submit issues and enhancement requests! diff --git a/examples/dict_to_schema/run.py b/examples/dict_to_schema/run.py deleted file mode 100644 index 838779d..0000000 --- a/examples/dict_to_schema/run.py +++ /dev/null @@ -1,103 +0,0 @@ -import codegen -from codegen.sdk.enums import ProgrammingLanguage -from codegen import Codebase - - -@codegen.function("dict-to-pydantic-schema") -def run(codebase: Codebase): - """Convert dictionary literals to Pydantic models in a Python codebase. - - This codemod: - 1. Finds all dictionary literals in global variables and class attributes - 2. Creates corresponding Pydantic models - 3. Updates the assignments to use the new models - 4. Adds necessary Pydantic imports - """ - # Track statistics - files_modified = 0 - models_created = 0 - - # Iterate through all files in the codebase - for file in codebase.files: - needs_imports = False - file_modified = False - - # Look for dictionary assignments in global variables - for global_var in file.global_vars: - try: - if "{" in global_var.source and "}" in global_var.source: - dict_content = global_var.value.source.strip("{}") - if not dict_content.strip(): - continue - - # Convert dict to Pydantic model - class_name = global_var.name.title() + "Schema" - model_def = f"""class {class_name}(BaseModel): - {dict_content.replace(",", "\n ")}""" - - print(f"\nConverting '{global_var.name}' to schema") - print("\nOriginal code:") - print(global_var.source) - print("\nNew code:") - print(model_def) - print(f"{class_name}(**{global_var.value.source})") - print("-" * 50) - - # Insert model and update assignment - global_var.insert_before(model_def + "\n\n") - global_var.set_value(f"{class_name}(**{global_var.value.source})") - needs_imports = True - models_created += 1 - file_modified = True - except Exception as e: - print(f"Error processing global variable {global_var.name}: {str(e)}") - - # Look for dictionary assignments in class attributes - for cls in file.classes: - for attr in cls.attributes: - try: - if "{" in attr.source and "}" in attr.source: - dict_content = attr.value.source.strip("{}") - if not dict_content.strip(): - continue - - # Convert dict to Pydantic model - class_name = attr.name.title() + "Schema" - model_def = f"""class {class_name}(BaseModel): - {dict_content.replace(",", "\n ")}""" - - print(f"\nConverting'{attr.name}' to schema") - print("\nOriginal code:") - print(attr.source) - print("\nNew code:") - print(model_def) - print(f"{class_name}(**{attr.value.source})") - print("-" * 50) - - # Insert model and update attribute - cls.insert_before(model_def + "\n\n") - attr.set_value(f"{class_name}(**{attr.value.source})") - needs_imports = True - models_created += 1 - file_modified = True - except Exception as e: - print(f"Error processing attribute {attr.name} in class {cls.name}: {str(e)}") - - # Add imports if needed - if needs_imports: - file.add_import_from_import_string("from pydantic import BaseModel") - - if file_modified: - files_modified += 1 - - print("\nModification complete:") - print(f"Files modified: {files_modified}") - print(f"Schemas created: {models_created}") - - -if __name__ == "__main__": - print("Initializing codebase...") - codebase = Codebase.from_repo("modal-labs/modal-client", commit="81941c24897889a2ff2f627c693fa734967e693c", programming_language=ProgrammingLanguage.PYTHON) - - print("Running codemod...") - run(codebase) diff --git a/examples/document_functions/README.md b/examples/document_functions/README.md deleted file mode 100644 index 572cca9..0000000 --- a/examples/document_functions/README.md +++ /dev/null @@ -1,95 +0,0 @@ -# Automated Function Documentation Generator - -This example demonstrates how to use Codegen to automatically generate comprehensive docstrings for functions by analyzing their dependencies and usage patterns within a codebase. - -## Overview - -The script uses Codegen's symbol analysis capabilities to: -1. Identify functions without docstrings -2. Analyze their dependencies and usages up to N degrees deep -3. Generate contextually aware docstrings using AI - -## Key Features - -### Recursive Context Collection -The script recursively collects both dependencies and usages to provide comprehensive context for docstring generation: - -```python -def get_extended_context(symbol: Symbol, degree: int) -> tuple[set[Symbol], set[Symbol]]: - """Recursively collect dependencies and usages up to the specified degree.""" - dependencies = set() - usages = set() - - if degree > 0: - for dep in symbol.dependencies: - if isinstance(dep, Import): - dep = hop_through_imports(dep) - if isinstance(dep, Symbol): - dependencies.add(dep) - # Recursively collect nested context - dep_deps, dep_usages = get_extended_context(dep, degree - 1) - dependencies.update(dep_deps) - usages.update(dep_usages) -``` - -### Import Resolution -The script intelligently resolves imports to find the actual symbol definitions: - -```python -def hop_through_imports(imp: Import) -> Symbol | ExternalModule: - """Finds the root symbol for an import""" - if isinstance(imp.imported_symbol, Import): - return hop_through_imports(imp.imported_symbol) - return imp.imported_symbol -``` - -## Running the Conversion - -```bash -# Install Codegen -pip install codegen - -# Run the conversion -python run.py -``` - -The script will: - - Process each function in the codebase - - Skip functions that already have docstrings - - Generate contextually aware docstrings for undocumented functions - - Commit changes incrementally for safe early termination - -## Example Output - -The script provides detailed progress information: -``` -[1/150] Skipping my_function - already has docstring -[2/150] Generating docstring for process_data at src/utils.py - ✓ Generated docstring -[3/150] Generating docstring for validate_input at src/validation.py - ✗ Failed to generate docstring -``` - -## Features - -- **Intelligent Context Collection**: Analyzes both dependencies and usages to understand function purpose -- **Import Resolution**: Follows import chains to find actual symbol definitions -- **Incremental Commits**: Saves progress after each function for safe interruption -- **Progress Tracking**: Detailed logging of processing status -- **Existing Docstring Preservation**: Skips functions that are already documented - -## Use Cases - -- Documenting legacy codebases -- Maintaining documentation standards in large projects -- Onboarding new team members with better code documentation -- Preparing codebases for public release - -## Learn More - -- [Creating Documentation](https://docs.codegen.com/tutorials/creating-documentation#creating-documentation) -- [Codegen Documentation](https://docs.codegen.com) - -## Contributing - -Feel free to submit issues and enhancement requests! diff --git a/examples/document_functions/run.py b/examples/document_functions/run.py deleted file mode 100644 index 3cc9912..0000000 --- a/examples/document_functions/run.py +++ /dev/null @@ -1,119 +0,0 @@ -import codegen -from codegen import Codebase -from codegen.sdk.core.external_module import ExternalModule -from codegen.sdk.core.import_resolution import Import -from codegen.sdk.core.symbol import Symbol - - -def hop_through_imports(imp: Import) -> Symbol | ExternalModule: - """Finds the root symbol for an import""" - if isinstance(imp.imported_symbol, Import): - return hop_through_imports(imp.imported_symbol) - return imp.imported_symbol - - -def get_extended_context(symbol: Symbol, degree: int) -> tuple[set[Symbol], set[Symbol]]: - """Recursively collect dependencies and usages up to the specified degree. - - Args: - symbol: The symbol to collect context for - degree: How many levels deep to collect dependencies and usages - - Returns: - A tuple of (dependencies, usages) where each is a set of related Symbol objects - """ - dependencies = set() - usages = set() - - if degree > 0: - # Collect direct dependencies - for dep in symbol.dependencies: - # Hop through imports to find the root symbol - if isinstance(dep, Import): - dep = hop_through_imports(dep) - - if isinstance(dep, Symbol) and dep not in dependencies: - dependencies.add(dep) - dep_deps, dep_usages = get_extended_context(dep, degree - 1) - dependencies.update(dep_deps) - usages.update(dep_usages) - - # Collect usages in the current symbol - for usage in symbol.usages: - usage_symbol = usage.usage_symbol - # Hop through imports for usage symbols too - if isinstance(usage_symbol, Import): - usage_symbol = hop_through_imports(usage_symbol) - - if isinstance(usage_symbol, Symbol) and usage_symbol not in usages: - usages.add(usage_symbol) - usage_deps, usage_usages = get_extended_context(usage_symbol, degree - 1) - dependencies.update(usage_deps) - usages.update(usage_usages) - - return dependencies, usages - - -@codegen.function("document-functions") -def run(codebase: Codebase): - # Define the maximum degree of dependencies and usages to consider for context - N_DEGREE = 2 - - # Filter out test and tutorial functions first - functions = [f for f in codebase.functions if not any(pattern in f.name.lower() for pattern in ["test", "tutorial"]) and not any(pattern in f.filepath.lower() for pattern in ["test", "tutorial"])] - - # Track progress for user feedback - total_functions = len(functions) - processed = 0 - - print(f"Found {total_functions} functions to process (excluding tests and tutorials)") - - for function in functions: - processed += 1 - - # Skip if already has docstring - if function.docstring: - print(f"[{processed}/{total_functions}] Skipping {function.name} - already has docstring") - continue - - print(f"[{processed}/{total_functions}] Generating docstring for {function.name} at {function.filepath}") - - # Collect context using N-degree dependencies and usages - dependencies, usages = get_extended_context(function, N_DEGREE) - - # Generate a docstring using the AI with the context - docstring = codebase.ai( - """ - Generate a docstring for this function using the provided context. - The context includes: - - dependencies: other symbols this function depends on - - usages: other symbols that use this function - """, - target=function, - # `codebase.ai` is smart about stringifying symbols - context={"dependencies": list(dependencies), "usages": list(usages)}, - ) - - # Set the generated docstring for the function - if docstring: - function.set_docstring(docstring) - print(" ✓ Generated docstring") - else: - print(" ✗ Failed to generate docstring") - - # Commit after each function so work is saved incrementally - # This allows for: - # 1. Safe early termination - progress won't be lost - # 2. Immediate feedback - can check results while running - # 3. Smaller atomic changes - easier to review/revert if needed - codebase.commit() - - print(f"\nCompleted processing {total_functions} functions") - - -if __name__ == "__main__": - print("Parsing codebase...") - codebase = Codebase.from_repo("fastapi/fastapi", commit="887270ff8a54bb58c406b0651678a27589793d2f") - - print("Running function...") - run(codebase) diff --git a/examples/flask_to_fastapi_migration/README.md b/examples/flask_to_fastapi_migration/README.md deleted file mode 100644 index 0b1b41b..0000000 --- a/examples/flask_to_fastapi_migration/README.md +++ /dev/null @@ -1,73 +0,0 @@ -# Flask to FastAPI Migration Example - -[![Documentation](https://img.shields.io/badge/docs-docs.codegen.com-blue)](https://docs.codegen.com/tutorials/flask-to-fastapi) - -This example demonstrates how to use Codegen to automatically migrate a Flask application to FastAPI. For a complete walkthrough, check out our [tutorial](https://docs.codegen.com/tutorials/flask-to-fastapi). - -## What This Example Does - -The migration script handles four key transformations: - -1. **Updates Imports and Initialization** - ```python - # From: - from flask import Flask - app = Flask(__name__) - - # To: - from fastapi import FastAPI - app = FastAPI() - ``` - -2. **Converts Route Decorators** - ```python - # From: - @app.route("/users", methods=["POST"]) - - # To: - @app.post("/users") - ``` - -3. **Sets Up Static File Handling** - ```python - # Adds: - from fastapi.staticfiles import StaticFiles - app.mount("/static", StaticFiles(directory="static"), name="static") - ``` - -4. **Updates Template Rendering** - ```python - # From: - return render_template("users.html", users=users) - - # To: - return Jinja2Templates(directory="templates").TemplateResponse( - "users.html", - context={"users": users}, - request=request - ) - ``` - -## Running the Example - -```bash -# Install Codegen -pip install codegen - -# Run the migration -python run.py -``` - -The script will process all Python files in the `repo-before` directory and apply the transformations in the correct order. - -## Understanding the Code - -- `run.py` - The migration script -- `input_repo/` - Sample Flask application to migrate - -## Learn More - -- [Full Tutorial](https://docs.codegen.com/tutorials/flask-to-fastapi) -- [Flask Documentation](https://flask.palletsprojects.com/) -- [FastAPI Documentation](https://fastapi.tiangolo.com/) -- [Codegen Documentation](https://docs.codegen.com) diff --git a/examples/flask_to_fastapi_migration/input_repo/main.py b/examples/flask_to_fastapi_migration/input_repo/main.py deleted file mode 100644 index aa16449..0000000 --- a/examples/flask_to_fastapi_migration/input_repo/main.py +++ /dev/null @@ -1,68 +0,0 @@ -from flask import Flask, request, jsonify, render_template - -app = Flask(__name__) - -# Mock Data -books = [ - {"id": 1, "title": "Book One", "author": "Author A", "category": "Fiction"}, - {"id": 2, "title": "Book Two", "author": "Author B", "category": "Non-Fiction"}, -] - -authors = ["Author A", "Author B", "Author C"] -categories = ["Fiction", "Non-Fiction", "Biography"] - -# Home Page -@app.route("/") -def home(): - return render_template("index.html") - -# Books Page -@app.route("/books", methods=["GET"]) -def get_books(): - return render_template("books.html", books=books) - -@app.route("/books", methods=["POST"]) -def add_book(): - data = request.json - books.append(data) - return jsonify(data), 201 - -@app.route("/books/", methods=["PUT"]) -def update_book(book_id): - data = request.json - for book in books: - if book["id"] == book_id: - book.update(data) - return jsonify(book) - return jsonify({"error": "Book not found"}), 404 - -@app.route("/books/", methods=["DELETE"]) -def delete_book(book_id): - global books - books = [book for book in books if book["id"] != book_id] - return jsonify({"message": "Book deleted"}) - -# Authors Page -@app.route("/authors", methods=["GET"]) -def get_authors(): - return render_template("authors.html", authors=authors) - -@app.route("/authors", methods=["POST"]) -def add_author(): - data = request.json - authors.append(data["name"]) - return jsonify({"name": data["name"]}), 201 - -# Categories Page -@app.route("/categories", methods=["GET"]) -def get_categories(): - return render_template("categories.html", categories=categories) - -@app.route("/categories", methods=["POST"]) -def add_category(): - data = request.json - categories.append(data["name"]) - return jsonify({"name": data["name"]}), 201 - -if __name__ == "__main__": - app.run(debug=True) diff --git a/examples/flask_to_fastapi_migration/input_repo/static/index.html b/examples/flask_to_fastapi_migration/input_repo/static/index.html deleted file mode 100644 index 1e4204f..0000000 --- a/examples/flask_to_fastapi_migration/input_repo/static/index.html +++ /dev/null @@ -1,21 +0,0 @@ - - - - - Library - - - - - -

Welcome to the Library

- Library Logo - - - - \ No newline at end of file diff --git a/examples/flask_to_fastapi_migration/input_repo/static/script.js b/examples/flask_to_fastapi_migration/input_repo/static/script.js deleted file mode 100644 index 18b438c..0000000 --- a/examples/flask_to_fastapi_migration/input_repo/static/script.js +++ /dev/null @@ -1 +0,0 @@ -console.log("Static JavaScript file loaded successfully!"); diff --git a/examples/flask_to_fastapi_migration/input_repo/static/style.css b/examples/flask_to_fastapi_migration/input_repo/static/style.css deleted file mode 100644 index cf0f4d3..0000000 --- a/examples/flask_to_fastapi_migration/input_repo/static/style.css +++ /dev/null @@ -1,31 +0,0 @@ -body { - font-family: Arial, sans-serif; - background-color: #f9f9f9; - margin: 0; - padding: 0; -} - -h1 { - color: #333; - text-align: center; - margin-top: 20px; -} - -ul { - list-style-type: none; - padding: 0; - text-align: center; -} - -li { - margin: 10px 0; -} - -a { - text-decoration: none; - color: #007bff; -} - -a:hover { - color: #0056b3; -} diff --git a/examples/flask_to_fastapi_migration/input_repo/templates/authors.html b/examples/flask_to_fastapi_migration/input_repo/templates/authors.html deleted file mode 100644 index 469c3bc..0000000 --- a/examples/flask_to_fastapi_migration/input_repo/templates/authors.html +++ /dev/null @@ -1,18 +0,0 @@ - - - - - Authors - - - -

Authors

- - Back to Home - - - \ No newline at end of file diff --git a/examples/flask_to_fastapi_migration/input_repo/templates/books.html b/examples/flask_to_fastapi_migration/input_repo/templates/books.html deleted file mode 100644 index 93806be..0000000 --- a/examples/flask_to_fastapi_migration/input_repo/templates/books.html +++ /dev/null @@ -1,18 +0,0 @@ - - - - - Books - - - -

Books

- - Back to Home - - - \ No newline at end of file diff --git a/examples/flask_to_fastapi_migration/input_repo/templates/categories.html b/examples/flask_to_fastapi_migration/input_repo/templates/categories.html deleted file mode 100644 index beba6ac..0000000 --- a/examples/flask_to_fastapi_migration/input_repo/templates/categories.html +++ /dev/null @@ -1,18 +0,0 @@ - - - - - Categories - - - -

Categories

- - Back to Home - - - \ No newline at end of file diff --git a/examples/flask_to_fastapi_migration/input_repo/templates/index.html b/examples/flask_to_fastapi_migration/input_repo/templates/index.html deleted file mode 100644 index 3248c2d..0000000 --- a/examples/flask_to_fastapi_migration/input_repo/templates/index.html +++ /dev/null @@ -1,17 +0,0 @@ - - - - - Library - - - -

Welcome to the Library

- - - - \ No newline at end of file diff --git a/examples/flask_to_fastapi_migration/run.py b/examples/flask_to_fastapi_migration/run.py deleted file mode 100644 index 90db1d3..0000000 --- a/examples/flask_to_fastapi_migration/run.py +++ /dev/null @@ -1,134 +0,0 @@ -import codebase -from codegen import Codebase - -# Initialize codebase - -# Define the target directory -TARGET_DIR = "repo-before" - - -def update_flask_imports_and_init(file): - """Update Flask imports and initialization to FastAPI""" - print(f"🔍 Processing file: {file.filepath}") - - # Update imports - for imp in file.imports: - if imp.name == "Flask": - print(" 📦 Updating import: Flask -> FastAPI") - imp.set_name("FastAPI") - elif imp.symbol_name == "flask": - print(" 📦 Updating import module: flask -> fastapi") - imp.set_import_module("fastapi") - - # Update Flask initialization and remove __name__ - for call in file.function_calls: - if call.name == "Flask": - print(" 🔧 Updating function call: Flask -> FastAPI") - call.set_name("FastAPI") - if len(call.args) > 0 and call.args[0].value == "__name__": - print(" 🗑️ Removing __name__ argument from FastAPI initialization") - call.args[0].remove() - - -def update_route_decorators(file): - """Convert Flask route decorators to FastAPI style""" - print(f"\n📁 Processing file: {file.filepath}") - - for function in file.functions: - for decorator in function.decorators: - if "@app.route" in decorator.source: - route = decorator.source.split('"')[1] - method = "get" - if "methods=" in decorator.source: - methods = decorator.source.split("methods=")[1].split("]")[0].strip().lower().replace("'", "").replace('"', "") - if "post" in methods: - method = "post" - elif "put" in methods: - method = "put" - elif "delete" in methods: - method = "delete" - new_decorator = f'@app.{method}("{route}")' - decorator.edit(new_decorator) - print(f"🔄 Updated decorator for function '{function.name}': {new_decorator}") - - -def setup_static_files(file): - """Add static file handling for FastAPI""" - print(f"📁 Processing file: {file.filepath}") - - # Add import for StaticFiles - file.add_import_from_import_string("from fastapi.staticfiles import StaticFiles") - print("✅ Added import: from fastapi.staticfiles import StaticFiles") - - # Add app.mount for static file handling - file.add_symbol_from_source('app.mount("/static", StaticFiles(directory="static"), name="static")') - print("✅ Added app.mount for static file handling") - - -def update_jinja2_syntax(file): - """Update Jinja2 template handling for FastAPI""" - print(f"\n📁 Processing: {file.filepath}") - - # Update url_for calls - for func_call in file.function_calls: - if func_call.name == "url_for" and func_call.args: - arg_value = func_call.args[0].value - if arg_value and arg_value[0] != "'" and arg_value[0] != '"': - func_call.args[0].set_value(f"'{arg_value}'") - - # Update extends and include statements - for tag in ["extends", "include"]: - for statement in file.search(f"{{% {tag} "): - source = statement.source.strip() - if source[-1] != "'": - if source[-1] == '"': - source = source[:-1] + "'" - else: - source += "'" - new_source = f"{{% {tag} '{source[len(f'{{% {tag} ') :]}" - statement.edit(new_source) - - # Update render_template calls - for func_call in file.function_calls: - if func_call.name == "render_template": - func_call.set_name("Jinja2Templates(directory='templates').TemplateResponse") - if len(func_call.args) > 1: - context_arg = ", ".join(f"{arg.name}={arg.value}" for arg in func_call.args[1:]) - func_call.set_kwarg("context", f"{'{'}{context_arg}{'}'}") - func_call.set_kwarg("request", "request") - - -@codebase.function("flask_to_fastapi_migration") -def run(): - """Main function to run the Flask to FastAPI migration""" - print("🚀 Starting Flask to FastAPI migration...\n") - - # Process each file in the target directory - for file in codebase.files: - if TARGET_DIR in file.filepath: - # Step 1: Update Flask imports and initialization - print("\n📝 Step 1: Updating Flask imports and initialization...") - update_flask_imports_and_init(file) - - # Step 2: Update route decorators - print("\n📝 Step 2: Converting route decorators...") - update_route_decorators(file) - - # Step 3: Setup static file handling - print("\n📝 Step 3: Setting up static file handling...") - setup_static_files(file) - - # Step 4: Update Jinja2 template handling - print("\n📝 Step 4: Updating Jinja2 template handling...") - update_jinja2_syntax(file) - - # Commit all changes - print("\n💾 Committing changes...") - codebase.commit() - print("✅ Flask to FastAPI migration completed successfully!") - - -if __name__ == "__main__": - codebase = Codebase("./") - - run() diff --git a/examples/fragment_to_shorthand/README.md b/examples/fragment_to_shorthand/README.md deleted file mode 100644 index d124439..0000000 --- a/examples/fragment_to_shorthand/README.md +++ /dev/null @@ -1,67 +0,0 @@ -# Transform React Fragment to Shorthand Syntax - -This example demonstrates how to use Codegen to automatically convert React Fragment components to the shorthand syntax (<>). The script makes this process simple by handling all the tedious manual updates automatically. - -> [!NOTE] -> This codemod helps modernize React codebases by using the more concise fragment syntax while maintaining functionality. - -## How the Migration Script Works - -The script automates the entire conversion process in a few key steps: - -1. **Fragment Detection** - ```jsx - // From: - -
Hello
-
World
-
- - // To: - <> -
Hello
-
World
- - ``` - -2. **Import Cleanup** - ```typescript - // From: - import React, { Fragment } from 'react'; - - // To: - import React from 'react'; - ``` - -## Why This Makes Migration Easy - -1. **Zero Manual Updates** - - Codegen SDK handles all Fragment replacements - - Automatically cleans up imports - -2. **Consistent Changes** - - Ensures all Fragments are converted - - Maintains code functionality - -3. **Safe Transformations** - - Preserves JSX structure - - Handles nested Fragments correctly - -## Running the Migration - - -The script will: -1. Find all Fragment components -2. Convert them to shorthand syntax -3. Clean up Fragment imports -4. Preserve other React imports - -## Learn More - -- [React Fragments](https://react.dev/reference/react/Fragment) -- [JSX Fragments](https://react.dev/reference/jsx#jsx-fragments) -- [Codegen Documentation](https://docs.codegen.com) -- [More on Codegen SDK jsx elements API](https://docs.codegen.com/api-reference/typescript/JSXElement#jsxelement) -## Contributing - -Feel free to submit issues and enhancement requests! \ No newline at end of file diff --git a/examples/fragment_to_shorthand/run.py b/examples/fragment_to_shorthand/run.py deleted file mode 100644 index c140cb1..0000000 --- a/examples/fragment_to_shorthand/run.py +++ /dev/null @@ -1,39 +0,0 @@ -import codegen -from codegen import Codebase -from codegen.sdk.enums import ProgrammingLanguage - - -@codegen.function("fragment_to_shorthand") -def run(codebase: Codebase): - print("🔍 Starting Fragment syntax conversion...") - - for file in codebase.files: - print(f"📁 Processing: {file.filepath}") - - fragments_found = False - - # Convert Fragment components to shorthand - for element in file.jsx_elements: - if element.name == "Fragment": - print(f"🔄 Converting Fragment in {file.filepath}") - element.set_name("") # Convert to <> syntax - fragments_found = True - - # Clean up Fragment imports if we found and converted any - if fragments_found: - for import_stmt in file.import_statements: - for imp in import_stmt.imports: - if imp.name == "Fragment": - print(f"🧹 Removing Fragment import from {file.filepath}") - imp.remove() - - if fragments_found: - print(f"✨ Completed conversion in {file.filepath}") - codebase.commit() - - -if __name__ == "__main__": - print("🎯 Starting Fragment to shorthand conversion...") - codebase = Codebase.from_repo("RocketChat/Rocket.Chat", commit="a4f2102af1c2e875c60cafebd0163105bdaca678", programming_language=ProgrammingLanguage.TYPESCRIPT) - run(codebase) - print("✅ Done! All Fragments converted to shorthand syntax!") diff --git a/examples/freezegun_to_timemachine_migration/README.md b/examples/freezegun_to_timemachine_migration/README.md deleted file mode 100644 index 459589e..0000000 --- a/examples/freezegun_to_timemachine_migration/README.md +++ /dev/null @@ -1,135 +0,0 @@ -# FreezeGun to TimeMachine Migration Example - -This example demonstrates how to use Codegen to automatically migrate test code from FreezeGun to TimeMachine for time mocking. The migration script makes this process simple by handling all the tedious manual updates automatically. - -## How the Migration Script Works - -The script (`run.py`) automates the entire migration process in a few key steps: - -1. **Codebase Loading** - ```python - codebase = Codebase.from_repo( - "getmoto/moto", commit="786a8ada7ed0c7f9d8b04d49f24596865e4b7901") - ``` - - Loads your codebase into Codegen's intelligent code analysis engine - - Provides a simple SDK for making codebase-wide changes - - Supports specific commit targeting for version control - -2. **Test File Detection** - ```python - if "tests" not in file.filepath: - continue - ``` - - Automatically identifies test files using Codegen's file APIs - - Skips non-test files to avoid unnecessary processing - - Focuses changes where time mocking is most commonly used - -3. **Import Updates** - ```python - for imp in file.imports: - if imp.symbol_name and 'freezegun' in imp.source: - if imp.name == 'freeze_time': - imp.edit('from time_machine import travel') - ``` - - Uses Codegen's import analysis to find and update imports - - Handles both direct and aliased imports - - Preserves import structure and formatting - -4. **Function Call Transformation** - ```python - for fcall in file.function_calls: - if 'freeze_time' not in fcall.source: - continue - # Transform freeze_time to travel with tick=False - ``` - - Uses Codegen's function call analysis to find all usages - - Adds required TimeMachine parameters - - Maintains existing arguments and formatting - -## Why This Makes Migration Easy - -1. **Zero Manual Updates** - - Codegen SDK handles all the file searching and updating - - No tedious copy-paste work - -2. **Consistent Changes** - - Codegen ensures all transformations follow the same patterns - - Maintains code style consistency - -3. **Safe Transformations** - - Codegen validates changes before applying them - - Easy to review and revert if needed - -## Common Migration Patterns - -### Decorator Usage -```python -# FreezeGun -@freeze_time("2023-01-01") -def test_function(): - pass - -# Automatically converted to: -@travel("2023-01-01", tick=False) -def test_function(): - pass -``` - -### Context Manager Usage -```python -# FreezeGun -with freeze_time("2023-01-01"): - # test code - -# Automatically converted to: -with travel("2023-01-01", tick=False): - # test code -``` - -### Moving Time Forward -```python -# FreezeGun -freezer = freeze_time("2023-01-01") -freezer.start() -freezer.move_to("2023-01-02") -freezer.stop() - -# Automatically converted to: -traveller = travel("2023-01-01", tick=False) -traveller.start() -traveller.shift(datetime.timedelta(days=1)) -traveller.stop() -``` - -## Key Differences to Note - -1. **Tick Parameter** - - TimeMachine requires explicit tick behavior configuration - - Script automatically adds `tick=False` to match FreezeGun's default behavior - -2. **Time Movement** - - FreezeGun uses `move_to()` with datetime strings - - TimeMachine uses `shift()` with timedelta objects - -3. **Return Values** - - FreezeGun's decorator returns the freezer object - - TimeMachine's decorator returns a traveller object - -## Running the Migration - -```bash -# Install Codegen -pip install codegen -# Run the migration -python run.py -``` - -## Learn More - -- [TimeMachine Documentation](https://github.com/adamchainz/time-machine) -- [FreezeGun Documentation](https://github.com/spulec/freezegun) -- [Codegen Documentation](https://docs.codegen.com) - -## Contributing - -Feel free to submit issues and enhancement requests! diff --git a/examples/freezegun_to_timemachine_migration/run.py b/examples/freezegun_to_timemachine_migration/run.py deleted file mode 100644 index 543795d..0000000 --- a/examples/freezegun_to_timemachine_migration/run.py +++ /dev/null @@ -1,63 +0,0 @@ -import codegen -from codegen.sdk.enums import ProgrammingLanguage -from codegen import Codebase - - -@codegen.function("freezegun-to-timemachine") -def run(codebase: Codebase): - """Convert FreezeGun usage to TimeMachine in test files. - - This script: - 1. Identifies test files using FreezeGun. - 2. Updates imports from FreezeGun to TimeMachine. - 3. Modifies function calls to include necessary parameters. - """ - print("🚀 Starting FreezeGun to TimeMachine conversion...") - - for file in codebase.files: - if "tests" not in file.filepath: - continue - print(f"📝 Processing: {file.filepath}") - - # Update imports - for imp in file.imports: - if imp.symbol_name and "freezegun" in imp.source: - if imp.name == "freeze_time": - # required due to Codegen limitations - imp.edit("from time_machine import travel") - else: - imp.set_import_module("time_machine") - - # Find all function calls in the file - for fcall in file.function_calls: - # Skip if not a freeze_time call - if "freeze_time" not in fcall.source: - continue - - # Get original source and prepare new source - new_source = fcall.source - - # Add tick parameter if not present - if not fcall.get_arg_by_parameter_name("tick"): - if new_source.endswith(")"): - new_source = new_source[:-1] - if not new_source.endswith("("): - new_source += "," - new_source += " tick=False)" - - # Replace freeze_time with travel - if "." in new_source: - new_source = new_source.replace("freeze_time", "travel").replace("freezegun", "time_machine") - else: - new_source = "travel" + new_source[len("freeze_time") :] - - # Make single edit with complete changes - fcall.edit(new_source) - - codebase.commit() - print("✅ FreezeGun to TimeMachine conversion completed successfully!") - - -if __name__ == "__main__": - codebase = Codebase.from_repo("getmoto/moto", commit="786a8ada7ed0c7f9d8b04d49f24596865e4b7901", programming_language=ProgrammingLanguage.PYTHON) - run(codebase) diff --git a/examples/generate_training_data/README.md b/examples/generate_training_data/README.md deleted file mode 100644 index e584780..0000000 --- a/examples/generate_training_data/README.md +++ /dev/null @@ -1,93 +0,0 @@ -# Generate Codebase Pre-Training Data - -[![Documentation](https://img.shields.io/badge/docs-docs.codegen.com-blue)](https://docs.codegen.com/tutorials/generate-training-data) - -This example demonstrates how to use Codegen to generate training data for large-scale LLM pre-training by extracting function implementations along with their dependencies and usages. The approach is inspired by node2vec, leveraging code graphs for learning. - -## What This Example Does - -The script analyzes your codebase and generates training data by: - -1. **Finding All Functions** - - Scans the entire codebase to identify function definitions - - Filters out trivial functions (less than 2 lines) - -2. **Capturing Implementation Context** - ```python - { - "implementation": { - "source": "def process_data():\n ...", - "filepath": "src/process.py" - } - } - ``` - -3. **Extracting Dependencies** - ```python - { - "dependencies": [ - { - "source": "def helper_function():\n ...", - "filepath": "src/helpers.py" - } - ] - } - ``` - -4. **Recording Usages** - ```python - { - "usages": [ - { - "source": "result = process_data()", - "filepath": "src/main.py" - } - ] - } - ``` - -## Running the Example - -```bash -# Install Codegen -pip install codegen - -# Run the data generation -python run.py -``` - -The script will analyze your codebase and output a `training_data.json` file containing the structured training data. - -## Understanding the Code - -- `run.py` - The main script that generates the training data - - Uses `get_function_context()` to extract implementation, dependencies, and usages - - Processes each function and builds a comprehensive context graph - - Outputs structured JSON data with metadata about the processing - -## Output Format - -The generated `training_data.json` follows this structure: -```json -{ - "functions": [ - { - "implementation": { "source": "...", "filepath": "..." }, - "dependencies": [{ "source": "...", "filepath": "..." }], - "usages": [{ "source": "...", "filepath": "..." }] - } - ], - "metadata": { - "total_functions": 100, - "total_processed": 85, - "avg_dependencies": 2.5, - "avg_usages": 3.2 - } -} -``` - -## Learn More - -- [Full Tutorial](https://docs.codegen.com/tutorials/generate-training-data) -- [Code Model Pre-training](https://docs.codegen.com/concepts/code-model-training) -- [Codegen Documentation](https://docs.codegen.com) diff --git a/examples/generate_training_data/run.py b/examples/generate_training_data/run.py deleted file mode 100644 index 17fd116..0000000 --- a/examples/generate_training_data/run.py +++ /dev/null @@ -1,106 +0,0 @@ -import json - -import codegen -from codegen import Codebase -from codegen.sdk.enums import ProgrammingLanguage -from codegen.sdk.core.external_module import ExternalModule -from codegen.sdk.core.import_resolution import Import -from codegen.sdk.core.symbol import Symbol - - -def hop_through_imports(imp: Import) -> Symbol | ExternalModule: - """Finds the root symbol for an import""" - if isinstance(imp.imported_symbol, Import): - return hop_through_imports(imp.imported_symbol) - return imp.imported_symbol - - -def get_function_context(function) -> dict: - """Get the implementation, dependencies, and usages of a function.""" - context = { - "implementation": {"source": function.source, "filepath": function.filepath}, - "dependencies": [], - "usages": [], - } - - # Add dependencies - for dep in function.dependencies: - # Hop through imports to find the root symbols source - if isinstance(dep, Import): - dep = hop_through_imports(dep) - - context["dependencies"].append({"source": dep.source, "filepath": dep.filepath}) - - # Add usages - for usage in function.usages: - context["usages"].append( - { - "source": usage.usage_symbol.source, - "filepath": usage.usage_symbol.filepath, - } - ) - - return context - - -@codegen.function("generate-training-data") -def run(codebase: Codebase): - """Generate training data using a node2vec-like approach for code embeddings. - - This codemod: - 1. Finds all functions in the codebase - 2. For each function: - - Captures its implementation - - Lists all dependencies (with their implementations) - - Lists all usages (with their implementations) - 3. Outputs structured JSON data for training - """ - # Track all function contexts - training_data = { - "functions": [], - "metadata": { - "total_functions": len(codebase.functions), - "total_processed": 0, - "avg_dependencies": 0, - "avg_usages": 0, - }, - } - - # Process each function in the codebase - for function in codebase.functions: - # Skip if function is too small - if len(function.source.split("\n")) < 2: - continue - - # Get function context - context = get_function_context(function) - - # Only keep functions with enough context - if len(context["dependencies"]) + len(context["usages"]) > 0: - training_data["functions"].append(context) - - # Update metadata - training_data["metadata"]["total_processed"] = len(training_data["functions"]) - if training_data["functions"]: - training_data["metadata"]["avg_dependencies"] = sum(len(f["dependencies"]) for f in training_data["functions"]) / len(training_data["functions"]) - training_data["metadata"]["avg_usages"] = sum(len(f["usages"]) for f in training_data["functions"]) / len(training_data["functions"]) - - # Print stats - print(f"Processed {training_data['metadata']['total_processed']} functions") - print(f"Average dependencies: {training_data['metadata']['avg_dependencies']:.2f}") - print(f"Average usages: {training_data['metadata']['avg_usages']:.2f}") - - return training_data - - -if __name__ == "__main__": - print("Initializing codebase...") - codebase = Codebase.from_repo("fastapi/fastapi", commit="887270ff8a54bb58c406b0651678a27589793d2f", programming_language=ProgrammingLanguage.PYTHON) - - print("Generating training data...") - training_data = run(codebase) - - print("Saving training data...") - with open("training_data.json", "w") as f: - json.dump(training_data, f, indent=2) - print("Training data saved to training_data.json") diff --git a/examples/modules_dependencies/README.md b/examples/modules_dependencies/README.md deleted file mode 100644 index 51012e6..0000000 --- a/examples/modules_dependencies/README.md +++ /dev/null @@ -1,126 +0,0 @@ -# Visualize Module Dependencies - -This example demonstrates how to use Codegen to automatically analyze and visualize module dependencies in Python codebases. The script creates a directed graph showing relationships between different modules, making it easier to understand code architecture and dependencies. - -> [!NOTE] -> This codemod helps developers understand module relationships by creating a visual representation of import dependencies between different parts of the codebase. - -## How the Visualization Script Works - -The script analyzes module dependencies in several key steps: - -1. **Graph Initialization** - ```python - G = nx.DiGraph() - list_apps = ["src/sentry/api", "src/sentry/auth", "src/sentry/flags"] - for app in list_apps: - G.add_node(app, metadata={'color':'red'}) - ``` - - Creates a directed graph using NetworkX - - Initializes nodes for each major application module - - Sets up metadata for visualization - -2. **Import Analysis** - ```python - for file in codebase.files: - if app in file.filepath: - for import_statement in file.import_statements: - # Analyze imports and build edges - ``` - - Scans through all files in specified modules - - Analyzes import statements - - Creates edges based on module dependencies - -3. **Graph Cleanup** - ```python - nodes_to_remove = [node for node, degree in G.degree() if degree == 1] - G.remove_nodes_from(nodes_to_remove) - ``` - - Removes isolated nodes - - Cleans up the graph for better visualization - - Focuses on meaningful dependencies - -## Why This Makes Architecture Analysis Easy - -1. **Automated Dependency Detection** - - Automatically finds module relationships - - Identifies import patterns - - No manual tracking needed - -2. **Visual Representation** - - Clear visualization of dependencies - - Easy to identify clusters - - Highlights potential architectural issues - -3. **Simplified Analysis** - - Quick overview of codebase structure - - Helps identify tightly coupled modules - - Assists in refactoring decisions - -## Common Dependency Patterns - -### Module Dependencies -```python -# The script will detect dependencies like: -from src.sentry.api import endpoint # Creates edge from current module to api -from src.sentry.auth import tokens # Creates edge from current module to auth -``` - -### Visualization Output -``` -DiGraph with n nodes and m edges where: -- Nodes represent major modules -- Edges show import relationships -- Node colors indicate module types -``` - -## Key Benefits to Note - -1. **Better Architecture Understanding** - - Clear view of module relationships - - Identifies dependency patterns - - Helps spot architectural issues - -2. **Refactoring Support** - - Identifies tightly coupled modules - - Helps plan refactoring - - Shows impact of changes - -3. **Documentation Aid** - - Visual documentation of architecture - - Easy to share and discuss - - Helps onboard new developers - -## Running the Visualization - -```bash -# Install Codegen and dependencies -pip install codegen networkx - -# Run the visualization -python run.py -``` - -The script will: -1. Initialize the codebase -2. Analyze module dependencies -3. Create a dependency graph -4. Output the visualization through codegen.sh - -## Customization Options - -You can customize the analysis by: -- Modifying the `list_apps` to include different modules -- Adjusting node metadata and colors -- Adding additional filtering criteria - -## Learn More - -- [NetworkX Documentation](https://networkx.org/) -- [Python Import System](https://docs.python.org/3/reference/import.html) -- [Codegen Documentation](https://docs.codegen.com) -- [Graph visualization](https://docs.codegen.com/building-with-codegen/codebase-visualization) - -## Contributing - -Feel free to submit issues and enhancement requests! Contributions to improve the visualization or add new features are welcome. \ No newline at end of file diff --git a/examples/modules_dependencies/run.py b/examples/modules_dependencies/run.py deleted file mode 100644 index 33bf8e9..0000000 --- a/examples/modules_dependencies/run.py +++ /dev/null @@ -1,39 +0,0 @@ -import codegen -from codegen import Codebase -from codegen.sdk.enums import ProgrammingLanguage -import networkx as nx - -@codegen.function("visualize-modules-dependencies") -def run(codebase: Codebase): - - # Create a directed graph - G = nx.DiGraph() - - list_apps = ["src/sentry/api", "src/sentry/auth", "src/sentry/flags"] - # Get the specific file for balance - for app in list_apps: - G.add_node(app, metadata={'color':'red'}) - - for app in list_apps: - for file in codebase.files: - if app in file.filepath: - # Iterate over all import statements in the file - for import_statement in file.import_statements: - # Check if the import statement is importing an app - for imp in import_statement.imports: - # Assuming app imports follow a specific naming convention or structure - if 'app' in imp.name: # Adjust this condition based on your app naming convention - G.add_edge(app, imp.import_statement.source) - - nodes_to_remove = [node for node, degree in G.degree() if degree == 1] - - # Remove the nodes from the graph - G.remove_nodes_from(nodes_to_remove) - - print(G) - print("Use codegen.sh to visualize the graph!") - - -if __name__ == "__main__": - codebase = Codebase.from_repo('getsentry/sentry', commit="fb0d53b2210cc896fc3e2cf32dae149ea8a8a45a", programming_language=ProgrammingLanguage.PYTHON) - run(codebase) diff --git a/examples/openapi_decorators/README.md b/examples/openapi_decorators/README.md deleted file mode 100644 index b6fa8c3..0000000 --- a/examples/openapi_decorators/README.md +++ /dev/null @@ -1,134 +0,0 @@ -# Add OpenAPI Decorators to Flask-RESTx Endpoints - -This example demonstrates how to use Codegen to automatically add OpenAPI decorators (`@response` and `@expect`) to Flask-RESTx API endpoints. The migration script analyzes existing code patterns and adds appropriate decorators to improve API documentation. - -> [!NOTE] -> This codemod helps maintain consistent API documentation by automatically analyzing endpoint behavior and adding appropriate OpenAPI decorators. - -## How the Migration Script Works - -The script automates the documentation process in several key steps: - -1. **Resource Class Detection** - ```python - for cls in codebase.classes: - if cls.is_subclass_of("Resource"): - # Process Flask-RESTx resource classes - ``` - - Identifies Flask-RESTx resource classes - - Analyzes HTTP method handlers (get, post, put, patch, delete) - - Determines which decorators are missing - -2. **Response Analysis** - ```python - response_schemas = analyze_method_returns(method) - ``` - - Analyzes return statements - - Extracts response codes and schemas - - Handles error responses from `http_error` calls - - Processes existing `@doc` decorators - -3. **Parameter Analysis** - ```python - expect_schema = analyze_method_params(method) - ``` - - Analyzes request parameter usage - - Detects JSON request body schemas - - Processes existing `@expect` decorators - -## Why This Makes Documentation Easy - -1. **Automated Analysis** - - Automatically detects API patterns - - Infers response and request schemas - - No manual documentation required - -2. **Consistent Documentation** - - Ensures all endpoints are documented - - Maintains consistent decorator usage - - Preserves existing decorators - -3. **Intelligent Schema Detection** - - Analyzes model fields - - Detects request parameter types - - Handles nested objects - -## Common Documentation Patterns - -### Response Decorators -```python -# Before -@ns.route('/endpoint') -class MyResource(Resource): - def get(self): - return {'data': result} - -# After -@ns.route('/endpoint') -class MyResource(Resource): - @ns.response(200, 'Success', {'data': {'type': 'any'}}) - def get(self): - return {'data': result} -``` - -### Request Expect Decorators -```python -# Before -@ns.route('/endpoint') -class MyResource(Resource): - def post(self): - data = request.json['name'] - return {'status': 'success'} - -# After -@ns.route('/endpoint') -class MyResource(Resource): - @ns.expect({'name': {'type': 'any', 'required': True}}) - @ns.response(200, 'Success', {'status': {'type': 'any'}}) - def post(self): - data = request.json['name'] - return {'status': 'success'} -``` - -## Key Benefits to Note - -1. **Better API Documentation** - - Clear response schemas - - Documented request parameters - - Improved API explorer experience - -2. **Consistent Error Handling** - - Documented error responses - - Clear status codes - - Better client integration - -3. **Time Savings** - - Automated decorator generation - - Reduced manual documentation work - - Easier maintenance - -## Running the Migration - -```bash -# Install Codegen -pip install codegen - -# Run the migration -python run.py -``` - -The script will: -1. Initialize the codebase -2. Find Flask-RESTx resource classes -3. Analyze methods and add decorators -4. Print detailed analytics about missing decorators - -## Learn More - -- [Flask-RESTx Documentation](https://flask-restx.readthedocs.io/) -- [OpenAPI Specification](https://swagger.io/specification/) -- [Codegen Documentation](https://docs.codegen.com) - -## Contributing - -Feel free to submit issues and enhancement requests! \ No newline at end of file diff --git a/examples/openapi_decorators/run.py b/examples/openapi_decorators/run.py deleted file mode 100644 index f067d0e..0000000 --- a/examples/openapi_decorators/run.py +++ /dev/null @@ -1,267 +0,0 @@ -import codegen -from codegen import Codebase -from codegen.sdk.enums import ProgrammingLanguage - -def analyze_model_fields(method) -> dict: - """Analyze model fields from ns_conf.model definitions.""" - print(f"\n🔍 Analyzing model fields for method: {method.name}") - schema = {} - - # Look for model definitions in doc decorators - for decorator in method.decorators: - if ".doc" in decorator.source: - try: - if "model=" in decorator.source: - model_def = decorator.source.split("model=")[1] - if "fields." in model_def: - # Parse the fields - fields_str = model_def.split("{")[1].split("}")[0] - for field in fields_str.split(","): - if ":" in field: - name, field_type = field.split(":", 1) - name = name.strip() - if "fields.String" in field_type: - schema[name] = {'type': 'string'} - elif "fields.Boolean" in field_type: - schema[name] = {'type': 'boolean'} - elif "fields.Integer" in field_type: - schema[name] = {'type': 'integer'} - elif "fields.Nested" in field_type: - schema[name] = {'type': 'object'} - else: - schema[name] = {'type': 'any'} - except Exception as e: - print(f" ⚠️ Couldn't parse model fields: {str(e)}") - - return schema - -def analyze_doc_responses(method) -> list[tuple]: - """Analyze responses defined in @ns_conf.doc decorators.""" - print(f"\n🔍 Analyzing doc responses for method: {method.name}") - responses = [] - - for decorator in method.decorators: - if ".doc" in decorator.source: - try: - if "responses=" in decorator.source: - responses_dict = decorator.source.split("responses=")[1].split("}")[0] + "}" - if "{" in responses_dict: - resp_content = responses_dict.strip("{}").split(",") - for resp in resp_content: - if ":" in resp: - code, desc = resp.split(":", 1) - code = int(code.strip()) - desc = desc.strip().strip("'").strip('"') - schema = None # Could extract from body/model if present - responses.append((code, desc, schema)) - except Exception as e: - print(f" ⚠️ Couldn't parse doc responses: {str(e)}") - - return responses - -def analyze_method_returns(method) -> list[tuple]: - """Analyze method return statements to determine response schemas.""" - print(f"\n🔍 Analyzing returns for method: {method.name}") - responses = set() # Using set to avoid duplicates - - # First check existing response decorators - for decorator in method.decorators: - if ".response" in decorator.source: - try: - args = decorator.source.split("(")[1].split(")")[0].split(",", 2) - status = int(args[0].strip()) - desc = args[1].strip().strip("'").strip('"') - schema = eval(args[2].strip()) if len(args) > 2 else None - responses.add((status, desc, schema)) - except Exception as e: - print(f" ⚠️ Couldn't parse response decorator: {str(e)}") - - # Check doc responses - doc_responses = analyze_doc_responses(method) - for resp in doc_responses: - responses.add(resp) - - # Handle model fields if present - model_schema = analyze_model_fields(method) - if model_schema: - # Add model schema to existing 200 response or create new one - success_responses = [r for r in responses if r[0] == 200] - if success_responses: - responses.remove(success_responses[0]) - responses.add((200, success_responses[0][1], model_schema)) - else: - responses.add((200, 'Success', model_schema)) - - # Track http_error calls - error_calls = [call for call in method.function_calls if call.name == "http_error"] - for error_call in error_calls: - if len(error_call.args) >= 2: - try: - status_code = error_call.args[0].value - if hasattr(status_code, 'name'): # Handle HTTPStatus enum - status_code = getattr(HTTPStatus, status_code.name) - message = error_call.args[1].value - responses.add((int(status_code), message, None)) - except Exception as e: - print(f" ⚠️ Couldn't parse http_error: {str(e)}") - - # Analyze return statements - for return_stmt in method.return_statements: - try: - return_value = return_stmt.value.source - if "''" in return_value and "200" in return_value: - responses.add((200, "Success", None)) - elif "{" in return_value: - schema = {} - content = return_value.strip("{}") - for pair in content.split(","): - if ":" in pair: - key, _ = pair.split(":", 1) - key = key.strip().strip("'").strip('"') - schema[key] = {'type': 'any'} - responses.add((200, "Success", schema)) - except Exception as e: - print(f" ⚠️ Couldn't analyze return: {str(e)}") - - # Ensure we have at least one response - if not responses: - responses.add((200, "Success", None)) - - return list(responses) - -def analyze_method_params(method) -> dict: - """Analyze method parameters and request parsing to determine expect schema.""" - print(f"\n🔍 Analyzing parameters for method: {method.name}") - schema = {} - - # First check ns_conf.expect decorators - for decorator in method.decorators: - if ".expect" in decorator.source: - try: - expect_dict = decorator.source.split("expect(")[1].split(")")[0] - if "{" in expect_dict: - dict_content = expect_dict.strip("{}") - for entry in dict_content.split(","): - if ":" in entry and "'" in entry: - key = entry.split(":")[0].strip().strip("'").strip('"') - schema[key] = {'type': 'any', 'required': False} # Default to not required - except Exception as e: - print(f" ⚠️ Couldn't parse expect decorator: {str(e)}") - - # Look for request.json usage if no schema found - if not schema: - for call in method.function_calls: - if "request.json" in call.source: - try: - if "get(" in call.source: - key = call.source.split(".get(")[1].split(",")[0].strip("'\"") - schema[key] = {'type': 'any', 'required': False} - else: - key = call.source.split("request.json")[1].strip("[].'\"") - schema[key] = {'type': 'any', 'required': True} - except Exception as e: - print(f" ⚠️ Couldn't analyze request.json: {str(e)}") - - print(f" 📝 Found expected params: {schema}") - return schema - -@codegen.function("add-openapi-decorators") -def run(codebase: Codebase): - """Add OpenAPI decorators (@response and @expect) to API endpoints.""" - analytics = {} - - for cls in codebase.classes: - if cls.is_subclass_of("Resource"): - file_analytics = [] - - ns_decorator = next((d for d in cls.decorators if ".route" in d.source), None) - if not ns_decorator: - continue - - ns_name = ns_decorator.source.split("@")[1].split(".")[0] - print(f" 📌 Found namespace: {ns_name}") - - for method in cls.methods: - print(f"\n ⚡ Checking method: {method.name}") - - if method.name not in ("get", "post", "put", "patch", "delete"): - print(" ⏩ Skipping - not an HTTP method") - continue - - # Check existing decorators - existing_decorators = [d.source for d in method.decorators] - print(f" 📝 Existing decorators: {existing_decorators}") - - # Check for missing decorators - missing_response = not any(".response" in d for d in existing_decorators) - missing_expect = not any(".expect" in d for d in existing_decorators) - - if not (missing_response or missing_expect): - print(" ✅ All decorators present") - continue - - print(f" 🔧 Missing decorators - response: {missing_response}, expect: {missing_expect}") - - missing_info = { - "class": cls.name, - "method": method.name, - "missing_response": missing_response, - "missing_expect": missing_expect - } - file_analytics.append(missing_info) - - try: - response_schemas = analyze_method_returns(method) - expect_schema = analyze_method_params(method) if method.name in ("post", "put", "patch") else {} - - # Add missing expect decorator - if missing_expect and method.name in ("post", "put", "patch") and expect_schema: - schema_str = "{\n" - for key, value in expect_schema.items(): - schema_str += f" '{key}': {value},\n" - schema_str += "}" - print(f" ➕ Adding expect decorator with schema: {schema_str}") - method.insert_before(f"@{ns_name}.expect({schema_str})", fix_indentation=True) - - # Add missing response decorators - if missing_response: - print(f" ➕ Adding {len(response_schemas)} response decorators") - for code, desc, schema in reversed(response_schemas): - if schema: - schema_str = "{\n" - for key, value in schema.items(): - schema_str += f" '{key}': {value},\n" - schema_str += "}" - print(f" Adding response {code} with schema") - method.insert_before(f"@{ns_name}.response({code}, '{desc}', {schema_str})", fix_indentation=True) - else: - print(f" Adding response {code} without schema") - method.insert_before(f"@{ns_name}.response({code}, '{desc}')", fix_indentation=True) - except Exception as e: - print(f" ❌ Error adding decorators: {str(e)}") - continue - - if file_analytics: - analytics[cls.file.filepath] = file_analytics - - print("\n📊 Analytics: Missing OpenAPI Decorators") - print("================================================================") - - for file_path, missing_decorators in analytics.items(): - print(f"\nFile: {file_path}") - for info in missing_decorators: - print(f" Class: {info['class']}, Method: {info['method']}") - if info['missing_response']: - print(" ❌ Missing @response decorator") - if info['missing_expect']: - print(" ❌ Missing @expect decorator") - - print("\n✅ OpenAPI decorators added!") - codebase.commit() - - -if __name__ == "__main__": - print("🎯 Starting OpenAPI decorators addition...") - codebase = Codebase.from_repo("mindsdb/mindsdb", commit="4b76c44bfaec789289e15fbdff7397e866009f94",programming_language=ProgrammingLanguage.PYTHON) - run(codebase) - print("✅ Done! OpenAPI decorators added to all API endpoints!") \ No newline at end of file diff --git a/examples/pr_review_bot/README.md b/examples/pr_review_bot/README.md deleted file mode 100644 index 2f71733..0000000 --- a/examples/pr_review_bot/README.md +++ /dev/null @@ -1,126 +0,0 @@ -# AI-Powered Pull Request Review Bot - -This example demonstrates how to use Codegen to create an intelligent PR review bot that analyzes code changes and their dependencies to provide comprehensive code reviews. The bot uses GPT-4 to generate contextual feedback based on modified code and its relationships. - -> [!NOTE] -> This codemod helps development teams by providing automated, context-aware code reviews that consider both direct and indirect code dependencies. - -## How the PR Review Bot Works - -The script analyzes pull requests in several key steps: - -1. **Symbol Analysis** - ```python - modified_symbols = codebase.get_modified_symbols_in_pr(pr_number) - for symbol in modified_symbols: - deps = codebase.get_symbol_dependencies(symbol, max_depth=2) - rev_deps = codebase.get_symbol_dependents(symbol, max_depth=2) - ``` - - Identifies modified symbols in the PR - - Analyzes dependencies up to 2 levels deep - - Tracks reverse dependencies (symbols that depend on changes) - -2. **Context Building** - ```python - context = { - "pr_title": pr.title, - "pr_body": pr.body, - "modified_symbols": [...], - "context_symbols": [...] - } - ``` - - Gathers PR metadata - - Collects modified code content - - Includes relevant dependency context - -3. **AI Review Generation** - ```python - review = codebase.ai_client.llm_query_with_retry( - messages=[...], - model="gpt-4", - max_tokens=2000 - ) - ``` - - Uses GPT-4 for analysis - - Generates comprehensive review feedback - - Considers full context of changes - -## Why This Makes Code Review Better - -1. **Context-Aware Analysis** - - Understands code dependencies - - Considers impact of changes - - Reviews code in proper context - -2. **Comprehensive Review** - - Analyzes direct modifications - - Evaluates dependency impact - - Suggests improvements - -3. **Consistent Feedback** - - Structured review format - - Thorough analysis every time - - Scalable review process - -## Review Output Format - -The bot provides structured feedback including: - -``` -1. Overall Assessment - - High-level review of changes - - Impact analysis - -2. Specific Code Feedback - - Detailed code comments - - Style suggestions - - Best practices - -3. Potential Issues - - Security concerns - - Performance impacts - - Edge cases - -4. Dependency Analysis - - Impact on dependent code - - Breaking changes - - Integration considerations - -``` - -## Key Benefits to Note - -1. **Better Code Quality** - - Thorough code analysis - - Consistent review standards - - Early issue detection - -2. **Time Savings** - - Automated initial review - - Quick feedback loop - - Reduced review burden - -3. **Knowledge Sharing** - - Educational feedback - - Best practice suggestions - - Team learning - - -## Configuration Options - -You can customize the review by: -- Adjusting dependency depth -- Modifying the AI prompt -- Changing the review focus areas -- Tuning the GPT-4 parameters - -## Learn More - -- [Codegen Documentation](https://docs.codegen.com) -- [OpenAI API Documentation](https://platform.openai.com/docs/api-reference) -- [GitHub API Documentation](https://docs.github.com/en/rest) -- [Codegen llm integration](https://docs.codegen.com/building-with-codegen/calling-out-to-llms) - -## Contributing - -Feel free to submit issues and enhancement requests! Contributions to improve the review bot's capabilities are welcome. \ No newline at end of file diff --git a/examples/pr_review_bot/run.py b/examples/pr_review_bot/run.py deleted file mode 100644 index c3cd320..0000000 --- a/examples/pr_review_bot/run.py +++ /dev/null @@ -1,92 +0,0 @@ -import codegen -from codegen import Codebase -from codegen.sdk.enums import ProgrammingLanguage -from codegen.sdk.codebase.config import CodebaseConfig, GSFeatureFlags, Secrets -import json - -github_token = "Your github token" -open_ai_key = "your open ai key" -pr_number = 0 # Your PR number must be an integer - -codegen.function("pr-review-bot") - - -def run(codebase: Codebase): - context_symbols = set() - - modified_symbols = codebase.get_modified_symbols_in_pr(pr_number) - for symbol in modified_symbols: - # Get direct dependencies - deps = codebase.get_symbol_dependencies(symbol, max_depth=2) - context_symbols.update(deps) - - # Get reverse dependencies (symbols that depend on this one) - rev_deps = codebase.get_symbol_dependents(symbol, max_depth=2) - context_symbols.update(rev_deps) - - # Prepare context for LLM - context = { - "modified_symbols": [ - { - "name": symbol.name, - "type": symbol.symbol_type.value, - "filepath": symbol.filepath, - "content": symbol.content, - } - for symbol in modified_symbols - ], - "context_symbols": [ - { - "name": symbol.name, - "type": symbol.symbol_type.value, - "filepath": symbol.filepath, - "content": symbol.content, - } - for symbol in context_symbols - ], - } - - system_prompt = """ - You are a helpful assistant that reviews pull requests and provides feedback on the code. - """ - # Generate review using AI - prompt = f"""Please review this pull request based on the following context: - -Title: {context["pr_title"]} -Description: {context["pr_body"]} - -Modified Symbols: -{json.dumps(context["modified_symbols"], indent=2)} - -Related Context (Dependencies): -{json.dumps(context["context_symbols"], indent=2)} - -Please provide a thorough code review that includes: -1. Overall assessment -2. Specific feedback on modified code -3. Potential issues or improvements -4. Impact on dependencies -5. Suggestions for testing -""" - - review = codebase.ai_client.llm_query_with_retry(messages=[{"role": "system", "content": system_prompt}, {"role": "user", "content": prompt}], model="gpt-4", max_tokens=2000, temperature=0.7) - return review - - -if __name__ == "__main__": - print("Starting codebase analysis...") - codebase = Codebase.from_repo( - "getsentry/sentry", - shallow=False, - programming_language=ProgrammingLanguage.PYTHON, - config=CodebaseConfig( - secrets=Secrets(openai_key=open_ai_key, github_api_key=github_token), - feature_flags=GSFeatureFlags( - sync_enabled=True, - ), - ), - ) - review = run(codebase) - print(review) - - print("Codebase analysis complete.") diff --git a/examples/python2_to_python3/README.md b/examples/python2_to_python3/README.md deleted file mode 100644 index cf342b7..0000000 --- a/examples/python2_to_python3/README.md +++ /dev/null @@ -1,93 +0,0 @@ -# Python 2 to Python 3 Migration Example - -[![Documentation](https://img.shields.io/badge/docs-docs.codegen.com-blue)](https://docs.codegen.com/tutorials/python2-to-python3) - -This example demonstrates how to use Codegen to automatically migrate Python 2 code to Python 3. For a complete walkthrough, check out our [tutorial](https://docs.codegen.com/tutorials/python2-to-python3). - -## What This Example Does - -The migration script handles five key transformations: - -1. **Convert Print Statements** - ```python - # From: - print "Hello, world!" - print x, y, z - - # To: - print("Hello, world!") - print(x, y, z) - ``` - -2. **Update Unicode to str** - ```python - # From: - from __future__ import unicode_literals - text = unicode("Hello") - prefix = u"prefix" - - # To: - text = str("Hello") - prefix = "prefix" - ``` - -3. **Convert raw_input to input** - ```python - # From: - name = raw_input("Enter your name: ") - - # To: - name = input("Enter your name: ") - ``` - -4. **Update Exception Handling** - ```python - # From: - try: - process_data() - except ValueError, e: - print(e) - - # To: - try: - process_data() - except ValueError as e: - print(e) - ``` - -5. **Modernize Iterator Methods** - ```python - # From: - class MyIterator: - def next(self): - return self.value - - # To: - class MyIterator: - def __next__(self): - return self.value - ``` - -## Running the Example - -```bash -# Install Codegen -pip install codegen - -# Run the migration -python run.py -``` - -The script will process all Python files in the `repo-before` directory and apply the transformations in the correct order. - -## Understanding the Code - -- `run.py` - The migration script -- `input_repo/` - Sample Python 2 code to migrate - -## Learn More - -- [Full Tutorial](https://docs.codegen.com/tutorials/python2-to-python3) -- [Python 3 Documentation](https://docs.python.org/3/) -- [What's New in Python 3](https://docs.python.org/3/whatsnew/3.0.html) -- [Codegen Documentation](https://docs.codegen.com) diff --git a/examples/python2_to_python3/input_repo/main.py b/examples/python2_to_python3/input_repo/main.py deleted file mode 100644 index c657f3e..0000000 --- a/examples/python2_to_python3/input_repo/main.py +++ /dev/null @@ -1,93 +0,0 @@ -# Python 2 code showcasing changes in Python 3 - -# Print statement vs. Print function -print "This is Python 2's print statement." -# In Python 3, it becomes a function: print("This is Python 3's print function.") - -# Integer division -print "Integer division in Python 2: 5/2 =", 5/2 -# In Python 3, you need // for integer division: print("Integer division in Python 3: 5//2 =", 5//2) - -# Unicode strings -unicode_string = u"This is a Unicode string in Python 2." -print "Unicode string in Python 2: ", unicode_string -# In Python 3, all strings are Unicode by default. - -# xrange vs range -for i in xrange(3): # xrange exists in Python 2 - print "Using xrange in Python 2: ", i -# In Python 3, xrange is removed, and range behaves like xrange: for i in range(3): - -# Error handling -try: - raise ValueError("This is an error.") -except ValueError, e: # Comma syntax in Python 2 - print "Caught an exception in Python 2: ", e -# In Python 3, use 'as': except ValueError as e: - -# Iteration over dictionaries -my_dict = {"a": 1, "b": 2} -print "Dictionary keys in Python 2: ", my_dict.keys() # Returns a list in Python 2 -# In Python 3, it returns a view: print("Dictionary keys in Python 3: ", list(my_dict.keys())) - -# Input function -user_input = raw_input("Enter something (Python 2 raw_input): ") -print "You entered: ", user_input -# In Python 3, use input(): user_input = input("Enter something (Python 3 input): ") - -# Itertools changes -import itertools -print "itertools.izip in Python 2: ", list(itertools.izip([1, 2], [3, 4])) -# In Python 3, use zip directly: print("zip in Python 3: ", list(zip([1, 2], [3, 4]))) - -# Advanced Examples - -# Metaclasses -class Meta(type): - def __new__(cls, name, bases, dct): - print("Creating class", name) - return super(Meta, cls).__new__(cls, name, bases, dct) - -class MyClass(object): - __metaclass__ = Meta # Python 2 syntax for metaclasses - -# In Python 3: class MyClass(metaclass=Meta): - -# Iterators and Generators -class MyIterator(object): - def __init__(self, limit): - self.limit = limit - self.counter = 0 - - def __iter__(self): - return self - - def next(self): # Python 2 iterator method - if self.counter < self.limit: - self.counter += 1 - return self.counter - else: - raise StopIteration - -my_iter = MyIterator(3) -for value in my_iter: - print "Iterating in Python 2: ", value -# In Python 3, next() is replaced by __next__(). - -# Sorting with custom keys -data = [(1, "one"), (3, "three"), (2, "two")] -print "Sorted data in Python 2: ", sorted(data, cmp=lambda x, y: cmp(x[0], y[0])) -# In Python 3, cmp is removed. Use key: sorted(data, key=lambda x: x[0]) - -# File Handling -with open("example.txt", "w") as f: - f.write("Python 2 file handling.") -# In Python 3, open() defaults to text mode with UTF-8 encoding: with open("example.txt", "w", encoding="utf-8") as f: - -# Bytes and Strings -byte_string = "This is a byte string in Python 2." -print "Byte string in Python 2: ", byte_string -# In Python 3, bytes and strings are distinct types: byte_string = b"This is a byte string in Python 3." - -# Final note -print "This script demonstrates key differences between Python 2 and Python 3." diff --git a/examples/python2_to_python3/run.py b/examples/python2_to_python3/run.py deleted file mode 100644 index 1417c95..0000000 --- a/examples/python2_to_python3/run.py +++ /dev/null @@ -1,155 +0,0 @@ -import codegen -from codegen import Codebase - -# Initialize codebase - -# Define the target directory -TARGET_DIR = "input_repo" - - -def convert_print_statements(file): - """Convert Python 2 print statements to Python 3 function calls""" - print(f"📁 Processing file: {file.filepath}") - lines = file.content.split("\n") - new_content = [] - updates = 0 - - for line in lines: - stripped = line.strip() - if stripped.startswith("print "): - indent = line[: len(line) - len(line.lstrip())] - args = stripped[6:].strip() - new_content.append(f"{indent}print({args})") - updates += 1 - print(f" 🔄 Converting: {stripped} -> print({args})") - else: - new_content.append(line) - - if updates > 0: - file.edit("\n".join(new_content)) - print(f"✅ Updated {updates} print statements\n") - - -def update_unicode_to_str(file): - """Convert Unicode-related code to str for Python 3""" - print(f"🔎 Processing file: {file.filepath}") - - # Update imports from 'unicode' to 'str' - for imp in file.imports: - if imp.name == "unicode": - print(f"📦 Updating import in {file.filepath}") - imp.set_name("str") - - # Update function calls from Unicode to str - for func_call in file.function_calls: - if func_call.name == "unicode": - print("🔧 Converting Unicode() call to str()") - func_call.set_name("str") - - # Check function arguments for Unicode references - for arg in func_call.args: - if arg.value == "unicode": - print("📝 Updating argument from unicode to str") - arg.set_value("str") - - # Find and update Unicode string literals (u"...") - for string_literal in file.find('u"'): - if string_literal.source.startswith('u"') or string_literal.source.startswith("u'"): - print("🔤 Converting Unicode string literal to regular string") - new_string = string_literal.source[1:] # Remove the 'u' prefix - string_literal.edit(new_string) - - -def convert_raw_input(file): - """Convert raw_input() calls to input()""" - print(f"\n📁 Processing file: {file.filepath}") - for call in file.function_calls: - if call.name == "raw_input": - print(f" 🔄 Found raw_input: {call.source}") - print(f" ✨ Converting to: input{call.source[len('raw_input') :]}") - call.edit(f"input{call.source[len('raw_input') :]}") - - -def update_exception_syntax(file): - """Update Python 2 exception handling to Python 3 syntax""" - try: - print(f"🔍 Processing {file.filepath}") - for editable in file.find("except "): - try: - if editable.source.lstrip().startswith("except") and ", " in editable.source and " as " not in editable.source: - print(f"🔄 Found Python 2 style exception: {editable.source.strip()}") - parts = editable.source.split(",", 1) - new_source = f"{parts[0]} as{parts[1]}" - print(f"✨ Converting to: {new_source.strip()}") - editable.edit(new_source) - except Exception as e: - print(f"⚠️ Error processing except clause: {e!s}") - except Exception as e: - print(f"❌ Error processing file {file.filepath}: {e!s}") - - -def update_iterators(file): - """Update iterator methods from Python 2 to Python 3""" - print(f"\n📁 Processing file: {file.filepath}") - - for cls in file.classes: - next_method = cls.get_method("next") - if next_method: - print(f" ⚙️ Found iterator class: {cls.name}") - print(" 📝 Converting next() to __next__()") - - # Create new __next__ method with same content - new_method_source = next_method.source.replace("def next", "def __next__") - cls.add_source(new_method_source) - - print(" 🗑️ Removing old next() method") - next_method.remove() - - # Update print statements - print(" 🔄 Updating print statements to Python3 syntax") - for stmt in cls.code_block.statements: - if 'print "' in stmt.source or "print '" in stmt.source: - new_stmt = stmt.source.replace('print "', 'print("').replace("print '", "print('") - if not new_stmt.strip().endswith(")"): - new_stmt = new_stmt.rstrip() + ")" - stmt.edit(new_stmt) - - -@codegen.function("python2-to-python3") -def run(): - """Main function to run the Python 2 to 3 conversion""" - print("🚀 Starting Python 2 to 3 conversion...\n") - - # Process each file in the target directory - for file in codebase.files: - if TARGET_DIR in file.filepath: - # Step 1: Convert print statements - print("\n📝 Step 1: Converting print statements...") - convert_print_statements(file) - - # Step 2: Update Unicode to str - print("\n📝 Step 2: Converting Unicode to str...") - update_unicode_to_str(file) - - # Step 3: Convert raw_input to input - print("\n📝 Step 3: Converting raw_input to input...") - convert_raw_input(file) - - # Step 4: Update exception handling syntax - print("\n📝 Step 4: Updating exception handling...") - update_exception_syntax(file) - - # Step 5: Update iterator methods - print("\n📝 Step 5: Updating iterator methods...") - update_iterators(file) - - # Commit all changes - print("\n💾 Committing changes...") - codebase.commit() - print("✅ Python 2 to 3 conversion completed successfully!") - - -if __name__ == "__main__": - codebase = Codebase("./") - - run(codebase) diff --git a/examples/reexport_management/README.md b/examples/reexport_management/README.md deleted file mode 100644 index 6d95b8b..0000000 --- a/examples/reexport_management/README.md +++ /dev/null @@ -1,109 +0,0 @@ -# Transform Module Re-exports Organization - -This example demonstrates how to use Codegen to automatically analyze and reorganize TypeScript module re-exports through shared directories. The script makes this process simple by handling all the tedious manual updates automatically. - -> [!NOTE] -> This codemod helps maintain clean module boundaries and improves code organization by centralizing shared exports. - -## How the Migration Script Works - -The script automates the entire reorganization process in a few key steps: - -1. **Export Analysis** - ```python - for export_stmt in file.export_statements: - for export in export_stmt.exports: - if export.is_reexport() and not export.is_external_export: - all_reexports.append(export) - ``` - - Automatically identifies re-exports in shared directories - - Analyzes export patterns and dependencies - - Uses Codegen's intelligent code analysis engine - -2. **Shared File Management** - ```python - resolved_public_file = export.resolved_symbol.filepath.replace("src/", "src/shared/") - if not codebase.has_file(resolved_public_file): - target_file = codebase.create_file(resolved_public_file, sync=True) - ``` - - Creates or updates shared export files - - Maintains proper file structure - - Handles path resolution automatically - -3. **Import Updates** - ```python - # Updates imports to use new shared paths - new_path = usage.file.ts_config.translate_import_path(resolved_public_file) - new_import = f'import {{ {name} }} from "{new_path}"' - ``` - - Updates all import statements to use new paths - - Maintains proper TypeScript path resolution - - Handles different import types (normal, type) - -## Why This Makes Organization Easy - -1. **Zero Manual Updates** - - Codegen SDK handles all file creation and updates - - No tedious export management - -2. **Consistent Structure** - - Ensures all shared exports follow the same pattern - - Maintains clean module boundaries - -3. **Safe Transformations** - - Validates changes before applying them - - Preserves existing functionality - -## Common Re-export Patterns - -### Module to Shared Exports -```typescript -// Before: Direct module import -import { validateEmail } from '../module_a/src/functions'; - -// After: Import through shared -import { validateEmail } from '../module_a/src/shared'; -``` - -### Export Consolidation -```typescript -// Before: Multiple export files -export { foo } from './foo'; -export { bar } from './bar'; - -// After: Consolidated in shared -export * from '../functions'; -``` - -## Key Benefits to Note - -1. **Better Module Boundaries** - - Clear public API for each module - - Centralized shared functionality - -2. **Improved Maintainability** - - Easier to track dependencies - - Simplified import paths - -3. **Code Organization** - - Consistent export structure - - Reduced import complexity - - -The script will: -1. 🎯 Start the reexport organization -2. 📁 Analyze shared directories -3. 🔄 Process and update exports -4. ✨ Create shared export files -5. 🧹 Clean up redundant exports - -## Learn More - -- [TypeScript Modules](https://www.typescriptlang.org/docs/handbook/modules.html) -- [Export/Import Documentation](https://www.typescriptlang.org/docs/handbook/modules.html#export) -- [Codegen Documentation](https://docs.codegen.com) -- [Tutorial on Analyzing and Organizing Re-exports](https://docs.codegen.com/tutorials/managing-typescript-exports) -- [More on exports ](https://docs.codegen.com/building-with-codegen/exports) -## Contributing - -Feel free to submit issues and enhancement requests! \ No newline at end of file diff --git a/examples/reexport_management/input_repo/modules/module_a/src/functions.ts b/examples/reexport_management/input_repo/modules/module_a/src/functions.ts deleted file mode 100644 index 7e21f38..0000000 --- a/examples/reexport_management/input_repo/modules/module_a/src/functions.ts +++ /dev/null @@ -1,20 +0,0 @@ -export const calculateSum = (a: number, b: number): number => { - return a + b; -}; - -export const formatName = (firstName: string, lastName: string): string => { - return `${firstName} ${lastName}`; -}; - -export const generateId = (): string => { - return Math.random().toString(36).substring(7); -}; - -export const validateEmail = (email: string): boolean => { - const emailRegex = /^[^\s@]+@[^\s@]+\.[^\s@]+$/; - return emailRegex.test(email); -}; - -export const capitalize = (str: string): string => { - return str.charAt(0).toUpperCase() + str.slice(1).toLowerCase(); -}; diff --git a/examples/reexport_management/input_repo/modules/module_a/src/shared/index.ts b/examples/reexport_management/input_repo/modules/module_a/src/shared/index.ts deleted file mode 100644 index e69de29..0000000 diff --git a/examples/reexport_management/input_repo/modules/module_b/imports.ts b/examples/reexport_management/input_repo/modules/module_b/imports.ts deleted file mode 100644 index 7f4dd6f..0000000 --- a/examples/reexport_management/input_repo/modules/module_b/imports.ts +++ /dev/null @@ -1,3 +0,0 @@ -export { calculateSum, formatName, capitalize } from '../module_a/src/functions'; -export { validateEmail } from '../module_c/src/shared/symbols/exports'; - diff --git a/examples/reexport_management/input_repo/modules/module_b/src/functions.ts b/examples/reexport_management/input_repo/modules/module_b/src/functions.ts deleted file mode 100644 index 1158610..0000000 --- a/examples/reexport_management/input_repo/modules/module_b/src/functions.ts +++ /dev/null @@ -1,24 +0,0 @@ -import { calculateSum, formatName, capitalize, validateEmail } from './shared/exports'; - -export const calculateAverage = (numbers: number[]): number => { - const sum = numbers.reduce((acc, curr) => calculateSum(acc, curr), 0); - return sum / numbers.length; -}; - -export const createUserProfile = (firstName: string, lastName: string): string => { - const formattedName = formatName(firstName, lastName); - return `Profile: ${formattedName}`; -}; - -export const formatText = (text: string): string => { - return text.split(' ').map(capitalize).join(' '); -}; - -export const multiply = (a: number, b: number): number => { - return a * b; -}; - -export const generateGreeting = (name: string): string => { - const email = validateEmail(name); - return `Hello, ${capitalize(name)}!`; -}; diff --git a/examples/reexport_management/input_repo/modules/module_b/src/shared/exports.ts b/examples/reexport_management/input_repo/modules/module_b/src/shared/exports.ts deleted file mode 100644 index 87c1f3e..0000000 --- a/examples/reexport_management/input_repo/modules/module_b/src/shared/exports.ts +++ /dev/null @@ -1,2 +0,0 @@ -export { calculateSum, formatName, capitalize } from "../../imports"; -export {validateEmail} from "../../imports" \ No newline at end of file diff --git a/examples/reexport_management/input_repo/modules/module_c/imports.ts b/examples/reexport_management/input_repo/modules/module_c/imports.ts deleted file mode 100644 index cf00eb0..0000000 --- a/examples/reexport_management/input_repo/modules/module_c/imports.ts +++ /dev/null @@ -1,3 +0,0 @@ -export { validateEmail, generateId } from '../module_a/src/functions'; -export { calculateAverage, multiply, createUserProfile } from '../module_b/src/functions'; - diff --git a/examples/reexport_management/input_repo/modules/module_c/src/functions.ts b/examples/reexport_management/input_repo/modules/module_c/src/functions.ts deleted file mode 100644 index 37a0443..0000000 --- a/examples/reexport_management/input_repo/modules/module_c/src/functions.ts +++ /dev/null @@ -1,39 +0,0 @@ -import { validateEmail, generateId, calculateAverage, multiply, createUserProfile } from './shared/symbols/exports'; - -export const createUser = (email: string, firstName: string, lastName: string) => { - if (!validateEmail(email)) { - throw new Error('Invalid email'); - } - - return { - id: generateId(), - profile: createUserProfile(firstName, lastName), - email - }; -}; - -export const calculateMetrics = (values: number[]): { average: number; scaled: number[] } => { - const avg = calculateAverage(values); - const scaled = values.map(v => multiply(v, 2)); - return { average: avg, scaled }; -}; - -export const validateAndFormatUser = (email: string, firstName: string, lastName: string) => { - if (!validateEmail(email)) { - return { success: false, message: 'Invalid email' }; - } - - const profile = createUserProfile(firstName, lastName); - return { success: true, profile }; -}; - -export const processNumbers = (numbers: number[]): number => { - const { average } = calculateMetrics(numbers); - return multiply(average, 100); -}; - -export const generateReport = (userData: { email: string; name: string }): string => { - const isValidEmail = validateEmail(userData.email); - const id = generateId(); - return `Report ${id}: Email ${isValidEmail ? 'valid' : 'invalid'} - ${userData.name}`; -}; diff --git a/examples/reexport_management/input_repo/modules/module_c/src/shared/symbols/exports.ts b/examples/reexport_management/input_repo/modules/module_c/src/shared/symbols/exports.ts deleted file mode 100644 index 5b24025..0000000 --- a/examples/reexport_management/input_repo/modules/module_c/src/shared/symbols/exports.ts +++ /dev/null @@ -1,2 +0,0 @@ -export { validateEmail, generateId } from '../../../imports' -export { calculateAverage, multiply, createUserProfile } from '../../../imports' diff --git a/examples/reexport_management/input_repo/package.json b/examples/reexport_management/input_repo/package.json deleted file mode 100644 index ce1ed32..0000000 --- a/examples/reexport_management/input_repo/package.json +++ /dev/null @@ -1,15 +0,0 @@ -{ - "name": "default-exports-test", - "version": "1.0.0", - "description": "Test codebase for converting default exports", - "main": "index.js", - "scripts": { - "test": "echo \"Error: no test specified\" && exit 1" - }, - "keywords": [], - "author": "", - "license": "ISC", - "devDependencies": { - "typescript": "^5.0.0" - } -} diff --git a/examples/reexport_management/input_repo/tsconfig.json b/examples/reexport_management/input_repo/tsconfig.json deleted file mode 100644 index 6c9c6ed..0000000 --- a/examples/reexport_management/input_repo/tsconfig.json +++ /dev/null @@ -1,9 +0,0 @@ -{ - "compilerOptions": { - "baseUrl": "./", - "paths": { - "*": ["modules/*"] - } - }, - "include": ["modules/**/*"] -} \ No newline at end of file diff --git a/examples/reexport_management/run.py b/examples/reexport_management/run.py deleted file mode 100644 index b4b0aaf..0000000 --- a/examples/reexport_management/run.py +++ /dev/null @@ -1,130 +0,0 @@ -import codegen -from codegen import Codebase - -from codegen.sdk.typescript.file import TSImport - -from codegen.sdk.enums import ProgrammingLanguage - -processed_imports = set() - - -@codegen.function("reexport_management") -def run(codebase: Codebase): - print("🚀 Starting reexport analysis...") - for file in codebase.files: - # Only process files under /src/shared - if "examples/analize_reexports" not in file.filepath or "/src/shared" not in file.filepath: - continue - - print(f"📁 Analyzing: {file.filepath}") - - # Gather all reexports that are not external exports - all_reexports = [] - for export_stmt in file.export_statements: - for export in export_stmt.exports: - if export.is_reexport() and not export.is_external_export: - all_reexports.append(export) - - if not all_reexports: - continue - - print(f"📦 Found {len(all_reexports)} reexports to process") - - for export in all_reexports: - has_wildcard = False - - # Replace "src/" with "src/shared/" - resolved_public_file = export.resolved_symbol.filepath.replace("src/", "src/shared/") - print(f"🔄 Processing: {export.name} -> {resolved_public_file}") - - # Get relative path from the "public" file back to the original file - relative_path = codebase.get_relative_path(from_file=resolved_public_file, to_file=export.resolved_symbol.filepath) - - # Ensure the "public" file exists - if not codebase.has_file(resolved_public_file): - print(f"✨ Creating new public file: {resolved_public_file}") - target_file = codebase.create_file(resolved_public_file, sync=True) - else: - target_file = codebase.get_file(resolved_public_file) - - # If target file already has a wildcard export for this relative path, skip - if target_file.has_export_statement_for_path(relative_path, "WILDCARD"): - has_wildcard = True - continue - - # Compare "public" path to the local file's export.filepath - if codebase._remove_extension(resolved_public_file) != codebase._remove_extension(export.filepath): - # A) Wildcard export - if export.is_wildcard_export(): - target_file.insert_before(f'export * from "{relative_path}"') - print(f"⭐ Added wildcard export for {relative_path}") - - # B) Type export - elif export.is_type_export(): - statement = file.get_export_statement_for_path(relative_path, "TYPE") - if statement: - if export.is_aliased(): - statement.insert(0, f"{export.resolved_symbol.name} as {export.name}") - else: - statement.insert(0, f"{export.name}") - print(f"📝 Updated existing type export for {export.name}") - else: - if export.is_aliased(): - target_file.insert_before(f'export type {{ {export.resolved_symbol.name} as {export.name} }} from "{relative_path}"') - else: - target_file.insert_before(f'export type {{ {export.name} }} from "{relative_path}"') - print(f"✨ Added new type export for {export.name}") - - # C) Normal export - else: - statement = file.get_export_statement_for_path(relative_path, "EXPORT") - if statement: - if export.is_aliased(): - statement.insert(0, f"{export.resolved_symbol.name} as {export.name}") - else: - statement.insert(0, f"{export.name}") - print(f"📝 Updated existing export for {export.name}") - else: - if export.is_aliased(): - target_file.insert_before(f'export {{ {export.resolved_symbol.name} as {export.name} }} from "{relative_path}"') - else: - target_file.insert_before(f'export {{ {export.name} }} from "{relative_path}"') - print(f"✨ Added new export for {export.name}") - - # Update import usages - for usage in export.symbol_usages(): - if isinstance(usage, TSImport) and usage not in processed_imports: - processed_imports.add(usage) - - new_path = usage.file.ts_config.translate_import_path(resolved_public_file) - - if has_wildcard and export.name != export.resolved_symbol.name: - name = f"{export.resolved_symbol.name} as {export.name}" - else: - name = usage.name - - if usage.is_type_import(): - new_import = f'import type {{ {name} }} from "{new_path}"' - else: - new_import = f'import {{ {name} }} from "{new_path}"' - - usage.file.insert_before(new_import) - usage.remove() - print(f"🔄 Updated import in {usage.file.filepath}") - - # Remove old export - export.remove() - print(f"🗑️ Removed old export from {export.filepath}") - - # Clean up empty files - if not file.export_statements and len(file.symbols) == 0: - file.remove() - print(f"🧹 Removed empty file: {file.filepath}") - codebase.commit() - - -if __name__ == "__main__": - print("🎯 Starting reexport organization...") - codebase = Codebase("./", programming_language=ProgrammingLanguage.TYPESCRIPT) - run(codebase) - print("✅ Done! All reexports organized successfully!") diff --git a/examples/remove_default_exports/README.md b/examples/remove_default_exports/README.md deleted file mode 100644 index ed4fe9b..0000000 --- a/examples/remove_default_exports/README.md +++ /dev/null @@ -1,66 +0,0 @@ -# Remove Default Exports in TypeScript - -This codemod demonstrates how to automatically convert default exports to named exports in your TypeScript codebase. The migration script makes this process simple by handling all the tedious manual updates automatically. - -## How the Migration Script Works - -The script automates the entire migration process in a few key steps: - -1. **File Detection and Analysis** - ```python - codebase = Codebase("./") - for file in codebase.files: - if "/shared/" not in file.filepath: - continue - ``` - - Automatically identifies shared TypeScript files - - Analyzes export structures - - Determines necessary export modifications - -2. **Export Conversion** - ```python - for export in file.exports: - if export.is_default_export(): - export.make_non_default() - ``` - - Converts default exports to named exports - - Ensures corresponding non-shared files are updated - - Preserves existing export configurations - -## Common Migration Patterns - -### Default Export Conversion -```typescript -// Before -export default function myFunction() {} - -// After -export function myFunction() {} -``` - -### Re-export Conversion -```typescript -// Before -export { default } from './module'; - -// After -export { myFunction } from './module'; -``` - -## Running the Migration - -```bash -# Install Codegen -pip install codegen -# Run the migration -python run.py -``` - -## Learn More - -- [TypeScript Documentation](https://www.typescriptlang.org/docs/) -- [Codegen Documentation](https://docs.codegen.com) - -## Contributing - -Feel free to submit issues and enhancement requests! diff --git a/examples/remove_default_exports/input_repo/package.json b/examples/remove_default_exports/input_repo/package.json deleted file mode 100644 index ce1ed32..0000000 --- a/examples/remove_default_exports/input_repo/package.json +++ /dev/null @@ -1,15 +0,0 @@ -{ - "name": "default-exports-test", - "version": "1.0.0", - "description": "Test codebase for converting default exports", - "main": "index.js", - "scripts": { - "test": "echo \"Error: no test specified\" && exit 1" - }, - "keywords": [], - "author": "", - "license": "ISC", - "devDependencies": { - "typescript": "^5.0.0" - } -} diff --git a/examples/remove_default_exports/input_repo/src/auth/services/authenticator.ts b/examples/remove_default_exports/input_repo/src/auth/services/authenticator.ts deleted file mode 100644 index d2bb89b..0000000 --- a/examples/remove_default_exports/input_repo/src/auth/services/authenticator.ts +++ /dev/null @@ -1,6 +0,0 @@ -// Original file keeps default export -export default class Authenticator { - authenticate(token: string): boolean { - return token.length > 0; - } -} diff --git a/examples/remove_default_exports/input_repo/src/auth/shared/authenticator.ts b/examples/remove_default_exports/input_repo/src/auth/shared/authenticator.ts deleted file mode 100644 index 97d51b5..0000000 --- a/examples/remove_default_exports/input_repo/src/auth/shared/authenticator.ts +++ /dev/null @@ -1,2 +0,0 @@ -// Should be converted to named export -export { default } from '../services/authenticator'; diff --git a/examples/remove_default_exports/input_repo/src/auth/shared/token.ts b/examples/remove_default_exports/input_repo/src/auth/shared/token.ts deleted file mode 100644 index d85974c..0000000 --- a/examples/remove_default_exports/input_repo/src/auth/shared/token.ts +++ /dev/null @@ -1,2 +0,0 @@ -// Should be converted to named export -export { default as generateToken } from '../utils/token-generator'; diff --git a/examples/remove_default_exports/input_repo/src/auth/utils/token-generator.ts b/examples/remove_default_exports/input_repo/src/auth/utils/token-generator.ts deleted file mode 100644 index deca991..0000000 --- a/examples/remove_default_exports/input_repo/src/auth/utils/token-generator.ts +++ /dev/null @@ -1,4 +0,0 @@ -// Original file keeps default export -export default function generateToken(): string { - return Math.random().toString(36); -} diff --git a/examples/remove_default_exports/input_repo/src/comments/models/comment.ts b/examples/remove_default_exports/input_repo/src/comments/models/comment.ts deleted file mode 100644 index b458ff0..0000000 --- a/examples/remove_default_exports/input_repo/src/comments/models/comment.ts +++ /dev/null @@ -1,6 +0,0 @@ -// Original file keeps default export -export default interface Comment { - id: string; - postId: string; - text: string; -} diff --git a/examples/remove_default_exports/input_repo/src/comments/services/comment-service.ts b/examples/remove_default_exports/input_repo/src/comments/services/comment-service.ts deleted file mode 100644 index 3e795dc..0000000 --- a/examples/remove_default_exports/input_repo/src/comments/services/comment-service.ts +++ /dev/null @@ -1,8 +0,0 @@ -// Original file keeps default export -import Comment from '../models/comment'; - -export default class CommentService { - getComment(id: string): Comment { - return { id, postId: '123', text: 'Great post!' }; - } -} diff --git a/examples/remove_default_exports/input_repo/src/comments/shared/service.ts b/examples/remove_default_exports/input_repo/src/comments/shared/service.ts deleted file mode 100644 index 4a3efbc..0000000 --- a/examples/remove_default_exports/input_repo/src/comments/shared/service.ts +++ /dev/null @@ -1,2 +0,0 @@ -// Should be converted to named export -export { default as CommentService } from '../services/comment-service'; diff --git a/examples/remove_default_exports/input_repo/src/comments/shared/types.ts b/examples/remove_default_exports/input_repo/src/comments/shared/types.ts deleted file mode 100644 index a6847de..0000000 --- a/examples/remove_default_exports/input_repo/src/comments/shared/types.ts +++ /dev/null @@ -1,2 +0,0 @@ -// Should be converted to named export -export { default as Comment } from '../models/comment'; diff --git a/examples/remove_default_exports/input_repo/src/posts/models/post.ts b/examples/remove_default_exports/input_repo/src/posts/models/post.ts deleted file mode 100644 index 7884480..0000000 --- a/examples/remove_default_exports/input_repo/src/posts/models/post.ts +++ /dev/null @@ -1,6 +0,0 @@ -// Original file keeps default export -export default interface Post { - id: string; - title: string; - content: string; -} diff --git a/examples/remove_default_exports/input_repo/src/posts/services/post-service.ts b/examples/remove_default_exports/input_repo/src/posts/services/post-service.ts deleted file mode 100644 index 71aba25..0000000 --- a/examples/remove_default_exports/input_repo/src/posts/services/post-service.ts +++ /dev/null @@ -1,8 +0,0 @@ -// Original file keeps default export -import Post from '../models/post'; - -export default class PostService { - getPost(id: string): Post { - return { id, title: 'Hello', content: 'World' }; - } -} diff --git a/examples/remove_default_exports/input_repo/src/posts/shared/service.ts b/examples/remove_default_exports/input_repo/src/posts/shared/service.ts deleted file mode 100644 index c7c343f..0000000 --- a/examples/remove_default_exports/input_repo/src/posts/shared/service.ts +++ /dev/null @@ -1,2 +0,0 @@ -// Should be converted to named export -export { default as PostService } from '../services/post-service'; diff --git a/examples/remove_default_exports/input_repo/src/posts/shared/types.ts b/examples/remove_default_exports/input_repo/src/posts/shared/types.ts deleted file mode 100644 index 12c432f..0000000 --- a/examples/remove_default_exports/input_repo/src/posts/shared/types.ts +++ /dev/null @@ -1,2 +0,0 @@ -// Should be converted to named export -export { default as Post } from '../models/post'; diff --git a/examples/remove_default_exports/input_repo/src/shared/index.ts b/examples/remove_default_exports/input_repo/src/shared/index.ts deleted file mode 100644 index 99d7dff..0000000 --- a/examples/remove_default_exports/input_repo/src/shared/index.ts +++ /dev/null @@ -1,6 +0,0 @@ -// All of these should be converted to named exports -export { default as Auth } from '../auth/services/authenticator'; -export { default as Token } from '../auth/utils/token-generator'; -export { default as UserModel } from '../users/models/user'; -export { default as PostModel } from '../posts/models/post'; -export { default as CommentModel } from '../comments/models/comment'; diff --git a/examples/remove_default_exports/input_repo/src/users/models/user.ts b/examples/remove_default_exports/input_repo/src/users/models/user.ts deleted file mode 100644 index c734e40..0000000 --- a/examples/remove_default_exports/input_repo/src/users/models/user.ts +++ /dev/null @@ -1,6 +0,0 @@ -// Original file keeps default export -export default interface User { - id: string; - name: string; - email: string; -} diff --git a/examples/remove_default_exports/input_repo/src/users/services/user-service.ts b/examples/remove_default_exports/input_repo/src/users/services/user-service.ts deleted file mode 100644 index d12fb9e..0000000 --- a/examples/remove_default_exports/input_repo/src/users/services/user-service.ts +++ /dev/null @@ -1,8 +0,0 @@ -// Original file keeps default export -import User from '../models/user'; - -export default class UserService { - getUser(id: string): User { - return { id, name: 'John', email: 'john@example.com' }; - } -} diff --git a/examples/remove_default_exports/input_repo/src/users/shared/service.ts b/examples/remove_default_exports/input_repo/src/users/shared/service.ts deleted file mode 100644 index a55e5f9..0000000 --- a/examples/remove_default_exports/input_repo/src/users/shared/service.ts +++ /dev/null @@ -1,2 +0,0 @@ -// Should be converted to named export -export { default as UserService } from '../services/user-service'; diff --git a/examples/remove_default_exports/input_repo/src/users/shared/types.ts b/examples/remove_default_exports/input_repo/src/users/shared/types.ts deleted file mode 100644 index 7892940..0000000 --- a/examples/remove_default_exports/input_repo/src/users/shared/types.ts +++ /dev/null @@ -1,2 +0,0 @@ -// Should be converted to named export -export { default as User } from '../models/user'; diff --git a/examples/remove_default_exports/input_repo/tsconfig.json b/examples/remove_default_exports/input_repo/tsconfig.json deleted file mode 100644 index df8dd38..0000000 --- a/examples/remove_default_exports/input_repo/tsconfig.json +++ /dev/null @@ -1,18 +0,0 @@ -{ - "compilerOptions": { - "target": "es2020", - "module": "commonjs", - "strict": true, - "esModuleInterop": true, - "skipLibCheck": true, - "forceConsistentCasingInFileNames": true, - "baseUrl": "./", - "paths": { - "@/*": ["src/*"] - } - }, - "include": [ - "../../src/**/*" - ], - "exclude": ["node_modules"] -} diff --git a/examples/remove_default_exports/run.py b/examples/remove_default_exports/run.py deleted file mode 100644 index 0744e35..0000000 --- a/examples/remove_default_exports/run.py +++ /dev/null @@ -1,45 +0,0 @@ -import codegen -from codegen import Codebase -from codegen.sdk.typescript.file import TSFile - - -@codegen.function("remove-default-exports") -def run(codebase: Codebase): - """Convert default exports to named exports in TypeScript files. - - This script: - 1. Identifies shared TypeScript files with default exports. - 2. Converts default exports to named exports. - 3. Ensures corresponding non-shared files are updated. - """ - for file in codebase.files: - target_file = file.filepath - if not target_file: - print(f"⚠️ Target file not found: {target_file} in codebase") - continue - - # Get corresponding non-shared file - non_shared_path = file.filepath.replace("/shared/", "/") - if not codebase.has_file(non_shared_path): - print(f"⚠️ No matching non-shared file for: {non_shared_path}") - continue - - non_shared_file = codebase.get_file(non_shared_path) - print(f"📄 Processing {file.filepath}") - - # Process individual exports - if isinstance(file, TSFile): - for export in file.exports: - # Handle default exports - if export.is_reexport() and export.is_default_export(): - print(f" 🔄 Converting default export '{export.name}'") - default_export = next((e for e in non_shared_file.default_exports), None) - if default_export: - default_export.make_non_default() - - print(f"✨ Fixed exports in {file.filepath}") - - -if __name__ == "__main__": - codebase = Codebase("./") - run(codebase) diff --git a/examples/removing_import_loops_in_pytorch/import_loops.ipynb b/examples/removing_import_loops_in_pytorch/import_loops.ipynb deleted file mode 100644 index ae2fd95..0000000 --- a/examples/removing_import_loops_in_pytorch/import_loops.ipynb +++ /dev/null @@ -1,530 +0,0 @@ -{ - "cells": [ - { - "attachments": { - "image.png": { - "image/png": "iVBORw0KGgoAAAANSUhEUgAABXYAAALsCAYAAABHku9fAAAMSWlDQ1BJQ0MgUHJvZmlsZQAASImVVwdYU8kWnltSIQQIREBK6E0QkRJASggtgPQiiEpIAoQSY0JQsaOLCq5dRLCiqyCKHRCxYVcWxe5aFgsqK+tiwa68CQF02Ve+d75v7v3vP2f+OefcuWUAoLfzpdIcVBOAXEmeLCbYnzUuKZlF6gQIIAA6PDL5ArmUExUVDqANnP9u725CP2jXHJRa/+z/r6YlFMkFACBREKcJ5YJciA8CgDcJpLI8AIhSyJtPzZMq8WqIdWQwQIirlDhDhZuUOE2Fr/T5xMVwIX4CAFmdz5dlAKDRDXlWviAD6tBhtsBJIhRLIPaD2Cc3d7IQ4rkQ20AfOCddqc9O+0En42+aaYOafH7GIFbl0mfkALFcmsOf/n+W439bbo5iYA5r2NQzZSExypxh3Z5kTw5TYnWIP0jSIiIh1gYAxcXCPn8lZmYqQuJV/qiNQM6FNQNMiMfIc2J5/XyMkB8QBrEhxOmSnIjwfp/CdHGQ0gfWDy0T5/HiINaDuEokD4zt9zkhmxwzMO/NdBmX088/58v6YlDqf1Nkx3NU+ph2pojXr485FmTGJUJMhTggX5wQAbEGxBHy7Niwfp+UgkxuxICPTBGjzMUCYplIEuyv0sdK02VBMf3+O3PlA7ljJzLFvIh+fDUvMy5EVSvsiYDfFz/MBesWSTjxAzoi+bjwgVyEooBAVe44WSSJj1XxuJ40zz9GNRa3k+ZE9fvj/qKcYCVvBnGcPD92YGx+HlycKn28SJoXFaeKEy/P4odGqeLB94JwwAUBgAUUsKWBySALiFu76rvglaonCPCBDGQAEXDoZwZGJPb1SOAxFhSAPyESAfngOP++XhHIh/zXIaySEw9yqqMDSO/vU6pkg6cQ54IwkAOvFX1KksEIEsATyIj/EREfNgHMIQc2Zf+/5wfY7wwHMuH9jGJgRhZ9wJMYSAwghhCDiLa4Ae6De+Hh8OgHmzPOxj0G8vjuT3hKaCM8ItwgtBPuTBIXyoZEORa0Q/2g/vqk/Vgf3ApquuL+uDdUh8o4EzcADrgLnIeD+8KZXSHL7Y9bWRXWEO2/ZfDDHer3ozhRUMowih/FZuhIDTsN10EVZa1/rI8q1rTBenMHe4bOz/2h+kJ4DhvqiS3CDmDnsJPYBawJqwcs7DjWgLVgR5V4cMU96VtxA7PF9MWTDXWGrpnvd1ZZSblTjVOn0xdVX55oWp7yYeROlk6XiTMy81gc+MUQsXgSgeMIlrOTsysAyu+P6vX2Jrrvu4IwW75z838HwPt4b2/vke9c6HEA9rnDV8Lh75wNG35a1AA4f1igkOWrOFx5IMA3Bx0+ffrAGJgDG5iPM3ADXsAPBIJQEAniQBKYCKPPhOtcBqaCmWAeKAIlYDlYA8rBJrAVVIHdYD+oB03gJDgLLoEr4Aa4C1dPB3gBusE78BlBEBJCQxiIPmKCWCL2iDPCRnyQQCQciUGSkFQkA5EgCmQmMh8pQVYi5cgWpBrZhxxGTiIXkDbkDvIQ6UReI59QDFVHdVAj1AodibJRDhqGxqET0Ax0ClqALkCXomVoJboLrUNPopfQG2g7+gLtwQCmhjExU8wBY2NcLBJLxtIxGTYbK8ZKsUqsFmuE9/ka1o51YR9xIs7AWbgDXMEheDwuwKfgs/EleDlehdfhp/Fr+EO8G/9GoBEMCfYETwKPMI6QQZhKKCKUErYTDhHOwGepg/COSCQyidZEd/gsJhGziDOIS4gbiHuIJ4htxMfEHhKJpE+yJ3mTIkl8Uh6piLSOtIt0nHSV1EH6QFYjm5CdyUHkZLKEXEguJe8kHyNfJT8jf6ZoUiwpnpRIipAynbKMso3SSLlM6aB8pmpRrane1DhqFnUetYxaSz1DvUd9o6amZqbmoRatJlabq1amtlftvNpDtY/q2up26lz1FHWF+lL1Heon1O+ov6HRaFY0P1oyLY+2lFZNO0V7QPugwdBw1OBpCDXmaFRo1Glc1XhJp9At6Rz6RHoBvZR+gH6Z3qVJ0bTS5GryNWdrVmge1ryl2aPF0BqlFamVq7VEa6fWBa3n2iRtK+1AbaH2Au2t2qe0HzMwhjmDyxAw5jO2Mc4wOnSIOtY6PJ0snRKd3TqtOt262rouugm603QrdI/qtjMxphWTx8xhLmPuZ95kfhpmNIwzTDRs8bDaYVeHvdcbruenJ9Ir1tujd0Pvkz5LP1A/W3+Ffr3+fQPcwM4g2mCqwUaDMwZdw3WGew0XDC8evn/4b4aooZ1hjOEMw62GLYY9RsZGwUZSo3VGp4y6jJnGfsZZxquNjxl3mjBMfEzEJqtNjpv8wdJlcVg5rDLWaVa3qaFpiKnCdItpq+lnM2uzeLNCsz1m982p5mzzdPPV5s3m3RYmFmMtZlrUWPxmSbFkW2ZarrU8Z/neytoq0WqhVb3Vc2s9a551gXWN9T0bmo2vzRSbSpvrtkRbtm227QbbK3aonatdpl2F3WV71N7NXmy/wb5tBGGExwjJiMoRtxzUHTgO+Q41Dg8dmY7hjoWO9Y4vR1qMTB65YuS5kd+cXJ1ynLY53R2lPSp0VOGoxlGvne2cBc4VztdH00YHjZ4zumH0Kxd7F5HLRpfbrgzXsa4LXZtdv7q5u8ncat063S3cU93Xu99i67Cj2EvY5z0IHv4eczyaPD56unnmee73/MvLwSvba6fX8zHWY0Rjto157G3mzffe4t3uw/JJ9dns0+5r6sv3rfR95GfuJ/Tb7veMY8vJ4uzivPR38pf5H/J/z/XkzuKeCMACggOKA1oDtQPjA8sDHwSZBWUE1QR1B7sGzwg+EUIICQtZEXKLZ8QT8Kp53aHuobNCT4eph8WGlYc9CrcLl4U3jkXHho5dNfZehGWEJKI+EkTyIldF3o+yjpoSdSSaGB0VXRH9NGZUzMyYc7GM2EmxO2PfxfnHLYu7G28Tr4hvTqAnpCRUJ7xPDEhcmdg+buS4WeMuJRkkiZMakknJCcnbk3vGB45fM74jxTWlKOXmBOsJ0yZcmGgwMWfi0Un0SfxJB1IJqYmpO1O/8CP5lfyeNF7a+rRuAVewVvBC6CdcLewUeYtWip6le6evTH+e4Z2xKqMz0zezNLNLzBWXi19lhWRtynqfHZm9I7s3JzFnTy45NzX3sERbki05Pdl48rTJbVJ7aZG0fYrnlDVTumVhsu1yRD5B3pCnA3/0WxQ2ip8UD/N98ivyP0xNmHpgmtY0ybSW6XbTF09/VhBU8MsMfIZgRvNM05nzZj6cxZm1ZTYyO2128xzzOQvmdMwNnls1jzove96vhU6FKwvfzk+c37jAaMHcBY9/Cv6ppkijSFZ0a6HXwk2L8EXiRa2LRy9et/hbsbD4YolTSWnJlyWCJRd/HvVz2c+9S9OXti5zW7ZxOXG5ZPnNFb4rqlZqrSxY+XjV2FV1q1mri1e/XTNpzYVSl9JNa6lrFWvby8LLGtZZrFu+7kt5ZvmNCv+KPesN1y9e/36DcMPVjX4bazcZbSrZ9GmzePPtLcFb6iqtKku3Erfmb326LWHbuV/Yv1RvN9hesv3rDsmO9qqYqtPV7tXVOw13LqtBaxQ1nbtSdl3ZHbC7odahdsse5p6SvWCvYu8f+1L33dwftr/5APtA7UHLg+sPMQ4V1yF10+u66zPr2xuSGtoOhx5ubvRqPHTE8ciOJtOmiqO6R5cdox5bcKz3eMHxnhPSE10nM04+bp7UfPfUuFPXT0efbj0Tdub82aCzp85xzh0/732+6YLnhcMX2RfrL7ldqmtxbTn0q+uvh1rdWusuu19uuOJxpbFtTNuxq75XT14LuHb2Ou/6pRsRN9puxt+8fSvlVvtt4e3nd3LuvPot/7fPd+feI9wrvq95v/SB4YPK321/39Pu1n70YcDDlkexj+4+Fjx+8UT+5EvHgqe0p6XPTJ5VP3d+3tQZ1Hnlj/F/dLyQvvjcVfSn1p/rX9q8PPiX318t3eO6O17JXvW+XvJG/82Oty5vm3uieh68y333+X3xB/0PVR/ZH899Svz07PPUL6QvZV9tvzZ+C/t2rze3t1fKl/H7fgUwoNzapAPwegcAtCQAGHDfSB2v2h/2GaLa0/Yh8J+wag/ZZ24A1MJ/+ugu+HdzC4C92wCwgvr0FACiaADEeQB09OjBNrCX69t3Ko0I9wabo7+m5aaBf2OqPekPcQ89A6WqCxh6/hdgV4Lh2TP8vwAAAIplWElmTU0AKgAAAAgABAEaAAUAAAABAAAAPgEbAAUAAAABAAAARgEoAAMAAAABAAIAAIdpAAQAAAABAAAATgAAAAAAAACQAAAAAQAAAJAAAAABAAOShgAHAAAAEgAAAHigAgAEAAAAAQAABXagAwAEAAAAAQAAAuwAAAAAQVNDSUkAAABTY3JlZW5zaG90XWr8AQAAAAlwSFlzAAAWJQAAFiUBSVIk8AAAAddpVFh0WE1MOmNvbS5hZG9iZS54bXAAAAAAADx4OnhtcG1ldGEgeG1sbnM6eD0iYWRvYmU6bnM6bWV0YS8iIHg6eG1wdGs9IlhNUCBDb3JlIDYuMC4wIj4KICAgPHJkZjpSREYgeG1sbnM6cmRmPSJodHRwOi8vd3d3LnczLm9yZy8xOTk5LzAyLzIyLXJkZi1zeW50YXgtbnMjIj4KICAgICAgPHJkZjpEZXNjcmlwdGlvbiByZGY6YWJvdXQ9IiIKICAgICAgICAgICAgeG1sbnM6ZXhpZj0iaHR0cDovL25zLmFkb2JlLmNvbS9leGlmLzEuMC8iPgogICAgICAgICA8ZXhpZjpQaXhlbFlEaW1lbnNpb24+NzQ4PC9leGlmOlBpeGVsWURpbWVuc2lvbj4KICAgICAgICAgPGV4aWY6UGl4ZWxYRGltZW5zaW9uPjEzOTg8L2V4aWY6UGl4ZWxYRGltZW5zaW9uPgogICAgICAgICA8ZXhpZjpVc2VyQ29tbWVudD5TY3JlZW5zaG90PC9leGlmOlVzZXJDb21tZW50PgogICAgICA8L3JkZjpEZXNjcmlwdGlvbj4KICAgPC9yZGY6UkRGPgo8L3g6eG1wbWV0YT4K1F2unAAAABxpRE9UAAAAAgAAAAAAAAF2AAAAKAAAAXYAAAF2AAGN8ho2cCUAAEAASURBVHgB7L3pn1XHde+9eoRmRoBAjN3Mg2YJWUhCQmieB0+KFcuWEyfO/SRvkjy5z/0Hks9zX1zHznVsOYkdjxosWdaEhGaB0DwhkACJeUZiHptuuvtZ37VPdZ9uGmig5/4VnD7n7LN37apv1Tm19m+vWlUwatSoOlMSAREQAREQAREQAREQAREQAREQgWYIFBQUGI/8VFdXZzyUREAEREAEREAEOo5AgYTdjoOvM4uACIiACIiACIiACIiACIhAZycgYbezt5DKJwIiIAIi0FMJSNjtqS2veouACIiACIiACIiACIiACIhACwhI2G0BJO0iAiIgAiIgAh1AQMJuB0DXKUVABERABERABERABERABESgqxCQsNtVWkrlFAEREAER6GkEJOz2tBZXfUVABERABERABERABERABETgJAhI2D0JWNpVBERABERABNqRgITddoStU4mACIiACIiACIiACIiACIhAVyMgYbertZjKKwIiIAIi0FMISNjtKS2teoqACIiACIiACIiACIiACIjAKRCQsHsK0HSICIiACIiACLQDAQm77QBZpxABERABERABERABERABERCBrkpAwm5XbTmVWwREQAREoLsTkLDb3VtY9RMBERABERABERABERABERCB0yAgYfc04OlQERABERABEWhDAhJ22xCushYBERABERABERABERABERCBrk5Awm5Xb0GVXwREQAREoLsSkLDbXVtW9RIBERABERABERABERABERCBViAgYbcVICoLERABERABEWgDAhJ22wCqshQBERABERABERABERABERCB7kJAwm53aUnVQwREQAREoLsRkLDb3VpU9REBERABERABERABERABERCBViQgYbcVYSorERABERABEWhFAhJ2WxGmshIBERABERABERABERABERCB7kZAwm53a1HVRwREQAREoLsQkLDbXVpS9RABERABERABERABERABERCBNiAgYbcNoCpLERABERABEWgFAhJ2WwGishABERABERABERABERABERCB7kpAwm53bVnVSwREQAREoKsTkLDb1VtQ5RcBERABERABERABERABERCBNiQgYbcN4SprERABERABETgNAhJ2TwOeDhUBERABERABERABERABERCB7k5Awm53b2HVTwREQAREoKsSkLDbVVtO5RYBERABERABERABERABERCBdiAgYbcdIOsUIiACIiACInAKBCTsngI0HSICIiACIiACIiACIiACIiACPYWAhN2e0tKqpwiIgAiIQFcjIGG3q7WYyisCIiACIiACIiACIiACIiAC7UhAwm47wtapREAEREAEROAkCEjYPQlY2lUEREAEREAEREAEREAEREAEehoBCbs9rcVVXxEQAREQga5CQMJuV2kplVMEREAEREAEREAEREAEREAEOoCAhN0OgK5TioAIiIAIiEALCEjYbQEk7SICIiACIiACIiACIiACIiACPZWAhN2e2vKqtwiIgAiIQGcnIGG3s7eQyicCIiACIiACIiACIiACIiACHUhAwm4HwtepRUAEREAEROA4BCTsHgeOPhIBERABERABERABERABERCBnk5Awm5P7wGqvwiIgAiIQGclIGG3s7aMyiUCIiACIiACIiACIiACIiACnYCAhN1O0AgqggiIgAiIgAg0Q0DCbjNQtEkEREAEREAEREAEREAEREAERCAjIGFXPUEEREAEREAEOicBCbuds11UKhEQAREQAREQAREQAREQARHoFAQk7HaKZlAhREAEREAEROAoAhJ2j0KiDSIgAiIgAiIgAiIgAiIgAiIgAomAhN1EQs8iIAIiIAIi0LkISNjtXO2h0oiACIiACIiACIiACIiACIhApyIgYbdTNYcKIwIiIAIiIAL1BCTs1qPQCxEQAREQAREQAREQAREQAREQgaYEJOw2JaL3IiACIiACItA5CEjY7RztoFKIgAiIgAiIgAiIgAiIgAiIQKckIGG3UzaLCiUCIiACIiACJmFXnUAEREAEREAEREAEREAEREAEROCYBCTsHhONPhABERABERCBDiUgYbdD8evkIiACIiACIiACIiACIiACItC5CUjY7dzto9KJgAiIgAj0XAISdntu26vmIiACIiACIiACIiACIiACInBCAhJ2T4hIO4iACIiACIhAhxCQsNsh2HVSERABERABERABERABERABEegaBCTsdo12UilFQAREQAR6HgEJuz2vzVVjERABERABERABERABERABEWgxAQm7LUalHUVABERABESgXQlI2G1X3DqZCIiACIiACIiACIiACIiACHQtAhJ2u1Z7qbQiIAIiIAI9h4CE3Z7T1qqpCIiACIiACIiACIiACIiACJw0AQm7J41MB4iACIiACIhAuxCQsNsumHUSERABERABERABERABERABEeiaBCTsds12U6lFQAREQAS6PwEJu92/jVVDERABERABERABERABERABEThlAhJ2TxmdDhQBERABERCBNiUgYbdN8SpzERABERABERABERABERABEejaBCTsdu32U+lFQAREQAS6LwEJu923bVUzERABERABERABERABERABEThtAhJ2TxuhMhABERABERCBNiEgYbdNsCpTERABERABERABERABERABEegeBCTsdo92VC1EQAREQAS6HwEJu92vTVUjERABERABERABERABERABEWg1AhJ2Ww2lMhIBERABERCBViUgYbdVcSozERABERABERABERABERABEeheBCTsdq/2VG1EQAREQAS6DwEJu92nLVUTERABERABERABERABERABEWh1AhJ2Wx2pMhQBERABERCBViEgYbdVMCoTERABERABERABERABERABEeieBCTsds92Va1EQAREQAS6PgEJu12/DVUDERABERABERABERABERABEWgzAvnCbl1dXf158l/Xb9QLERABERABERCBdiMgYbfdUOtEIiACIiACIiACIiACIiACItD1COQLu7W1tV2vAiqxCIiACIiACHRTAhJ2u2nDqloiIAIiIAIiIAIiIAIiIAIi0BoEJOy2BkXlIQIiIAIiIAKtT0DCbuszVY4iIAIiIAIiIAIiIAIiIAIi0C0IIOqS0nO+x25+KIb0ebeotCohAiIgAiIgAl2EgITdLtJQKqYIiIAIiIAIiIAIiIAIiIAItDeBfG9dzo2YmwTd9Mx2CbtQUBIBERABERCB9iUgYbd9eetsIiACIiACIiACIiACIiACItBlCCRhNwm3yWM3X9TtMpVRQUVABERABESgmxGQsNvNGlTVEQEREAEREAEREAEREAEREIHWIoCgW1hYGI/krZv/zHl4n4Tf1jqv8hEBERABERABETgxAQm7J2akPURABERABERABERABERABESgxxIoKyuzwYMHW3V1tR08eNAqKyutpqamnoeE3XoUeiECIiACIiAC7UqgWwm7ukvcrn1HJxMBERCBbkOAC1IlERABERABERCBxgR69+5tY8aMscmTJ9vo0aPDK3fdunW2YsUK27hxYwi86RqspKQkPkf8VRIBERABERABEWgfAt1O2E2GRfvg01lEQAREQAS6OoE0nbSr10PlFwEREAEREIHWJIBH7oQJE2zOnDl22WWX2dixY0O4XbNmjb311lv2zjvvGK8PHToUoRiKiori9CkGb2uWRXmJgAiIgAiIgAg0T0DCbvNctFUEREAERKCHEJCw20MaWtUUAREQARE4KQKMj1dffbXdeeedNnv2bBs+fHgcv337dlu8eLEtXLjQ3nzzTVu9enV47uYLunK2OSnU2lkEREAEREAETpmAhN1TRqcDRUAEREAEugMBCbvdoRVVBxEQAREQgdYmUFpaanfffbfdcccddsEFF1i/fv3qT7Fjxw5bunSpvfzyyyHwbtq0KWLvJnFXwm49Kr0QAREQAREQgTYlIGG3TfEqcxEQAREQgc5OQMJuZ28hlU8EREAERKC9CTA2EjMXUReP3Ysvvrhe2E2i7d69e23ZsmX2xBNPhOfu+vXrIyxDYWFhexdX5xMBERABERCBHkugCwu7Bd5oPBoSRgb/lERABERABESgZQR80bSCuogN2HR/LmqVREAEREAERKCnEUjjHzFzp02bZtdff73NnTvXpkyZYiymloRbYvAi7n766ac2f/58W7Roka1du9ZYPC3lkdg1fZ+2n9rz0deBzeWTBOjmPtM2ERABEWh9Alw7HH390Lq/f61fauXY9Ql0UWE3DeaNRdxM2O36jaIaiIAIiIAItCeBTNzNPyMGmIywfCJ6LQIiIAIi0FMIpPGPa6shQ4bYjBkz7PLLL484u+PHj7c+ffqEuMt+iLv79++3jz/+OMIypJi7Bw4cMIRh8mjdMbX568Dm2kbXhs1R0TYREIG2I3D0NQXnSiFq2u68yrmnE+iiwi7TexqLujSkBu+e3p1VfxEQARE4RQIFtY0ObN2L0EZZ640IiIAIiIAIdHoCjINcWxUXF9vgwYPDc/eqq66yK664wsaMGWN9+/at99xlv127dtmHH35oCxYssDfeeMNWrVplhw8fjjyoLPm1TirMZmgefSnYTPaay9kMFG0SARFoUwJ+TdHk90nCbpsCV+ZOQMKuuoEIiIAIiIAISNhVHxABERABERCBowjgkYvnLZ67U6dOtRtuuMFmzpxpY8eOjZi7fJbS9u3bY0G11157LQTeFJaBz1tP2HBhtwBxV0kEREAEOiMBCbudsVW6e5kk7Hb3Flb9REAEREAETkxAwu6JGWkPERABERCBHkMAL9w0ewXxlri6paWlds4559iNN95os2bNsoqKivDcBQrCLcfs2bMnYu7OmzcvxN2tW7daZWWlhN0e03NUURHo6QQk7Pb0HtAR9Zew2xHUdU4REAEREIHORUDCbudqD5VGBERABESgwwkkcRdRlwfvy8rK7Oyzz47F1AjLMGnSJOvVq1cItwjBCLzE3F2xYoUh7r7++uu2Zs2aCMtAHuzDAmzsxyJrJ5/ksXvyzHSECIhA+xGQsNt+rHWmREDCbiLRQ5+ZxtRaEa96KEJVWwREoDsQkLDbHVpRdRABERABEWhFAknY5RmvXeLtHjlyJLx08dy98sorY0G1CRMmhFjLfiTCN7B4WlpQbdGiRRFz99ChQyEOk0/aL8XeTcfGB8f9I2H3uHj0oQiIQAcTkLDbwQ3QI08vYbdDmz1Fh/LV19NLyhNKK38aNja8ar0Ck2eBn4Zz+/IIuYw5b+Nzt94ZlZMIiIAIdFICEnY7acOoWCIgAiIgAp2BAN62iLuItnjbsqDajBkzjAXVeDRdUA3Bdvfu3bZ48WIj5i7i7urVqw1xl5RE41Q3CbuJhJ5FQAS6NgEJu127/bpm6SXsdmi7sVKrx6/yf7UorPkp4lQV+pZse5Jd07NHsso+a9iQf3S8zhafTTvwnB4Nr1h6gJw8Kpb/5Vz8EPlzHedWEgEREIEeQqAVhN2mF6k9hJyqKQIiIAIi0EMIpHEuibADBw60adOmRczdSy+9NMTdfv36RdiG5Im7c+fO8Nx99dVXbeHChbZ+/foQd/k85QO+/NfHxymP3ePz0aciIAIdS0DCbsfy75lnl7DbYe3uki7iqeupIaeGqJCJuGyoZQVavzNuObEB2RWplUdBQY0/jvgLnpFlPa+cLksOYRi5seSfehyrQqvNPcxKQrAtZOc4VZ3xmpe17raLwBzCbjxzJiUREAER6CEETlPY5XeXBxeqTS9WewhBVVMEREAERKCbE8Brl1AMJSUlMdbhvdu3b1+bPn263XzzzbGgWnl5eWxjTEwLqiHuLlmyxJ5//vnw3N20aVMsqHZquCTsnho3HSUCItA+BCTstg9nnSWfgITdfBrt+jon7LpUW+eCQi1CbSR8aAus5ki1C78uzSY11z9zE8p6uZHUp6zOV6WtdqOq1kp7F/u0qEIrLil1MZgFC+qy+Fe1NXbwUJVV+baDlTW+iIH/wBT2d52Y87qu6x7BtS5AxCIGlCF39vTU9H3armcREAER6JYETlPYhUkSd9Nzt+SkSomACIiACPRYAukGJgAQbdONTGLmnn/++XbdddfZZZddZsTcxXM3Cbvst2fPHlu2bJk9++yz9Z67iMRJLCZP8iex/7GThN1js9EnIiACHU9Awm7Ht0HPK4GE3Q5r8+aF3YKCopywW2mlRRg3h6yo+Ij171diQ326U/+y3jbsjD42aFCJG0wl1rdfmQu8xS4A+3GuAodB5EZR5eHDduBQpe0/dNj27a+ynbsO265dR2zblh128ICLurVFLuYWWg1Cb6HfUQ+PXXx/PUVYiKPF3g5DpROLgAiIQFsTOA1hN12IUkQuRo9/QdrWFVH+IiACIiACItA+BBj/eOC5O3To0Ii5e/nll8eCalOmTHFHlNIQbikN++zdu9eWLl1qL730Unjurlq1yg77NUv+OHrikkvYPTEj7SECItBxBCTsdhz7nntmCbsd1vYFVhhxbD1UAh67Vp3zms08dosL3CO3sMZKig7YiDNLbMqkYTahotyGDx1iZw7tb/37FltZ7wIr7VUaXr0FvphBZhQhzdZZVXWVVVbXWNWRGjvkHru7XNjdsHGHffTRKlu3bq/t3FkVnry1dRzvZXBJN26O++HZzXKE3ZB5O4yQTiwCIiAC7UbgFIXdJOTirZQubvFQUhIBERABERCB7kogCbE882DcY2E1Yu4SluHKK6+MBdXGjRtnffr0ic9gwX547n700UeNFlSrrKzMXce0hJiE3ZZQ0j4iIAIdRUDCbkeR78nnlbDbYa2fCbv+12o8Vm6NeSiG8PQi9kKdlZUcsSKrtOFD6mzmBSNs9mVTbeyYse65289F3RLr09usl4fMLSpBgHVZlni8kYiU61vqas2jMPgnxMIqsIMHa2z79gP24eIN9v5Hm23J0o0u9O70/foaonANHrvMenJv3YJ6j92iXJ56EgEREIFuTuAUhV2mkOKRVFZWFmFw0mrh3ZyWqicCIiACItCDCSRhN3+GSrrROWjQoFhQbc6cORGW4ayzzrLevXvXe+6Cbfv27bZ48eIQd1lQbd26dVZd7U4ucTFyIrASdk9ESJ+LgAh0JAEJux1Jv6eeW8Juh7V8EnZ9+pLH10XadT3WdVUXaF2ULS7cZ3161diF5wyx2246z6664jw3dkpt67adVnN4jw3sV2DDhva1vv3L/CAWUqMiycM2FFqP3YvAy9Qn3+7HlvTqb1u2mb393np74eUP7c23l9mBw/1cyC3yO+guAmNMubhBXN/w1q2TsNth3UMnFgERaF8CLRR200UnnkkIulzAjhw5MhaK6dWrV1yUymO3fZtOZxMBERABEegYAoyJjHmxZkfuNaJv//79raKiwq6++mqbNGlSePIybuanHTt22Mcff2zz58+3119/3bZu3RphGdI4m79v49cSdhvz0DsREIHORUDCbudqj55RGgm7HdjOPnnJz+6esu5Xi7CLo2yRi6kFdUf8scPGjOxj186dYdddPcPGlw+3VWt228uvfmyH9m628eP62cUXT7Lp50y1msodYVAV+CJqmbiby9cF4sx/l/AOxf5ZiVXVDrYNmw7bC698bI8/9aat3eTGWJF/5uIvXr4s5MYj8olQEf5SSQREQAS6O4HjCLv5F5nJS4lFYVgchsVimHaKxy4eSaT8/U8HWzpXyqPp+7RdzyIgAiIgAiLQEQTSeMf4lF5TDoTekpISGz16tI0YMSIWUmsq7LL/rl27bMmSJfbkk0/aG2+8EeIunrvHTxJ2j89Hn4qACHQsAQm7Hcu/Z55dwm4HtnvmX4uw69KuiwoFHg6hyB+FtUesuGC7VYzrazdch7fuNBviC6a9+c5a+91Di2z/zn02fXJ/u2ZuhV1z3aXWp8zFWfcUw+22zmPqujnlD7x0EXYRaUncJS+yI3WDbcdus3c/WGdPPPuRvbBgrcfq7WN1HreBO+6UA09f/+M5ZCWMw/VHBERABLozgeMIu/nVTuLqtGnT7IYbbghvJGIIchHb9MI2/7jTeZ3OeTp56FgREAEREAERaGsC+eIuYxczW3gg6jY3lhG+aPfu3RFz949//KO9/fbbIe4ev5wSdo/PR5+KgAh0LAEJux3Lv2eeXcJum7d7EkddLM1LTbfiJYtfbVFtoYu71S7sfmkTx/ezm2680GbPmmIDB5TYW+9vtN89ssj27thnkyv62jVXjbXrrr/MwzEUW1FvnwLsxlFdNbF6k+cuoi7iLokzejzfugG270CBLVm+3Z5+Ybn94amlVlpUym5xpx3P4VoXdgkJkcoYh+uPCIiACHRnAich7OJNNHfuXLvnnnuMGIIDBgxo5KnU3MVrd0anuomACIiACIgABPKF3XwizY2LaV8cS/Dc/dWvfmVPP/20ff755/mHNvNawm4zULRJBESg0xCQsNtpmqIHFUTCbps2NtJokkeRV5PEmraxJQm+mbDrEq0HTWDhtK023oXdW2+60K66LPPYXb56j7244FPbt/tLGzuil118/li74MIZVlJU5R67vpKaT2mqq0Gh9fx5uECbeexyDs5JuIW+dqCy0Jat3GPzXl5tv330I/cQdt9c37/OPXzx2PW38Z4jlERABESgRxA4CWH38OHD4a177733xqrfhGFIF6jNXbz2CH6qpAiIgAiIgAg0Q+BY42PaznNlZaX98pe/tMcff9yWL1/eTC75myTs5tPQaxEQgc5GQMJuZ2uRnlAeCbtt2srJczYTbwsjLAJyabYd2bVeeHURttB3Q9gtKXSRt3aLjR3Xx267+SK7ZvYMGzPKQyjsNVu5bpdVHtxpQwYV29hRQ2zosMFW4+8LSnyKE9EW3DjKhF2eOG96ZDJtrfW1Q5VF9tma/S7srrFfPPi+FXp83SwgBKXxMhUi9KZSZoCyXPjb8J5XEn+dAXHFgAF7f80z74NN9pYPY0tr8Yrz5c7R9FwU4VgtU39+XviBsWDeMfcmHyUR6CEETkLYPXLkiF1yySV25513RigG4ge2l6CbLoR7SKuomiIgAiIgAp2YQP7Yx/iU3qfXhClKj/RZfnXw1kXU3bhxoz300EP2wgsv2Jo1a/J3aea1hN1moGiTCIhApyHgF9mhwzQUqJYV7Rulpu8bfag3InDSBCTsnjSykzkgJ+xi6Pij0L/gBQXF/lzkoqt7z/q/Go+nG+ESXNUtdOPGNV0Xd2uspHiXjRnT126/5RK79soZHm93sOtwpX5EqQuGHke3tsqFuWqPWeVPnkdtbaUbTh6n1/Op9ZAM/iI0xvzS8vNRV9fP9h8qsJVrD9nzr220n/36TQ/94MuqxcJrdR6DN/PYRWQucgGaGmTHZd68mRDtQmZOzGS/np6KS4qdv4u5zq7AuUes4toaKyrM4onV+Gu2FfK+lWDFLQHPs9gXvkOcxVhG0D3iMZaLi+lj/qbJySgbKT7yP35YrD7Mbs0Z27Gz/ohATyHQQmE34UDMveiii2z27Nl24YUXWi+Pc873iHiBXNA2XSQmHadnERABERABEeguBPLtR8Y+RFyesXv5rE+fPhGuiMVFm46L7Hfo0CHbsmWLvfLKK/biiy/aJ598EmEZjs9Hwu7x+ehTERCBzkYgOVNl5UJAcdFHSQRakYCE3VaESVaNtbRM2GVbCKRuwPj/3DvEV1/1tcBFWat2HdYFOT+6xB9FLtwWFlS6N26pzb5sks08f5ydNbxv5O5Lq/kzQl4mxhW6d21VVZX1Kq21QYN6+aOv9S7zxdD8RI2MLU7rCWH30OFiW7Fqn8178XP75W8WuYdwXYjJIdq6QVZQ0suqjyBEe3gHROgI0+A/Py58sE8m6mY1lbDriJxZsSvsffv1df6DgvsRj3VcVV0VBuuBAweijdpS2MVY7sUCFS4u9e3bJ4znTGA+etCIcnjzHTx40A4cOOjibmUI0yEGZ91Ef0Wg5xFoobDLbysPVvs+88wzraKiIh5ctCZxt+nvb8+DqRqLgAiIgAj0BAKMdyRuamKLpoVEcTIg/vx5551nEyZMCPu4qbCLHbp+/fpYMG3evHm2bNky27NnT+R1fHYSdo/PR5+KgAh0NgKNhV1Kx29nenS20qo8XZGAhN1WbLWQcTP7JpcrW3i4+Of/IvSte28WuGdnUfERXyW22sU4984trfM72kVW1qvUF01zY8X3KfbPS4rrbPiwPjbCHwP6usiaS5wiZFVXd3mu8bi6AwYUWUX5YJswcaQNH35W7Fnr+cSZfb84t7+rq+3nU56K7bNVu+3Fl5d7LKu3bNigfu61W+lihYuAhSVW64up7T9str/S7FBVnVUdwbvY78D7X/cx9mfOGiWI8BFxstP9g1JNyhmI2ZuT+5uhp3S5vE7u8Gb3zs8TL9msJbNd02dsQ9CdNGminT3jbOvjwiol2LN3r638fKUtXbrU9vpr1Hi2h+BOfU+1rsEq84bIPCMsBKVhw4ba+IrxNnXa1BCdMLYRd5tLGOCUCSN61arVtm/fPvcwzvpqc/trW/cj0LQ/t1YN2yrf1irfMfNpgbDLd5cLU0IxJHG3b9++1q+f/4b6di5k81O64M3fptciIAIiIAIi0J0IMDbyYMzjwY3OUaNG2QUXXBDhiioqKmKcDPs3V3E8dVetWhWi7muvvWYffPBBOBwwvh7Ldm1g1rHCbtg5cUmQrjcaXx80lLPlr7qs7dTyKmpPEejRBI4WdsHBdXqmKPRoOKp8qxCQsNsqGJH2co+872Z419aF3JsJq+5dazWV7iF7xMp6V9uggQXu8eXC7YjBNnRoP+vbp8w/i9gKLqMiyh5xr9laF3g9PAPH5qVkHNXG9P8C69en1saM7mvl5cNt2JnDY8+YBsUrP5RixSOE3SI3pnbYoteX2+uvLbFzp0+y3oXuNYxw66EiquuKbOchszWbd9nmL/bZzn01drjG/Ym9LDV1mViMFy8ZF56qOEm58lIYhLwnPzcO4znv85a8TIYWHrT1+VBrKn4qKc9ITQZrfYiDXLYh3HiZx4wdE1Oyr7/+Ohs2bFh4LHz55XZbtGhRrPC7adPm+hKQR8ovNlLfVM5j1T1/e+xPFRkMvA38fZn3nfHjx9eXodS9d0nNCUt1Hjai0hd/2r59u82fP9/L+IZt3bq1xwq7qXvQCtH3eE7tEa876Z9cPziqdPEdYmvD96hRHXMHZL8dXBz5hrRD7rOTesrAZYf4uaPP+bbWvMFyUuU51Z1bIOxyIwXxllkS8fvq8NhGava7RlsoiYAIiIAIiEA3JYA9y4OxkLGRxUTLy8tt5syZNmfOnBB3hwwZEg4HIGCsZAFS4ui++eabhqj74Ycfhqcu+TC2dnZhNwk0XlxPmaAdHHh7iok8TzePUzx11z+MhugO9lauP3WLunT9XtXqNUi/G40zlrDbmIfenQ4BCbunQy/vWH6L45F3HR8Ral0kZVOtx9et9bgFRXV7ra976p45pNgqygfajOljbPLkChsypL+LvaVZXFYfnIibmwwGThO/9TzHCzeiWODM39S6ty6vS4oOWd+yI9avf0mEYqgfFMiLDPwvY15dXbZ42prV2+yDt5fZiiVr7fprZtvA3p6PC4XuS2zVtS7sVhbaJ2u22JIVm+3z9XtsuzucuitxCLvhsVvnanOti0LHuNOUMKRyZyXgb+OEgRdCJ8I15fN/KRYsBeZz8srPp3EODe+yPd3p2L2e0zFZOciHunvICfeqY1vdMTxZG3KDdWas8UOMwYqhyXO0QS4/PiNfvHVvu+02+9rXvuYC++hoE8TS+fOft1//+tf22Wef12edhN0a8iOzOI+HuPA88Zolv/oUFc8ksrQ1zg8Rzu07kgdewtOnT7c77rjdvvH1r1uv3r3qs2j6gnjAhw5V2ubNm+2hBx+0Z5+bH1PhoixNdz7e+0aNkntDmXLliqrltVx9+Y+XZzt9RlnyOaeyxk0BpxpNEH9yBQrcWQ2y1minguadJjt7rmy+PfpK7nPaLvHNCu/188+yuM9ZP852zX43eI3Xdtafs76UfX4Kf/3c8CPxHcnHRin4PkY3qC9gtm+n+9sCYZffBDxzq6urvZ7Z7wIMo8/7+8Z9Kp97p6utCiQCIiACIiACLSbA+EdqOs6l7XzGeIiTwaWXXmpXXXVVxJ8/44wz4oYox2EjIOpu2rTJXn/9dVuwYIEtXrzYvvzyyxB+09hKXsdP7eux29R8acTAC8rncc3g9cMgIkxeo5QyyG3O7KS0MduTbRnihmMbXjXKTW+aEAj2TbbR19ie+md+mzXZNe9KpeknbfO+cctnJnJWiIbyUv6U1A8Sia79LGG3a7dfVyi9hN1WaiV+dOMRIzM/2X7RX+cRc10A9ct9q/FYujWFfie7cI8Ncu/ac6YPtdmXT7HLZ83wRdJG+cG+iBoemHEof7IfdAaio37Qc8ZVftELPF5vAbF6w9M3/5MGIYittdbHDrlou3bVJlv67hLbsuYLu/O2uTa4zENEuJhMtF33EbbKwr62eXeVvbNkvS18b70tXbXXqmuq3JsX4QavYg8N4c8Nwm7DMJVVofGd52wbdcpqk6rAYl/EqsQIAl3U1z9EgOUHMBYiyg3O+bVq7jWcyQORq9AXg8MzlfOSyLem5oiHvOjrrz2qcZXHNz5BwhhIwm1xsUc+9rIi/CVxlxAYmZB1tLCLdcZiEM8/P9+F3d/Y5x6SISWOJ1V7DN6SEjxr6zKhyMubPG1jB8/D//Nx/QJpIb7mtvunsZ1Kl/niFNOnTwtx+atf/ap7TOQLu1k+CGzJ+Dlc6YY1wq6vQPzss8/aunXrPLejeloUo9k/vmsylrLPs2PhAedoB69nfXgH/5j24BQndZ5mT356G7M+4QsFenuSiryvZDcTEOqIKe3GYI5FMgS5eVK/f679Tq8UJ380vRlRPvU5+komzvJ94Xcm6+f0GcrNfuxP3+V9VpfMq4Z9qj0ONG2Y346+uVEiz6bbGu2Q3vhO5JPy9JP5wpD8VtR5mBBf8NE/85cULB3R+Z5PQ9iFddNE3fPZNv1c70VABERABESgqxJI4xvP2LXYI+PGjbMrr7zSrrnmmlhclDBlKfE5MXVxekDQZaG0FStWRCgwPH0ZM5sbS9PxjZ/bW9jNri8al8HfeZnDToKBPw5XHQ4HnXxbPqyeZPv4PiRC5TVco2R2Ub1TS+yR/YFti2ywvGN66su4tsrxpS9Ve5/iRnyR28A00hHvf8dK7c2ZXpO6BGWK89PWOVuaxbdZp4V9Ypt6wbGarkttl7DbpZqrSxZWwm4rNRsDbzziV5iL/CTslvgrF7sKqvxx0AaU7LezJw+0uVdNc2F3hlWMG2zFJS70Ieoy8pDi1z57nf3w88uefZT/t/Em9k+P/L0aDx4Iu5W+eNr61Zvsk3cX25aV2+z2Wy6xwS42u5TqhgkxIkvscGFv219bYmu+qLFFH22z5xassG07d1uVF7MuRF1i/rph5cc0d15KksrHAIYIiuCHiFvkIhSfpYEtDWS+KTeIuQiEKOWVD3GEvNjpBKkhv+x4xDiELfIo8XgWsMwEZN+GyHiChIiLyEfZk0dkKgd5Rtm8XDw39dhlJG4q7Mb+fk6mche6sRGitefPds5BDfmM9/mJd9k+Lix7vojeYURHDGXYFMbUN7wkrsKgvvaaXH05MvMwZFXigQMHeizm/iEen7awmysgzJOAyCbKhVCaqhCt5mXGuKp1o6pp3XLZtOsT/YoyZ4IuRrO3ISXw7cljN/MyzfXDnGiXWuXEPbFtqpPOT+6ZEUjr+r/cTRG+X/Cnz2f7ZJ/TF+nHsG94ZH2KdvFXcQzHRr5xNFuzffK35T469pOfi35Nyr9ZA2tKA+NOm1pZ2O209VTBREAEREAEROAUCWATIMQSR5fXjPnYEiwmet1110VM3XPOOac+LBl2B/uxkDALpb3zzjsRoow1HljfgcQ+LRd1OaK9hV3O2ZCysvosTL+eoe41Hhc4s8XY5mKib08p6u9vsH44jvckRxIbo+559Y/t2EvsE3/1pyUEuB7J/vsrt4OL/HoKmzNo557ph4l/fp5sb0/WWQ9oKAH9ggd2eObYlDlmpL7Ac/uWsKFsetV6BCTsth5L5dQ8AQm7zXM5pa0hsvBrHQIBoQ3cE5VQDAU1HsLgoD/224SzCu3GuVPs6ivPtalTRnlcXZRShJC8n/kYXfiTBiCmkyDKxKb445/4c3Op6fbccbldaz0Uw8FDxbZxzSZb9sHHtnn1FrvtRhd2+7r46eWkvO7D6N7FHkfSvXe37i+19z/fb8++/pm999EKqyrs55+7B14udjA+wE3LngafGE7ry5x5CCJcJuEPoY8fOQYsDCEEyqzqOSHKB+YwgryuIbTl6nCsp1Tz8GqNUlH3TLTiGDwXMzMpxySA8knzKcrvJUqibjIG6gdaPyyJhC0TdjNP0PD69UwoL4IbQhyDOQ9YNhWdKQfCb2YsZsYsJaY86VHiXAcNHuzeEmNj9WE+hx1tQViGoUOH2iWXXGLTfGG1wb7fqQi7wSPXng1tnNUBrlkdsn4b9cgqWF/Pem+EE3Cn7G2ZqAfMMeRoW7y7s+8a37M0rT5rFwcc+/mfjGfumLYsX7N5+3nju8GH2Zek0W5BPedV7LtmKfeFCEMC5rnjss+z35b6Pu1HsF9pqc8y8H9cqOFxG8Zu/rkbnTX3Jp3Qj+eU+d8/8mIrpyelomXvOtlfCbudrEFUHBEQAREQgc5CAHuAhN2AfYlNyjMC75gxY+yyyy4LT13CgmFz4sjBvhzHQmmrV6+OmLqvvPKKffLJJ7Z79+6wNficfE4uta+w27Rs1S7kci3DNU1paS/r37+/L1x9ZjxnsxCxK7OEnQ867KBk88OlsrIyGOzYsSPiC+PFy6wxUuNwcQ15ZTnqb3MEMDPpodFP/UVycmDf6Lm5RkjXnRisOdM0s3XZsZ1TnN/7Av+y6xLKn9o7s51TndL3r52LqNO1IoG4HjsqvyY6ylGfa4MItJyAhN2Ws2rBntmPcebF6gN5hCogXIGv8Fqw33+sD9n5k8vsz756qc2aOdXvbvf3QbyKEZzR3n/NeXAafup9cA/xlC989qWPAcAHptiFfWJD2j/bmm30DxjAPJFtfqqt62f79hfaBhd2P//4Y/ti7Ta7xYXdQQi7HsahkEXRal2McZERuXnn4T726ZY6e+W9DfbU/LfskA3y0hBiIpNssrLln8GFHTf2Bg0aGMYeYh9xgFmsa//+/S4qDgrDB4MQQ2/Xrl1xFx9jhtXlBwwY4Cvn9g0jb9++/W7s7LaDBw56PZpUpPEp410vNy7xSMU7FUMzDvE/LBJFTC8eeAxUehiC8Cpkhxyn4NbkFJwT0a+XG219vGzUKRlsfIY4euDgAduxY2cIqvUxdseM9vIc7bGbBmVE2H79+tlAz4+EQcsqwAcPHrJ9e/fG+/gg/fEy4v2Ixy2MMCQpP/UhpARcmWKEcN2rV69gSH7haez8OWb06FFGiIbLL5tlw0eMaCTsPvfsc7Y2QjGkEzb/nAYkkKVeyJ7Fbrz39Ri/tB3nakgIhEeinWnLSm/v6iPVYbwc1TEbDmqXVzQ1RjS8CM/Rxxef4zX9JvHNGNZE2+zZvce/N/siHEcmwOcVM75q/of+1EaJ7wucKV9ZWe/ohxh/lZXeZ9zj5fBhFizp7f2K/l8WXtmUk/AhTOei/Ht9vyPOH08S+lxMBfQiU+9+3m69/Xhe00+p+wH/3tEfuYDJflfyWp1OkKtvffv3HxBiMBc79E+mXPIgZl66aMvLoY1InUa2EnZPA54OFQEREAER6K4Ekv3Kc7LHecYmIfzCV77yFZs7d66dffbZvmZI44XSEDARdd96661YKO2DDz4IuxU7gTzy82w5vw4QdpOt54WMawh/5ppj7NixUe8ZM2aElzJMEq/MdqJWje1DjkfYXrNmjS1durRe6E5sk83EkbH6du7KL97rzzEJlHrorwEDBoYDC2YqTkGwxn7f6ddqEfIj2iIaE7i5vDrGOs3OnnN+8O9CP79BwPcHm5y+wOcHDuz3a+XddsCv9ZS6NoF0Hd24FhJ2G/PQu9MhIGH3dOgddWzDQJGJu+6FGR6w1S4Q7nfRpNpmzuhn9987284/Z7wLMC6QJjEBr90Qdv1nHKEXYdenGoV4wnb/efffeP+LMZO95xcff7hsH87dcP7Ii08RalPyUa6mtp8bE2ZrPl9tqz9ebFW799vcqy+yga7HuVzo5fWdeUSqs721/W3Nzl72xtIv7Pd/fMmF3gF2pJYpRj4Ixn4NP0icCVEXYZY79hg7GDiIO9u3b7fNmzbb9BnT484+AtLOnTs99uznttLjzzJlBm/TiRMn2ggXHhGWWFyBz9esXhMCcH2xssL5X9/i/8lrwMABNvKskTbW8xg+fLiLsIPCm4CBEWEJ8Wv7l9tjGhghEnY5hMNubDrMyC2JXAioUX9/wiAoc5HszGFnWsX4ilgQIhN3SyPPvS56ffHFF/bpJ5+GKDbXjdq0eBplbRqKIRl6Z7jH7KRJk+ycc8/x9qFd61x4222r3PD9ePHH8b6+iv6C+FADXDSbOm2qC7SjQzyFD6L4unXr/bHW9u7dl+Xlgl2xh51A0EPQRjCnPTC877vv2zZnzhwbOXJkY2H3ueds3dp1+ac86jX1oZwpURfERkR0eI9xMXv0qNF2pnsslOKlkdsf8Zl2ZqG2LZu32BdffhGeCQiRybMz5dnWz6n0Yew5F0T6M88cZqNGjrKzRp4VHiaI5/QnDEEMQC5I9jnbtc4YRl96P0ZMjdAZnlHWfbI+5IDarAp8r1iApLx8XLQlAjr8v9j2ha1ctTK+X3xv6Fc8D3DjkO8UdaCfrlq1ylauXGnbfH9iO1NUvheIsORL/+C7xw0H2pbjtm3bZsuXL7eNGzZmX4msstEPkrjNlDE8c8ZPGB/nThcj0Ted19q13jf9u8f2oJTLI0eszXidUsbptzh3cPpu5ueV+j3s+BwOPFK98/fVaxEQAREQARHoDgQY+3iQeMZGIo5seXl5vah7wQUXhO3NzXES4yI2IGs4sFDawoULY6E07OZkQ8SOp/SnY4TdJP9RN+yySZMm2uzZs232FVfYOLfPysr6ZGtL1Bs5mY2fqpgY8h42xBvGe3nRokUh8GIvh/jo9kW9zR3XcfUZ1l+35G2J7JNo1HR7OndPeB7s9uzUqVPs/PPPd3G0Xzjn4NDDteT7770ftnJwSJDazmw/Pu44f+pN/l3x9qbdJ0+ebLN84UH6Eonr0DVr19gH73/g14ir4nuH/X6slKp1rM+1vWMJpO9o41I06CiNt+udCJw8AQm7J8+sZUe4SEC4gkK8bgs8mH7RAevft9ZmXTjQ/vK+K23a5DERYJ+YTCiJdb5wWYi8IS74lzy8dRF3G37BEWlrfXvYVn4YR7p5heLmr/AW5kHiRwKhmGnl/sjtybmOHOnn4lqVffrhYlu39BMbfUaZnXfuZB8A3SPQz13oedUPDJ5tZcFA27y/j72zfKf9+tHnbcPuXnb4CDFy/VwYG1FejvGH74/X3+jRY3w61lxfQGG2e5kOCgESgQdh6eqrr7bJLj6Vunj2pYt8H37woS1wY6+srMxXz73AZs68xEaNGhUDHHey33n7HXttwWvGHX4MyWxAo76ZqIZwiahIPC8ek1ycGu1TwrjjyaJNGF94BnNnfOvWbUZML+6OL1u2PEReBlIMrWRIIfZxElhRJqaXnXfeeWG4IpqdddaI8OBl/31+93Tjxo0xtQwReurUqXb77beHdyzlbCrsIgZh8E6cOCHikOFBi0AL780uNr/88sv2m9/8Ngze+jbwzxAaYXLHnXcYhjNCGnmR/7x588ILAhEuY+MHeKJOGIX0FUTA0xF2oV1vYEbuHrvKufd3T4WJEyZGu+GlUTF+fIiKiIPsj4CIF/KuXTvdKyFr/yVLltinn34aZW8waSLTtvsDBC8PZaIuCKIwQSTlBgQPRE1Ec7yO6QP0G9oYg5BpcvTfDz/8MC5KVq1aHZ6sGPX1Rrrn3ZaJsAhTpkyJ7xUXEdy4oC/xnXrzzTejL9NP+Q6N93YY5N87ykcdWG36Y/fOf/fdd8M4xHOmxEMu4LmOMDtq9KgI03HDDTd4PxvpfIqj3uz36iuv2vznnw8eWZ9qCB3Ce250nHvuuXb1nDmxCjZGC+2+fPmK8Mx5++234/zZFLOGXt3eon6L2iZ+yxr2jP7SpF2pM/1Hwm4DJ70SAREQARHo3gQY+9IjjY3YTJdffnmEX8Bjl5vEKbEPN8a5qf/SSy+FfctCaXv27Am7JH8/XpP3yaUOEHbzCnjEZ6MNHTI01rS488474/oDkZb6cr3B7Cg3POMIWOQn3uP0Aj8cI7i2wUZjIWNsZBxhuDbIrnn8WL/W4iorJViFDdWwKT7CoSPbreGDhlfp6O79jCB67bXX2t133RUOG9jJXPuxWN+jjz5qy/3aL1Lqb03apt3o1Ldh1kL0Cb4bc+debffff3/Y5JQdexNP90ceecTeeOONuKbi+qS5RJXa7bqquQJo2wkJSNg9ISLtcJoEJOyeJsBjHu4iQSbsYrBUWknxAZ8a4vF1rx5j3/rmLKsYM9RD6yK8Id4STN9/qDkGQ4DXMTpnQm0YBR4T1DzurbG4mR+DmcAxBEwoiIGJfbP9Q9j1vPDurY07vdlnRzyPOvfA/Xz5Blvy9gd2yMXAyy4e54PfMBeJODrLD3EXUZgyVBUMsC8O9LGPPt9pv39qoX26uc4OHmboyIWKCDEEk8MffhjCLiLiPffcYzfeeEMIrHiTcoeekAHT/E4qU01IiCNffPFlGDKIaRPc6w+xLfOA81AHfjd75cpV9sILL9iDDz7oxtKeTFDxQY0QCb17uzete1yyWAMDOXdp8U7l+BSjiCETOQ+GhITY42Xh7jiDPKIVnoygpsp47SJAFeGF5/lXVFT4IDvXELymT5/m5+uVyxvRNONfVXUkxDXESgbgmTMvDk9lPm8q7DIYM1BPcwH47q/eZX/5l38R+cACj4Ynn3jS/vVffxRlZVtKhJhAvP7e975nc+ZcFeIygulqFxgffeyxWFkYgTkq4n+jv/DO65W8jk9H2KUcXp36fGkrBL1R7qF7yy03xwrIeFsnPtyACAMjuNLnPEaws8W44q7zyx5f7bXXFoTxG/2ezNsoEc+Y8oZwjzHkZerv4QomTppoN910k82aNcv769jwVI1+ww7+P0s0svcL/55VVlZFX8Hr5KUXX7KPFi8OoxvDm9TWQiXC7nnnnWt33HGH3XzzzS6gD3fGBeGF8NFHH7kQezDi240fX+71LfV+mvpotJxfKOzwC4clcYHFStRfuvd6iuE23PMi/jKhRK644vII6YBH9Vr3uH3eRd1f/NcvbKd7h9Ov6OM86MusODx5ymS70b8ft9x6S3xHavw3DSH/jTfejMVR3n/fPST8XBgz6aKwPXhFo5zsn/gtaziI+qbvUtpKHai/hN1ERM8iIAIiIALdnUAavxkTec1Caddcc03YyNxURqAk8RkJhwrsUmym53xWWIqpy+dNx9U44KT/dLywi1cozhxXXXVV1AlhFs9b7HlE7bgWa6Ze2E84EVzqnpkwxGED72eEO7yaEXcRiJntiF3KdUZTMS9jiK2dDNZ8Q7phO5+nPZopSrfbNMk9Xrn2vMuFXWaNYq/RHi+//JI9+ofHwrGk01Satsm1H9ef2O7XXXet3futb9mlfm3CjDouSBYtet1+//sH7dVXX5Ww22ka79QKImH31LjpqJYTkLDbclYntWc2kGbTjwvsoJX1OmRnjehlt1430W6/+XwbM3Jw5JeGXJcd6983GD0Ipp5TiKzueeu7uDTo+/nrnPCaCaoM6JyRRybk1EWcBIRdBMtCv/vrixdUHrGdW/bY8o+W2a7NG23k4FL7yoWTrKgk8wLG+zc9wmPYBbrD1s92Hepty9fvs0df+NDeXrnf9h6gXO6tGGEmKHdmUHD2fGH35ptvinhTiJBML+IuNOIfHp14HPb38AIIJGzf63cqD7tQVOJhBPgM4QpvXATht9562x5++GFDwDp0qDIMHLxx8WK94oorQuya5EIdixcgaB2pJq5oddwxhyViKl6v5IeQSKwipuVgQD3xxBNhQHF3HAMqkldnoJcBEfW22251wWyWhxxAMGaBh8wLgXIg6sX5/C45d1qP+DmZBsQCCgzWW7ZsdWFsvv3617/x83m4Cc+fMAlMtcHo+P73/9L3y05JSIWnnnrafvh/fhhMsq3ZXzyHmep+3333RZnwGq7086/1Yx566KEQ3zZs2NjQ+l7nlKgTMVdPV9glPwYk8sMgnTx5kl2LUe8PRGe8D6qrj7h4vy/CXtCu8CZUA+EN+vTh8+oIBYCX9rNu6LOABvVoarCmsrfKswOGewpLQTm5eYAh/tWv3h0iOVPnSMRM3rtvrxvRlJ0bBx5/1z8jHAf9iBAMq1etcQ/yBSHCEzqjym8+QDvXjJFPW/xxiTE8x/EMQdilD5Dw1N7sIS7ov+PciMVLFwORPk+/oe1JtA2eu3gdP/PMsy66PpW+tv6dLbMp3ifxCCd/4mDTf9l/0aI37Oc//3nEx+N7zHaMTboYTLiRcffdd7shfaMN9u8MnPFufu65+fbkk0/G6337iC/ujPw3KxmxbS2ER6VP9o+E3ZMlpv1FQAREQAS6IYE0VlM1xnpsIkQybGlmjTFzCIcKZjzxnhvoaV9EXewAZhMxEw1vVLZhM2MHtk7qGGEXew8eJGYlcrP9oosuipmJiNiEriL8VfURXz8ld22UPWcM4YiNiR01xD1+Ccl2ic9UxHsX+3OFz3ZatuxT57curlU4F6eLU/KcyzOVgXJgQ8N3k4e748Z6uj7hM9qxre1TztOaKeh6hfP74LHyT/v6zlHPiT6zEmGXGZEVFZmjENdX9MM//OFRW7pk6bGyav/tlBnj2BPtyeLFCP3fcmF31qxLw46n3XFE+v3vfm8LX194lLCbjk+F72ptncrdU54l7PaUlu64ekrYbQP2DT+smehZ6Aun9S2rtDGj+tpdN8+w6+dMtZEjfOEs3zENuQzWvPahP7MBEGZjJOd9sS+OZS6aHXDPvEoXcRjo2ddT+hPPqTL+eRTC//gLd1R10arGve722o4NW+zg9j12Rp9Sm1Qx1MaNRIxJpoIL0QWEBvCTIdp6GIcq62N7D/ey1VsO2hOvLrOXP95hO/e5COr/8EjOFSCduF7Y/cY3vmG33nqzi5wjwptw44YNEXIBIQoD5uKLL47FBhjT8MRd7B6QCLdMYcKjde41c31a1+A49hOPYfunP/0pHtzBhtPQYUN92vmF9s1vftPz8hjBLjZC85CLb8QR5TxMo2ewRFwcNmxYeBT07ZuJeMQA/fTTZT7Q/yEGzd0u9uKlSx4YXoRL+KbX4ZprrzGEQBLGGKLwBq8L3rh4FCMUnnXWWRGoPy3axmIK5NPUYxcRmPYiVi6xePOFXYy4J9xj90c/+pELxCxW1ZAQFgl58O37vu2C5JUh6uENsHbt+hC88aqkTNFdsg4RB/MeAa2P17k1hF26GAu0lY8rt6tc9KYOFRXlISDiMbpp08Zgyt1xFrzr5cIobAghgBBM+AMWU0OEXrBgoQvevw6PDgTVNktefxhki8sVR6iISy6ZabfdeqvN8hWcET4RRVkAjwsRQmoQj5kLGG4wEI+YOiJOE7ZgjxvsSz2ECaLls/OeDUM8hGngtGHiHOe5d8hdLr7efMstUQ9Od9AX78Mblxsnh/y7Qb+nrojvsB89epQR05nQIngt089eeOHFEGvxpI8bGs5nhAvFhEm59957w3MeLnD45JNl9rvf/c6hPJ9oAABAAElEQVQWvb4o4gtzzrhQ8GP69+8XAjlT3mZfeWUwQ+j+wMXjP/7xjxEm5JCLwdyw8d39IWEXfqeSkvGefzF3KvnoGBEQAREQARE4HoE03qRnxp3kIIFDxcyZM0PUbbpQGnkiMK72m96EYcLDkDBq2O3kgR2TZjkd7/wt+6xjhV1sRJw/8NhlxhN1wxEFG5fXPBqujzAQESozGygxIA9sS7yfsTexk3a7k8gut+ewvw4fzmL5wyOz73nVkJI9wI37vXv3RGg7ZmatXpOtS8JNfq6XTjlRoOZOfCoZRjFyZTlBnkHL92mJAwBXrzjccN0G4wl+rXSTC7tf+/rXw3anqHiOv+IzNLneYx2TFqfWrH/+ScnXU2ZLZx+ABIclhF1mvF566VdC6OVTrpd+58IuAi8OFlnf4iozyyPLoWP/ZirCafW2jq1AO51dwm47ge7Bp5Gw2waNnxu6PGcGdg8bULDP+vY5bOVj+tvX77jArr7cFwgb1s9/kZvckQyx1o/2H3gMAAbt6iNFLtj49OadB9wzb5Pt3rnLvQSrrabap7ej2Pq+SZZtvipZaWpcvEIYLnZx8qxB/a181HAbOXyglZV43FrOFUOE51eQee2GsFvgU47retv+qlJb98Vhe/r1lfbsu1tt+x73aPSTFWTqsb9iGM7Okzx2v+6D6q0+PRtxCQGJuLYPPPBAeMpOmTzF7rr7Lp8Kf2MMXHgcPvPMvIgvhWE069JZ9hd/8b0IHg+D1avX2Pz5812M+o8wdlicCw/W66+/3mMRfdfvep/hg3pRDHgM4HgJ4JGLFy3HI3KVl2cLPEyYMCHCNSCebvNzkS8CI3d0SYy3eCQwRZ+8MWARuRhIv/xyR3g8Yqiu8TJVHq4MYZc8mUo1fdo0Y1o7ngt+2qOEXfJHSJvhC8jdc883PRRDg8cudfzT40/Yj3784/op8uxPQtjlHN/5znfsKvcQQITjjvxaj1v7iBsqhKpYvx5hl5AeWR2iPfwNhkNrCbuUhTAaF1yQTT+7/fbbYvoYdeL8xIGiLIjMGB+9neNo9+a98IILQ6ifPHliiLv0B8T63/zmtzFNb7eL7G2SvC0zwylbFZe2HV8xvj4mGvFkuVhJIj/9BlEaD1O8KTC04U4MOWLXItzzPdoUMeNe9v78cxdSt8aFSlubM4i1559/Xnh6E/5ixIizHJmHK3FRfL3zxiNm8UeLgz1hLyj7+PHjo624iUIfLiwsCu/4t9562/7zP//TiHeHIB/fEW/XGWfPCGEXD/VhfuMEzxrCZ/DdJDbZGu9vXJAQwgGu5H+zl+Um99blWPJBYH7ppZdd2H3c23ZhnJP+QcLwDkOddsn9XsQHneVPB3jsZv2TmQCMFUcnPs9PMFYSAREQAREQgbYikD/uMObwnhvzySkD8YnY+sTUTZ66jGE4O2BDEVIA71UcNog7S5gBPk+CZuuUu2OFXWYXMvMLj11sRGYiItSyPZw4GlWScZtHNp5zzdbYBsr7LMb4jDmzM0+U2J3Yugf8Jj9rG7zhoSAWeSgswsMhDsOd8jQ+X/O5Rim8rTO7xEvsG5K95xsjH8IFMAuO9ynRR7L2PeLXOJmNGJ+xT9TH35FvOiCXV+LBdsKNZfaN0/FjOAybMfU/ypTZj4TyyGxQjue8xDPGvoXx+PETQtj9ujvmVFSUx/GbNm7ymwyv2cOPPBwhyciX60hmUMY5XBiu9jwoO/lRZ1jALcoEB39POZkV5xvDWYLrdF5nZc/Wn6CcfCd6eZ9nAeNat5mx3xH8I39/zT7Bw595SeI8hBe81p2J7nGHpZl+s6BXLxZYL/DZpa/b7377O3v1tdfi2ipd63FcVsbM6Ya6RCk9L2bPJR2BOvFI5U7cOB5nneJiZ+HPMKQ4lLfSb9BEGdkpV0ZeUB7ekh/1Th9nOkT2WWxs7T9+0qw+Xq9cgaJtfHtRUbGHuyyO67loHz83jKpd7+A6JpUz9vfP6qvT2mVsQX4SdlsASbucFgEJu6eFr/mDG340+NFLwm6VlY/tZ/fcNdPmXDbezhzax39cfKiIkAkc4Q+EXQYQfxQWlvggQDD1ahdr9tiqzzfaxvVrrc5/pOqq/Qe1igdDzYlTcXGBe9IWuWdlkY07a4BNGD3chg7yRaLwIGXRNh+ofFzzhDGRldlLED+iVXW9bJ8Luxu+PGzz3lxrz7y1xb7cXeWf+r7p9BwTIi/nyWLsfvOb34j4qwhQeMO++9579i///C8hQlVUlBsevdyVHDCgn3322Up76MGHQmTd7162F/u0pr/5mx/YFPfcRXhbvz6bRvOTn/y789gdgx8LpeG9+OffvjcGGu5YIxAjzv32t7+1lR76AO9KEp6FeKwS/oBp7HgcMDgd9HO9+9679n88/AHxvxh0MVgQLxGdv/vd77hXcSZYkT+emoQ+4O4pgl4YAM6AaWjXX3+dT2O/IxZZo/1ITT122XYsYZcFuR5//E/24x/9mN0apRYJuy5MNzdgYAi1prA70sVQpuDhpXC5e7ziCYqY9+4777pH9RP2zLxnot+kCiAoVriYetddd4aXLKI0nqO0VYjqv8q8dtP+rfqMAZJ7YPDAnrARV7p3KaEDCFVAGyJEI0q/7IIkdcEIwFjCOBszekzEj6UvDPUF+agv3r2vuwfrD3/4Qxc710SYA7x52zI1K+x6R8O740O/0fCML6I3f/7zEQoD46XEDTUWEcTD+8/+7M8i1liZfzf3Iaq7wY/nAgua8N3EAOR7xneV8BRcqFRUVIShd9hvXrzxxlv2i1/8Ii7SDvjNIRYNIXbzZZdfFt/jy/0ZIRiW9GP6AW372YrPwhjGsPJm8O8WhuOJL1TakuNx8+4AYZcLwdQ36au0AxfBbKcdYcf3JfutST+4x62FPhQBERABERCBViHA2MN4hN2M7YdDBQ4PWeizzAOVffDURcR9zcUnwmxhUxOSALsrf/xK4srpF67jhF3qg+PCdWH332mXuSNImd/4RxzD1jk6MXaf7PhNRs1mdnT2uS1cp+Cxi/3FY/Vq7FMWbXY7AxHyBIm2wR6hvbF1uSbCFu7dq7cveF0azg2DfQYYNgr7YbNwDII9i/EySxIxGQ9t1mCIWjsrnutr4sfgJMF6KAiK6WY/s/wQp5kZmdY7odzR/9x2JGQY4jmON4iknJt9WbuFEHBJlMTph3Ufmgq7r7j3OAuQrVy5Ks5NPejD2Pkwoq9iH+/zvOjLcT3oDh5ePW+6nGzp56Tduc4lhBuhE6g/M9P2er2x1QjhdsYZQ8Impp5Vvl7FQc/vgJdzj3tV4ziS3eDIxPuMIUJpTeRJjF1sdhwykrC7YMFCv679Xb3HLuXBbodqshVxcOLmC3Y2zh1w47sHV87PosaUNe3vL0N8JuzgwIED4tjS0l7RTgcPZbP/svBr5oxKo80RT+ng8N/v9WABcc4TbXiCvnXaH/t5cbhhrRzWTol+6s/MDO3n66YwU7ZvX/pHqdehIIR6nLt44MBC2xz2ma70azokzQrH9k7NXaejE+VK1N7F0fm6IQEJu23QqPUDWOTNj95+61fmwu64fvaNOy60K2eVu8euC7uF/LCzE3cAeeF3H/2Hht/rouJ+tne3T2lauck+en+ZrVyx2c4Y1NsmVoyNlVj7+A9wcXZwnOXoP+THjwWiDV6o/gPYy2PgFtVYbz9vkZ+E6Sv8APIDyT0wUkGotdwtzT7zYcr2VvWyte6xO2+Re86+uy3nseufx8DCQX6eNhR2161bay88/4L97GcPxOBJ2IWZPp2e2J6Ee2Bg5Id7yZKlsWATi5Ax4DCo8RnGATFymYL/gx/8wFevPTs8bfmR/8in5fzk//7Ep4/7dDHPA2GFAf/mW24K4Zl4uHhGE/rgVTdWH3Rh96MPPwrDhbZC0OOY6TOmG17KeOLG4ONIWiLsZswtBLGuIOyWl5fb9TdcH+ynT59K8W39ug0RM/fhhx62ZcuXB3MGeu6c0rcwNhC+YU+ICz5DkHzttQX2rz/815i2Fxm14h/a3QvSKEfaqZ+XZczYMREXDoOEwX6HhzJYv2G912N9iJbJ2MT4GuiLxM2ZM8f+9m//1gjJgdGAh++bb75tP/7xv3m7rYy+wfeoLVNzwq6jDS9avhuPe6iSjz7KFnSDedaPB7l3+NluJN4THiWENqEfZ+Lrn/xGwuOxsFlmsrpnuBvO1/lChN9yo/Lc886NGyIYzp999pmH/HgkprJt8JsssOVmwy033+J9/mseIuK8MGb5nrzjAj8e8K+7h0G6sZIJu9nvTLsYgKfaEB0g7MIytRdtxpTM0aNHx28QbYX3E7MQ0lTWU62ajhMBERABERCBkyGQxieuB7CDsgVWr4iZePn5MD4xVr3zzjshKC5btizCqmFjcSyJ5/Q6/9hTf90xwi52Px6ieCsTugonh2keXi3E0GOagTA4WRGJzI6ZYbPYQI19iuMBIuYCt7ERsqIJ4k+zhzXaiD2IZyR2CWUmVAQ2Sf4DcRWPVwQ22hhPbcLosV4K4czWelgzZvFhw+CxSs3pS9Gf/JnwbJM8PNsQF0BLXBwlD+wcZnayoHZV1eG4Pk32YrGfq6Ki3M51h56RfoMBm5JjNmzwhcCXLIm+dzxhF0eSV13Yfeqpp6IPVlRUxJoUQ9wpB2GX/suaEjhqYO8ygxPBmGs52iD6rfODCQL+xRdfZOXl5TEbFO/e7Tt22PvvvW84JrH+xTSfvTlp0qSYOQcbRGOuB1evXh3ngBOCb0o4S3AtwnUq8YGJsXuRhxrs1dtFSud1LGGXdkJcpg7cbKkorwjRmWsX7Em+k8uWLXdHms3eRi5q5sR9QqYN8uvcCT7rjgWQuWkzxB1XCC3IsftdpN7o7UidqDsOObQ/fQH2sILTqpWrQsxP9WjLZ/olbY7TCqmv3xjAGYXrMmYGj/QHIjWe0vRL2pTvAjebNnhfXLd+XXCgDRGHuaaib7Z3krDb3sR73vkk7LZqm2cDcb0nK3n7m0I7YGW9Kz2ubm9fPG2C3XLdNPcEHOyDRDbYRdgD3wsv2RhEall1vbetX7vDFr/znn3pAfGHndHHZkyfbH38h76XC5XuhMtwkx3jP/xZ4n1uW+Tlcm2dD6ohwPqdVxcuirw8RSFg+H6IsQzg6XAy8bxCpPIfcwaUwwV9bdfhMvt880H708vLbOHHe2z3fvfAC9HY8+R0eaktPHYxEogj+8ADP4+7wXgHMvWJ4PhXXTXbz+5Cocfpfd+9ghFH5z07L8RYigUa6sNdvQsvzDyBmdKO2MhiZ5/6oPeAC8Z4+u5wb02MMzwz77jjdvumi7QMznHX0+/I4uH4K/cwXeLT3hn8GBjIHyFw+vRp4RH8jW983Qd7j5/sqamwC08GxfxQDOxHHslj999cLGxq/HYmj92JkyaGRyfxdUeNIhyAuXG1MeK24qlJncvcOCAxEFMXjECMju997/6I34oBxp3xN5z5//7//rffQV8Z+7fmH1gH2CaZsrnU7z5jFGD4YCgU+zQepmRxDO1P21JuPuOOPgtj3OfxjSsqysPwyfra+/Z/f/LvvtDF8jDm/IAmZ2rdt80Ju9SFkCNPP/1MiLSE5qAUlB/jJS1y91W/AXJTLGQ4NAztdS7EP+erN//WY+du81ALqeQYsRMnTnIv3K/HdLCKiopgsGfPXnvxxRcjbi5x8+CGBzzfvxtc5C8vL/f9atyI2m3Pz3/eLyg8jpkb21k5sj7PtxDPj/htaV00rZfbKQi72cVcNh3wZApCX0vfc9oKzw7iOTO1E0+NESOITX4gvKQXLlzoxrkveNlWIUtOpuDaVwREQAREoEcRYKzCkYIxn/EJz8mUEMCw0Zn1hJ2OTZI8dZMdlfZt3eeOEXbdiHFbsTCErnvv/VbYQOPHV4T9eOz6YWUlS+vYezX+xE/EyU4yVVUdiYWhf/nLX4YgiOhHCDHs2eOl8GT0HZKXLt6PQ4cOiVmI2MBcC7EwNNdO9facFw/Tl7yxAffvPxhiK4v0YrcQ7gv7EQENsY3ErMhbPEwfsyenTp3itk9ZHPemh+949tnnYkYZXpbkSf8J+8idDq6ee3WsqYKIjlMSojHnQMDmfCHsul1FWzT12EXYZQ2X5W6vV1RUxGLBrNOCdy22GOfCiQHnjvd9BhyhRAi5hw1G4nyUBZZ4t/7d3/1dcOFasaq6ysXszWGD4y17zrln+0LH58e6LiUl7nFc4zcCvP54MiO0cq2JHY3Ii9drEt65NkRYxab+1rfcY/ci99g9obDLWhcDXCifHDcZzvWF+ChftXtuE/IOr+2XfdE4vpN439JYvfwczGIllMrsK2aHkxTrcHBurgHopYQqxDlqgXvfb/V1O8b47D/CDQ4bNiQ4LFnySXzX8c6PuNLu2d3mydspE2Vrwj4m/Bu/Reedd14Iu9jQiNyZGM91UBb6Be6sLUJ7cuNp1apVtsf1gmr/TsCjvZOE3fYm3vPOJ2G31do8DcLZQNwg7vrAVFBppcUHfdX4Qrtu9ln2Z1+baRMqhvkPOuKpF4CFyvDazYm7NTWFtmdngb3/zgpb/ekSG9S71s6dPtZGnDkkJ8wiFuMxi3SGvOuZxAnTwO0DaFrYzIVdfxMPBF4GnmzfbKuPV3HW+ix44Y+sFmaV1s+2HSqzJWv32mPPfWBLVvsP/iEXjEMEIR6vZ+D/0/5tIeyuc4/d590rEQGW6S4YF0wJw9C8wqeBMzDu9NjDeAv+8bE/hvcoohKiC3d8qT1ThxiYfvCDv3ah7sIQvZia8tlnK+3nLhi/8eYbfhdye9RjiBszd915p0/l+XoYM3UOiek5eEb+twu7xDOFZYiHnjcGBYuD4c2A1+4Ij7MLkeMKux5D6S88xi4JYX2VD/IIoz+OGLuUuCF1JmGXu+x3OhuEXepJ/2Xxro8/XhKezCxex+ALdKYKYTAhBJa7EIhoRQxiBl7iPb/99jv2z//8z/b5Z583VLaVXkXbxJercYZsp0+UeH9APBs8eFB4SRJOI00tTJ7eHIlXwlgv+6WXXhr9DsNh96497un9kf3kJz+N1YuZWtViAyG+KP7nJA2KYwm73DVH2GWxstWr1wRr8iacBB64kyZNjD55qy8Wd+aZw8KzYv36DbGwGTG7WGyNRI+DTT8XvG+66ab6Czi83TH0uWnymH+3XnCBlzv/F/lNku/e/93wKjhjSOYJvHbtenvwwQftlZdfiZArtD1iLkYm1eZ72vDLwlk7WWqhsEv/po+Qoj/5e+p6Min6Z+54LpTwhpgzZ058RyZOnBh9EQ8OLgQwzrlg5iJJSQREQAREQATaiwCCFokQTdjcLBSGrcQYhmiCl+O7774b4Rfef//98JTD/iaxTzo+NrTqn44RdqkTAt+Zfh2Cxy5hvTJh93iVg2HG8Xh7Nf4srKbGm1rwrsaFROIbs47Ca6++5nYX4QT83Ll2bDYLP1Xy5uTaBhtn+JnD7YrZV0T9uL7BoxObks8y0exI5AsPYpxi12PrsaAvnrTvvvte2C7YqAhp2LAk2DHTi+sInFy4SYCAyqK+j/7h0XAK2OcertiwlJvzsc/N7pzwne/cFzMuqQrXEDjbMEMMoZTrMBiPHz8+1n3ID8WAhyniLiEWcEoY7J6dXKsmETCh4SYFZSe/p5582lZ42RGQcQJCkOM6Ek/t//W//l8XRa+wYWfiLHE4vI0JRxfrcrj9Rsg3hFJHE81Oy2MzcsNjjTtg4ACxYOGC8Hg97N7J8MsciA76TLib7ft/9X2b6aJlU2GXWY7UgTZCbEaYLi8v97CHt7ggfINVVGSLWfO9XLJkqT326GP2ltcFr1XCJ5B6eVgNwuhdc83ciOM71mcwprjJKAokyo3dz7XCar827eui6WT3sh469Iz4/EOftfrUU0/bc8/Nd17r28eu9zIRToRZlFz/Xzn7Sp9Z6B7cI8+KEBZc72OHR5/x/ej31IM+iQfyZnc6Iub3c8/5zQNf42XXLg+71x6CdBBr+NNY2IV3ejTso1cicDoEJOyeDr1Gx7qYFfJFttF/T+L7yrNHArLiwkP+43PErpw50L737Sts2tRRLsLwoQsCLuyGOBvirv/AVxfYF1sO24vPvWmHdmy1KWMH2/nT/ce32L1rc0ETcnJu5O4/ZdnJcj/K/sYT5fHkA0CUwX/h+MEr8ME3NvORP2rY5s/8AFJSFkTL/vnnvsPBgoG2aX9ve2/Fdnv4iddt3ZclVlnthkIIyRyLV3CWBzm0jbC7zl70Rbl+irDrMYqGDx/hP+qzYwE24nsiHoWw60LhYy5w8cPNjznxgDKjptYH5F6xkNRf//Vf+V2+mT4AD4ypL59/vjIWdXvzzbdiegl1GDrUhV2Px4t3AgYNpPbs2RfiCh67DA6wjHhD/imGzYSJ7ontgyuxg1mUC5bNCbsM3nj3ftOFXRZPI8Ee4zhCMeCx20QkYuoPAt19993n8WF98TQXR49aPK2dYuwi7GLgf+1rX427pJSdshB3lpV8MQxgw4MUfc534kIAIZW78/BCDM2E3X/xeMitL+wClbJFn65/zmKYEouJO9Dc6a2oqIhy0R+ImcUxmcdCZhRg7GJUIvz27UvZ/aaLexPQB/7dhd1PPv0kLm7iy8TpjpMgksrEhQ/FaqnYeWxh93Ob94wLux5WgbvyeI9jCOM9gac0XhaI8Ai7w4cj7FaFV8JTTz8dca23feHCrhcsay1uUhSEJwJ9f+7cufFdoEqfufj+rHv58t3aunWbXeuLp3zvL74XFzQYu3udyQdu7P3Xf/2Xe7QviVhidIHuKOzSf5MByWseqb/D6ngp7Zc8fRF1udDgYpnYhVM9rjgXB3xOH6GvwZyYyFw8K4mACIiACIhAexFgzOLBzW1ETJ6Z+sy4x/oXiLl4OOI1yY3iNCby3LYJG80fbXuSo3KnXiyKhc347W9/O+z+SS7meVGOk5KFdZxdmv3o5GuH5ymerL/85X9HKAZs8rCDm80/t9FPA8uUEAyxRQgJgENGtkB1YSzWu3ffXhdV94fdz/UMtgrekkzTxzEAe5Cp/uu8bzz37PyY7bXar28QfHGSwS79mgu7hLBA2MV7lGnz8+e/ECG/CMdAzFzsH/od9uwAv37A4eC+73zbhd1zopiIly+99HKsqcL1W2b31trECb54mu+LY06F2/fkgWfsIRdoSQjLlA+BDfuU8hICobQ0W0gNoXaFrw/x5JNPxmLQX3poCMRU9meaP44///N//pNd4cJucpbYsmVrhKLo517OXAPTRxBfORc2HnVGvMXSxnP2TV/c7ulnng4BHnuaMmCzUyc8mf/6r/7aZzkSY9c9ir2MWSiG30b4uiTs0l5cU82adWlcd9JetAG2KYLsM35dMM/X3li92hf6doeb+K54uc4cNszu/fN7fVbetTGDEgGahICNwI5DAYk6cH7CRnAsDlVcO5EI+/b0U8/ENQFti/POyffUyOqk/lCmS72+OFFRb9ZAKe1VEg4rlJ12Puzlpy9QL8qbeSJnwvlWb6fH//S498mXIpTEIe93DaktanD09755YbehFHolAqdLQMLu6RKsP55BMfthSF9lthCqwH3W/IfxsA8K1Xbx9FL73p9f5ivcV/gPfql/WM1eWYjaOn74PZB7VYFt3rDPnnniVetfeMTOmzjMJo4dEp6dDAyNzhKxbTk1Z01n9pe5hFCbnxBks3++d+6jOMp/uHlbGMJuOgtBJAbZ6p2l9vrizfaHJ3xxqYP9rKq22I/FZxjP4STsZuduS2H3Zw88ECEXGMwQOBFf84VdhMLHHnvMhZD5cfczhF0fCPghZeC88MILLIRdn+LCXb/MY/fzCPHAQPulD2AM9MOGDgvR+O677wphDBoNwu6vcsKut5QPZiQGmyTssmjcyJGjYntTYRdPUQyhaccQdjOP3X87Ku5PZxJ2J7pQSJgK7rhnxn025QVjEp7N9cGAwSd53RNh9z0Xqn74rz+yNX5HuE2S8/b/3q/5kwXeZ9oSIjl327/iFyh4WrCN/ZgKhXHFnXDaNDuOqWNFEcqDu/ts37N7r33o07p++u8/jZhgGGMtSRiYHE/iXIWeHwZInOcEGRxL2EXMnffMszEN7DN/TRnDc8HPhaf3pInuYe0L1zUr7HpM5PDY9X1pmsyILrDy8vK4gONGxTnnnB3fia1bv7BFvtoyngYYcnd6H7jbxV9iwuIJgGH7gt98wXsixSqmHN1N2KWZaENYpfZM70/QhPExx5Aw+LkYgvVXvvIV9564xhdqPDtugHChROLChvALCOqPPvpoXEDHB/ojAiIgAiIgAu1AII11w4cPj5vhF3rsz4qKihgHmdqOsMszYxV2DSnZOW1bPOyx7Lqlbc/TTO5uA+C9ev/93w3P0ylTJntZmtmvAzZhjzJF/te//q295YJni5KXHZbY75goODJwbfW9+++P6xUEPhYI27xlsy11T9ANGzdGOLVqjzWMvTLIBUWuDViTBM9eZrYhtOHZ+eDvH/QZbovDQ5LYpuSVhF2cXBDfkrDLDeylS3GWYNG9bLGvEHZ9XRVuKuDcgrBL/6KehBn4nYcU48ZCEnYnJGHXZ0/ST6kPthSCJWEh8EDl2qzSHVIIwUZdx48f78LlcG9TvHiL3FFlh4dMeMtD7/0qRF4cF/KF3X/6p3/MCbtnxjUd8YU5Bx65xAompi3fBZxCyJsZWazdgt3H94nPEY6feOKJCLPFOZOzADf4qSc3+7lupV4LFiyIetKumbBbF3njnILIiUhL/gisONm857Fx4fLBBx+G4EzfJB/EZdaauf+737WLZ86MY2hzrnsI0bbWQ6oQWoGy006UHQ9l1rXpHyJpr+hOHSHs0ubMtPxLdyi53r2TJ3t/Y2Fw4l3DnJB+cKVfUFd40B/L3cbmdeof3PRAJ+CZxbLrUwgirf0ldse9JlnSzkoi0JYEJOy2Gt3Gwi6/EUU+oGQxaLmrWWN9y+pswsjDds/d59usS6f6tPSBPkBxF5FvPse7YOrCrt9MtHVrdtn8ZxbaWf1K7fyJQ23MMOIatSCFwNuwX/a24ZclE3Zj+PbTZiIDf5GL2Yu/4RfsoRzqCoptZ1U/W7Kh2p5/a7W9uvB9O1DT32qs1B8ubvjDh6Ocx26WV3cRdu/+6t0hHCMCQue4wq6LwQyAyWN39GiE3aM9doktRVyfadOmNuux+8QTT8aCXMTDyk8wLS+vCCNyzpyrXFAdEXfLian6iBtCCGqIaY3vBGY5ICYz+OEVSJzYOXPmRCzPw35XepMPgg/5YnB4BK7zGEQtSc0JuyxcxzQnBlWE6+YGrqaGPneHESUfcnFxix/XVin6thtS3D1nZd8pHtMLEe1WFy3HlZeHAYrBhzG02RcLINQHZeWBAZYMhHHjxoYhRWgCjEMMm38PYXdJGLgtKT/54UGO2IkRiHctBhVeDCdKzQm7npUzXOl35ufZ43983E4s7J4Zd7bpK+Gxm4Td3MmTYUmM5MvcqP+6e/re5N4DxT5TAE/fD97/wFhZeIu3Nd8PQprgiY0Bv2L5CvuDi4/z5j3rhuSuMKZhWC/s+o9LcPXvRadNLQjF0LTs1IlE27Yk0Z8wvnmuqKjwG1RXhlGOgc6FYn5+fEcIv8AFAFMOiQ2mJAIiIAIiIALtTQDxiTGKGSWIYbxHIEPQZazKt/vSONa2ZewgYTdny7Ao1ve//3235b/hN2VntG1VTyJ3PCxf9nBYv//9Q26zvd+yI6NOfs3ndrJf7oSjClP7me01jqn6LtSyHsMbLnY+/PDD4Z1NKATanOsaHGUIz3XjTTeGmIagiV2N4PYnX9gXgZdyEWu3NYXdV3xBawRMnA7oj9jVzQm79EfCMSB4cr2Ddzn9lnLi6YpX8tVXXx2OCmXurcxiZhs2bLJ/+7d/i7wRO3H4SB67//iPfx+2G2Iwth/XPSwah8CMCEu4PkRe1rngegPhFUGa7w5l4ZinfdYcLLkxQl+i7KTmhF1EyN///vf2qtvfCLskrjlZ7BjPZwRM7EpmG3766af25BNPhccuQjxhM2gjrj3wqCZ8CI4eeDbj/MF5t2/fEZ7Vr77yqofC8LL7NQ6hRljLhvKcPWNGLLbG9Q+mLjMWn/EQcDgdtJfHLiI8IvM//MM/eAjGy718sK+NGwZcAxOu7JNPPvHrsz1hX9M29GHKP8PLT1vDHvGa6174M+OgPknYrUehF12bgITdVms/hNncRb6/ahB22eYyqHvmlhRX26ghh+z6OWPt+msv8Cn5Y31KDwHNOda9tNxjF2H3UGWdx9750p7640s2xhdNu2TaWTbuzIbFCnznY6Ts/DEyxx7pfePd4/eL0bv+kUrOFsriMZRcZLaiMtuwy6eBLNluTy1YZmvWbnNv3T5W44KvL8/kdXRh17PJQjFk+bWNsLvW49u+aD974GchqiWPXWI0MfAUFXkohh277G0PjN5aHrsnI+wi0oz3QfLWW262b7iRxwqjDH5NPXbzhV1CNhCKAeHLMUbcpSeffMpYPI1g/NE0uWaLGLvjJ8TiY7OvZPoPoRgOhRiLsMuAxgDFOZum5oTdUSNHWqUbEgT8bw1hd+PGTR5f7dXwlCZuEYuR5et3+aIXr7l5gI8ohhUeo/mrwzYt/2m/d7bZ+bIQG8Rluu32Wz1G0xXeb3xKlhuf6321VOKBYTytX78hxF5YYoRiDJzni+3hHY64yx390xF2ueNM3N4qvyNO3C6arPlvaeOat1TYxXDB+CLjfI/d224jxu6xhV2O41FUlMWPZVVfDEYM+6FDh0RhEJFZgALvBBZ4wGObFWox2Pnu/cd//EcIkRj8JPo7lcvvly2paxzcEX9OQdg9mWImxnhhYJTPnTs3LiimT2c6ot8w8/6Gcc5+THXEAwGPFERdXiOgK4mACIiACIhAexPI7ANfuNnHKB7Ycnj2HetmftuXr4OE3VzFsGG/853vGIvTnn3O2e6Nmc3ga7t6N2Pg15+swbIinurLL71sD/sith+6x+bJpLDP/Zpk2tRpdrNfz9x55x02EjvPhV0WoEIwfuSRR+wzD1XAlPfY3+0VPFGxExEvWQSW6e/Y1nhP4uGL6HmAae/eZ/istTx2WyrsIpwiRrKwL2x2uQ2LUwWxZQlfgD32P/7H30S4Prw7vUp+fbLbfvrTn4V4iUCNiM3Cy4RiyBd24ct3gLAHTz31VIjGePyyDREbD2a8arGnEZH57pCIg/y4h1DDxsOmTjdGkrDLTK7ksYtwHetXuJBNXeCOqMs18KxZs8J+5PvJNR1thOcztjohCTkf16gcg+ft3/7d38axY9yLmHbFW5r8/+DxjWG0051cuN7gOPZnEfEbb7whZq/Sdp5Nhwi7sBjus3WZLZqJ0n28jx320HBbwkZOCwxTT0R+HuXl5XbPPfeEwEu/JGFbw5J+3GjdCgm7wUd/uj4BCbut1oYMrNkjDb9MEiK0AcIuIRcKC6psYO+9duHZg+2mG86zy2bNsKFDSnywQ0wlFbv/a5GLdnW2ds1Oe+LR+TbWhd2Z013YPZbHrmefCVeIZfx4Zzk1/OX8DSl7l3Zy08S9djkyk9o43n1wC3zBJOtllUeKbdkGD1D//kZ77q2VHkP1gE8fL/PP/c6gZ9kg7CbpzAdtF77wDuUu9i1uGIwYcZYvNrXb3vXFl/7ln/8lFlWqqCiPmED84A4Y0C8WMHvowYci0P5+Fy8u9hVY/+ZvfuDeldkguG5dw+Jpe/wuaAi7HmOXKeZJ2MXj8h0PXt8Rwm6xGzUMNKz0+g2f/nPWyBE+SB8t7Bb7QIOgh8duEnYRpUkYTUnYJZg+wlxKfTxGE8fcf//9EVeIlViJ04SYGx67vqgb8awyIytsp3RoLBTW1GO3tYXdVatWR9m5+4xRiZFHj0gpVSUrXyYeYoTg5cHd5GY6bTr0tJ/zz0282dtvvy1iWGWxky08jbnLzsINrJiKeIbYzpQxDK0zhpwRfQz2xFFDLOVO/Ak9dr1+kfK+kBiM5IdxhDHFneV9vnItF0cZLj8mb//8yp++sHubL4YxLAT95LFLe+GFAaMorr8gPAQGKXGsEb+JtXvppZeEkbfNwzHQ5w76TQWmYxIvGTESb++X3Dh94IGfe512x/GUPf0qHKtO+fXrFK/bWNjFuE4LpeHFMWfOnPC0wIuDz+hv+aIu0+6SqIsxyvdHSQREQAREQAQ6ggDjU0qM/bzP35Y+a5/njhF2YxT2sbjQ7Xnsfa5DLjj/fJ8ZV9bG1ebMzdkAtElDu7Dg6ossRPbY4/aJx6s9mcSsP27IV4yvCC/Tb3ic2vLycSGA4rWKx+s8nyGGZyR28AGPm8tsLs4OD4RArgEJX1bjwikepCyERnxbHCVI2L/tLewi0mLn/+Y3v3UnjnfCvmdxNmx9Zs5hg/3TP/0/caOdNUzYjtfqz9ymxTN1/Yb1ca2CUwbCLqEYWMALZwnsMux5Fqsjri0zq7Dpseew6xAY8RzFlkaExQYkffDBByEE4/XKdVNzwi7CMN8vyo5Y+9Zbb4VTD85DzBDFExgPZc5BGRYufD0WU0Y0RqBlAeu4FvMGwnwkLvQ//P3f29XuVIBgjxcs69b84Q+PxQLMOBAgHOf3p5vcC/tOX1eF2LaI4KTFPmORRZvb02MXj2M8pisqPIylex5TZ5gdPLg/HISwkbmZwDbaBPZ4TMfNF2fPcSR+t/B+xtMb7+b6JGG3HoVedG0CEnZbtf0Y3tLDX7lgm0m2xFTBCPI4uwV7bMxZxXbpJePsistm2AxfRI1FmUpLGQBKfXT0xcncY3fdqu32zOPP26hBveyiqcNt7Jl9GpU0GVPcNeZ1bYRxcGHYf5yYnkB8yyzxvuFQl26Rf8M84CefhdcK4sefVz7NooAwCyW2xyNEfLG7yj5csc1e/Wijvbt8u1Uf9gXJ3Mux1mMxMUTzOxgxhP0FtcboaBNh16dOPO9TLR7wxdMQfgn+ziDD3WSmz8Qg7ALZ4sUfx7TlRx5+pD6AOp/BAs9Lgq3jJctdZUQpBoFly5b7XdmfxsJEu3builoMHTY07rBi1EzxlUAZJAg38KpPg/nv//7vGJC5E0riLj13EomPyaJid7mRR8woH1uO8tjFk5LjiA10l8fvvd/FQsqBl+SGDRtd2H4+FnLbtu2LjGcYzebG0kC7wOMDE+/qvPPPjcGK8iCo/tYNldcWvObn2uqlyRo6v70pI9PnJkwYb3/+53/uvObE4m4M3ps2bYnBnKneLN7W0Gc4Kkss5IaBRr+mn03wO9sE98ejmdcE9udYwgE87FP7V65aGUYgZWF/BlfyZVVVDJqinDcpU50OuGcn7ZkMvnTO1nympzOFinKcd9654YHKHXHCWdBn8UKd54YVIQS445vKHEaWgxzqfe2qq66MKXcYuBilLRV26TeOwO/a93YDcFhMB+KmB32x0sXRtW6Ac8eYEBYI9fWpaQP6B80Ju+SN0Ioo/UcPxcAdevo7deDcA7zfnHvuOXHxMcdFxMFnDA4xnZsIxPbiJggLN6Rycn7irFF34r8y/QohnEUo6Kf0OYxdysICgfRbDOaPP14SBh7eEDXertlvILmRvAWcf5dIrSjswjQl2gMjFKa0Pzej8LZg+hyGMp+l9P+z955hVh1XvneRcxIgMnQjMkggJEASUQghgbI9HluOGs/M4+e+M1/mmXGae/XF895v8/re8fXMfW2/vjO2GVuychaIJIEsIYRAgMhRiJwzNOldv7W7Tu8+nG46nM7/gtPnnL1rV636V529V/1r1VpYuOCiBAsKtpfhuzBa6lKOkhAQAkJACAiBukIgPodYAOYzuhUpHo9ypZ+B8Vh+3+uO2EVHIsbGw7YTCqtJ/KFipFKzCZ2iRK8oqQu9oEQ32LJli88lXnn5VQ8QZR1TnNWuzXV5SUFoa14WhCXzpW9965s+X2IOQQCuL77Y6/Mf5k34Jz154qS5LzsVzplueOHiBScd2bHFjkJ0wahPpiQIuPqqbWIXPZeFcvz9fmpuEtjJiB5LYvyi3/7oRz9yorSvzQ0wcEDP/8UvflW8ZX+P6cWJhS+B5NLELkQhRho///nP3c0D1r0kxkj8TaB/Q+zi8gESmYS+jjsAyGB2d/qcw46nLXYjsbtu3TqXH30Q0hjXAlj0srMO8hIZ0Btfe+11I/XNbdeOHZ4vutaI3d7N6v6H7/9DQB4MpJi/4jrt17/+dyewMRDCZy0zeuZ2qLFTpkwOT9gYn2FzbdpOwrK3toOn0QbuKclOwGY+F+tobgbbtG3tn5mHgzc4ggeJY/w+CaZHwOyYIHXnzZvnCxTxmBMaqd9R5ni1PhgREAd/cTmxn6tVrC4WAuUgIGK3HHCqdopfsd0Ui1d/sNpNnqYQu+ZrN5wMHdpeCQP7tg+3jekT7rjdnHsP6mvkXSu7QZmPxRZtbMXsavhi+8Hw3vz3wsAe7cL4kUbs9spB7FrR3OiaGxlTdLVFuHjZXpfMSbytoHJDK7mBlNxZmlv+llxnclnsSAvrZsSbE7t222xmjt2N2C260jx8fvhs2L73RFizaV9Ys/1Y2Gucp9kWZ0jhK1YGdDUqHa56Yw01Qezugtg1dwO/+MUvnJiCDBk3dpwrVQTywhIW1wIQVkudfP1NOGrbw1E82U6CxSr+dljd/JJtm4Jc4WF+/vw5V1J+/vN/C+vWrS0m1675gxfiBZ+0kFvWcUYCX7JVyjXhP22lb8WHK8IxcyNAsDCIvq5du5nP5LtcHohTyDV7tuQgdo14N+VgwICBvpWdiLr9+/dzGfFxtGLFCt8ewmoo7aH/ePD2MavnKWY9SYTagoKBRhS2MaXjtMm8Pvy/tlXoE/MXhXN/5MxWpvne1vLfMmRIeNK21Nw3674w0Hxm0Z5DFu114cKFrlwk/jtjL1qnFieUiHNGvmJpzNm+RuihFCTK7ATHEaUJNwb40qINV2yV3h/A1i/I2rlL5zC4cLA/WNvgv8rIbZRBfARvs9Xt0pFJY83VfPemJHhEWcaZSwVcC8yefb9HeDVofHUdUpeVZ5Qm90dlchuUvu0KZWDW/bPcLxVRYXEzgexlWeyifKQT1ss9baHgnnvucULvFltdh+BmbII5BB6Y7dix0/ubenMp32URuyjXWKqzBYyxz8IBihnju2+fvuHue+52f84jbIECa2PI2W3btlowrhe8zYcPH7G+4pfsgLnCi3IPGc9WrZn3zXRSm7ZTJnKTiJpM2rXrc1c4WRxADkphZb2kGU2X2GXcgRkvyPyCggKfABIEBMUcojdOjMnLZIhJGT7a2J6HH7iId5wgOOj6IwSEgBAQAkKgDhCIzyyeTfG5xHv8HEXimcar5lLdErvMLe433RBrxslGfnXrlhB2NddesMyFp2tdmWrXm5Uu+uzrr79pgYl3OkGHfud9caP+sKLIB5GLiyh2VUJG9uhxk89TsM49fPiwx1kgHgWLzixGn7D5EN9xywWxibECuimxPNy1XEY6MzSxeW5tE7u4KMB/7LN/fDasW7vOMfHdgiYX+lma2MXoA6OFSOxGi1128aHPs+vu+9//+4zFLr8D3Mr927/9W4bYpUzmb/wmwBMMmXvOsLkTfmJJ6HfozRC7iQ9f9PASYvcum1NGspLzWGKDKaQluiRWu5C61EM/zJ8/3w1U1qz+1F07EM+FVPK7vOZBxH7w/e+HaSZPJHaRnd12b7/1tgfFw0Uc19AG3plDYLSEEVWPHolbtrqw2GVSwUIBgfloN67gmD8jE9/Rp6ORBJjw4vttt93mhlcQ6vQFbRKx60NDfxopAiJ2a6BjWe2Kqz98tm+WuGmbJa0FS2sWLob2bS6H7l2bh4H9OoXxd9xqxG5LI3bbGrFrxOqFy+HE/iNh92ebw5ghPcPEW/tdT+x6mUk13IBPn78ajpy4GA4ftRXUk6fddw5BuLiRQeL6P9MJIGJb2s0Rivns1Zbh/LU2tgJmN3FummYtfNmsjM+cKwq7DpwKm3bsD58fPBOOnzOfoM062RV2FeUZkwuxi4pB27D7jUR29YndM+aK4c5Srhh27drp/lt/+ctf+nYT/BwNHTY0zHlwTviWka+dOiVO0U/Y6vFG21rxqpFcWF9iEdq6jflEuql7KCgs8O0wWDB2MpLlkpGPJ82v0ULzXwlhzBYUWsJqINfwIH7qqacsQNQd7lcVJQCFBis6trlAykHE8KDHbxLbcljhxleTPTfsoXI9sQtJSx0EniAv7iruvPNOf3jjlmC3BbViyw0ryyhGlA8hhGXfLLZuG2mcWANftWBf5lPYtuX89H/8T7eYhYDlgUV/pxP909rI1b59+/jDGV9PQ4cO8XwoA+vXf+bbe7C6pb50oiww3Geryfv3J074ISUJmoVlMn5bGXvnzp4Pm8zydIn5dnrr7bd8VZ/jWChjbUxfTZkyxVeX8SWKtTDKH1hCCEdL6XTd1f5sWNAPMWE1OsrItC+ZpTRbiwYM6O+nDph7AYg0FGFcMVwwRRRLA8YYltsoBbSTIFe0nd9RWcQuyKfxZyx1MoUDtw+Q8mzDSrZ58Su8ZgrxWR9LL7zwoimd5jvLXHBwvStUVk865SJ2rXjD8pKRq7ucIGbxAwWQfkRWxg3jkkUKohbTHyiGnxCp2HxMrTQiFtcmyMKwcUXICvURZAe6mCIEGf7d737XfY+xoJLG9MqVa76VCUIff1VY7zIGsYYoyWhlN1GLXfqS+wOLG4WFhf4bYHHp9ttv92NgRQJ3dg9wT+E3wWILwTe4J0TFnnzpscV3JSEgBISAEBACtYmAP+NNT2jKxG7U06ZNm+q+U6ebftir98013A2uYeaoAz2iRF+EMGQH3VtvzQ97zAITy0sSOl7yx7/m/ENen0eYznaTuXybOfNeJ67Zuei7i4zMTtzHFddnZUIgYiRz+vQZn7ewOI2rBuZg6DQQpBgcUC46cb5dMWB5ybwJEg/SE+MJLDS/Ym4y0Ltod0WJXVxkMVcqRewa8UrsDXYWVpTYdQwd8ATmbGKX8YPFblnELu4Doo9dykJHjGMu/Zm5Aroj86nf/va3Huvkiz17PX+a2I2jo6stPkRiFwKbxYnriF3rT+pEj+c9TeziL5iExW5tB09jiGPEhnERiw4EHB5hwbDpL8hy9Oxs3PmODs25SPpyTMRuMi71t3EiIGI3z/0ab6BerPvOhcQhQa/yYhUP690iI1gv2M2GKKHm58d247L9w06EZlebhTZG2PTp1CLMnnZLuOf2AaFfj8RCjpKoI9bDs7qZPdBOmV/e7Z8fCZu37guHDpymmFIpXsOz5rIRMicvXA17T14JOw9ftLJMMstAWVchbS3TRbPavWg+dq8G6m1r2/HNP6xttYEcgtj1V3EN9jUjT3WI3bfnv22Ozc+GCUZ2pn3sQjoSyfSXtqqITye21vexbSRTp04J3zD3AiNHjvDVOiwPIctQJraacgFpxc38JvNt2t8sLyG6OnZsb8SZ4WUWr5tM8XjJSKlFixa7dS3X4xsKi0PIy69+9ateByuDPExRTtgyw/Z56mClGiUFNwxDzCIWwpbVRF65iF2UBRQDVhaHDR3mwQkgSDt16mwyGd1vpOIhI49RivCDet62PmEFcMstQ/xBBoENOYxF9m5TNFih/fd//3cjnLG6pPdyJDuO7yt8K82YMcOsdr/mbh3aGHkNMYdSAGEN4ZdN7OKYfs+ePUYa/skUhiVOeoLnkCG3mDP9B8NTT33HlD1kb+4BxXbs2On+qzZt2uzkLUpDT3NlMNoewhNt29BN5goAi1cCF6DUoIigINAXN1I4c7Ss0ofwG4bc+H6G4CdhgQCh/rH5gMZ/FUEPWJnHyrigoMCJXYi49mbBgF8ntt8xrnJZ7NIDpfshsf5m6/1f/uVf+gJAsgjhVTv+bLF6/vnnzTXCq9YHR+13m6ySZ/18c7piMNh9TLKgwbhkRZ/tWCi3KDqFhYWu+GBty7hGPhYMCHT3q1/9f+7XC79cyBwVIidlE/F8QYAVcQLHYRnf3yx4sY6PP3YI/fdNoXa/1rbaTzkQ0OSJ27i4qzRFYhcIwZTfO/eGmTNnusUD94poqRvHCr877nH8niF26UOOcT2LIJTBb0xJCAgBISAEhEBdIsBziedRUyV2wR5dCh2NxfpHTTe6776ZvmjPuZpLrmHmKB5JSjTGDz74wGNeLFq42HW8HBeUeSghgTEQSdz5MXfC3QTWo4WFBaZXds+4j2rZEp2EvMxrbe5o1zBPYlcYROpq9yH7uu+EO33mtOul6II3JnbXu1/ey1csuLCVzVjDIhPd/dvf/ra7hmAMMv9iZxMkXXnELpPbLyx4W0UsdrOJ3V/+0vzmmi9ZXBSgVzOnwR3B982dAaQ+LityWewiX9TvDJrrLHY5Vx6xSzvTFruxrPhOmbEOdMVdZtzxu9/9zoyC3rO5wAHrj2ZOuJOPuWUyPhKL3e//wz+E6TYXxMikwRG7No/BBSM+i3GpiLUu82pwAYckbkuyY5RjjB30bSzQ0aMTPJqL2HUk9KexIiBiN489W/JoLS40i9jlqN3u/a89Bu2LrYx5GDKCJ9l3uxFZLHn7F0LHSyfD8L5tw+zpQ8Ldt/cP/W82Nw2ctuS3aXtweGl2TTN72BDo7PjZq+HE6Yt2g8P5OQQtf6kRdwt2g7fP9mgKF4quhD2HLpjf3GNhwYrdRvyZJakFTKMCi3Nrkpmlr0lhThvsmhZc7Ra5+Fr1h0mK2E2k4K9XVi0fu28bsXH2bC6L3V1Oevzrz//VnfAjA1tnsI7F3ys3eSwwURhQLPBXygpyVDx5eLUzh/7t2iXuLLj547YBspIVUz4nRIo1w9ENYdDAgb4FH39HWC1SNg8KiFAsXfEp5SSWEd1YdybYJMGRIO/oSsi2BQvmG4H5OyNrtvlqNQ8a5McalAf314w8Hm1kD5a4lI/lLeUjD22ByG1vckMqIhvk8sGDB92FBLJ/+MGHnp9rrcpSiWMk6oOQHzN6jCuhrB7jL7aF9TtE3iXbuo97BNpQfIlfR1shnIj2Om/efxaTTCg2SfRbfEbdMX68BRO4yR+g5w33E+aDFX9TuKmApKSf2ALDaj9tgbgHC6x7X3jxBSelqcdlTVfuEuT3Dz5mcYlA0AH85nY0TA1ia9cF37qEb2NIbhS4zmZZ3NWUWhQC5EMp6G0WGVjCnrQ25iJ2kTbTB8X9AZmN1exf/uV3w/Bhw60fS1yq0FxIfNwi4CMXa1sWBUoKKWl/WRa7BA1EkWPcsDWLsYMi18oCQrDIgnU6wf1I+Mdda0QyW7+wEqZdJLBnrJEYK/yaSXFBAGIai+Nbb03GKeewYMcFB1bCuIFYuXKllWF3DUhdK6NUKu5Xx6b4c6nz9eVLHn3sRoWSPuEeMsMUaRaWsFjnfhR/mwR8YJEINxoQu/hMZsLCGKSMeA/js5IQEAJCQAgIgbpEgOd7+tkUn/fxPcrGMy4+5+Kx/L6jSzOrqcWEfuTtt5nb5SthvC36Q3zyjB80qMSHZ81IhAaV0TBTVYBAMcFqsrEDDUMBFvCPmNHHDZNdHrU+r4F+M32Qz1g6YhHJ4jSvwoIC+97Xd6JxjnlF69ZtXK9BtyG4GAHYWJAmIBi7jyBG8fnK3A4980auGDB2OH36lOlAyY5Txlp5xC4Wu5DZ6J6Uj8UuJHC02KV1+AZOE7sYUaFjoY5SfnTFUCFi14wmvv+Dmid2o8Uu8mGAgeUz+j1yM6cCE6xR+c65F1980XTIBR43hvlptNjlesYNbWU+EoldjKPoP4x6fvHLX9V7VwwxiPh3v/tdN7zCkIqEj2AMkDBaSeaexqdYYjxw/8HaPFqccxw8ZLELEkqNFQERuzXYs6b+2P2Uhy7J7qqRmXXC174akYAFbzALXnuS+o0XQrXFtcuhY9GRMLJf23D/9MHhrvH9D1fwbgAAQABJREFUwwDzscvDt3lxeSg0VoBbwzWzm/NlLGrNtcJlO8/NjJXXIrP8PW8+E4qMyG126UpoZw/dlm1tK/zlq2HrnpNh4Ud7wwuLt1sxkDGUh5z2MDXCObiMyePexTbx7b+nayZ3YrHrlHE86hnw41lgD38eqnPnznE/OCfMQnPlyo/Df/+//7uvnBYWFgYCkz355JNGPHUIW8xC7RkLvAWxgfUm1rJ/8zd/4xaO3Jx32WrkOwveCf9qPowgPGkfW3p4uLElA8XqNlu962MKCK4LICx5YBk8ibyWnwc+ZBSk3F5bvWW1FKVj1apPjGxMIs5zw+caVpV5aELETDMCEBIQZQFSL3lIWh4vEyK2yIk1HirIOtjaRsAtyDWUCYgvInBu3rzFZaYCroUoHjRoYJgxY4a/sIKlTghEZLcsnrwN9pkIrmADqbvB3E2wQo2F6b59+53Uo0w6gDcUz+R7cZfaGVbTe/boGe6ccKevHuMCAmvajtamVkYmJm0vBiyp2i2D8YELgfzrX//aLYrJR/4eVtbECRPcx9io0aN85RoSFAxQNCJRyGoqYwsyHZzpy48+WhkWL1oc1hupiT8n2oaFANImq8sJvkmTioEolqm8N3JSL+133IozR6UV+VBO8VfMlngwb9/e2m+EM9hBjrIowDiB8D5ryhTKKduc8LVLfghqlCiIXfwbQ5QS9Tc7RakhiMfawsC3zZ/yeHPr0aOYBKd/zp+3xRX7XUSFjHLp+8wPLVVoWcQuixKffbbB/RQnVtE3+SJGxBFM6Q8UHgh1fPpiFQqhDC5YpyML+MexE6sFR8Yp1s3f+MY3fCEC61+wvWz3EKytkX2RuTNhHFIO/V9W8jFJJfU1VZHYTfCzZTAjbOP447dcUFAQJvhv5H53Q8L9KhmbydY6fg9sW8S1C/cidgJAtlMGZcbfseNmmPFdSQgIASEgBIRAXSHAcwg9MC46xmdatjzxuZh9PH/f64LYRaOyf4YBOhm70XDVNdd2gQ22HWE1m9CdculP6AWJboDugBXrSy+9bG7O3nfftzeUyS9N2uR5TffwvrO60N3pa4xVINLQ+9Ft2KkHQUvMDPQayF5il/BCR25tOvU5m6uxe+///Pr/hBUfrXAjDnTRNkZGEpAXv62jbe6AUQt692Iz9nj22Wddr0RfvXo1IXbRKbuZkQXuFdBDiU8A/ujLtBVil7kQ+Wh/dMVAPI3CQvokmYthyEP569etd70XdYr86PsYQPzghz8wy+v7PDAwejjl57TYNWL3Bz+E2J3mcyjmDbgziMHTMOiJslA++JGXnW/4qQUfjjEHxSgCN3BcQ15SOngaxC15MbBB32bhn7kUQdPGmEEQuDNnBNdVq1a5j12sdpkXIBcJvZQuZg5IX/393/+9ywFhzznm578z46M3zIAHn8zEdyExh6D/3Y+0BSDDKIZ+JyFLbQdP622uI+hT4rsQJ4aFBWT/+OOV7tKPHYvo1OCYvidh/AWmGFmQwFPErkOhP40UARG7Ndixdlu00u3Fsziyo14fxzljxKiTCZaBhykHjVB1YvfS4TDCiN1Z0xJit78Ru0a9GrFbvELtRKyRMtzE7CHEM+GqkbpQxZC63JRPFjULB05dtBW50+GakVQ97eHcs9+AcNVubFs+Pxnmf7jPiN0ddiGSUq5J1JwSjFiwv4ncLpo/6BGPlBC7PIQgdpNVMT9uf7CMHWjWrg/ZzXSmPSTZqnLq1EnblrPG/MH+1AN2YQ37yKOPuJ9WtrjvNLLvtddedwtaiFeIpKeeesqJVbZ1f75nj69C/+Y3vzVy8YITgSCI71jqgzzBFyoPOxQLFA+CO3FzJ3Gjx3cqq57c/Aku8Mknq82P5afuFzRNavk11hdYOXawLRys9N0z+R7fcsWDgfoglVmVJgAZD3TKo1we2LiR6G2uG6gaspeHLMQoVnk8UGLCHQREI5bGPDDZ7l9QUOAP3g4dEqtOz2+D4vLlS2apfNEf6gT4wofW2rVr3cKThzyuA3zs2F8Ty9vtxBCVOQYQ29ZXVj/bb1AIxpulLb5f+/Xr76vtKAclZGAiJavuu6xvFi5cFJ75wzPmA9YsPIvHKYpPj+7mK9gc60+cONFxuvlmI4qNqHdlkHrtP/XiOgIXE/j7WmdYffzxKsNsnRPFyOfWAVYuJCOKBkoRl9OW5E8iz43+kh0/WI6bXY/Chp9p+opEG1EisfRmCx0r4gQQ4Fj0ZQpuTFgYhzt27HAClIAQjDHGF4oNFpWQqWx9oj/OnD7j5Wf/oVaUj37mEypaCQ8aVOBWuRDah8yaAlIP8n+1+b1F1rJSLmK3md1TIGvfe2+ZK374nBplMhLcAVcb9AMKH6v8Oy1QHe4msGxgvPJ7SJJJmfw3qBMy0Q/QeZbAZeTIEW6xi+sTFEnyYRGwyJRqFGV8EyeTvJLxnZRd+i/XVaY/S19dC9+qSOwiGW2Lv28WlxhjWOTPsIUbFp+4NzC2SdyPuBfhcgHrGkhdrFQ4TjmOk+fUHyEgBISAEBAC9QcBdGSedU2S2KUbUI1MlcEgYejQIUbsPuKuqlj4r9lklRZr+qXrQaBEX0OHgChkB9gHH6xwXbV03pgz+6gdR+km2Ru6CjsR0cmpE12SwM8sPOO+jHkQi/5t27S1WAxdnDS7xXSe+41AGzlihB3r7Po3xig/+9nPzJhgYdhrBhJgRtnEuoDoZBcYOjXzGOR95pln3Njh6FF2ziXELnKhd6JD4x6PORnHmHtB7BIvggDEUf5osVtC7DZ3g5h3333XjWw+/XStN5P5js8RrB5igfzgB993YrdvP3zsJsTuL37xK9/hBqFKUOiWRljjjuKHP7QAZOaKAeMYCFSIaIKngT2GIGliF7lmzpzpwdMgeOOuLYhYiF30f+aK9B0pErvMq8CY62kfsSy4Bn1+3LhxvluVPLhdoz7cyC1ZvDS89vrrTnQTH4URk8ynMPYxF3Pm9u+//F//xQ1bMCwisPaZs2dMhoU+B2deduzYce9rrmMuDQE/10h1dpbS76S6CJ52i/2+vm+B3yZNmmhjpqu1q7ljPW+ekdK2CxFynL7g3gRmvohg7fvud79rhmR/HgoLC112zovYdSj0p5EiIGK3hjsWsjRJ3GJLJ4hdXklKbuq4YjC729DpshG7fduF+6YWhkm3EzwtccVQTOvaw9cs4+zmZXdgnsJuZeqkgJXIjcv4tPDFycth9bZDYeu2PcGiq4VBPTuEcZPuDG07tQ87D5wPiz4+GJ5/Z2sxWUzJRhQjbjHB4b4x7TsSpskGrHWt4kTsTPvIR7Cg1mYZ2sOtFCFbITRYRduxfUd4xQhOHkr4xcFi1LeaGNl21LaCQDpBOEEYFRQWum9brCRRAo4asfaZWalCMJK4aSdSBSeoIGB7GUE3atRI97uDEsAKbLRG5GbP6isPPoi4z9abD1t7UBfZcVLiEzfxDxX7izogyLHoZHUwIUKH+UM0rpDSlmj9yxb+Xjf3CuNuH+cPex4qbHEhgMDHKz8Oh48cdrnhtkjeBMPOCVLDC2VlhClE+DFlZZw+pB4e9hCJbDfZsmWrW+tCtp40v6qxT5J+T8ot7y/WxWzRb2/EMXXEOlkN95XhRKjMiESJwz0AFsL42U2TphC2JoC5K+jqhCdlQej3MDcNEO70G+mSlUG0XIhvLBIhs9jCHy11fawWKzS0F6IflwkQopwjxT7xLzn+JJAWA0tuGx7gj9sHlD/6iZSMG/MYbcpSfyPp77jzDnO5MSjcbFaoKDDIHIlQLHUZK8hMH0Ds4r4Cdx7njZTDZxeKIsoEvpFzJX4PyE5QRJz849IAK3B8PiHT54bJKvNDxhg5bCQv/cjIzpVyEbvIxYIB/qeX2lZ+ymWc+vgv3vJPH9IWLEMhDxk7WEeg1KZ934Ke12/gZWSwzyhyt44xi91vfsMWIO62hZqe9psrckX0Vdvu99rrryXW6KZkofyXl3y8xh9AeRnr6lwViV3GFWOV+wxW/XHhAOsP7nOM5Tj26DN2HWCBQZ9B6mL9wLWMP847TnWFgeoVAkJACAgBIVAGAvF51ySJXfQjU5DQnXhO9zfDjIcffjjglmzEiGFlIJavw66l5SgMjS3R2pAJQ5Lnnnved8ah66WT56QBZSSIV/oX37rokR1sHsVci2O48tp/YL8HO3ay0HSeqNNBeEK2/e3f/o2TmMxjIN7Qp/+ff/6pu3NjzuVzRJuDzLp/lltf3m7zJdwDoKdu3Lg5PPfH58K7773r87PLl0t2L2FU8eijjzrJiH5FQq+F2CVGBa7A4riE2IUcjcQueikEM1a9bt1r7utwPxcNYtC7mLN+34hddmdC1oLQiZMnwv/+379wsnaPGRc5sWt5CSr3ox/9IONjF52NhXrinUAwMsehPWADTiSsRpEHIpaFf2TFyOKVV17xHW/MsyiHFIld5hwY/5CYa2BIsmzZsuI5dA8nillUAJtIAGNw8pbFu3jdyF3wjm30Hrc6Mbz50pe+5GN25MgRbomNrBh+zJ+/wAlk5mqQ9xhHMV/BrQWyYOHLHA0VHp21toOnMT/+yT/9xA2/Ii7bt28L//zP/+wGMsypov4MviTmuU899ZSPG8YkCV1dxK5DoT+NFAERu3XYsbmIXXsOhmuXL4TuLU6HEf3bh1n3FFrwNNvm0svIAWTlrsonSC+IFPt+1W5iCanCd3vYGkF7+fK1sOnQtfDCorW2DWZb6GSrdYN7tg8PPjE19B3YJ3xx9GJY+OGe8Mq7Zklq1yRWu5RrRRSTtjyYkuqoMxK5CFGSOBOTE1kmEwGmUBDwtwQ5SjkQgRAakbzg5gqhyoOfmzAPIIhWvkMyQoa40mCF844SyQMoCcyU0Nsun50HFw88Z5/YVo8P2EiOcg0PXV4njAylfE+UWfyZ65GdlKK1ErkcAFwntHNlB9+4PER58EG2Ui7Wncjn8lr+aP1JeWx/oU4vxr7HPJxLutGsre18C8OMBylEMs752eZEPUVGxmIxyirqBcMvU48XkPyJOKQOlfmRBx8Wx05i0keGNQoY46f4WZhRWsGE/PgSo176DEKQvqRNlOOj0S6EoMYXMKvHBB5r09r6z/7xsMXPF24NsACGwHIrc7uW5HhYPoJ7dTJyFfIUwp8+RIlgbCBfeSnpopKRiIUuiwmQZ2ttdR53EqxWE7iNXHymPsp3P7RGgkLsIj/tPXT4kK/AI2+yop9Ew/VRYgUwXlg0wIIBZS9pw/USIgflWQYn01HoupuVcxeriyCArNJjOYtFNviCKxhTfnbKRexS7/bt20yRf82VWwJWsKDR3RZOOpsFAr8v2oDvYBY2sIog0VfInU4JLokCH+tnjGD9CyFNoDwUK4hefCmvW/9Z+M1//MZdgrBo4XJzPyonOU4mc71NVSR2Y3sYTyxusN0OUpeFLcYViXFM+7kHonCjeDMpYRJAH3Ge/gFzPisJASEgBISAEKhvCPB84nmPzsLn+MqWk+edP/OzT+Tte7HemrfyKlCQt9dUOtPVSBg2YEn6dXMrd+ttYypQQHWyuJbmBSRqVKKv8ZlX7JPnnnvOdlL90d2Fobunk+uu5egX1EB/4mICN3SQpN7fdgwjgg+MFMXQA10lxlzxuYNd19F2hH7ve9/zmCe4pUCXQdf+6U//pxOeGBUwHlrb3ABCF8zusp1zGAugSx88eNhJ6flvzzc3bets7pBsq0dvZoddsuttuu+yQyaMFXDfB5GNcUS0TM1F7KLvYhxEoN/XzefvSdvCj/wkdDQsYJH91luTOBLo/UeOHDVXDL90i1qscCkj0Ym7hx//GGI3IYEpg3kN+hwWuFjVQtSi1yETwbchpSF3o2EH15CfvmLXVnQhwHGI3e985zu+4wudkgSxG11OYB1M+9kRxqICuiY7Y+l/CGxc3UF2L1+23PuJeUgyh0r0ysmT7wnftKDjE8ywBf2ePikquhS2mLtA3OPRT8zbmKeMs52kGFgxn2ZnI/Iw1uqC2B1uxjE/+clPwtixt7oRC7js2LEj/Mu//IvPQzDiYVzSHuTk/oShCy4fwYg2kMBJxK5DoT+NFAERu3XYscltlkcpr4Q4vYarhauXQqdwMhT0bBPundg/TL+jfxgxqLMRPjyIignWZrYSaDco38YO8WWmts04ZtdfsahpV6+1CFsPhfDy0o3ho4+3hPZXiqyMTmHG3JmhS4+bw9bPLXDa+7YVePX+0KZVGzNxhHgwazGzxvWHO1LZDTL5lpvUtSyeyG+Ve37a0twIHh4mydb+EpKC8nggITPnyUtqbiQbyetPDvkDEVIsuYazEIrJarKXaOWUlMx5SksuxmoYP05cC8FMuSSIM0jUeCFkckzF1cZT8bAT07SHhwEJFw18pmzKgnBjC328PrYxkZErEim93cVtTt7sCjtF2xPiN8EGRQCrPzACU/vv51l5d5KQEu1YbD31xbqpLZ3I55UUH0SGBHPK9ZNedpItKTGWFS9FPmRCSfF2I5clPsfV/dhmjnEdFsGUD748XMGIPvD+sxzUwWcWAHzl3PoFxQPXDpPumuRKDaur9CEFFotKtRVK4It1NgoOgd+wNnYLVSpO4RXlhlBnzPgIsjz0J4EHkn5JxmCGdHV5mNgUuyDxzswtFmM8GXsJ3hCqLFi0NIsFFhyKii5mJgj0IkWBm2OfVWQuYpd820zZfs0U2+dNYcV6HMBQaljgoCQWSy5eTNx1UDBKOP6DsxP1Z9pYfLKtWQtAtD9hPq0eMgUSBRWM8Gu1fPn7FhTwt+6qgrGZVhyzy47fwdsbGQ/Ut/cKErv0kbelWH6+swgDqTtjxgwndkePHu0TBn475GW8o7yjNKOkMyHZYUopx+I49N+HlUV5pHQdxVXpTQgIASEgBIRAnSHA8wldr+kSuzyfUSbN9ZwZYOBf99vf/pYHWUbFian4MR6/5uGdwpMKSnSDqMslegO7+yALsdhdt2696RCJThkrJ3fUL+Kx7Hf0Vsi/J7/2NXO1do/pq7hGa2Y7zD4PH5jVK5amxPqA/LtkhGALO8/OTFzVfcWsUsdbjJTuZuBxxfR6dM+f/ex/uTWoW5CaHoSuiC4JZrNm3e/u81q0SAJDQxiu+HCFE4y4YyDhLg1jD6xGCwsL3RgFIvVPFmcEC1n0KYjXSILecsstTi5jRU3+xOjpmhO1uGFYajuldu7c6boX+jjEJeXfZa9e5qoOY5dkV9Wu8CsjdmkzRG2a2P3Hf/yhB0WGLKQv+C2QhxgWELt79uzxORO76NjNCDHNQn80OMIgCBKYvsK1HtdTDi+CgX/729/OELscw1IXYpd4FjEvZU2ZMsUtcMEmMYaynboW2wWyGDdp6JuR7ES/ZPiA/bcs5sfs2feHgsIC71vmM+S7cN4McGxeQl5011YtW7vlMnMWCPhoKVs3rhiGhB+aVTVzRNx3cA8Cc3Ysggv6NLtkkZ05NGT3THOBQbBw+oAFAhLXEfcGPNklnEnJduXM1/x8YB5fuiTvh9KH9E0I5BUBEbt5hbMyhZly5DcSnrwQqkZ+2eVmn4hDhND6yonQvUOzMHFElzBzQv8wYXRfC3RlPo+CuQ+wB6aZqBrpaKSBEb1QbdeMPOPmbKXajQ36t0U4eKZlWLlhX9i0Zbf5LDgbCvp3CsNunxpOXWoTVq3fHZZ+uCls/eJcaNncLCPd0teuc2IXm18KRSJSfE++Zf816Ysfnlxin2MGUwb8c5aGEx9gvJMypFvxdRzPHCOPFcLDOd4QkzKTzMU1+JcoZawzKR957J/dzBEjOeY5EvK0uM4y3+wiJ8LsEq8/VQnl+tdiGV3QrIKiLEnddtLy8i+5MHnIUK4fK74Wy1JIU/Ji8YxSBcmYnTL1x8KS4ktlo96YEoWOqywVC4RFcdkJBZ722zZzUzzAIcqZkPdca6V5+0vkRBFEpEjeU2O03OYzfUD7sL5OSN8EVFx0zDBi7G//9m9N2Rtoigpka+US5CTtPHTosCl+77uvsSVLlroyiZhxTPAZuXlzQpq2FWPhMvppO+8Zk+soN3kl1/h2PC+BK65PlO6WHXYdKX19HMulr0rKSaQqXSZYjh17mwcOePjhh0xp6eV9s337DlcQsURAofOFHuqyF22jHl58p377Y58yb/6ZPzQTq4kWNvZiXlxi3D7u9vAtU8DHj7/dV/Cjr+eXXnrJlWq3ZCi+92QKK+ODY1mMZxlZ6vZwJYhdBI1jA59pTCbwlY0SiWUz7k0YVyR+u0y4sHhhMkLwOqxNUO5jGd43nlt/hIAQEAJCQAjUXwR4XrleUaxPVFdSnoO8YrmUd+NnYi1b7KbaimwQbOiwELtPPfWUbbOf4DCg4pA1lb268BRfj0bHq0T3SD7zN9GrMWiALHz5pVfCJnMjhj7nsRsStc/zZT5yWVZyndWqwIL1y1/+kvtWZQcYOv3p02csTsYeLxdiF8tRDD4gVNmpV1BQ4IHNetquRvzzEjwNPee3FhsFNwgHDx10chRdFoIQPRYrVnRLgnqB6YnjJ8zdwwEjjg+Y9WlimcruPUhjiDo3erHrcYHG4jgvgpCxQA4RSUIXw30Arg+IucK8mF1x7I7DohVfv9SBSzXcpPUyV2zkwyUEOw2RD2vdVeYecN5//t5csm10Y4Y0sfvjH//QXTFArkIyo9/xewB/sOEdbGgXRCrkdHR5RzshIaMOvW3btsxviTbcf//9TrxCNkMykyB2sTLFdRfjDp0S62EsgCGCca9APciPocWWrVvcapu5D7Lg+o65FjJihABxD/ZY/RJ3hWM+LuwPv8M4j0K/x00D/YUPadpAgoC/LniatcvHZzJEPV8+/+D2BEvmOda3ffr09iDeEPCQ6LhyBEeIXtrIeCRQ9uDBg93ggu+0EXzRy/HLLGI3n72jsuoTAiJ266w3jDDDOtfqvwqp2yyx+oTY5f7Y4sqZ0K7F5TCsd8sweUz3cPe4QeYXtHto39ZycN4eVglxYFv9oXbtpt0CEtD+XbFgaNeatwznr7QNB44XhcPHToai86dt+0KbcKVtv7Dx8zNhxac7wqcbdocT56wck6O5Wftegzw1xeGqERxQEs0reINOiF1aYi97KJRKfrMvdcS+WJ7kf0aZS+eICh4lJiQXShJWspGE5AwpIW2Tz5X4azJ52dmyVqKICme1irw2cLD6vD0piBLC00qrhCzJ5de3neNgV1aKXZGWp6y8Ce7FOBWXi0ISkU9f53VyrriN6XOZz165yeb/E8UhIYqRGfLxmisNU6dOCX/913/tQeV8Bd7aAylfkYQcNB8ymgf8ihUfucUu1qUJeZvAnORLJhHl4VVWnTQlGY/URznFfZx1ARgiD6ks7DiXZCnpT67LLhFlkxV/gk4QhRk/YLQTYjdxxQCx+4U30K8vrpe3irSRPChE7grArsEKA6tp3Ar8xV885f7WsKA+ZtudVn+yOvzGrHV5R7knVaSPXI4IiF9Vz/5UkNhFanAiofCiPGI5MWPGDCd1sV6hv5OxkUyAcbvxiflTRkFnKyNKv5IQEAJCQAgIgaaMALoZz0osBtEnIOmiVWL5uNQVsYvOh6FJQpRBxD1lxC5kWUIuoguj85UvfeXPujbnl7kulcxiinXMRM+A5GIb/htvvGnk4S7XUyAeSRURB/khAPsYETl5ymT3TTp69CgnKDlHIOSTRrhCZOKSi37CDR6EKyQnVpFgg36DzkNgMF4sakMMExANPZM8Y2xX032z7gszsKi0xXCsW9GbyMP17GhjbEDIJS7jIGgve9341KVcgophCQzRiXzgEondaLHL8RPHbVyZhTHlEcfjstUBUYsLvPbt27keR3/hggG3ZZvNLQFWoCzCYyRy3ixZyyJ2kRV3eexkAwfaQT3IyvdIKEadEDJyyZIlbhiB/MRniefQKxlPuEqAdKXdnIsWu1xHfdHQB6IVEv7rX/+6x3OAwMTo5oiRuQTu/uMf/2jk+tZw2toUdyFSXq9evTxmxtSpU93tBuS9Y2xyY3TDjkJ+j+x6ZC5VUFBg5d/hcWQYS07smksLgsXtMOvnqA8nOq/NwUwG2l/pZLLFxEdkjYm2Iu9XLRDa6DGjfUwyB2J8Q/SDI+MSGTC2YI7E/SQuPECyMxZ4RWL3M3M9kUmy2M1AoQ8NGwERu3XWf5HYtQeykbpO7rosCdlrNpKh5bWicHO7ojCsT9swZqgFuxraLwzo1zV0bNsqtDP/ma1bQniZnytjYFvaDa4FQc3s/yVzqxBatAlF1+x1tU24cLlZOHP+YjhmD9aNO06EVRv3h43bD4ZDR+1BGywom9G4/IPYvWJlOLFr5UDsltxWywbKslUpcV3yICghDLOPJSQXclREkgqKER8WtUUymej+4MbSOiv5cTrt+lNZOW/8NWJ3o5z+wKwEnrFcZM3VC5XtI2+qYe/lFStAjAMIMXxc4UurFz6jihU1HsSVSRDGEJAb7KHNNiq2pFFXCZFsEhTXD2Fa2eQYWHnITLKPOccnZ0vy5MbOC6jAH5RtLHaJJIxfrV69etIEV5hfe+118x32olsiZBeVliH7XPo7cibELlb/5lrAlN/hw4d5X3zta191ZZX8WAWj8P7GrDD2m+KOqwdwdRDSBeb47FhUAe8cRdXMoQoSu4wlFFlI3YKCAt9mN2vWLLdWQZFnvIIl7eUzSjiTHKxXsNRA4Y14OyY10xqVKgSEgBAQAkKgXiPAM5LnICQMW6OxvIsWj+ULXsvEbhTG1R2bMZnuCqlEUFn8eLIIzvMfK96oKKMa5S8l+iblgRd6SDJxQBdNdgZhvfriiy8acbjU9MF9iV7GyQom9L6LRuhB1g4aVBBmzJjuxOuQoUNdP8fFVxLnJGlYUrSVb//Z/Yfeg7/WQxbXgcDAWKVu3rQ5nD5z2vUed39ncrOzDJ+8uKxil9MMWxQnoDExL7AO9rlBMXhRVwJrSFfiErD9HnIXYwaIUnQs+oO8ELvoY4899pgvumO1jN5KXvIVFhZ6HBNcF3BNyfSLIGjnbfxtd5cKyc6qrS5rJILR+wielnbFAAnKeH3//ffdOIXyIU4hSr18wx5c0PvYpUVwMsh3XFpASkPUIguyIT/+YCFqCbTGcbBYvny5k5G4nSA/+UiQllgD45cXP74YGRDgmT7cs+eL8Iy5Y/iTuaL7Yu8XTspTB4ly+1gwtKHWr7gpQGZIYWRGTn6LkKUYxXSyfsKf8L3WR7iqsEGV08du7CdcbYA5MWEqPvJcrOIxTQ32snYnO22TsUbMHgJdY4nNmMGPcwdz+xfnh+SPMtBOFojoE/qAMYGrNPKQH8Ibcnfjxo1JxfwVsVuChT41aARE7NZZ92UTu9i9kvyW5iTttasWmbLZxdCxxZXQzYJj9uvVNowfa5a7vbqFm7t2DF06tLEtL8FubkbytjJ/OGbKy/3+YpGtYl1uHk5faBZOX2wWjp4uCrsPnw5b9xwNm7fuCfsOnwunz+Mf1mprYSuCZrFrNK7Vb6ulxcRuCyunpoldb67+5A0Bxk984JdXqD3brKeTh2V5+WrjHArkpUtJEA5WuiF32RqVJshQim6UvD3FTYpkGs70D+w/4CvpXM9D3f4AUganmiR2byRzZc6zio7lBNuQ7jclrl+/vqYsXvNJEAooK+dsk8tOFR0TjBuUIZR2CHWUvHHjxnp90025xwcxCiWWFwS3+MMzz/iqPivmiUKVXfP1331sFiuk15+tB0cqQewyyUCJxrpizpw5bjURlfA4XtNKPRj5+KsHzZQIQkAICAEhIATqCwKQY1g9YpmI79G1a9e6v8zy5atLYhdXDAkRN3LkCNcBINbY0k/QWlRRdC/UzdpI6BwQnC+//LIHZsWX7KlTZ7xq1z0qKEQriD3TbdCLIfkIxnvvzHvDHXfc4Vvxe/ZMdHPOkeJuO+q/cOG8W+XSjxBmEIqQu8hFPtySUS76OdbO6OwQpYNvGexELDvSIN+wrExIUbNPsrzonRCi6PM7zToUso5xErfdJ+WVzBEKCgp8B9XMmTN9pxmBr/ft228GHuucSB0+fJi5MBjuhCiWnZCjCel61s7vcXdZWMbSBvS8Nm3auvxpi93/+l9/5HVgFUoefLv++te/ditXSMRRFnwOcpd5DHov1q/kYWEfd1z44WWxH/KR66P/V+TABQNjaezYsY4D/YerAX4XkNngERPnMDDADQNk8O23jzdy+SbHl3nV0qVLw4L5C9x9Bv0T48pwXUsj6dFRwW/QwEGhX/9+Xhb9hTsJCGjknjhhYnj0sUd94QKrbPwhr1lzvSsGDDyYO0S9l3FU2QRW/G482WfGi/+ErGwSb2NvGxumTptqbuLGhYH2e+vatbNbRXNtJM/BmrkK7UdmSHJIbBL5wJIX/ZFJInYzUOhDw0aggRK7gA4ZmfzYYxdU5gEWr6m790js4v7AtvQ0T3zsxjZxk7xy9XJobUQrj9DWZtXbofX50K1T89C9c6vQt3uH0KtH59C5U7vQpWt7216CjxxbMbWtJFevtbIb8rVw9KTdoI+eDvuOnAl7j10M+09eCSfP2M09GBvczCKW2hXc5EqIXVv1NXLDPDmEihK7mZtw3QGpmosRqCiJx8PRidB6gBwyoxSyyouDfh7M+NZ1VyN2DEnjKvONxPV28ceuIaEwFWUpQa4Z2Jhn3JMaErHb3xQvtl2hAHcz5RcrXpRbrFxQ5I+aQp2dKjomUMaYkEAWswWua9duYYSt5I81cpfgEih/YLnPVvFR6rA2AEMsOLi2GM7s6kt9d8wrkrHUVbX4pYLELu1lMsBWOawHZpglQ/QRx1jmxbMIzG6U4ji8Ub58n0c+JSEgBISAEBACdYkA+h3PQd4PmO9TAhthkQkxU36qG2LXNUf0GHuEsuUcy9Phw0eYz9I5vl194ICBdqyTW56y8F2TCV0Doi+Shq+88ooTh3v37jM8Ex23MvNi9JorRromOrfpMKbrdLZAVZCUBQUFobCw0H3dJsSr6ef0m8kAiXfaSErISl5Ye6Kbnjlz1puPnPSxy2K6RyR2PdaGkbv45cUnKi8sULESZR6ArgX5iZsDymVMQDhiUQoBSYIcTutR6GLICZEHYYr1KHJgsYuFLH5o2cpPeyBmWZCHwERedlVt2bLVd6OdNTIZbCFnoenLInaZs0A6/+xnP3NfwsiD71sW/vEPTNtpA/JDFkNO853FjKgr0o5EB2/t/oS5Fhwoi+N79+419xCb/T0SuxFLztOGMWPGuJV1584lrsBo81bac2B/QrCbfk9y/c/6gf7jCHo8BDbzMIY27jDOn7/g/Tpt+jTfKTjD9Nwe5rKBC9aYj903cMXw9lthlwVoa97cXByYHH3N4ASSGbI53SdeaUX/WPm4jUj8LJ9yv8i0GXHRqXFtcbMtMECgDx021PDqk3F/QUA/SGn6GdIW3Pr27et5MVZBLjCH5McNA+Mqk0TsZqDQh4aNQAMmdu1XnpWSB1j6ePpzVuY6/5oQu4jBjdWDp6XEdR+e9oBtYXczp7euXTE6lkBnl0LbltdCh7YtQsd2LY2MMR9EbWx7jG1foSQP1hRaujXu+QtXw9kLRWa5e9Utd89dNuLMbmrNm9uKst2I/cbLwxYNxV7IkQRPK6bNOaDUYBCoTHelhlqdti+RuUThw8cVD3DGY3yvjIKQaZd9QEHhWncVkBTp5fI78cFu3yqDGUXERD3pazP1xgx5fkf9IgJzV/Mz1a1bYtHAbx2F9IQpuSgoaRI7XX1azvTx9GfunYlSl0ywCH7R2aynqQtliPMo+yjTx48d961n3DZQ6DhXsT4qwT1dd735XAliFwUTf19swUThjQojbUFxJKGUl5eiUg9+SkJACAgBISAEmhoCCYmYkE1YZv7Hf/yHW55u2rTpBlDUIbFbLBlPbnaddenS1V1XEWx2hFnwQoQmetMNmlDN02B36uSpsNuIrE/NDcOnaz91MuvcuYT0xFK2mcVPqaiGwdZ3dLm0Pse1WPJCtnYx0rC9bX+Peh9aMHnRZXDBAGEJuYZ1KBajnCvRD5O5Jt9j0GYMCciDPoX1bFfTOSmfeA7EeSAvBCjEHuQsrhjwd8t1UX+CPE/mvQmYLY2cZot+JHUpA1L2nF2HfFadB0rr3LmzGUTZVn6rJ1p6QtDiC5g6kQt8cQGADo37CKxcu3fvYa4YosVuDy/7uOnfP/3p//DgZidOHPfx0LVrFyMhjeAEm0tFLj/lx6C5jg0io/8V44QsEKzsXoSsjTviIFmRHRcLEO8ukF1H27ic1LFjJyeh0d05zpzhogWM47rzXGdkrV9HZrsGjgGdHyMa1+Xte3I8KfCS9ScLFLNn26402ymI1XYXs44Fvw8/XOGW4YsWLXbCPCGXW7sujK/pXr16O35UVZXEGHrPfAR/apb7LBLg1oFEPRjjtDLdGtkwcGFhBWI6GSuXwjm79pT52j19+pSNm6LQwbBkLDCGyQfuLAwQSK+0VXExkFURuNxrGD0lqbQxkY+skpP6JATygEADJnavb31yk0v9ON3FwPX56scR6FSTld+1v5VsJUlurjxg7aHMF5J9Ng+49g2H5HzmHBfH99TNw9vNWSvDbtZJbiNyjfD1XP4koNKSa6iFb8n55ENxzfZFSQgIASGQA4GoVabuJTlyNYxDFSR2ec4wqZgwYUL4yle+4tsImcihMJLiO0poTPEY313ptrwcu+6ZFS/QuxAQAkJACAiBRo4Az9KEGCxyq8losYvFXfmpbojdtExxBgUxCRnXp09vDzpLoKforiCdP9+f0SEgCrE23bljpwc2g2Bl7pjoHMwrK07s5lu+68qzSaXrP8WWo9edr+wB08V87mo41FRyeSnc6oA07mFWuD/+xx+bK4bJbmkMaZwmdnH/lg4m7P1QU/L5JN3+VKH8dhY0DjcFvY2EbW3W0Uz+IYOdkLB3yO5+5vd48uTJYfz48T6u27Zt7aT6ggXvWNDmV806/AN3oQJBDDH/ta99zYM741LDi6pipxCg749/fM7jeWARTKA+cIy9HJtN8RmOpIp11fZluYnd2LLalkb1NUYEROzWaa9yS4KATZG6xfIkDxO/09aphKpcCAgBIdAkEKgEsYvSW1hY6KTuAw884C4ymNhx306nZHIV3AIE62rcg/i93ZTU7Lzp6/RZCAgBISAEhEBTQIDnIu4E2CI9f/78sHr1ao9yX37b657YzcgHwegLvrbL0kheLEhxM1DTibpYQE6I3Fgbi8b2mT/oNPXJwMnUI5/zuoBR3mq8R30rX+XlEMX1NY5bHfWO2M0hb0UPEQgNP74TzUChm7kpcOI0hSPfe1uewYMHu/sNLIgZZydPnvYAfW+88Ub4bP1nbgnNGMS377e//S1z2/C4+5qOum9F5UnnO2kW0L//wzPFLll22OLFWSeUo5U2fVJa005fXb8/lyZ2o6zcK0TuRjT0Xj0EROxWDz9dLQSEgBAQAo0BgQoSuzQVpRVFl4jCROiF3B05cqQfyyZs2c5H1GR8w+HzDFI4O09tw1fX9dd2e1WfEBACQkAI1BwC1SFy2GqPb8yPPvrI/ZyyZR2yt/xUv4hd3ybONnmMdUw/qA4e5bc7fTYhlBNfvgkx5Nyc/0GUekbspkVvIJ/RlRxZw/RGxO6ihYvMn61Z7EbC2dro4yD2Rz1q8/ARw8OD5mLh8ccfD4UFg9ylSFo8RI7NoA24ycMV21qL5/Hc8897nI3Dhw57rA/ai2uLJ5/8WniMIIIFBVluDtIl3/jzSXO58dJLL4XFixeHHdt3hDNnz3j98TdFfSJ2b4yjcjRNBETsNs1+V6uFgBAQAkIgjUAliF0uYyJHIAe2nbFd7ZFHHvGgGWxJSyv2TFoJ5kA05HfeeSds27Yt48ONctJ50585VxMpKsex7Ozv8bjehYAQEAJCQAhUBIHqPEewxGPBk2cl73y/cXn1i9jl2X3VFnFry+4OH6lUVlJfYiGMHBnSS8RuRYZuuXnA0zFuZMQuhggPPvhAeNSI2MLBhe7PNzOYMgOImBHXzG/yOQ9mtnXrtrBgwQJbgFnpCzHxd8o7PoXRg/HFS9A4fsdVTRDIK1eutEDNa8KePXvMZ/NF93UcrV1T4lW1ijq7LrahtACy2C2Nh75VBwERu9VBT9cKASEgBIRA40CgEsRuJGB5J0jKgAEDwrRp08LMmTPdchcfe5xD4SUR9IOIzh988IErxvgPPG0BHjjvEwebNMS8ucCERCYfr+omJsw3njRXtxZdLwSEgBAQAg0dgYo8c/L1TKlIXSV41iNiF6Hs0WyP1lpMJT78k0oTXaMU29sMgQynWpSq0VWV6Vez2G3ZygnMv/qrv3K/s93NhQHBzI4fPxGeeeYZ1+8OHjxkelqy8I+Vay0PigrDf8stt4TJ5ieYHWcYJ6BjuqwmPBbgELqXLOjbBQvcdtB8OG/evNmJ1m1G7h6xHWgXL17I6JHkbWX+h7t3v8kCmpl/afPZy7GqJna5HT9+zIJCn3QrYXRjD+5cjTKrKku+rxOxm29EVV42AiJ2sxHRdyEgBISAEGh6CFSS2I3kKJNRLHcLCgpcSYbgHT16tPkc6+YYch7FFHIXQnf58uVh6dKlTvQSnRcllvNlEbtcj9Idyd18dExZdeWjbJUhBISAEBACjQMBJ3xu0JR8Ebs3qCbrdD0jdrOkq/mvELuRsoVES4jdhE5Lk2opC96aF6rR1QCSjG+QbtGyRejQoUO46667jQwd4J/R31ik/+ST1e5u68yZ086PNi/W++orID169ghDhgwJQ4cONbK6a2huFuCEJ2O0NDNiF4tb4kLQNlyJ7d27z3eecaxEf0z5c67Jhvowtz+1u3JSIy0SsVsjsKrQFAIidlNg6KMQEAJCQAg0UQQqQexmIwT5is9dlGSI3Uju4neMcySU4TNnzrjyj0sGXDNs3brVg8ZEf4K5yFuuj2XE9+z6K/s9ktKVvU75hYAQEAJCoOkgIGK3vvZ1bmK3vkrbUOWC7HQXBabGQX5imdqlS5fQtl3b0KJ5Cw+Sd9HIzlOnTxkZaov0RvTGwHmJ5lc/W45VbYf2HUJ7I6r5jTsR7cQpgX2bm8FB4hoFNwy4SLliRC/tQp1NdNJkF1ljIFtrs4dE7NYm2k2zLhG7TbPf1WohIASEgBBII1ANYtctOkzjxXIXKwiI3fvvvz+MGjXKj6Unx5C4GzduDIsWLQrLli0LmzZtcnIXZZko1/kib9NN02chIASEgBAQApVFIP3sKutaWeyWhUxNHhexW5PoZpeN5W6GqIXdNBK0eQsI0eaJX2j7DukLC4y1KxypE6DZBdWX78VtgKyF1G3RsqUZH5iPaNplhHVGD7XvkJHZv3Euly145TtTxG7lMdMVlUNAxG7l8FJuISAEhIAQaIwIVIPYxRqXF8owPnex3L333nvDnDlzQmFhoW/Zg7QloSCfO3fOg6i9++67YeHChU7uciyjTOfAl+uUhIAQEAJCQAjUFgIidmsL6crWI2K3sohVJT86WULGYcma7J6C+ETfu2YvZ3tNNSMP5+PiPAv4nr8qldbSNS4fvnUt4VICghc3DDlVTTuYJiUzJHctydpYqkljWNIm3KhIvy/BQ5+qg4CI3eqgp2uFgBAQAkKgcSBQSWIXohXFmJQmXZkI44dt0KBBYerUqeG+++7zgGr4MYsJpR8iF5+7uGSYP3++k7tEA06XFfPn+7026si3zCpPCAgBISAEah6B+Fyjpvg5vueqnedJ7T9TmpqPXXSNbDotfocUSnzs5uofHasGAkBs8IKwo21/sFR1Gi7FgPp38hTrhHGhP/ZQNSSokUvdxQQtSemwycfiBmfXag3MRUqSO5aRfYm+X49ALgyT324cQddfoyNCoDIIiNitDFrKKwSEgBAQAo0TgUoSu2kQmNSmlVs+Y7lLtGEsd2fMmBFGjBjhQSqw6IgB086ePRt27tzpLhnwuwvRS5A1JgUxpcuNx/QuBISAEBACQqCmEEg/d9Kfc9UnYjcXKvk85vSZFVgWTQgpVKIz5LNmlVV5BOiNqBOW1WOVLzW/V0QasaLyJfnjVaVlgehWqhgCInYrhpNyVR0BEbtVx05XCgEhIASEQGNBII/EboSkpfktGzZsmJO7U6ZMcZ+7WO7GiTLKP+Turl27AsTu8uXLPaDaiRMnnPwlX3zFMvUuBISAEBACQqCmEKjsM0fEbk31RCw37XYhHku/Q7iJ2E0jUpef6Y36TuzWJT5NuW4Ru02592un7SJ2awdn1SIEhIAQEAL1GYE8Erso9dHqloBqw4cP94BqWO4SUK1jx44B0jemoqKisHnz5gy5mw6ohmuHSATH/HoXAkJACAgBIVATCIjYrQlUq1OmiN3qoFfb14rYrW3EG059InYbTl81VElF7DbUnpPcQkAICAEhkD8EqkHsZguBqwUiIxMlGWIWEregoMDJ3cceeywMGTLEyd10QDX87m7ZsiUsXrw4LFq0KGzcuDGcOXPGr2eiDVmsJASEgBAQAkKgJhHIJnYrsrCYz+cTZd24vKbkY1fEbk2Od5UtBGoLARG7tYV0061HxG7T7Xu1XAgIASEgBCICeSR2KZKJaZwQ896+fXv3uTt58uQwe/bsjFuGWD35L1686OTusmXLwsKFC8OGDRsCAdWi9W/Mq3chIASEgBAQAjWJQDbBW1ZdFSNiy7q6qsdF7JYgJ1cMJVjokxCovwiI2K2/fdNYJBOx21h6Uu0QAkJACAiBqiOQZ2I3W5BI7g4YMCDgkoEXAdW6desWouUu1xA8bdu2beH999/PWO7ih1dJCAgBISAEhEBtIsCOkxslEbs3Qqi652WxW10Edb0QqA8IiNitD73QuGUQsdu4+1etEwJCQAgIgYogUMPELiJA7uJzd/DgwWH69OmBgGqjR48OBFSL5C5uHCB3d+7cGZYuXeqWuxC9586dq0grlEcICAEhIASEQF4QELGbFxirWYiI3WoCqMuFQL1AQMRuveiGRi1EIyd2m1nn8VISAkJACAgBIVAWAraVsVlpH7b5tkJKb2vF9+7QoUOd3MVyd+TIkaFTp05O7uJ2gdeFCxcCQdRefvnlsGTJkrB79+6yhNdxISAEhIAQEAJ5R0DEbt4hrUKBcS6baz4b9ZarVShXlwgBIVCbCFxP7PL7ja/alER1NVYEGjexS69diw/ExtqFapcQEAJCQAhUHQFTqrJIXcrKN7GLRS6TZIKqQdy2bt3ag6hNmzYtzJ0714neDh06lLLcPXHiRHj77bfDc889Fz7++OOqN1FXCgEhIASEgBCoJAIidisJWI1lL28uK1K3xmBXwUIgjwiUJnYhdPXbzSO8KsoQaFTEbu4ezbXCmTunjgoBISAEhEDDQCCxgK05WfNN7CIpMlNu/NyuXbtQUFAQCKj24IMPOtHbpUuX0LJly4BLBojdN998Mzz//PNh1apVfp3+CAEhIASEgBCoDQRE7NYGyhWtI9d8NtEnKlqC8gkBIVBbCFxvNHL1avr3mv5cWzKpnsaOQBMgdht7F6p9QkAICIGmh0DatUFNtL4miN1cckLuDhw4MMycOTNMnTrVLXchdy9evOh+dl977bWwePHisH379lyX65gQEAJCQAgIgRpBQMRujcCqQoWAEGj0CJg1btZaDLv1lIRATSIgYrcm0VXZQkAICAEhUCMINAZiN1rvQu4OGTIk3HPPPWHcuHGhV69e4fz582H9+vXuXxdfuydPnqwRHFWoEBACQkAICIFcCIjYzYWKjgkBISAEboSAiN0bIaTz+UdAxG7+MVWJQkAICAEhUMMINAZilzaQIHjxuTto0CAneHv27OkWu1jpbtu2LZw6dcr98tYwpCpeCAgBISAEhEAGARG7GSj0QQgIASFQCQRE7FYCLGXNEwIidvMEpIoRAkJACAiB2kMgkqLpGnMdS5/P9TlazXIu+/qa3jZFfdRPQDX86mbXn5Y3LWf6uD4LASEgBISAEKgJBETsVh1VedCsOnb5vDJrN3y1i853v9Z3+aoNWJMtALcLpUeL9PgmOxhqreEidmsNalUkBISAEBACNYkAxGh55GiuulG0IoHbokULJ1p5h2i9cOFCrkt0TAgIASEgBIRAo0dAxG7Vuhg6p/6QOGmCCRqxedUa1UCvcr0wj7JfLQ6Am68imxfv3MpHefVr3OWjRQ25jPTvriG3Q7I3JARE7Dak3pKsQkAICAEhUCYC5RG7uSZZ5GfiConLi1RUVOQWtJy7cuVKmXXphBAQAkJACAiBxoyAiN2q9W79IdhykUstqtaoBnoVvKkt+edN+vpN7F6zBYW8NVUFVQuBXL+9ahWoi4XADREQsXtDiJRBCAgBISAEGgICNyJ2s8nd9u3bh5tvvjn07ds3dO/ePZw7dy4cOHAg7Nu3Lxw/fjzTZMolZV+fyaAPQkAICAEhIAQaGQIidqvWoXVH7HrNKaFzsXwidlMAVfqjiN1KQ9ZELxCx20Q7vk6bLWK3TuFX5UJACAgBIZAvBG5E7MZ6yMeEtaCgIIwfP95fvXv3DmfOnAkbN24MH3/8cdiwYUM4ffq0XyJiNyKndyEgBISAEGgqCNRvYhc7zPxZYuazT+uG2I2kbi4yN906XDHUT9zSUubrM+vy+RwnInbz1TONuZyK/hYbMwZqW10gIGK3LlBXnUJACAgBIZB3BMojdtOVMVnt3LlzuOeee8JDDz0Upk2b5t8vXboU1q9fH5YsWRIWLlzo5G70v8v1sthNo6jPQkAICAEh0JgRqL/ELsFOISjrq79YtsTfiGCt6MjJJmHLKjeSSRUpt77iVhHZK5cnWZjPxrByZaRzJ/1aVh+kc1bks1HOMM95S/kcd3kTqgkWhLWukhCofQRE7NY+5qpRCAgBISAEagCBihK7VD1o0KDw4IMPhrlz54Zx48Z5ADWuP3nypBO68+fPDy+99JJb7UZyN77XgOgqUggIASEgBIRAvUKgPhO79QqoGhUmbWELoSjSqEbhVuFCQAgIgQaKgIjdBtpxElsICAEhIARKI1BRYrdFixYB1wuzZ88OjzzyiLti4FosMSBvDx8+HD755JPw4osvhlWrVjnZSyA1Ebul8dY3ISAEhIAQaLwIiNitD32LRWe06qyMVW59kF0yCAEhIASEQG0hIGK3tpBWPUJACAgBIVCjCFSU2CVfhw4dwuTJk53YnT59urtiQDjOXbx4Mezfvz8sW7YsvPHGG27Be+LEiczWyvxtsaxROFS4EBACQkAICIEqIyBit8rQ5fnCNLGb56JVnBAQAkJACDQKBETsNopuVCOEgBAQAkKgIsQupCwvJqwjRowIM2fOdHcMw4cPD61atfLjnD9//nzYvXt3WLBgQVi0aFHYtGlTOHv2bOZ8Gm3qFdmbRkSfhYAQEAJCoKEjIGK3ofeg5K8MAlGPQ6dTEgJCQAg0NARE7Da0HpO8QkAICAEhkBOB8ojdqLBzIS4VyNu1a9cwZswYd8mAW4YePXqENm3aeNnkwXJ33bp1brW7dOnSsHPnzpwErojdnN2hg0JACAgBIdCAERCx24A7T6LfEAH0wkjipnXEeOyGBdRyhrS86aqjvOk2pM/rsxAQAk0DARG7TaOf1UohIASEQKNHAOU2KrjZjUXhTSu9fMZCFzL31ltvDV/5ylfCxIkTw0033VTKKvfIkSNhxYoVbrn7/vvvu/9d+drNRlffhYAQEAJCoLEhIGK3sfWo2hMRQI/jRcwFErpjWkcsS5eM19fle5QtytuyZUuXnfbEY3Upn+oWAkKgbhAQsVs3uKtWISAEhIAQyDMCKLtR4c0uOq3spj+3bt069OrVK9x1113hsccecwvebt26OblLGQRN27dvX/jggw/Cm2++6e+4aUCBZtJLfXxWEgJCQAgIASHQmBAQsduYelNtKQsBiFH0uMuZS1EAAEAASURBVEiMlqVHlnV9bR6Pei7v6LLIfPnyZSeo+b2m9dvalEt1CQEhUPcIiNit+z6QBEJACAgBIZAHBKLCe6OiUHzTym/btm1Dv379wgMPPOA+d0eOHBm6dOmSKQaXDNu2bQu4Y3j55ZfDjh07woULF5zYRZGG/FUSAkJACAgBIdCYEBCx25h6U22JCMRxjbUuC/nof+3atXP3W8eOHfOdWefOnas3i/botlHXROaePXuGPn36uDuxoqKisGfPnnD06FGPDSFDg9jLehcCTQ8BEbtNr8/VYiEgBIRAo0SgosQujU+Tu1wHuYtLBsjdqVOnhltuuSXjb5f8p06dChs2bHCrXYKp7d+/P1y6dEkWu4CjJASEgBAQAo0OgUiAldew9LO0vHw6JwTqEwLofJCjt912Wxg3blzo3r27B8jdvn17+OSTT3wxn4C59WHhPuq2kLZ9+/YNd9xxh8sMIY0e+vHHH/uLOBAQ0kpCQAg0TQRE7DbNflerhYAQEAKNDgGU34qmtMUu13AtlhuTJk0Ks2bNClOmTHEFOp5DoT5+/HhYs2ZNeP75513xP3TokCvVFa1T+YSAEBACQkAINBQEROw2lJ6SnGUhEMdwtGRF1yO+AqTonXfeGe67774wduxYJ3Zxs7Vly5awfPny8N577/nurDNnzji5i85YGR2zLHmqejzWj346Z84c11VxI0a7Vq5cGV555ZWwbNmycODAgapWoeuEgBBo4AiI2G3gHSjxhYAQEAJCID8IMAHo3bt3mDx5cnj44YfDPffc4xOAGFyDLW+Qu++++65b7q5atSqwbS/6Z8uPFCpFCAgBISAEhEDdIxBJsfIkkcVueejoXF0jQBwFCFn0N8YqpO7AgQM9WO7MmTM9vgKut+JYh8jFapedWbyiFSx+bOsqITeWw+iaf/d3f+f66eDBg92vLm07efJk+OMf/+hGB+wsUxICQqBpIiBit2n2u1otBISAEBACWQigOLdp08bdMEyfPj18+ctfDoWFhSFODFD8Ue537doVFi5cGObPnx/Wrl2bseaIFiFZxeqrEBACQkAICIEGh0Aku8oTXMRueejoXF0jEMcw+hluCwoKCsK9997rO7PGjx/vfmohR6M1Lvmw3CWuwoIFC9wKdvPmzQHClxTz1VW7/tt/+29h7ty5YcCAAS4Cvz9kZifZ73//e99NVleyqV4hIATqFgERu3WLv2oXAkJACAiBeoIACjLWuZ06dQpDhw71LXr333+/W3cQWAOFnjwo+FhFLFmyxF9YdDBhgBjmPCm+15OmSQwhIASEgBAQApVCIJJi5V3Es07Pu/IQ0rm6RoDxiW7HjiysdGfMmOExFXBlEHdcZZO7+KpFz2OHFi4OIHcJmguJWtvjnfpivf/0T//krhhwJZFOzz77bJg3b567C0sf12chIASaDgIidptOX6ulQkAICAEhcAMEUO6ZzLI1b/To0eHxxx/3rXoErGACwHkI3OhvF4sOCF62wrHVLyrfsZrangDEevUuBISAEBACQqA6CIjYrQ56urY+IIDOxk4sSN277747sFg/atSo0LNnz0yAXPS2NLEb5Uavg9x9//33M+QuhC/5SVwTU03qepSN3snv8Sc/+Ul48MEHPQZEWuZnnnlGxG7sDL0LgSaKgIjdJtrxarYQEAJCQAjkRgAlGusOgqlh2cG2t9tvv90nAlGRR7Hfu3dv+NOf/uRBKzZt2hROnDjhrhpiqZRTk8p+rEfvQkAICAEhIATyjYCI3XwjqvJqEwH0L3Zb9e/fP9xxxx3hgQce8EBpN910k/vajbJEPS3qd/E47+h1WOtitfvOO++Ezz//PEDuZut3sYz0tfn6TNnonLgFe/rpp70dWOymid1osbt69ep8VatyhIAQaGAIiNhtYB0mcYWAEBACQqDmEYiKNEE2IHZ5ETkZxTqmixcvht27d7u/3TfeeMODbOCmISr48T3m17sQEAJCQAgIgYaCgIjdhtJTkjMXAoxffNFOmjTJfereddddoXPnzr77Kp0fXS0XqRvzoNdt3bo1oOctX7487Nmzx8ldYi7Uhp5HHSJ2Y2/oXQgIgbIQELFbFjI6LgSEgBAQAk0eAaw9xowZE2bPnu0TA3zvomDHSQAK/44dO8Krr77qgTZQ+OsyenKT7zABIASEgBAQAnlBQMRuXmBUIbWEQNTLItmKC61p06Z5vIQJEyaE7t27uyTZ+dDpGOscz0XycgwrXchdguZC7vIZ/a82kojd2kBZdQiBho+AiN2G34dqgRAQAkJACNQQArhk6Nq1q1vr4puNrXxs48PfLgm/Z6dOnQqrVq1yaw5cM3zxxRcZ4reGxFKxQkAICAEhIARqFAERuzUKrwqvAQQgQVu1ahUGDRoUpkyZ4sQui/MESkOfi6QuuhuvGDshkrqQvBwnbyR7EZPj58+fd5+7ixcvdtcMkLsc41xNJhG7NYmuyhYCjQcBEbuNpy/VEiEgBISAEMgzAij7KPh9+vQJWHw88sgj7m8XspfjKNxMAo4cOeJWHFhzfPTRR+HYsWMuSZws5FksFScEhIAQEAJCoEYRELFbo/Cq8DwjgL6FuyxIXEjd++67z3dcESgNsjcmyFisbdHdCJTLzqyoq+Fii6Bp7LyK5/gdoOuRTp8+HdavX+8B1QiqFi130+RuLCvWV913EbvVRVDXC4GmgYCI3abRz2qlEBACQkAIVBEBlPS2bdu6r7apU6eGOXPmhBEjRoROnTplrD9Q6rdv3x7effdd97m7Zs0at+SgyjghqGL1ukwICAEhIASEQK0jIGK31iFXhZVAIOpWWN1C0qKnESht3LhxgR1WvEdSFz2OBKlLbISDBw+6te4tt9zieeJCPaTuzp07w/79+13nozx0vfhb4P348eNh48aNTu4SVA3dD6I4Te5G2SrRnDKzitgtExqdEAJCIIWAiN0UGPooBISAEBACQiAigDIdJwMcw6qDYGpY7eJzt7CwMLRp08azo+yj2BM9eenSpeHNN9/0ycGlS5dE7EZA9S4EhIAQEAINBoFIZpUnMM/JfJJY5dWlc0IgjQBEKmOvffv2/t6vX78wceJEt9TlHYvbaKlLPqxwcZWFpe3nn38eevfuHWbMmOF6HeQweQ4fPhxWrFgRcKtVUFAQ7rjjjkBsBYKupfXBEydOZPQ9yN1du3a5NS8Ec74TctFWrJGffvppdwlGW5EnyvTss8+GefPmhdWrV+e7epUnBIRAA0FAxG4D6SiJKQSEgBAQAnWPAMo/Lhm+/OUv+1Y/lOuYULCx9li3bp0HU3vrrbdc0VcwtYiQ3oWAEBACQqChICBit6H0lOQcMGBAYEcV7hfGjx8fevTokSE9QaeoqCgcOHDAF94XLVrklrv33HNPeOKJJwJ6XCR2cav14Ycfht/85jcO6t133x3uvffeMGrUKLcIhmRF14NoZTEfa1187rKgjxUvxygrn0nEbj7RVFlCoPEiIGK38fatWiYEhIAQEAJ5RgCFnsjKTCDmzp3r1iEx0jJVYa1x6NCh8PHHH4fnnnvOrScge9Nb9PIskooTAkJACAgBIZB3BETs5h1SFVgNBCKpShGMzWitiuXtzJkz3fr21ltvdVI3WuqSF/cLWOquXLkyvP322x4A7eabb3bL18cff9zdN0QyFotdLHp/97vfuVUvhHEMwhbJXepFFl4XLlxwP7vvvPOOu+Ji19a5c+cyslF/dZOI3eoiqOuFQNNAQMRu0+hntVIICAEhIATyhAATBtwwzLAtfFiHMJFgKyA+2lD4UfT37dsXlixZEt544w2fRBBwg3NxQpAnUVSMEBACQkAICIEaQUDEbo3AqkKriECa2KUIfOr27ds33HXXXa6LjR49OkDYoqNFXQuSFZ+6BLXFspbAZ/jIxb3CQw89FB599FEPjhvdakHsLl++3N0aQNKi15E3Wu7ik7djx44ZfQ850O82bNjg1+GWgToIwoa8+UgidvOBosoQAo0fARG7jb+P1UIhIASEgBDIAwJxosBkFyKXAGrTp08Ps2bNCkOGDHF/u5xDCWcywRY9iF0mE0ROxt9utDIhT76U/jw0TUUIASEgBISAECiFgIjdUnDoSx0jwM6nqENBxOJCYdKkSU7qjhkzxoOg4Yc2JsjVHTt2OKlLYFt850LConthfcuuq8ceeyz06tXL9Td0PHZcYbGLv1qIXVwrQOQOHjzY9T10Pj7jvzda+VIfO7M2bdoUIHbR+agXPRCZKZdXVXduIS/Xysdu7Fm9CwEhkAsBEbu5UNExISAEhIAQEAIpBFDKSWkyFsV+7NixYc6cOT6xwKdbtBTBJQNKPS4ZIHffe++9sHfvXlfuI/mbLitVlT4KASEgBISAEKhzBETs1nkXSIAUAuhVjEkC2fbv3z/ceeedvrBOgLOuXbuWIlrxqcvOKYhW/N9++umnYf/+/V4aZWDdm7bYhTSNxG7aYvfUqVNOqkIks1OLayZPnuxWvNSZ/o1Ecpf6eBGgDWKYRNlVjbcgYtch1B8hIARugICI3RsApNNCQAgIASEgBLIRYILBRKBPnz5h3LhxHoCDd/ztsnWP86SjR496dGXIXSxGsi04yBNJYz4rCQEhIASEgBCoDwikSauy5IF00iJlWejoeD4QiDoSu56wkh04cKD7vWW3FIHSbrrpplJ6FPlYSIegXbhwoQe0hWDFTRZlMV5Hjhx5Q2IXC1zIWhLXYQEcF/MJqMauLUhmyosyUs+2bdt8QR/L3127djm5W53fCNfKYjcfI0llCIHGjYCI3cbdv2qdEBACQkAI1AACUZFHqcen27Rp03xLH9v72LaHEs6kGIJ3z549br3xyiuv+Fa96G+X89VR9mugWSpSCAgBISAEhIAjIGJXA6E+IIA+hbUr78OHDw+QqjMsxsFtt92WWUxHl+JFoDRIXdwuxEBpWN1yjuvjoju6Gta3uGIg+Foui90tW7Y4Kct1sXwsdyF0qR85hg0b5jofxC4v8kIgcy0uGbDc3bhxo8tVVSyj7HLFUFUEdZ0QaBoIiNhtGv2sVgoBISAEhECeEUCJZ+ILuTto0CD314ayj79dgnrESTETDXzsEkzt9ddfd2sOLEqihUeexVJxQkAICAEhIASqjUB8hpVXUCS8ysujc0KgOghAljIWscydOXNmeOCBB5zU7dmzpxOysWx2ROH+4MMPPwwLFixwQvXYsWNO5mLpywtil/IgZ7OJXcpJB09Db2MhnvwxMd47dOjghC4uGQigmyZ3Y76zZ896/VgML1q0yPU+uWKI6OhdCAiBmkBAxG5NoKoyhYAQEAJCoFEjEK0zaCSuF7DiwM8bEw6UfYjeGFiDicCJEyfCZ599Ft58883wzjvvhCNHjmQsR5g0RJKXvEpCQAgIASEgBOoaARG7dd0Dqh8E0JFYQIdA/frXv+5uGPr27ZuxsiUPVrI7d+70QGkQqZ988omTspCp6FfoabzQscojdtPB0yKxG618qYfreeFfF3nuvvtuJ3cJqNapUyevg/rIgxsH3DG89tpr/o4eyPHKJq5BZlnsVhY55RcCTQsBEbtNq7/VWiEgBISAEMgDAmliF6WbF9YjkLoPPvigv3fr1i1TExa6kLlr1qwJzz77bFi7dm04fvy4K+vpSUPmAn0QAkJACAgBIVCHCIjYrUPwVXUGAUhNSFP86X7ve9/zuAYEr40EKoHSsNT905/+5O4PCFqLpS26FWM4exyjr0Ufu2lXDFSYTezixiGtoyELiUC5yNSrV6/w8MMPu87Hbi3koj7qQL5Vq1aFV199NcyfP9+DuXG8solrROxWFjXlFwJNDwERu02vz9ViISAEhIAQqCYCkdhF4Ubp5zvK/IABA3yr4BNPPOFbBbEQiZMKJh+Qu2wRxN/uunXr3MqE83GLXiy3muL55ZRVlUlEPupWGUJACAgBIdCwEYjPrvJawTNGz5nyENK5fCAAiTp69Ggndm+//fbAwjk6Dovm+/bt80Bp0VIXy9hoqcsYztarGK8VJXaxuo06Hu2gXPS6qF/xmbJmz57tsRZw8dC+ffvMb+Kjjz4KL730krtjwM1DVX4rXCNiNx+jSGUIgcaNgIjdxt2/ap0QEAJCQAjUAAJxooCyzStu8WOr3NChQwPRmh9//HGP3oybBhLKOeQuEZNxycAkhKAaTEzSbhuqovinm4hscTLDhKS65aXL1mchIASEgBBoGgiI2G0a/dwQWoluhXXsV7/6VSdQcXeFrnPgwAG31CVI2fr168PRo0dd50Gvwn0DCR0tO5VF7B48eNDdJsybN89jI0Dscn0kcvlNRL0v/j6QDdJ5hsVYmDp1qsdZQO/Dvy9ysZCPFXHa8jdbnvK+i9gtDx2dEwJCICIgYjcioXchIASEgBAQAhVEoCxil+NsxSPi8pw5c1zRxxccSn5Uzs+cORM+/fTTQFANXviFY2IQz1dQhOuycT0TDUhi6uOduqI18HUX6IAQEAJCQAgIgTIQiMRVGaf9MM8dXkpCoCYQQKeKCT3ptttuCxMmTAgFBQW+oP7FF1+ElStXhi1btjipGy11uYYFd1Ku8VldYpdyI8kb9T5cMYwdO9YDs2FhvHfvXvf1iwuu/fv355SDcm6UkB8ymfY//fTTHsuhX79+pSyRcfEFGb169eobFafzQkAINFIEROw20o5Vs4SAEBACQqDmEIiTjTipRcGPkwcmE0Rvxh8c/tsIqoalCcdRzsnHljx8r7399tthqVl0RAI2lhHLr0wLuIZ6+/fvH1D6mQTgL47JBfURMVpJCAgBISAEhEBFEBCxWxGUlKcmEUCviXoR9UCYslhO8DLGJxa1uGLAp26a1I06VHzPlrGixG62j91I5lJelI13Xh07dgw9evQIN998sy+u4xICHYx4CuzWSrcjW57yvnOdiN3yENI5ISAEQEDErsaBEBACQkAICIE8IoASDomLco/ftQceeCCMGTMmMxHhPBOQPXv2hA8++MAjJmPRcfbs2VKKf1kTkrJE7dy5s1uzTJo0yS2GIXaxEoFAxs/bjh07fPJR1vU6LgSEgBAQAkIgIiBiNyKh94aKQFl6FLuqHnroIV987927ty+E08ZsVwwQu3FBnvP8JtDheMVEHenv8Xj6vSw50nnK+kzZInbLQkfHhYAQiAiI2I1I6F0ICAEhIASEQB4QiEo/5C6BNObOnRtmmO+14cOHlwqqAZGLG4YlS5Z4cA2iOl+8eLHKElAXExXI5GHDhnnUZny8LVu2LLz44ovu9qE6k4sqC6YLhYAQEAJCoMEhIGK3wXWZBK4AAuhBVSV2K0Li5hKhOrqXiN1ciOqYEBAC2QiI2M1GRN+FgBAQAkJACOQJAaIjE8EZf7sEVMNNAko6Sj4WGGwfxDfcyy+/7C4ZcJtQVZ+4ELoEFpk8ebITyEzKCdaBNfALL7wQfv/731e57DzBoWKEgBAQAkKggSAgYreBdJTErBQC1SF2K1VRVuaqkrsidrOA1FchIARyIiBiNycsOigEhIAQEAJCID8I4HONYB+Qu/fee6/7YSOwGUo+JC4+4oiY/Prrr4cVK1a4v7iyas41MUDpJz366KPhySefDHfffbcHTuMYxO7atWvdYvcPf/hDOH/+vNwxAIySEBACQkAIlIuAiN1y4dHJBoqAiN0G2nESWwgIgXIRELFbLjw6KQSEgBAQAkKgaggwecAqt1WrVm6pe9ddd4VHHnnEoyYTAARXDZCykLv4dcMlw4IFCzyqMX7douUu5URCN74jEZ+jJUeHDh3cV9yf//mfhzvvvDOTH9cOkMa4YuB16dKlqjVGVwkBISAEhECTQkDEbpPq7ibTWHSnqrpiqA5Iaf2tMuVEPY+4CU8//bTHbSBALuXFMp999tkwb9481x8rU7byCgEh0HgQELHbePpSLRECQkAICIF6hAAKd7Smbdu2bSgoKAj33XdfePjhh0NhYWGAjCUP5C+E6+bNm8PixYv9tWHDhnDu3LmM24Y4wY5KfHYze/bs6cTu448/7sRxPA9BTIA2SN0333zTD0eZYh69CwEhIASEgBDIRiA+d7KPp7/zPNEzJY2IPtd3BNCjROzW916SfEJACFQWARG7lUVM+YWAEBACQkAIVBIBJr4QuSNHjgxf+tKXwpQpU9yKFwsMzjHRwN8ubhMWLlwY5s+fH/bv35+x2o3VRWI3TqT5juXvwIEDA6QugdoIohbT4cOHw3vvvRdeeeUVJ4zjcb0LASEgBISAECgPARG75aGjcw0VARG7DbXnJLcQEALlISBitzx0dE4ICAEhIASEQB4RaNeunQc3e+KJJ8KkSZNC7969vXR84TLZOHLkSPjkk0/Cq6++6q4ZcKWASwasetMpTrgjKTx69GgPnIYP30GDBmWyHjhwICxatMiDs2G5qyQEhIAQEAJCoCIIxOdMeXl5BsWFxvLy6ZwQqC8IiNitLz0hOYSAEMgnAiJ284mmyhICQkAICAEhUA4CWNf26dPHg6jNnj07jB8/PnTp0iVD3ELiYqkLCfvCCy+EdevWhTNnzuQsMU6mcfNAOfjXxRKY8kmc3717d3j77bfDa6+95tbATNQhieO1OQvWQSEgBISAEGjyCIjYbfJDoFECIGK3UXarGiUEmjwCInab/BAQAEJACAgBIVBTCGQTqEwosNodPnx4mD59epg5c2bA2pYAa5wjnT9/3glZgqnhF3fbtm3ub5dzlBdffGfi3b59eyd0/+zP/ixMnDgx9OjRg1NO4OK394033vBytmzZ4m4bROw6PPojBISAEBAC5SAgYrcccHSqwSIgYrfBdp0EFwJCoBwEROyWA45OCQEhIASEgBCoLgLZ5C5Wu1jpjhkzxi13CahGhGP87TLhgHg9e/Zs2Lp1q/vGXbZsWfj88889wFokZWOZTLyx2J01a1Z48sknw7hx47xsZCbPmjVr3A0DPnv37NnjxG6aGK5u23S9EBACQkAINE4EROw2zn5t6q0SsdvUR4DaLwQaJwIidhtnv6pVQkAICAEhUA8RgFRlUsGEGctaiNg5c+a4xS3fW7Zs6VJHchdS96233gorVqwIBEK7dOmSXx+JXTJD7D700EPhO9/5jlv/8j2mDz/8MDz33HPuZxf/vdRL2UpCQAgIASEgBMpDQMRueejoXENFQMRuQ+05yS0EhEB5CIjYLQ8dnRMCQkAICAEhUAMIQMxC4hI87c477/TAZ7fddlvG2hbyFcterGyXLl3qfnIhd/G3y3EmJjF16tQpfOUrXwnf+ta3wpAhQ0qdgxj+wx/+EBYvXhwuXLjgpK6I3Yic3oWAEBACQqAsBETsloWMjjdkBCpK7OK+6vTp06UWw9OL6pXFIK23VeZa6kRvY1fX008/HR544AHf5UV5scxnn302zJs3L6xevboyRSuvEBACjQgBEbuNqDPVFCEgBISAEGg4CKCQt2nTxsnduXPnhgcffDAMGzbMfeaiyHOeYGo7d+4MELT4yl25cmW4cuWKW94y6YYc7tatW/j617/u5O6gQYMcAK7HuhdCF2X/3Xff9Ws4zosU3/2L/ggBISAEhIAQSCEgYjcFhj42GgTQrUaNGuU7nR577DHXwSBNSQcPHgzvv/++600Qu6dOnXJSNRKo1dGbYhmVBZI6RexWFjXlFwJNDwERu02vz9ViISAEhIAQqCcIMHHu2LFjGDFihFthTJ06NQwePNgJ3ygiEwsmGARTe/HFF8O+ffsyEw2IYfzzfuMb3wiQw3xm8sAkAOtegq9hyQEhHCfpTBKqMzmJculdCAgBISAEGi8C8ZlRXgv1PCkPHZ2rjwhUlNgl+CwWu3WtL8XfWNpit2/fvq7rRbJYFrv1caRJJiFQuwiI2K1dvFWbEBACQkAICAFHAGUdpbxVq1YBdwoTJ04Ms2fPDnfffXdAacflAgkL3WPHjoXPPvssvPDCC2H58uXh+PHjPtlo3769E8EQuzNnzgy9evXyayB28cn7+uuvh5deeil8+umnpYhdz2R/6nrCEuXQuxAQAkJACNQvBETs1q/+kDT5QaAqxG4kUOtCZyqL2AWN+BsVsZufsaFShEBDRkDEbkPuPckuBISAEBACDRaBqKxHn7n9+/cPWOzOmjUrTJgwwf3txskELhkOHTrkWwSx2oXkxZK3c+fOYcyYMeHJJ590Qrh79+6OB2Qw/nlfffVVd+GwYcMGJ5GZBMR6yVgXk5QG22ESXAgIASHQhBCIpFF5TU4/T8rLp3NCoL4gUBliFz2LMR4X2lk0r+0Uf2PZFrvIEX+jInZru1dUnxCofwiI2K1/fSKJhIAQEAJCoBEggDIele6omMdmMbGIx8jDd5T2goICJ3cffvjhcOutt/qxSO5evHgx7N2714na+fPnh40bN7obhylTpnjwNfJ36dLFy4II3rp1q1v4vvPOO2HHjh0Z62B871K3khAQAkJACAiBshCIz6+yznM8PsfKy6NzQqA+IVBRYnfTpk2+gI7sInbrUw9KFiEgBHIhIGI3Fyo6JgSEgBAQAkKgighEIhbLjjgxvtHkl2vI27Zt2zB8+HD3txt95uJHl0R5ELZY6+I7l8Bo+H+bMWNG+OY3vxmGDBnigdfICwm8bt06J3bfe++9sHv3bg47USxi16HQHyEgBISAECgHgfj8KieLiN3ywNG5eomAiN162S0SSggIgWoiIGK3mgDqciEgBISAEBACTBSiFWya2MXKI5K68XwutOI15O/Ro4db62K1O2nSpHDzzTe7H96YB/+6a9asCQsWLAjr168P48aNC3/xF38RcOWAv17qKSoqCh999FH4/e9/H1asWBGOHDniFrstW7Z0crg8WXLJp2NCQAgIASHQtBAQsdu0+ruptBZdatSoUeGhhx76/9k7D/eornPrv9KoS6iAGkUgIXrHNmAwxvTiQrGxk2un3Di57Y/I/3Hv89wvuUkcl7jgQrAxYDDYBtN7BwGiSKgg1Pt8a717jjQSQx/BjPRuezQzZ87ZZe1zZOs366wta9askfz8fP3Sm+MvLy/XyKv33ntPzLE7UM4IG6cp0D8UMLDbP+bRRmEKmAKmgCnwlBTgHwkeKOVr7z1zbglSWbxctuD9vNf83DuGz3ToEuYS6vIPj2nTpins9W4FpGu3rKxMge2hQ4d0wbQ333xTcnJy1PXLepuamnSRtb/85S/CfRoaGrQP/EOdnwe3zfatmAKmgClgCpgCwQoY2A1Ww173FwX4/1kGdvvLbNo4TAFTwFPAwK6nhD2bAqaAKWAKmAKPqQD/YGDxQK33h3EwTCXk9T73mgt+z9d03tKBu3LlSl1MbeLEiTJo0KCuupubm+XSpUty/vx53XfevHmat+vVw4iGbdu2yf/7f/9PuHAaYbAHl7027dkUMAVMAVPAFLibAt5/v+72ObcH/7ftXvvZZ6ZApCjA/08ysBsps2H9MAVMgXApYGA3XEpaPaaAKWAKmAIDUgH+Ycs/gD1gS8dtWlqa5t3StcuHB1a5DzNu+ex9RtGCoav3mnCXbl1m7b700ktSXFysbl5PZLpwb9++rfUMHTq0yx3Mequrq2Xjxo3y5z//WeEv/5Dhw4opYAqYAqaAKfAgChjYfRCVbJ9oU8DAbrTNmPXXFDAFHkQBA7sPopLtYwqYAqaAKWAKhFAgGJgS3tJVW1BQoAugFRUV6UrKdM8SwDIegQ9m5DY2Nkp9fb0+uI0O3N7xCKyPgHju3LmyatUqhbvDhw8P0YuemwiOmRO3YcMG+eCDD3ThNPYzuH6DvD01s3emgClgCpgCPRUwsNtTD3vXPxQwsNs/5tFGYQqYAj0VMLDbUw97ZwqYAqaAKWAKPLACHiD1XLsTJkyQxYsXy5IlSzRKgRUR3AZD3KqqKs28pePWexD2trS06L6EvjyGnxH4ZmZm6mJqixYtkvnz56sTmNm9Xtu9O8tjS0tL5dNPP1W4e+3atZDRD72Ps/emgClgCpgCpoCngIFdTwl77k8KGNjtT7NpYzEFTAFPAQO7nhL2bAqYAqaAKWAKPKQCHlxlfALdui+88IKsXr1a4S7dtix03vJBJy2fCXC999zG6ASCX4JcPtPhy9e1tbX6vrW1VeseN26cuneHDBnStYJzqO6yjrNnz8pHH30kW7ZsUfcu+2mO3VBq2TZTwBQwBUyBUAoY2A2lim2LdgUM7Eb7DFr/TQFTIJQCBnZDqWLbTAFTwBQwBUyBB1SAfyQQzg4ePFiduuvWrZMFCxZo7u69qiBo9Zy+BLx05xL68pkw13vPbQTHqampGvOQkZGhEQ93q5uxD8eOHZO//e1v8tNPP2neroHdu6ll200BU8AUMAVCKWBgN5Qqti3aFTCwG+0zaP03BUyBUAoY2A2lim0zBUwBU8AUMAUeQgEC2vT0dI1K8By7ycnJIeGu55zlHxfBxdvObR7w9T7ne8JdPvt8vjtiGLjdq4+xDvv27ZM//elPcvjwYXUAG9j1lLRnU8AUMAVMgQdRwMDug6hk+0SbAgZ2o23GrL+mgCnwIAoY2H0QlWwfU8AUMAVMAVPgHgrwDwU+xo8fL8uWLZMVK1YIF08j3PUKgSwBLB8s3jHeH8/eZ94zc3QftPAY1sdSUVEhO3fulP/5n/+RCxcuqPOXn3ntch9vX762YgqYAqaAKWAK9FbA+29T7+3B773/XgVvs9emQCQrwP//mTRpkrzyyiuyZs0ayc/P74q34sKzP/74o7z33nty+vRpjcTiWPj/byz8gv1JF+8aS0hIkD/+8Y/6/5fDhg3TbnjXKKO32OdDhw496e5Ze6aAKRAhChjYjZCJsG6YAqaAKWAKRKcCHlTlHwtc6GzUqFEyZcoUmTlzpsYnJCYm6oJnjFLgaz74P+hJSUn6IPz1/mjwFPDq9N57z/yjwvsfeW7jfsGFfSgrK9Ns3f/+7/8WLpzGmAduD96X762YAqaAKWAKmAJ3UyD4vzV324f/XQn+b8vd9rPtpkCkKMD//zGwGymzYf0wBUyBcClgYDdcSlo9poApYAqYAgNaAf6xQJctF1Fj3i4XT/MALnNxuY1wl5/zmZ/zNZ8Jd7kvH3ydkpIi8fHx+iAI9ty7zPINBYEpPNvn51euXJFNmzbJ//7v/0plZaU6TPhZ8B/ffG/FFDAFTAFTwBS4mwIGdu+mjG2PZgX4/z8GdqN5Bq3vpoApEEoBA7uhVLFtpoApYAqYAqbAQyrgwVKCV4LYpqYmha2EtQS5zOClS5eglvDWc+9yWzDk9SAw4S7388Av6+TDA8AEv3zP9via4Laurk5vH9y4caN8/vnnehshtxvYfcjJtN1NAVPAFBjgChjYHeAnQD8dvoHdfjqxNixTYIArYGB3gJ8ANnxTwBQwBUyB8CrgAV5vsTP+cew9CGGDoxG4D7cR1hL80sHLB+GuF91AsOs5fPmawNdz+nK7B4ZZF/PhuGDad999p8/Nzc1dgzPHbpcU9sIUMAVMAVPgPgoY2L2PQPZxVCpgYDcqp806bQqYAvdRwMDufQSyj00BU8AUMAVMgYdRgH808EFgy9IbqBLssgTv19ra2vWen/EY78E/rglvCX4JfAl1vdd89tzAjGFgvu65c+fkzJkzUl9fL+3t7VqvVyefWdi2FVPAFDAFTAFT4G4KGNi9mzK2PZoV4P//WBRDNM+g9d0UMAVCKWBgN5Qqts0UMAVMAVPAFHhEBe4HTYNBL5vg/r239W6a+/CPbO851GseQ7hLcEyg6zmG79ef3m3Ze1PAFDAFTAFTwMCunQP9UQH+P5GB3f44szYmU2BgK2Bgd2DPv43eFDAFTAFTIMwKeCD1frA2zM1adaaAKWAKmAKmQNgUMLAbNimtoghSwMBuBE2GdcUUMAXCpoCB3bBJaRWZAqaAKWAKmAJOAf7hYGDXzgZTwBQwBUyBaFXAwG60zpz1+14KGNi9lzr2mSlgCkSrAgZ2o3XmrN+mgClgCpgCpoApYAqYAqaAKWAK9IECBnb7QFSr8qkrYGD3qU+BdcAUMAX6QAEDu30gqlVpCpgCpoApYAqYAqaAKWAKmAKmQLQqYGA3WmfO+n0vBQzs3ksd+8wUMAWiVQEDu9E6c9ZvU8AUMAVMAVPAFDAFTAFTwBQwBfpAAQO7fSCqVfnUFTCw+9SnwDpgCpgCfaCAgd0+ENWqNAVMAVPAFDAFTAFTwBQwBUwBUyBaFTCwG60zZ/2+lwIGdu+ljn1mCpgC0aqAgd1onTnrtylgCpgCpoApEBEKxEZEL6wTpoApYAqYAuFQwI9K/GJgNxxaWh2RpoCB3UibEeuPKWAKhEMBA7vhUNHqMAVMAVPAFDAFBpwCMYERG9gdcFNvAzYFTIF+rIAHdr3f8Xcfqt/vFz6smALRooCB3WiZKeunKWAKPIwCBnYfRi3b1xQwBUwBU8AUiHoF7v/H+oMNkfWEq64Ha9H2MgVMAVPAFOh7BWLwqz0m5v7A1sBu38+FtRBeBQzshldPq80UMAUiQwEDu5ExD9YLU8AUMAVMAVMg7ArwDxg+ehS/OWx76GFvTAFTwBQwBe5UIKbzzm29thjY7SWIvY14BQzsRvwUWQdNAVPgERQwsPsIotkhpoApYAqYAqZANChwB9g1qBsN02Z9NAVMAVPg6StgYPfpz4H1IOwKGNgNu6RWoSlgCkSAAgZ2I2ASrAumgClgCpgCpkBfKGBgty9UtTpNAVPAFBgAChjYHQCTPPCGaGB34M25jdgUGAgKGNgdCLNsYzQFTAFTwBQYkAoY2B2Q026DNgVMAVPg8RUwsPv4GloNEaeAgd2ImxLrkClgCoRBAQO7YRDRqjAFTAFTwBQwBSJRAQO7kTgr1idTwBQwBaJAAQO7UTBJ1sWHVcDA7sMqZvubAqZANChgYDcaZsn6aAqYAqaAKWAKPIICBnYfQTQ7xBQwBUwBU0DEwK6dBf1QAQO7/XBSbUimgCkgBnbtJDAFTAFTwBQwBfqpAgZ2++nE2rBMAVPAFOhrBQzs9rXCVv9TUMDA7lMQ3Zo0BUyBPlfAwG6fS2wNmAKmgClgCpgCT0cBA7tPR3dr1RQwBUyBqFfAwG7UT6EN4E4FDOzeqYltMQVMgehXwMBu9M+hjcAUMAVMAVPAFAipwMAAuzEYuz/k+HEvcWC797n33Ht3bz/vmZ/fbd/ex9p7U8AUMAX6oQIGdvvhpNqQDOzaOWAKmAL9UQEDu/1xVm1MpoApYAqYAgNQgWAo6YavYLdLCX5+5z5dH0fMi1BA1fVbP/GG0PUmFj3vxAMbvM/42h+Lt/yMhZ/jAVDh7wVsY3gQ9nUH85kPVh6oE6+smAKmgCkw4BQwsDvgpnwgDNjA7kCYZRujKTDwFDCwO/Dm3EZsCpgCpoAp0C8V8OBk9+B6gt3u7ZH7inCWULVXIacFcPV3gVt+zjcYM6GsAohgENuJauKwRxz2YX3t2AcPwFp/TEcA7fJ4oF+tlPX48B7H6DMhMPfv7kv3K2y2YgqYAqZAf1fAwG5/n+EBOT4DuwNy2m3QpkC/V8DAbr+fYhugKWAKmAKmQP9X4E6oyzH3G7AbmEA/IG433H0AsKtwF0hWIW07jiX85cMd68czX+l7Onyxv/uMYJf7Eec6AKxQGO+smAKmgCkwIBQwsDsgpnmgDdLA7kCbcRuvKTAwFDCwOzDm2UZpCpgCpoAp0K8VGBhgl2Zede52zWUA7qoTt9tTG4P3sQpqGcdAsNuBIzrxjwdpqRcgroJiOnM73H496g3si30U7gJy+FGDFVPAFDAFBoQCBnYHxDQPtEEa2B1oM27jNQUGhgIGdgfGPNsoTQFTwBQwBfq1AgMH7HrxCIS3hLXErwSzjFjgZwS5+vATATu/LXN1iX39gLl+8eERrw/x4xluXh7rMK7bS7CPQl8v6gHHqmNXYyK6AbJuth+mgClgCvRHBQzs9sdZHfBjMrA74E8BE8AU6JcKGNjtl9NqgzIFTAFTwBQYWAp4CLPnqPtVFIPyVMBaQNhYgFxfLB6+dklKiJWkpFhJTIiRBLyOj/NJXKwPnwPq+gF/cRzjG9o7OqWljUfGS2tbjDS3iLTg0dDUIu3YjaEMYMF4AP3GJrjXxL3m2O15Utk7U8AUGBgKGNgdGPM8wEZpYHeATbgN1xQYIAoY2B0gE23DNAVMAVPAFOjPCvRvsMs/xDo7EYUA6Bof2wKY2yGpySLp6fGSOyRNcoakSlZmoqSnJUlqSjIgb6IkxjNqAS5euGz9ILtNLW1S29gurR3xUtfQLtXV9VJRWSdXb9RITS22t8L32wG424kl1+IT8czoBRbn5bWM3f58/djYTAFT4A4FDOzeIYltiH4FDOxG/xzaCEwBU+BOBQzs3qmJbTEFTAFTwBQwBaJMgf4Pdgl1WWI7qyU/2ydji7Nl3NhRMmpkvgzPz5LBWUmSnpoA926iJMTFSUpyosTFIWM3Fi5dOHKbYc9taOqUhma/1Na3SkVFjVy6Ui7nSm7K4eNX5PqN29LSTIibJHG+ODh8Ee+gTXKbK64H3jt7NgVMAVOgHytgYLcfT+7AHZqB3YE79zZyU6A/K2Bgtz/Pro3NFDAFTAFTYIAo0H/BrkvMdbEKPp9PhmbXy6zpQ2TOc+Nk4oQJkpGeJsmJjGBAyIKvE89IyEVErg+RDP7OQLouHL+EtB2dgLwdsXD/+qStTaS2rlUuXKuVH/aflX0Hz8mli9XS3JQo8aikra0V+xHqokJN6/UcvAPklLJhmgKmwMBWwMDuwJ7/fjp6A7v9dGJtWKbAAFfAwO4APwFs+KaAKWAKmAL9QYF+CnYRodCBSIROZOXGY4jx+DFjUrysWlKsYDctLVvKy6ukqaESEQyxkp+TKdk56cjIbYNTl4uksSA9F2AXuQx4UCcsoAZg60d2bgcWT6tuiJejZ8tl548nZc+e83L5chP2Z3wDdsX+fr9bSE16QQ5XN/fxiufsvfMTbw97NgVMAVMgahTo9TsvVL95J4V3N0Woz22bKRBpChjYjbQZsf6YAqZAOBQwsBsOFa0OU8AUMAVMAVPgqSrQj8BuAMc6OQl2CQ46JAGwNjnBL0sWjJC1r0yVCeMKpKyiVXb+dFzKr5UA6ibIjGmFMnXKaBmUBpgbS6ctAK5WxJ/0/hLy+uDExXv8G+NLlFZ/utyobJef9l6UzVtPyO6fS+Hq7cQibQC6ehS1ZenyDjtGDI6LhAfd7tpxc4A04MA2/dB+mAKmgCkQnQoY2I3OebNe31MBA7v3lMc+NAVMgShVwMBulE6cddsUMAVMAVPAFOhWoH+AXYdhHYp1Hls4ZhXHImbBXyspSZ2y5uUpsmbVDMkfmiP7j1bIh1/slSvnzsvokfGy+KViWbhghhSMSFewyyiGTrXeshavuPrdO7h2JQ0LqyXJkROV8tW3p/E4Ke0tWHQNfJaHdirccMcjxAEbWZOrzU9nr/7DnsMJrH3txE+HfL0W7dkUMAVMgahTwMBu1E2Zdfj+ChjYvb9GtocpYApEnwIGdqNvzqzHpoApYAqYAqZALwWiH+x2g1c3tFhAVSJYv8YotEmC/7YMSu6U11ZNBtidKXlDc2Xv4Sr54Iv9ALtnZfSIOEDdInlpwXQpGpXlwK5CWNanNQWeA9A10GCnP0U6O1Lk5PkG2bS9RDZ8fVJuVdWJv4OwFguoSTtAbYci21jENyjx1WNZJ2smxg2AXe0r3iE6ovd4dGf7YQqYAqZAtChgYDdaZsr6+RAKGNh9CLFsV1PAFIgaBQzsRs1UWUdNAVPAFDAFTIG7KdA/wC6jEjQHF7m6sXyNfx2GbZH4mBpJTwHYXTFR1rzyjIweXSBXbrTJ7v0X5dql45Kb5ZPJEwtk/IQCycpKxAJq8VqX89reC+wmo5lUOXWxUf6547J88s8TUnajAtvi8GDr7egLYW2s+PyMdyDk5XZ4dZXe8h2cv4huYCuKefFCP8J7K6ZAtCqgVw1s6wQhdj5H6yw+Rr8N7D6GeHZopCpgYDdSZ8b6ZQqYAo+jgIHdx1HPjjUFTAFTwBQwBSJCgegHu5QxJiZWYkFL/Z0dilUJTglm/dIicQp2O+SVlZNl9apnZeKEImlqTZTyymapv10uKfHtMnhwqmQOTkFFLcjIjcHDYV1HpUhbFVWhJT674vcnA8umyInzdQC7l+RzxDGUl1dLR7uiWxwKkAu4hZ6Jr5M6E3QhqsG90mf6czvQd7bG3rKZgQzCGE9BBZ6aBgEQqbOsURw6TfbjIRWgflwYKzZWv2bRWdV8koesx3aPUgUM7EbpxFm376WAgd17qWOfmQKmQLQqYGA3WmfO+m0KmAKmgClgCnQpEH1gV6Eb+s8/svxw6LIQIBEh+TtaJR7PHdjuhxM2NrYDkJZRDH5ZtnSirFg6A4unjcTBidLWjsXQ2ptxXLvExwPm4tHWQRDcLAm+DklKjJOEhARAKbbonLbBYFc64diNSQbYrUUUwwX5Ahm75WXVWGAN7lz0jYVZvegM6oTOCptdDR66RC+73LvcP6YrAoLvBkZx8+nNqhsz9eH8srR3AJATuOpbTzm3X9h/BrXDul2T8FLzfEJMxp3lzv54I3G9v/OIfrsF2lEnzhNVYUa1zxf4/YLXqovB8n47/T0GZmC3hxz2pn8oYGC3f8yjjcIUMAV6KmBgt6ce9s4UMAVMAVPAFIhCBaIX7BLmdsKhC3oKgAu4S5jQ3ihJeE2eKjHxEusjEGyUlESRWc+NktmzimVUQbbOE1AunumVDaBb2GU7QKUSpFYGp8dKfm4WohmGkLYC6rl2Agfqk4JdSZLTF27L1zvOyRffHJKbALuxMQlol0AYMQvtSNptaxMfIHMn4G67xi6gT+gfwR+WaHN18aduYJ8GVukB/KB/nM8nySkpMigtTRKTEqW9vR3zDO91c7M0NDbguUXdoH2mEvqQmJggaWh/0KBBgJM+6QBcJrQMLop0CTGxPz+rq6uT2to69LdNd9PPgw/oD6/dSavnamJCoqSmpUpKSqrExfl0dI2NTdLQ0CDNzU3S1tbeDXZ5jXGiDez2h7Pg/mMwsHt/jWyPqFPAwG7UTZl12BQwBR5AAQO7DyCS7WIKmAKmgClgCkS2AgSJpDU9izoke26KnHeEaewz/wVUk064bmObAQTbJc7fKpnJPklKSQJKckAuzueXBMTm5uUly9D8VMlIB3glDCZswqgc2gWcQ10O7LbI+OIsmTKpWApGjRJffBycva3YMQD20KQ7MBnPSXLuYrVs3Xlavtl6CNEO9XAMwz0MGEjHcDt4cEtrDEBXhzR3+qTFHw9/MDJ4ASpZDZ3AXdXp+4EHdnXYgR+cj/T0dOQgF8m4ceMkPz9f3diNjY1y5coVOXv2nD53APb2ZcnJzZWJEyfgMVGSkpJCNtV1jeC8aWlpkePHj8vhQ4fldu1tzKmb3ZAHRutGjJOXG13ohN35Q4fK+PHjpLi4WCE44XZZWZmcOXNG56m+vl58/MYFBzGWwaButE78I/TbwO4jiGaHRLoCBnYjfYasf6aAKfAoChjYfRTV7BhTwBQwBUwBUyCiFIgmsMu+wuMKwEqIpPELgEbxcXWSltwqeTkJMqE4T/KzUyU1NVV8cYkSE0sHKNiSn65PxCwA8sbTxctly8CaOunG1VoJ4ujdZb5uoxQMy9BF1oYOG6Zgt6OtVT91U8cjSLgAj/G4cLFCdu85LYcPn5fBaYkyKNGHPtGh60O0g08aked75dptKbleI9dvtUpDGzJ3Gc2ghX1xEND1I7C5Pz9huPwD2cG+ngPl7ft5eXmyYMGLsnLlSpkxY7rqc6umRvbs2SPffPMNnn+GE7pvwK72C10aP3482l8hK1asgGs7S0Fmz54G3qG/nLfa2lrZuHGjfPzxJ3Lt2tWuOQ15zINshD48K1SjEPvzvFbzq/4IsUNfbQrMXWZmpmr00ksvyYsvvqhzxmvyLKDulq1bZcu3W+T6jRs6Bk9T12HXsVDb+qrLj10v5sIV/Hbgeau3Azx2rf27AgO7/Xt+B+joeP1PmjRJXnnlFVmzZo1+8ci4Jpby8nL58ccf5b333pPTp0/rfxO4nV+CsfD345Mu/O8HH+zjH//4R/3v2TD8Pw0L//+J5aOPPtI+Hzp0SN/bD1PAFBh4ChjYHXhzbiM2BUwBU8AU6HcKEFp4j+7B8Q8YD2d0b32arzwQyj6wZ8BpnY0AqH7JGdwuY4sHyYxpI2X65LGSnzMILssEQF0SXbhnCW/xRxVhrhupG5v+VLDr4JynQ0xME/J1OyU5OR635CPDga3xeBWEGC9QsHiaX5Ll4oUyOXTwtJSWlMn4wnwZDrDMW/kJidvg0m1qS5bSGw1y4MQVOXKuXK7cbMRt6kzXhasX7t4Yv1tgyoPMXvWR+qwKECg+6jkCHbnYnWbWBsuJATPyIDc3R5YuXSrr1q2VOXPmqO7VVbfk+5075YsvvpBdu36QTuzXF8UDppPxx/trq1/TP96zhwzGlwTuj/O7tXn7dq18+uln8te//lUuX76MmdeT5W673387tUUVd0BEase68aED40EC3r/Wx9qD0J1wIj4+XuMynpv1nKxatUoWLVokw4YN1RGfOHlSvv76G9m06Wu5VFKi7QVDXO0t6okJQIVg2PtYnXuEg51yvErvPVdd/ecVTd0fAOx64+Q83bv2R+h4NBxiYDcaZsn6+JAK8Po3sPuQotnupoApEPEKGNiN+CmyDpoCpoApYAqYAg+iwJ3ogX/A9EQSd+7zIDU//j5s17VNBMPXsbFxWIwMmLb1umRnxsrUSUPk+TmF8szMIhkxLE9Sk2M181PhoR5B14qysMCYCFO1psDCZYSs3QU4Fh8yJxUOG0do9AlIJ7ATn9EXgF2JSZWSC9fkyMFTUnGtQqZPGCmF+ciGTYjD3ugjFkNr60ySukaRw2crZNeRq3LgZJlUVtej7UTsQ2DNB7GzV3+gmV5PnBMH9DqR44pF4QDHuInH6lPQ/g5Vx+it8F1OIbcz+t2rHQ4F2whVYwHD3dyzWtSLz9zx1B0wFmCvA7nG1PZubQd1o+ulh861r1ovwSQdTN095237bcgjzsnJkWXLl8nrr6/rBrvVALvf75QNGzboM7OVY9EHwkaOR7VBbWxHnUjYTGf3Hcpoczrgrr65Lrh+6BhR34QJ49WVtRpwl47dOB8WxNPa3WEJgJu+uDi0RY1i5Pbt23A+ffzYYFf7T21RL08Hau/NpddhHR97w7FzJ09Dfe/tFf5nLkhI3en+Yr/mzp0rr732qixcuEiGDx8OLQRxFCfk600Au19vkvPnL7j+B+bHzRHhsB/XJ/VE6eM+u0bu/Mlzw0nn5k/7hr54ahI8e+Ccn3F/jaAI9JufdeuvZ7XOE68LFl4nPDc5V8FxFJoJ7s0X9nNnnR7ifriLijXgeuzUY3WW2T5esC7Wy93uOLeDqnnqLw3sPvUpsA6EXwH+LjCwG35drUZTwBR4ugoY2H26+lvrpoApYAqYAqZAnynAP2AUdngtwFX65IvDHg5+AnUQZqAfsTEEu52SKNdk0phBsnDBeECmYrh2s+GUjQdUaVPop/RDO0004hXW6R4xqDD4E28PBODiJR+9Pw1+jzo8sHv+qhw/dEIqr1fIjAkjZFReqiQl0I3r9kf4A5pMFCQ2yA/HKmTbzxfk5OnL4o9N07gGjs9B664ehHyh84F5IVTjgmyxPsJVb544JjcyPrNtfkZQ64CtA7GEQ4ROXmEPeSRhEeMN6MbsKoG6FS7icwdMsRgcATA+o77aftcBd39BUMZ6WHhrKvugYIz1sBBWAWZyobT8vHwHdtetk1mzZ7EZqQbY3blzl4Ld7dt3YHdEaQCieQq7OvSn9ol1K1jz6ncfBfpMYOrAnLYe6AK18kFTfjZq1EiZP3++xgww89e7nZb1cuyM6MjOHgLTuIOkAABAAElEQVRnOOI+8J5g94P3P5S/4TZcZgE/KnTzYKAHb+lM5jYWtkuN+A+3qH78DP1nHx7ESaoVPeKPBwW7dOv+85//lIsXS6ClW3TOOxfZtHeeaZ85Eje8R+zVox3GsbBw6tk8QXO3nlAYerLwPKPeXvyLAn7V2p2/Xte5v3edcZ7c/swixu8rnFdum1+/uNBzyZs37YE25X4EtdtJsBsAyd41SLDb1WbQYRH30sBuxE2JdejxFeB1bmD38XW0GkwBUyCyFDCwG1nzYb0xBUwBU8AUMAXCpgD/gPHghlb6lMBuMNRlPxTGdjDEoFmGZtXK4vmjZPmymTJlcr5kDOIOBFxebEKA2OkAgn9wu/fgdm8/9+yArIdPgo8L3oZ9GcWAx2WA3ZNHTsmtGzdl2vhhMjKXYJcg3O3PMcTAZVzdliWHLrXI5p/Oy3c79klbzCDgY+fsdWDX60dQm9jk3LEYV8C1x08J/AhLCaQIjwj12jvasQ/3d3OnbsEAqORrwqEO7ENg5BXCLG9UbD2OC8WhLvbd1QPHIUAsoZVXL/Vt04xb9lo7SALmVRnyOR6r17EONsbXdBw76IW+Yxuduq2tLbq9oGCEZgGuW7tWeLs/hqNglxEMGz7bIN99912Xsj44aemadeCL0DhW6/AgMoFaj8Lu4h+OOxj88nUc4hacTn7JzMiQkSNHyogRIyQlNUXHznp4HB2rCxculOeee1YGD87S6h8F7HqK9eghz1+0wXHExyPOo2vOCZS5KJ8Dz9SSD4JT7N4F3XuMNcxvHhTsbtz4TwW7ly9fUaAZp18WuNFyDI1NTRrlwFNHzzUO4GkUtK/nP5r3XMg8Qdkdnj/e9eMDmNW+4rqhW53Xjwfbg7vd2tqqjlpeQ7xmWYdem4Hhsa1WLLIXj/On+7TUK6irGnVq4526dXHdedcc96dWvO51YUbUzfoithjYjdipsY49ugK8Hg3sPrp+dqQpYApEpgIGdiNzXqxXpoApYAqYAqbAYyvgAYWuip4i2KVT1xVAEIAugSM30dcohcNaZc2qCbJ0ySwpHDkY+LRRgYq3d8/nQCVKVLoqVMCiUFUb4XY+CDsJTe4FTtiXZByfJiVnSuTUoWNSe7NKpk8ahYzdZEmMd/WwDwqn4TKukyFy9mas7Dp4RTZv2ytlNYCxnXTgAeZpu9394nEsBHnJycmSAMhHN6sW7NbU2CSZiAjIAIBMAChtaW6Rquoqqa9v0PeEsSkpKRojQEB169Ytqam5jf2aewAhBVuuVv1JEEpYTBhH2JWclCSpaalaF8+J1pZWqW9okDosFtbQiHwJaoR/HVgNrRdhFUFVHPqUhLGk4MFxse/JScmAZZ3SUF8vXCCtqqpSF6R5+eWXNYrhmWdmar/o2PXA7jaCXUAt1kfZOD46jfnsRUm0t7epJgqTg8bHlxwH4RpzkKkT3xOMNzU3SQvGx+JFLJCd4WOA53aFlMza5cJ8//Vf/yVr165BBIFbiOaRwK5WziF0z3sK6mZ/CJnT0tLQFmI9kPNMIN+MuWttbdPPGhoapa6uDu9bVXs6uOnu7K5JhxHWHw8Kdr+GY3cTcnYvX7okySnJiNbIVWczzxGeP1xorhWLEXrjUZIa1p7euzIHT7noYpyeB9Sas0BI3gLwqjEnPCfwT25urgwaNEihOs8PzjOvvWbsx3NQzx3OIwq/nNBrhtcrzi+eQzz/vH14bjXg2mF7nHP9HaPnV/esuesOMR84Lzvw5QeLFwvB+tsw3+qY57nOEzNSi4HdSJ0Z69djKMBr2cDuYwhoh5oCpkBEKmBgNyKnxTplCpgCpoApYAo8vgL8A4aPrvJUwC6ZIQAI3G8EL8xigB8TQLVFUhOaZPK4OFn7ygR5Ye5UGZY/GHu0aHfvdLKhjgCgU4wWPC4dYmCcOka0FVhQTYklawyAGwd7PQyH/fypgIfxcuHUWTlz+Ig019TL3GcnSE5mPKCRHuj6o1ELPmmQLCmtiZcDp27Kt98fkZOX6qSlHS48fK7j0717/iDoGz9+nEyePFnhahPcjpWVlVJxs0JGFY5CZMAoBYCNjQ1SUnJJDh48qN0txGdjx2Ihufx8BaDVALunTp2SE8hAvXbtWlcjDknxLV/FYNG4RMmCC5VOVdbNFbQJtggzCeYI4xoBdGsAYS8B3JWUlGhfmrC9a0GzLn0d+GK9PDYNgDg/f6gUFRVKYWGh9o31En4RUlZVVcmxo8ekDpB3Fpy6zLflM0tvsMv62ExmRibqK5Kx48bCPQu4j3Oltq5WtThz5rRUV1Xr8cE/EgGrp02bKhMnTpQ0gFPOK8el+pw4CfhWj915zni5w3QVA88DprHNJMDo//zP/5D169+ATsO16nCB3eIxxToeZtYOGTJEGAORhP4S6nPu6+vqpfpWtZSWlsq5s+fkZkWFAkXOH89MDxYGjzdcr+8FdqkDtdGMXUDdn376Sc+Z8ePHa2Yyv5xg4blz8+ZNPXe4cvyNG2XqsL/zmg1Xr++sh2A3Iz1DRhePljFjxkhebp7uRF0vnL8g5TfL9VobPXq0jC4ara5swlWeI03ofwnO+9OnTstVXEcEtTwX2X+OPzUlVQpGFiCjeYIMHcoF5bAR/3LMJ06ckHPnzumXHGzQjdk5sVkHK+AXBePGjZOiwiKddwL9qupq1evChQtSc6vGzbGr+c7BRcoWA7uRMhPWjzAqYGA3jGJaVaaAKRAxChjYjZipsI6YAqaAKWAKmALhVSBywC4ACMGu37nqfAC7sf5GSU9pkdkz0mT9mqkyffoYGZKVhn244JkHTLr18AMIg60oYFFY7YFiwhQAGxCWwM7ci5C1O6oAH+KfoKJvuI23WqcDOHbIGcDIUkBEBDPI3OcmSXoSb6Xnjq4e7svwiEb/IKlsSJBTl2ply49n5YfDN6WxDbd2a+/Ydo+WtNHBgHuLFy+SV199Fe7BHLgd6+Ty5ctSAaBHeFSgUQHJgH7N2H5FduzYoS5OguCpU6coVKNzsKGhCdDtOHJqd8ru3XsUzDL6gENXbdAa3YLFxcUyZQqOnTJFigG92CYjAehuJYgihKVrlJCRcJF1Hj16VM4CMhI4s8Leo2D7iYlJMnp0kTzzzDOIMHgOr0crMKZrkvu3wcFJF+qRI0cUgGVnZ8tLLy24D9iNAXgrknkvzJMFCxYAiBaCjcUouN6z52fZ/t129Ossau9ZCEvXYWG2FSuWqz78lGB28+Zv5csvvwSEq9B6OB90GrP/VMnNkF/h3X8A7L7xxuuPBXZ5Oz/7SwcnYXExQCMXJJs+fbrOK53ScXH4kgDfEhD8OdduC/pKcF0ihw4dkuPHjsvlK5cBxgmjKT/U5KMPSiiwu3r1alm0aBG+AADEhEBHjhzV86u8vBzOton4cmGcfvFAVzkVbG1rU4jPLwUO7N8v+w8cRBbvBXXB9kGXQ1ZJsJuHHOdFCxfKwkUv6TnPHa9fvy779+2X6zduKJR99tlnZSi+GGEUB6E+4TrP/WtXsQAivkDZu3evnDx5Ss8djp1zSZf1jBkzZOXKlXqee+fO5cuXcG1+L9u2bpMKXCecSzdNPAfcFwd0ys9GpvSSJUv0OuGXHjwHT58+o9ctHes3oas7b7wzMuQQn/5GA7tPfw6sB2FXgNe4OXbDLqtVaAqYAk9ZAQO7T3kCrHlTwBQwBUwBU6CvFOAfMHx0lafm2AXaCIBdgiGf4JbzzgbJHNQmi17Ikbdenynjxg6HOzARO7qoAueE6+q5AhQ3lsCYYgiJsYAXb5NmfiZLFwwLuB6Dhu524M/ARuxLJtzQnADABpcf4GZTZZmMzMmQqROLJTG2Fc5R3kZNwAbQifYId1v9KVLbjEXUrjfKlt2XZdOPV6WuBWC3S2e3P1vySl5eHm75Xyvv/OptuPmGa2TB1WvXFczSVZuVlQl3IbN+RbcdPHhInYXcdyScgy6qIUEBJRf12gWwuxELW9E9yFvKPadgcnKSunMJu2bNng3X4Fi9DT05OUW7wqxQdpORBR14MPuVt9RfunRZXcI/ADrRLVxXX+cyfHn+4EiOiMeOGjlK5r84XwHstKlTZUj2EOSRQnvs5J1nhMalpVcVWBKiTZgwXp217EBvxy7nmMdNnjRJlgPQrlq1Cg7c8dxVF+36DlD3qy+/0rp0Y9APOpLfffddefPN9Qok+RHr//jjT+T//vx/cu36NXX+cjv18W7dZ5t80MFMx+4bgMPD4VRleRTHLvNauRhXRiZdx4UKSJ9//nm4SIslE9s4PkZAMCKAYFFv4ce1wDgDxm4QphMu0h178uRJLKiHfXki8NEH5W5gdzHA7tAA2CWEpHOcUQIEIAT0BJYEnBwP9WPEgOcg37Vrl2Ym0yn7xAr6weuDURqrX3tNJk6aoE2XXrmq10Ut3OMjCwqwfSKuLcJ1xnVgF8hKDegup/Y//PCD7MBCfidOnlDgyx0I6Jm9/Oabb8qyZcvwewmxI5g7ntcEux9//LG6felwd1dHN6DNxLVMILxmzWoFu4zgaAMI34MvYr7AFw5bt25Vxy77QC0tiuGJnTHWkCmgCvC6M7BrJ4MpYAr0NwUM7Pa3GbXxmAKmgClgCpgCAQX4BwwfXeWpgV2CVkBFPFjisGhanL9BsjP8snJpgfzy9WeloCBb4hMJaEFbAY4Ij+4sHAvhJGEiHJAdAGRt3I8xAdybr53D1r1z2bd87RVPDdZP517FzVo5c6pEqgECByfGyMSiYTIsD8DSz5xWLGrFOnkQdYTjuDMmRZrbEuRSWYts2XtdPt56CaAXMM6ruFcf2G5efp5mzb799tsKXgk/bwFC0h3LfFXe4k5XLwEvAVRFRZVCRt7yzjIIDsKhiFNISkpUl+2hQ4fl888/l2+++UZdvh0AqMxmpeOSblEuWDZh4gQFwoRx7XAUM0+U7RLm0l1IUEcQ7AOwagZkpHuUgG7jVxvlzNkz0gz3sDcDHFoS9qWj9jVAtDlzZgP25QD8ufxRjoFa0sHIEotF5uic5G3vQ4YM1gXMKN+TBrscJ88Jguy+AruE16mYH0L0l156SaFeYWGhatve3oa85EY3l7jdn5nAdIMSKmvmcgIym+HSZfTBli1bZBNybSsZy4A6eQ30RQkFdl977VUF0iMCgJtuZ+Y804mdjgxlxnOwNzyXmINMWMnzlF3knB44cEA2bNgg3377rYLp0NdueEfD/rC//MIkGOyWlZUji7pGG6POjMDguccvILggGl3rPPf5e7G2tl6OHTum/f7mm82IlLihY2V2NKMUmBFNNzPb4bXHeulm/vDDDxXEM8qEY2Vd3nRNQGzFGsDmlStXKNzndkaubN22Tb744guhC53XIF3kPM7AbnjPC6vNFLifArzuDOzeTyX73BQwBaJNAQO70TZj1l9TwBQwBUwBU+ABFeAfMHx0lacCdtk+AauDukCw8Nk2SUJMgwwd4pPVq4rll+vn4HZ6xDAgF1cfHiXRjhPyOmTLt37BAlu+RGyLl8amTrld04Tb/1vggOxQJx4wJvZiNAIhMUNyXbt4oYUgxltgqe52jZRfvSJ1VbckNz1Jxo3MkaKh2Vg0Dcf4HczqRJ+QvqlQGksdoTosFOZPlGtVHbJlf6X8+cszUtvYchew68ZDx+7rr78uBLt0GRI03gCA2r17t4Il5sry1u+pcMFmZw8GEG3VrNj9uM2dsIkZuYSqo0aNVMB07tx5OFk3yt///nddrIzAlhCLmbMEXUuXLgXUTVeXLYErgVRJyUXk31brwlJckG3o0HwpLCzSzFyeI41w/l5E/udXGzcizoCQq0z3pV50bjI39M31b2r0AXN/4+Kpr6Du2xorcRW3ttcgA5hu06KiInUK02nMTF46hgmB+yXYhfacF0JdQm9GVBAc1iNjmHCbMRLM/eV7LjKXm5erERaM2NA8YQBH5hLTKf3JJ58oMGxEnAUBbBctVKXD8+N+YJfXmssCbsZ8ValLtQpfQBA2M1aAmbMjR45E350bmYCS7l5+yfDe397TvGAuAteXBV2ENH58GTTiDrDLuBJ+oVBbexv639CoEYXv6Duzqgvg4uViajynCap5ntMt/Y9//EP2/rxXWvAlBeE1v5BgnMZvfvMbdd6mpw9S5y0jVD799DMF8YxN4ZcadPPyGmRZDofv2nVrZd68ubiWh+gXTowm2YjrauuWrXIe1xihOBd343VnYFdlsx+mwBNTgNedgd0nJrc1ZAqYAk9IAQO7T0hoa8YUMAVMAVPAFHjSCvAPGD66ylMBuy6b1gFWuNQAXeOwBFliTKPkZ8fJqytGy7+8NS8Adum2JbYJFOTqstA1y4xdgVO3UxKkobFDqiprpexauZRfKwOUbIPDtE3dgqLxCUSxHkwOGj/rUirEhZI6nTsPbtWCoRlSNDxH8rNSJS2BsQN0I7JV+H91ETbWAVdeBwCvLwnbk6XsVqdsPVAl//v5abndBXa1cu2xjoOgGoVgd82aNQqJCGndIl9n1OW4fft2OAJHaCbnooULsYDYGKmDk3Az3I9fffUVYhIu6R+hBLYvvDBXF+IiUPr22y3ypz/9SbNkWR/h4uLFixV0ERrSmUhYy9vHCYh//vlnhcS8LZzAlXB23rx5wkiFzKwMhVOVlVXy4w8/yqeffaaxAASxfgDGNEDj6dOnyS9/+Ut16zKzl0CPi4AdOnxYs0PpfLwFsEvIxcWsGEfAfFNm8qZw0S1IGAx2v/vuO9WXyvKP7L6IYnCOXc4A58GdBzqvmNtwRTG0wZXLcRLcvwKHZ05utp5jnCOCezpxGbFA3XE1QusszT9+GbETz82apXPBqAjO85dwdP5z06bAnDYp/HMnLMcQnhIK7NKVunixy9jl9UEQyvNm37596uImzCSIpKOcC6nRFf7ss89o33mtcFExOlHpZGVWM88L6txXhTWHArtsklpeuVIqhwDKf/pptxw9dlTP1VRk7PK8nDNnDq6jFwB58/Q65zXCSJP3339fvsaCcQTwLIS7jEH57W9/i2tzsQJtZgzzy5Gd3+/Ua4TZyIzvYH/4azYFX2C89Yu3NIZhyuQpDuDiOuE5wNzn3egPF8rzfi9rtEXgvNRGI+2HZexG2oxYf8KggIHdMIhoVZgCpkDEKWBgN+KmxDpkCpgCpoApYAqERwEPIHTV9lTALrNp6e6kcxYuNThqCXbj4djNGxInr60E2F0/D/AzHXSEiCQQpcCXCj14mzOjHOC+jU2Q6poWuXCxTErOX5IauFnjAaH0dmvU3wknrARghB7eA5q4LcS1hI/xcJwmJSVIVnKC5GLRtsGDkiUlMU7iY3lrtUOB7IHrBqEgQDHe+GMSpaXdJ1cr22Tn0Vr505en4dhtUwDs9uYReASgLusg2F23bp2888476r4lTDoGKESXIF18w+CGXbFihazEg5mgNTW3FerSGUgX7bQAVF208CVkuWboAms87q9wSF67dk1aAHanAOYS0PGRn+8cideQ4/szXIibAAuP4hZy5o7ynEhKTFTXIl2Fa9GvMWOKkUOaormjR48e0wxRgrqysjIFu7wdf/HiRfLWW2/pYm50A7c0t8hFODXpRORibhfQTwJmapueniEvABoT1j7/PN3Y2ZThDrCrG/Gj78Gu1xJmBpPIR7jArg/uSwL1XwDoLQSYJ/yj45oO3H8iB/lbLOZWfatawSijKggMR40aJcuXL1fYX1TkYhvKy2/Ktm3fqfZnz5zFlxeN7jzU04k/eFbh2b3U94/yIxTY5ZcOhJeEnTzHGTHAnOevv/5atiN/th6Zy2w3HmMrGFEgL8x/QfteXDxas6GZV3vixCmFoxxDLWAnz7O+KpQgFNhlewTQ+7B4Gs959p0LFHJRvwTEYOTk5CqQXr9+PVy4M/X3Buvhufvhhx+pE/dWdbXTGb87mJH8yisv65clk5DhywX7eO3SMf8R9t+5ayeuv+t6B4APOcvFo0fL2++8rdcK833bAXUJfj/99FPZ9M9NmuPLa4Qae7+b+06lMKhvYDcMIloVkaYArz1z7EbarFh/TAFT4HEVMLD7uAra8aaAKWAKmAKmQIQq4MGDru49NbCLTEu2HdMOXII8WIBdPnKyYl0UwxvPS35eBhx06CmBqJIbIg/38CPbtsOfIE0tsXLufCkySc/JzatlkhkvMio7TReuiouD1Vb3Z2yCx7+0osA77zX2wi3YvB06MTFe0gF3k8GM47ANaQG4NdpV4/y6rDHQB4JpvOwQ5Ny2YSGlilbZcfiW/G3TuV5gl8d35/zinYJdL4qBjt0G3GqvYPejf8g2OFcJ1Ah2V2HRpYlwr9L5SrfuZwC7hE5Tp02TX/3qHVn40oIusLsFYJcuw9LSUkQmtMqsWc8JgdVrr76KzNcUBUenTp0GXNwkn8GBSxcjIVYcRcY4GI8wA7ea//Zff6vHDkHGLzN9Ca0IouiopWuTx2QAaK16eZWC3YnI7mW8AjNYCf/Yh31790kFbtf3CuEuXcOrVq3UxafGjh2jH/V27Hr7RzPYHYRb9FeuWKmLuD0/d44OidEXO3fuks83fA64uD2Q7+ugI2/ZH4yF3+iWJuifhrnNBKy/Bfi7e/fP8v7f35fjcJCqE5QEEIVz4AqevZeBLQ/7FBLs0rGrrtR8rb8E7mFC0S+xcN2BA/sV1rMLdLlnZmTKTEDRX//61zJ7Nh3H6QDZLRrHwGiQL7740jm3nxLYZaYxz12ew7t27UKfBXEJLTqGxMQkXczvX/7lXxSsE9zy9wAXJPzssw3y0UcfyU0A9nbMEZ2/dL0zjuEXv/iFzhczrDkXBN/c/xs4fE+dPq2518yrZlwKv/yYOXMG3M1ZqsuF8+cVGm/fsV1KeQ3yn8Ac6u/nh53AJ7l/r99joZqmHt3nZ6g9bJspEFkKGNiNrPmw3pgCpkB4FDCwGx4drRZTwBQwBUwBUyDiFIgMsEunLsgp4Kzm3wLu+gRuRCyeNiQ9Rl5dWSRvrZslBcOHwM3IhdGYLRqgqySQeN3pj8MiaUly7Ua9HMZCTdculyIyIU4mjR4mhTnpkpSShtxdUF4AE+9I5/wNEBSHU9APL+qhe3scPotFnm4MoJUrqAFdVvjCHwBUrNPVHAC7HYlyBWD327035MNvL0odYiAY2dBVuoCI25aXlx9YPO0dzdhtwEJaR4/CsRtGsEv3LaMSGAcQj0Wi2GmC108/+Uw++fQTXaRLb/0OALck5L0yJoGAbvFidxs+3YSXoS1BMDNTmZ1KaNMb7DJrta62Tnb98ANyft/HWI4g05RuYN4K71fXKrNM6WR99dVX1B1Jbfoj2GVmLsHu2nVrkK/7rJ4CXHyMua2My+DCYnFx8fjSwjnKme+ckpIqEydMkHWvr1NwSNBLWHjgwEEFu4SFXFiPTuxwl1Bgl4uPLcJcDR8+VJs7fuyEfI3552Ju/GKBhaCThc5uLhTnIgoWaU4wYyauXLmqkP/TTz6VSmQG92V2LK8qnpehMna58CAXcdsAqM74EfajNZD5y9iI0XDVrl//hjqO+YUKnbzXrl6TjXBX04V7DYsoElQTwPP3Z25OjryB/VfySxd8qcFF79rb2mX7jh365QtzeauQRTx48BBkUK+XV3C+87oiFK5FpMr3338vn3z8iRw8dBDAu0brVCHxw8Cup4Q9mwJPTgEDu09Oa2vJFDAFnpwCBnafnNbWkilgCpgCpoAp8EQViAywSywKqAuwC88iaEY7uGmr+PwtkpXul8Uv5sv6dTNl3JjhgEZw3XZiH4JdhbuEwoCpHQhvaExGnutlObH/B8lI8ssk7F84LFeSYrFoEbJ3/XjgBeomqPUArh4e9IN+OebrAg0ptMUReMmgB1fwCjCH/3DPrs14ofvgmI6YZKlvTZALZc2ybf91+WT7ZalvbvcCJALVeO2zXr/kYdGm19dx8bRf9RnYffHF+eoAffnllYGxiBzYf1A+hAuR2aexWKSLjkuOPTYmVpIAqJiV++7vfifLli9Dzu9wXQjqxo1yzf5lJuj58xd0fw/svvnmm7iFlY7dNDhK62QH4Nb773+ADNkTgFi1gbgBeJoR9cDF2ZYsXqJ5o7PnzNI+3RXsTkbGLqIJViF3duLE8brvxYslcF5uxyJxX8mhQ4e6xuS9yAIMfffdd9UpSyclC+v/GBDt//78fwroujN2vaM47c5hGK4ohhFYwIvQb/Xq17AA3nRtiJCbzuczALQ3EGfB67ATt+Wz0C1OfejofOaZZzTHNRWw9FYg/uDjf3wMx+5xYTSDgl0ci07rseH4EQrsctE3QnjqyOboJifUZRTDJbh33cJgGIO6WBORzzxGfsfzZtlSGYKF/whO6Qine/sf6D8d5z64tvuq6FUFTUKB3TIsSrj5m83yBc7fA/sP6GJ+7D/7zt9EhUWFOGfelDfeeEPPUUZncJG1zYjM4HXCPGHGLXjnCcEw3cyMUmGsCBdeY11nz57T3NytW7fpInmFhYUBV/1LuN7zdB/O4QcffKBxJdSxDUCY54JX9Pez9yYSn7u+oLp75zyd7r6HfWIKRJYCvO4siiGy5sR6YwqYAo+vgIHdx9fQajAFTAFTwBQwBSJSAQUHQSBBnkoUAzCptgvQA6hLzyvWkEd2a6ukJbfLvOcGyfo102X6tGLJykzDvgS72E1Zlsu1bWvzAdrFyY7vT8jNi0dkwog0mTJumKQmx0tSHJyQqLET8JiFYJdLrGnpwcMCb3DrdSdAjx+PWDj4iIK1qE4edLkb2MVt3ZIilXWxcqKkRrb8fBlxDNXS0IaF2LwGu5y7HtxFFMMTALvzkXv69ttvwyH7MqASdMCwPLDLLF9CTs91yfOCjsKhQ4eq83J5L7D7ySefKIy6cOFiD7DL+idMGKeuRcLL73d8Lx8Ahp047qIDOuBG9QEgdwK6EYAtW7oUTta1ess+5Q0FdtkX5gpHK9gdimgNRk6sWbNab8HnaUCdGVXRiMgNglSOkcW7HvkcFxen+bSJcIzGws3LXGUCbGa9ctEyOnY5Z9yPGbHuetBqHuvHXcHuokUyfMQwXJciR7AAGvOBPbAbh/zYNmRZE+IlJyXJGIDdP/zhD+r0HjIEYLe1G+wyAoELjD2IY1d18S45XJ6s/0EK9+K+ocAuYSoh7RdYiG4vIkK4H+V3cxAjhcg3Xv/menXs8ssHB3avY6ybFewSUDc1NbEB7QpBPBcaXIO4imX48mH8uHGozK/uWy62xoxpwuCZM2fKO7g+Jk+ZrFm8zCU+efK0gl1GQlTAxc3rIrjo+RC8IdJeG9iNtBmx/oRBAV53BnbDIKRVYQqYAhGlgIHdiJoO64wpYAqYAqaAKRA+BRQckGp45SmAXRdkQNzKQscunXOAqiBIKYkdMq7QL6+vmSQvzpsuQ/MG4+NmddGqvY59x4EtrbHIvhQsLnVU2qtLZFpRhkwcnav5mMzFpVuXuJgFvsKAY5evQxTAMgVIhCx4HezqDMYu7rX7qWPg7mijWTLlSiUWaDp+Q7btOSfHShqluYNOXvaD7fEY7+HafyJg9wWA3Xf+RaMPFOyiL7y1n47djxD5QNBGF7ICLnQvDot4jRg+XH7zm18HHLsjNKu3vLxc7gZ2f4H8UN6OnoIoBjp0dyFH9n04Eo8fPy63ASbbsTgYhx6HKIghQ7Jl6dIlGkFBpyNLMNhltjDhWQwI9IQJ42X5suXyMhaqoiOY5eLFEtlOxy7A2UGMo0fB2AbDKfruu+/qbfWeY7eyslo+RH/eQ9YrXZg61h4HssnwOnY5t8xGZhQDF+Ri6YA7l67PxsYGhZ69uqDjRud0MzOPmUlcW1erTtkNGzbg+Zi6XnmKct48IH9HPY+w4W5gd9Gihera5vw5sLtJFyC7cvmKtkKwyy4na4THaPn9H37vHLsAu20Au5cDjl0u+FcVIoqB8+zHiUm42QV9VQKng544aPtBCnfjPIYCu4zBINj9/PPPhTEJ7DRb0HMBr0eOLMA5+bo+PLDLBdC+hkOZX1KUll5FFAMXOHPudv5+yMrKxLm8VK+tWbNmS2pqirqYf/zxR82wLikp0QxeLkI3HAsh0pFdVnZDvtu2XR3kp06fkgaAfm/OvTHq72fvTSQ+G9iNxFmxPj2mArzuDOw+poh2uClgCkScAgZ2I25KrEOmgClgCpgCpkB4FFBwQBrjlScMdl3LilXIiwA26NilkxVwFxsSfO2Sn9Ugq18ZK8uXzJYxRfkSH9eGz7gPj3DHtrTEyPVrbbJl62FJaiqXmcVZMnZUtjodsRN2owcY4BKH0LursQmBo/Xz4B9KX7FHQJYA9kFr2sPAz+AD+Jo7AwJLvNT7B8vpqy2yc99F2f7TMblRg2AJVNYT7LL/3eVpgd39yHf98AOC3Y/EB6eyH/m3HApzcOPhBB05cqT8GmDXOXZHaBQDb2W/G9jlwlAEuwRbt28D7O5ixu7fkbF7TGpv31Z3KoEbM35zkE26bOky5MiulTlzZitY6w12uS+hJuukY/cVgF1CXpaLFwNRDFhE7hCygnsUnNN0iv4eYPeN9a+r85if0ynKaAjm/l6/ft3BvB4HOiDIdsMVxUDX80o4dteuXdPl2KVb9ypyW+nkVMiJMfIMcmcYX7izjfPB7F1Cz0bkLnPRMubCXrrEOACAQB6FfcNZ7gZ2Fwccuzw3jh6hY3eTOna5sBgLgSx/lRBajoLrlY7d5csRxYBF9x4E7HaNgUJ449LfTRhfryG6t/zprs6uYwMv+AnnMDTYrdSM3c8//wLO573unGdNbAuPu4FdRk8wNuHqVYDdJoBdHhNoj1+CPPfss/rFw5IlSwDAh2l9XJxwB1zrlzBvs2bNkiVLFqtbl1CYMSbM+SVgJmxmDnHvYmC3tyL23hToewUM7Pa9xtaCKWAKPHkFDOw+ec2tRVPAFDAFTAFT4Iko8DTBrgdF3EADqDUGebgKdglmYpCz2yaZSTWy6MXh8vLK2TJ96ijJTCcEw34Kdwlj4uCgi5HSyw0Auwckre2WPDs2G2A3R0GNo0LOERzAZdpGz/Y9SIOtgNse1PX65p7dTweVgrfwNX3AWJwtJkkqm9PkwLk62fbTWdmz77g0dsK9B+gbGuy6XrjF05ix23eLp80P4dgl2KVbV8EunKF0khI68Zm3oBeOKuwCu4RkLS2tcuNGmYJd3orfO4rhl7/4hUygYzclWTN2eYs5we7hw0fw/jZ0Ivxzzmm6aAlr18LF+OxzzwFgxtzh2CWcI9icMGGirFjhwO748bjVHYULt23fvkNzTHs7dnleD8nOBlz8PbJP12pWKo8h2P3ggw/l7+/9HRm7TwbsDoNDkxm7wVEMZWU3NU6BC6idP38eY0Tkh0JM9tIr/CIC7nJAXZbW1lZdQK2iokLdunTpMtaCGoWzhAK7qxEzQLA7DIun8dwgqGcMg4tiuKx99/ofD8hZWOjArmbsPqBjV526BNzQgZm3fObYuaCfuzqRfg2o7DllvWF3uXuDRLgX2K2oINjd0hXF4Lmd9UpEmwS7zNcliCeUZyQJHbse2HWOXUQx4Jr3+sY+EWbTtcss5enTp2nfCWyPAIKXlpZiQblxgLvPaX380oPXBL8g2bJli0Y7aD96TyX6435DBA0ukl6aYzeSZsP6EiYF+LvHHLthEtOqMQVMgYhRwMBuxEyFdcQUMAVMAVPAFAivAvwDho+u8gQdu0GtavPKNDxQQLIKYMss3OSYcpk8Nl1WLJsu854fLaOQnxsfx37jCOwDXy/ASIxcvnQLYHevDOqok+fG58m4Ubn4TBEPntkasa57z+fQyIT7OZCGF3cU7aMe6z5y71lzLEIkkqQ9JkXOXW+XXYfL5ft9JXLx0nVsS9IjeoJdr19sK0by8vL01m9m1A5H/EED3JlHjx6XfwC6MpIgH4strVixQm/pnzhpkoK9r+BU/Qy3tV+4cEGmTpsWWJhpgWRkZsAJegXAaKsuVkWoRCAbCuzylvpPPvlUs0O5eJfLScXt8ABoCch2LSoq0igGRiawXy0tLRphwExeQj3CVYJFb/E0L4ohNS1V6urq5ccff9I+MBuWUJW32vvgBOYxBGgcky4qNn0G3NWhwS6jCMaOG4vb+pfBsfuKTJ48EccLYNs12YmoBzoe9+ze02OumI1MTQl2X331FeiXr59XAuoxGoLOyxuIYsBJhO3eLLoqWDf7Fy7Hbm5eroLddWvXAmA/o41487Pxq42yd98+hYB6Lbou6Onq3rsvPNwl6oAnd2mHu5NjpDZ9A3Yd2CdsnDt3LuYIYHcxF0/L13Pj5MmT8g0WIOM5QOcpQSwBPM8bOnbHYb5+//vfyyLENwzGIna9HbvViGLo8XsnMG46k9kmITa/HEjBonHJySnq8OZ2Zts2NjZqfAXfc/ZC1aNXF+YwlGOX5+EWgN0NOG/ofuZ8BxcFu6+/IauRicwvHzgeurt7g11Pdx/yhdsRQ8HzZd68uXodU6vkpEQsGteOReOuYKG7MjjUc/V6oludTu3vv98pn332mULy1tYWjAMQO/h3cXCnIvW19/v6Hv2jTp5W99jNPjIFIkYB/k4xsBsx02EdMQVMgTApYGA3TEJaNaaAKWAKmAKmQKQpoPAoGCY8QbBLLbqxGuhK16Ji+ID9iIlX7pbkr5LsDL88MyNfFsyH6+2Z0TI4a5AkAO7GxiYAyyUA9vjhiquWbVt+kJT2WzJrfL6ML8xjRYEHnviakAHt8B8BNuYyaoSyxLzsDbe6XnnPXg/5Sfc+fOX2d0dwYbYWSZXbTXGy52ipbN9bIodP35QWLJrWAaLbiQM0PMIdiGPdcV5bTwvsnjx5Cs7FL5Ed+gGgWbNmh3JkhHRpaYM09uC3v/2tMAOXt9QzF5aQiw7fzQB7l69cVh08sLt+/Xr8QTwRkCtNFwf7GRmmH3/8sWbgliMEmYDPA5IE1K+8vEpWrFyBxafGsNmQjl3Cy6LRo3UhLkLamTNn6L43yyvkRzheCXaZtRtcCJbpkPz1r38tCxe+JNnZQwDfOtRt/CEcux/DKcmsYBbC5lAlPT1d/v0//l3eeH0dFg0brrvQdfzB+x/K3957T4Fd6C8HetaWnpEBsLtC3sSCXIycYClH37dv345b8TfITgA+3srfdWp4h+O6TEtLU9BJ5yrnpKW5RSFZq962776cIOAMZ6FzlnXSeduJxe48sMsYAWbOspw9e05dr3Rtnz59RoE/f5f40E+Od+qUKfK73/2rzHl+tmTgfTDY3fDZBqmswsJvd44Yl4NTgWMljJ86darCUM5FG2AvXdb8koBxCA1YeO4OzQJC8OoiTAwFduvrG+U7fFlCqPoDokL4ZUZwKS4erecNF7zLxjnPPOhgxy4jNJixy2vYQeUYBbucoylTJuOLhFcVhA8dmoc5i1Oneh0WEkwGpB48OBOa+jXb+ssvvwQc/0ajOPilCvt8t/EE9y+iXhvYjajpsM6ERwEDu+HR0WoxBUyByFLAwG5kzYf1xhQwBUwBU8AUeEQFiA16ogMFu722PWLlfXAY4S4W2opplqS4dsnJ6pSJ47Nl5vQiRAQMlYxBCXD0pQPuJiHzskPKrlfJ/p8PSE5Co8ydPBRgF1EMwCUO4nrd84AqFjODw7apVaS+oVUamwDMCHnRnkJe3c3p5Uc8BOuIgTvY72dcATy9+CgW7+Ft1WzRVpDbinqfXCprkePnrsnpizelvKoRn2EMqItgl1V2RTzoC4DkwHY6cl9fty4QxTBUHbvHwuzY5e3hvL189WurJQsLi8UBnpUCkHGBs88A206fOYN269V9GR8XL0PhVqTzcC2cpuPGjtUF0erq6uTUqVPI5f1QdiJmgXCUQGsQAOSClxbIL3/5S5kxY5pkZmYCfrUgW/SybMTiZtu2fSfnz53DIncQHMAtGW7MRbi1/7XXXgM4fF5dnZyh4IxdwjdqRrCbBdfnC4iSIDhe8OKLjExWsHf8+AmFY5s2bcJiVOVdjuBhw4apQ/mN9W8ANDPzN1XBNR3GjIYgUKusrGKT2h/3oufPNDgwf/3rX+nia0VFhViIL07nZcf27+VTQEG6Vuvr63sehHd0b7bCIc1nwkU6lF+CNswf5q36jLig83Tfvv1C1/W3WMjrdu1thakKRzHeQYPSZXRRkYwfP17SAMnZNo+5hKxWLpxG1yrrp1OWObzhdETqFYN+67yiHwTpjJIIBrtchO7nPXvkS/SfGbJN6A+BcFycDzC1AHO0ANnGbyhcZ94yHeinkTf7l7/+FU7V7zVSQie3l3psk+CfQPvFF+ero5uAPj19kI63vPymAvEffvhB4TJzh1mom17net0GrjX0JxTYbcWXC4xB4DlDxzHPG/ab4J+5zHPmzNG5YmxCKmBsJ2IWLl4s0WuE10lVZSVgsJeHy98RXAyPETKi4JvnKSNJps+YDrdxErJz27VutkG3bnXVLdkBDb744gv56afdCsU5bs7h3b5k0Moj8YeB3UicFevTYypgYPcxBbTDTQFTICIVMLAbkdNinTIFTAFTwBQwBR5GAQII79F9nAO73e8j65WDJrGxvOUat4bHNsiQLJ+MGJYheTmpcNOlAoBlwhWHCITWTmlAbuWNK6UyPj9eFswcDrCbjeGEgl6O/rRLslTXtMi1G5VYvKhac3AJlejgZXGtE8r6pR0OxvZOH0BwjDQ0chk2AaRJVJjVAVdjEzjPDUTInr/RJDerGwCLW3AbNl14zpeoUBfHKM8NQF220Q1285EFu07eeedtvf2bwCrcYJe5p4sXL0Km7VoZjwXIknCrOF2PzMndA0h3+PBhjXhgv3gLPKMXngfkmjV7loJX3irOfFJCNUYxcAGtWoBe5sMSYE3TOIhfKajNQ/wAQRlB8IEDB7X+s2fPCp2L1CsXt6W/8MI8eR63+Y8pHi3xgJ0svcEutxFqxiMW4plnZirYffnllzWnlLmmN26UI8P0iOyGc/diSYnews9b5wkX6TKeN2+eZGVlaR3V1dW6yBrdtgeQLcyoCJa7wbQUwGCCcOatTpwAOAwXMBe4Iqzeu3evRmBwPD0KToxanIe8/b7kUgmAZ5MuGMe+M4rhVYBsuofp2iSkpe4EnYzToGOahlXe0s+8Vi62NWniRI3WwIkk12/cwGJ0u+Sbr7+Ruvo6BYYKdqGDLnrXoyOP/ibARvUcHwzH6nTM67Lly3qAXUJ7QnLqsHv3bmHEBWEnAfpouKuff/55mY3+E8hz/nje7MO+f/nLX+X4iRMOiANkhipJSUlSgEX76HDmQmSEs5xTzjcd43SBUwO6ta8jjsNbtE2rC9Sp1xtehwK7BK10nTP7ln0/gy80OK+JCVj0DdfIc8h7JpylO5kgltcIv0CgS53xE4TqHkjnfLFJOpy5jdcNF/rjOcO+5+ZmY/zu3Oa+LITErIcxHCfw5QDPP0ZQaJ2sLJqKgd1omi3r6wMqYGD3AYWy3UwBUyCqFDCwG1XTZZ01BUwBU8AUMAVCKUBYGSALQR9HNth1HWUfCT1ipBXxC0iyTQTk9WFRtcwEwMkkjWNgzkFsWwtWmGqRuZMGy9I5I2Vi4RCtQJ18QWN2LwFrAXYrKurkSmkZnKe3AHYR7UCwq7SGarFN7Aeg2Y5XNYh7uH6zWUpv1AJideAW7QRAJbj10HYr4hZuNcbI9ZoOdAWuQ4Aa1Vv7DfiDd+7BOeieh8cGu3COEgpOnXqfjF2AOEK2GTNmyKvIqZ0P12tWVqZCN8KysrIbCpxu3bqlfSegGwxXb8GIEZrvS13ouiQE5u33XwOs8Xb4dsA8LuBFVyrzSOnYXQ4IWAxYS+Db3t4JZ2yFZoryFnZGGXAuGT1BeEl4xlv16WJl6Q12qRmdjuRdY8YUu6xaAPCCguGaAUzAWAkHJTNrCet4i3wiIHAu6idgHI6FyzgXBHfMNaVzmIDuGvrixRnwNvjehe0SJr4AMLwWi68RstJVzXORbTIz9datGrgteUt+d+HnvG2fwJaOY7qCGWdQWFioDuU1WCiOGcGJCUn4gqBBF9U6ceKkLqBGfakN3c7s+zTEEORj8S5mtdbBGXz82HHETnwhW7dtVdjYCZco3aQ8Jpxgt3s0Ih7YXb5iGb4UWIL5YryJKITmAmDUnucBzx+CfEJpfiEwenQRoGaungPUnhB427Ztqj3niZnPOqlBjVFzbqNDedLESfKvv/tX/ZIgK2sw5hBfkOCy4XlwDs7vf27cJJs3b1aXOTfyWOqgO/B14H0osMvzvRZA/hZAfxkc56WA8I1wQ3tfZtApzQXv3DkZI+Vw9O7GfHKhM4JgjpN90a9s8EL1Zx/wYBRFPs5putHXA+6OnzBO3cfojhYuPLcPmcpffvmV6nEdOc/8bcD+svB1VBUDu1E1XdbZB1OAv8ctY/fBtLK9TAFTIHoUMLAbPXNlPTUFTAFTwBQwBe6iQPSC3e4BEZwgx9NHkNUECNui4NAPOoq4XWDadklPjJVls/Pl5RcKZdJoB3a7j+9+peAH2bw1txul5lYdwA5AEwBuB+rqAJgl0MU7fW5D1m+HL1GuVrbKoVNwHh65IrcbmuDgxUJPRDEAmzExCXgP9IzoBZ869OAxBtAj/PGgDVsnKg7GN48LdplXeuHiBWR7Tr3n4mmEkcxMJeiiG5Fwl/AwAxCRAIt/yHLBKroTuYATHbLc3+eDFnjPGIArcEPTocloBd7K3tzchM/4ueNpiYkJGjXAeAXexs5Fs2JjoA3mjHCvEXXT7RiLOpOSkhXCMk6AcD47e7BOTjDY5aJxhGXsD12+gwH4ZsL5+tprr8qCBS8qeI5Dhin1pQuzEaCUwDAekDkFt/+zXipOVysdo+wzoTQXziLU7QJycEz2LkSFHBv1YgwBIxSYHUz4Rxcn4R6BMYFjj4LOnAdoJ/jmAm1XS6+qo5SZwxMBK5nbykgDgm3vNv2amhpdWI4LaBEys+/MMybg5blCWF0CNzLdusxlJVynbhwbx0AB9LlHR8LzphvsLtd+E26z3LhRpnOZlJgEEDtIndnsAxc845cCzmHLPTsV1h86dFgdqlu2bNEvCNRly4+DinPexmjswkQ4ld999111XWdmZrmrhr/CUC5fLtVzkHNJKM45oAPaacGzQSXR96HALs8FQnkWgmie5zz36Szm/CYnJ+O8d8CW1w1zqAmlCZKpPc8nXhNu7t1+rIvtczvneuyYsfK7d3+nYDo7m3cOsPjhVG7UvjOCg65x73rzXMfO3+/2joqfBnajYpqskw+nAK9jA7sPp5ntbQqYApGvgIHdyJ8j66EpYAqYAqaAKXAfBfoD2MUYANsIsjo64c6NZc6lQ7BxgLBIUZXMZL+snD0UYBeO3dEOFnrCeNCE0M7hHx/qwoPwEQ/m4bb44+HQTcQhgMh+LPSFetuZpYtF2i5cb5LvD1yXb388JzdvVUsLwa6SWRyPZyw5pXCHt2V3APyhUriLeQu51x5rDTPYxeJbFwGbJk+Zcl+wyz9W0wDdeJv70qVLNPe1uLgYICpdnZWeK9LTy3tuaW6Vq7jl/eeff8aCWd/qcw3AmC74hTrdreQEXT4ZBocps3aZzTsDGaO5ucw57i7kkNSnqqoamaunpLmlBfC0ANBzvO7UG+wSjvMY9p0ALicnW2+VJzzmwlqsn0DZsVku+uVm1o2Fi1p1aLwE4xq4WBljD0ouluiCWDx3tPJA9wig2RZ/8B/2k27kmTNnytJlS2X+/BfgRB6j4A7dCVnoyLwAsPvt5i3y4UcfwpF7VaEhzwGC7unTp8PRvFzmzJ4tI0eNhJszVevRdtEmC8fqlSZkP58/f17jL+gAPn78uAJV3ZX7sa/uYO+QsD4Hg92liBbIy8/V+o8cOaZxE4S4U6dO0bgLgm72PdAt3Y/g8gSiFwhGmWvMOA4uKKb79uopFzHjdmpSWFgov/3Nb2QJgDrBKOv06j5+/KTm027duk37wIgGb/Ex1YKaoG6+DgV26R4+c+asZtuOLioSLuLHurm/a8d9WdGOLwvOwh28Y8cO2Ya2Tpw8odpTbjpz2VevHQ7FO57RC3Sh/9u//UFB/ogRBbpvR0e7uuIJ/JlLXFpaqn3gFxcGdnudDPbWFHiKCvD3gYHdpzgB1rQpYAr0iQIGdvtEVqvUFDAFTAFTwBR4kgr0B7BLvTgOQBQAVz/cYoQs3EawmyK1kpnSqWB31bxRMqloiAM2il+4X3fhH266maAYDz+gbmurX1p86VJe75eKmzelua5K0pLicQt+LlyEaVJS1irfHSyXzXsuKdhtVZcg6gEgjOEiaXgmDCTkZSFIVviDTmo3se1uYJcOzcW4fftVuFHzcvPgkG2Us4BPhGEEqrytff78+bogWBGctoxMIKQk7KMrtHjMGHWyPvvss+p4vIE81h9//EndgRUVFeqYpVaESIlwshajDi7uNGXyZBkNuMtIhLS0QQp4CVPpgKWDlBmy13DrPOEcM3hPwiHJ29c9EObGibGiXuaE0qk5CuB4BhbcYs7qZEAzL2eV4IuOWmbdcuExLgKWAGcwAe3kyZMUytbW1qqTkSBt7769qNfNtyqKNugupoOTmbXM9B2DcTMCIj09Q92WjG2go7IZebXMoeXCWBcvXpSjR4/KCeSkcrE4LhDHuWHReUG/9HzgpsBEeWCXsJrwsqiwUKZOm6pgllnFg6AVc4G9/mll+MF6mK+7c+dOheC8jV/dtdhORyjdnFwQbS6yhbkoGBd5I/Clu5guZu7TBvcoF1PjHPNW/YMHD8phOF7pzGYusNYX3GevcXaf/dcfQRsf8CXnj/EZBPUupkI0rmPs2HHqnJ0NGE2QTsDOuWPuLJ2unAc+0tPTdRyE6swL5nl3KbDYG8fARfcYgeA5Xd0MdHeOmnNefJhDgtEVy1fI4iWLAdOLJR3OWsLP6uoqxCHsUTB69OgRdQNzzh/IsTtxguYd85xgTvTp06e1HcZs5OTk6Gvq75zr9RqpwdgEPs6ePacLvtF5zsIx8Np217xz8OoH6D+385z593//N2EeNCNH2EdeT99/v0vzqZk7fQtfDqnzG+dGB39vqCA9VdHrylUcmT/NsRuZ82K9eiwFeN0Z2H0sCe1gU8AUiEAFDOxG4KRYl0wBU8AUMAVMgYdTwEGI3sdEPDgI6rAXW9BF3wCCGMMQGxsv8bEdktBRJZlJHbJyzjBZNReO3SJkc+IPNMK3brTqKiQ+UQaGhdEIZ+jcbW+LkcrWZDl0rgIQqkRqK6okJzNJnp1ZJGOKCuQa7t7eevCmbPqpRCpvVSH4wUFHHq+gEHBXwS62B7a4qgOwkC3fDewSBE3AgmZTJk/ReATCvTLA2dOnz+ht+Km4RXzM2DEyduxYjSCoR+YqnZx0HhIAckEuwrWioiKFa9zGz48hl7UB+zLKQEtguCkpqep+HYEMXYKnkYCxhMssHEM7ABZzR5mhSlBJQMfb7+vqarvckRyNxxA9PQmwCHcZNUCAOQGLjhFK6635qJd1lpWV6YJVzGZNS0tTOMt+MDOWn7OtU6dOa7tulrRbgR8OnNG5yyzXkQUjNUc3B4uxpWekd91WT32qqqrUFXkNbmOCbgJlxhoEZ+p6U9MTp+nIMDYCX86laD+pD8dSMLJAgWdSYrLGSgT3jlCP7Zw5c0YhOLNxWXidEThzjEMwV+w7ncp8plYEmcmAu8wqZh+r4WiuqHTZxNTjJr5oYIwFHcEE7zx56TCm+9Vlww7T6AaCWa89QsP7FV4fjMbQ8xava2pua14u4wpYCHHZv+Li0XpuZQCgs43Sq6XqTGYucGFhYQDgD9a+UC8uqscsXfad80zAfasGOdbo/11/56B9fsbCNrwvCAh2GUvBPnIeuWjfufPnFBwTtDKOg9C362TE8ZxXzl9vxy6ziCuQe0znOb8U4TnC+nn+c275RQP15/XD857wl8/MMhh1pAAAQABJREFUE2b7fLA4R7i7/nXxvUC/+Rm/fMjPz5f/+q//lEULF2nmLvvCL0k+Qyb2hs8/d45htEOgyznQ/uPYoGpYFQp/k0RwMbAbwZNjXXtUBfh7yMDuo6pnx5kCpkCkKmBgN1JnxvplCpgCpoApYAo8sALRD3YRYetcui7ZFs5Ywhss3IUMXB/AbhzAbjrA7ipEMbyKjN3JgYxdBSMh6Aj8vlqfwpNOLvTlk6t1CbJt7wXZv/+s1JfXyvDcFFm4cKzMmDpert+OlW8RxbDxhwvI5r2NBIcER2IIADEPhMzkPuBtKCEa5D66vfszD1bTKUi4R2ciHbWERU0AeQSUfMQCMA5KH6T7JCQkqvuP7lY6OAmBmYmbAbCZmZGpjkfCqVrAqFqA2BbkhNKNqdAMfSX0Yg+4jXmimZkZCosJzxghQQhFgNUCh2E96idg5DNvlWch1MIuAQjXDXd5nHPMdupzFpy1uXkAroh6iEMuLRtmnVxAjW5OuncJfNlvuoU7UD8BdB2gIPfh57x9nW11F9c33u5OlyszUlU3aEM4TiBIRyvHT90IKAkfCQA5JoVw3ZXd9ZVrkrMFpfBHPuv1nKbsL9uKx+J5zrXZXQ01bkW8RM3tGnWTKnjE3HI/AlmCzSQshkZgTPcuNafTlfXxHOD2trZW7bsu8AXAyOxgzXVFXzh7XWAaXeP8ERC/iMXwmJnscoXd3PAYzsm9CvvLsXnAkiBzz56f1aHNuAHOOdtgX9NS0yQZGbrct6G+QcfIc4vnZS5c5oxQUICPNgmhmR3MaA3mM/OLgnb0h4Vtdl8BQb3Ddk62d4byXMrOztEvIPgFANslNOe5U4/229uZk4z6XKU96uSoOXaCXS5Yt3r1awA1E7UxnhObN3+LOIcv4eQ+otA+B+1wLgiyWwP6sy1GjjQQqEMHAnC2x6JjYH9RGAURXDifjO9499134SyfofUyq7e09Kq89957wgiJ6/iygVCXY/LALqu7izLB1UfWawO7kTUf1puwKMDr28BuWKS0SkwBUyCCFDCwG0GTYV0xBUwBU8AUMAUeTYHoB7sdILmdALiMYYgFYPEx/gBgl3AX2EwSYmslKa5Nls8cImsWIGpgXB7cfLg1HwCIkMqRnwCZgYhan9Jh4BSA3c4Ogt0k+W7fJdz6flaaqm7LyPw0mfvCJCyGVCgXy5tk894rsgUPZp/G+ZIAeDgbBDuANKC0hLsx6gLm9p7FtcwDHBDipx7Y1df4QWint3mjYu0athH88BBCH7o0CXkJhQgw+QeoA61+vO9wABLbCLX4DzNieVs9FxTjvp2AUKyHfeE+DlZCC7RLpyFzRfmZB64IJPXWf92GY+B4bAdsVQgZVA8+1uIApssa9vrteh7YgePgeFAcUHSLm7EfBJEEtnS1su8JAKceTA4crX0mDOOxrqC3/JfEDfVqzXhmfQ6Stml77Bc/47EPXQL95RPrJMijDoHGuqpzbbMvrh3qxvYIC935R4jKbFYHUj0g6OaDwFoHovXhlYN+6LfTUWvHViiD/fg5jyfIZ+zFW2+9pTERgwBA+Vl3wb7s0B3Fq88Nw9XnR8zBbuGCfMwjjoXGHIPOKeaEYJbgluDZ1en05rGqL/VHta65QJtBT14/9Ny6oz9uA89rVqDzi7p4XlI7vmdV7A9fs/dUgfrqPoFtXrXcl+2FArs3b1boAnp0zhJiU1+OjfV2/57oGkgXgPXOW7bBcQZOgIAWfO+2Dxs2XEHyG2+8ATf8SHVi3wLk3rdvv/ztr3+To8eOym04o+nS5RcNrNfNqNPT1RQlPw3sRslEWTcfRgFekwZ2H0Yx29cUMAWiQQEDu9EwS9ZHU8AUMAVMAVPgngpEP9jtBOns6AV2Y/xwggrALkBLvK9J/O11Mm9cmqx6vkDmTClAvEAGwG4zXL3OSUsgE2BN0gkoQRcw/gUoZh3xcrMxWU5cqkem5gVpqL4pQ3OHyPipMwBUfXLodKl8t78EUQ1w6yLVN1aQsUrNYxxs7iCl7SqKlnq8czSK+3TvFwx2CfbaAKF5a3kc3YF4T5AVD7crYa4Hqwis7gbHCMa6gCGOIagiDGabCtZwLAu3EVLyc26ho/KOgsM8kKnIiQAqAKO4cBqhmueA9foW3C+CK+aV8vZ2gj8tgfa72kKdPMYr7DvHzHYU8jJ2oEdx+zsAFziOfepVr9cfHurqxxb8G9xWj2rv84ZjYTcZfUDw7AFnD4zzcAePHaTzuuPpiw6y8e6+YD48FzHBL+eYenqLv6mO2J+ubWb5sl2vUHOOl31iBMecOXPk7bffVnco3dHe2IP75h3b+1nrAUvl9KBa2bVrl3z00UfIdt6srmfOHfvGc5HnJvvlLVRGuM/xcRw9Stc4CVcJant8eu83PBZ7EHS6ueo+N3Qr+sHCz71cXX5507t4GoQCuxWIWNm8ebNswMKDP//MHGfMBc5TgmwPUNMtTM0JsQmOvcJ9e59r3md8ToReBEK//8PvZdGiheooR1ex+OBVdQh//PHHGifR2grNMH/3qiu43oh9bWA3YqfGOvboCvA6N7D76PrZkaaAKRCZChjYjcx5sV6ZAqaAKWAKmAIPoUB/ALsO6ABBKfwh8nGLljloGBtDB2ubjBrULLPHZcqc6QUyaewIyUrzAfoS/DrHpB92X7pOFXz5AWXpkgV8iYnxSWNHotxqjJHb9c3S2gynb3yydCTlyP9n7zy7pajSNrwVyRnJMgTJAziAgBIcQCVIMq5RR+fDfJg1Mz/CXzIza80Hw8voQlSQJIiAJJGgZAwgShIkiyLoW9fT52mKps85fU6n6u57s4pKu3a4au9Tve966tkHvj4TPvk8moTr4Hfh1LnI9UHL9pHgg7Uwt8BkJqSmKJFbIpCdauQOxeO4yJMStPxCYqTErtuP+N7t61R6CEap42bteXuUW3ummdUJZ35BdJbaECzX6HRqfSteSuR0AQ59KiVQWblJB3EuWgiIlWzXXW3H7HgUL9txzsXzr6tG+jrfID3Lg3zq8vdzvk5fa2VKHWXTQ335+/n4msvIyoRuhNU6RtGRdDS/f+kD0Qb8yceyrcvc4nGsbp92iLVoStT1AmKZnel7NZWX8Y7KgPV1165MJDc+vPDCC5HFLhOYdU6169Rdixcl63Yqt5RICsctW7fa5F4rVqy0+qYEecqKiJ+6Zy5yw4Jg5YmubQrPrIWJ6ushtVnHqI6Tn2PtlNi+dRV7qcB53HjgO9ddMaQm6Avmrxhhd2lksYsVLZz9nnA1eVM31i4ep1JN5UX96wt9+/QJ0x6ZFl588cUwZvSo0KZtm8gVyI+Ra4v94Y033gjr1q6zSf0Qi+3FSF1aebOrr0DFPh77e1dfVt4+6juv4yKQNAL0Rwm7SbsrKo8IiEC+BCTs5ktQ14uACIiACIhA2QlUvrBrcoqpOHXCSrRKSYYcZIlcNETV7Hx35EKhW4swrH+nMHJIzzDwvs6he5eOoUuHdpG/0Mh6tGUkmEWCBB9034WZYmQVytVY/v0UibU//9oqXP7xRjh/8cdw9sJP4djZX8JnX54NR46eDqfPXo5cG9wTWVG2iywYEeO4sQh9bESLuWG4JftxNpdAjRBACiXwUAI0owaF3XoKVkfXmFgUY27/UcpbqlrdIde52L3t2viBjLxui5dxLuddy78uE08wy8UNnLpVxyzX3XEoGuwj9iFwZgvpoxEQ37b7aeWMrogOctxExLoEOOXuNTIFQ793KdEx1dbT10d5EB/XC4OHDA5TJk8OgyIfu20jIdFiUtAcA2V0lwuHDx8OH2/6OOzctcuscckjLsy52JzZTtP1zTHPrNG8yCTm5Y/yb05wTljsLly4MCyKltFjRlmfYELAVZFF8pLIYnd7ZLGbtib3jKJyxEVrLkqVIuqf0b/M++SXsR45cmRYsGB+ePqpp0Kfvn3M2plJBzd/vDkSzN8Mu/fsNp/DXi1vC5k842kmelvCbqJvjwrXPAL0Rwm7zWOnq0RABJJLQMJucu+NSiYCIiACIiACORKofGG3/orGFKFoQNYqXA3tWvwc7u1wd7ivR+vQv0/H0K9399Dn3q6RT9J2oU376NP31pEjhchCN/qYPHKpkBLbkG+u/Jxafrj0czj1/eVw/OT58NWJ8+Hbs9fC+UvXI1E38kt7V+tw9z2Rr9GbKUu/lOhTJ+zWSUD1lzX7GReiCiXwUBfEIxcHs+eqo00iYM0s+s9VuXoudvaczryfLhBiCYp2aZahqYh3puviZrpNpdq5i4HRBeaHuEtktduzZ2ryL9wjcB5r0FyClS/KJ+W79p5o0roL4cSJkwHxE0vilMUqrh9SqVEktjPrlUte5YjD5H0zZ8wMMx+dGYYNG2rlPh9NSLdhw8awevWaaPK0z+yFzm1lq7svHDPWUYWpPtvU+xb/266yndGjRoW5c+ea1S6TyXE/vvnmm8jFxaawZs2aaNK0E9EEgtejdFL33tOqFJ531FjC7h1IdKDyCdAfJexW/n1UDURABG4nIGH3dh7aEwEREAEREIEKJFDNwm7m7Yj8sv4auVEIP4f2rW+Gjm1+C326dwy9unYK93ZpFzp2bh3ad7gntI0mP2vdIhJpI4H3RiSEXY98iP5w5UZkpXstnL34czh7PhJ3z14NFy9fjs5Hwk4UL9wV+TqNlmh6p3ATwadO8IrORrZ86Z3MAjW6b1eSWDSgTMl3jV7SYIRUSVIWhg1G1MmCE0jfS1Ku537iCxnxoKnCO2m7wGhtLkoDNw4+gRhZpnz1NibsplpIVEAuia5n8jAmauPvxK08zDqVdm5Hb/1XKUJkh44dwogRIyORZmTo1auXWedeuXIlHDx4MOzdu9dEbPPXfKtqhiSbxa5zdzE2folvM1nauHHjwsCBA03URdg9depU2Pv53nDw0MHIZ/I1m6jN+EX3Lv0HJNouRL/3cpRsLWG3ZKiVUekISNgtHWvlJAIiUDoCEnZLx1o5iYAIiIAIiECRCNSOsPtbJE5hsHhXJDrc0yKa/Oj65dAm2m7T4rfQNrLUbd/u7tCuXYvQoXWbcE80YVokr5kzheu/3Ag/XI7E3cgy99rNluH6b23DT5HbhdatIjcNd0d+eKN0kUpvRv5Gb0ZKl32mHrtb+OlVEIFiEqCJISya+4A6wTU1SVrUiiM/JEzshkKIoNhQ4B2Ci4qeZkqwrHtZYRFSbTxbOkkXdqkTQinlbB+5q3DrWeqI8H3lytXw449Xo4kVMyfnS13IdQTi16GwbY6nONnpO/5r165d6Ny5k/FnUjzCtWvXwpXLV8xSF8toT9DLeEcilXRAwm4l3S2VNUcC9HNZ7OYIS9FEQAQqhoCE3Yq5VSqoCIiACIiACNRHoHaEXYTa8Gs0+VGE4q4WNyIB9qfoSOR/NxIhoo/LQ4u72A7ROooZqSvEM3ErWt/49Z5w47eWkXDbKty8K1qibSZli7zpRvGIFcWN/OiatS6ixm+Wix1nS0EEiknA2mmkNCI8pNtbtJGa7AvRMTXJWXSgicWIUk4179uus0OIm7Gj6bwpQ1029fkdjl1Wsk3Kivjq5cSHsbu88HqkBFv6b8PFouYu7DYcM3WWPF1oT7OJEvCJ8fyuOVHfzyXtRMaRsJvI26JC5UeAfixhNz+GuloERCB5BCTsJu+eqEQiIAIiIAIi0EQCtSjsRrJJi2j2+d9+iVhhwmuST7SN3a2t6sQx9qMlOv1rZMEbSb7Iv7bgcoFzLUzdIY1UOr/+dtM0Xa5ESL7LBF4Sjc4riECRCFgLjomW6WzqxF2zJm2KEplOoP6NTHHTBVNUXbbpT0kTdqlNneZcf8VyOGMCcA7xmhLFmUXY6vg15eqExZWwm7AbouIUgoCE3UJQVBoiIAJJIyBhN2l3ROURAREQAREQgSYTqB1hN5oyLNKasNhFeIqEVqwYI9U2spszsQdxDNkHLRYZFuEWy10IIeRy4rdIsErJvxyNpN7ofGSnG0VG2I3E4mgvJeGSTyT+RvkRI/JWaulxjYIIFINAytqT1p0R6kRWa4YZp/LZTfWX1P+pdOryTqiwm09dM6+VsJtJJGNfwm4GEO1WAwEJu9VwF1UHERCBTAISdjOJaF8EREAEREAEKo5ASqBExowHBjC3H4mfrdRtk2qjevEvJdqaDGsiBLJYSrT9FWG3rvIIt3en3Spw3kOcDnIu4m5KWktdi6h7T52wi3B8w1L3q7UWgaolIGG3WbdWFrvNwqaLRKBkBCTslgy1MhIBESghAQm7JYStrERABERABESgeARc3L2VQ0rYjYuXt85V8lbK2jYl7bYwa9po0qJI2EWwTQm7KVHXxFlE3UiOTQm7Ken7lrAbpxAJupZG6iw68G+/4arBLXYRdmWxGyem7SomYMJuqn5JcsVQSOK8wimwZ4u0+wrKWfGv1WSxW8jmprQSQkDCbkJuhIohAiJQUAISdguKU4mJgAiIgAiIQHIImLAbCTTpYCJoeq8KNiLphDrVWetSobho6xa7uGLINXhUM/C1i+ryiLaZnO32HHJNVfFEQAREoMIISNitsBum4uZCQMJuLpQURwREoNIISNittDum8oqACIiACIhAjgSqX9gFBMK1y7G3g/GjMWn79ggN7Pm1RLlleRc/2sDFOiUCIiAClU5Awm6l30GVPwsBCbtZoOiQCIhAxROQsFvxt1AVEAEREAERyJUAk+Xwo75WQm0Iu7VyN1VPERABESghAQm7JYStrEpFQMJuqUgrHxEQgVISkLBbStrKSwREQAREoKwESiXsunhMfuUMEnbLSV95i4AIiEAFE5CwW8E3T0Wvj4CE3frI6LgIiEAlE5CwW8l3T2UXAREQARFoEoG40OriKwnEt+NxmpR4XeRc0vI4+ebVWPnIx/OyuFXnY7cxAjovAiIgAiLQLAISdpuFTRclmwC/iX7/+9+H+fPnhyeffDL07t07tGrVygp9+vTp8PHHH4dXX301HDx4MFy6dMmOt2jRwta//oqf/dIGfieyUMZXXnklzJkzJ/Tt29cKcffdqUlzFy9ebGXetWtXaQun3ERABBJDQMJuYm6FCiICIiACIlAsAi6gsr5x44Zlww/1e+65x4RPtvmxf/PmzcAPd49frPKUKl0Ju6UirXxEQAREoMoISNitshuq6kBAwq7agQiIQDUSkLBbjXdVdRIBERABEchKAME2LtryA5/AMbZZZwq7Lo7G11kTrzvoaXq6rLGqYPnll18sfbbj8eouLfjKy5xOWBa7aRTaEAEREAERaICAhN0G4OhUpRLgd5Esdiv17qncIiAC9RGQsFsfGR0XAREQARGoGQJxAdRFXq98fB/Rl7gcqy94Wr5GxCU+1sAu7GIhzPFiBy9DOh8Ju2kU2hABERABEWiAgITdBuDoVKUS4HeRhN1KvXsqtwiIQH0EJOzWR0bHRUAEREAEqo4AP+hxv9CxY8fQqVOn0KZNGxNq3YLW18Tz4CIu57i2scC1xPX4rEkDFxAsZ86cCefOnQtXr141sbex9PI5T1nidQm/Ua9bdcsnbV0rAiIgAiJQrQSil5d31f8C02vNs82fkX5MaxFIMgF+E0nYTfIdUtlEQASaQ0DCbnOo6RoREAEREIGKJIAw26NHjzB8+PAwcODA0LVr17SwiwDrvnZvE0Prasq1bdu2NcE223kHEhd045a5WPsi7O7fvz98+umn4ciRI+HChQt+WVHWlPOOskrcLQprJSoCIiAC1UEgN1GXukrYrY47Xku14DeRhN1auuOqqwjUBgEJu7Vxn1VLERABEahJAnFLIgRXLHUnT54cZs2aFUaMGBE6d+6cFnb5sU8clmzBBduWLVsGljsE07qLOI4ITHyPQzniwu6qVavC2rVrw4EDB7JlVbBj5O9lKFiixUqoKIJz7gJFsaqldEVABESgWglI2K3WO1u99eI3kYTd6r2/qpkI1CoBCbu1eudVbxEQARGoAQIu1DL4bNWqVRgYWek+99xzJuz27dv3DtcKjYmgft7X9SHMdt5F5osXL4aNGzeGt956y8Td+tIoxHHKka0shUi74GlI2C04UiUoAiIgAsUkIGG3mHSVdjEI8JtIwm4xyCpNERCBchKQsFtO+spbBERABESg6ATccrZDhw5mpfvyyy+HCRMmhF69epnYm1kAF2DjxwsljpI2lrubN28Or7/+enjvvffsU9ZCpR8vM9ukW6y0M/PKe1/Cbt4IlYAIiIAIlJKAhN1S0lZehSDAbyIJu4UgqTREQASSREDCbpLuhsoiAiIgAiJQUAIuarJG2B0yZEh4/vnnw9SpU0OfPn3Swq7HI/NCC7ukF0+fPLZt2xZeffXV8Pbbb1t+iM/Z8iVuPoF8M/POJ72iXitht6h4lbgIiIAIFJqAhN1CE1V6xSbAbyIJu8WmrPRFQARKTUDCbqmJKz8REAEREIGiE3Ax09dkiCuGnj17hscee8xcMQwYMCC0adMmbdWKJS0LIX6dHYj+YwB78+ZNO+fxXIxFmG3Xrl1o3759Wiz26+Jr0uWa7du3h9deey0sWbKk6MJuPP9kb+Pb+K4CF5H72fjM7gXOVMmJgAiIQMUTyPYczKyUhN1MItpPOgHatYTdpN8llU8ERKCpBCTsNpWY4ouACIiACCSaQHwwyqAzvs+kZoMHDw4TJ04M999/f+jatav52UWo/fnnn8P169etbsTLDIi6xCHcuHHDRGBPH1F32LBhYejQoaF79+635Ul84hHcMnfLli3mimHp0qVFFXYt04r5T8JuxdwqFVQERKDqCfC8aixI2G2MkM4njYCE3aTdEZVHBESgEAQk7BaCotIQAREQARFINAEXdxmEtmjRInTp0iV069YtdOrUKbRs2dKEWETbX375xbaJkxkQc3/88UcTf12oJQ5Wv6NGjQpz584NDz74oPnuzTYg5ho/jisGfOwi7JKuly8zz9ral7BbW/dbtRUBEUgyAX9eNVRGCbsN0dG5JBKQsJvEu6IyiYAI5EtAwm6+BHW9CIiACIhARRHgRz0Wub4g7GKx61a4VCab0MoAFqtdd8OA+NuxY8cwaNCgMH/+/DBlypTQv39/c8kQB0JaLgR7ujt27AiLFy82YffatWsW3c+x4/Hj6VT/toTd6r/HqqEIiEClEJCwWyl3SuVsCgF+a8kVQ1OIKa4IiEAlEJCwWwl3SWUUAREQAREoGAFEU7fIZZsf+S7WZmbi5+PHicv19957bxgxYoQJujNmzAj47GWCtszBsAu28bR27doV/ve//5mwe/nyZUueeCzEY6m9gH9dXwpR+5S/ZPnYLQRLpSECIlBrBDKfZdnqX7vPq2w0dKwSCPA7S8JuJdwplVEERKApBCTsNoWW4oqACIiACFQ8ARdmXURln8FptkEsx4lH8G3WuHEYPXp0mDp1apg2bVoYMmRIaNu2bToNLHtx2/DTTz+ZBS/nXEwmrd27d6eF3UuXLnHI8vEykUdthmIIu7VJUrUWAREQgVwJ+PMtHt+fQ/4M5Bzb8X3ieLz4tdoWgaQSoP1K2E3q3VG5REAEmktAwm5zyek6ERABERCBiiWQOTCtryKIvj6QZfCKOItIO2bMmDBz5kwTdZkwjWOcJy6iLmLtl19+Gc6fP2+TtP3ud78LrVu3TseRsFsfcR0XAREQAREoJQGeXTy3MicNZZ+JQVu1amXFwQ89LyuJ64FrWRREoFIISNitlDulcoqACDSFgITdptBSXBEQAREQgZoigP9bBrUIugxe2R42bFh44oknwqOPPhqGDx9ugi0DXc4zYEDUPXjwYHj//fftutmzZ4dx48bdJv5K2K2pZqTKioAIiEDFEOA5hqDLC0kmBO3Zs6cJuseOHQt79+4NJ06cSLsvkrBbMbdVBa0jIGFXTUEERKAaCUjYrca7qjqJgAiIgAgUhACDViZXYyCAqNu3b98wZ84cE3Wx1O3UqVPa/QIZXrhwIezbty+sWbMmrF+/3gTdZ5991gbHDJRd/HVh9+233zYhmPQJviaeggiIQO4E1HdyZ6WYIpBJwF0U8exp06aNfWny+OOP27OuR48e4fr16+HQoUPhgw8+CBs2bAgXL15MTziq51UmTe0nmQDPCrliSPIdUtlEQASaQ0DCbnOo6RoREAEREIGqJ+AiLJ+jtm/f3iZHmzJlSmCw66Iulrzum5dJ0A4cOGCC7urVqwPWTVjr/vnPfw7jx4/ParHrwi5peH6A1UC56puXKlhgAgzWWRCo4iHer1z85bz6WJyStmudQNztEBa6Dz/8cPCXkjz/bty4EU6ePBm2bdsWeG7xVQpfp3BdZp+rdZaqf7IJSNhN9v1R6URABJpHQMJu87jpKhEQAREQgSomgOjDwoC1c+fONjnapEmTzHpp1KhRZqkbnwzt6tWr4ciRI2HTpk0m7O7Zsyf88ssvYcGCBeHll182YTebj90lS5YEBGEXdkHKoEOiUxU3LlWtKAToN/SjTP+fcTE3vq0+VpTboEQrmAB9gj6EC4YZM2aEF154IYwYMcK+WuFZyISgvLBcunRp+Oijj2wbn7tcp/5UwTe+xorOc0AWuzV201VdEagBAhJ2a+Amq4oiIAIiIAJNI+CDVMRbfOpOmzYtTJ8+PYwdOzZ06NDBfOcyOGCwix/er776yga6GzduNFcMfKbK+YULF5qwi5/CTGF38eLFAWH3ypUrNph2q6e4+NS0Uiu2CNQuAQQpFl6oqA/VbjtQzZtOgP7CwksR+lDv3r0DX6fwUpKJQnl2ETjPS8yPP/44vPvuu2HHjh3hzJkzEnabjlxXlJEAbV3CbhlvgLIWAREoCgEJu0XBqkRFQAREQAQqkUBcEMIFAz51Z86cae4XEHW7dOli1XLh1y2Y8DvIwuepWOC6Ne+8efNscDxhwgSbjIbryAMfu2+++aZ90ooIzGCac36+EtmpzCJQTgL0IfoWn4zjFzse6Fe8OGGtIAIikJ0A/YN+hD94vkxB2OWFJs89f6Yh7p4+fdqeXytWrAiHDx+2lynqW9mZ6mjyCEjYTd49UYlEQATyJyBhN3+GSkEEREAERKBKCDCoRdDFQqljx47hscceM1EXq6V7773XhCMf/MYtdVetWmWfpZ4/fz5t9YSQhI/dl156KeDGgYnWPCDsYq37zjvvhLNnz1q6fk5rERCB5hOgf7K0bds2MOkT/kIJx48ft8kNsehVEAERuJ0AYheiLQIuS/fu3cPUqVPDX/7yF/tqhechcQi8PMHX7nvvvWeuh/C9qxcnt/PUXnIJSNhN7r1RyURABJpPQMJu89npShEQAREQgQojwA/6bJZFfhxLP6yV+BQV9wkIs1guMcjlHINX4uJX8OjRo2HLli2BidI+//xz+0TVPwNHIGbwy0RrTJ7GRDRu7QsyfPAyAQ2fs/IpK4F0CdnKZyf0nwiIQFYC3ndY0/fwiz1y5MgwevTo0L9/f+tTWNPv2rXL+i3uTxREQATuJEAf4hnUqlWr0K9fP3t+8dUK/ahNmzb2nOI8Vrvr168Py5cvN5GXZyLPRwURSDoB2rhcMST9Lql8IiACTSUgYbepxBRfBERABESgYgn4oNUrwD7B18z+zQB23LhxJsoiDGGpi6jLYBaLJgRbRN3t27ebX91PP/3UrG59UIuwxILIGxd2u3bt6tmasIuoi8XTiRMnbiuDhN00Jm2IQL0E6CdY13u/IyL7vED5wx/+YH6xWWOxS1z67ObNm8PWrVttokPcqHCt+lu9iHWihgjQD3hueX9gjdU7ou4zzzxjE4DyghNrXs7xfDtw4IC5IFq2bFn48ssvrT+RBiHeL2sIo6paAQQk7FbATVIRRUAEmkxAwm6TkekCERABERCBaiDAj3tfGKjifgFRd+LEiWFGNCP4Qw89ZO4TGKgSD1EX9wt8dopAxKzguFQ4d+5c2scg8YjPkinsIjhxnvDZZ5+ZqMuA+JtvvkmXg3M+sGZbQQREoH4CiEwuzvLyhZcnWNg/+uijZiU/cOBAE6fou5cuXbKJDZn4iYUJD7Hc5UWNggiIwJ0EeF7xTHz66afNLdHw4cPtixaPieuhnTt3mluhtWvXBl6W+DOOPqcgAkkkQBuVxW4S74zKJAIikA8BCbv50NO1IiACIiACFUcA4dQHn6yx8mPdp08f8ymIKIQbBqyTOE58lp9//tncJiDoMlEa4iz+cTMHsIi6CE6NCbuIuljsStituCakApeZgPcx+iTCLn2Y/oqoO2fOnDB58uRw3333pScsdPGXiQ0PHToUNmzYED788MPw9ddfmwsVzvvfhDJXTdmLQGII8NzjhQkvORcsWGATqf3ud79L9xXO47ua5+Hrr79ufuZxycBxBRFIKgH+1kvYTerdUblEQASaS0DCbnPJ6ToREAEREIGKJICIw2AVQRZrPSx1EXVnRFa6uE544IEHzP2Cf3JKJRmsfvvtt+ZTd+XKlWb5h0hEWohL8eAWu9l87Lp4hE9eRF0Ju3Fy2haB3Ah4P+LlCf24V69e5j6FlzL0YyZN4zPyeB+Oi7t8Ns4LGvoy4i6W+J5mbiVQLBGobgKIs/Qt/OrytQn+5hcuXBjGjh0bOnToYOItfQYr3SNHjoTXXnstbNq0yV5+0i/pbwoikEQCtFsJu0m8MyqTCIhAPgQk7OZDT9eKgAiIgAhUFAEXb1gz8PQJYrDwe+yxx2yyJSz/sABEoGVwy8AVq1p86mKZhCjLJ9wuKrnFbjxtruU4acYnT/M4EnYrqtmosAklQP/EBzbuU6ZPn27uF/h0nBc3iLrx4FaE9PsLFy6Ew4cPm7i7ceNG8w+qCdXitLQtAim3QDzLOnbsmHZxMmvWLLOG54Uo5+hPuGTACv6tt94y90T0L3/WiaMIJI0AbVPCbtLuisojAiKQLwEJu/kS1PUiIAIiIAIVQYAf8/HBJpZIzPo9adIks9TlM26fKI0KIQRhyYdFH6Iu1kgIsrhfYDDL4qKuA/A8WHMeC+AXXnjBBKe4j91SC7vxervA5WvKHj/vddFaBJJEwEUk2i0LbZaXMOPHjw8zIitd+vGAAQNu8wEaL79fwzFeyly8eNEsDRGktmzZYi4aOOb5kL76RZygtmuVAM9K+hqTis6fP99cM/A84wUK4fr16+aG4e2337aXn1jEc4y+RPA+69t2UP+JQJkI8Hddwm6Z4CtbERCBohGQsFs0tEpYBERABEQgKQRcpPEBZrt27UwEwpculn6IQp07dzZLXcqMKMvA9OjRozZRGlZ9+NTF/QKuFxB0SStb8LyIg3XT888/b8Jut27d0tH37dtnbhjeffddGxBzDYNgL186Yp4bpOfl8aS83H7Oj2stAkklQN9gwb0J7RZr3E6dOpnQhFU8/Xdg3URptPdsgT7tfYE02MdKd+/evTaZGhOqHThwwF7mkI/3yWxp6ZgI1BIB+htft2AN/8c//tEmU7v//vtD+/btDQN9iZegvCBZvny5PTNPnz5tfYi+xkKIb9sB/ScCZSDA33YJu2UAryxFQASKSkDCblHxKnEREAEREIEkEHBBhzVh0KBBYcqUKSbqYvGHNZKfY5CKeItl7vr168O6detM1D137pyJQZz3gWq8bn69rxGHEJ3+9Kc/WV7k4QEBiQHwO++8YxbBHHfrJtIvZKA8PqD2spE+275f6DwLWX6lVdsEaKPuVoE+RT/Bsp6BOS9Opk6dGpjQCatCD9n6p5/zNu/7fDZOf8QiH7+7Bw8etP7fUBp+rdYiUAsE6DP0O16IDh48OLz44ov27Ozdu7cd5yUm50+dOhVWrVoV3n///bBnz550P1JfqoVWUjl1pD1L2K2c+6WSioAI5EZAwm5unBRLBERABESgAgi4aOMDSfb9GANPrI4YnM6IPt2eO3duwGIXkYhzBK5jorSTJ0+az0AGqAg9iD8MXknL087E4fl4nnzujXXTc889F6ZNm2YTtPk1TDazYsWKsHTpUvscHGEVv76kXWiRlTS9TGzH96l3MfL0emotAoUgQBv1QH9lgkPcnMycOTMgLuHv04P3U++PHPdtzvm+93mOYYn/1Vdfpfv8F198YX8HPI5dpP9EoMYJ0I/wt+svLOmHWM7Th7yPfvrppybs4o+e56if8/M1jlDVTwAB2rGE3QTcCBVBBESgoAQk7BYUpxITAREQAREoFwEXb8g/PojkOBZ/iD9du3Y1/4AMTPEX2KdPn7T7Ba5D1D1+/Lj51F22bFnYv3+/ibpYCjYWPH/WLLhyQNB99tlnTeC977770kkgHK1cudIsdhGOEXPxV0i5XXxKR85jg/QQjHEDMTD6VH348OHGgs9k8YN47Ngx+7y90GJyHkXWpSJwBwHaMX3KferiPgWLez4N52UNgTi8TMGynri4Vmnbtq0dR6ClX+F6AWt8+hrn/cUG/fvSpUvmemXt2rUm8NI/EHwVREAEUgToVzxPevbsGV566SUTeHHJELeW59myefNme7Z98skn1t/oezxj9JxRS0oCAdqxhN0k3AmVQQREoJAEJOwWkqbSEgEREAERKAkBBoiIMvxAZ5uBIwNOF2o45mIQx7HSxbKPCdLmzJljFn+Zln6Iut9++23YuXNn+PDDD03cRSRCLKovkL8H32ZNOSjDxIkTzRUDlruIyATKdfjwYbNqwscuAhLBr+G65gYvA9eTDnUn3z/84Q/m55fBDIPwb775Jmzbts0ELPwI55Nnc8uq60QgGwHvy/QTX+gbPXr0sInS6Ev0q4HRiwqEW2/z7j6FT8CxKhw2bJhdQxq82KGN80LlxIkT9pJn5MiRZm3o/c6FX/omLhnwuctLFwRfxGOuJy0FEahVAvQ1FvoDLy2ZSI0XLPGXlrzQpJ/xggRXQ7w8pG96X65Vdqp3cgjQhiXsJud+qCQiIAKFISBhtzAclYoIiIAIiECJCbig49ZAcWGXYwwkiYOo269fPxM3EYUeeughszhicEocBBss9vhsdMeOHSbqbN++PXz//fdmdduQmONloOqZ24hJCMnPPPOMfTI+YMAAE28Rij///POARTB+dhGa/NrmDn65Pl5O9lkQrydMmBAeeeQRm2AKkZd6UzeE3ffeey+sWbNGwm6J266yq58A/ZG+432Bft2lSxdrx1jq0p7pS4i6iLIExCTaNBOh4RMby/QZkbuVgZH4SzqkR8CPLn2bY/QJxF9EYE+H4wi5pENcLA/xv4swRX+SuGsY9V+NEqAP0FdYsNqdPXt2mDdvXhg7dqy9MOQ8AddFTDb6v//9zyZU++GHH9ITH9YoOlU7QQRopxJ2E3RDVBQREIGCEJCwWxCMSkQEREAERKCUBFz4QWghMNBElHHxheM+yETMnDRpUnj00UfNuogBKWIRgXiINljm8tkoVkYInoi8pNdY8Dzi8biOhc+9sWTC7QPLmDFjzFLw6tWrJi7hv3d9NDkbg2BPh7Vvx9NsbNuvcR7kjRj28MMPW70Rw5hgyt09IIQhWOHj9z//+U9OdW2sDDovAoUgQF/2FzO0V9wvMAh/4oknzFKXPoXVufcVXsqcOXPGXpZgaU+fWrRokblAGTp0qLVtF3aZ2Ik2z8sUXvIgFA8ZMiRtuUv56bvnz583a12EXdKkrxDIy/uYHdB/IlBDBOhz9E9/vmI5j7DL843ni/cz+gkTqfHSkK9SsODlhQn9WkEEyk2Adixht9x3QfmLgAgUmoCE3UITVXoiIAIiIAJFJ+DiKYNMxB+Ciy4uvLhFH+LmggUL0rN4uwjKNVjPnj17NmzdutUmM3NLXYRf0mssxNOKx6V8DHKxjkVcwkqYidoQW/FBiHhMXrhhIB9Ph/r4djy9hrbJi+sI1J2y40sYK6qnnnrKfAn36tXLRGVPGzEbsYpPZf/1r381lLzOiUDRCdCGCbRPtr0PI+rSjpkoDRHWLc7jbZ6XMljaY6m7ceNG+/T773//e3j++efNcpd0iU/aCLtvvPGG9T98gzL5GqIU4i6Wu/GAEHXo0CETdlevXm1iMC9lJE7FKWm7lgj488P7ExMZ4ooBP/KTJ09O+9rlPK6Nvv76a+tv9EvcHPFCkeD9vJbYqa7JIUD7k7CbnPuhkoiACBSGgITdwnBUKiIgAiIgAiUkgPCDmIl4ypoFsdLFWMTeDh06mC/duXPnmj/AQYMGpS11KSpx+Xwbn7oInKwRiTjuFoNeJQYCPqj1Y6yzHYufp1zt27cPCKu4g2DCJvLEYhBB2YUi4pEWA+KmBmfBtfDAIhkxjHpjqcs+E8eRBwFOWCRv2bLF6o0vUQURKCcBb/f0Afoe7RifukxwOCNyqTB16tTQt29fe1FCHO8rWLtjaf/BBx/YyxkXj/7617+GF1980QbvxCWQB8Lu4sWLTQDmpQviLsIubhlw3xAXd+lXFy9eNGtDrHY3bNhgL2I0oVo5W4ryLieBeF9im346ePBg81uPyyGsdnnW0NfoPz/++KO9GMFql5cvPPMI3n/LWRflXbsEaH8Sdmv3/qvmIlCtBCTsVuudVb1EQAREoIoJMHD0QSZrFgaSLFisduvWLTA5EpZ+WOwOjHxtIrB6QLzl8238AOJ+AeGGfbfGIx1Pn2s8D78+17Vfh4jE5+OsEVaxZqIMXmaP5wJXLukT1xcXuBGQx48fb2IV7icyLXWJz8RpiGFMEIWlMp/MKohAOQh4H4u3e/og7ZbPvOMTpdF3PD6W9vjt9P6L9fvx48fNIpDr//a3v5nF7ogRI9LXkIcLu7R99kmTAT75YHno4i79iUAfxXKXCdUQdnkZghUvgi9xyMvLVA5+ylMESknA23r8+cjXIUzOibDLlym8kKFf0b+Ix+Sc7sudyQh5/vGSkXMKIlAOArRjCbvlIK88RUAEiklAwm4x6SptERABERCBohFg4MjigcEiYgufh/KjHZ+6iLpYESHqusUqohCWuUxghljjlnjxwaqnGV/7oDZ+LJ9tT6+xfLPlQb39esQlLJQZUCPquoWjf7bO9cR3MQxxCiEbC2UshzmuIALlIEAb9n7MNu0Yq1ncltB/faI0JkD0wOfcuDNhgrP1kT9dXlIg6vKyhP7P+X/84x+3uWLgWvJxVwxcR6Dtd+rUySY5RNidNm1aQAzG2t//XtA/sdLdv39/wLrdJ1S7cuWK9UHSVRCBWiFAP40/s3iRylchuDV58skn7YUqX6YQjwWrXZ457lP+u+++Swu/6ju10mqSVU/apYTdZN0TlUYERCB/AhJ282eoFERABERABMpEgAEmg0MXdfFhyw92BpmzZs267fNtiogFHpZ+iEIIugg1TOyCKMQAlXRIz5d4tRgMFDKQnueTa9rEJ7BGxOI6hF3EbD5b57NyBKoBAwbYeeoDI6ykELMRcxG3WGOpK1G3kHdUaeVCwNswcWm/tE/aKaIulvb0X/ou1n/9+/cP+Mr2azIt7RGMcG1C+/aAsPvPf/6zXmH39ddftxcbxCddFsTkYcOGmeUuVv4DIwt/xF3vY8TF7QN+qTdt2mTW7mxTdvofawURqEUCtH2enfipfvnll60P8TLVLezpX4i5vEx8++23zbd8LXJSnZNDgOeOhN3k3A+VRAREoDAEJOwWhqNSEQEREAERKDKBuPjpAiyDShYGkfj2w9oOSz+EIVwxxK/xz6qx1EXcxPLu2LFjJm4izriwSzXYdzHJqxVPy48VYk0+uabtZWLNAgesGRF1n3jiCfNFiiiFSObpwgffhoi5b731VtizZ4+JvC7qerxC1EVpiEBjBGhv8UDbR0Dlk24G27NnzzZxCJ+6uC/xwHW04127dtlEabyYweLchSXSoY83JuwyeRruV/zvBunTF/j7wUSH+KZmojZ8h2LN632T+Lhl4HNyLH7x64tbE14KcU5BBGqZAM/PRYsWmdUuzyNe0nigX/IyFZcMy5YtM6E3/nfA+5jH11oEikmA9iZht5iElbYIiEA5CEjYLQd15SkCIiACIpAXAX6Y+2AQUQhhd9SoUSbq8jk11ncc4xyiC0KtizLLly83qyEmWrp27Vr6PANTglvg+X5eBS3ixYi6WCgjZvMJLD5JmaANC0fYUA8Clrq7d+8OK1asMEEMDgy0CcSDExaP8YG2ndR/IlBkAt6PEYHw08lLGfzdxt2IeD/H0v7TTz81URarWawA6dssxKE/EBoTdrHYXbduncX1tD0N+g6CLla7/B3B5y59jHj0D+LRf44cORLWrFlj4q67gbAE9Z8I1BAB7z9eZSx1n376aZtMjb7DC0bvl1jWM4EaLxc3btxo7k24jvOZ6Xh6WotAMQjQ3iTsFoOs0hQBESgnAQm75aSvvEVABERABJpFANGSH+cIt/jPRcjF0m/y5MlpSzsSRohBkOEzanxkIuhg6YcbAnz/+XnWPsAkPktSB5uUDdEZ9wuI2VgnT5061fwcIky5II14y2AaC0efKA0LQ6wTqRvpEFz89n07qP9EoAQEaIf05dGjR5sYRB++//770y8naJO0V8RURF0+50YccktZ+ix9l+ACUq7CLmmTv/cF9ln4e0K/ok/h1oSy4TPU41Ne/p5guYv1L5b/TLyoIAK1SoC+Qf/Dwh6/9vPmzTOrd17Q0L8IvDyk3/JC5N133w1ff/11uHr1arpf1So71bv0BGiTEnZLz105ioAIFJeAhN3i8lXqIiACIiACRSDg1qhusTpjxgyzsBs0aJB9Po1YSXARZt++fWYlhKjLgNItVBmQEly0yRR67GRC/vOyIdgyUdoDDzxgg2c+G8dSCusoH0RTbywcEcGoMxNMMahG9EIIIx519vrHq+hpxI9pWwSKQQAxiPaMiPrss8/aSwpcMngbpJ/ycgJ/toi627dvD1ja4/4gs+36Nc0Rdr0/0DfoO7w0weIQYfeRRx4xEQCXJ/53hTx4OfTaa68FvgA4evRoMfAoTRGoGAL+koVnEZb3CxYsMCt8xF7O0V95QcML1jfffDNs3br1jsk7vQ9XTKVV0IokQDuTsFuRt06FFgERaICAhN0G4OiUCIiACIhAcgkwuRFuCBB1mSwNURdrOx9EMpBk5np86q6PfGK6qFufuJk5qMwUjspJgrJRL9YIuPHP1rFWdlGXMmPhePHiRfOlu3r1ahN1EcMQyTwQzxc/Fl9nsoif07YIFIoA7Yx2iICKsIvFLsIuAivt+PTp0+abE4tzLHZxe4D7FL8uXg5vs7kKu1zr17D2NBGa6Wu8NHJxl78vWBIzyRriLn0JVxD/93//Z8IuvroVRKDWCHj/od5s02f5aoTnE76q58yZE3r37m3+q/38+fPnw8qVK801EM9mrN/9ZWM8vVpjqfqWjgDtTMJu6XgrJxEQgdIQkLBbGs7KRQREQAREoIAEGDzyubSLuggw+Ip1UZeBIgIQE7bw6SeiLn4xEW1wVYCY5HEZjCZtQEn54mViG0GJsuMDlAEzvkgRthG4PVBvRF0sHJmohs/ET548aZa6buVM3IZEXc7H82ZfQQQKTYA26P2RQTZCEBMA8oKGdoyl7meffWYvZWjHCEANTVTmbbY5wi518+u9b9DXEHIpD39n6G8Do4kJeXl0+fJl+9uCKwas4ZnUTUEEao1AvM9QdxdosXifMGFCePHFF23NJIQ8v+hbPG8PHTpkk6jhGonnMi9K/MVlrTFUfUtPgHYrYbf03JWjCIhAcQlI2C0uX6UuAiIgAiJQBAJYBLm4icUqQq8PMhlcIrwcPnzYrOk+/vhj+1QaoZeBJcH90MbFziIUM+8kXWRizSetCEv4L0RkGjp0qPn+9M/DyYxPXRF1sdRdu3atferKoNnrTRqIY43V21nmXQElIAINEKAdIujgw5b2PGnSpDBu3Dg7hnUu/qF37txplru0Yfp2fcHbbFOEXdIiXb82vk1elA0hl0kJEXd5kYJIhdUhbk6wJEbURaxSEIFaI0B/YSF4f6HP8HzFJQPuGJ555hnbbt26dRoPX9IwgRq+dpkIkf5EH/R+SERPN32RNkSgQARoZxJ2CwRTyYiACCSGgITdxNwKFUQEREAERCAbAQZ4bs2DVe6QIUPMso9Z69nGqo7zBAaXDBIRNxE2GTQiEPlEaS4MET8+KM0cVGYrR6mOebl8kMsacQlLXXwXzogEJj4LdysoLxdiNv4LEZvwR4ovYRezPS3qDQMWHzj7OU9HaxEoFQGEXV5MsODDtnv37mFg9PKCfSx0cSGCOwaCt1PvH5ll9L8RTRV2Sae+vsBx0kWU4pNyBF7KiTB14sQJKxsvTvzvSmaZtC8C1UrA+wz18/ZPH2Vhn2cWEw/++c9/tgnVmEgNl0EE+v3RyC/1Bx98EN5///2we/fuRl822oX6TwQKQIA2KmG3ACCVhAiIQKIISNhN1O1QYURABERABDIJMIDkhzgCLkIu/i6Z0AihE0s/t1hlMOmiLuImn3niB9NFXR9wkj5x2Sd4+r7Psfg2+6UKLjgz8MXqibLhagFrRiaYeuyxx+4Qs4njlrp8so4lFAKvf7ZOXTLrwzW+ZJ4rVV2VjwjQD2nzHmjz+LblOFawvJhAOKWPezul3WYL+Qi72dLzY54fZUCsQpyibAjIrL0feXytRaCWCGS2f/opx+iP+MueP3++LWPGjLG+7Wx4ZuFqha9LVq1aZS9KvK95HK1FoBgEaKMSdotBVmmKgAiUk4CE3XLSV94iIAIiIAI5EUDcxOXC9OnTTdjFYpVjLuoyIHRRFyvd9dFkafjxQyCNDxbZ9oUf9yzEiYtLXiDOlTp4fdz3KK4TELOZXApBm8ExFoPEox4IYAi4Bw8eNCtd3E6wjZ9dj+P1jNfFGbAuRz3jZdF27RLIbH+0RRdOvV3SxnMJxRJ2yZtyxgNlI79cyxa/VtsiUG0E4v3Dt+kjLLhNevLJJ+3Zjb9qvroh8Iw7depU2LZtW1iyZImt426Dqo2R6pMcArRLCbvJuR8qiQiIQGEISNgtDEelIgIiIAIiUCAC/Ogm+AAR/7lMjoaoO3v2bLPU5RjCCnFYsMr1iZawWEXcZODowQeZxEWM8X3O1yfOeDk8jeauPR2vT0PpeJ0oE59/DxgwIMyIXC8g6jJAxkLZ0/F687k6bieYJA4XFLhkiNfP8/e158/1npYf01oEkkCAdpnZXhsrVy7CLtaBr7/+uvWXxtLTeREQgaYRoN/685T+yzZWuzzD8A3/8MMPm7sV79sIuUyexkSf77zzTjhz5oxZwjctV8UWgaYRoP1J2G0aM8UWARFIPgEJu8m/RyqhCIiACFQdgYaEGx/0ueiIqPv444/bgs8+LH4QcQjEQdTFOpeJWDZs2GC++/hEmjjxQabHj+fNtlvser6WcPRf5r4fb+qadFjIi4Xg68w8PB5x+vbtG2bNmhXmzp0bHnjgAfOpy3Vedz5Tx08h1skrV660ATK+P+P5kA7By5DaS/2fLV78vLZFoFwEvF+4xb1bsjdUnvqEXdq596t8hV3ve/53paHy6JwI1BoB+lpmoO/179/fnmMLFy60r05wuULf5hxflzBB4muvvWbrH374If3czkxL+yJQCAK0Owm7hSCpNERABJJEQMJuku6GyiICIiACVU4gPvDjx7WLMQzyXLxxIQYBl5m1sdLF4sdnpHdxhXhYp2LxwwQsW7duDV999ZUdAyPxchFgPL9ioKeOBF9THrZZe77ss81gl4Cl7n333Wd1ZrI06t2tW7c0H+Lgn/DLL78M+NRlAhoslBG44aggArVIwP+WZE6e5v0MJvjylMVuLbYO1blQBPxZFk+PPhYPvu9xeZZPnDgxLFiwwCYAZSJCf+7xEhaXDHxxsnz5cnuW8YKSEO+78fS1LQL5EKDtSdjNh6CuFQERSCIBCbtJvCsqkwiIgAhUKQEETRZEGBdofYDHPgM5FiYpGjhwoA0Cp02bZq4Y+KTTxV/SYPD3xRdfmJUulnhYryL0IiTnXNcAAA12SURBVG56+sQrZ6BuvlAOt1LytfvB9TLiP5d688kqE6WNHDnSPmV10Zd41Pvw4cMmZONPGBcUWDnF8/H0tBaBWiFAn6cPNCTs8ncCy0BclyiIgAg0jUC2Z4w/sxtLiZe0PMsXLVoUxo0bF3CnRHpcz9cnuBFaunRp+qsbXClx3n8nNJa+zotArgRoVxJ2c6WleCIgApVCQMJupdwplVMEREAEKpwAAzgCYmtcoOU4wiU/tjmHuMnkaH/84x9N3Bw8eLDNpk0c4iKKuqiLle66devSvmVdMPUBoedZLnTk74KT14+ycJx9F3YpNwNd6vrQQw9Z3ceOHWs+dV3UhQ0DYMRsLHWZKG3v3r02aRxWT6THoiACtUjA+1lc2GXCRYL3C3fFgJW7ggiIQNMIZHvG8CzL5TnLRKD0xyeeeCLMmTMn9OvXL3CMNHm28XKSFy58fbNjxw57rpEuz0jvv00rrWKLQHYCtCcJu9nZ6KgIiEDlEpCwW7n3TiUXAREQgYoh4AM/F19YI2b6BGctW7a0ARyDOCYMw7KHzzbxr4v1blwAxeUA4ibWqh999JGJm+6GgHx88JmEwSB1pOxeb24Yg1gvW3w9ZMgQqzeCNhOl4X7Bz3PN1atXwzfffGN1ZoK4/fv32+DXGwF1d85+TGsRqBUC3scyhV36BOcIEnZrpTWonsUgwPPIn0mefq7PHZ5hXbp0CePHjw/PPfdcmDRpUujRo0f6pS6/BbDaXbFihbkXwm8+LzL5bZCZp+ettQg0hwDtScJuc8jpGhEQgSQTkLCb5LujsomACIhAlRBwwRGRkwXBk4XAPj+0sUxlwrApU6bYRCtYrmLFSuA8aTCLNuImvviYKA3fsvibjQ8uieuLXVzC/zLzZTBL8HpzHuGJuntc1ojZuF7Apy4TpeF2Ih4QdY8dOxYQdPFFyACYeiNYOVvixznEr9e2CFQ7AQm71X6HVb9yE/BnVrwcuT5ziMf1nTt3Ds8++2x48sknzYK3Q4cOdpw0caXE1yjLli0LH374YTh79mz690E8T22LQD4EaIcSdvMhqGtFQASSSEDCbhLvisokAiIgAlVKgB/UCDAIm265iujJoI9PM7FWnTlzpvng69mzpw34fOCIqHvy5Ekb8DEJEuImM2q7SOxWeaDLNgAtNlLy9LzjebngxHkXen0bayTqjaA7ffp0G2xkTpTGYJdJ4XC9gMWhTxCH+wXYuDDunMibbQURqCUC3s9ksVtLd111LSWBbM/V+HOnobJ4PCZSw8fu888/b1+oMFGoPzt5PvpXKUuWLAm7du1KvwD2tD2u72stAk0lQBuSsNtUaoovAiKQdAISdpN+h1Q+ERABEahwAi4y+tp9xvpAr3Xr1qFXr142yEPUHTNmjO0jehKIxyeZ3377bdi+fbt9quluCNzq1wXTOKpyDAA9T68r+y68UkY+N6VeiFDUmwllpk6dasIu/gcRdb3e1AVLXSZK27Jli1ko79692yx+SYu6k54LWsQnP8+bfQURqBUC3g8k7NbKHVc9S02A54s/4zxvf477fn1rf5nL843nHH52582bZ64ZsOL1gP/8ffv2ma/dd955x9wN+XPe42gtAvkQoA1L2M2HoK4VARFIIgEJu0m8KyqTCIiACFQRgfjAj22ETkQYthE3sdiZOHGiuSJA1MVSF6seAnEQdY8fP24TquCGYOfOneaGgMFeXMjMFHczB6ClQur1JX8WF5w4ThnZZ4I43C/gZxAXDKNHj7ZPVF3U9Xoj6mKpG58ojesJLu4S1/MoVR2VjwgkjYD3AQm7SbszKk+1EPBnWrw+/ryLH8u2TTwPpIOwtnDhwjBr1qwwdOhQ+13AeZ7rZ86cCZ988kl44403wueff27P+8znu6eltQg0lYC3v/nz55tLkN69e6d/c54+fdp+b7366qtpV1+kz+9WQjnaofcxfhe/8sor9lIEt2UE/z24ePHiQJmxclcQARGoTQISdmvzvqvWIiACIlAyAvEBnWfKD2tETH6cIm5ivcOEYffee296shSu++mnn9KWuuvWrTPLVfepGx9k+g9fT58158sRKIuLzgwG2KcsbqnMGlEXH8K4X5gwYYL51PUf6AwcqDdiNkI2voSxUL5w4YKlwXnSJHhePugoR32VpwgkgYCE3STcBZWhmgnEn7leT55B/jzyY9nWPKO4nq9MWLDSxfUS4i6TpTKxmqeP2yWef++++659oXP06FF7wUu6xCHkkqdF1H8ikEGANiSL3Qwo2hUBEah4AhJ2K/4WqgIiIAIiUDkEfFDGIA/LXETN2bNnm8DJRGkcR6BhYfB34sQJEzYRdXfs2BHOnTtnAzvETdJyMRQhNSniJgNOyk4ZsUhmTTmxtqCMWIcwQdyMGTPCgw8+aBy4hvqwRtSl3ps2bQrvvfde2Lt3b3qiNNIhPQ9+nXNlX0EEapEAfYN+IIvdWrz7qnMpCNC//Fnj+fHMyeW5w3X+/OIZxotdXBEh7j711FPmgonnJfFID5cMuB7Canfbtm1mxctx0iDkmq+X0/PnOexpuMjM7weF2iFAW5CwWzv3WzUVgVohIGG3Vu606ikCIiACZSTAQI4f0wyqsFjFOgf3C/jUffjhh80dA+c9MDHYDz/8ED766KOwcuVKEzfPnz8fsOTxQaSvuc7T9+t9HU/TjxV77QNO6sk2ZWBB1MW3IBOl4X7B3U4Qj/Iz2ESU+u677+xTwKVLl5qvQSZP8+ADY9/3dbyezsXPaS0CtUCAvkE/kLBbC3dbdSwHAX+WxfP25138WLZtf0bFn0+IuwhsCLt8tRP/JB7RlclR8bP7/vvvh88++yzwLIy7K4qnlS1PjvHcJR7rHj162MRtfBmEmIvf/kOHDoXvv//e9utLQ8eriwBtUcJudd1T1UYERCD6oiXybSjzHrUEERABERCBohNgcMUPagZXkydPNlEXi9V+/fql/ZtRCMTbU6dOmS/d1atXm88wfO65FWwugzmvjA8mfb/Y63h+bFNWRNs2bdqYdRLuFx5//PEwcuTI0L17d7Po9TJhqcuM4PgW/OCDD8xCGbcTXO/B0/R9X3u+TWHj12otAtVAQMJuNdxF1SHJBHjO+LPGy8kzJ5fnjl8Xj8sxfg/wXHzppZfsZWenTp0sD+Ihvu7ZsycsX748bNy40Z6P+NzPNU/K6PliHcyXMrxUJU9eHh85csReojI5Ka6O4s9ar5/W1UeANiFht/ruq2okArVOQMJurbcA1V8EREAESkAA0QXLVPzqYanLhCnjx483H7v++SU/thE3T548aZ9grl271sTNs2fP2iCMQVdTB14+qCtBFdNZxPNkmwXxmkElVklMlNa1a9e0mE2dELPxI4ioy0RpfIKKuB0fBJNB5r5n6nnWd97jaS0C1UpAwm613lnVKykE/HkWL09TRdb4M4r0+IoH0fWZZ54xt0z4n+dFqD/T+FLnww8/tC93tm/fbta15O/n42Wpb5vfHvzuIA/82nfo0MFEY1webd26NSxZssT82CP2KlQ/AdpOsYVd2nm8jbIdb/tNoex9jL6iydOaQk5xRaC2CEjYra37rdqKgAiIQNEJ+I/X+I9aBmr41MVSde7cuTbI8s8uiY8ow6CKgRaz+uKCAR+zWOoS/EcxcTxdXzdUoVziNHR9PueoFz/Escx1X8L4E8QNBZ+FEojDp+NMFLN582bzJ8ws4LihQOT28jtTX2eWKzNe5nnti0C1E5CwW+13WPUrNwGeM/6s8bLwTKrvueRx6lt7Wu3bt7cXvS+88IL5ne/Vq1d6slHS3rdvX+DrnRUrVoTDhw832W0Cz1xeJpP+2LFj02nj2oGXqP/973/t9wbPXIXqJ0C7K6Ww6/0mbpjAsVz7jfcxCbvV3zZVQxHIh4CE3Xzo6VoREAEREIE7CPiPVR+0YS3DQI0BFf5lETcRO13cJB6fXJ4+fTpgkbN+/XqzosHXbGbI/GGceT5z38uQebyY+54nriN8gjjqzczfWCN5gBNCNRZJiNj4EmaQyQRx8OAc/gSJF6+3Xx9fe57OPn5O2yJQCwQk7NbCXVYdy0mA54w/a7wcPHOa89yJp8NvAVwwPPfcc/ZVC6Jbx44d0+nikmjnzp1h2bJlgS95eGbyjMw1DB8+PMybNy8sWrQoDB48OD15mk/Q9u9//1vCbq4wqyAeba8Uwi7PJA9se5uNt/1c+o73sVIKu5Qxl7J5/bQWAREoPwEJu+W/ByqBCIiACFQVAX4M8qOQH7KIm4i6TJCGbzt86/bp0yddX+LxYxcxExcEWOXs2LEjPQM2afmPYRduuNh/cDb1BzLXxq9hP99AWShbvEzsI2jz2SfuF/Ah2L9///SAkriwYdIWJoVhghjqjdsJ6ss5FoTdXMrrcbwM+dZJ14tApRHwvw+aPK3S7pzKWykEeM74s8bLzDMn3+cOaeKSCTdFTz/9tD03cV9EIG2EX170btiwISxevDgcPHgwuK9dL0d9a9LGDRKiLpO19u3bNx2VL4R4qUqafCnE3w6F6idAmyiFsEs+tF/WtGG2G3tJn40+17HkK+yShgdPk33K589P9ikjv1+J05zykoaCCIhA6Qn8PwAAAP//Z9Z3IwAAQABJREFU7L1plFVVlu87IwiCoG+kBzXoQUCkERRQERRBsc1MTc3MarLGeJnezHxjVL2vVfW9aowa9eHWfffVqKqXlS9NTTNN0x6l7xtROhHp+066oO8CIt78zRMz2BxPBEG050TMBSf2Pmuvvfac/732WXP991xz5fXr169cIgUCgUAgEAgEAvWIQHl5ueTn50uvXr3koYcekscff1zGjx8vffv2lVatWkleXp59rl27Jt9++6188cUX8tlnn8nGjRvte2lpqVAHycv6Pls/xr6nTHl+LLmlvvpMLl9ZWZnJWlBQIJ07d5ZRo0bJnDlz5MEHHxTta6WoqMjkpvz169fl6NGjpu/SpUtl7dq1cuLECbly5YpQz40bNww/r/N28rpONcXgdvXF8UAg1xDg94bngN+U119/XV555RUZOnSoPXMcI82bN0/efPNNWbBgQa6pF/IGAk2OgPd1SUHoc+ra71Avz2j37t3lsccek5kzZ1q/2bVr18r+/9KlS7Jz50557733ZP78+XLs2DG5evXqba9Nvc8995y8+OKLMnHiROnYsaOJT99Kfdgd77//vuzevdv65aRusd88EaC93XffffLMM8/I888/L71795bCwkJTFnt05cqV8sYbb8i2bdvk3Llzlo/dSqLd1CRRzvsdrsf55NX0/OQ1/BlDxn/4h3+Qp556ymxpyvg13n77bZN5w4YNyVMz7lNfUib2SWw5hv3peRkriMxAIBDISgTygtjNyvsSQgUCgUAgkLMIYBC2bt1aunTpIlOnTpVp06bJ2LFjzRBt06ZNJWnJoOzIkSNGbjJQ+/LLL43chNTFsORDPRiuPnB0IxZwPM+3ybzqwKtvg9XrQw6MdwanI0eOlCeffFIefvhh07tt27aVImHYo/f69etl2bJlRmozSIWQQmc3/KmXfa+/soIMO14miUWGYpEVCDRbBPht4DkIYrfZ3uJQrIkR4PnyvsZFoc+pS7/j9dH3tWvXTgYNGmQvgp9++mkZPny42QCUoS88deqU2QnvvPOOQGCdPHnS+kyXha3X5zK1b9/eXvJA7I4ePVp48UriOC+S3333Xfnkk08y1mUF40+zQ4A20tDELu0Ze5APL/rvuecesw3Jp93yYr+kpOQ77TcT2P6M1Texi31Nnffee6/07NnTng1k4iXH+fPnayRbJnkjLxAIBJoGgSB2mwb3uGogEAgEAjmBAAawD5BqKjCGIkYi5CYeEePGjZM+ffoIpC4JwxaPVchNBmdLliyRFStWyPHjxyuJTK5JOepyYpc8H7S5XG7wumw1kdXr8HPqY0udfLp162aDR8hsPI/cU5djDEz5YNR//vnngqcu28OHD5uuyM5x18n1rom8XqYm+teHvlFHIJBtCASxm213JORpbgjQz3hf47p5f+Xfa7vFJsBGgIjFZsDLdvr06YLXLuQY1+FlMC9B8drF6x6P24sXL95ySZfP+0L64FdffdVskSFDhlSW5QXQ6tWrBU/HhQsXCh7Bfk5lodhplgjQRhqa2MWWo0/CJhwxYoTNXBs4cKC1sf3798umTZvsxQJ27+2SP2P1Rey6bJ06dRKeCRwQeKFC/Txfa9aska+++spepOBoESkQCARyA4EgdnPjPoWUgUAgEAg0CQLpgyQXAkPTj3keW/dYHTNmjHms4rFLOAYMRhLnMYDz8AuLFy+WVatWGclLPnU6QcN+8pNp0OUGr1VeUb/vV7XNJHdVZTPlZ9IdL6AOHTrI/fffb4Tuo48+agYzePj10O/s2bPmcYSHEKQuXhsMMEnoTYLQ5oM3RU0T18iET03Pj3KBQK4j4L8b4bGb63cy5M9WBLw/TsqX3gcnj93Jvr/IpT5CNvFy1MOp4MlLogzPNzbDhx9+aH0oRFSSfPL+FvKKfWwR6iEcVP/+/Sv7Y7x/l+hL5T/+8Y9WTzL8053IHWVzDwHaRUMTu6DCdQjJ9cQTT5g9TPvDJqTNEn6MmWqE4eKlAm27quTPWF2IXSdz/Rq8QIHMnT17tkyePNk8iqmf5wLZ8IrfsmVLZSgKPy+2gUAgkL0IBLGbvfcmJAsEAoFAoMkQcEPSiUmMTvIgT9iSfADFPnl8xwOAWLqzZs0ybxs8d6nDE+TmmTNnzCMAjxuMWshNv55vvTx1Jq/j+b5NL+/5DbkFCyeRMJb5YCQzgETvKVOm2NQ2iF6Sy3jhwgX55ptvbCBJDDc8ljmWTF42mRf7gUAgcHsE/JkMYvf2WEWJQKA2CGTqj+urz6IenmH6VwimwYMHy8svv2zxRJnxQx5lOH769GmZO3euEWN4FvKdYy4ffTK2Bi9cIdWoh/i6eE96mT179tj5H3zwgcVS5XeDOiI1fwRoA41F7DJrjfbHWhP+goKXCNi9vNznxYITqFW1P/L51JbY5VwndnnGWO+B54tY1njG8yKFPHDhOcCL+F//9V9lib74wAkjUiAQCOQGAkHs5sZ9CikDgUAgEGgUBDDskgkjkOSGpW/JS5Yln0VJJkyYYAMpPHWLi4ttoOZ1YMwSv2vdunU29RGvgIMHD9r0SrxTvW62nrhG8jqe71s/x783xpYBI2Q1evEhfi5T7YgJiPGO3hC9rjeGMl4QkLoMRpn+iccG+ekpqXvyWFX5yTKxHwi0ZAR43vit4LmKxdNacksI3RsKgUz9cX32wd7XUyf2BC+Jf/KTn1hohrvuusv6VI4RkoH+lIXP6FMJyeAvoV0etvTVP/3pT23hNEJDQayRz28FMf0//vhjq+PAgQOW31C4Rb3ZhQDtrDGJXTzGJ02aVEnsehvGDsQe/uijj2Tz5s32ggICluPJxHc+dSV2IW/5oDse7IQ6Ib4u9bpNi53OQr4Qu8yoQ8ZIgUAgkBsIBLGbG/cppAwEAoFAoNEQ8MGbD7KcoHQvGARJlsEgxDuVQRjGIp4xkJsQnm6gQrZgLOKZwMr0kLrElr1y5Yrp5aSMG7CurMvg39O3Xn96fn19p/50GTB80RlvIOL/DRs2zMhsn84GqctxEt5FeD/gVYT3Ax8MZeogpddtmWl/0jFJOxxfA4FAQBHw35AgdqM5BAINg4D3+8na67N/SvaH9K8swPqjH/3IPAvxMHSPR2wRZv54SAZi9BNrl/7WbQL6YGL2/vKXvzSv3wEDBlR6/VKGGUPvv/++xfd3j9+kXrHffBGgnTUGsUs7wx7GKxbP8d69e5vdyPU5xgsKXvqziC5xnrGP+X758uVbwKcsn9oSu1zPw4WhN6HCsFd5prBX/bnz54pFBd944w17+cGzESkQCARyA4EgdnPjPoWUgUAgEAg0KgIYem7sOWHCoAkPGDcSvQwr/hJHjGldDz74oMXqwlj0BNHCdC6MVhYMw4hNxpb1ck4gY8BmS0IWx8G34ICRjAcRRvIjjzwi7qHsRjIGMuUwilkkY/ny5TaA3LVrV+XA0/G7na5u1N+uXBwPBFoyAv47FcRuS24FoXtDIpCpz6rv/il5DfZZhPTZZ581gowp4x57Hltk9+7d5lXIYmr0rRBlbj9A6hLC4Re/+IURWey7jcELZc559913Zf369failf46UstAgHbVWMTu3XffbW13xowZNqMNu5G2iQy0VWxFZq4Rngs7EVL10KFDt9wIf8ZqQuxyPuW9firCXiVMGk4I0zR2NTPLIHXxivdngvbPy5Jt27ZZiBJsdeRy54tbBIovgUAgkJUIBLGblbclhAoEAoFAIHsQwEAkYYDywROGwRUGIUQmq+oShgAvAAZeeOomjUU8VplmBqHLZ+/evVZfsl4MUeplm03J5UFW1wk58SRiaiekLnrfc889lXpzDh65GMl46uKJgWcRKyFjJHM+iTodg+p0pj6Xo7pycSwQaMkI8HzyPAWx25JbQejekAhk6rMaon/yfpG6IWR5afzkk09aHHv6Xo5jixC3nj72T3/6k82GIdSTz4bBNiHuPaEYeOEMoUaiTmYPcQ4eu19//bX17UHsNmTLya66aT+NQezSJ0HistbE6NGj5fnnn7dt9+7dLd9RoS1jH65Zs8Y8yYm9S9smn/bq29oQu9ibELgDBw6054g1INiH6PXnjLZ/7tw5I3UJv4DNSngS7FWuHykQCARyA4EgdnPjPoWUgUAgEAg0GQJuWGJcYgh6iAW2kLrT1ANgzpw5UqzhF9ybBmE57+zZszadC0MRjwRIXepxcpMy2Wo4Iqfrgbx4PaA/RjIeyuiNpy6eDxjcntxIZsBIDD/0xmgnH13dmGbr+35upm02Y5RJ3sgLBJoCgSB2mwL1uGZLQiBTn9UY/dMDDzwgLEIFuctLVOwMZKGPJrQRno5vv/227Nixwwgq8lkojcVMX3zxRYuBz8wiP2fr1q3y5z//WRYtWmSevrwMStouLemetkRdaQcNTexyjaRtS/sjHANOENiPSXKXcrRBX1ANb3LaKOQuLyr8ZUVNiV3uKXUigztf4DH81FNPSf/+/S2kSdIG9xckPA983AmBeqgjUiAQCOQGAkHs5sZ9CikDgUAgEGh0BNygw0BkoMR399RlH8OYmLp8mOLFogzu1QqJibGIcfrhhx+axyoeABivnOt1o1TS+M30vdEVr7ggOpDcAEY3YgljlGMgP/zww0LcPvRGB46DE+EXCDuB3mvXrjVj3aeIJvVOx6Hist/ZUHc6Rt8pFBmBQAtHIIjdFt4AQv0GRyBTn9UY/RNeusyOIVYp/S7ehm5r4FWIbfGHP/yhkpSCCCOeKYtWQQizQJS/kKaPZpo5xC4zaSDTyOPFbaSWgQDtuKGJ3XQksZ3x3KX9QvDysoLv7hRAaBHsRGa44bmLUwBhEZj55eRuTYjdDRs2mJ1NeyYmNfYq18PrvV+/fmavYtPy3GLjck0WEoTQZWFf99TlmUg+22GDpt/R+B4IZB8CQexm3z0JiQKBQCAQaHIEMHwZOGH4YeDxHWOQDwbj0KFDBQ8AwhCwj1eAEyucw7QuVqqeP3++xZbFU5fFTdxQ9PpRNGkwJvcbGwSujVwuE3q4ly664akLgY3HBTHK8ByC6OUczoW0ZuELVutmOhuGMrGFMZwzJc7z62U67nnU3ZS4uByxDQSyGQH//eE5fP31143U4beJZ4djJBZufPPNN226azbrErIFAtmIQKY+qz77J+8P0/s77A6mj0+fPl2+973v2UwhJ2Ipy0tkXqJ+8MEHRk4RaoGXrj/72c/MRoFA8/KQZIRggNglHim2CjaO/0ZkI+4hU/0iQDtrbGKXa9IGCS0yadIka5cTJkwwD1rXjnaIvYjdyEsHbEhCjdCeya8psYvt6qFIpunMMl6KMLsu3fmCts/MMq7D84On7qVLl4xI5nnw59C3LmdsA4FAIDsRCGI3O+9LSBUIBAKBQJMi4AM4DE0+TuhiGLIYBG//WdQE4gTC0wdkGJR4GEDqslI1IRhYgCG5YjVGohuKGI+cy3eu49dtCuWRwa/v8iEHuuMxBKmLgcx0UKazYTi73sjOlFCMZAzyJUuWWNgJvDBIXi5Zr1/LClTzh3OS51VTNA4FAi0WAf8tCWK3xTaBULyBEcjUZ9Vn/5TeT/Kd+tnyEvX++++XH/zgBwJZxdR2f/EKWQv5xSyZuXPnyp49e4zIYuG0sWPHVnr40k9ji/z2t781EpgF1+ijXYfoZxu4AWVJ9bSnxiZ2UZ32RZvFKQBSl3aMB2/Xrl0rQ4HQRiFxjxw5YrYk61Lghct3iN1//Md/NPub9SzQgw+JUCRvvPGGLdZLXF/31KX+QYMGVdrp1M+HMGm+UFqS1EVG7Hh/0RHPhMEbfwKBnEAgiN2cuE0hZCAQCAQCTYOAG40YeUzrgtDES3f27NlGdDLYwvDjOIMrjEXi3EFuQupC8JJPGf9QJ4YjxiXnQZxyzI1Jv2Zjasw1kSd5bQxwZGIAOWLECIunS9gJyOz0VY3xGML4xghHdwxmzk1P6OmJayWv5/npW8ctPT++BwKBwE0E+C3heQpi9yYmsRcI1CcCmfqs2/VPHOc8pqJDTNGv+rRz+kjvE5N1e53kkfxYr169LPTT97//fSOr6JuxH+i7OYep5Exh5wUr4Rf++q//2uwUbBcSvw2EXvj1r39t3vuHDx+uJLCSsljh+NNsEaA9NQWxy3VpqzwHELPjxo2zUCEs8kdMaPJJlKE94kEL6eoetZcvX5a///u/t1BgnE/yZwRil9kovKzAW51wYTgi4OmOE4Lb2Tx7OF9gpy9RB4QFCxYIzwGeuiT6UU/+bPrW82MbCAQC2YlAELvZeV9CqkAgEAgEsgIBjEYMPQxOPHV5+8/KviNHjjSi1w0+ynlMXchNDEZCEviAy7euFOdxjhulfPe6vIwf8+8NueVaGNLJazIAxUN5+PDhMk09KyB1IXjBgnLIyzkYxBjTDCiJ3Ye3kHvqJnVK7qMLdSSvV5V+nJd+blVlIz8QaKkIBLHbUu986N1YCGTqs6rrnyhPX0h827vuustiikLGnj9/Xk6ePGnes5CtlMFG4EOiTidaea79GvTHeDu6125xcXGlHcK1mMKO/bFp0ybzgmRRVwheXsSSuC7x7yHAeAFLPFPOg/Ty61nB+NOsEeCeNxWxm7TlIHNxlKCdjh492hZUc/uSG8CzAelKzF280QnL8Hd/93eVHrvU5UTsH//4RwsvQhsnpi4fbPZkmDTKc5x6sNEJGbZv3z4hTjXJ67Iv+sefO/8e20AgEMhuBILYze77E9IFAoFAINAkCDDAYqDji6UNHjzYDFBCMLDoAwMsjGMnbDEAITeJYYmxCKmLUcqUMsqlp/Q8zk+m9OPJYw2xz8ASGTBsGeSx5QORy8raHnbCPX+QAd0xkiFyie3HgNKNZOrwMraT4Q861kTPMK4zgBdZgUAaAjyvPE/87kSM3TRw4msgUA8IZOqzquufvB/FfiAkAuQVXrfYBZCqfCBjmWbOhxj1vCilb6UP5Xrsu53Bd2yPKVOmyA9/+EN58MEHjTAmn0Q5bA/6ZMoRugHyjJe0JBY2hdCCBIPcYoYRyYld+xJ/mj0CtJemIHbTgaVdEoYBz1pmwWFbd+/evdIG5dmiP+PZgNwlNjSOFZQnVi968IyR3nvvPVm3bp0tGoi3Lh69vFBxW5S6IHDXr19vHsDLly+35yT5QiP9WU7/ni5/fA8EAoHsQiCI3ey6HyFNIBAIBAJNhgBGnA+Q3GBkoEToAbwKIDcZKBFvFmPSB1wYi8TRJfQC5Ob27dttQRIMRsIweKLOZP3kc01PHPPvXs6PNcYWfZzIZounD0Y0g0imthFLOGkkM0hkEInOkNmHDh2qXCDO5afOqhJlvFxVZcgP47o6dOJYIJBCIIjdaAmBQMMikKnPul3/BHHlHoTYD/Sj9IvYDRCr9KPEx8WDl33IXvZLSkosbAILPDEbiHMgwvBoZDG0Z5991uLdQ9AlX7hSJ+cgKyRZ0gOSut955x0jdumvIZiRn7JuezQsglF7NiDA/c4GYhc5sCl79+5ts+GYFTZ+/HgjbcGJ4ySeFV6AQO6yCBrhFbDDabNO7BIKjPZNXcTUTZK6PDvEluZlBqEXqAcnBEI7pD+/yecg/ZgJE38CgUAgaxEIYjdrb00IFggEAoFA4yKAEeeGJMYmhiFGIsYmHgKEX3BvAiSDuGXARRwwj6mL1y4DKzxg3QvW66VuN0KTxqNfkzo9P5lHfkMnlxG9k7GEn3nmGTOSiSXssmMkM+gkjh8LxPFxT10wSSbKVpXQsSZ6IpvjUlVdkR8ItHQEgtht6S0g9G9oBDL1Wen9U7JP45ks1nAJL7/8spG7EE6Qs34OxKp/IK/w1oXUxXM3SfKSR1xQCFtmyUBSQRI//fTTMk3DJBH7n2tRL32u2x7+ohZc6JsPHDhgC6cxrZ06yYu+taFbTfbVTxvNJmIXeQibgAc67ZmQZ8nFAWmjeO4SHxpblJcjvLAg+fNGe+ZZ8uNur9LGeXZwuIDUXblyZSWpSxmeF3920p8FvqfnZd/dDIkCgUDAEQhi15GIbSAQCAQCLRwBN+Aw8ojLxWBp8uTJMn36dAtJQIw8n9KIMQipy5RH3v5jMOK9ysAMQ5KPG4xsMT7d0ARmv5YbpQ59Vfl+vD62fs3ktVxWSF1i+E2cONG8gZga16lTp0rZOYdBJXH6mNLpMXUxujnmH5eTeqtKyOGyVFWG/PQ6qysbxwKBlooAvy88TxGKoaW2gNC7oRHI1Gel90/ep7HlRSlhGF599VWzI+hbnURCVs4luW0AIYsXIXaEbyGl3Kv32LFj5t2L9yKkLYtPMZNo2LBhlXF0rUL943aHy0y/jY3ym9/8xvpt6k2X3c+NbfNGgDaRTcQu9jLtmfAJEyZMsBcWhC3B2x0C158Zng/v5/w5406xn7S5ee5IPAO0cxbzZVaZ26s8X9SDPe+2b6ZnIVOeVRx/AoFAICsRCGI3K29LCBUIBAKBQMMj4IMqvxLfMRAhN4vVy+ahhx6y+LLEmfXVpylLOQZJeOfy9h9SlyleSXLTjUWvO7n16yYNUz9e3TEvU9ctRi/XQUaSDyoxrNEbbwm8lIkJCKnrZDbn4BGBh/L8+fNNb7x2CTfhclNfct+vQX56Qv9MGKSXo75knenH43sgEAiknmOepyB2ozUEAg2DQKY+K1P/5OXoWwmb8MILL5jHLgSsTxH3Mi4p39MT/ScfSF48dT3MAmQVXr3YKoRMIlQSNkqm5PUS7mHt2rVG7GKvYMNEv5oJseafR5vIBmI3E9I9evSQqVOnCrPFIHf5jm3q7Zg26/uZzvc8yvmCxpC62OnYrpC6JOxg6qnuGeBYdcf9WrENBAKB7EAgiN3suA8hRSAQCAQCTYoAgycMOFaPZpDkK/Vi/DIQc/KTMhCZkLqQm8TV3bp1q8UASxqANTE8MynsddT2/Ex1pud53X4tjkPe4qGM9w/xAPEEYqAILpTnA6lLXL7PPvvMvHXx/mGA6fWxTdZJvZxfVfJ6qzru+dSZXq8fi20gEAikEOA3imcqiN1oEYFAwyCQqc/K1D/5s4itgE0xZswYi1XPVHM8eIkPyuJmSc9C9vE65Bpub7hdwvfkPs84xCx9MscgeJll5Oela0+dkFqQW2+//bbNNOLc6FfTkWoZ32kP2UrsYotie+JcQKgRQo5A7vqzcrs2688j3r0bN240O53ZZbR/nkeeMZI/y9XV53W1jFYRWgYCuY9AELu5fw9Dg0AgEAgE6owAgyYGYCzKgEE5Y8YMGTVq1C2DJYw83vZjIEJusmgYBC8DLD4YihilbN1YZMv3miY/707OqWndXi5dJqa6MQUOvQk7gd6spO2GNOeh3z5dbIKwE+i+Y8cO8x4CNzeUMw0qOV5VQsea6Im8jktVdUV+INDSEeD543kKYrelt4TQv6EQyNRnZeqfvBzkEv0oM18Iw0CMXV6g4sVLvH76WUheiCzysB/8OUYH+tbkd++72XLM+0XKJMtxrh9jH3l4Af2nP/1J3n33XYuRj2yRWiYCtIeaErt4ipNoX6TqbDorUMc/yIZNSugz1rbw2WOsd5G0Sau6DPLh4b5p0yZ7kbF69WrZu3evOV/QN/pzwnVul3iGks/R7crH8UAgEGhaBILYbVr84+qBQCAQCDQ5Ahh4TPXCUxdiE2MSo5dBF0YghiLGncfUhdB1UpepkckBVroynFcTA9LPcyPyTs7xc2u6pW6/Dl5DGMxTpkyxmLqQur5AnMuAYe+xhPF8cE/d9IEh5f0cl6W6QUCm8n5ecousLm8yP/YDgUDgJgI+YA1i9yYmsRcI1CcCmfqsTP2Tl6P/g4ziO30tCzvhXQvRS/zQXr16GaHLPl6JbJ3opSwfjzFalR5cn/ozJT+Gp+KXX34pb731lnz66adGfFXXN2eqK/KaDwK0lySx26dPH7OB0ZD4zYQYe+ONNyw2bWMTu/RjvOAg9evXz9Z7YCYZ6z74OhdVtXdscWxyFkqbN2+erFu3zmxXFh10Wz55bnLfLpj2J9OznVYkvgYCgUAWIRDEbhbdjBAlEAgEAoG6IIAxWB3JSt1uyFHO9/HUxYtmmq7GSxiC4cOH2wDLjUsITEhd3vrz9p+BEd6reLFyjLooixGYPljygVVd9Krvc93AZaCJ4UzYhZkzZwoLpWE4Q3K73JBEeCWjN6QusfmczEZXylEfyfFMysvx6lKmc9LL366O9PLxPRBoiQjwHPI8BbHbEu9+6NwYCPB8pfdZ9E/pfVSyDM9lsgz75NH/4qnLB7K3Y8eORurSJ0O00RfzkpV8wizwoRznuW2S1Jl6M8lHGfrsVatWye9//3sj7SIMQxK5lrdPO4HYJdTBiy++aO3N7T6I3RUrVhixC0HqxK636fS2Xt/ocR1ehvhLEWaTEcLkqaeesnUfcLhIj7mLDMjFIoO+UBo6HDx40Gx3bHTqTMruz0t18ifLV1cujgUCgUB2IBDEbnbch5AiEAgEAoE6IYAxiLEH0VoVuUoZN07xYMHQ4xwGUSyU9uyzz8rIkSON1HUvGww7CFzITQZGixYtMnIzfWBEuVwyAp3MHj9+vExTQjvpDeE3AoLo8OHDNhBE7/Xr15uRjO6eXGfH1fNjGwgEAo2LQBC7jYt3XK3lIZC0IVz7TH2/94feP3pZ36bn8+xC1vLBc5cPhC+evZC7hGnATmF2DYQvZC+2Cx88et1e4Xy/tl+LLeGjWEDqvffes7ijt3sBnjw39psfArSRoUOHyuzZs+X73/++veCnLdEuIXZpK2+++abs3LnT7N/09trYiNDuWVANItpnlSEvemDv84GAJtwItiryY7sSOs1lpyz7/nx4fmPrEtcLBAKBhkMgiN2GwzZqDgQCgUCgyRBIGm9uzHkeRiBGIYMpvAEmTZpkBi4eqwymkt4wEMV46rJIGlO7tmzZYjoRw4t6qYOUK0YiGCAzg8TJkydb6Am8IRg4khwjSF1W0fbVhDds2CAnT56sNKQp52UdX6sg/gQCgUCTIMBzzTMZHrtNAn9ctAUgkOz3XF36vzvt/zOVd6IKm4Pj2CFsIXE9Jq+TvHgtkgfhxYd8wjZA8PI74HYJ8kLibt682WYazZ07115S+3HXIbYtCwHaxd133y3T9KX+a6+9ZiQv7Y8EIUo7wbv7wIED31kYuCmQQjbaPA4Yzz33nC1GSJunvZNwviCmrpO6vlAaz0+mZ60pdIhrBgKBQMMjEMRuw2McVwgEAoFAoFEQwIDzgRdbN+p8EMMAhw9TGSF3i4uLzQuA8AuEI2BglCyLV++xY8eM1GU1aUhdQjL4wMvLopwbj1y3KVMSA5cJeZALIxjvHgxk4ggTTxgyG+8gjrs+V65cMa8NXyiNlYUheb0+tl6Wuv2a7EcKBAKBpkGAZ5LnOIjdpsE/rtr8EeD54pNM9H/eNybzq9uvqjzPMB+OY6Ngr0Bq0XdD9PqHOLx47tJ3Q/CyJV6vx+11j9+2bdvK0aNHbU0AXkzTp585c8bqSdejOnnjWPNCgHvPC4P7779fXnrpJXNuwC7EwxU794MPPpDly5fbInvYwdmQeAaQEc9dbFdsdl5qMIOM+NGEClu7dq05YuB4wfMTKRAIBFoWAkHstqz7HdoGAoFAC0AgOWBhgORv9RkkYex5bFnIzUcffdTITQZHTlZSBgL30KFDNhDCWxdjt6SkxAZc1MM10q8DtMm8poAafZOy+QASDNCbASGGMSsNjxkzxgxjBo5+HgYxccm++OIL81Ampi56Y9y7oZyp/qbQNa4ZCAQCNxEIYvcmFrEXCDQEAsm+z+un7/R+1vNqus10XtIOoR6+ex62B+fQZxNOibi79OvsQ/RCfEF2OclLOV5O47GLDXPkyBF7Md3UdkpN8YlyDYMA95+X/Ni9kLvYgtiGHnYM+4+Zath9mdpow0iVudZkW3WZR48eLXxo65DR2Klff/21eRizUBoJuV32ZB2ZrxK5gUAg0BwQCGK3OdzF0CEQCAQCAUUA4y1pzLEPGYkxSOI7Ax0GQNN0Chpv/TFqMW7J94Rxy1Qu3v5D6mIwsiiDE5tsk4aiG4+cn8z3+hpry+DPZfSBIFvkY/BH2AmMYRZKQ28GfwwIPeGpy9Q7VhLG+4HwC6dOnTKvIcfSy2bS03HIdMzPi20gEAg0DAI86zx74bHbMPhGrYEAz1d6/0a/531fbRBKP9frJ9+v5/25E7tch2OeT1m8c/ngicmHhdYoQ+xRwijhqYt3I3np16yN3HFO7iLgbQe7l/Bj2IK0HdoHL/KZoQVhmi0JeUm0dz54pmO3086RGXlp38jMM+LJ27mf7/mxDQQCgeaJQBC7zfO+hlaBQCDQAhHA4EsadZCchE2A2OUYRixxufBOYKE0Fg7DoPVYdhh/kCKQukxZZOoiYQgYGFGPG4duLDrEye9exo815havXNeffeRCZ/Qjpi5T1yCz0RscnMwGJzwz8NSFzIbUhdzFa9k9dZ0wdn3S9UxiQJn0435ebAOBQKBhEOA3jucuiN2GwTdqDQR4vtL7Nvq+9P6vNkh5HV4/3/16fqw29cY5gUA6Ask2ln4svgcCgUAgkKsIBLGbq3cu5A4EAoFAoAoEfDDEYSdkITfx1MVTdc6cOcKCYUzjwmPVB01sWThi5cqVtnjE559/bsQmnqwQm8l60y/tdbjBnH68Mb47+QrB4yQ3+qEnC8TNmDHDtuDAcZcZ8paVkJcuXWqLT6xfv948IMAs6SGU1AE9/fxkvu83JQ4uQ2wDgZaEQBC7Leluh65NgUAmG4B+sLq+sKZyeh3ed/Ld92taR5QLBAKBQCAQCARaKgJB7LbUOx96BwKBQLNEAHIDgpNBEcQkAyM82FhMBDKXMATE1WUqF568HKcsH6YrLlu2TD755BPz2MVjFWIzSepWNdDifFJVxxsDbCd2nIxFf0hdYglD6uKxCw6OkWPD4iqQ2fPnz7dYZcTkY3ob4RtcrzuVvylxuFNZo3wg0BwQ8Oc/PHabw90MHbIRAfq19L7N7Ye6yut9rdfPd9+va92Nfz5T529dZK7xZYgrBgKBQCAQCNQfAoxzU2Pd+quzfmsKYrd+8YzaAoFAIBBoEgSSgyLfh+ggEXZg4sSJtmDYww8/bLFmIT1JlMVjlbhieOgSfoGFIyA3IXTx+CVlGtDZgYo/fs2mGoi5fMjBx8NOPPbYY5WxhAk74eEXKEM8MjyU0Rcye+vWrXL8+HEjdQnlAEauV1LXmuw3FQ41kS3KBALNEYEgdpvjXQ2dsgkB72eTMnmfm8xr2ftO6gax27LbQWgfCAQCzQsBJ3azl9wNYrd5tbjQJhAIBFooAukEJAMwPHJZ6XfChAlG6uKx279//0pPXaDCMxUyk1i6LJT25Zdf2srRkL0QJUlitzpo/fpNRWj6dZEDvfHUZaE0YgkTUxhSl3wSZdCbmLqQ2eiN/iyURj4JYrcuyeWpSx1xbiAQCNQcgSB2a45VlAwEaoMA/Vp630Z/6v1/berMnnPqi4h1Yjd7NAtJAoFAIBAIBOoDAUjdsvqoqEHqCGK3QWCNSgOBQCAQaBoEGGAx8ILEJNwCMXWfeOIJ89h1UhfJKANpS2zZzZs3WxgCFg6D5CWmLschN3OF2EUniB28bCFxIXMff/xxmTp1qoVfSCd1Cb+Ap+6iRYtk+fLlcvHiRQtZAX7UQ6rLYDV98GsVxp9AIBBoMASC2G0waKPiQMAQoF9L79voJ+vSV2YHtJCxqX4/O+QJKQKBQCAQCASyD4EgdrPvnoREgUAgEAg0QwR8gMWCYZC6Q4YMkdmzZxu52a9fP1sozdUmDi0k7qZNmyrJzRMnTlhYBh+k5QKx6wNNZCbMAjF0x44da6QusXV79ux5i/ctRDV646m7YMECWb16tZHbHkfYSV3HybHw7zXdpg9+a3pelAsEAoHaIRDEbu1wi7MCgZoi4P1tsrzbHcm83NoPUje37ldIGwgEAoFAUyEQxG5TIR/XDQQCgUCgRSEAWUvq1q2beaw++eSTRnASlgCy1xODM8IO4KG7ePFiWbVqlRw6dMgOc8wHauxns8euDzIhdCCh0ZtwEyyUNnnyZAvHQBlP6HLmzBkjc4kljN7E2IUQdmLXy/o2iF1HIraBQHYjEMRudt+fkC73EfA+N6mJ2wvJvNzaD2I3t+5XSBsIBAKBQFMhEMRuUyEf1w0EAoFAoEUhAHHJQmnjx48XFg1jobQBAwZYWAb3RKXMuXPnZN26dUbqEo6AWLMsJMYAzckR9hnEOVl8OyCdAE0Sqbc7pz6OQ+gSZqFt27YyadIkmTlzppG7eCj7Qmlch5jBeOpu2LBB3nvvPdm2bZt56l6+fDnj1FKXzfXy7zXdNjYONZUrygUCzRUB/+26du2avP766/LKK6/I0KFDK3/X0JsXOm+++aZ56zdXHEKvQKChEAhit6GQjXoDgUAgEAgEsh+BIHaz/x6FhIFAIBAI5BgCTry62JAanTt3rgxDAMl57733GuHppC7k5unTpy38Ap66kLsHDhwQyE0SXqskyFLO4bvnVUdU1pb8tIvV4Q/Xhbwl7MTgwYPlhRdekIceesgWiHMPZcpAZh87dsxI3U8//VTWr18vJSUlFks4XT/KJ/VJ7t+JqNXhdSf1RNlAIBCoGQJB7NYMpygVCNQWgeZM7CYm99QWnjgvhxFQ069GqanaSbbLVyPwolAgkPMIMEaMxdNy/jaGAoFAIBAIZBMCEI5OHkLEduzYUR544AGZNm2akZsDBw6Udu3aGUlJOUjdkydPytatW81rDc/Vffv2yfnz500tFh2D5MRDl30+7DuxmWlAx4kc9zKNiQ+yovddd90lw4cPF+LpskjcPffcY2S2y4YO6I2+CxculKVLl8rZs2dtobR0/Vz+pD7JfT9ek63fm5qUjTKBQCBQdwSC2K07hlFDIFAdApnsgKayAaqT886OpUIxmG53dmKUbkYIWDuugT5N0U7gnGtii0I66/KGNdAiigQCgUBtENARrz6LqbCHtTm/oc/J0+mqNXxH1dCiRP2BQCAQCAQCd4IABibkZqdOnWyhtKefftrCL0Butm/fvpL4xWMVcnPLli2yZMkSC8FArNkLFy4Y4ev1UA6ykzohdpMDNjNmM7gqJMvciez1UbZLly4ycuRII7OnT58ud999t5G6yIpc6AJxvXHjRiN1ly1bJkeOHKlcIC5dds4jke8pue95Ndl6XTUpG2UCgUCg7ggEsVt3DKOGQKA6BDLZAen9aHXnZ+exIHaz8740rlTWjmtwSXsGalCuPosEsVufaEZdgUDtEQhit/bYxZmBQCAQCAQC1SCAIQq5OXr0aGGhNBYN69Onj8Wc5TQnFwm/QPiBBQsWyKJFiyy2rB/3Mnj08oEc8Y8fq0aEW8jf6srV9zE8lEeMGCEQuuhOKAYndrgWHr2EmIDUnTt3rqxcudJiCTt5nYmwdX2Tx5L7d6KD13Un50TZQCAQqD0C/vxHjN3aYxhnBgLVIUC/lt630UfWtp+s7lqNdyyI3cbDOnuvZO24BuLZM1CDcvVZJIjd+kQz6goEao9AELu1xy7ODAQCgUCgxSCAsXingyM8dceOHWvk5tSpUy2mLguJQXCQ8FjFMxdSlzAEa9eulUOHDtlCaU7eevgFtlzfvXU5DgnqdVV1I8wYTni4VlWuvvPRe9asWfLoo48KYSdYPM0HneiC3oRfmD9/fqXeV69erZaI9gFr8j4k9+9EB6/rTs6JsoFAIFB7BPit4rkLYrf2GMaZgUB1CHgfmyzTVDZAUoa67QexWzf8msfZ1o5roIo9AzUoV59FgtitTzSjrkCg9ggEsVt77OLMQCAQCARaBAJOAkLEphOpGJvkccz3WTCMhdKIqfvYY49Vhl8oKioyvKjPSV2PLctCaQcPHhTITb8O5agTIjSZnCAh32VLHk/uc35jJWRhUTSI3NmzZ5vuQ4YMuSXsBLqdOnVKvv7660pSd//+/ea9C2lNqkpmx6Ox9InrBAKBQP0h4L9bQezWH6ZRUyCQRIA+Mt0moD+tqk9Nntt0+9goqTBLLkNeHi+/k3ktLzJpUnvHpSprrlwLZzpGHXmZDniFObS9EzUyYdeQqmazbA2pd9QdCGQbAkHsZtsdCXkCgUAgEMgSBBgMMUiCkGDfPWSTBKMfg7AkEfuWMARjxoyRmTNnyqRJk6S4uNg8Vn1wRUgFwi988803tlDamjVr5PDhw3LlyhW7DuWcBGHfz8sSWKoUo0OHDjJo0CB5/PHHZZouEgepCxboQgKjkpISI3UXL15ssYQhsy9dumQ4Q+wmsa3yQnEgEAgEcg4B/00LYjfnbl0InCMI0H/ySabstyF4cW0UZIXY6KC2QFKJFrZfne6ZSMSqiF1gy890QgvDM9QNBAKBloFAELst4z6HloFAIBAI3DECDIh8kMQWD9kkScl3QitA+JKc1IXIxWOV+LIDBgwQPHW9nqTHKuQmMXWPHj1q8XOpwwdhXt7z2GZzYjE44uhC6hJTF69diN5kOnfunJHZLBBHCIbt27dXLg6Hvk78JM+J/UAgEGgeCPjzHcRu87ifoUX2IUA/mrQdkNBtiuyT1iVKErtQmqmQLdWRm35mc9zWRO90rjaI3ebYEkKnQCAQuFMEgti9U8SifCAQCAQCLQgByFsGRniTukcpeemLmUHqElMXchNC94knnjBSF8LTCWK258+fl02bNllMXeLq4rFK4hj1+r7t5MgfyO3hw4eb3hDakLqEZIDIcb0gtAm/MG/ePCOz8VYm7AS4JVP6oDR5LPYDgUAgdxEIYjd3711InhsIBLGbG/epOimD2K0OnTgWCAQCgUDVCASxWzU2cSQQCAQCgRaNAIMkyFZISUgJYudCVPoHcDgO4UvIAchNYupC6t57773Srl27Sg9fyl24cMFIXTx1ly1bJjt37qwM70Bd1JuLaeTIkRZ2AkJ76NChtyyUhk6EWkDXTz/9VJYuXWr7kLqeclVvlz+2gUAgcHsEgti9PUZRIhCoCwJB7NYFvew4N4jd7LgPIUUgEAjkHgJB7ObePQuJA4FAIBBoUATca9S3kLJO4LIl4WkKoUsYBrxyITcfffRReeSRR2TYsGEWfgEigwQxjKcuHqt46a5evVp2794tFy9etOPUQ3KC07eWmWV/0AVcILnbtm1rXskQuuiO3oRfcH3ACr3RFU/dVatWyY4dOywPbBwf1z2b9c6y2xDiBAI5h0AQuzl3y0LgHEMgiN0cu2EZxA1iNwMokRUIBAKBQA0QCGK3BiBFkUAgEAgEWhICTuiiM/sQjhCaEJbsOynp5SB1Z8yYIVOnTjVyk5AMniB+z5w5Y+QmcWVXrlxp+3jvkqiT+iBBc4HYREb07ty5sy2U5mQ2ISi6dOlix9AHvIipi6fu8uXL5bPPPpP9+/dbXlJvA0H/UG8u6O/yxjYQCATuDIEgdu8MrygdCNwpAvTNbpf4udnft0aMXb9XbIPYTaIR+4FAIBAI1ByBIHZrjlWUDAQCgUCgRSHgJCZKu8cu5ASJwRNeq7169ZJZs2ZZ+IURI0ZYSAYfXHHO2bNnzUuV8AsQuwcOHLDQBByjHPFpSRDAnpc+MLMCWfIHT2W8clkUDlKXxdIGDRpk8YWduEEPSF28c1esWGF6e0xdMKWcf1yt7B98uqSxDQQCgdog4L8PsXhabdCLcwKB2yPgtkeyZPb3rc2N2IWarT6slh/NROJmykveT/b9fM+/dfG0W2vIV5srUiAQCAQCLQGBIHZbwl0OHQOBQCAQqAUCeJ2SnGhNetdCyPbv318mT54sc+bMsVAMeLF6eQZTxJbdtWuXQOq+8847snfv3sq6fLAFOezXIc/Pt50s/EMsYeLoTpkyRZ566ikjdVkoLYnN5cuXZfv27bZIGqEnvvrqKyOtIXY8pQ9AHQ8/HttAIBBoXggEsdu87mdok30IpPerSJj9fWvuE7s3qVTdg2XNw5ZLhe3SL9ZQkvQq+9yXfH25n57I0Xlildk6R6py33duHvWcFNlbbvWlakgd0WuUuxw3y8ZeIBAIBALNEYEgdpvjXQ2dAoFAIBCoZwTwQsUQh4h1Uvfhhx+W559/3ohOSF0P1cDg6sqVKxZyYcmSJTJ37lzZuHFjJanrRDH1sV9aWlpJfFJHNqSkjEl5Ro0aZWEniKuLh3JRUZF531IGjJzUZaE0FojDa5eF0sDMMXS9k/WyT35VqbpjVZ0T+YFAIJA9CASxmz33IiRpngjQb3vf7RrSd2Z3/5nbxO6ttKt++w6xqy+0K/LKK8heM3XUXsrPV3vPSOCU7QOhmyJ1wYS8FEmbomZ5MZ76DoHr99nqsj8VZ+uxmymI3ZtYxF4gEAg0dwSC2G3udzj0CwQCgUCgDgi4lymhEhgctWvXzrxU8VglDMHo0aMt/AKELIY25CVTjfHUJbYsoQjwWD1+/LgtuObGOCL5YMu3LmayjOc1xdblQD72iaNL2InHHnvMYglDZoMPxz2mLgul4aHMAnHE1yW+MMlJ79roQf3pGNWmnjgnEAgEmg6BIHabDvu4cstAgH7a+23XOPv7z9wldm9SqP5S+iaJW+mxW87Les3Pu6H8bmkqDJXowrvXrkvrVvkVRK4eM89aFqe9Lnn5OltMKy8vZ/0FtSv1S6uCIg3ZxUK+eii/tX4KtN48tb1uhvHK13w45Mprc2W1nyIFAoFAINASEAhityXc5dAxEAgEAoFaIOCkLmQtH74PHDjQiE1I3QceeMAWEXMvW8qwKNrBgwdl6dKltlDatm3b5PTp00b2+qArl0hKdG7btq306dPHPHXRG09dFkpL6g2BC5GL3hC7YHD+/PnKMBOOpd8GMEgfgPqx9G32D0zTJY7vgUAgkI4AvwE88xFjNx2Z+B4I1A8CbmMka8v+/jM3id2bpC5oQ57yURL3Ox675OGZe1WPX9HwCzeMbC2/XiptWudLu6JCtbHaSFHbQmnTRslaJXXz9ZOnpC+kbmnpDblaWibXleu9ePGqhvi6qvt457aRsnIlcpXcLdNLQ/hC9OZVegFbhl7rVkkpFSkQCAQCgeaIQBC7zfGuhk6BQCAQCNQDAhCXTuoSgqFnz57yyCOP2EJp48aNs+9+GQZPFy9elP379xuhS2xZwhCUlJQYucmAizK5ltq3by/FxcVC2Iknn3zSPHW7du1a6YGLXhC46IqH8rx58wQyG/ImmSiXTGCRTvYmjyf3s39gmpQ29gOBQCATAkHsZkIl8gKB+kMgiN36w/J2NSUtmlT4BD1DPWzNO5eQC0rgphJevMzouiAFra5IUWG5dGyXL507tJYundpJ184ddfHZ9roobTtp175IiVp1Imil9pESu5iMV6+Vaoir63JNyd3zF67I2XOXdCbUJTl+4pKUnIfwVTtVCd7rN/L1c0M9e3VB3kSM3yB2K25DbAKBQKDZIxDEbrO/xaFgIBAIBAK1Q8DJWOLDQupOmjTJFgzDU5fvTvxCPBJH9sCBA7Jq1Sr58MMPzXsVopf4uRynLNtcSiyKBqk7depUefrpp2X48OE6+OhQSchCekPg4qlLLOH58+dXLpTGsdulIHZvh1AcDwSaDwJJYvfnP/+5vPLKKxafnN9F/y3gxdBbb70lCxYsaD6KhyaBQCMhEMRuIwGtl3Fil60Ru2bfEXaBEAnXNVM/5sVLuIU89dQ9oyRuvvTr014G3NNFiu+5S/r27ildldRt3049dotYvwGSFmJXy+sMB50rZjbklau6xoPWe/Vqub5IvypHjpbIpi375JtdJ+XEqcty+YqGdrjRWtS5V89tfQuxm6ceuy6rChQpEAgEAoFmi0AQu8321oZigUAgEAjUHQGMa0jchx56SF566SVh8TD3WHUvVMhNQg9A6n7yySeydu1aIzydyKgJyVl3Seu/hkGDBsm0adMsru7YsWONnIagdr2Jq7t9+3ZZtGiRETGbN282vf347SRyMud25SB+co0Uv51OcTwQaGkI+O8hv5dB7La0ux/6NgYCQew2BsqpazhZmm/v6/nDJ0Hsmtcu0XH1ox60reS0jB3TWyY9eJ+MGT1I7u7XTbp17iBtCvRYPnF1S7UcZHCKKhYleMvkhhK9Gn9XSd2y8gIle9tonN1WcubsNdm9/6ysWrdT1m/aLXv2lcjZ89hJkMpaNuGxS318dXm1QKRAIBAIBJolAkHsNsvbGkoFAoFAIHBnCEA6OIHI4AjSkvAL/fr1k4kTJ5qnLuEXkrFlITkpx4JhkLqEIli/fr3F1GWxtUyDrDuTqnFLo7+T0CyUxiJpM2bMEPTGU9f1odylS5cs7ASedSwQt3XrVjl16pSRv5SrSQpityYoRZlAoHkgEMRu87iPoUX2IuB9dFJCt2uSedm1z+yeCjLTtqlY3DWzIppOE5cvRey6HOQSjgGdYFMhaq8ZaVvcT2TmjGEyZdI46dvvXrmssXLPlRxXb91WctddbaVzp1a6wO41JXnV4xavXxZTs/Px1tU6sauIqavkbal65166Wijbd5+SRcs2y+p1+2TP/vO6xsNVXZBNwzlocZ8zhURB7CoIkQKBQKDZIxDEbrO/xaFgIBAIBAK3RyB9QARpe/fdd1v4hUcffVTGjx8v3bt3t+lxlGWwhOfZsWPHZNmyZbZo2FdffVVJ6mYaTJFXU9Lz9hLXbwnXCfKlR48elQuljRkzRnr16mUXc9lZIG7fvn0WSxhiF69dFoiD5C4oKKixjkHs1u89jNoCgWxGIIjdbL47IVtzQIA+2vtp1yeTLeLHsmPbnIhdEIVKxXtX/5brWgN5l/WFd6k8PL6LzHpihHrr3qcLo3WTzZt3y84dW/WleZ6MGtFPRuqne7c2amO612+KGMbjlzrL7YW5HlNit0wK5UZ5Oyk5Vy7L1+yRBct3yroNh+XUiRIpyCdOrzonIIadGcRuCon4GwgEAs0dgSB2m/sdDv0CgUAgEKghAgyIIB8gdfv06SOTJ08WSF3CEEBuku+DpCtXrsiRI0cs7AKhCDZt2iQnTpywK1EOz1fKevLz0gddfrypt8hFTF1I3QcffNAWiCOWcO/evY2sRT50IJYwpO6aNWtsobQtW7boQh5ndHpgykPZyZua6BPEbk1QijKBQPNAwH8bIhRD87ifoUX2IUA/nm5juO2RfdK6RI1J7FawnRXEq0tQm63XdKvHbqIm7L88Da+Qf0mJ3Gsya9rdMmvGcBkwYICcON1KPpu3VrZs3Kp2l8hjjwyUJ6aNkkHF3VL3Lw+vX+xHxSYPfPhOJF+2OrvMQjMUyfXyItm4tUTmLd0jC5ftkEMHjurRQj2udLAKSA125k1TVHMiVYkA5HnCbq+yXBwIBAKBrEQgiN2svC0hVCAQCAQCjY8AxAMLpXXr1k0efvhhefLJJwVyE1IXT1QSg6TLly/L4cOH5YsvvpCPPvrIFgwrKSkxj1XKQJDivUpikJX9A6uUzJC4eOiyUBpbYguDhyfIbPT+/PPPLabuypUrhTx0Rcf0AaWfV9U2iN2qkIn8QKD5IRDEbvO7p6FRdiEQxO7t7ocTpnVnOqsjdu2YEbvXJL/gsi5odk2enjFQZj8xSvr3v0cOHL0uH3y8UrZ9tV3yNYbuE48PkTlP3S/DBvVQJlZlg8xNVVKhEGRuitxNEbzqPCAaliGvUHYdvCHzlx2ST+Z/JTu379VSbYzY1TXTUsQu1Wktddf4dtjm/vE8HQOUEwIjwMr9mxkatEgEgthtkbc9lA4EAoGWgMCdkI2UhcSE3ITMff75522hNMIvJMlNvM0OHTpkHqsff/yxxdQ9f/68EZtOXIAt8XndazcbiV0fACIbCQ9lwk1AZk+ZMsUWiHMym+OUY4E4yFw8lNetWyfHjx+vDE1BmSB2QSFSIBAIZELAfx/dY/fll1+WoUOHVv52cs78+fPlzTfflIULFyQXqosAAEAASURBVGaqIvICgUCgGgS8X08WyUb7IylfKhos1KN/GjLGbs2J3Zvcnu6Z12xKQgtgq7IiLek7HrtaNl/tJUyrsrLLyhFeknbtRUndQTJn5mgZOHCQnDzbShYt+VJ2fLNRF08TeWjCYJky8T7p16eDXkTj8lYSu6lrUBfLr6WSe+7qYmqti2T/0VayYMVhef/jTbJly3Zpnd/OwjaUa2Bd/uVrwN0ksYteLntFhbEBAQUlTz2lzSYG8BxKLm3c1xy6aSFqgyAQxG6DwBqVBgKBQCDQtAhAHhASAYIVQqG0tNTCBThZmRwAkYcx17dvX4upO2vWLBk9erR57nK+E5aU2bt3r5GbEA947J47dy6jon4O22wbWLnubMEI8nrSpEkWV5cwDIRjIN91ADvCTEDqoveGDRvk22+/Nb2yUb+MNyQyA4FAoEkRCGK3SeGPi7cABLxvT6qabfZHSjYoKD6EGUgm8pLEblXlkufU/z5hDFIJygwZ8aC9oYuQqWwa41aDdlUcVxJX9/KVEEzZQqmy+Uqq5uH5KVeVWr0qN8quyvefG67k7lAZOqRYPXg7ysEjx6Xk5FFpXZAvvXp2lb69ukq7ony5cf2qevkSUoNLpCi7ctxvbyF2ibyrjHCr1nLoeGtZtOKIvPfxRiV2d+jia8oik1Rezkfe/HJd6BeiVwnjVI2qQQUbSM0Vu3oOMleTTI5KcKopmGOHFGz6J088MwlULJssNM/Lr7DpyypR89Pqb5u6+ZVjBxvHVOT5RZDxhoZ88xlz5BcmHEq8XGwDgZaEQBC7Leluh66BQCDQ7BFIkpEYak4m4D1L4jh5GEWex3cWSiP8wowZMyymbteuXY0UThnrqdiyhCFYvny5LZbGQmmnTp26xajKBK6fn+lYU+UhEx/IW/QklvD06dNl3Lhx5rmLEemJUAssEEf4BUhd9OY7xLmT5Nk5cHQNYhsIBALZgID/FofHbjbcjZChOSLgfXtSt+zrn40eUxGdUkySieQ5sevlXJtkOc9rmK1RdlzeKE+uW+FFq8RmPoSqEryeUsWIaqvescqW5uUreVp2XcuVSSv1vs3jk39Dnp45WGPsjpARw4ulffvOcvWaOhuUXjVbrE1ha50Z1krLQ8Re0zwlkc1rV6+tBLHxjJXELlJB7OqaD/kFcvREG1my8oh67G6Ubdt3SekNwmfp+foB47xytefKCzXmbpl+oD1IKWz1q8qZ+mbotlhiVzFgbKAEfZmCXc4aGYbTrX/s+SJL4StvQGI3eW2eX+s7bxUlJR+yVuS3Ylyj+5SvaDBpZ8TXQKD5IxDEbvO/x6FhIBAItBAEzKCp0JW32E4kuPrumYtxRlkndgm/4KSue6x6Wcp5TN3Vq1fL4sWL5euvvzZSNxlqwa+RC1sIXcJLdO7cWe6//36ZOXOmTJgwQWO/9f9O2AkWiMND99NPP5WNGzfKyZMnjdRFT+ohgVESe8uMP4FAIBAIJBDw3+MgdhOgxG4gUI8I5A6xe5MYTXnEOj0F4ejErlOOAMTxxiN2uWIqKYVqZCckKWQfcqh8RofiIMC+5pWpvanlWrfWgAmtbujX61Konrjqf6vkrRK1SvZOnNBHHnqwWAYW99HQDB20XvhBO7vyWpDB+XJFOrZtJV26tJcOHYu0TuxVioCNpwpiV4nIY0rsLlt1RD6au1G++WabOvGqxy6MreGFjK2VRFaaV8nK6yprCkUWV9OFgpWobqVFKW6LrbVUYrcCVmLsYte3b99O2mn8DJwcfPbapYsX5eKlS2b/2tghdVP8htTrlmu2bdtWOnbsmLq+eglXl5CHfrWkJLWQcUWDqe6UOBYINEsEgthtlrc1lAoEAoGWhoATi04ysoVI4OMpSdaSx/dOnTrJQw89JE888UQluZkcHOGxSkxdPFaJqQupe+bMGTP+/JqUz6WEwcjCaEOGDLmF1C0qKjI10AsjkXALmzdvtoXS8FQ+ffq06e3EOFvwzVWCO5fuWcgaCOQ6AkHs5vodDPmzHYGk7eKyuk3k35t+i7100y5LEZDGXGp+6pjpYWXctnKisnGk56qpK/t1oUOVFIX4NNJUjxKSQUMc4Bmrwb6koNV1JQPzpWOHArMt2+oiutCvVy5fUu/OG9K3Tzvp36+jdOvaQdoU6jGqqCAHfdtKYWlVflH69eooAwb2lX79eiq5q4uhWbkkRkgDhvny7clCWbH6sHz62QbZt2ePdO7WRYnklPcmx0tvFKjtpqTklVK5qvz0dSWjy5Baid0CJXYLKuJOmDev6VYNxs01FAMqc8MVYoihgQMH2ueuu+6yxZAhWvft2yd79uw1u/iqjgsaMrXv0N4cLYYNG2ZjFHeiSL8m7QL7OzWz7lvZuvVrOXv2nIbzUA/zSIFAC0QgiN0WeNND5UAgEGgZCPggx7dOQKI9pC5hCFgobc6cObZwGJ675FPOCcujR48aqfv+++/bgmmX9I099ZG8Pq+fPD/GfjYmDERi6BJDmLATjz32mH1PLhCHXnjqfvnll7J06VJZtWqVLZzGuU6UO0acd12NSMfCByjZqHvIFAgEAk2HQBC7TYd9XLllIJC0RVxj+uTs6pexn7Kf2IUazVPs8KmF0DWKV4nPPCc/y9RxQEnSgrxLugDaNSV08+Wu7u3knnt7SrcuXaSoqFC9ePVstadwk83Pu6ozovDqTYXBoppS9ebNz2+l0/8Jt6AL+LYu0AALl6V3jw4VxG4P6dCpDQywYsYnZXumtnjy5sup061l5ap9snTxJrl+9aL07KHELgyxndFKrpTmyd4Dx+TIyYty5oLI5esFqUANSuwSZxev3VRZbSdeveVk+NNciV29T0a0a3gFUH700UfMPh4xfLjexyIpUM/dL3TB4IULF8n6DevlwnkFsgFTD3W8mDhxosyePcvCxBUUMDvuuzeHtnVdZyeePXtGw6RtkY8/+lj27d8vl3WcEikQaIkIBLHbEu966BwIBALNEgEnVdk6AUlIBicdISb9zTcLho0fP16efvppi6kL2enkJgY2C4ZB6kJuLlq0yBYOS3rqcg3qunr1auVUrWwCNdNADp0It0C4iWnTplls3V69ehlWjhl44Zm7du1aI3XxVMZjGQ9e9KUcdXv9fPfkef49toFAIBAIOAKZiF1mDfC74b/X8+fPl7feesvieft5sQ0EAoGaIUB/nOyTOSvZX9esloYuhc2Q3cQuTCwSWpgC3bLwGMEYkDtPCdE8JQDLSq9IoXrGdmh7Tu7p10ZGjewjo0YPlb79dBG0tm10UTQlaZlCr0whIReIe2sLsEEOayY5xtdSbUXCnMrTgAkdCAXQvrV6i6oTAksewDZawv7iTD76V/dPn86Tz9fskS0btkufHu1lcHEPdVDAk5jTlNhVIvfw8XOy/ptjsn5biRw5cVWJZI6q565u8EW2lKrSv2XeJq6duUDu5/K8PDPnGXnxxRdlgo4R2ndoZ8/U4sVLBQeP5ctXyLmzZxtU0d59etsswtdee1UGDRposX+5obQXPtZOuF+6T0zg06dLhFBx9J3ffPNNgxPPDap8VB4I1AGBIHbrAF6cGggEAoFANiHgBC5etyT3vsWjlOSDHkhd3oY/9dRTMmnSJPPcJZaWD4ggQFkgDENpxYoVFlv2xIkT5plKXV4P14MI9fN8axfLkj8+qENOwi8QSxhSF3IXktexQnb0JoYuZPaSJUssti6kLl7KTohTzuvMRn2zBPYQIxAIBNIQCGI3DZD4GgjUMwL0yen9svfX9XypOlQHI5XlxK566OLNygdpb+ifG7Bp6iGrkWk1hEG5LqF2WQrzrsiQgW3USaCPjHtgoAwaereuXVBodhXeunj8pmoALvZJbH3fMm75wznYW/kalzcvv1Tvp0bGdULVtyYVdHG+lJwqkw2f75Y92/fJkHu6yJAB3ZRUxhsX+riVXNOF0y5eKZev9l6SFRuOyYatx5QIPK/HdLaVqnRdiWaq1f+3T5XXv33RXCthd0SxZ/vcc8/KSy+9pHbyBOmgYRFIixYtkffee88WTz57pqGJ3T7y5JNPyI9//CMZPHhQ5YtP5KBJ0RQt6T7ynjp12mbW/e53v9NwDFuD2K2AJzYtD4EgdlvePQ+NA4FAoJkiANHKB7LSBzhsGdj4sS46RQ5Sk5i6jzzyiPTt29eMaMqQPLbsOpt2tVA2bdpkZCfEKB/KOUHBd+pNpvRBVfJYU+wjH/ISdoJYwo8//riMGzfOpne1UXeQpN7Hjx+vjKnLgmmQ28Tu8jqQ3/HkvGzTtSnwjWsGAoFAzRDw301+Y3/+85/Lyy+/bHG+/TeVWsJjt2ZYRqlAIBMC9Mnp/TLPl/fzmc5p/DxYqewndgmV4FLirQuxy1JprcoKpLV637ZtfU66dxKZOqVYHpo0QIYN7y3dunXQcAoQsnjMqp4ps9Igtu+6Z9QhlVeR8pQ8TtGsXLVUP07sujScmMIwL69QTp+4JhvX7pT9u/bJiIHdZOiALlKooRi4HhLfUGnLlMQ9crZIVn11Ulas2y1bdxyRy6VtjdS9nqd2bYXfbnrb4Uq3pGZO7PpzUlNi1++i86y3YFWHL93u6mbOJ7PU+eSee++5hdhlfNOxQwch/m+RrpeRrx7kp3SWHSHTgtitA+g5emqqDfLXf2FyVJF6EjuI3XoCMqoJBAKBQKCpEfABDMYpHg98Tw50IDLHjBmjb8KflKlTp9riCE4CIzuEAx6rGzdulE8++US++OILWyjBiU22Xh9bvrsh2NS6J6+PbC4X+nXr1s1i6uKhPGHCBCOzwYJEObyQWSjtq6++Mk/dZcuWqQfAKfPgTdab3Hdsk3mxHwgEAoFAVQgEsVsVMpEfCNQPAm6fJGujr3Z7IJnfdPu5QexCyjqViscuYQsspq4Sr63lmnQqOiujhnXRmV/jZOy4u6V3z7YaNoEQCzpDTAlQtUIVYq+Bl+IgjhctJIzRD2RYskOV+5wDMUsZZpvhPECel3JnAo3RkN9WTn97RYnd7XJg5x4ldrvKsIGdpTUev5RXWQkdkZ9fKOfKusuWvRdl2Re7ZcXne+ToGaWnldQtU49gdYmwNsJvdLWpIYhdVyvFUFV7+YY8aHdFnxVSjYldyqv89U2ptW3HQnv9ZPiI4boGRncbd9gzrJdr1769DB06VMbq+iA9eqZCyLU4j93Uw6R3SgFJ3TK7b3X5k6zGm2Rd6st4LhUnL5Sx0J1lUh1tI78i7Mudna2lG0CmO5ahHk+wX9byVOCceqy23qrK69evXz03gXqTLSoKBAKBQCCrEGBQQ4JwdWKX7+S3U0MJY+jZZ5+1cAT33HOPLYrAccpCbhJblmlMn376qcXVhdyE7KXThCDl4167nEfKrgFTSlf0dQyIoQuZzSJpU6ZMEb4TdgK5KYfe6AmZTfiF5cuXy+HDh+1YSsPU36SeyX3HPFk29gOBQCAQSEcgiN10ROJ7IFC/CNAfp/fJ9NfJPrt+r1ib2rDTkgQiRKUPdVPHTI9byEyOO6FZm2ve6Tl6LSM8UnKVKa5wmgVKlLaC2C2/JN06nJNZTwxSYneiDB7SXdq3Y2ZYqdqJeXLjup5fQareemXoWpLek0qvXS6kl9P7ZFu7cCovpTP53Fcwg7YAB62nvEj3CqXk+FXZvG67HNy1W+5Tb91hAzqrx25qPQTzMTYyNl8u590lB0+LrNlyROYv2y5b9mkosbxSJXbx2L05Gw0ZPHEfsHtxBPDfb2zga9euq92s+YWF0krj+dK+sJWZ4cVxjrF4XJtCPa/CvmY9Cj7YnKlUQYfqNUjeRrkm12LNC2xVPoS1UACsHLYtdVAX4cP4rierDqnkyFV8rcgELyW/tA4WQmvTprXW30ZjIKvsWqKs7IbVeeXyFSnVup955unbhmKgPs5t00b1NHzAnMsR1uyayndN24HrSn4q5SkB11oDJxeqDBavWU/SqqwsOt1QfajGcC9qY2MXzixjYTcteJd68zLz7vnnn5di9ebFa/dOiF3HKSXNzb9cM09xb60L+BUWttbrp0KKVMBu1+begjn3urQUT3Kwt/8m883aGnYPDEnglkopIcCsdUW7Yd/bLLjRTpD/+nXaqeJ8I9VuOJ9qKEPye2j7llNPf7RipE62G9o440/aDFLQZsCWxDHalcXLrnj2kbn02lW5bPIreakyu+yt9N7xjefF2yP1UPMNbd/cLx/PVgLnMlFQE8+H42dEccVd5Z7TNsHQ7rnmp+5A6rxs+gsG5UHsZtMtCVkCgUAgEKg9AtZpVnTiqQ5TpL2+4R42bJi+hX/Owi/oCzNpq8aQJwzJkpIS81hdsGCBfPbZZ0Z2Yjx6Z+9ls3lrgyHVhUQHzFQtwk7MnDnTPJT5jrFDQi/0Q29fKI3wE/t1RV3OdewcTzup4jz2uZZvfd8yKv5QR6RAIBAIBBwBH2QxuIhQDI5KbAOB+kMgaQN4rel9uOc33RbbIduJXdBRykRj7RpRoBF1kTlf7aZWatu0ybssPTtfkh+9Olpfmo+Tfn07K2EIyXhdCjQMwo3ruvYC/5SQSdFF1Ee6Sez69xT1krqWlTAiNnXUZKisQb1vldAyUiuvQHOL5PJVkeOHz8mWL7bLiQMHZcyQnjKkf0e18yrsM6pRglndFzQicEc5q+EXNu04IR8s3CprtikxekNJJI3lW6ZESNLu86tjJ+MMMGLECOnUqZPZj6w3sXfvXmGtiuHDhwvhzfhNP3jwoKxfv95sZ46NHDnS7O6OHTsKYb5Y1Gvbtm06O+y42p6pEGGQVtYWVGdwLlPiClKxU+fOcq86XwweMlj69OljThjYpOWK/UVd84H6qGv/vv1y/sKFhMNFxaw6V6BiC5lbqjIWFRXZjLWhw4Zq7NrBGg+5s517Qes4pbP1Nn+1RY4cOSzTHpsmzz3/rM1w69ixg9VyS4zds+eM6EImHEaGDx9mdUGqkfbt3WfyIWd6gohlDDJo0ECN36uhO5TAgzg7euSonXPu3Dm5pt8rCbTUraxoT3mG+8ynZsoPX3lFBg0eqGOZdjUmdp0ETMrkYxx0ad+urS7+118GDCi2cG3cR9eJe8wC0tznXbt26faQYUAbhXA08j1ZcSPsQ0T7+KNMSVsWnRswYIDce++9tqYIDj3gi+ysFYL8Bw4ckC1btuj+WbkOzionGNhvJ/v8q3hoG0onFrwbpu2G9g3G2EY8fzgW7dmzR/fLZfCgQTJy1Egbx0HUcpxF+/bs2SubNm+ye56UH2KXegcMKLbnlfB76EXdZ/W8ffv2ye5du7Vt6QuHBKmtilsZVV1fIrSV4uJibZuDpKhNkb6USeHL877tm236rJ1XHC/b70BDYYMcdUmp+xceu3XBMM4NBAKBQCArEKjs4LUDhMDk7SzGKAYmb7inTZtmRh2dvZdlS2dP2IXFixfbgmkYLhgCXiYrlKuBEMjLBwMAY5uwC9OnTzdSF+MYTNyIAxs8lF1vDHL0vnw51Wm77l7et55fA3GiSCAQCAQClQgkid2f/exnVcbY/f3vfy8LFy6sPC92AoFAoGYIuA2QLE3f7f13Mr/p9mtK7FKugtVK0S+NLLLihjerkrtSDrHbSr114UFvSLuCi1Lcp0z+6i8nyIMThkv3Hu2lFd6vSpBCsGBfqTVm9lgFR1Qhu+vjqjgWRi9pZrK07/tW68O7T7+qiac+tko45nWWr77cLNs3bpV89TZ9YEQ/ubu7xl2FL9WCyGDErpK7V/Pby6WyNrJlT4l8sGSnLN14Qb1TleRRv1+8gGkj/EYnE8Tn/fffL7Nnz5bi4mLTB2Js9+7dtvguhG+S2CWMF3bkfffdJw9oqICBAyEe2xqp9vXXX9vCY6tXr5GjR48ZeYXnqlaqpKB6Qqt9WqCevuPGj5VRo0YZucQaGN27ayxZJWS9HWObs3jZQV3Yd/u27bJx00bZvn2HkldnTHSnzpN68Fx06drFQpLh7IB8ThhTjjrPK6G6UwlLxgEQr4wXJowfr6EPUk4gTuwyq+2sErtapRFkT8yYLrOfftp09WsuXbpUPv74EyXSdnmWbbmTXbp0tkWbZ6ht3rdfXyNmz58/p6T4Bpk791M5dOigXLx4ydoQJ7nNzZb7Q2gGnDVeUWJ3cBqx++abb1a7eJq3JOplnEAboc7WrQvtPj700CQZNXKU3Ft8rxH63FteVCjPaI4gkKOEq8MBhPsJQbpPyXXym4Log8RrpfJ17txV7h89WtcPGSsDtM3xMoKxX5ESopC/tJ1r6nF67vx5kx/ydM2aNfqyYZs6t5xW3XheUymJkedVHKrzhrqRhXv5xBPT9aXQNFtnwInbjz/+WHbs2KH3uIc55QwZMsTWR+FlB/frwoWLuvbJUZ1hucliKu/Qdn/5yiV7UeIeu2PHjpUZM2ZYW2esC2HPCwYWxZ47d67dL64PbiRIZE/Fet8ZKzO7s4s++2AHmbxi5UqZN2+ets1DWtR+VfyUrNsGsZt1tyQECgQCgUCgdgi4UUoHSGeGQTlaO3vCEPDhLS4GopfDY/W8dvQsFLZo0SLr6DFYeHvuxhSdcK4k9HK9MapZII4F09Abw8F1QT+MM2Lq0lmjP+EXmEZHGepBfy/vW3BwXHIFk5AzEAgEsgMB/11hEB3Ebnbck5CieSFA/5zeR9N/J/vwptcYuiRJIKYIppRcqWOmh1EtTq0YJdK4opu3rs7aqiB2dRK/ErvqEVpeKh0LL8vwga3lr34yUcaMHSxdOyuBpAudlenxfGVV8R4k+b1wK/ImJeJ7qh8etRaWIVXKy0K6pT6OgRZTMqZciZiyMiWPy7tIydk8+WK5romgdmvvrh1k9NC7pYuGhNBmYEmpwFT9eo3SgnZyRdrIjkPnZe7K/TJv7Qk5f0lDJ6i9bFeqsP1SZ6b+MssLG/K1114zAopc1mOAKIIYdXIUm5vZX3gc4tHbvz9enwPMGxGHAmxtbM4lGu7rk0/myob1G+WSOhFgr2JiU6b7XerlO+o+9ZZ9TO5TZwzIuQ4d2qntWqTkIiETaMdKRKm3IV6Hl5VMPHrsW1vgeNWq1UaMHtPvBa14BhJa6D4hIaZMmSzTlLQar2Rtr149bXzA9UnIj12Mk8fKlavsOx6VI5QAbteuyMrcSuyeNWKMe/HCiy/Ka6++qovnDdNyIClG6r715u9NNsuo+MPRHuqhCfH24ksvqFfyvTajsORMiaxYsVLefvtt9YbeJxfVM/I6XpWmc6pOvfvWnupC7CZlua5tFL3btm2j9+tuW1QZUg9vTdblaN8+5e3KlHzIP3TlHKbkX7x4weRcvXq1OcNARhLGorET7apnz57y8OSH5dFHHzVPVTxg8TwtVO9p9+jlOeRlC/eYMAx4sOLMsmLFCiM8edFgiQbWgIk2jLcs7fkHL/9AQ348Yy8Z2rZNvbiAeD1x/KQR66PUW7dbt67qcZwKg4JYyI/zzUH1zl+mLxiWL1suW9UTHmLdf2vuu2+EzJo1y+rmPkL44gX+hRK7b7zxhj5761NEdkU4C7u3qnfr1q30GZkqc+bMMWIXT3Xq5KUJcvE5dOiwtfuKZt6ASNW+6tTvRHjs1h7BODMQCAQCgSxCgI6IQQzTvwi/QGf/yCOPWIcPuemdH508nR3Twwi9wIqykLqQDiSmH1EGwyebk+vrMvOGHcOMBeImT54sxcXFZsD6wA6diKnL23ZWoEfvo0ePVuqdrM/19nP57vj5sdgGAoFAIFATBILYrQlKUSYQqD0C9M/pfTT9d7IPr33t9XUmrFsuELt46yqxqz6teeaxC7F7Q8MxXJNuHa/LAyPby2svj9cZYQOkU0f16FXCF14oT8MkELMVslbvhurqPqSpfXQnP89CJPjxFKHEGZYSRC/neyK0A17BV65cl3PqoLp71ynZ9/VGKVKZhhb3lOK7e0ph3tWKM/Q8vYYt4qbba600dIMSwvs0Ju+SL4/Lh8v3S8m5SxqOQYnNivAP6W0Hz0HsyL/8y7+0kAP8hjPTC/IW25hQApBH2Nu0MchdPpB/kKbkQw67xy1rOXz00ccyf94COXHyhJ6j2ChhSOiF0aNHyWwlpCY8OEH69O5jnrLanI0UNqcDLUc830L1LsU+VyiU5Loqhw4elrWff651qj2rROONG6Wq902CjtAV2MQvvfSSTJv2mAwYMMCm54MpRBmyll5jSj7enwVGXF+6dFHvaacKj9oMxK56DFtYDBXw5Zdflp/85Mc6xhheeVl0/O1vfytfrPvCb11qq/r07NFTnpz5pPzgBz9QL98BFkMXm3ylErtvvvWW7Ny5Ux1Ozqke6KBSQarqHlhwfyAua+uxmxTGCH19EdGnT18l7ycZ9qPVO9vIQH2BAOY4vrCF/CvSeL/c7/btOyj+Bea1vFXHEUvUO5kZNnv37E1W33D7AFFxf3HeGTd+nLzwwgvm4Zpqa6lxHqQvJCiyt1KyH69kwjLwPBHS46h6vq5d+7kQfm+VkvkX9Z7b7+TNplN/OqjIXBe5CZcA2fraj16T5zU84H0j77MxGsfWq5PNVSWee/XurR7H+kypnHiyoyf48/yh+iX16P5m2zc6hltgLxGOqGOOXUHbeq+eveQxbec8szj1+Fj2m2+2apt8Q+/VIiXmz+sLEtqV/kMevd9FRW3l+9//vq1DA6mcwqrcrvH++x/YWPH06RKVAWVSv2x20Sz7k9IpiN0suy0hTiAQCAQCt0cgfbDCdzo+OkGmiPmCYcTAYlqOl8cgxWBhOhkLpTFtClIXA4/zSRil2U7sur5skRdSFzJ72rRpNp0Grwmw4LgT1O5Vgc4YY0eOHDHjFp0xGinLx1NyP93o9zKxDQQCgUDgdgjw28pvSHjs3g6pOB4I1A4Bnq/0fjq9T69dzfV5FsRArhC7EH6QualQDPnl11Xya9L7rjyZMqGbvPDs/TJ0SH/p0J7jrMkA/oS8YtEst6PQVQlZDeWgy/CqLabes1fV+/FaakEjyBuL5KvnppbNgjbJ7FDAQmQ3zLP0nBw58K0c3H1E2iihfG/vTjKofw+1AdtqWGD1nEQOvV4KZ70+xK7KdbG0XBdQK5V12y7InxftkuOnzsvV61wt5bmqJ9ySIHaZlv0Xf/EXlVPG8dZlCv7mzZuN/Bk3bpzZ24RtwM4kFAPTvgnZQB7n+2LFzAxbvHiJeqb+wWKF4n2LthCvTz31lC4I9pzFSWVBMuxvCKyTp1JEMiRsW51xB/HYvcddFg8WPFhwau+efbJQZ929886f1FHhsNm0zqUVaLiHZ5+dY+Tf/fePVpk6GdkH6QehSszfs+qpC+HWVW3oHuoBChmGIwhEJovAkW7x2FVil8SzhuflX/zFT9TzcoTWa9lKtn1s3pHrPl+XyvC/Wr5nzx7msQshPHjwIGmnNvqJk6eMOMNj9+uvt5rTidvsN08lFEP9EbvUW6g448H8nC4qjRcx4SrQCQKPMRGeuNxv7gWexgP1PhH7Ffx5yYBzDPca3BcvWqze39dTGCTGEC5/XbeVT5PKx70iEeN59uxZRkb207AW7h1+8eJFfcFwxkh6YitDjhJzlvZMmyzQFwQQv7TH5ctXyFtKqBN/Fo9kfXjrKup3z1eZ9b8ltlziVfXyZt2XkeoV3lZDJhBTmbZIu4RMx8MdfBnD4ZXcu3cv1aGLtU0qOn/+gi12/dv/7w3zxi3nZZImCGxmbP7VX/2ljNdwfB4b+8jhQzL308+EcB14trMIG6S3naOhHvCQ/+lPf6ozPWdYyELk5MUJLyg++OBD2altgdjPJOtnbC/7/gSxm333JCQKBAKBQOC2CGD0uOGD0YEhRqITxEhkigvE7oABA2yqE4MbOiM6c0hdgv9Dbn744YfmsUq+14dxQJ1JUvO2AjVRAXQi4RkBmc1Uqqc13ldvfeObeuOaEgxd0BsjjOlwxJfCqMGISB/4pX9P1XBnf12uOzsrSgcCgUBzRSCI3eZ6Z0OvbEHABtwVNoHLVB/9uddVP1tsllwkdnXxNA230Eo//XoWyGMP95Q5s+5TG7OPdGhXaGRsykdXQzFoGbU29UOC9C2Qa2WFyq921AWISuXYoRNy5OBx+VYX6sI79Jram9fUg65UFxVLoaM1pfFLTCvHU9KmY2usTSK/9uxcKIPu6Sn39OoqndsX6gt+FrGC4NGXaOVO7EIqqeR5uoCaHjpackPW77osH6/QWLn7j8klnaRWpqRvpuTE7k9+8hPz2CVmJ/FJsZs/+OADsx3xliQGL3Y3NjT2JccI9UWsWggsyF0WMcYGXbNmrfz61/9tYQoglloXFOqsuqnyox//2DxH27QpMFv9pJKdW7ZstdAIRw4fkStXWf+htZHEEydqCAz1Lu3aDZKuQOPjnrey//Ef/ymfr1troQKI24tXLeTs3/7t3ypxqTFtNWYv/dA1JYN3qGcsCwYjJx7IPDsdO3SUKVOnCHFKcYwgHIHHIm2OxG6//v3UU3e2fO/7L9n9pQ1AGG7cuME8NRkv4KENNhCjvl4J+HfSMUfrwgKL2Up4DWLj4zhiHr5G2GdqUbXPS3kYp5xY/Ddt1qynzMvU5OnUQT1cRY4cPaL3dIuFmNu7d2/luI57/+CDE3QW52M6Xupg9/WaemoTPuS/f/0ba7cXKjxZay9lNWcqhvw044FNMo/d5583TD3cBzF0t279xha0ZlYlWKIrXtoQ8NOmTVMP6952PnVt2fK1/OEPfzQHJRYAvKZkLS9KCPHxlGLzve99T5/BvvaSgpck25Wc/ed//mebqUp5nj/qx4P48cenqUw/srjSHdVbmGd5//4D+qz+2kIVEoKFWMQk62dsL/v+BLGbffckJAoEAoFA4LYI0OnwwVOVLcYab2Lxzp06daotGsY0FIw6yngithIdObGVMEC3b9/+HRKXTovOLhcSsjLNjcUmpk+fbm/di4uLjejmGAnSmthheFh4TF3CL4CFl0nqWh+6Z6o3eY3YDwQCgZaFQBC7Let+h7aNjwD9bnrfS39eH316/WmDXZIjxC5euBpjN+WxC7F7TT9XpF+PAnl8Sm957hldaOqe3tK+bZLY1enSeh4evBCqeXkaP7NMPUuvF8qBQ6fUC3KfHNp1UEovXdewAkpi4hOs5uY1PrqTr/cL/169k3A0N5Meh6iEsCwqbCV9uuoK9n26SLcORdKuqEAKdWU3yGSWVUvF1oWsTeFMm7hhHrs35NiZctm095r8eeFO2Xf4hHrxqgfkbYhd99iF2MWL849//KORu8y+gDzC85AFyUjvvvuuhlv4yMJ94an7IyWLIKSwz/FATCd2e3RPhSb44Q9fkftGDDMdL2ns36+++lo+Uw/DxWqnnzxxUr0amY5eZPUM15lpP3z1h+bx2rFjexsDHD58VP73//5/lIRaaN6OtHkWz4K8/NWvfiUPP/ywLTzGeAHb9xP1qp2nU9m3bdtmi1LRP+ERzKy355571kK49embItHQqzkSu3h2Pqu64i3dV3Vl2LNNFxRjnIB35+7du4zMa63kucVBVo/XiRMflL/5m78RFtoiNiyesV9+uV7+7d/+zRxmIBDdoxbc7DeJnTomFU0TDjqpFxx4ohJegxcLgwYNNPkg7Jfr2I54sJD2x4+fMC/sAn3OGAvi/PKseidD3EPucs/37durpPQfNPbzJ+adfL2UZ6gBkv02V0/s7t69x0IlzNOwIjgfgR0OOjgujR49ynSdrPGEeQ6RHa9qyhI7l/i3vPRJzd5MLXr4q1/+0tpzB9UVj2BiCf/P//lvslpjUh8zolbjgiu5S12//OUvLBzHAA0Pgrf6da1rwcJF8qc/vWP395wuGAi5Tqqve9oAKGsLob9LEdANUX9d68zTNwyptlzXmuL8QCAQCASaEQLpxC5hCHibjGcAn4EDB1aSunRClGd6Dm/n8dQl6D+xrPBY5Xhy4MM+edme6IwxttxT1xcPwGvZE57HGLEQ2Bg7a9eutZVNLa6YdtyZ9Exi4fXUdJupvpqeG+UCgUCg+SLA7xW/Dww+WDyNGIOs+szvDcdIxP3G84cwMZECgUDgzhDg+Urvg3m+6tKn35kENSldU2KX3wS3wxgKV8xzr8kl6qOMLZ6WWlgsvyIebspj94r07p4nUyd2k+89/4AMGNDXiN2UfC6vyqrns+CaiE6zLiuSo0dK1Ev1GzmwZ7/k6W9gz66dddG1ztJGbTjUvK4q6jwx89SF7K00QStj9aYIFWy+ojatpYsuetWhMF/JYX4/oXCZZUaoCL22x9Y1Ylcr1/838lrLJfUIPna6zDx231u4Sw58e1rUgViJ3QrnBw3hkEw9dXo2i47hsctvNYtSQYTyGw15y6JNhBSAXMP+5nccYhePXhwJ8JL8sXrispAvIRTw2MUG/a//+rVs3rRZiaJyrXeoPK0ev8+/8JzcfXd/0wWSdtmyFfLB+x/IBo3Li53OAmjE2IVkxBP49f/xukx88EELC0CIgmPHTshv/vs3Mn/BPLNx6Wcg8yCBf/bz/0M9HscpyddVvRpLNb7qMS3737Jo8WLBG7jUZuzdMEKLscTL2jfNUQJwyJDB5tkJJhC777//vk1/P6NkJoln7eVXUjF2k6EYIAmZwp4pFAMLtxH2gP4vGYqBMQm44rGJzZ7+zNIeuB5e1MTYTYVyGKjkajsNKXHaxjS/+93vzBsTD+aapBk67Z57x5ipSxcNUaEvFpYuWyYf6tT7pcuWKkF+ykLUQahzb9soyQjx/av/81fq/TpeydFOFgoDEvJf/uVf1NN3o8lOiA2eWP89urVV1USy75bxhdCIX00s5KFDh5i37syZT9oiflyLEBLco/fee98ceGg3HdRTnJAdHMfbdfr0x5W0f9RiPxdqCIJjSnYu0jASCxYuMCKY0A0NkvT6+r/SY/dHP/5RKhTDyFSMXY6xgB7xmZfpPSAUA23AXg6pQIO1LTIbEzK7u8athqwmdAPrpPzHf/yH7FFS+MpVDcOiDztkcF9d3PDnr/9cHZ2m2AxOfjfOKjlL+MH3/vyePccX9fkFg25du8nf/V9/J5MmTbJQIdxrPHr/8z//yzy38XxmzOht0u5rg4BU90qD2K07hlFDIBAIBAKNjgAdTKrTy7MpXngL4KmLgYLhwbQvOh8SpC6dFDF1Fy1apFO7VhrRiVHK281kuWS9ja7UHVyQjpe3tkwXw1OXsBPEm8IrwpOTuh52ArKEuGc+vcc7aS/v26ry/Xh1W8fSy6R/9/w73dZFpju9VpQPBAKB+keA3yx+D4LYrX9so8ZAAAR4vtL7XLdpsgch7DL/IBWErfswkZ/6nVBNdJ8PieNexjIa4Y/amEqqctWbxK7G65Sr0r3LDZkwpqP88AfjNMauzgyzUAx4iSXktVgKhVJ2vZ3an3ny9aYtsnvbbl2x65r069VF+vfqJh10QaTW+rvIaUZI6Dalt161oqoKM1Y9WVMvv8huhdeikrGt1AsvT69TpuEX8FIjWi7+wpUxdrVcKqkvb14buarxfQ+fLJU1W8/JR0v3yqHjp+WiMspG7BqpW3HRirN6KgmJTZ0idgcbsfuNenS+9dabFkcWu/qVV16RF1980WaN8RsPsUsoBojdPkouQeyymC8LW1Eej93/+q//N0XsKgH4wNgHNHTaHPUanWnEG2ru3Llb5n22QD5U8njnjp02q868lSswIBbuL37xP2T6DA2voGQdpNVx9ep968235NPPPk2tmaHT2DtouAA8HfEwHavXgbTF/mWK+b//+7/bWCC1EBx3WcNCaHzSfAWcRaRefOlFuV/DPbRREp3UmMTuuXMQu3bZW/7QFuqT2H1OYxq/+GJq4TFIe7w3WUxs3mfz5astXxlxz4w/8CXx28I9BU/CGjDe4PflwIGD8k//9E/yuS5ix+xAxh4k2oO3aMuowx8nZ2+oPCQWTYMcJ/xcz57dTY79+w+qh+mf7KUDIUMY+7Vpw+J36hWvbY3QGryg4L7SFvCEhQTfsXOHxY0+q7GT0bdBkmLH/fNQDElilzjLPO+EtPizkq68EMARCfnL9BnnkcbznLHeT3/6U3tOIG9LlMjGM/l//a//W3bp+Pby5UvWbrhPHTq0l1m6GCEe9SOVPOYlB+QsXsH/P3vv/V7FleXrLyEJBCLnZJCItgEbsDHOxhjnds49bXe32x2n70w/35k/YeZ5+j7P3B967oTbnpnuGbfHdjuMccQBkzHBgA0GE0w2OQgQIBTRd72rzj4qHSQhoXSOtDYcnTpVu/Ze+7PrnNr11qq1//CHPxhEPq7wmLjKV025Sn7285+px/wV0ktDWhC3mljZv/vdP1r5xxXwh1AYaGPnmVYRqfmF2u+o/hama3KP3XTtGbfLFXAF2kWBAPg4sTDY4JERQC7eqszeyzKP6JDIy0max792795tnrrcCQV0MsCkDAYe0eAjAsCcSNmPbemUgk12QlXbANeEmqDN3P0PUDfkox20m7ZyR5dHq/BQ5tE5yiAfr7pSfevrypu6Lq5bfDk1X1M/N8emptbl+V0BV6DlFeB3lt8EB7str62X6AqgAN+v1PNuQ+f69lON8VV4AXbjKYBd1oVxWN1jlfheLbtMvTpGUq9bwHOIV4tXbBedrKxPfqlMmthNfvDMNXLV5HHSp1eeWgoQitlrUDhPys51Uy/dk/LlimVyXp0JLhs2SMYWDpU+PTV8gwKwLOAs5EZ31ZGn9h8tSbQ3+sAKHafq5GuAHvVYZHwHN85WuAvwrNJ/rAdKsnv4W2OPWtelh4Z7yJPdh0tl0bpD8smKfXL42AmNu6tgV3F1lDfYT40aw9fAbvDYBez2MI/QAHaJx0oIhTjYfestwO47Fud0pMKoZ575voLdOQp2B+q4O4qxi8fu+vXrFbZVyoxrr5P7v/c9i4E7YkQU+mDz5q3yscLFeQq6GMMClZACT00SXpiAqLvVc3XkZSPUkzTXJllj8jEmLtu9e48C3HM2Tp4yeYq88IKC3enTDObhxblz5y4Fuy8qZF5hE2zxHaFsJtUCSj780MPy6GOPWlzTEP+0I4Jd4DV9R/zW7uoBDnRco3F1v/pqvXqYH1RP5gq7Por/hgBzAYzEVAYW4i393Xf75O///u9lzZq1clLj7FZqv5Ky9ZhtqRR57EbXafTVdO3PxxVa3jbrNvMyBdxu3bJV3tGbCh9//LHFgqZunmAEWNOGHHXk4Zqxt7YhT2+qMCbhGpFjAi/sMr0+4jvWKonvph7DF4LdSfq9Aj6Lehu/qzdG3ra5UAhpwa8AdpOYQO0WdV765a9+YQ49tAPPbsJg/O53v9PvyQ4pIyav5dao3np9PGrUZfKLX/xCbtLrRL7LfLtLzpWqJ+6/G0TeqTB4iM7H8qgdBw+bJzwTF+L5/LmGa/jDH/7Dyo0gc801o51nEvWk25taqZo52E23fnF7XAFXwBWoUwEGtCROWgBcPFaJDwXYJfwCk4hxIrSBr55FOfEBNAG6nOzxWOWuJScm8gWoy3I4gdZZcTuuDO2hzbw4oQN1b7nlFrsjG8JOhLZgKgOVzZs322NjhJ4grjDraDf50rm97Si1V+0KuAKtpAC/O/z+ONhtJYG92E6vgF1w63csntL3XI+dwaM0brEiRm1D7VbU3t76n7BLx5pZzAIPJFBAVZ2j1qpdOgbNyzknBSOq5PkfTZfrrp0kA/tpzMssjccbrFbjwaXVClJPn8qVL1ZslZ3r18jogd1l4pjh6nXZT/Mz0ZliGB17RmCXv7TacI6+k/hcWwnARRb7oBG780fX2V/9w6PbJD6TrET9UJndW0qr82XbvjPy0fKd8ukXB+TsmRLR6AyaFz9f9qvdH0mwq1634yeMTYLdV9Qz9sMPPrTQCk8p2OXx8MmTCcWQZR6H77zznoU9G6GhGJ75/jMWimHgwOCxu1KB0R91cquv9NH/KvX8nKFg935zUBgxYpjZvGnTNzpe1zivGj4MYBXG5oBXWpQEu+rlyzVABKOK5I3X35R3NQzEbnXkOKcACy/UKVOmWOifqVOvVrDbR71QI7D74osvaviClTZxGpWGuTgAfQ8//JABz2uvvcY8H9neGcBueXk0Hwcew+jHMUaK3gCTWaYTYTW4/uIxfhIeu7/97W8N5h89esQ8Pu3ITexvmVroD4CXfsSZ5SGdfGyWgl28mAG72zTkXF1gV78uSWDL9yIcT2ZSW137qRbI0Viwexawi+EJewcPHmRPpf7qV79SYMsx3029oyOw+4//+I+yA7BLuAT+KcgmddMQGr/SkCV4zI8ePcpgNpfQfK/mzp0raxXEDxk6RH7zm9/Itddea7pGoP47+dNLf7I4y3i0V1QoqE/YYgWn8R9rv4PdNO4hN80VcAVcgToUAODySM2sWbPsFSZKC3CTAQjxvACagE1CMAB4uRtvA2LdzkkzDFxYDifROqpr91XBTh6/4U45j8cBtBnchJi6oV2AE6Auj1QRdoLJLvDeDdsd7LZ7d7oBrkCnU8DBbqfrcm9wGysQzvHxatN3bAP6qQ0Sg93WjvChTd8NR2mNvCvQNbALJIHIMNGZhj/Qv926lMqgfqfluR9Mkxuvv1KGD+llsW7JZ5xVm6W+tfoYdQ99XDpHFn68VsqObJfxQ3rKmFGDpE/fXlH5QBjz2NXyoT7Uo+uil77ZZ9bpkq6uHQI3gjc1+UEa5LVgDLZPtL/mUJpTnqMxbit6yobtx+XDJVvk841FSQ/FAHWj98Su+lYn2P1mi7yioRhSwe4UncAXpsyj5A2B3SjG7h8uCnY/0sm7AFA8Oh7G5q0FdpE+JyfXHELSA+wW13RCWAKsqZ0tGYrhAo9drSLyCI+cY9A9+i5Gx6CZootAcAAg2zhc9+pj+3/3d39vHrOAwLJy4rFqbvbXfNZ/fG5G4ujmPyEZAthl0j7ALt6sDnYV7KrHMZrj2IRejLnm3DFHHn7kIZ30bqbq1td+ZjZu3GQhK1avWi0FhQUGf7mu7N49T0NAlBigJ27vunXr7DqamMmZkmi3e+xmSm+5na6AK9DpFWCAwKNAQF1muSUMAR6rhCYIUBeRAJlM8rB06VKDm4BOYmvZIEUHIzYgialJuTb4iK1Ll0VsxVOX9hUWFtpdWzyUJ+tAGi1CuzmZ00YC3eOdTAgGYDZahLaRl/LSub3porvb4Qq4Ai2nQPjtcY/dltPUS3IF4gqE8U18Xfqe64FF6Qh2g03ADH0liaqOG9Ve/uVmnZN+PU/KffeMlTmzp8nYMQOkVw/8eaPs7AOEra7uqRNb5cjH76+RqqLtMmV0PykcNdBifTLRGaQqArvsqOWzk5HhQMEoMZESMXCjLSEf2yI78dy1Xc0KSqYd2Kx5ddxXIgNkzzGR1RsPyIIVGlN0d6lBPPMstn2C126iPn1rbbBroRjUY/d7ForhDn0UvMZjNxXsqjyRV60KQAgAC8VQj8furl147BKKoYd57P7sZz9LxNit22OX7w2TshHyoc3Broa3OHr0mE1+xuRpxDBmzK4HRk1H6JIeKbZq0KCB5tTR1MnTotJA/9ExRXl4WtcKxaCZiK26f99+OWVxfmM2xBeBh9yQ4JhVmn/8+HGLrYx3NXOXBNvtuoPqYvvWalQTPoT2Z+uxDKC8/IrLbfKxAHa5/qkvFANShhALmBKuh6z6trr2M62wIxKjJsZu3aEY4h67CDho0GCbCK1Bj90EUDewq/3DmAuPduJg8x1j0kGAPJPivTP3Hdnw9QabfJsJ9PCoz9UJ2fbv3y8LFy6Wl9Rjl2OhHC/glGOxCd3W5lmj48RDMbS58F6hK+AKuAJ1KcBAgcSJhOX4CYWTFd6pV2iAdzxWeTETbxzq4pFLPKAQhoCZZvFYxXs3gAXKD/WwTKKeeF3R2vT4i93ENrvssssspi4hGGh3v376OJ9uoy20m7jBnIgJO8Hs8gBe2h33Ug7tDm0N7+nRUrfCFXAFOqoC4beKON8///nPbeITbtDxG8Q2Ek8ZcHHLRI+eXAFXoGkKcH4P5/iwJ9+v9DzPM9YLEDVYG71bO2qvasNP2BWNQ2sqNRyka8G6eqNdzunEZyfl6sn95Hv3XyfTp45UMNJNJzMDrkZ5NcCo4phecuxIjrz/zio5f2K7TB07QMaqx26P/DztE+CD5lUAE6pLgt2I/dRUjzlJsKsfbJwcQTrAbBQugvdQFDtoTF611l5dcqS4qr+s33FGlq3dJV98tUe+O6bbNByEvTRXBIJr9wdg98Ybb5Bn46EYEh67xL9lfPnkU08aIIx77L777vsWimG4TrRFKIYoxm4UimGVegkyeROhGICo112noRjuv9/CNQwfHsXYrQnF8KF67O6y45djAqjHscwTe4Ddu+66s1YohjffeMsexQ+hGLg2mDJlsgB2p06NJswKoRj+7d8IxbDKQjFQdm2wy6RixNidngzFAOx655256iyyzOKxmta63xNPPqGTy/1ArrzyCgXlrGUSrA/l5ZdftkmwojWJv5p/iGo6e/ZsO/+NGxeFtzimYPdzvVYhRnBjwO5dGlu4LrD7yiuv6FOKm61fLjyCOdY4dKItgFmgLnA3GWNXty9btsziqxK2jv7hustS4pjkSKEPiFubrcc45QFzd+7cpcDwqHnOUgP5AkROtL5Zb1G9kf399doHsPvAAw8IYBdNsWeLxthl4j4cW/D0JhGOg69kuoHd7//F9w1Mcy0Xj7GLx/tajXNcG+wSY3eQXf+lgt116760GLs7tb3JUAz0s7adGxWEKQHcMokazkB85ub6p598anGIr9T6Z86caaEdcnK6yKZNmxTSz5X333tfTp46qcdA4neqRXvTuqZV/kTHiYPdVhHXC3UFXAFXoCkKhAEH+8SXGUTwYgZTHhfBWxW4yUmKO7dsIzEAAW4CNAm9kDpRGnlCueGddaRQR/QpPf5iE3YCdbnTSptvu+02HUBeaTMMx61kgL1nzx6blZZBDSEoANwhBXASPgfNwntY7++ugCvgCrSGAg52W0NVL9MVqFGA8UImjG0ii0EPtUFiaIm1I3xol/fItgh2gqeqFFMRE1fRrgLW7OpS6ZZbLIMHZsv9916tkxqNlzEF/SUvl2ANChUYkwIhFewePZwtc99eLnJih0wfPzACuz27a6vIp9AscrO1ViZBWDSk1XXRQvhYrfVHKeREP8BbgC9sJbeur6b+HKnIypFKDSNxpCRfPl9/WJat2SXbdhyRkyU6WZbWzUPb55M21O6PtgC7M2ZcmwS7wWMXuPmJgicmQiN2qFEqwJI2H2kZ9//iFz8zGMzYmFivRUVF8uabCnbnviu79+y2p9cAu5MmAXZ/qh67V+sTbn3Nk5fJ1X7/+/9nYPfYsWNWPLFbQxiCRx4BhD2qE3RNNzCIqgHsLlmyTE6cKFJbgJoijz/+uPxAwffkyVdqLpxRRD76aJ7893+/YuNxe4xd80XfyywZqjFN77nnHoOqhYUF5qxC+IJly5bL66+/Lls1Tuzp4tN2TaIFJo4AFkBWhGKo8dgdO3aM7X/8eJF5/L6idX6z+RsFuzo5NDsnEvuF/bG5i05qFjyTI7A73bybyfbuu+/Jewr1Nmz42iagwzEkgruR/uQh0c4AdgmDUKmwEJCIxWyz6xfL2fw/2E95VqY2oLeC/cvVwYdYyLNn325glzpx4mECMkJ47Ny5yzQnfB0Jz3jCbQCFBwwcaICTMQkwlGMHL1ZuOgcAbDvpH/KgPJ62/KOPcTDq3buXdM/je6xzmuiTkidPnrBYtGhFX6NNlUFRy8IBwH8rhzV1gd333//QPGlXf/GF9mH0pGU4bgg3cdNNN8ovf/lLdfLRCQNjMXb/7z/+X/l2+7faX2VWGfvgmUtsXOrk6VbiEc/RJ1z79SccQ5ZNdIenOMfQmMIx1rJKnSwPZ6iXX/5vO3Z5AtT6Pmq2tjx+VCXalWZv1kv9VUZKAABAAElEQVQeYzfNesXNcQVcgU6tQHRSzLYTCsuczIG6eKzOmjVLbr/9dostmxqGgLvG3KkPE6UBeIGb7B9PlMkrnsiTmi++vS2X47bkafB72s0d1Xvvvde8lRnUEuOKEy6DjhB+YeXKlQa0N2zYYHfso8FYNKAkX0ihneE9rPd3V8AVcAVaSwF+g/jddY/d1lLYy+3sCqT72KZ2/zAGqxmXxLdZO+Ir2mUZj9echI06MZpOjhZBXayulOysswp31eN0xhCZddsEmX5VgQwZ3Efhro43FQLRumrJV49QBbtzl4poKAYDu6PVY7dHnv4WgiAAYbxIjEuDHhFCYejKOO28FmajWAOw3PDX3ApusURHyNAiXaY8auVFwsocnTCtq5ypyJFtB8pl6drvZO3G/Qqbz0hFZZ5UaVZeVna0U62/bQF2p02bKvfdd596395lk0JhwM6du+zpDSAdoJNzh+mgurI8bNhQA1y3qrPDkKGDLVQZ4QBe18nT3nnnHdm7J5okuYeC3SvUs/MXv/hFIhRDXwN5+/cfkH/6p3+SlStXKdA7ZmNpACavvLxu5k0L8LzqqqsUGnMM1IDdxYuX2j5ck5AefPAB+Yvvf1+mTpum1yl6zKiYn83/TG15wyCZhSbQDmPMTr/xaPwTTzxhcJd2dFPwePjIYX3K7jN5S8E01y1nuG7R8T39Eh+nswzY5VqAx+vHjClQe7srmDwhxC7+05/+JJsTHruhTzka2C9eFm0sKytX3e81r1EmsOuvwI80b97H5vWKZ/WJEydsHcCPIzI7R2NMKxTuqlAxincchcfg+3rqVLHBTOqKvr9ZBo+tgGb+oczz+oqO1Mi7euLlExM63qVgd4jpjpfxXA0x8P7779kx1EW/T8Bmu/7R/Zn0beb1M+1pz/79+2l/dbUwEmi34vMVcuz4MakoZ8LEmpSr/cO1VJV6L2MB4QrGjBmr16ATrV7aeuTIEVm/fr0cPXJUzup1KP3ctWs3uzYzwyhOV7I+hGKoC+wuXLjIwDpzowBdgdFAeOoYPnyYzJo1S1544Sd2/AOs6Z81a9bJP//zv9hTqlwLRrGPo+9L1A9RSJU759wpP/zRD6WgYJQdiwcOHDT7BgwYYBPh0caDBw/pTYmP1HP8Nb2W3qvt5uZTjRaZsMSR7jF2M6Gn3EZXwBXolApEA608PRkVmLcqMXV5fBeoayctPeFx0gfg7ty50+LKcpefO7ecqGxAYwOCGvnCfjVrEgOflHzx7W25jM20mzuyxA8m5MScOXPMU5eZaBkghkS+7du3G8xetGiReeqePHnS2k07Q7KBTeJDXZqEfP7uCrgCrkBrKMBvEL9JDnZbQ10v0xWAHQAPas77aJK+53vsDCCzdu9ZO2qvaodPtcHueamwidO6KGVVXKTeu/q5S5UM7F8uE8f3kulXF+rj/ldIwajB0iOvh47TmBchX+FLlj7a/Klkn9gmV4/pI2NGDrBQDKJhECJqwjtaRH1XnaXju6xcnXQqR2EWcIxp2BT/ar8ansvSCYB1KQrbAHTU/RJhGs4ryALu0ud4oJYrtT16ulL2Hjopa785KOu3Fcn+w6VSXqpjzHJthVbb3mB3/PhxBiofeuhBHe8Wqu2i3o8ndW6Mz22CJwAj8XIBVrSVMAyTJ0+Sn/zkJwZruRYAgh48dFhefPFFmf/pfAWlR2z8z2Pno0aNkr/927+1cAP91CmiUsfMADFCJRDyZ+fOXQZ7AZV4OI7VMffjTzyucWzvksLCAq0zSrU9dk+Yswn9xzXJ4/qY+4zrrrOwDRy7X331lYZjmKchAT6RfRoeDSiJ/d265VnIhp/+9Kdy7bXXaji1Pjae/+67ffKGQukP530oh7UdSU9JrbqGqyncVLCNx+nts2+38A9cCxFHGA/djRs3yX/8x39Y3ScU9EYgVBXjNyFRDj8N0e8D3pwVFrP1YfXknHX7LH0KcKDaKAqIvzBPabQB/pEf71681fPUUxWwPGXyFIOBueopzTb0xMP3zJnTUqZeo0nPXbW3JZL9hiUKog3A7MGDBlkYkAc1HMNI9WAlocO8eR+ph/xcWfflOgtnwDGAiDkK4idOnChPP/2UXkveaqHs6PO9e78zGEz4DNpLTNl4YrI26ud6EkebgoIC9RR+MPHkJJp1sZjIhE9gou5t25jX5FQyJEWyLDUc2xsCu3iqv//+BxbKY4/enACskj9b4z9zk+GxRx+Re/UmCJPHYfsRBcl42P7bi/8uO/T6l5jVfH/O6zGO8lqdJdqOt+8L+p2ZouXk53dXgA2orjbP5eiYEAvBwc2U+Xpj4mQC6ieKyJg3B7sZ01VuqCvgCnQGBQCVAebyzl1JTqTATe7qAzqBm0wmxsmWxKM0xNRlsjC8dTdu3GjrbDCQyBPXzgY6nGFjqb68sSxttsgAIoSduPnmm2WW3qUlDlNoN4ZgL4O/3eqhvHDhQpsgDs8GBljoRgona5Yd7KKCJ1fAFWgvBRzstpfyXm9nUSDdxza1+4ExWGuAXTBoQ4l6a4//LsyNXTX5gAX6sLmGYNAYuwpRs/QTHrc5XRTYZRVL3z5ZctmI3lI4ZqQMHdJL8nv0Uo9egFBXKTlbJV99uVEmDiyXG67QUAwj+yfAbjROizx2KZP6FC526SrFZypk/8Gj6ll7Uh/zVoic01UBLKAZL06gDZ50ZoXWoSEENNRCdbUGgdA86uNnuZC2XLMdL66QI8fOye5DxXLslEhJmW7XDVk6zmT6NryB423lU0hJj91nn5UJ4/Wxfw0LtrkJMXbxSH3mmWcsFi6egYRKw0v2j3/8YzLG7oAB/S3mLB6oVyt0ytY4nwBWJkADWjGuJ3RCBBbzLCwZHqZRbNWh5mEL+AWoAXY/V8/L4lPaUG0X55y+Gn7hb/72bzSEm3r3qmcnj8jzyPqaNWtk4YJFFguYUAjEnB2oj+hff/31Fu7t8ssv1zF3Ly3DBKoVioFH97kGAaQRn5bH3PE4HjRogNV55PBRnZjqa7seIWYp5ZMfyByevkMbQkgAa3HO+MMf/iiL1GMTqA181g4N3WDvUagI4GI3g3y//stfGaTr06e33iytsFACeHpyLVRUdFyBqx4nWgaOILyj0eHDRzRk226NiXvOoCGh7YhvjP2FBaNNM7yZV6xYqaEwPlHIu1rznrVriu7de+gj+4Xm8QqUBqgTl7hIw1J89dV6y4/XNGXbNYjWSb38JvH94f+lpmhXylMTtTxiLeP4QriMx9X7eZKGp+uSHc01snXrNrse4sbAdwptz6r9hOQYPXq0wXRA/KhRl9m1JXYSlxdPZ64dT5w4aZ65tey0a8WoLUOGDJV7NYzGffffJwWqF1Ad0fBoBgoTfgO4e0A1BG5HR06iNC2HohoCu4TUWL9+g5XB8clxxrXgyBEj5bqZ1+kxP8ueVu2mx02WHpfEEeYGwhtvvGF9ix2WUrQGTk+cOMH6mf7mOOXGE32CbqSy0nKLTz137lyF9Buk9Fyp9Z9tzKA/HGvusZtBHeamugKuQMdVgEEAUJOTLSdtBmVhIHTnnXfaSZl4s8FjNQxW8NTlpMyLQQ3euzaYSAwsUIy8IaX7xQ/tGzdunMXUBewCdXmEKMBZNOLxLmYvXaReury+/fZbGxAGqBvayntqe4MW4T2e15ddAVfAFWgNBRzstoaqXqYrUKNA6rmeLZzn0/dcD1QIr5R21Hxs2pJ5wjawS8K7tYEcuikA52jcyF+Qqj4UrWAXi6MYmiqsjllLFDRVqDejxv7snavQNke6KYjN6aLwReuqqCiT4uMn5NbJfeSO6cNl/KjgsRvALj62QQMFu1ndFMCWyd59R+TgAQVl5xS/KuzV2/2Jic50QiuDu9iQK2fVwfDoiVJ9jPysnFY4U6nevvj4Ej+3UusvK8uWktJsOVt6XsqqAInatvNA6qiUCIOH+nmvSYDdm268UZ597lkZPw6w290e9X/l1VflYpOnbdz4tQwbOkyefubpBsEuHpXTNIwBEzzxZFqvXj0Ngp45c1YfDT9oY9sDB/abUTzeDnwFSBKirHt3JqGrlkOHDpmHL4CO6wGcHqLjSuxa4oc/fM5CH4wfP85gHGNoYOvmzVsVGu82hwjWUTZAl7IBl0BUQDBp0aLF6tk5V68zohi7hCQAIoUQcUxORfm0B9DKo/QA21A+YHfo0KE2tsfTNio72+pes2atwsWXZd26tebxSrn8jye+23jhYg/l/PrXvzYvTGL28rg+T8IcUXCLtzJzblToZ9pEvYC9Uwq7N23aqIB6kV07AM8B18BC4gRfe+01BjvxWP1u3z7Z+PVG2ahQGu9f7AGOAkQna8ziMWP1WFCvWexBbyZr5knJIgWT5eoJDMBEf8IXcN5nf/sNSmlTvH3J5WhnfriSq1gwTRLfO2L6km7R66MH1dObeVcIrYBG3DzAC3fLli0aGuGIfn/OWUzc4cOHmzf26IICOwawi2MAeM2kc8BMvI1Tfyupl+8n1hQWFsiPf/xje3qUycxC/F505mYBxx+Tt3E9xrVY9L3WHUlqG027GNjFC/fAgQPahr12Tceuw3QSwgkTJphHOw4+3Gyg/9at+zKabFY9bGlnuP7jJkg8YfvAgQPspsILL7xgcXW5lrZ82KQZDh8+rDrwvf5Q9n63z8qKtNCNFJAhKTrWwm9r+hmdpQdiBsmZfgK6Ra6AK5AZCnBC5iTCCZLEIy8Ei+fuNhOGXaePOQ3SR29CPvJyB5qBHx6rPDbEhGGc1BnIsD28KI/lkCiDVzzFt4f1YV2oM6yPv5Mntaz49qYsM9AgKD/tnj17toFdJkoLUJe6eNHG7/Txri+++MJmf8VTt7i4OKldvM7G2hbaGt/Xl10BV8AVaCkF4mCXWcqJM8gFLr89bCPNnz/fLlSY/NKTK+AKNE0Bzvep5/wwbmhaSW2Zm7FY7fGYtSNpQu1tydX1LtSM9erNklLfhflCnVFZ/IUHA3UjsNvFABveluZBq5P1nK/GW65CIZqOYfU3DW/GbF3fpbJMumr4hLuvGyx3XTdCJhQMtAm5shRAszeJ2gjwoL+EimzVY7ekUoqKz0rx6XNSVq6YtlrjuWZFsT6rtQ6grVaknry56pErsmnHMflq8145cOiUguGuVup5yud4EJ0kTfK0Bg3tQB383motXRTsMtrmhRXkjCyJPusHm5SKp+V+8OwPZNzYMWY3j4u/qmCXR9d59P2pp560icCYzJif8bfffkfe0wm4vlawC0x7+umn5U4FtgMULJ3R/Cs1nul//ud/qZfnlzrhlk7upJCKfDcqQCauLU/l9e0LvIpgJeNdXiScHrg26Nmzp0K1brqm2rwav1YIiYcp1wGMheOTVhEX9iZ9DP2BBx4UPH0BoSHsAnFhKTsCwdXavh52/YAOQDvCPhBTleMRT0zity5buky9VE/YOYv1wGVg5wMaa5cJjvFAJm5uhULNYDterFyX4OGJ7dTDvmVlpQogt9ncGB999LHGBt5jsNQaq/2UmqyfdD8cX5jgDe/RKyddqV7JfdRkPEerDPBWVCjg1/rDuRXd8ATGE/fPf/6zbFUvVeyjx9mfydzuuGO2eUNzDQIkPnnylIHPMwqJKRs9gN0D1fO6p8J3tGfCsS++WGNQF09snGpYD/SmcPo3hDLAFr4XtRIGmBW11kZrEtt4w5vagKjagbcuHs2E3xg1epRBXezHASZfdaW/6U/sL9P3SvWqjrTPTx43aH/27Bm7ZvzsswUGpvG4JYRBnUnzYztAm3jNTEbGdVk4NiLbxDx23377bQuLEcJXJMvTMqyYRHgKYuw+oGEksJuY2yS8zs+ppyzHCJ66QHbays0OJv7roTdWgLpoeejQEb3ZsFBe//Mb+l3baOu4fqaOmljdUe3Vqh/l8d361a9+pdfTM2wCbr4HUZdUG+AmLjRe33guW3/p7nX2W1RsWv7lN9U9dtOya9woV8AV6AwKhJMHAw+WeTGAAOIyCGOiNB774REqTsa8yMOJmzuMwE0mSyBwPXepOYGHPKHs8B70DOWEz3W9s0/Yj/ykAJ3jn8mD7c1JlEGZDPZGjtRHbhRiMzkCd2jDRGmhfmA2HgBMlMZAlse8bHKGOgwIdoZ2hCysD9vCOvKk5gvb/N0VcAVcgeYq4GC3uQr6/q5Awwp0lHN7rXYYC4pu/DTc+tbbigm1wW5UVxTGgGXGiDqGSsJaHsPWsWGVQt2qEumZc17uvn6IzJmhHrsF6rGrYz0CKQBo+cfegF1e5zW0QpUWbGESdH0V408N6ZClnrzlOuEVj1sDd3LUM5RaDhXnyIqNR+Sz5Vtkx55D6rHbU0s0a6xUJcBR6RamQdcr5Iki8QKWozi7mkG9i/kbpdAuxt3msauhGMYq1AKc4Qn56quvKcz70MDlk08+IY+ot+3kKVPULtH4pu/YI91fb1CwO2K4hWIwsKtA8LTGYMVD8qWXXtJQDF9anFcgFGP+kSNH2LgXkFxYWJCAqrkG0BNmJd8A6hXqGcqYf9Omb2Tp0iX6Wq5hBvYY0NRGJvMCjoG5d9wxRye5u83i8/bVOLWM203aRFZ0IawbcI3rC8DdsGHDzbOWc9fixUvsWmPZMgW76sWKt2MUS1bseuWaa6bro+4PqsfvFeYdCfAFTlMHwJV2ZgPl9B+fqQvP0hWffy6f6Y1MgLkBbMbiWB9rQ7IxLGh5lIVexMe9Rb1VCwoKDPrxeD0evanje2zA5mXLlmsYjP80z129CjDo2atXb4v7i7c02qMVABrbMYFwE+RFR8plHccg4JRYwoSPWLZ8mcUGtmNZ84T66Se0A8KGmL/xtqhZNCa+Kmq3rgvjBcoCkobrr5CZ65XuCvnHjB1rYTaw/7LLRlrIOiAmNtv/WPHsU1lRZROc4U1NXwLsWQZmmycwDYylLqon4Bb7R6knN0B29uzZ5jUd9bF+k7V99OfLL78i7733nk34h0dtLc9Z00Wb1wDYXbBgod0sKSwsFF6AXDTkuEF/u5GkdnCDZLVe+86bN0/h7mK7mRG/hgv6h2bwWf9bHGVuxHzve98z72tuEFDmefXgf+mll81RiOOfa8roelB7FD1qSxKKTct3jkEHu2nZNW6UK+AKdAYFOGlw0olOIupToGCWWFzAXE4+PKIF5OUkHxIDOh69IgYRj70AdzkRRScvTmBReZQZyg378h7yxdfFl1P3Iz8prI9/Zn34zPKlJgaZQF1CLzz44IM6k+8V9uhTqJP285jNrl27LOQEnm3AbLwT2BYH2sGGi7Uz5OM91BNf58uugCvgCrSUAuFCjQso99htKVW9HFegRoG6zvmZeG6v1Q6DCjXjv5rWtt0SJgB2GQkGr90AP4Gj0ZaIf5g3rZEQBajnz0le5VnplVMp9yjYvSMBdgGkgN3zdYBdygospUpBMZObnZce6rnbVU6o1+XZ08UWh3bQgL7SM7+bHDrTQ5ZsLJKPln8r23fsk/Lq/KQ9upCYWE3tVsPtWFDbaIeB5YuAXZ4ew9v1uWefi8CuAr8tGu7slf9+TeZ/Nt8gFHFOCaMwRcEugAtHiw90AihizA7TkAHPfP8Zm4isX7++Ol49LatXf2FhB9auXWPALgKIGq9Yx/6jNQbtVVdfZU4dV199tYViA9JlW/xUvBGxnHk1yu1x9fUKFleokwOQeN++/fYUX44B2yifZdY/xKcdMWKEelpeb84i06dPU6cJ4G7kwQzciuL0blNQuVDy1WNy2rSp5k3Zsyd6isXY5XpjucLRYxpLln0BgWjaVW3spyCYffA8xnuZEA1MchU5raC3vvRPhULR4xqag7Bxq1ev1vjLX+nEVzs0LnCxeWeSzw55DoIGEm3iiRfawnUS1wy0EY/b+PUSRaAf8W+XLFlm2m/atNGuJyLgnGUev+MnjLenIylrrMJSPI/pE9rI/mjPcsnZEgvVsG7dOot//LX2M042lIU3rQFga22N8RwX5nWbaBIQvb7m1fru1xRh2qkVyTV45lInx8dIbff12rc4xXAcDh8+zG4W0K/YTqI+QmQQtxaHmFWrVuo15FqbPI++j34n8bZPVmELAeyyHY/lqdrHzz33nMY5niJMxgfwxcuWJ0Zfe+01iyFNiIdL8dhl4jJi7OLQg/f3xIkTtB2EA4n0p714XhNHmqea1uo18IGDh8z2YDXHWFwnW89KtbOneqDfp05DTA5oE+/p7xCe25T5u9/9zjy6CV9BOA3rI9Uv05KD3UzrMbfXFXAFOowCnMADsKRRLANxp06dakHeeQfycuIOCahLGIJV+jgXj10xEylwkxQGfSxHJ+m6T0r1DRzq2yeUy/bmpngZoVzeiSXM4z3EEp4+fbo9ihMNCKPBODAEqMtjMtxlZoI4BigMHgLUDbaFOuprZ8gXf6+v7fE8vuwKuAKuwKUq4GD3UpXz/VyBxilQ1zk/E8/ttdphw672BbuoH0Z/wZLwWUeuurUGOLEez11wbJfzpdK1skR6G9gdbGB34mgNxZCfp3vo4+TwFs0ZoRg8dhXqGpjBp1Y96XRLVVaOlMgA2bjjuMbu3CHHjxySHt1yZNqVl8mVY4bKsfLesmTTKfno8x2yY5d6rKp3rxVi5fIH+yg7qinYjcVma+K9pgVqeeJDFFd1lMxQR4sBGn8WD8nDhw6a1y3jUYDW1KlX22ReQ3ViKa3EABeQizBpPFI+9eqp9vRZD4XCeDXiVYszxqFDhw0uhuMTL+Q8jdsKAAYsMs8EIRr6aEzRfIWrQLry8jIDsEDQg+rcQVl7dGK1Y8ePWdmAO/NYxZB40o9cRxCrdOLEiUkISvuo/6yGYziu42nK27Ztm8LRHsLkWDhbYBfnrm+/3S7fqHfwnr17DGjjjQmwREO2E3oDIDxBASkTdQG1iVHcu3cfg61cu+CRS6xbICt17dixQ44cOWqOKYzxsYWyLF3seiPRJq6ZCkYXGEgeqhOy2fwkals8AUEJO4FnKhCcOgnXgPco4DI3t6s5kozW0AaFhYUGiCkXkIk3NdcY2I9O3FzgGow4srzbZG8KHNEiqjaqm1jDxL3t1i1PQxwoHFYbuKYJcWDj9qUu8z0AmNLfORpuxLRT7+xThNlQBxfsiXSKHIOwEVstDq3aP1xBL8cRHsx41bLPWY3ZzP5MMI3tO3fukmMKYEvOlZh9GE8btBNqmQNAp19Yn6PHUH/19r5Rb3ZMnjxJr1cHW5uPa0iKTXrMA2X3aXxiJpxjl6Z67AJ252u8XDQdM2aMFBQU2M2BPDTUAs+oxzs3MDbp9d+OnTstFAbe5WZfwmr64AKwm9jWX2H9k08+aSEg6GviPHOzhXAaL730Jz2+N2n4l9PRca3wPfGTUUuPdP/gYDfde8jtcwVcgQ6tAAN4Tqac8JkQgLv0t99+u9315lEoBink4cQFxGTCMGbKJa4ud4w5SbONPPEUP9HF17Nc66IhtpF9UvcLZTOIqGt7bPdGLcbLp0zazeAxzMQbPJQpLLSbu8l4KHOHlhmCial77Ngx0yPki7c/Xkd8fUMGtkTbGirft7kCrkDnVoDfO36P3GO3cx8H3vrWU4DvV+o5PxPP7bXaYZwl4NTW0+7SSw5glzFoBIVAsnjudjlfJrk6uVp+lyq59/rBcueMETJxtMYozVf4asEWgKiQGPYFxyTwq9HdaEyrGEtOZw2Vecu2yLovN8nRg0XSt2eu3H79aJkxpUBOVvaVpZtPy/xVuxQ67pUqDeWAF3FkiZaon6MU3hMfE29RvtrrAthlfErYCDwIAaN4phIO4riCVOLrMnYHdPXu01vjyhLzVuTM2dNyuviMnFPgBIDDaxXAy+8/+YFexGYFSNFm1pOAb8hAfFbKo05evTVUQJ7COfYFRhKvlonVgFzYwNN6XBuQyGPHjn2q+RPBHo17rAATUMwkaYBL2sa2UgXUAEuuJ0qYfFltYhshCfj+oENx8SmDo4zH8ZyknjDWjtfZS8vHy7dXz17Sx9reyz5z3gMuEo4Cu4sV8ALRKvGOVFMD8Ax6aOE1Dahnqeq8RmRW3dEXgBl0Ts3eRUM3lKt2BpY1hAIemVaf1kF9xMGlDT3U2xfbAdtA6n79mECuu/Uj/c7+J0+dVPsVsiooPqdQFC9eAGaqtUMUahPaYfSo0QZ1qQeP3hC+ItXG+GdsIdGvaH/48CELVbFFw1UUnSgyaQD4bCMv0J++x4MWzbl2ZJIxthGTmW3E/z2lbcf2Mxpf96x6HhNSIvw+RvBa4xJr3lrJbOHaMFpLXNrBeuwM1YkB+ym4xgZi0h7SGxmAY+A3INo0jRek5VBUQ6EY3n3nPXlXQzngzc33DY95jkH6GDvxlj6q137H9XWu9JzWU6n6R8d+TVX8itROwHsA+XC9sfGzn/1UblZvYCZ/oy1cS77xxlvy/vvvW2gQ4j5jYzi2a5eU/p+i73o9sZLTwHyfPC0NOsFNcAVcgdZRIJxQOTECdfFUZXZTICefw0mbkzMnyiP6iAhgE6jLXWce/7mURHm8SKknr/A5vJMn5Oc92Mx6UlgXfbr431Au+3GXmRhmhF/gsRseIeIzA4xokJtl3gnAbDwcmHkWqIunLtspi3JaIqW2qyXK9DJcAVfAFQgKcGHH75WD3aCIv7sCLasA36/UMUEmnttrtcOASt1QsmXVu9TSsA2QClAJQIEwC/q5ulxyqjQcg4LdWVN6KtwdLVeNG6LQSR0WdJt57KpHqHaalsGLshRNKFtiFWsAu2eyBsuHS7fIF2s2yaF9RdKvT3e549ZxMn3SWDlwOkeWbiiSJV9+J4d0TEwEXWLvYg8l8I/wEVFpvNdOqUCOrQHsxnPaI/kJOKeDTwV0Cjf5p+tsHwNijEmj33lrkm63pPl5FD+yAQgXgTi8YW2iLd3CJFEh0f+EVMBDMniMchwDsYBZXA/wqDjAztqo+RM1hSISoDFqne6aHLtjF2NsgGXXrlEsVh5Hx5sYkEjdISYsedmXcxd1UWfQEdvZZvUm6gcqRUnblfCExf48dVBhEi/OfRXqVUx9AchF39eEt6juDPy0QkNRiRLrekPT6LsS2Yed6MQxVHdK6EQbLV/kVUr4BGtLosF4h1IWoLeret4ChrG/tLTMJiSjbPKQovYnl2wdf8aPH6chC55Vb+6rDa6aJ3Ws3mTGehYolzo4nrjuIRbu0iVLotAD2hccd1amWkDfcDxiJ57BgFA8hmkjfc072uNhzruF69A2W19rM6J8UWiHC8Buwr4IGEYfkIk6gOlcp3JjoEzLRUSb2E37JRzXyeYlhOIYIvzI9zVECeEGJ0260mLpku8dBbuEMsFpCYhuUF3Lp01atB33HKdc/9lxovuE72GynjoW2L9/v/4W5uQnP/mJxoGeaDcBANu71eP9xd//myzXa2tubJxXHR3s1iFiC61ysNtCQnoxroArkJ4KcGINMXVnz55tMZKITcWJNjrpRpMkADMJu8BMvMSWDTGMLqVVlBsS9dSVOHEGEBG217VfGPCFPA29x+tisIfHAOEX7rrrLovJhQ4BZpOXE/iBAwcslvAHH3xggxse4wqDz4bqauo26ovb19T9Pb8r4Aq4Ag0pEH5PA9h9/PEozhu/O2wjETucWbt5OsGTK+AKNE0BxijxcQp7Z+K5vVY7bIgW/T40TY22yg3UZQJdoBkTTUWP51cpZJJq9TjUOLu5WZVy9TCR+264TK6drI/pD+4lOVllxnGBu7qTviIgakNS/vC7qCUrIpKz0l/WbTuqnnw7NRTCMQVB+Roe4Qp92mu4bNpZJIvXHZB1Ww6rN2WxwuIcBbMK+hLj3GwtKtsKrVuPukbAdYFd9jYz69qhrqKTxyKgOhpf1rur2se21GO3rmJT10XNrBnThyXKi49pw/Kl1FG7Ttpyoa2UG+qonb8xnyJ9yGnnSVP64vsFWF7rkf+L72Y5ImhKnwbFVK/kvlEbkx/rWUgcYqZHqg2TNM7wX/3Vr+Xa6ddKfq98g7D1FNPgarTmmo/J+j7++GML4RH9PkS7sf1SdQ/2c6Mh6j8F9zUi1LKLI5S6GpvMxpTM7A7YzdEQEU89/ZTOp/KATlw3yQAxWYnh/N5775vjUvCID0Uke4kFLSjcUKkPRIf9eMdjd9zYcXLf/ffKI488apP74RHMhHrMVfPv//bv5iUMnLYbFu6xG5evRZcd7LaonF6YK+AKpJMCQExiXIWJ0q655hrzWOWEE8Aq73jqMvsqj4pwJ5P4Q6yP7tY3vUWccO0Or5bBcoCpdiJOnOmju/MXnsXJQwoDiaaAXYAs+XkBdWkv8Y6YaIH4UMGu8A7UxUOZwQwxdWk39drAL2FH01tf9x6UG9pUdw5f6wq4Aq7ApSsQfrcc7F66hr6nK9CQAvExTMiXief2Wu2wYVgmgV19nFuRrIFd9bfNOl8u2VkVMqZXmcyc0E+un1YoV04YIX166Ngzh17CU5VGAoR57F/nlDBapZBJveeATqVZfeTwmS5SdPKsnC1V+JLTQwYMHqZefeWyfO02+WLjQdl9sERO6+Pm6uZqdeO1y2gVqJujMKm+dOEoV6tNUqTae7FaI0w0LukYlX6kbRcFu40rsVG57NhJyRm8S1NWp+XHuuyvz1Abs6vEcThbX97U9XWB3ebodAHYnTRJ/vLXf6nXdzPUO7SHAcNUG+r7zOHPV4J7I6R1676UefM+snlVDupkYSTGEyRAqeW3T037E11G1QB588iu5/jmu9nUelI1oQw830nPPPN0NOmgXv9103ARNIcYu3PnvmNgN4T8IC92Wh/zrqKYnfbt1o2NMAqwS5i/Z5991ibII7Yu5ezcuVOdpT6Q//mftw2Yc93rYBfFWy852G09bb1kV8AVaGcFiIF05ZVX2kRpM2fOtPALeLJGg8EovhLhFoC6n3zyicXWJU4SnqzNgZCUz/7AYd6J49tP44TZRA0KWPGKZeIHYjHxyFd9kBf5GFywvTGJvNSJZy4n2bvvvtviCRMXi8eF4omJFZboY0c8fsSss0wQBxgm2cAvGpHEd2nWMjo0R9NmVe47uwKuQIdXwMFuh+9ib2A7K1DX2CATz+212mGgpZlg1yYzS3RO0kW2ZToL71jROLYgTLx18doNYBd/26xqjbep63qr323BwK4yYVRfmTR2kFw+ZpAM7N9LevXI0fGf7qz5qqvKLfSADsZYYS/Abll1npR3yZcKyZMzZV3k+KkKOXj8rGzatk+2bD0g3x06K8UlImX6uHy1FoZN1YkxImA328GuapkZyY79RpoaGCTHXlNTa4Pdy0ZdZpN0EZKBOLe0yw7rBgwlT0hAUYAk65i4jnB0XAviZdpaqbXBLpoTJ5pYz4Ddhx56SEMx1PbYBe4SapB4zBUaKgEAS9gFwmVECR31mjN0fiPEIFb1rNtvkx/+8Ec2KSEhSLhuBZi//PLLdm19UuMPkxzsNkLQZmRxsNsM8XxXV8AVSG8F8Folvuzzzz9vM7oyWQHesyQgJhOGEX4BwLlq1SoLS8BJPoDWkLeprQyDBy54gA2jRumsvzNmGGTGcxZ4jIcs3sHMcMokDwHehn1DnU0Bu9THpA146t52220WS3iEzt5KmeFFu/HMBegSU3fDhg2JuEfcla45k6faEey51PdMvPi71Lb6fq6AK9D2CjjYbXvNvcbOpUAYR8RbnYnn9lrtsGFPmoNdRbeAFr3NnwS7Bld1zKZRN3VdleSdL5VeXatlgHrqjhyQKxMK+sqQAT1l6KDe0r9vvoZX0FiseTkKenuqh6/2IE4D1VVyTh0ZTp2tkNKqLDl5Rp9gO1Em+46cll37i2W3vopOlukYVdFxda5UaP5KNQUrdFCZsAmwWzN2rHVsxD/Elt1jNyZGGy/asd8GdbY22GUCvHHjxqsjS3/JVS9ywORFr1v0MOUbE094qh4vOm7Xg0eOHLXJ8tiOkwzlMa5oqdQQMMWuer5G9Vaf6rGL5lzj4TH7yCOPyN0ahm/CxAnqXJRn13fz5s2zJzQ3bdykk+ydsXV8jaOxU007G7KzLmMKxxTK7Nmz5f7775NBA3XStNwcdRY6bdfVb7zxhmzdsjWKW53c2Toi+SmTFqJ+qonXnW62O9hNtx5xe1wBV6DFFADszpo1S375y18mvXUpHC9ZZurkDu3SpUstBhATiPEILyc4LlSac0Jn3wBJCQXBzK0Esb/iiis01lF3A7nbt2+3eL4AZUJBBLtC2AZboX+wJ0DfsI53wklwAo/byl1TPHWZIA6QPHr0aMsX8oR2E0+KGJPEPsJzOLX8YHu8vuYut0aZzbXJ93cFXIGOo0B0cVIzeZrH2O04festSQ8FGNvwiifO7el9fq9tL7bjpVZ7be1P9burpeYLSsRhUX15Qt6mveOdi68uSUeW+heowFL0CcyKvTnE21XP4W5SroC3Ugb3zpHe+TkydGC+DBrQRydUy9fQZHn62LrGI9XiiKFZpX13TiesKi4pk9MlpXLs5Dk5UnRWDqu37rFTlbpeJxau0voV6mYRW1frqdRYCdEzZDU2RZOnqRmNTObUXFdebV6j1bOMidwcg1ZevB/qqqAl1oECa6dQe+216frpQvtbw9JIk9p1NUen2iVpCBD1HM/P76HXOLijawg6fpdSfpsubJceH9F/fcea6HiprKyKJp5Tb1dCGfB7xnVRdB3I9dyFJV3SmgYKiqpoWkWpmoQyuI7kGpDrQZx7uF6kTTgyrf9qvez97jubOBu5MAkvWn4TEcdMbMDOuto9avQomTp1qnkHc83L5HE8mbp5y2YN97dSjuiTseYRrHWZ5k1rZl1Vtts6O2r0Ble6Jge76dozbpcr4Ao0WwHCHxBfF4/dCRMm2CydwNvjx4+bpyoT6XCiA25ydzY1pV7ApG5v6DMnUU6uhEV4+OGH7TVu3DgbKABkgbkEsucO6pYtW2w9ISAImRCvtz6wy6NHtIXBBydtoO5VV10lsxRk47GLlzAQOQxOqJMJ4fDQpd3AXcJQEGcpNWE7L0+ugCvgCmSKAg52M6Wn3M5MVYCxSXx8QjvSe7wAgguvGtWtHTUfU5Z07FNXoNcWDrGQUmkDH1Ptrzs0l6FezZqt2DWnWseSCnhzFALnd89WwNtNx4PdNAxDtr4U0mptgF3gcEWVwt2KKoute7a0Qs6cq9BlYu/q49RaQrWGgQgaohsjQ6SIjxCbCnYbaKxvcgXaTwE9roGlyeufAIoz5XoI+xXQMuFZ/wH9ZOCAQdKzV8+kwxKThPMiDAPXhCRAJW0O321tfJP176VhDwf07y94UefkZGtZ2Xp9WiYnNKzFUXWiKi09pzZET8uatpdQR5ONaqUdHOy2krBerCvgCrgCF1MA+Mndyvvuu8+8WIcOHWqxZDdt2mQeq8QZAm5ygqsr7ELqBczF6kvdHurnkZh7773XPGjJA2zFY5i4vu+99555zgYAC5yIp/rAbjwPUJcJ0u655x4D2bQZqEuiXE6k1Bc8dVeuXGmfAcPJAUy8QF2ub31KNv/oCrgCrkBaKBAHuz/96U+lLo/dzz77TP785z/b739aGO1GuAIZpIAB0QA7EnYzVkjP8QL4svZ4Kkht7QgfLnhPN7CLgbSFV91QlxykqH+01TRBoS6vLhpbN0tjZmbRT7p/VoDWgBaFQFUaY1e5rnTRuJznFcicV2pr3sAJX4ekVgb1dWyo+UnB6zYUZyv9jyvgCrSbAnwzw28x31v9ZP/xloWlBq9my8OKlkxUp7844VrWPkar9DcnmtTbrkf1mjSTk4PdTO49t90VcAUyWgFgLY+FADrHjycW0wCLn7RTZ+rES5ZYt4QnIKUCVdZFJ0aWmp7YF7hKOITHHntM7rjjDovzS0mcVE+cOGGxjubOnSurV6+2+gHMjfXYDRYRs/fyyy+XOXPm2ERpQ4YMsYkEQj20Cw9lwi4sXLjQgtjjuUtd2BEGAaE8f3cFXAFXIBMVcLCbib3mNmeSAgb5OjzYpUcUeqQSy3bz2G3cEWITq2nfBP/aEKLBxrHc4NeX9Z+OiyvP68S+CmGix691z4j6GPxhsTpBbUN/x7s8CXYTZiUBTuPM9FyugCvQWgrol9G+71o+32P7w2+CXgdW6cSHeM1G1336W6D/WjJFmDiaV6bm2pK6qSfhBW1GtWStbV+Wg92219xrdAVcAVfAFOAEB9zt1o3H0LpbyAKAZklJicW5JfxC8GhtabCLAXjsjhw50oLY400L5CVx0isuLraQCG+//bbgQYud2BZOypZR/2AXNpLCtnDSxFOXGU+JqXvLLbdY+AXqJJGH9jExG7GEialLPF8ma6OekMcW/I8r4Aq4AhmugIPdDO9ANz/tFWAMEsYhwdgwHgmf0+cdoHApHruhBYoq4nA3A8BuF7U3wihRGzA5YinRgk1oBdxRXQzE6B/6j2Twlp0tRQv2t+aPblGskfDYTWT0N1fAFUgXBfS7ys0avsvEDWYSNMZF2dkalIXrPtvOF1pfie99i5huPx4UGT0hatfT/LZQU+KcQa12A6kl620R45tWiIPdpunluV0BV8AVaFEFwkVI6sUHIJV1AeyGfKHy1M9hfWPfKbtr164ybNgwA7tMnlZYWGi7sw2wu3jxYgHsLl++3E5+dcX55QSJV3GAFuEk2atXL4upe/PNN8vMmTNl7NixBpIpm0RZBK/ftm2bfPrppwZ1d+/ebaA33rawzH5h2QrwP66AK+AKZJAC4TeSEDMeiiGDOs5NzRgFwvgjbjBjhzDuiK9v/2VQQnPALi3Q8VSAu2kOdvHQjcBuNAZMWM+bJkAO/9kWhWAgloJ9tvW63f6zPVqOsAz7pqTEGDNlrX90BVyBdFDAQKr+GuCln7iuY2x03m7ImJ++fsX5PeC73kJJi+N3I5wLIi9dXRWqSNhkVbZkvS1kflOKcbDbFLU8ryvgCrgCbaRAgJjhRBQ+t0T1oUzALnF9ibH7wAMPyJgxY6x4TriA3WXLlgmhGJYuXZo8CYcTcbCDEzKggndeAGmgLp66t912m1x33XUGjHv06JGEw3jkUv7WrVtl0aJFOivp57J3716bKC21/FAP7y2pQbxcX3YFXAFXoLUV4PeR3zAHu62ttJffWRXg+5U6TgjjnfTTBNrQXLBLq5ROAHfTHexm8WQX4CbQFD7GlmmKJTSJJjJKrNA9gk5GaHQ1+2V2LMzQNn93BVwBV6ClFHCw21JKejmugCvgCrSgAlycxC9IUi9WmlNVKLcusBu2NQXssg8wGHDRW2cfnTBhgk3GNmPGDIvb27NnTzOXfHjqEr+XGMJ4BOOty8Rp8YnSyNfY1JK6NLZOz+cKuAKuQFMVcLDbVMU8vyvQNAUYD6SOCcKYpmkltUXulgK72BrGTAF8toX9Ta3jQhBrcXdTiokgbgC50caodbXXOdhNEc4/ugKuQKdXwMFupz8EXABXwBVIZwUC5Ey9WGmOzeFCJ4Ddhx9+OOmxG7bFwS6eu+GxmdR6gRUktjNRWvDUxVsXb2BiB2N7KJfwCxs3bpQlS5aYJ/CuXbts/xDmgfJCm23DRf60pC4Xqco3uwKugCtwyQrUBXbHjRtnv3fhd/Szzz6TP//5zzaR5CVX5Du6Ap1UAcYDqWOCMPZIP0laEuymX+vqsuhC7KwOAUkozR6g3tpr6irH17kCroAr4ApcqICD3Qs18TWugCvgCnRoBcKFTnPAbrh4ChdSAeoySRpxdUeMGGExdQOwCOEdvv76a/PUXbFihYSYuiGecBDdwW5Qwt9dAVegoyjgYLej9KS3I10VCOORuH1hvBNflx7LDnbpB3MNCA7H+vm8yhL7mB5d5Va4Aq6AK5ABCjjYzYBOchNdAVfAFWhJBcKFDmCXydMeeughefDBBy0WbthWl8cucDYAXewJ0BaoO3nyZLnpppvkhhtusHLy8vKSefHGPX36dNJTd/Xq1YKn7pkzZ6xZgF1SqNs+xP6wPqR4/fHlsN3fXQFXwBVIRwUc7KZjr7hNHUkBB7vx3qwZN8XXRssX+s5emKdt1tQCu2rWhQEb2sYOr8UVcAVcgUxXwMFupveg2+8KuAKuwCUoACxN9dgtLCxMwtX6wC5wIoDW3NxcC7UA1MVTd+bMmTJ27FhhorSQKioq5OTJk7Jt2zbz1F21apXs2bPHJkoDFJO4GKsP6rI91Bfy8k5ysBvp4H9dAVcg/RVwsJv+feQWZrYCDnbj/adgl0nVUlMaTrIWMHMd1qZa759dAVfAFXAF6lHAwW49wvhqV8AVcAU6qgLh4gcwO3jwYAkxdi8GdgGsAabiZcukaGPGjJE5c+aYt25BQUEypi7a4albVFQkmzdvlgULFsjKlSvl0KFDBnXZTlnA3YagLvnqS8GW+rb7elfAFXAF0kUBB7vp0hNuR0dVIIxt4u271PFFvIzWWQZnpk4IFtVk7Wh2pZkDdpvdVC/AFXAFXAFXQMPY6L/qqrRVImv48OF+Ay9tu8cNcwVcgUxUIIQ+4H3gwIEWioFwDHjbhouguMfu0qVLDcDS1gBT8/PzhYl/br/9drnrrruSMXWDHuSjjA0bNsj8+fPlk08+Mc9dQG5lZaXVA1gOk6ZRb1NTsKWp+3l+V8AVcAXaWgEHu22tuNfX2RQwIKpjj3gKY5r4uvRYbm2wSyvrgLtp6LGbHv3hVrgCroArkNkKONjN7P5z610BV8AVaLICXPwAWAENAew+9thjBnYpjAuhU6dOybJly+Sdd96RAHbDBRKeupdffrnceuutcs8998jQoUOTnroB0BI/N0yUtnjxYpsoLdRJHSyHz2Ef1mMbnx3aooYnV8AV6CgKxMHuCy+8II8//rjdHOP3jm2kzz77TF5//XVZuHBhR2m2t8MVaDMFHOzWJXUK3HWwW5dIvs4VcAVcgYxXwMFuxnehN8AVcAVcgaYpEMAue/Xt29dCMTz55JMyfvx4KwjQcO7cOVm+fLm89dZbBhkChCV+LlCXidIAuxMmTJBu3bolQSweuGfPnrXwC4sWLRJi6n777bdSUlIiOTk5BjAon/J4JznENRn8jyvgCnRgBRzsduDO9aalhQIOduvrhhjcdbBbn0i+3hVwBVyBjFbAwW5Gd58b7wq4Aq5A0xUIYBew2rt3bwO7Tz/9tEFaSmN9WVmZxcR944035NNPP7V1wVMXqHvDDTfIxIkTbaK04G0G1D19+rTs2LHDYPDq1atl586dto5tgN1QfoC6vDvYNVn8jyvgCnRgBRzsduDO9aalhQIOdhvqhgTcdbDbkEi+zRVwBVyBjFXAwW7Gdp0b7gq4Aq7ApSnQWLALmOWxYMBu165dpbCw0CZKu+WWWwwCd+/e3QwAWASoC8glhAOPFB84cMA8fysqKpKGBqCbXOELroAr4Ap0AgUc7HaCTvYmtqsCDnYvJn/0lJQ+J3WxjL7dFXAFXAFXIMMUcLCbYR3m5roCroAr0FwFUsEuE6fV5bH7xRdfyJtvvilLliyxOLo333yzfO9737O4kIRkoBwSsJZQC9u3b7fwDfPmzZM9e/YIQDfE0mWiNoe6ze05398VcAUyVYFUsEtccyag5HeRbSRuiPGUhMfYzdRedrvbUwEHu+2pvtftCrgCroAr0J4KONhtT/W9blfAFXAF2kGBi4FdTCIUw4oVK+Tdd9+VrVu3yjXXXCMAYOLw5ufnG9QNMAKou23btqSnLvnLy8sFmBvgL2U62EUFT66AK9AZFXCw2xl73dvclgpkFtgNynBTp7YHrbUjbPZ3V8AVcAVcAVfgogqAdWvmr7lo9nbIkDV8+PDw3Eijqo9DhLCDw4SghL+7Aq6AKxBNVhYmLyPGbqrHLhoBZvHYXbp0qYVTuOOOO2Ty5MkGdXNzc5PAlhAMQN0FCxYY2GWiNCZPS/0t5nfYf4v96HMFXIHOqoCD3c7a897utlIgM8FubagbtEo8EBU++rsr4Aq4Aq6AK9CgAul+nd1ksBs8yEKrHSYEJfzdFXAFXIFIAS5+GgN2Ca2we/duAeROmzZN+vTpY48Msz+/rcDfgwcPyqJFi2Tx4sWyefNmOXPmTC2Zw0nGf4tryeIfXAFXoJMp4GC3k3W4N7fNFchMsNvmMnmFroAr4Aq4Aq5AmyvgYLfNJfcKXQFXoKMr0BiwW1lZKadOnbLYuYDdQYMGWWgFtMFL99y5c3L48GEL1zB//nzz2iV/HOTGdXSwG1fDl10BV6CzKeBgt7P1uLe3rRVwsNvWint9roAr4Aq4Aq5A4xRwsNs4nTyXK+AKuAKNViAOdnv16iUPP/xwrcnTKAgQG7x6WQZKEDOXBNTFU3fNmjXy9ttvG9Ql/AKJssN7gLx8drBrsvgfV8AV6KQKONjtpB3vzW4zBRzstpnUXpEr4Aq4Aq6AK9AkBRzsNkkuz+wKuAKuwMUViIPdnj17yiOPPCJPPfWUTJgw4YKdA5zlnf3w1t2zZ498/vnn8sknn8iGDRukoqIi6alLHrx94xOnOdS9QFZf4Qq4Ap1MAcAuid/Ln/zkJ/LYY4/JuHHj7LczbCNW+euvv27hbTqZPN5cV6DZCjjYbbaEXoAr4Aq4Aq6AK9AqCrQI2G0Vy7xQV8AVcAVaQIEATlugqEYXEQe73bt3l3vuuUeee+45mTRp0gVlBPsC2CX8wqpVq2yitI0bN8rJkycN+OLdC8zt1q2b5OXlGQAO+4ZC2c66nJwcy9e1a1fz/j1x4oQcP35cSktLkzF8wz7Y6skVcAVcgUxXIMBbB7uZ3pNuf7oq4GA3XXvG7XIFXAFXwBXo7Ao0G+x2dgG9/a6AK5C+CgA5U+FnW1gbB7tA2DvvvFN+9KMfyZQpU2pVH7eNZfY7evSoTZLGxGrE1MWDl/VsB9xSHnCX9fH9wwVXAMDkA+yWlJQY1N2xY4dQ5oEDB8zjt5Yh/sEVcAVcgQxXwMFuhnegm5/2CoRxRtxQxiHxsUh8my+7Aq6AK+AKuAKuQNsokJ5gt7ptGu+1uAKuQMdWgJ+SlrvgaPwPExc/IX4ucPXuu+82sDt58mQTPIDauPrYyXq8avHSPXPmjJURzwO4YKI1AC/lp6bQVvKRh3fCNhQXF8vWrVtl5cqVNhkb8NiTK+AKuAIdSQEHux2pN70t6aiAg9107BW3yRVwBVwBV8AV0Hl4hg8f3nhaoYqFgXOriWfW+KPBraavF+wKdCIFWh7sNv7nEsjKCxBLKIYfqcduQ2C3oW4J0JeLqoZSALup+Xg0ee/evbJkyRJ59913zSO4oXJ8myvgCrgCmaZAGJ96KIZM6zm3N1MUcLCbKT3ldroCroAr4Ap0NgXSC+w61O1sx5+31xVoVQXSHewGABuALGLgicv6ACkIucByyBsEC/ukrg/beQ9AmGW8dInd+/bbb8vy5ctZ5ckVcAVcgQ6jQPjNdLDbYbrUG5JmCjDeSB1zMM4I45E0M9fNcQVcAVfAFXAFOo0CTQa7qSd0U6o6mom406jmDXUFXIGMUeBCH9sL1ygC1fbUtb5pzYxf3IRlPHZnzZolzzzzjEydOlWYTA0Awfa6fk9T16d+bsiiUGfqPnzGY3fx4sUGdgnL4MkVcAVcgY6kQIBOAew++uijMm7cOPutDdB3wYIF8sYbb8iiRYs6UtO9La5AmymQOm4J4442M8ArcgVcAVfAFXAFXIELFGge2DUOwqPBDT8efEGtvsIVcAVcgXZSIMK3qRCXz6nrLt3A4HUbLoCuvPJKuf/+++Wmm26SgoICm/wslM5FEV654cX6sF/IE9aRB2hRXl4e32TLAWrwTlzd8CLW7unTpy38Ap66K1askBMnTlywv69wBVwBVyCTFQi/gQ52M7kX3fZ0VyB1fOJgN917zO1zBVwBV8AV6AwKNBPsOtTtDAeJt9EV6EgKtBXYRTO8xIC8/fv3l2nTpsmMGTNk/PjxBna5OOKCiBcgghcwNniWlcvICQAAQABJREFUxTVnHfkpi8nVeKWmADXICwAmDwCY9UzG9u2338qWLVvk4MGDVk/q/v7ZFXAFXIFMViD8BjrYzeRedNvTXQG+Z/HkYDeuhi+7Aq6AK+AKuALto4CD3fbR3Wt1BVyBdlKgrcEuFz1cCPXr10+GDRsmAwYMELxoCdEAqOUVPHFZDhAXecIFFO/sEyBwXR67IT/7Uw6QuKysLAmDi4qKzHO3nWT3al0BV8AVaFUF+J3k5WC3VWX2wju5AmFcEmRwsBuU8HdXwBVwBVwBV6D9FHCw237ae82ugCvQDgq0BdgFrpIArCHFlwGzvXv3rhV+oa6LowAqQhl15WFbfRdaAfDm5OQYFCZfsC2U6e+ugCvgCnQEBcLvpYPdjtCb3oZ0VaC+8Ua62ut2uQKugCvgCrgCnUEBB7udoZe9ja6AK5BUoC3AbrKyehYAtKkXR/Vkbfbqtqyr2cZ6Aa6AK+AKXKICDnYvUTjfzRVoggKpY5f6bjg3oUjP6gq4Aq6AK+AKuALNVCBLHw2OOEcjC6rl7VXtMXYbKZtncwVcgTRRgB+8Cy9EWFvjXZsmproZroAr4Aq4Ao1UgPEp0AmP3eeff14effRRGTdunP3eh7HrggUL5I033pBFixY1slTP5gq4AkGBcPMkfOad8dSFY6p4Dl92BVwBV8AVcAVcgdZWwMFuayvs5bsCrkBaKeBgN626w41xBVwBV6BFFHCw2yIyeiGuQL0KONitVxrf4Aq4Aq6AK+AKtKsCDnbbVX6v3BVwBdpagQvBrq1RM3j35Aq4Aq6AK5CJCjjYzcRec5szSQEHu5nUW26rK+AKuAKuQGdSwMFuZ+ptb6sr4Aoovk19bDCAXRfHFXAFXAFXIFMVcLCbqT3ndmeKAg52M6Wn3E5XwBVwBVyBzqaAg93O1uPeXlegsymQVTt2rseD62wHgLfXFXAFOoMCDnY7Qy97G9tTAQe77am+1+0KuAKugCvgCtSvgIPd+rXxLa6AK9ARFHCw2xF60dvgCrgCrkCDCjjYbVAe3+gKNFsBB7vNltALcAVcAVfAFXAFWkUBB7sJWXk8WyRL/3lyBVyBDqWAg90O1Z3eGFfAFXAF6lKgLrA7duxY4SkNtpEWLFggb775pixatMg++x9XwBVovAIOdhuvled0BVwBV8AVcAXaUoGMBLthiiODsPwJK5qh3Hkd+GdpWY52myGi7+oKpKMCDnbTsVfcJlfAFXAFWlQBB7stKqcX5gpcoICD3Qsk8RWugCvgCrgCrkBaKJCZYFchLBTWBhgqYw3XZSnhc0ueBlIyp5Ujcv68xuG0ldH+iVIaKME3uQKuQEYo4GA3I7rJjXQFXAFXoDkKONhtjnq+rytwcQUc7F5cI8/hCrgCroAr4Aq0hwIZCXZrCaVgNjxip8/b2XJWlyypKK+wbAxCzBU3tlN19Xl7NA8InJ2dLV275kppaZlUVlZaLsrrwn6eXAFXIPMVcLCb+X3oLXAFXAFX4CIKONi9iEC+2RVopgIOdpspoO/uCrgCroAr4Aq0kgKZC3YNvFarp22NZ242MdR0PfHUgLyW6uKzbNaNwNsuCnYpqqKi0vazYj0gQysdbl6sK9AOCjjYbQfRvUpXwBVwBdpWAQe7bau319b5FHCw2/n63FvsCrgCroArkBkKZDbYVXhbRQgFTbm5OQZ5gbqwXCZD69IlW6p1ezQxmmVL/InCOFguA8AKgzVfloJh8/ANUDi+SxOWI6TM384TsbemzY1rdcifTgqlo01NOOxaJWvQJCq8/t4K+ciRdhMROthtlWPDC3UFXAFXIJ0UcLCbTr3htnREBRzsdsRe9Ta5Aq6AK+AKdAQFMhLsApEYXABxiY0L1M3Ly5M+ffrKgAH9pXfv3pKbk2Og1rx3FTXFU1ZWF933vIZeqJJz587JqVOn5PChw1KiywDepNcvO10C5KU2A8xqY10Ow3FbOsSy9QXhLYC6Ud9crF3AP/KnTcgLNRx76Le0seliIrb29pgmVGUD+nrqDP0ZvpcN5a2niNZb7WC39bT1kl0BV8AVSBMFAtgtLy+X559/Xh599FEZO3ZsdF7niS5NCxculDfffFMWLVpkn/2PK+AKNF4BG9tFjzYmd2LcHF1rJVf5givgCrgCroAr4Aq0sQKZCXZ1EEEcXeO1+tY9r7sMHTZUpk6dKpMmTZIRI4ZL9+7dI+9bE1QBq+YLfJd9q6qqLK7u6eJi2bV7t3zxxReyffsOKS4+ZfnOQ/kMPkYAsqF+iWBWmHwtysnurA+pZims6Tjv6ElIDIPZ2iw+m3ws08zQeMApny1FusY1YnXIGuVpw7/0lRpNv0c2BUs5drCqlvFtaFg7VpU4fm1iQTUDHRJKmFEssw6lorjVEagPGrI9LZKD3bToBjfCFXAFXIHWVMDBbmuq62W7AolxYGJsGPRwsBuU8HdXwBVwBVwBV6D9FMhIsGtyAZn0laMxcnv17iV33323zJo1SyZOnCh9+/bRMAwpWClwupjWTJZWUnJOjhcdlzVr1sr8+fNlw/oNcrakJAJWeO9qUgSZBJWx3W2R8U1ujk6+VlZm3sN4eyZDOiQykydCYql7d4zPtcCutpWLK2CggUD1jqb9JIO/ur6OrrDt7a0TQBJAGXl0s1xtk+vl5BDSI4K+9R4I1oIO9ifRcQHs0q+kAHGJaZ2Tm2t9zXeJ9UxGWFWV6Pt0kcPBbrr0hNvhCrgCrkCrKeBgt9Wk9YJdAVMgGtcnBvUJTRzs+sHhCrgCroAr4Aq0vwIZDXazs7tIz569ZPz4cfLCCy/ImDFj5MSJE7JlyxY5dOiQqouXJVj2wsTgJD+/pwwdOlT3H6+Tp1XI+vXrZemSJfLFmjVy9szZZPxe9uaCAZBVqZ6+qSkCXlEtXQCZCpWZjC2k9gaWwY7Weo+DXcB2bteu0qtXpG2PHj2s2qqqSvWGPi379++XcwrTQ5/QD/FU+1N8SysvY4ceK/QloTyG6HFBeI/s7Cjkx5kzJXLs2FE5ffqMVOqx0ilSom8C2M3R8Cb0a//+A6Sf3jwBgNP39OuRI4elqOiEhkXJVbCrx37o4HQQysFuOvSC2+AKuAKuQKsq4GC3VeX1wl2BhMNG7ZG6g10/MFwBV8AVcAVcgfZXIKPBLnF0Bw0eJDfffLP84Ad/YeEVVq5cJQsWLJRDBw+a52zdhCnL4qjmabgGwjbMmHGtTJlylUGp7du3y8qVK2Tjxk1y9OhRDddQatAXuAW0jUI01HQcw5su6qUYTdLGY0psIzRB5O1rn3RdR/XYNTCrjaa9tB34RxiMCRMmyi233CyDBg1UXlqtsYxLZdeuXeYVffjwYRiqPdbPhZgNCo0Etp9KZod2FvGaL7tspNx0080yatQoAUyXqTf24cOHZPVqwnVsl+JTxXRrx0/an/QTf7LVaxloy82TadOmyeWXX25e8Xjn7t27V9auXWs3Ruh/YlfjvZs2cNfBbsc/Vr2FroAr0OkVcLDb6Q8BF6CVFXCP3VYW2It3BVwBV8AVcAUuUYGMBrvdunVVCHeZ3H3X3fLQQw/KmbNnZd26dbJhw3opL68wYHgBXDLwGqnFY+P5+fkGq66ZPt3i9BKaYfv2b+WbbzarB2KRhmo4a2UBLslvwDbujZiAmaWlZerle0aKThQpED6m+x6PdUn7AcuYERdfNG0SAhl5ZTk0NrHeStF1rFaSS8iLEKaAiyrAaM+ePeX6mdfLk08+ISO1f9AMHb/6ar3813/9l+zcsdN2Z98wkR1lUJ6BYqOJkbl11W5bgq2xvNEel/a3i3p/UxTH1IQJE+SJJ55Q2D9ZJ+TrLWfPlshujcP87rvvKcBcJ8ePHWtcJUGy0IjG7ZUeuaD02kt2GOgSUDe3a67Fsb7rrrvkxhtvtJsjZTpJzebNm+Xjjz+Wzz77rFZ/JpvdQn10ycI42L1k6XxHV8AVcAUyRQEHu5nSU25npirgYDdTe87tdgVcAVfAFejoCmQ02O3Ro7sUFhYKoOm+++4zqEgohtP6aHhXBXRROIQkXkr0ZQSsQscySOGR+wEDBuhj5r0MVpWcO2ePlVcotCqvKFcPRMIqZCXih9aEWIjKiOL8nlPP3mPq4btHvRc3bdokX375pdnBJG3mmqp/AucLdV/SuxYSYBsg1AhroomhpbaaLQbU6qi39m41dumOwUbKSmQzM6Myo63xx64C7GYdF1XEo+2tMY9vueVW+dGPntP+GWNg94yGtmCCun/913+VrVu3WZnkhfBS1/nzhLhIgGLsZqWm6E0nNAuWJRoX7KwyT+HE1rAysSP7hlWJ4tiSTGEbK4iLTG153fJk4uUT5Yc//KFMnz5V+vXrJyUKdr9VT91XX31NVq1afQHYPY93KhZqgYBqwlEk11mptRqja2pSsMtsqfmjpoQtNXnrW+IYttxN2Ke+spLrTecE2NXl3Nxs6dq1m1x77bXy4IMPyh2zZ1sYhnL1Zl6vcannvvOOfPDBB1E/YY/1YRQGJRwvVmSUI1lNmyw42G0Tmb0SV8AVcAXaU4FUsPvII4/I2LFj7XzENtLChQvlzTfflMWLF7enqV63K5CRCjjYzchuc6NdAVfAFXAFOoECGQ12e/aMvG3vuOMOefjhhxTC9W23LmNiMDw7jx49YjF+33vvfXs8HaAZTagGfDRyd0k2BsyHlyt1MbgK3rIG0bTUCKOxPrqAIW4weQghUStB2BS8hbASlBVSWCJ2alRuWBPVGVApwBpP3G4aT5dyWKYcPHYbArv/8i//YmAXTXI0L0QSG8s1JjH1ETeZZB68wajEOxoQ59gIqu6IDsS7pb143AJVQ7LQGFqetU3rMk/rsFHfaVWtdptmNWD3uWeflenXTNd4sv00jMQ52bFjl7zyyisapmOlAvzaHrt4rZIIQ0D7s7MJR0CcWbXYtMVyPJtrwnOQn7Wh79Ag2M8yIQ7CNvKGXmA5nijDJnfTBfqkvnzxfS62HFmLfbqk/4HeOTldDOzOuHaGPKje8XznkKy8vFI95DfI22+/LRzz9AV2m+20XxPlcJOFmwC0jda0hJ1WeGP+ONhtjEqexxVwBVyBjFaA8w/n9XI9Jz///PPiYDeju9ONT0MF+H7Fx86YmBzzpaG9bpIr4Aq4Aq6AK9BZFMhcsKs91LtPH5k8ebI89dQTct11MyysQnt0XIJf6eDmvFRoCIhDh4/I8uXLNezASxab1WxSxpUKF5tiK/AUUEuoAOqjLAZTYZAVBlpwxAAIDfTxOQWjRQA4Ws9+lBM8TAGu4DjKB8JF9Sg8VChHAvhaXZqJckLcYdrOeiAjns+33npbnR67//RP/2xxaq0w/UOcZOysqKyI9lcoekFKtAHv3NBmg7l2EQfQjIBp0ID9Q8zjAIKpIzXF4aLpoBm6q/c2HrtNAbtBT1M0YSt2Wuxl1QX7gJqpYBd7qBft2c4y8Wm7ds0xEFqly/R7EoJrfv2or8hDGAgOMAUos876LAa3Kb+pib4PGuuS/Q9gNycnV79n12nYk4dSwO56Bbtz5f331WOX40eN5BWSfQZq67Z4ol1tkhzstonMXokr4Aq4Au2pgIPd9lTf6+4MCjDG4xVPqWO++DZfdgVcAVfAFXAFXIG2USCjwe6AgQMs1ucvf/lLGTJkkHpL5iZVC1wpZfyR3N6SC9TFMAeUhRfpGY21u2njRvln9U7dtm2bTr6lHp3BoEupONEIwB2ANQ44AZdWL96ausyFDXVFIQoSldUwtgiu6fZaqzSbhSJgPXZqYwC2Ua5oAJeEkvYRL2Ad3OF9qdmBj+zHJmBjr9695TbA7o/joRjO2ORjeOxu2/ZtUoUAkAOMppwAYykv2El9lQZn8erNSUDQKCxG6iAzQFwgs23TQtCF9lj79LOVS1tDMo2rFex2bzLYDUVc8J7otwh6R/2ShJuhbs1DGIposBx5u0bLJrTZi/bWP7EKbKvuS1vtYla3WdtieS5lEUWsLxN6IBR106/Uc/3116t3/MO1wO7Gr7+Wt/7nf2Tu3LnadwqwExWbF7IeFZQX1tlyou0Odi+lh3wfV8AVcAVcgboUsHOhnrvcY7cudXydK9B8BeLj01BafFwX1vm7K+AKuAKugCvgCrStAhkNdocMGSK3z75d/uZv/j/1csyNIF5Cvxg3a3VFqQsOFuos1Xi7O3SCMOLJMmHY6dOnDXoy+LmUhOdn9+7dZeDA/jKg/0Dpkd9DPXe7macmFzKAQSaLKysrlWKNL0yogBMnT2iYgkoDvEnDqFwNtXAJ6lXbr19/6dO3r9kOICQ28fHjx23fLgA6tRc4xzvAmonEhg8fbrYA8CqrKq1te/d+ZxdSFG9gt1dvmXVb3WD3xd+/KPsP7Ne2DFAYP9QmWmOgiDfyWZ387vix4+rxfEjKdDK6GhwYeQgQ3gCw3VXbToiEQYMGqa4a+1gBLpof1RjHx3T//B49ZMTIkRo3ub/06N5DwWTk1UtYjMNaNpPbUVeqLrri4mB3xUo5qpOn0d9GwNFGX3hSE4+XWM09tH7ahKaEcSg6XiSHjxy2/MBMOwp0HwohlAU3KGhLv779pFteN9uPmwNHjhy1/uAiFb3IQ39TbpnGtqWvjqktePbaAcYfym1GYm/6G/vRg//hhkF2dpbM1EnxHtW4hbNjoRi+VrAL1J037yPTfPiw4Xpc9bHjDG9l+gY7CVNy6lSxHauY2GZg1xpRowvt4+XJFXAFXAFXoOMo4GC34/SltyQ9FXCwm5794la5Aq6AK+AKuAIZC3bBMkOHDjHPQcBu0juTPtWNAdsYn2rlfoYRxespVSi5e9du+X+//72sW7tOThUXGyg7r0CuUSnB1BhAdVXwN1CBXmFBgYwbP87AKgAxX+Furj4abwBRPTqZ6O30mdMKLg/LXp3Abc8eXrsNpAFEk7BOjc3X2MSFhQUyadJkGT9+vJqEh0uZ7Qek27hxkwJaQgdEDaNteEOPumyUzJo1SwYPGWxQuVSh5b59++TjTz5RyFik8JeQAuqxWyfY1cnTVq+WV1/7s5aVLVdcfoWM0UlNBg4caLYBQE+ePGnlMfnc7t27ownsFPhG2hKmoNJgIUB6ypTJMmPGtaYP3r7Hjx/TWK9fK1Dfoe260kJ0AKEJC0FbytVruuhEkYWB2Pj1RpsM7dSpUwZKaad5H6sSF/PYXaFgF0gZDW71ONN9Absci1M0LMiUq65SAN5HN1QLE+qhD5oC+PFEjmIXJwB4z15SoP1K6AcmeBkyeLBBYTyTgbY7d+60FxMCDh06WKZNnS65ejwAwVmHTkxIBzgNSbvqIqnhHPa9qXVAA3kjb136dubMmRa3MMTYxRsd3T/99FO1Z6NceeUkmThxogzWtnDMVFVVqAd7iXz33XcWe/rbb7fLoUMHFXiXmobo1PqJNhO+guOZrnGw2/qaew2ugCvgCrStAg5221Zvr63zKeBgt/P1ubfYFXAFXAFXIDMUyFywq3Bm0OBBBhp/85vfKOjsbgAqVfYICqaubdnPtTiYFg1o2759p/zud79TSLpRSkrOqW0RBLxozZrRMJTGTAXqDlPvRwDmTTfeqCB0jHmg4hGaG/NQBrxVKfQsVY/dMwp3gYK7du2SJUuWGEzDkxUYSCxW4GtvDZUwdepUuf322+3RegZq2PzNN98YoGPW6OzsXAFEg91yc/FG7SujR4/WCUl+LGPGjDUP6bPqAbtVQ028+OKL5qFcrl6kTGJG+YRi+PHzP5SCgkKrE2/ZdevWaTiGVTJhwgS5+uqp5uGKdy0xZokti8cxwHL79h0ao3iZrFmz1kB1gNJ4IGPPeAXcc+bcIffcc7eBW7YDDpnYDKj9wAMPaL0FBljxbKZ9tJ82HjhwwCa1QxvsQY+qSuLhRpOuBLD77A9+cMHkaa+++qoAdo8DdhXSAgoBu9Rx1dVXyZ133qmxhW+1z3jVHlHIvnbdWvnkk0+1ri8tnrDFKNYeZoK5CQpA58yZozD0SvVeHmKe0MQcJk+JTsRXpFrs2bNHbxLs0hjE5ZYXUI0HLwB/6dKl8tprr5lXMMdVFNYCuxpI1RxdvJqQVD88t4mxO3Nm7Ri7JSWlBpiB12h8yy23aFsiQB15F583ezkutyvUXf3FaoXRawxY481r8YJble2G9lJJ9FIUb3C3CQp4VlfAFXAFXIE0VyAOdn/84x/XO3naW2+9JYsXL07z1rh5rkD6KcB4mlc8+c3yuBq+7Aq4Aq6AK+AKtI8CGQt2gYF4e956y63yV3/1awspgGdmakoZf6RubpXP5xTkbt6yVX77298qpPxW4Z+iNMIBVOI1eJFkBlfb4+ojRoyQ22671eA1k8T1zM83oGixSxlXKaeyybUSkJGS8WrlMX08YPHonD9/vixbtky9JA9Jnk4MBvzr37+/TYJ1zz33aPm32SANb9mvvvpKPv74Y319kvBkjVAYsLGvgt3CwkLV+n8ZWAX2lpSUWLzc//MP/0e2ffutesXWD3bxYga+EmIA71bCCgCao0FiQhNtD96qQM0v1qyR9959T9asXWNex90UZAN/aS9g94EHviePPfaohXJgb0Dnli1bzOt3lnoVG/xWj1Eu9EgMPEloAyxdtWqVfPjhhwbes7KyNR/HTk0ohqaAXYD7/fffL7Nn3y4FBaOtTecUeG7YsF61/FQ+nf+phZiIYtVmG/i+/PIJ6m0+x0AwYRaApnQ9fSsKX4mRDBw+deqk6rZPvZePmbcs7QKgAqjp21deeUXDbxRbv7Yk2KVfTLHEXYv6wC4hM3bt3mM24Kk8etQoyVHdCdsAQEb38wpwu+jnkrPnZMvWrcKNA44zwma0LtiNbKDfo0SLCPCBx24jvefDrv7uCrgCroArkNYKONhN6+5x4zqAAg52O0AnehNcAVfAFXAFOqQCGQt2AV8DBvSTG264UX7+85/JiBHDzbM0tZeAZW2dAJ6bNm2Wv/u7v9eQArsUb6kRgDK1+aJJ8xF7FJA2ddpU9Th51CBsfw2/kJ3TRWPPlmsM2sPq2VqkcWJLzBuS+K54cvL4O5617EtM3CMa1/Xzzz9Xj9FPzFOWix4DuwMGyvXqeXnvvffJLIWgALjTp4stXMC8efPkgw8+0HVMPKbgWKEcMWyJ/0ooiL/+67+WcePGWkxZQB0eu//wD/9ggLchsFtZySP5Z7XMCLQCnk8rkCR+MPFy8WAFFgMCAbgHDx5Q7+H5Ml8f8d+swJbYukBf2hUHu3gHAwcBxngmEzt32LBhclKBaIXGHQaEokl+fk+FjZHHMt6j3yqI/uyzBfI/OulXWVmF1UvdDXnsvvbaq+oVvMpCMaBZFHail3qp3mxaTp16tXnd4om6b99etf8zha+fqif0Fut2yie+cUFBgQHdBx98QENrjEiEk8CruNw8rokBjE7EVQbGV2ks45MaM3nMmDGWF49dwC6A9E9/+pPBbPq1PcBuRYXGZtZjh2M7R/sP2/AY5xjsqZr31rjM9AEJ72bCWHypNxA4zpYtW26e5ujSOokvP6+QHOwGJfzdFXAFXIGOpoCD3Y7Wo96edFPAwW669Yjb4wq4Aq6AK+AKRApkNNgF2F034zp5/ifPyzj1mmRSrdQEnGzrBGRcu/ZL+d//+3+btyWQy9wfMeZiEEvz4O3YrVuewb8nn3xSrrpqioIyhbrqbYrXKyEKdmsMWiCmTSimnq99dbKqcePGaWzZSfZ+/nylQTbCK7z/wfsGMIFvlNOv3wANwXCd3Hff/VrHLJOnuPiUrF+/Xr1YAbsf6joet4om6or26aexUyc0A+xWqa0VBvZ27dwlu9VrlrALeO0C5SdMmCiXXTZSPXB7GVAmfMXatWvNa3exhk04r3CzIbCLF2tR0XH1xt0r+/Z/J4cOHpbyijIDung+jx83XgoKC6Srwkc0AwITEuCPf/yjarrfIDAM8OJgd3UiFIMoZM0zyE3ohxtuuEHbMcIA52ntf8JCfPLJx9ZXRUUnDAIjNID5qilTNIzEXXLvffcloS6Qnr4lTu2+ffvJKr169pShCqlHjRppoRrwtLZ4wQpP9+/fb2D3pZdeMh1tB/3DoLvB1MhQDJRTl8fu9Rpj96GHH1Jv49nWT8DaUj0uT548ZTZt3rw5AXa72ERqhYWFMmH8BPX41hsTGu4Cz+2dO3fKAoXqr7z6ipRqrF2AdOsktIjr4WC3dXT2Ul2B/5+9N42O6kzvfZ8qzQIhhEDMIDFjbGwmg8E2GLDBmMZDd6dnpzvr5MPtDOeee3O/Zq18yVrJWicrJ2fl5HS6V07WSift7nQ3xjO2wYCZzTzP8zwjBJql+/8/u7ZUGowQqlJp+G+7qnbt4R1+7y609dNTzysCIpB6AhK7qR8DtaBnE5DY7dnjq96JgAiIgAh0XwLdV+wiepNf/Z4+Y7q9/fbbPmEWIxybL215rubHd/Q9I0qZ1mDz5i32j//4j5Bdl2JFBpNQtS12ObFWGgRnH1v26mv25ltvuFBlFGtp6T2fLIspBI7iK+1ViEj1r7KjBva9pKTYZoDHjBkzsL3WJd/ly5c9FyvlLvPwMiq2f//+/rX+QOzOx9n1+Mr/XU/F8PHHn7jcrYcAZDsYLUo5RnE8adIkYz7jx4rYhXgtu0/huR2PLYjwPWbM0csoWuZKnv3sszbnuTmQgONd0DMNwcmTpzx6mLL5NqRtc7H7rW990yOV2X5O4nXu3BnbAqG6DpGsHINq9Dcbsn/EiBE2c+ZMz4FbADmajjop348ePWb//u//DqY7nS2vla8Tu8yZ/Jtfv2Obt2xzKcyJwRgh/eKLL0CQL3MmjEyluGR+41WrViEf7xaXnYwcplLkDXFhYaHNnfscznnV5s2b65cDRTMnWWM0MCcho3TmuGZn50LqjvS2L1y4wM9lvRT8FLtr1qwxil32NbzZdiH7sD8eJFjsolueKoN/QGDOX/7RIZgYzTzlx+TJk+z555/3a5KR5RTBV65e80jyn/3sn13GM3dychaJ3eRwVakiIAIi0PUISOx2vTFRi3oWgfBeM75X/NZV8r55FV+T1kVABERABERABL6OQLcVu5R8fRHRyGjW737nO/YsUgvwq99NAvTQ684Su3RprIuS6hq+Sk/Jxa/JU8BRUnI/Uyw8ysLUB/n98iF137Tly5f5V/BZRtm9+7b2i7X27rurENl5KCZdOWkWpXEE0aC5yF9b5JGjYY7TB+X3Eb162ScVY1QrJ2Sj2H322dmxiN2vF7vpaEc4wRVTHnCSr8cVuxSejEilSN22bbtdv3bNRS15ZCI9wdSnn0ae2mU+oRsjU7lQiq9du8YjiE8gdUK82F2BKNlvfuutmNg1yM3bkIo77IMP3vev+DOPKid/4y96hYUD7Kmnptp3v/tdmzx5Mjj1cQF77tx5e++99zxlwjW0hzemrYpdRA+fgGT+zW9+7WVfu3bd00dMnTrV3kD06owZMz3dQ11dLQT0Hdvw5QYc+xsI3jPIO1zl+XJZNsd/6LBhtmjhQkTrLvXoavhbCO/7iJbeY5988omt/uRTRBpXB9cKLhfmkX722Vn2B3/wbQj+iZ6aIZVil5Onsc+LFi3y653XNaOkP0fajHdXrYSgvhR8DvCHCKaRGDu2BKkqXgT77/gfYnhNMYJ5185d9vNf/BwTw531Se18wBP+JLGbcKQqUAREQAS6KAGJ3S46MGpWjyEgsdtjhlIdEQEREAER6GEEurXYzcnJdlHHyM0XX5zvk1I1d6fN3ydq/Ci0mi+si9GZjEhct26d/epXv0Ku2MsxOVpvaZCMj7Iw72x/RCO//MrLyLH7BiJlJ7q8ZVQqI3VXrlzpEY/MV8qFN1rBwkaFDQu+3s59jP6k1OXCiF1PYQGxyxy75BYfsfvJJ6s9/6nVxyYdQ3lMJZGX189Z/9f/+ueQdU1z7P73/47J0441Tp7GYxdgUrYf/+RtKy4u8a/aM7XC4cOH7H/8j3/AhGUHsa0WPILJ7ph2d9TI0bb01aUud0eMGIk6OSHaNaQbWOeTnB3EObU4J8yxuxyTlb31zTddFrJ/V69esTWQwO/86h2kYrgAv888w8EEWUx/wPy0r7/+OiaLW4CJ2wZ6Xl1OKPfBBx/g8SHG6YrzCcTuBPvRD39k06ZPM+Y2foB8wIzC/RXK3oJI7NJ795A6YrxHAFNGU5Qz8rgM25kP+JcQ+swjywjr4CY4kO9p4Dhq9Gh7efFiW7J0iecKZqU3rt80pptgJDbTYVDiM6q4BtHSjAKmjH799W/YggULXEqHOXbXrl2bxIjd2JXEywmXF39h5gRvs2fPgth9AxPFBakYKP75R4b3338Pkvx9T//BPjPCHC8e1fwsorF/+MMfIqJ8tMteRofv23fA/vX//KtPeMeUIslbgus4KD/4TGjytOTRVskiIAIikCoCzcUuf1bxfsX/sMqbCizMTc/c+uvXr09VM1WvCHRbAsE9bfg7R9ANfr740CICIiACIiACIpA6At1W7HLyNEZeTkLe19eWL4dkW+ySrzlKyqVkLOE9DMtvWEdFlVWVHrW4evVqF7D8Wn3D8oj3PREIwGzk2J09Z7Z9B9HI06Y9AyGb4cKPuVhPnDjhOXZZdikmILuLicIoEa9fv+YTpnEb85lyEjdaOa7zpos3ZEyvUABZOXv2HIjdVyF2X/TmhakYGDX68UerfRsFGM+h0MvHJFgTJkywP/vTP7GxPnlaloWTp4Vil5GklMD9EG3cXOyy3fv374PY/Z9o/3GUz4jaAAgjlJku4eWXX/YUBcXFJS52r1+74cKTk7nt27vvoWL3/PkLPkkco2pv3LgJVjVoe9TlIiNHR40a7WJ30eJFNrhosKczuIpJ6Fav/tTH6dKly97n5mKXrKowptchX7dv3w6BfNWPGzJkiKemYEQq+VC2MkKXvyz+9re/tdK7pT4ZGoKpnT35cxxKSsYgv+4Se+WVV6y4eLS3j1I5FNj79qGfkKVZSCEB9C5Cx+CcZa+96uPFyGlOssb2NqZiuItjobL9gfoCf+ntfNwn1u2jwyestyZ2ed0zb/L+fftt5bvvuiTncfxA1KAPfGXE8axZs+zbiDiePHmif2Z5rR6CDP73//gPT/9xD++Tt0jsJo+tShYBERCBrkNAYrfrjIVa0jMJhPea8b2T2I2noXUREAEREAERSA2Bbit262CvsrNzbCwiMZe+usRWrFjhkZPNMVJQJXuh4OLCuphy4OyZs/bRxx95BOOtW7diX6tH5Cwt36MsFGkojFGmnGBrPqJfRyPSk2KQE01RkjI6lHli+TX+iooKn0iNgvfmzRvGSFRGCh9H+gIK23ByKr7yFx9GmM6Z07bYJWNGGXNSuv75/W3c+HH2J3/yf8UidiF2EYXLPLWNYrfCy2fuY7b5xz9ujNgtQz7dXbt22f9C3uGTp045BUamMrKWsnn4iOG2GJGszFfLftMPMuXBunXr7SOI3f37DzQVu8tfs29+M0jFwJtK5qilTP8PyML4PnMfJSn58RqhUB08OBC7ly5d8jQMK1f+HqL0io9fS7HbH/KyzkUw0zWUlz/AcVHPgcx8ubm5OR6dyn07MBnbe++/b7t373aZ62oUQ85RZ1/Zz+LRxR6ZvGTJEhs9apRFMVHepYuXkWLjC4/YDaKZ65AyIwNncRK9TG/7a4hQ/sY3XkOKjv5I1cDJ04I0FZ5j9zbELoR6Z4tddoxtoYxmehBGP7MNUURie7Q09jOtBiOfmYqBkcfMHU3pffDQYY+u3r17l/9R4lE+Fo93jMTu43HTWSIgAiLQvQhI7Hav8VJrux8Bid3uN2ZqsQiIgAiIQO8g0I3Fbr3nix0FObZw4Uv2/e9/F5GoQW7W+KHrLLEb1lOOr+2fOnUaomslpOHnHlFLQcd0AYHYbd00U/41LHjD9/3797Npz0yzeZh8aubMGcifOwQyO8sPo6SlLGSKBaYnYOQko0YZpUu5e+bMGRepnNSKkpfHUXJyYRQqvx7PiN0FCxb4Nkb57kH6gI8//hgRu5+4pWa5lMkZiEjNQ6QoIy5/+tOfQuyOcVnKug4fPmp///d/74K3EoKZx+dDAr84/8UWYnfnzp32T//0vzEp2kmP5mTUNWlEkXZgxHCK3UWITG0Uu0EqBohdpCjwVAyIwqUbHz9+LCTncojdbyICNNfbz1zGFLvM4RtOJkZG7HMQsTsK53zDxS45MrqYMphjRCnJqFmOYQuxCwlehzKIrra22iUvb2wpabOyIF+xvQp5lc+ePesRtL/+9W883683Cr1j/0iduZfT0qMeObx06VJbSrGLiF3mQr58+SrOXWsfIiXEQYwX28xctFyYE7m4uNheg/BesWK55aM9QY7dS4jyjaViSJXYRft4zTWK3Q9jbU/HHva6HtdwgT2N/Mnf//73GsTuXYpdROy+8847LsEVsQtUWkRABERABDpEQGK3Q/h0sgi0SUBit01EOkAEREAEREAEUkKg24pdpglIT0+3oUOG2vMvPG//5b/8ESbJGtgCImVdsheKON7scKHsPHbsWGySsG2I8Cz37TU1NS69wty1vtGfgohClsH/4hd+xb+oaBBE5nh75plnbDoiHwcOLHRRmYG+Z2SmQwymuz5Mw3umQWA5/Kr+zZs3Ic8OemqAr776ylMI8Jce7mfELr8eT7G7ELlSuTD6l2KXaQ+YjoEyGl4UEbvoF/rGXK9Tpz5tf/qnjRG7jBymOP6Hf/ifLnYZOZwOsdsPYnd+K2J3x46d9s///HM7cfwEZGkouil2EbELsftyg9gNUjFcvXLdvmDE7kcQngcOQ6xS7NbZeKSC+MYKTJ7mYjfH2x+K3V/+8peYnOuWi1eKXY4LxS7LZ45dRuw2FbufxYndSAuxS1Yu5FEORToFPZdQ7lJkM3UCU0F8/vnnLispLrnNrwtw5LjWVHMitwhkbrEtWfIKHkusBOtMM3z1yjX7HGL3/fc/cJ4U6umQwNTCWRD5TNnA9A1vvMGo9IKY2L3ouQJTEbH7+utBjl1cTmhLNcTuXmfIa4f9zsiglMZ1g4XR2xS7P/jB9yV2nYieREAEREAEkkFAYjcZVFWmCDQSkNhtZKE1ERABERABEehKBLq12OUNxoABhTZv3lz70z/5EysaXNSCLQ7p1IWC9PDhw/azn/3MJ8JidCWjO7lQ9DUVu4HUbd5AV7w8FgvldQ7E5ABI63EQmkMRbToYj0GDBtnAwgEu+rIxiVzfvnmIXs32XLw8jxG8TEmwdetWj2TdvHmzp2QgM6YQoNil5HzppZd4uAtpphCgnPv0009xfpijloI3SGdAufznf/5n3g6mNwgjdv/u7/7OJ3Xj5G6MNA1y7CJi9yd/CCnJydPq7d69+56jllw8YpeVxjx2+8XuOI++/ea33opF7NYjNcFFjzb+N0xcxtzDjHRlX8mcbR05cqRP+tW62H3Xo2Z5fNOI3Wc8urkWuYAplRlZ+gCpGFgmcyD3zetrOTk5LjPv3L5tu8Bv1ar3bPu2HT7xGTsYRdoGjmc1xS6uxeKSYudOucvIZy6MFl7z+RoI7I/9jwLViO6lBI5CGmehnpEjR0DCL8FEeq/7eDNKNpWpGFoTu6uYiiFO7FKGM9KZ0dvMEf3DH/5AYtdHW08iIAIiIALJICCxmwyqKlMEGgnwPpmP+IX3xP77TfxGrYuACIiACIiACHQqgQSI3U5tb0NldIK8tWB06LPPzrK/+Iv/B9Gtgxv2N7vvaNiejBXe0PBGh6/3kPv2wIEDSDnwT0jJcKohYpf1+o1PfXhDxNdWxC42M1KTkalc/CYK75m3NCs70/Ly+nnEbT9IxVxMHpebk+uRu5ykipObTZkyySciY12Us5xojekVOKEXo4dZHqNQZ8yY0SRilxJ47969LoGZ0sDz38YgUsxyoroZM6ZD7P65FRcXu3C+j/y+R44csb/5m79BPSddflJiU+wGEbs/xrGB2C0re4DUEEzF8DM7johm7xsjiBFVGy92X132KnLsNkbsrsNkZB9++BEm22qM2B03bpytQCqGt5Bjl6kYImAWRuwyxy5zDFOIhxHKYSoGRuwuWrSolYjdd/0csqGoJccf/ehHHiXN9B6U5Myhu23bNs9bzLQWQ4cOBespSJExy+uiwD9//rxRoP/utygPk6wxcpr5eCl4XdaifOYp5iRxjE4eM7bE287I5C83brTVn3xqO5GHmPlp/ZrCuPdBTtqJaM9y5NdldDUnsaPYZYTwunXrjBG7d+80z7EbM+ZO+fGeyMJLwXXERrIfnMCPnzVyZFsYsVtVxYjdfS60P/jgfVwDQRoJjivPJz9Gmv/wBz+wCRMn+HiFqRh+/etf45rYjXzRpY/XyDbPav4Z42eKmp2fxdo2z9YBIiACIiAC3YdAvNj98Y9/7H/MHTt2rP885T4u/Ln5u9/9zjZs2NB9OqaWikAXIcB7Qz7iF96v+u838Ru1LgIiIAIiIAIi0KkEuqfY5Y0FMFHR9O3b156e+oz9xf/3/7rQDKNjed8Rc1JJBRrezLgIQ4UUpBRdzDvLHK6UgE1ugiB2XS254A1+0WjSwNhNE8VYuDClAOUqv/bPCePS8VV3il72NfxlhaJ38hOT7fnn53kEc79+eTinDtGgl/0r+5RoXGd7KWmnT59unJCLkpHtY/QtUzcwDcO7777rYjcsm+3ohxy7zMv7Z3/2Z57WgOcwOpmpGP72b//WJTbro1DNy8uLTZ7WKHY50RonQPunf/pfOOeIt82Z4ZxEid01a9bYf/7nf7rkZT9ZPh+UtcXFxT55GiOUi4qK4nLsMhVD62J32rRpHrHLFBPMWczJwTgBHPMRU+zOnDnTvv3tbzsbjgcjeo9hwrpVq963zZs22x1MZheKXebYJU9GDi9ctNCWvPIyxmsS9ptHM+/bdwD5fj9zsU4Bz/LSkWaDUegzZ063b0FiUwoz+phi9wLE7hcpELuzcQ28/sbrHukdiN0a289UDIhUjhe74bXL6HBea4zY5S/YnGxOYjeko1cREAEREIFEEeDPWP7M589Iid1EUVU5ItBIILyvbtzC37UkduN5aF0EREAEREAEUkGgW4rdCL/TjrA73kwwapWRk//tv/3fiPQc41/BJ0gKM8rQ4CYkuWhDichXTtxF+ffXf/3Xvs5t4RKsomHeeL62FLtsL/Pm5iISlZGrjK5Nh8BlZCTTAJw7d87uYLKsqupK77+XjSqYj7e4JJhIbsWKFTZs2BDff+PGDfvyyy899ysjiLkwgpXMmGP3rbfe8m38RYjy8osvvjBGvYYTkPEXJaY1oAylFP0BIi+5TolLic28vEzFwHax7RS7lO3z58/3X6yKi4OI3YqKKjt9+pT96//5V2Ou3buld71eomAkKKUlJxR7BcJz8JAiH7/Ll6+hPevsI3zF/8iRYx4RzEjmlhG7Ebtx47pt2rTJVq5c6RHTbB/bwwfzvD755JPeV6aTIFPKWk54FqaeYEQuxyo+YpdCksdSejN9BKN8GLXL/MXcPnnyZEwK9n174oknXGYzKvf69Ru2Zcs2e++995BL+LiVox7+GYLR0xTxhciR/NycObYEOXPnzX2O4dmepuHq1StguRdjtTFOwOfijxUj8YeLqTZ33nOoM9+vhQqf+O2iRx51dsRuKHYXLnzJx4g5dY8ePeZR4WR548ZNSGlGmEe9v0MGD7HZc2bb22+/jUjpIr+WeP3u27/P/u3ffom0JYfsftn94FpI+HPzz5gidhOOWAWKgAiIQBchILHbRQZCzeixBML76vgO8t45/ned+H1aFwEREAEREAER6BwC3VLsulECH95IMPp00qRJ9tOf/hSvE32SL6KDz0uZ2KX8+8u//EuXefHD6Dc+baRi4E0TozKHDBns4nX8hPHWF32shHilNOPXCA8hsvYG5GJtTa2LS/4yw3NGY5Kt+fNfQP7Z5YiqHeZ8KCwpdn/1q19BrJ72bRS7lOCLFy9GJOUPXawy9cJt5Illnt3f//73nmKB6QUoXQsKClymcsKvOZCSjN5lJHJY9r/8y7/45GxsO8Uux4Ri9yc//okVl5T45GNVkJ63bt22T1d/YhsRzXry5CmrYGQqopAHIn/wM9Oe9jQJ/Kp/Vhbz45qnG1j9yWcuX8+fv9hU7K5YjsnT3sJ49/HctfcfBGkhGLXL/lJMU+5SSo8YMcKee+455zls2DBnxTQSTFNBLjt27PAJ1zg+DxO7TGexfft2z+HLflJwL1261MtlHZTrFRWVkNznfSK0DRu+RB/O+SXAstMQhcuI1ckQwa+8vNiWIWKa4xZFZ6uQtoHje+rU6YZIbwpy1jEYUbsFBf1d7GZkpFsl6zh/wSfG62yxy/F5AxG7TMXAMUK37ApyBG8DF04exzQkFeWYRC8jSMnBKN25YM/J7jgBH1XrjZu3jBP6/eIXP0d09WWrqqyI/5gkcJ21xf/xRGI3gXBVlAiIgAh0KQISu11qONSYHkhAYrcHDqq6JAIiIAIi0CMIdE+xG0PPWNgc5JidOHGC/dEf/cSmIrKRUY2UTZROnb1QJDKac8uWLfZXf/VXLlHj2/DIYjc7CxG3Q+173/ue5zRl1CPPvQXxunnzFluHKNbjJ44jkrQc8pKTckUh/wbb1Kef8jQMlG+Uq/WIbr106ZJRdlJgUsRSyFLWDh8+3F544QWPOB2CydgYTUqRy1y1jDimnL5165Zvp7RkTt7Zs2e75KXUpBg97mkHVnn5jN4NxS6F5IsvYvI05LgrKRnjYrcW0dPsA6OGv9r+le3F1/evIg9tWloGoocn28wZMxEBO8lTDwTjV++RoCtXrsKkYh9BFla2Ina/iX7mAjEnNwvE9DHk7+WEcXxlSgNK6IkTJ9rcuXM9d67LRVwcbC9zCv/iF7/waFxG8HJpS+yybE7Oxr6Gx3Kcpk+f4RP5kTmjk7dt2+6CnK9V4Erpy30RSHhKd074x1y1o0ePtqzMDGxnVG+t97MCopPR5umQ3pyArAwRrbdu3UBk8GTUmR2kYrhwydauXZuSHLsUu4uQToILc+qG183evXtw7Qd8eI2NGjnKnpr6lD399NNWXDzKryVGNV+6dNml9M9//nO/juLTjnihCXuS2E0YShUkAiIgAl2cgMRuFx8gNa/bE5DY7fZDqA6IgAiIgAj0UALdVuxS6tZDfmUi4nHUqJH23e9+B/lln7ehkJQMC6QcDJYgHUP4LhmvFJa82aFIZFQshRujWLm4zI2v9GERu2i3y1HIzgGFA5ATdrktWfIK5GgxtkOi1dTZdUR1MnfvTUQ9UkZyYi/mcR00aCDE4gAbhK/6Fw0e5OUwBy4nN/v00089PywndqOUZR3Mg8t0DEzbMG/ePE+fwLZS0jHalVKX51NWU9QOGjTIH/zFidsoiRm9yohRThrG87iPgriF2MVYUADW1tY4o3uYLItfx7+H8rkUoq9FRYO8TRmI9KTUvHfvvm3ChGLvf/Ah6vkKQxrx8xtSMYANI3b7YnIxtpvCmu3lg2klGH3M8WDELiOOKb7ZZ7YvPu0EhTclbziGoazl5GnNUzEwYpfSnuktwptbls08xa++usxTMqSnp3lZJ0+eQXTyavsMUazHj5+07KzsgFFaxCOwx2ICuIULX/KoaY5dJkQor1tKal7X+B/9rUVdt+zMmdNIz3DR6wmjpSnsP/98DdIZ/BvGi1I9uHb4yvM7urB/Xgo/SFgPJ0+bNWumR+wuxuRv3MUJ4h7cL3f+FNLXr9/w1BXkzLbymhwwoAD9y/T+hRPucUK8VatWoa2Mok3WQqCK2E0WXZUrAiIgAl2FAH9m8R6Ei3LsdpVRUTt6GoHw3je+X7x/5kOLCIiACIiACIhA6gi0W+zyh3rjwvX49417kr3G6EbeSITijqKJk4Exepfb2EzeZzRpboIbFX8zQ9lJ4bdz505PHcDITi4tb3biRRPZxb9ne/HLCURtdk6WRyAvW7YMUbszIT4HQoJBpEHk8pcWisya6lq8R8Quoj2zEeWbichPilt+XZ/7OVnaRshRRuwyOpXbQrHLV0bqckK0V155xaNaKT7ZXuaD5YPH8z2PJVNGYbKflL6cII4Cm2kPKOu4nUsodhkN/JOf/CSI2EUZLOvateueqoBR1Yyc5YRi6KqXy7J5rke8llch1cA5+/CDj7z88xcuOpMaiGHuH4ev9y//xmvImfsm5GHQZspoCm/KXEZus/0Uo1xYNtsflF/vUdVMOUGxyMhkHsuF7NmuCRMmeIqK1sRuGLHrJ+CJ5TLH7rJlr7kgZ6Q1lzt3SsF8n33+2Rpbt369C2fK6bp6pM/Af/37F6Ce8TZt2jN+/qjRo1yC5iBNBtNTUDZfvHjJo6KZv3jQoEJc38uQL7g/WFZ5CgOO6y9/+UsX8cF1zoljWrvmvEntemIbg9v04Jlil9fXrFmzEGm8AkI6ELtMC3ENEcwPcA1kY5I6tpN5d9kO5ormtcMH/53geFy8eMFzIb+HCeaOHT/q29vVsHYfzM8YH+xH0Be+8jrSIgIiIAIi0DMIxN+b8mf6j/GNIX4rhumAeB8TSt91SGfFdFMbNmzoGR1XL0SgEwnEf87iq235u078Xq2LgAiIgAiIgAgkm0C3Fbt1kEe8kUhLp3DKcjnGr/9TlI0cOdKjRimUeDNPrfOwJdQ9Dzsm3BeWFZwT/JWaXy+n1D18+LBHdHISr6tXr8VOaV56WAJ3x68H78ObJra7sLDQUzEwDcKECeMgdwcj+jQffUrzstl/RrfyHMpdyjS2hVGrjKI9evQoUjdstv3793uEL+VrENDCY6Oe75U5Z2fOnGnTp03DBGbjPSqXUassi0t4s0benAjsElI1HEduWk6axty0lyAfq12MBqKMbWPE7oIFC+wP//APbUxJidWiXqaNYOqG06fPeIT1uHFjLa9vnktMth1dccFaWnrPJzXbvXuPbcREYkw5UY6crcxDWwMx6GIX5y6HxH8TE7/l51PsIs/rlSueH5gSlBHIJaiX/WDZ4RI/ThS0lN6U3zw/kH3mqR04Kdr3vvfdWHqFApfFp06dtl//+tee5oETtXHsyIbjxIjbOXPmeo7gmTNnONeqqhove9vWbfbJJ6tt957dzpzt53npkJ4U6UOHDrESTJJXPLrYBiFqmW0ma4rdS5cveZ5hitznnpsTJ3arPZ0BxS4nILt9+1asn2gTWDN9Q/hLbNj3tl6D6y6Qr5ysD1cWTqEoZj8paoNJ9BixyyjvRYuYYxdR6hjXY8ePIar4rEvu6dOn2cCBA12ie51gy/HnNclr5yDyQzM9BaO975Xda6tZCdrPa8AHOVZea9El8fsTVK2KEQEREAERSDqB4OdXYzUSu40stCYCiSTQ/LMWlh3+rhC+16sIiIAIiIAIiEDnEui2YpeY4m8k+JX4Mcjn+uRTU5Cr9QmXovx6exSSCv6pjaXNA+LObyqA+LX3CqQhuHDhvEdoMjKWUjWMFo078RFWKVxjEgrVMMJ0CMRfcXExok7GIKp2kudn5eRnlNZpkIpsTSALg6/uP3jwwNMkHDp02NMwnDp1ElL3trOqQ8Rr4JJZRyCDM/AVeYo45rdlpCujW5gagXWEUpRClOUy/QPl9VGkdzh56pRdvXI1iOplKyATfYEA7NMnxyM7GcXKfLJkwTyxbMuuXbtt5IgRNuXJKZCawzxClvXwmPv3H0CIX/EJuHbt2oNJyM66EGS5jGIOInbrfSK35mKXuYG/QO5hRhBzMr3Zs2e5pGY/KCUZ5cxUFEyVQWlM2c1crxUVmMDN5W8gajmZGXkzipnl5Of383N57GqkVti3b7+Vlt5BixB9C2HJMWLULs9h9POcObOtf36+y1XK7JMnT3qEKiVyhNiDAYi9MuI8y9NJ5OMciu4MRMVWVgYR2YyCrayq9H5wkrblyxGx24m0ZBUAAEAASURBVC8WsYv2hBG7TDvBhTKXnDLQHraJMhwK0/e19eQiGIdyEje2iTKZkbccF66TIa855vnlH1AoeNMQWVyO3MdHjx7BtXYUx9bYs7OeNaaZYOQzy6zD+Zz4j6k7eO1Q7HLSuptIKRL8QeDR2tdW+9u7P/7fjkbpm5q2tLftOl4EREAERKCRQHPZJLHbyEZrIpBIAs0/a2HZTe+pwq16FQEREAEREAER6CwC3VrsUshQrHJiLkomSrnCwoFIMTDY+uT2cYfGmxD+97AFMa8P2x23r9mROI03M8wvy3QEjNoNc98y12r7F4pdnAW/RCFHccg0ApSTjO4cjEnUBg4sxNf4+7s4o2jjMYzwrMUkasy5W1paardv3cbX4695e6ogCYPuUZ7WuIhklC9lMGvhOheWyTy0fDBSmDl1KS3ZnHLIT04YdgUi9+bNoI+MwOQvTy4TIfAodlkSeYeyePSoUZaTm+NyMBSrF5BWgROeMQ1EUVGRv/KcMLfvtWtXIckvebqHaghBlknx+jCxi0PsIspdvfpT+/3Kd/kWk5KNwgR0w6wAKQ/SMBbkwqheCkY+7ty+41KaOXuZMoDXj1eGc7MxQdkotJ1MOI4+qRnYUtgzDQXzGhOqi11GT6P9nNSMeYKHDR3u16GnXMD2+xDaF5EP99y5894Pvx79cvMnsGH9lMpsNSJtI4yW5XWG/fifqRmKS0o8WnfZsleReqK/VaItTFWxdu0X9s4773gqBo4jUyXw+hiJScs4eZ7L2rBTLL6NhZ8lRkVz3JnSgtcyo5PJjmKX1wxTSDDKmNcHx4X13sL1xuuC1wOZj4C45x8HeB1w3EvvlmLiv1sN7BmVHf4xIrgO22hYEna3/CWEA+CDkITaVKQIiIAIiECyCPDnKhe+8t92id1kkVa5vZ1A+FlrzqHlPVXzI/ReBERABERABEQgmQQ6JnZ9IrDghjqZjfy6sgOVGOylIKJ8ohDzm/uvO6nV7ZB6j7wEKQf4e4TXhxVfR72UYnUQrFzYjo4u8f0Ly8rCJFx5eX09IpO1sD7+EsPISgrI2lrk3sWrr3NiNUhXijoeyxsvcqIk5Tq/sk+hyfPJjCIwEMk5LioDaUuxWQNxXeYRtZRfFJphBKeLZbxvFHQRr4/lM6KYdfAYLhSBbAvLY8oGCl4KSB5bizZTIDPtApeaGghpUkRbWxO7zDf75ptBKgYefxEy+BNE1HIyNE4mxnYycpZ5X+nrOLEXt4eymukByC6caMxvVjmQOBjN8TrT0zO8X4xY5i72I7zOWGewnhaTv0GeXkbKUgbXYbI4/499w9jw4cfzuvB6WAKXCNIygAn3oz1BhHkwVmx3P0QMP/nkk5go7ps2Y/p0y+vX18fh1KlTiNhda+9CZJdiMjouFNFPPfWUTyqXl9fP28HyH77EZCbaGVtDO81TQTAP8caNmxBhe7xhTP2gAJP3J80ZMR0IuxXIX06axus0kOK8dh4gn3IVooEhxFE26yFLjoVfG6ywE5egtuZ18n3zbZ3YKFUlAiIgAiLw2AT4M5wP/kzhz1umgnpYjl1+u0eLCIhA+wn4/XLcabyH1yICIiACIiACIpBaAt1c7DbCc1eGe4vw9oLveYPf/Aak8YxwjZaqvWI3rIXajEYL9fqmcHsitG7QF36dnlGloQijEOU2CtugbxByiJrkMby5Yjv4yv7zWMpEbuOx3B6mb+BX5AOxy2MoXwMhTdmWhvMisfQELMdFMcQcRSeFKMukHE4LI4Z9W9B31kMhzPJCCg1UUBbLpsRko9IRjcyJ3hit6xDxzLK57sKPa15ey4hdTpQXTp6GwwKxi1y2v3rnPyBwS8EEbWQULgfHrwqI91ikLbdwYdmM5qVUJgNCw//OkxHQQcQr20Se5BewbNzO6wvj4f0NIqDJnGWEUdQsNs2FNqKr8SboH2sPonOHjxjuqSUouLlQhsaagnKiLmvHjBljzzzzjE+gxzEoLb2LdBWH7Le//a1P/sZIbbavaFCRPTd3jr399h8iF3OBs+X2R1lYJxcezv7eRkQzJ5b77LPPfEJAsmN7+GADeb0FS1A+6+EjuE75x4R0L4fjwCHgdj78OGygRua1wOvJOxwrrTNegq7GOtxQId8339awUysiIAIiIAJdmED8zyCJ3S48UGpatyfAz1r84vfP8Ru0LgIiIAIiIAIi0OkEurXYbUKr2Y0G94WSsOktSJOz8IZ7H1XsUvwEQitQQK2JoLA27gvVJlYfZ6Esw3kUgqzXJSLlGaWaFx/Whd2hmQvrwXEUjs4Ax1IEB4IyOIAymO/9GJZex4hTnhOkX2Dx4UI55yIOso5yzs9j+RCnYTncH7bJc7uyPd68xjbiFCyUfxSpFM9BNK5HDGN7KJO9XhwQtiE4Dc88CctYTJ62bNkye+vNNxHRmufbmOKBk5S9886vkIrijjMivaBdbAvHOCzRT8FTwIh94hL8YoijXJRDTAcN9mp9PdamcHtQHvPaBvXEmudlcV9YbiDiY8I3FJloTy7SVMyYMd0WL1rsE6exeQGDWBF4Ya7aAQMKPQ8yo6kpWJkSYvPmLT6zN/vNFBsUroOR2mLuvLn2x3/8x54Kgak6Yl1oLPBr1sK2+w062nELeXs5CeAnn3yCvMi7PM2HRzvHOJJRkwUVsa6gnFCEgz4OC65DrgfbOZ48m39kkNhtQlFvREAEREAEHoNA8PM7+OOixO5jANQpIvCIBBrvgYMT/L7xEc/VYSIgAiIgAiIgAskh0HPELvnEW6zQVLXJjZqp/WKXxQZqKxRcgYRtur1xG7e3e/H+oPywChRA8edde+T+xYQlzvN8ujG5FradN2iByAyiKSl2H7Y0imKKvEAW8/hACKJUlNf8pi8sj91hsz2KExspm9tccEIYscy2UVaOGVNir766tEkqhgaxi1QMt5FygbKTx5Ido28bF453y4Vt89EK29jANyAV31cvIXZc8MskymO/+F9weMsKsIWCM5DaTIGRjonQ+tmCl+bbt7/9bc9L2/TcoCDKVApdPjip2lXkCd67b5+tX7/etmze7BP38Ty2o7CwwKY9M93+4Dt/gIjd/p7qwBvWamuabgzGLLhGuH73zh3bsWOHbdjwpR3GZHlVmMSNUdpfe/2FUJoW2+wd++QH+vYwR+9DoTUrIRFvA7LBc2N5fN98W+NerYmACIiACHRdAsHPYondrjtCallPIRDcLzb2RmK3kYXWREAEREAERCBVBHqW2H0sihRNjyAYvWyKnyC687GqSsBJvKGiQGyXg8I57GXDzRfeBwsiKPEft1OesuxHFrssM5TMYdmBYfxasRurtKEdzW8Ow/3NXxlNXFVZbZlZGZC1mTampMReWfIK8uetwGRiQcTuxYuXfPK03/zmN3bvXpnn2AvSGnAiFYpdjh36x7439L95Tcl9z/5SOHOhsO3XL98WLnzJvvvdP/DJ2nxHbGjZROKkSOcEa9VIhcHJ+fbtO2Bbt271KNqbN2/ilGBs2SfmLObEZbNmzfLJ9lheKNG97Ic8MbdvIJ7rPB1EGSZ9O336tB0/ftwuYfI3jz52hLFrh43r4BJcP7EOd7Cs9pwetLx5+/m++bb2lKpjRUAEREAEUkWAP1/54M8qReymahRUb28g0PzeveF3i97QefVRBERABERABLooAYldiLHuJHaTdR21V+xSJMbf3PmNXZLELsvmIzMzA4KzBhJ0pC1YsMAWLVrkMpNy89q1qx5d+t5772MCtvIGTA3tim3xNqPtqVrCXMYU6H379rX5L77o0cdDhg51niFTtpspKph/uKyszCN1jx0/ZocPH7azZ856VDJFZENKBPSJsjg7K8sKBxa6oA9SaDz6HyI4fCyT0cSstxK5e8vxqKhgDmTsCVOA+Lvu+xTo2+YSl++bb+u+fVTLRUAERKA3EeDPTj4kdnvTqKuvqSAQ3qeGdft9dvhGryIgAiIgAiIgAikhEBkyZEi7bAaj+hqWegqy1EmyhnZ0aEVil/geVew2lV/xYx9/GcVvb21wwmPbOi52bkzsBpOhGWRuXxs5coSVlBT7AVFMYFZ2v8wuXLjgUaZVVVW+3X/R4/XJ/2MyN3htR71eUmKeePMbiF1K2KhlZWXasKHDPWcwJ0/jfraPKQ9qENnLX1B5fHl5BaKQ79nly5cxMdxdF66em9abFbLkG/5ia7FJ05hSg/vi9/OYr1lwWBgJzjOY9oERzxTQ1dXVDdG8aOTXFNB9NrMHLX8R4dZHl+Ddp7dqqQiIgAj0bAL+sx4//PjaXOxy8lH+ex/euzKN0e9//3v8IXhDz4ai3olAEgiEn7X4ovn5anlPFX+E1kVABERABERABJJNQGLXxXScrH4o8Z4rfx5d7D4UUEJ3xt8ouorlL26ogWkDsrOzfGIxRqzyRpMitILRpZCgofRs0LexX/jYuIZtj9DSRCtMRtAGE+GhD2hTGsRpZkam5SKFAqNkAwkbyFnPh0zVihtmfq2U0bvsXw0ill3AusQN0mg0dgUtZqO9v7Gtj9iJJoehzuB64OR2zKNc57LZ24593X1hD+KvraA/3Cqx293HVu0XARHofQRC2SSx2/vGXj3uXALhZy2+Vt5Ptbynij9C6yIgAiIgAiIgAskmILErsevXWFcUu7hTDDwlWwhZ2d7FbzQpIuPEbrvKiNXfrnMednDs5pcKkTfHnDysIZXCw877un1kwv51wsKJ7npSKoaWv4RI7HbCZaQqREAERCDhBELZJLGbcLQqUASaEAg/a/EbJXbjaWhdBERABERABFJDQGJXYtevvC4pdjv4meio2G04v4PtiD/dy4SP9ZtjXHv+Pv6ALrrO9rpm7xyPnFQK7EJL7hK7SYWuwkVABEQgSQRC2cRXpWJIEmQVKwIgEH7W4mHwfqrlPVX8EVoXAREQAREQARFINgGJXYldv8Ykdlt+1PxGNcERsV4mxa5fdy3r1JbkE5DYTT5j1SACIiACnUUglE0Su51FXPX0VgLhZy2+/xK78TS0LgIiIAIiIAKpISCxK7HrV15PFLtBwtnwg9WBVA5hEQl4DQNe29+aBFSuIpyAxK4uBBEQARHoOQRC2SSx23PGVD3pmgTCz1p86yR242loXQREQAREQARSQ0BiV2LXrzxOOMacr9FoWmquxC5YazIidrtgN3tdkyR2e92Qq8MiIAI9mEAom+LF7ttvv22vv/66jRkzxr8mzolAuaxfv95WrlxpGzZs6MFE1DURSA6B8LMWX7rEbjwNrYuACIiACIhAaghI7Ers+pUnsdvyAyix25JJT9gisdsTRlF9EAEREIGAQCibJHZ1RYhAcgmEn7X4WiR242loXQREQAREQARSQ0BiV2LXr7wgFUMUEbtBVEtqLseuVavEbtcaj0S1RmI3USRVjgiIgAiknkAomyR2Uz8WakHPJhB+1uJ7KbEbT0PrIiACIiACIpAaAhK7LnaZ8bStrKfUQVzqgpce9swbM79hk9htGFmJ3QYUPWpFYrdHDac6IwIi0MsJhLJJYreXXwjqftIJhJ+1+IokduNpaF0EREAEREAEUkNAYreBOyNVHyZ3qYN6ptQlAoldUmi6SOw25dFT3rUUu/xch3+46Sm9VD9EQAREoHcQCGWTxG7vGG/1MnUEws9afAskduNpaF0EREAEREAEUkNAYreB+8OkbnhQz5U/LjEjEUTthn3Vq1xfT7gGeEHHX9T1GFb8hwj1YJHU7QmjrD6IgAj0XgKhbJLY7b3XgHreOQTCz1p8bRK78TS0LgIiIAIiIAKpISCxmxruXa7WUHPFK7Au10g1SATaRSCUuvFXdSh2w+h7id12IdXBIiACItDFCISyqbnYXbFihY0ZM8b/kBfOH7B+/XpbuXKlffnll12sF2qOCHR9AuFnLb6lErvxNLQuAiIgAiIgAqkhILGbGu6qVQREIOkEKHRbTgZYj5Qq9fUSu0nHrwpEQAREoBMIhLJJYrcTYKuKXk0g/KzFQ5DYjaehdREQAREQARFIDQGJ3dRwV60iIAJJJyCxm3TEqkAEREAEUkwglE0SuykeCFXf4wmEn7X4jkrsxtPQugiIgAiIgAikhoDEbmq4q1YREIGkE5DYTTpiVSACIiACKSYQyiaJ3RQPhKrv8QTCz1p8RyV242loXQREQAREQARSQ0BiNzXcVasIiEDSCUjsJh2xKhABERCBFBMIZZPEbooHQtX3eALhZy2+oxK78TS0LgIiIAIiIAKpISCxmxruqlUERCDpBCR2k45YFYiACIhAigmEskliN8UDoep7PIHwsxbfUYndeBpaFwEREAEREIHUEJDYTQ131SoCIpB0AhS7fDRd6g3/afK0plD0TgREQAS6KYFQNoVit6amxt5++21bsWKFjRkzBv/e11s0GkykuX79env33Xftyy+/7Ka9VbNFIHUEws9afAskduNpaF0EREAEREAEUkNAYjc13FWrCIhA0gmEUjd8ZYXUunh2setrvo17tIiACIiACHQ/AqFsktjtfmOnFncvAuFnLb7VErvxNLQuAiIgAiIgAqkh0DGxyzbTjVgQCcE1LSIgAiLQdQjES92gVfVW5xFchlctIiACIiAC3ZtAKJskdrv3OKr1XZ9A+FmLb6nEbjwNrYuACIiACIhAagi0W+y23syW8qT147RVBERABDqbQPwfnhSl29n0VZ8IiIAIJJNAKJskdpNJWWWLAJJbRSL+iGchsRtPQ+siIAIiIAIikBoCCRK7qWm8ahUBERCBtgk0/8OTf82g7dN0hAiIgAiIQJcnEMomid0uP1RqYDcnEH7W4rshsRtPQ+siIAIiIAIikBoCErup4a5aRUAEREAEREAEREAEOkgglE0Sux0EqdNFoA0C4Wct/jCJ3XgaWhcBERABERCB1BCQ2E0Nd9UqAiIgAiIgAiIgAiLQQQKhbGoudr/xjW/YmDFjPKd6NBqk5NmwYYO9++679uWXX3awVp0uAr2PQPhZi++5xG48Da2LgAiIgAiIQGoISOymhrtqFQEREAEREAEREAER6CCBUDZJ7HYQpE4XgTYIhJ+1+MMkduNpaF0EREAEREAEUkNAYjc13FWrCIiACIiACIiACIhABwmEsklit4MgdboItEEg/KzFHyaxG09D6yIgAiIgAiKQGgISu6nhrlpFQAREQAREQAREQAQ6SCCUTRK7HQSp00WgDQLhZy3+MIndeBpaFwEREAEREIHUEJDYTQ131SoCIiACIiACIiACItBBAqFsktjtIEidLgJtEAg/a/GHSezG09C6CIiACIiACKSGgMRuarirVhEQAREQAREQAREQgQ4SCGUTXymZqqur7e233zZNntZBsDpdBJoRCD9r8ZslduNpaF0EREAEREAEUkNAYjc13FWrCIiACIiACIiACIhABwlQNnEJXyl2f/SjHz1U7G7cuLGDtep0Eeh9BCR2e9+Yq8ciIAIiIALdg4DEbvcYJ7VSBERABERABERABESgFQLxwklitxVA2iQCCSAQ/zkLi1PEbkhCryIgAiIgAiKQOgISu6ljr5pFQAREQAREQAREQAQ6SIDCKRqNeilVVVWK2O0gT50uAq0RkNhtjYq2iYAIiIAIiEDqCUjspn4M1AIREAEREAEREAEREIEOEKDYpXiS2O0ARJ0qAg8hILH7EDjaJQIiIAIiIAIpJCCxm0L4qloEREAEREAEREAERKDjBCR2O85QJYjAwwhI7D6MjvaJgAiIgAiIQOoISOymjr1qFgEREAEREAEREAERSAABid0EQFQRIvAQAhK7D4GjXSIgAiIgAiKQQgISuymEr6pFQAREQAREQAREQAQ6TiDMsRs/eVpJSYlxcqdw34YNG2zVqlW2cePGjleoEkSglxGQ2O1lA67uioAIiIAIdBsCErvdZqjUUBEQAREQAREQAREQgdYIhPJWYrc1OtomAh0nILHbcYYqQQREQAREQASSQUBiNxlUVaYIiIAIiIAIiIAIiECnEQilE8Xu22+/bcuXLzdF7HYaflXUCwiEn7H4rjIing8tIiACIiACIiACqSMgsZs69qpZBERABERABERABEQgAQRC6SSxmwCYKkIEWiEQfsbid0nsxtPQugiIgAiIgAikhoDEbmq4q1YREAEREAEREAEREIEEEQil09eJXQqoMMfupk2bElSrihGB3kMg/IzF91hiN56G1kVABERABEQgNQQkdlPDXbWKgAiIgAiIgAiIgAgkiAClE5fa2lpPxfDaa695Koa6ujpLS0vzfevXr/fJ0yR2HYeeRKBdBCR224VLB4uACIiACIhApxGQ2O001KpIBERABERABERABEQgGQRCscuyf/jDH9qyZctc7MbXpYjdeBpaF4H2EYj/jMWfqRy78TS0LgIiIAIiIAKdT0Bit/OZq0YREAEREAEREAEREIEEE6B4Sk9Pt+985zsWRuyGVTByl2L3vffes82bN4eb9SoCIvCIBCR2HxGUDhMBERABERCBTiYgsdvJwFWdCIiACIiACIiACIhA4glQPPHx5ptvutgdP368i17WRLH7xRdf2Pvvv2/btm1LfOUqUQR6OAGJ3R4+wOqeCIiACIhAtyUgsdtth04NFwEREAEREAEREAERiCdAgTt//nxbsmSJTZ061QoKClzq3rx505hjd82aNXbgwIH4U7QuAiLwCAQkdh8Bkg4RAREQAREQgRQQkNhNAXRVKQIiIAIiIAIiIAIikFgCzPXJydOKi4vtueees9mzZ3ue3YqKCtu7d69t2bLFDh06ZJS8WkRABNpHQGK3fbx0tAiIgAiIgAh0FgGJ3c4irXpEQAREQAREQAREQASSSoARu5mZmVZUVGRDhw61/Px8j9i9cuWKXb9+3UpLS626ujqpbVDhItATCUjs9sRRVZ9EQAREQAR6AgGJ3Z4wiuqDCIiACIiACIiACIiA59iNRqOeWzcrK8syMjJ8W1lZmdXU1LjkpfzVIgIi0H4CzeUuo+S1iIAIiIAIiIAIpJaAxG5q+at2ERABERABERABERCBBBCg0G1N2obb+cqltWMSUL2KEIEeT0Bit8cPsTooAiIgAiLQDQlI7HbDQVOTRUAEREAEREAEREAEGglQOPFBacsowvhIwnAfxW7zfY0laE0ERKAtAhK7bRHSfhEQAREQARHofAISu53PXDWKgAiIgAiIgAh0iEAEZ/PxsEVft38YHe0TAREQgfYSkNhtLzEdLwIiIAIiIALJJyCxm3zGqkEEREAEREAERCBhBB5F6oaVSe6GJPQqAiIgAh0lILHbUYI6XwREQAREQAQST0BiN/FMVaIIiIAIiIAIiEDSCEjsJg2tChYBERCBhxCQ2H0IHO0SAREQAREQgRQRkNhNEXhVKwIiIAIiIAIi8DgEJHYfh5rOEQEREIGOEpDY7ShBnS8CIiACIiACiScgsZt4pipRBERABERABEQgaQTaI3br0Qo+tIiACIiACHSUgMRuRwnqfBEQAREQARFIPAGJ3cQzVYkiIAIiIAIiIAJJIxCI3Uibk6exAZC6EYndpA2FChaBXkSgvl7/lkjs9qILXl0VAREQARHoNgQkdrvNUKmhIiACIiACIiACMLWAQK3L17YWid22CGm/CIjAoxGQ2MW/vJGm/+6KyaNdOzpKBERABERABJJJIDJ48GD9+TmZhFW2CIiACIiACIhAAglEXS48mthNYLUqSgREoFcTqMc3ABInMvnrV/f6FYxStzWxmzgmvfryUudFQAREQARE4LEJSOw+NjqdKAIiIAIiIAIi0PkEJHY7n7lqFAERCMRuojjUoSCJ3UTRVDkiIAIiIAIi0JsJSOz25tFX30VABERABESgGxBoGiUWRYsVr9sNhk1NFIEeRSDQsE1lbBCt2nTbo3X6cc55tJKTdZQidpNFVuWKgAiIgAiIQMcISOx2jJ/OFgEREAEREAERSCKBFjKhPsixm8QqVbQIiIAIPBKBeqtDegZG3/b8pcW/xegyxbZSMfT8sVcPRUAEREAEujYBid2uPT5qnQiIgAiIgAj0agItZILEbq++HtR5EehKBJqKXUbhNp1crCu1taNtafFvMQqU2O0oVZ0vAiIgAiIgAh0nILHbcYYqQQREQAREQAREIEkEWsgEid0kkVaxIiAC7SUgsauI3fZeMzpeBERABERABBJNQGI30URVngiIgAiIgAiIQMIISOwmDKUKEgERSDCBlmKXFfTMqN0W/xajp4rYTfAFpeJEQAREQARE4DEISOw+BjSdIgIiIAIiIAIi0DkEWsgERex2DnjVIgIi0CYBiV1F7LZ5kegAERABERABEUgyAYndJANW8SIgAiIgAiIgAo9PQGL38dnpTBEQgeQSkNiV2E3uFabSRUAEREAERKBtAhK7bTPSESIgAiIgAiIgAiki0NvELqdf4tIzv8wd9E3PItBTCEjsSuz2lGtZ/RABERABEei+BCR2u+/YqeUiIAIiIAIi0OMJdHuxG4kY/rf6ulDZfv2Q8QjmrOTi/fa1tp5CBdx2+W2VpP0iIALtIyCxK7HbvitGR4uACIiACIhA4glI7CaeqUoUAREQAREQARFIEIHuKXbr0PsoHpCuMbEbgbANpa0rWN8VSFnfjo3N1WyobFtH2dre5iW0fqa2ioAIJIaAxG7jv2uJIapSREAEREAEREAE2ktAYre9xHS8CIiACIiACIhApxKg3A0WvgaPcEtnNsTnbWurwggNbS2OSoPITUNro5aGxkYj3BZxuVtXV2e1EL1paZS/WGJSNxC8lMKI8o0G++rq+b7eI3h5KMtzfethwI0UIsbjtIiACHQmgaZiN/jsBv9GdWYrOqeuFn9kQ7X8Nyv8g1XntEK1iIAIiIAIiIAINCcgsduciN6LgAiIgAiIgAh0QQKUmIHspNOE+uzUNlKmti12cVSD2E3HGRloMf6D1M3Ao7aWctesrg7rkL9p0TR/H2RfCAQJnlFRNBC5EUhcdJbbXG674I6J3RgLFsAqJXYdpZ5EoFMJSOxK7HbqBafKREAEREAERKAVAhK7rUDRJhEQAREQAREQga5EoFHqslVdVewGUrYO0baUs2kQuhS7FK+VlhGtsaqqckuHzI1EGLFbawzKrYctbkjFwNNcWEPeMvgvmmGWnoFtjP7FPopeAsDCyN1wkdgNSehVBDqXgMSuxG7nXnGqTQREQAREQARaEpDYbclEW0RABERABERABLoUge4hdkNkaTCtno0BKReiRoFbAclbjdQL8LQ4KA3iN5LGKFwK2mChsK2vi/UzkmYVFYzqxdnRHKuNZFqNZ3LgCTwmOCtUuxK7MYh6EYFOJiCxK7HbyZecqhMBERABERCBFgQkdlsg0QYREAEREAEREIGuRSAmPGON6qoRu4y3pWxNT0+zuqq7lplWY3nZUcvvn2VDhhZa0aCB1r9fnuXkZlpWVpo/AkmL/iHCl9G7NdX19qC80u7dL7drN0rt3KUbdu7iTSu9X4OI3VwczvQNzcUuooS71oCpNSLQKwhI7Ers9ooLXZ0UAREQARHo0gQkdrv08KhxIiACIiACIiACgcgM41PxDhazq+bYjdTXIIdujRXmVdnYUbk2rmSIDRs22Ary+1ifvrnWJzfXsnMyLCMjigd1bPgI0i/U1tRbZVWNPagot9KyWrt6s8xOnrluh45etitXa+x+RY3VIBKYpzHjA89mfgZ/1aUiAiLQqQQkdiV2O/WCU2UiIAIiIAIi0AoBid1WoGiTCIiACIiACIhAVyJAbdn1xW6EaResEuK52qZOzLc5M0bZ5IkjbUBBocPMyox4lC6FrqdjiDKRbqhk8cp8u3X1SMFgVlODnLy16YbAXbt07b4dOnLT9uy/amfOXrU72FiPyN0oEu/y7Ejbs7p5/XoSARFILAGJXYndxF5RKk0EREAEREAE2k9AYrf9zHSGCIiACIiACIhApxJIvdhldz0F7kP6HbEqpF94YAV56fbi8xPthTkTbfiQgUitUGM3kFahT26d5ffLsLy+GZaJedEiESbOjS0IQ+aEaJwkjQvf1VmGVdelI3o3aleuR23zttO2fccRO33xhlXWUuzGUjAgF2+oh4Oz9SwCItAZBCR2JXY74zpTHSIgAiIgAiLwMAISuw+jo30iIAIiIAIiIAJdgEDXELvUrXWcqazVpd7S7L71yapACoZ+tnDhbJvyRDEmUau3/QfOQ8getYEFtTZ1yhBE8Y6woqICRO1WeUmBlOUzHpEwMjnsM+qsz7D7lfm29+B127DpgO0+cM6u3amhBg7Ox0tQRqxhEUYCY5vvRhRwk73hkV/Xj1gZehEBEWiTgMSuxG6bF4kOEAEREAEREIEkE5DYTTJgFS8CIiACIiACItBRAqHkDMpJRY7dWM2QpIFFbdSigUTlfsTWWr+cCntq0gBb/PILNnx4kV2/cds2bT5iW7acsH596uz5OUNtLiJ5x44dYdFIS7HLiF3PHxwNBSzEbH068uoW2KkLD2zj1iO26atTdvpcGcQtJ2vzFgXN43NM6vpqQyNDBexb+YSlYWfwVs8iIALtJiCxK7Hb7otGJ4iACIiACIhAgglI7CYYqIoTAREQAREQARFINIGuIXY9la37UNrXUKjGomOhY9Os3PrnVtq0qYX20sK5NmLYQLt2/bZt3HLY1q07annZEXtx7mB7HmkaJowvxhk1Xk6QfwF9RAURpFXwAFu314zexaM+DUf2tys3Km3bjtO2HpL44OEbnmOXypYpIur8NZC1pMWHlxes8V3D0luUbjQtSG9RV1eLtBcgwocv2I515jGOEjGAhCkwYgfoRQQeiYDErsTuI10oOkgEREAEREAEkkhAYjeJcFW0CIiACIiACIhAIghQyNHABYs7ulaEZbg/Ga+UoRS7bAkjZes9zwG3hhG7FLsVgdh9uhCpGJ6zktGDrby80g4dvWIHDlxAmoYamziur02aOMyGDh2EHvFcPgLV6pOgxYtdry0de9Mgb/vZjVuVtn3XWVu36aTtOXDNxW462lKLRtWiPUwTwfZxCSZUC96F24I9wXNQY/yWnrceQdQzBW49chHXAbNfN3jitghSXlDs1oOfb28g1/M4qEfJIyCxK7GbvKtLJYuACIiACIjAoxGQ2H00TjpKBERABERABEQgZQSoJpuL3c5tTFOxy7pjatRTH3CdU58xYrfKnnlqoC1a+KyNHzsUk6Rl2K27mDztdoVlp2N/v4jl52VbdnYWjud5jNrFJGpYhW6MFYtXt7HsM8VkmtVG+9nNWxW2fc95+2LTKRe7aQjVTae0dKnLyd0gKWPNCgrwQlgCymm5tL615XHdeQv7yGhcZrbIycm1vnl9LTc31+VuWVmZ3b1716qqqgLc3bmjantKCDBun384CBa+8jMXfO5iG3vMS/AHkaZ94x9G+NAiAiIgAiIgAiKQOgISu6ljr5pFQAREQAREQAQeiQBlQtcRu9EGj8EVyhyGgzLfbaXl59bYM08OthfmPYXo3MHWL7+P1WLys9q6dM+pG43W4pUCFufiEYlW432NR41GGUlKHh4aHAoUqqOo1Roidm9X21cUu5tP2u791ywNxwVtwTHh4TwfS9BEbmSZoXgK9wQHN3SDm3voUodO1tRU24ABA6y4uNjGjBljgwcPdhl14cIFO3bsqF26dMUqyh/0UALqVjIJ8NMpsdsb/iVJ5lWkskVABERABESgYwQkdjvGT2eLgAiIgAiIgAgknQBFZNcQu0yfEKlHbla+ujCl1PUMtxC0tZabWW/jx/Sz6U+PsdEj+lufPhlQP0ilgEcEx0ViUteD3GprLSc3avn5Oda3b45H96YxtJSehF3mAwfWIz1DbTTfrt+qsR17ztqGzcdsz/7LELtUvjjMC+NpaBFSDNSiLk7l1lgI28d3oYBpXMPmHr1Q7HKZPn0achvPs8mTn7DCwkKkZqizmzdv2o4dO2zTps124vix4EA9i0A7CEjs8t+n8N+VdoDToSIgAiIgAiIgAgkjILGbMJQqSAREQAREQAREIDkEUi922a/6KORs3QNo03LLSKu3TLjTzEyqVaZDwAukbQYm7CrIz7QhA3Otf98My8iAAob3cPWBY/wwHMqzMvFmwMAsKxk7zEaOGoo0DXnYGqRlwAqWQJhQDDNi99rtGtuz55Rt3XLEjhy5bFnpzOtLnYsF0b7VcMxllfX2AEl36+szsZEPSF4IZ+bgdTXePLSX5/awhdTiXVNaWtSWLVtmS5YssZKSEsvKynLBXlVVYzt37rTPP//cBW/5gyBql7Iuhr6HkVF3Ek1AYldiN9HXlMoTAREQAREQgfYSkNhtLzEdLwIiIAIiIAIi0MkEqC5dS3q9cJiBzOzEVkQi1ZCFddYnu9oGFmTYsCH5eAyyvL7ZaFowcRklD1uanhGx7Iw0y+DkXTinFpG5QYNdOWK13tIhWjPT0iwvL2KDhw6wQYMKrE8uyqrHsb6E6RMoaSl2EbF7p9r27zlhRw6etrK7VVY0cIALZtbpiSBq6uzanUo7efGG3cZrRVU60kBg8jVECtciBQQnVGMmYFTdo5eG7sX8bHp6ur3++gp79dWlSMdQAtme7sPB43Z8tcM+Wb3atm3damX370P4kjfYNxTSo1Gpcx0kILErsdvBS0ini4AIiIAIiECHCUjsdhihChABERABERABEUgugdSK3QgiXqN237Iyam30qDybNLYIE6MNt1EjhkLs5kDsQgbClvI/GkE+p0WYDgELQkfrIXYpc5mywfPxYhvz7KZB7Kan1VpWdsSyEP6bjmhfHt+Qt5f6EWkYmMahLoLJ0+7U2KF9R+zymSvWJyMX+WJHWyZy9EaQfoFJdisQsnu9tNoOHrtkR05dsUs3q+x+Fc5HMXXoQ6eLXQ4bF3aJNt4XvOH7TljCaih2586dZ4sWLbQnnphsBf0LkNs4Yvfvl9nWrdtszZq1tnfvHquoqHSxG4xBJzRQVXR7Av6p5x8CfOErr/PwWg+29pRnTZ7WU0ZS/RABERABEehpBCR2e9qIqj8iIAIiIAIi0OMINJUldISMPe2sJRKptKzIPRs2NNuenVls054cCalbaH375ED2MtUB5WvoKykuoXsoW9nKmNCMurBlXG1wZB0jQ70XNTiOD7zDqUGvqCRjkgjCFrG9ELN97fa9Gju275DdPHfJBvTJQ77YsRatuw8hHIjd6ro0K6vKtAvXHtj2/Wdt94kbdvFWlXvKUHI6yc5KxxDKXPbd11k71p0FVpO9OExeKRErGlxkM2fO9Fy7o0cXu1S/ePGCbd/+le3evdvOn7+AvLuc2C4YgWQ3rbeUH3/d9cQ+S+yCQGd9nnviBaQ+iYAIiIAIiEACCEjsJgCiihABERABERABEUgmAdeRDRXQvSVH7DbXUBSS1K+V1ie9zF56fpi9MO9JG1tSBKkbhRyEdK2jlEWD4mQpRUc9o3i5PdbSqO+n1AzEbj06QfnLVA1udHmkV89zeBxTMnA9ineYgC3Sx+7eq7Pj+w7YjXPnrCAn2558YgxSOlRArNThqOC4irocq6rva3uOX7d1e87bvpPXrKq6Fnl+WRceKLHTllCSpkjsBtINKFF/WjSKSdMG2sBBhZjQrq9Pnsacujcwgdrdu3etsrLK3bPEbuKuDl7OofTzaM/mRcdfH833dZP3ErsSu93kUlUzRUAEREAEejABid0ePLjqmgiIgAiIgAh0dwJBxGsgSOP7knhBSQ0bPKhJ6z1Stgayr9rycmtswqhMe2XhWHtiUrENHNDXkKY18K4ercbWuJWNNZG6J1yooBlRywheLhS7sSXsRMNXubm9eVnchDy51tfultZD7O6zW+fPWyFy+06cOArtgJB0g4aSkYu3pi4TeXWz7OS1Wtt69JbtOHTJLl65iRy9mEgNxwXxq7H64168CArphoYHApqHRCFFXaSH7Y0/r8k5KB/HRCGsg2L4zJPCB09sqACr4VHhNoxArDyWEzyanRseyqK+bsGJDe3F8WEtTMmQkZ5hUUY4Y2sdZrWrqam2aojveoh0NudhYrcu1l5vl/cJxXhkdiC3eK3W1iJxBoU/jq2tbdzObdEoLxrUjMjgzljY7xZilY0nHbww93NaWpBvuKa2xnlE8QcJLk36GG7ga4wBV3lQA2ffRdi89tnv4FCvzg/1I3lW4xLbWVfHPNTkxs9dUDcP4u70dFzPaFuTehtLSPla0NfwM83XgG/KG5aEBricDwc0Vn7weeWVpkUEREAEREAERCBVBCR2U0Ve9YqACIiACIiACLRJIIj0S74sCaUuDBLUKwUTZGa0CpGeFTYgP2IznuxnSxdNtNEjBltubhYEYNj0QBLyvGCJvTYIMB5I0RlGy4bHxQ7n7iZiN7adm/Hwaih26/vZrdu1dvLAXrt76YIN7JdjEyeNQqnICxsWARldh8nSamojdvl+tu06VWbbDly0I8cvWLXl4thYWxva1lgXLRrFZ2Zmpr9SdFZWVlpVFRggF/CAAQPQ71y0o94eINL13r17vp/78vLyrF+/fn7ufUxAVlZWZuXl5ZCmFOOoFULTJ5BDj3xiMvbLhSgbDpkeTUPZOV5G3759XSTX1tRaBep/8OC+lZaWejvYbMo/nttCjjooRlFj0rqMDH8NJSV72ZqAykB/mVe3sqoy1r6Hi90oJGh2dibKp2wM5GwN2llZWeERwNnZ2ZaTk2MFBf29DdXVNc7hJqKCq6urva/BYLFFyV8ootnO9PQ08EAOZ0jtTLBJx18luN3bhGYwBQUldHZ2lvXvn49J/Pr4tVdeznEu8wfla3BF8iV2DeOaycrKch78nML/ezkcdwpzvlLY0gUGn+NmfY5dcxwvXntUvyw5kO3VDed63WGdzYpI9VuJXX6mY9dDqgdD9YuACIiACIhALyUgsdtLB17dFgEREAEREIHuQKAzxW405idqKQ4hSaPRckR4lltRYbq9MHuoLXlpohUNhLSDKAtdhkfjuo4KZVfstcF1BLKKcrdBjIXgXUbiwIZjwx2Nr+y/RTIg3/Lt8pUHdvLgXiu/ftmGDuhj48aPgpWrCMQZTuHkaHV8wMHdrOpn+y9U2pb9F2zfgdNWXtvHxW4gySjpmi5ZWdk2qGigFRcjInngIPSvzm7cuG6UkpS9EyZMgPTr77Lu2rVrduLECeSlPW9DhgyxcePG2fDhwyEGszEh2X27cOGCnTx50q5evQohy8ndMPkbGkUZiyBZl7OZmRSCaV5XUVGR8VFYiLzFELuUt5SOlK4s7/at23bt+jW7cuUy0iaU+r66mFht6AU4sZ0FBQXow2grHDAQk9JlNewO5VP4yihktunsmbN25uwZu3Xrlh/7sIjdIUOHOh/2mdKY1wDz9F68eNGFZklJsQ0bNszbQFnJ8im4yesc0mfw2NK79zDcsQEPL6KGViZ2JRC7dZ6DeQDSUIwcOcKGDh0CEd8PbavF+N4E0ysu6inmizH2gwYN8jEgJ2d/+7aPJ/tIwc6UFRSvzikS8fQWw4cP8+sgL68vmFD8l9v1a9dxfZyzK7gG/DLHsfgfC55i/U6DzB06dJgVF4+yokFFvp9krl4Fr7Pn8HoFaUSqHvr5SCyx9pcmsSux2/6rRmeIgAiIgAiIQGIJSOwmlqdKEwEREAEREAERSCCBzhO7UK+QonRPLnbxGomUYnK0ShsxLMcWv1Bii16cZPl5OdgOmUFD6Uv4FfPYexYQ7oodwQQPiFv0HXxusgSJdZtsanjjchlf349kWk11Hzt24rqdPrzH0stLrWR4f8jUwRC7VS4Zmf4gAmHG9ALUtvdsgB29XGNb91+0HXtOWGllrtXVQK4yOjgm1hrqwUo+IjUnTZps8+fPR4qHCdhS7+KWkrZPnz729NNPe2QuhSu3ccKx/fv345xJNmPGDEjDkR6lykjQs2fP2ubNm/2YS5cuxSIvA5HKOhnVOmBAIWTuIHvyySdt/PjxLkTzIRfTIM25UIoyGpZRn5SjLHPv3r126NAhY5mVFRV+XMMT+t+nTy4E9HhbsOAllDnOI4Ab9sdWQrHLnLv3EXm8efMW+/LLL+3YsWM+Qi7Sm58Uez9z1ix7/vnn0eYp3gey3r17lx08cBDtTrfZs2dDUo62bEjySCykmxGrjHDet2+vbd26zY4ePebRzhSrwVh8TWUJ2BxchhRvhjGdaM8995w988wzNhgTyXFhnw+g7eRbXFxsU6dOtfz8fAhy5HTGOdWQqoy+PgP5vXPnDrT9OCT1FQjee7jmgsjpEZC60zH+c+bMsVGjRqLUiPf36NEjtnHjJtu1c6dVYwzJvYFt7PrrA4k/+9ln7bm5c328GG1NYb8P1xXP3b17j0dDR1r5THkHusCTxK7Ebhe4DNUEERABERCBXk5AYreXXwDqvgiIgAiIgAh0ZQINMsgjXhPf0lC0cmIxJkvw9zBJwdRlt61vTpWNK+lnixZMtrkziyEPIb0YfQpBGqQTCEug0qJKi7dQXA+kLsVueGQg3OL7EmwJ9zfuYYsy8DbTKh5Ebfv2/Xb1zEkbkpdhU8YNs7x+iJCsw1f8sQQeEVIX7fJoSyuwE8izu/PIVftq7xm7ejPigi3gGd9GP91TLVDeLl261J566kn0zRDRecMlJKNoGaXKr8tzYRoGRqDywQjV0aNHuxBk2aybovCrr76yNWvW2I4dOxB5y4nJgt5RQA8oLLDJk59wGTh58mRE7RZaTnaO575tYIAV+j+WF5RZ4VHCW7Zstq1btrl0plQLF9Lti4hRiuLly5fblCmTvU3h/vjXwCsyIrXcvvjiC/v0008hOA/EH9Lq+oIF823JK6/Y05CjOZi8jsuuXbshui96tDH5MaVEkxQQ8OgcE0bH7gCTLzdu9LqY4oKpGijQk7cE11wtJPJTTz1lr7y82J6d/ayPJRnsQ77ma4isZbTu2LFjXLZzmGJD5X8koFxnWw8dOmhbtmzBeO5E5PEljAkSlkDuMg3HzJkzbdmyZTZt2tM+zpTZJ06ctPXr1/s1wOuIIpuR2xxf8uDCKO/FixfbCy88j2uoGNcXZHsZZDvq+eyzT20PxG4t5Hl4DSSXlTfpMZ6Cz1twIvvFHvLR85bwM9y8ZxwfLSIgAiIgAiIgAqkjILGbOvaqWQREQAREQAREoA0CjTKBqQwSuVB6QcDEnESgY+KEDOxWtP6mFfSrtSmTBthL85+0p58cZrnZzHdL2URRxdy5wTlhwgW20MuNFRVMwgYZDEHLr6+zP7UQw3XMPQox1mTBOVHIL07u5fK4DlGutemQXZV24uhRO374mPVFQOs4ROuOGjowEK0oz2N0GfnLdnm8Lr4OH+lv526Y7Tl2w8XuqYsVVuN9jetjXOVMg0Ax+eqrS12OMmqT0Zp3796FmK3wnLWM5qTkpeDlNu5jNCqjeJl/l3l4KfoYbctUDRshMRkNe/r0WWfGvrMMytz581+ECJzm6R1Yl7NE+5m6gRIwnTlhkaoh3M6BKiu7b0eOHI2Vu9FTA3BirSCPawSCMg8RqezDMhe7TB3R2hJ4qPaLXUYzvwKxyzoYdYzuuNR9cP8BpHIehCnTCTCNR2N0aii9GHnMtAdffbXD1q5d4/0gp+QufiXiemspdlkvhXQV8hiz7Rw7itogxUJjqzwCHHKV1wKjtNeuXetyl+NPgc28vU88MclefvllmzdvHsa/r5/MdAqU3h9//LEdP34csh/XEI6PIp9yHT47FMZzEalLsTsNorxw4ACwi9ipk6dsDerYtGkT0jGcd8scMOyq8lBiN7zGG68arYmACIiACIiACHQmAYndzqStukRABERABERABNpFIDlil8ILVg6pDsIlWKOmjcWBQtCl2y0b1L/OnpoyCGJ3qk2eOMhysphfl2IXUg7HNC4UTywF8gpSsgbi1hAFXIeJzCora+zeXQhQRD7WMNoX+/AcO57KEktgG11kBTqu3mqq8DX+exV28/otu4OIz9yMqI0c0t9GDOxn/fpkuURk7t76CEsLSkQ8JEuzckNO3rtpduDkTdu2+4wdPnsPdcfrZz+s4Ylil1/TX7p0SYPYZW5YSrkjR464yGU0LKUs8+EyipMpEfbs2eOvlKj8Kj+PoSAMJOZXiIhd54KP48j/xo4bi3QG8yB2FyC/6lCkbwgkMY8/deqUXb502SM6mfN3yJDBVlxcjNehmKSLOWvrPV8t6/zs08/8K/tM/UDmLD83N9vGjBnrwpApESihuZ3twQukcn/rj0e2R9s+ptiFwHxmGiN2A7HLqN9790rtzp3bnlf22vUb3iemmRg+fARy1hZ5agNeGZwMjqkkGCHMSOHqarY9mcIyuJKai93Bg4c4j/sQ0hS0FObMp3wJ7PkHiz59+qLtwzwaux/y8bKFlNCnT5924fr552s8YpqCn2PCcZozZzaunVc9HUNWVqbn2T0JSfvhhx96ugsyYrQ2/2jBMeOka/wjwsKFizx9BvMjc4y2bt2OaN3PcM3stNu37/j4ofouvOBzF352/bPHkeaj5y2N/xY37Vtj/5tu1zsREAEREAEREIHOISCx2zmcVYsIiIAIiIAIiMBjEGiUCfES9TEKanIKhBeka7gEGgb6CoKUYpR6l/szI7dtcGHUpk4pspcWTLXx4wqQPxViFzKrpdhlaUy7kG5pGZlW/qDOSu+Uu5S9Adl3/94DSN5qq4XMowwLJ9/iWa6SUX1MKXOTL1EIo9qqGqTRrbE+Wek2fEiBDR6YD6mbYRneaD6xH9C6zPvrUbv+1ioj+Xa1NN0On7ljW3afsv2n7kI2B/G8Xnizp5ZiNxOpFoJcuZSQnEjrpZdewtfmX4A8HeO5bw8fPuySkvJ38ODB9uKLL/qD0vM2Jt2igF2zZq2LPUaycrI0RukuXvyyy1emM6AwDHP2boPUoyxmflqKPqZ5YFqIWbOexfrQhkhhfs1/9Sef2CerP/Xzg9QHSFoBSUx5O3ZsiacV4ARmZMMoUUpI5gOeNGmit5Xb25uKwSN2W4jdB56SYv/+A57a4Pr164g2TvNJwZ58agr6Ox35h4dDUAaRvMwVTNn9wQcfIuL4rkvOZkORwLeti12m1eBSVVXtE9wxCpr5izmRHK/rPKRm4GR5jEzmxHjMXUw5fusmxhTHffTRRx6969c7ooE53mT75huvI03FNETt9vFr/MrlK4i+XWOrV6+G6L+GbTX4hARyl38cYMqMF16YZyNHjHSZXwnxTam7Zs0XdhRtqqyqRCuplbuyKJXYldjlp0mLCIiACIiACKSOgMRu6tirZhEQAREQAREQgTYIJE3sUhbFInaZydYjXiOMoKTcpX6CXLS7ELtp9jTF7ktTIQwR7RkTu4H+DRsfCLR6S0Nu3kyrrk+3G1dK7dypy3b+zAW7C8mZnZlumYi4rWc+BDrkNJ7TurAKREnEkPUBOX4zLL9Pjg0syLP+mLgtJwcpCtKQxoERwy6nA0GNYNxGBYbyK6yfXbuX0SB29528Y9WMFg6b3Oy1sHCgi7wwYpdRlydPnvQcqR988IHnzeXX7fl44oknXEju2rXL3n//fY/qpSyk+F24cKEVFBR4moRA7K5BlOdmZ5qVmWVTnpyCSbzmeGQvZScn6KKoZf5ZSkPm503HBGocAaZ3mICJ3F57bZnNnDHTI23JhjleGfX6u9/9zuVkwIsCl5G5EReRFMNcmKaBE6XloCxKacrncYgaJq1EiN3LkJdMr8CUEwcPHsQkd9XOmG2fMmWKLVq0EJOqzfFoYkasXkZk8pYtWyF2P0A/kAoBkc/JWx4udhmpy8nTmDJj+/btdvfOHVyYFOQZVoy8yczH+/zzL3gULsekoqISE64dRxTuB7Zu3QYfO4pgjiPF+2uvveaR2EVFAz11x507d30CtPfffw+iFpPGIZ0DJTxsVypBAAA7bUlEQVTzKTPnLyN2n35mqucnZjoPsvzww488ly/Z8A8gwVWdPEIdL1liV2K341eRShABERABERCBjhCQ2O0IPZ0rAiIgAiIgAiKQVALJEbtsMqSXi91A4gZil+KT05xhL5xSZqTUivpHkYphMCJ2p9jECYjYzebkaX50nJZlGcgdimjdimpI3dvldmjPQbt85rKloZyhQwYifUGhZSCSk+V6+RBoFGL8+nmTBfs5uRQlZRpEc2a0znIy0/CAwEXEYzRKgYmD0NIg6jgogF1hpDHiIfGKCcwgdq8gFcOhU7cQsXvaDp4ptWp8BZ5nNq+U+q8QE5gFk6cFqRgo906cOO4pA5gnlTlWFy1aZEuWLHFhya/T79y509577z3IvmOeVoFilzlTW4rdTaiUEbsZkK59kFc33yNr2ZRa5J69W1pqt27d9JQAHG/23aOisb+4eJS98fob9tLChUit0Af7Ioj+vAqxuN7efXcVIoNvQo7GT0IWnM/oUJJOQ1oMLowiXbxosS1avNAmTpyELYkRuwcPHob8/tw2bPgS0a/XvH1hBPGoUaNcJpPJ0KFDPAqZ6S04ARmZUmhXVlZ4+5Lz9HCxyyhaTojGiGxOpBYuFHWcUI3Xw4oVK3xSNI4do6tPnTrjMp9inWkcXOrxeERKz5nzrKdjGD9+nOfapQhmeoeVK1cixcJWT6NBNnlI7/Dqq6/6tTJy5Ah8prI8InzXrj0e3ct0Fbdv3fKJ09KQuqFrLxK7Ertd+wpV60RABERABHo+AYndnj/G6qEIiIAIiIAIdFsCyRO7RNIod7Hq0pPiE9ObIWVCheVkVNjA/DSbiBQMC+dPQpThIMvNyYLMQsoFj5jFwZ4JIR0viNbFRGe3S+vtyNFLduH4QesbrbURkLrDhiHPKqJ16WMZCUwVWx8zuoGWbawbuxoWxhFHkR4CmXpxDrVt8BoeTY3L1vLhqheCDd4M63UQuwV24XbUDpy4aV/tO4fI3TKrRZvD7L6sJGQbiN0BLvKWLFmKfk7xSbEodtetW+cSkmKX0bjNxe6qVas8Ypf5chcsWOARvc3F7ubNm8GM9bHWoN6w7jTIbi4UxZxgLHzvG/E0YsQIjwSlVObEa9xPORqI3fdcCFdXQ+Kib7WM8ERFaUi74KkycD7r4X99IIXZ9sWLmdN1AvYEYnfdui8Q/fsZIlcPhFV+7SujfV9ploph585d9ilSQmxGFG5Z2b2G+phOgukpZs2a5ZGpoxEBS4F58+ZNpD3Yh8jUj+3I4UNWDjmavCW41sIcuy9DMDMKlzlxuZw8edrHd9PGTXb6zOmGZlDUMX3FpEkT7Fvf/JbNe36u58TlAWeQruGD9z+wj5EKo7z8QcO4ZiD9CK+Bt956CxHKzyK38CAcHTB+771VnpLj/Pnznm94+PDhEMav47jZiNYt8DJu3LhhzN1LyczUHFVIw8Brpvnil1B4ITXfmZL3ErsSuym58FSpCIiACIiACDQQkNhtQKEVERABERABERCBrkYgFICBQU1G6wLxR21Kj8QHxW6kvhp5bB9YXnadjRndzxa9NMFmzxqJVAjM24pzEG3rQoOmqT4DWzKMwZcXLpbiq/lHLKv6rhUPybMRRf0RpZqN6FvW4GfybKw1XWJZIZpuxLvGVgUtDPLxBq0MyomVxfZQeCHnKQXwfRtgZ29GbdeRq7Zt50k7f70GYhfKlyHD3svGqlhO4cDHF7vNI3YHDBjQJBUDxS6XUABxTJmXdeDAgcg/O9IFaF5enkf0hseErWOEb0lJicvY7OxsF6ctxS7SH1BaMzsF+si0AUE5YAYupMhymGYi0WKX0beMXt28eSuiTsuaid0imzlzpi1DdOqo0cUudm8hEpXRsUw5cBiRqakUu4wYZr7fzZs3ubANmZMdI2vHj59g3/72txB1/HyD2D179pxH7H78cSB2g3PwZw1E1jL9BPPmMhfx6NGjPEKZKRa+QpoN5s5l2oc0COOpTz8FWb/cU2IwCru8vMKYe/ijjz5GBPFmyO/bPp4su/HzH7auq71K7Db/zHa1EVJ7REAEREAERKCnE5DY7ekjrP6JgAiIgAiIQDcm0Ch2KOgSvVBycgnKDuNioxS7kKMZ9gB5bqttxNAcW7RgrC14cYL17ZMZk4XUo8F/hiP5KCutthPHLtmencdsZGGmTRhRYIMKMPEUfCsfFKiN/fGKWz65eG2+OWxnnBxFWSyRS6B8w6hdJISAZCurG2DHLtfZtv0XbNuOY3bnPnL/IiK2HrkhmN83fuksscs6+ZV+RnNyAjbm6uUEaRTBFK/h1/3j28YIXQpDpgZgigYu15DyYN16pmIII3arPU1AEOGJiF2c82hi94FHrH66GtLx4ONF7FLscnIw5s3lBHMcX/8PAz54cGeJ3fD6aDquwRWHaGjIfua0bR6x2yGxCwkbSulAngfX5rx5cz2ye+rUJz13LtM3MCfy2jVrbeOmjUg9UeXil9HTvA6ysjIgcm/55G2cUO7YsaP24P6D2KXdvD/xV0ZXWZfYldjtKtei2iECIiACItBbCUjs9taRV79FQAREQAREoBsQaBShiRa78ZGrgUCizmXUaxoMIbcgY64/OIHai/NG2ZJFUyCr8mLpAiB0GhIbBGL39u37dnT/aTt64IxNHFVo44bnW/++mS4ZQ+HHght1lcffoqZwS6BoWxuWUN2F+4Iz/v/2zsS/qSNL20desAHb7PtqICEkbFnIAiQhATJJuvvr6fn139m/mSSdpAMhK4EkhH1fzBr2zXjD+/e+p3Sla1k2MpJsSX5vRpZ0Vbfq1FNXzMzj41P8SQUdyV1/AblYY4/7ZtqJK0/tlyPX7NjxFmyc1oD6v93Gor+Jmmi80Fs2sUvJeuFCuhRDW1tb1hq7LMUwWsbuvn37sHnafheeFLP8c31uKvb666/jT/1fcmEbbXTGjcS6uxFj7OA1zO6NsnU537t3oxq72cQupgipGshiZknRylIMH0Mm7oyVYmhvp9j9zvZ8sxdi91RsVL7MJG6+8VpmKYbff2fG7sSJ3Uhgk0v6uxJNhStbHLHL7FrW2OW4zO5lTWT+4mDlyhW2EyU7tm3fDnm/0mNird2fUe6BrEOt5l2oWf2+TYPM58ESDT/88KNnMT9+9ND6UJajfA6JXYnd8rlbFakIiIAIiEBlEpDYrcx11axEQAREQAREoCIIpGVVMcVuQEVBOoA/3eeGZ6xfW2U9KMnQYbOmD9qbr82F2F1nK5YvgGhkSQBv7WrXEpS3tfbwfrudPXHBLpy8ZhtWz7dVi2dY03RIX8jFoIqjJYlLZSpEVt7lEcnEoZ+HTzJlrF+AH1Hf3DQtPHp7B+1OxzT740KbHTh23S633EWWbiPkbq/1JVCPNiMreCSxe/HixdTmaWMVu2x/9OhR1Fb9Fn/q/4tn2zY0NNhrr71m2yH9Nm7ciE20giSnzH306JHXzuVzes3Nhe7ChQtdCFMAU/TeuTNc7EaCk1m7wO1cwjPWEeKRGcHMEt2588NUjd2U2N2z106dOh0B9eeov/jJbDV2f//9EDJ2v8HmYAeQsdvpsZNnqLGbT8ZudC8MXfcQT/ozlqAIc8aYYcKxkBlJrmL3SrIfXECG4PzCCy/YP//5Twjt4aUYWCOYG79xTD5CtjQ2HJxSa++9+y4E+i6s8QYv4cAYjxw5aofA6inW+u233/L7oLa2xtra8J05ew6lGr6xffu+98zr9PcgNpWSfSmxK7FbsjenAhMBERABEZgkBCR2J8lCa5oiIAIiIAIiUI4E0rKqeGI3ZHfyJ7NfkbELQYq8TwirftTG7bGG+m5bvbjGPt61xja8shqlA5ogvpBV2A9J6mUNpqB+7RS7f6/VTh8+bVfO3bLNaxfaikUzrHFaDTwV9JpLt0jSUczhAeEVykDwPMZMirnBpDTGSbbyI3pOvh3yRH0XFF4NikhMsY7OQYPLtYNn7tvhM3fswcN2bPaGGCF0B4xil+NGsfDV8Bq7zNiNxO6XX36ZzLTcmXXztGwZu5lil/KHGbo7duywrVu3GjfQ4to+efLEzpw5A/F3xM6dO+flDKKSC5zknDlzfJOtdyELuXmai93bELsZpRhYDoC1dZn1Gx1BOkKaY6qR2N1Fsbv2Rc8wbYeI9YzdLGI36oMrEImrbGL3t99+HyJ2GZ+vxphKMXCM9Ih8xRIGPMfatTxYm3YAJwZQVmGAm8ThqKkJdZ7ZLv09ib8Od8WzSjHsR4mEy5ev+JjcNI2lLCjDV61qtv/5x//Y+8iuDRnThlq41+yzzz43lk3gZneZB7OlN23ehLq873l9YUp5IPH+L11qwTW9tnbtS6jBuwwxV6FMw5/266+/YeO0vVj/875W8Xszzj9zrNJ4L7EbfT9KYz0UhQiIgAiIgAhMPgISu5NvzTVjERABERABESgrAkFPBcFVuMBpw4IgC2IXCgnvKXerBqsxDB/8k/Bem1Lz1OY39Nn725baO2+tt+XL5lt9HWzhID/nNRCqyNh9cA+S8ugZu3L2hm16iWK3CZuvQezySLC/SKZyXMpVPuO8j4esR4gujk/96vLVBSya4AiRhteZP5ld7PJ4EMUj+qda29MqO37xof1+5p6du9pq7R1PIQWrfOM0bDGGvobmD1MKzp4TbZ72X6jH+orXu43E7ldffYXMyuylGD777LMhpRh27tzpNXPZ/tixY6mM3X78ef3bb79tu3fvtldffdVmzZrlwvTs2bP4M/2f7dChQ3b79m1jOz4YEyUpxeCOHTuw8dnHfg3F4x3U2P0BYpdlILgZWU9PrxPiNXHJ5PeN98OM3WmpjF1uCsZ2nZ1dELvf+8Ze8YxdXOKfp4UpiEGmvvf+e4h/l23evNnLQ7AdNwYLGbtRjV1IUXzAjN358+MZuyt887RHKDVw7NgJbBT2b2yedsY3DstcW2a4ci4Un3ym5GW28tT6OtwXCZfXFNicQxDAWE+cT99fyVfsA2f7B/q8xu6unbtsy5tveu1filvKXG6e9vNPP1vL5RbwrnbxSrHLbFpy+sc//gFJuw3j13HomNj9wsVuxDi6Jzne3HlzXcZ/8MEHGHe9S2JueHfv7j2Pf9GixSjBwWztKpT7uIg1+AHZut9hLR8452E8MP9SPfy7mvp2Rr8wIYXKPMJ9lp5b/PuWPqtXIiACIiACIiAC40lAYnc8aWssERABERABERCBMRMIeqrQYpdhBIXEhNrwmsqTUowSlpIVGnSwG++7rGkKMg1XNdmbr6+2V9attCWLZ1v9lBrIrn60q8Wjzh7cb7VTR05Yy5mr9uq6Jda8qNEapwahy9q9CR+Ig3GUpNiF1KUYxpZfeFC+IjMTQjlk7Q4VsLhohINsqiHw8KftPXV27Xan/XHqmp1ueWS3HvVYby91LkcN/0XzjjqjrHmW2GVm7S78eT3LGbBGLuXrH3/84dmb589fQKmEhfbBBztQX3UX+pqFTNw2O36cYncfSjHsdwFJQfvRRx+5ZGQGLaUQhS43H2PGLuuvUlRGYrempsaWLVvmY3JsZuxSdmaK3d7e3qSIjQRnmFmQjty4rsrqUT6DsbOftWuD2GWNWErFb1BK4fiJExEOF5hA5RKSbCg0Xey+957tcrG7CRu6TfX2FLtff/0flGL4FaKYm6eNXexGA/tdgYxcz/pFzBTENcicnjt3LmJ+AYwXu6CmyL5//56dRvmIm7duQQ53YVzONkMo+rlsYneej8Fs2R9++MklOespc1xm4bKv6diw7uWXX7G///f/88xbiuWB/gEXwJ9//gXm/BXeI2K0zTyY7b1+/Su+iRo3U2tAfePOzk7fFC0BeTxjRpNnV3MjNa773j3f2oGDB62P65jZGd4PSuxmoTIxp3hvxA+J3TgNvRYBERABERCBiSEgsTsx3DWqCIiACIiACIhAjgSCsCqG2A0BxMVuOMOx8EDGbP9AD+Rul02t7oOkNXuxeZa9/NJSW7Nqkc2dM9Nq3QFPQdsp9uhhq12CbLt7465tfnmprWbG7jQ24IFZuLWiGHGF55q1ry+BuqMDkK/IDYZ9HYCgHcC4VLDM3Q1Xhp/Ru/BJXLBU+7Wd2Hfs/hOzC1cf2rmWO3brQbd19lBQh9xj9h768G5TPyhrnk/sHrbP/g8Zu5CC3BQtiF1k7ELssnZqPGOXc/7www9TYreuDtmnOA4fPozNx75xwcssX0paHpSMrMn74osv2ieffGJvItN0GmQjOQ4Xu30Qu0FdUwbX1NT69c6cnWF+dXVTPFuYMbJ2LIVUD8TiDz/+6GUATp8eWmOXEnMAfVIqMnOX3N57710Xw8zYnTatnj1bKMVAsXvQM4CDlMVaY0xm7HKTuE8//RSlB0bO2PWO8INjDECYVyFjlhm1tZjHnLlzkOG8GfN/C5J7qTOgfGUG7E8//QS5fthu3ryZzp6NOuMzYuBdEs/YJcf5C+a7NH70uNX5M2P36LGj1o4168d8WeJh8eLFELpbPEN59epVyK6t8Y3tKPGZbbx37z4fCUM4H3/DH4SFkxTy27a+Y7sh8pcsWey8+/oorROefczrbqOkBjdV++6777wcBzOF06IwfX9L7KboTvgLid0JXwIFIAIiIAIiIALDCEjsDkOiEyIgAiIgAiIgAqVFgJJnqNhNa5/8Iw1il/1QrfEI4yW8NEMfZFev1VT1WqK/F6LWbOHcemTszrLFi+bb1CmQcLV1kIDV1gkx1nrvplX39tgbG5bbKojdJtbYTfbozz4Ef0DdQoK1dfbbvQdt1vqkC+IM9VORqUmpSwXrc0z9wJ/kI9CefjwGkFmJ11XJcAfA5ml3nz1s7bRbD7vs9v1u9Dtg3f216IfZxCFjl+PziGYZ3tHDUezOwmZXm7zkQVSK4dKlS/4n8l8hO/NJa2vI2EVJBM/YhVw8dAhi10sxXExl7DIjdvbsmRC7HUPELsXr+++/j/5Z6mGjb0DH8VtaWmz//v1e0uD6tevWhSxaHswYXbJ0ice0ffs2a25uTpUDoNj9HiUU/vd/QykGik76RG7ctQAydQ4yXJlhSnnII/psy5Yt2LTrVZeWhNDT2wcxesjl6I0bN0Lj5M+Ojg57/OixPW59bF0o2cDNxCh2WUpiM2rIcgM9HplilwKU60qmCxbMc7H7ySef2sqVK4eUYvj3v/9tZ1FbuKsrzJd9hXXhtbzXB1GuoMnWoS4x5egmbEQ2Y+ZMF9ZkyTIS3Ljtu+/22QlkG7e2PsH9kpwwO+OBGHhmiNh9602Ut1jgTMiN86aApyC+ceNPiPUeLzOxdu1al+mUysyuppDlGKdOnfIM6/37D4Qh8DN+PzE2xs/sapZh+Otf/4rM33UoXcIyEryEJTZCeQmWv6DUPXjgoN3GmtbityT9feGXDwg9dTBbulQPlWIo3bUp1XtGcYmACIiACIhAoQlI7BaaqPoTAREQAREQAREoAoFMsRszP0UYLYhkKFZPs6VkRd1XCNLEYC/2S+tDvdOQUcpzLKHA9tUo29BY021LZtfaO6+vsjXLZtoM3zwtOC1m4IYsXMqQIGofPum1yzfuIwPziXV39bn06mO2KBNQIcDc8eEZ9tie9gwiI7fb7rT2WmsXt3nDyJCI7JXZvt09/Qa/a929LOsQHj4O3oVjKMPkSX9izduNGzfaJ59+Yhs2rkeGax02T0uKXZRKePToke2GtP34k49t/csvWy82wfrtt0P2f9hI6+KFS5DcyNj9cIeXKpgzaybq+nba0aPHbe+3e+wAsjIpEV997TVk7O42CtY5qOlLeff0abdR6J44edIFI0sMMObly5e7QGbGLksRcPOu+vopLjaZ6clNz/71r3/Z48ePvXQDsz2ZIRvV8G1sbHTBSsnK8g4sD0BRyqxfSl9m1pJxR0e7Zxf39CDdOXawTMHRo8dSwrkK9WDfR43dXbsgdjdtQmmHkHGcKXaZMcysY9arXbRoAbJtX/OMXW5EVo8auawJzBq7IdP5nD3tSo8bVincG9SlnM+bb27xEhLNzc2IfaoLWc6Jj9Oo0btv3z6sw292CyUZxiJ2OdUujN2PdeRakfv9+/edZ0NDo2dgs7wGOXJOXCuKX8rk7yFjWRu5P4twdbGLSKqxkd3SpUs945cb33ENuQYU3oydYpqZwnv27oGYPo77g/WqeQybRThdoj8ldqN/W0p0gRSWCIiACIiACEwCAhK7k2CRNUUREAEREAERKH8CQ6Vk8fVPGC/SFkHIkiLPMCsRVW0h78J7vMFRi1q8c6Z02LqV023rG6shdmd4xi5j9RbMZuT17IKCC+86+6rtUccgMlVRXxQ1S6tRb7cPz/3cUA0XJWoolxPI0K2FDBuws1fvYWO0e3b1Duq5ogdm7bI7ajGKSj743odAVi/H5etwDGUYnaX4nIs/+WeJgY/+CzVwkR0aid293+6zL774wtra2yDpPkJZhCB2KWoP/XHEWG/13PlztnA+aux+uMPF6uxZM9JiF+LuwC+/+FDzsKkWJd+OHTvspZfWJiUfMotREqEVGcEPHjzEHDtcJDJLlBKWGbB9kI98T8nITb3u3LnjmZ7MFn7w4IFLY8ZLkfi3v/3NN2mLxC4FLg8KRcpfPkcHM0spIkPZhTQlfn7lyhWvm8tyB9euXfMxPviA82P27MaU2P314G/2zZ5vXHKzjiz7J0+OMm8+MnZfe93+8tdPIapXuJiliD5x4qR98fnnXn4gnrHLcX3d8MwyEPPnzbe33n7Ls6hXNSPjl1nCaAAviqdB72fvnj32G+r83rt3D2Om58a+EIyfyZaxy/uE2bpPuzpt6rTpvpkZM2O7Ibhra6e4SKeIZVkGzolrxLgpklkzuQMymHFEOPmaRyR2uXnc7Fmz7Y0tb9inuGdWNjd7fWC2YQ3lO3fueQkMboJ3+XILzibXiQ3K6JDYTS58Ga2ZQhUBERABERCBSiOQQDaA/jdypa2q5iMCIiACIiACFUWAwiotJSmThkmsgs83Q5LFpJlnTGYZb4p12vzadlu/phFilxm7QewyWn9Q7Eb/VxeeKef6ErWGQg/IfkQbyDbUYkD2bS1EbR2yPtG+GjVnkSHcOzjV2joG7PiFO/briT/t1JVHzqDKN19jT+gwM+RorGSs+CP4LFEHGTd37jxkl77qGZZrUIO2ARteXUQphr1799pX2FysHfVvg9jcDSn7kmdYHjl6FBuP7fEauyyBwFILu3fvdAnbho3Qjh8/juzO7+0QMnspFylf1617ybZu3ep/5r9w4UJIRNZVDbKPsri/HynHHucgslux+dutm17bdfXqNS4fmbnL7FLG9eWXX7oQ5nXMwmVdV4rdbdu2eXZufLJxoRskJLR6ZCXRMBKT0TVXr161AygR8D1KPlA89iOL+j1snsaM4I0oMcDSDJTGoY5wyJrthOzsx+ZnFMUUmwsWLITYBVNkKa9Zs8ZF9ePHjzyT+YsvPrfz588PydiNxuYzxe6MGTORRb3B/vKXv3g5gwbIba7xAAQss4K5Ydu3334L4RpKMXCztSEH3vNMWuzutC2osRuVYjh/7rxvvsayFyubVyKLeg444JcFzBD3uwvPuGF7UbKipaUFPA44kytXLoNd8l5C+4EYPF7PgyNPRb/NzSvs73//b9xbm2wmSknwY4r6MyhDsQebph05ctglL0fkEV0f3pX+T4pdyuxwcO7RTEo/9rFGyO9L/DvD6/3fwtj6j7VPtRcBERABERABEcifgMRu/gzVgwiIgAiIgAiIQFEJUJakpST9VVBWRR001jnHTwsbl6jBX8XaoMYrxO48ZOxuWAWxu6XZ1iwNYpcZt4w/4QIIr12EoBc8DyLrdxBZqT4/ZNjSa7Yig/fBkz4IzU6bgtIOM2fW2rQZi1E3t8qOnL1l+49dt5Mtrck+WXIBwWDDNR9mSERD3yQG0wzjn1DWzJw5w4XtVkjRlSuQHYrNwZipun//L7YfGbedqH275Y3XIWXfsdWrVrvYPYM/x+fnV65ctTmzZ3vZgK3btqKeaj0ybztdXLJMwMnjJyH/wp/aswQDNy/btGmjb4zGEhCNjQ0Qs6G0AbNGO5C1+wj1bS9fvmxXIFVrkDm6efOrKbHLshD79/9szPbkhmvMkGU27oIFC2znzp1e15ZlFzgvMubnUeYuX/OgmOTrSFZlCqs//7wJAXvUN0UjB2aZsoTEu9u321pkG/NgxvbZc+fQ5oCXV2C2cSS6qtA/Nz5bt26dbSfT5pVeu5YZu2fOnPWMY2YFcwO3bAdl6VSUbli6FJuQocbwG2DP+bGOMMtXsM4wM2cPHz6CUhbXkPHd7RuiDekL8+edN5LYPQexexIlMNqRjU3JTnk+o6nR6iDPGX9vX49n5t65fduOHT/hop4xU2BzgzcelJqcc3SEl0FwUsIvW7YEYvfv9ibYzZo9y9vy3vgJZRi+/fY7lPs4bx3tnf718n7SXUVdlvSzxG74d6ykF0nBiYAIiIAIiECFE5DYrfAF1vREQAREQAREoPwJBDEazYMCcyLFbhRH5nOtddhciN2Nq5rsnTdW2gtJsevGFdI2HMnnpOjkZ4MJSDKKRojX7p4Bu3yr006ev2X379y3Gfjr+xdfnGWrXtpond1Vdhhi95fjf9rpq20QxRTC7I82DI9UOnAYKfPnSGKXGZr19VNR03WeZ5aybADDvXfvrl1And0LFy56JurKFSvsxbUvoN0CF503b9yycxfO24P7DzxLtxl1ZFkTl7Vke3p67TaE4CVcf+P6dUwTCgyZrFXVCWSuNkBSzrfm5mZbsmSxS0XWdeXBTFTWoWWNW4pdlhiYDfnLLOImSEdm5lLmXsC4rPPKTc4oBCluGxoabP369bZyZZCo0fwj8ctM1yi7MgHmlLWcOyVvJH6jax4+fGBXr16zy8hUvY9yD8xaXb16lcvvJUuWuEiuQR1ZSt/z5y+irMF1CFdssoZ+Q5+c51TMbZGXnZgzhxu6sZxGp928eQsbp531uTHbOPMIbjPMieUoli1b7hu2rQD/6dOnWduTNmRTX3Qpy3rDHciO7uNcMI8hB+4t3h3ZxC7bXUBt5F+wcR3rG5MFs6kXLVqMTOEmL4HB+dy7d9/OQV63tFzyUhncXG2YyM2Qsf6LBvTf1NhkL7+yDjWG/4J6yS97v724L+5iTb/88ivfNO/mzZsYG2Ie68Da0i7aGVyZHBK7ErtlcqsqTBEQAREQgQomILFbwYurqYmACIiACIhAZRCgnkpLK/iqkhW7c6Z0ohRDk729ebm9iFIMsxpqU96VNXXDPPgKmaOUu1U1ULK1qMCAcgyosNvR1W9Hzj+wnw9dtrt/PrT5TWYbX5ljm7a8Dllahfq6t+3gKYjB6+0gkmaSyzqPJHZ5LRUgNwhjuYR58+ZZV3cXJGSX11zthoyjzKurm4Ks02m+CdYgsl07O59CxrF8AoQtFoWZnpSZdci+7YMI7YQY7O5+av14PYBSDOwjPJjtWuWSkrVzp+KammqUn0Abij+KQQrQtrYOCNUez3Rl9ifH56ZklL/t7U/8ORKjzNilnGV/lL/RWGlhOzZWT5Gh3N3d7bV1WTqA60ZhzWzkOjzXcQycpVhm296eHt9Qju0iOclyDKwRzLgpzlkfmGKZGbdk24d5MM7Mw88l73H2weubmma4uGbd2x6M9RhZy13JGClluYJjKcXAMS9dbLHvkfX8CzKy/8TGaE0Qusx0Jstq3Av9qPXMbN7W1seeWQwvjlFw22aJmf3FD85qwYJ5qKn8nm8ex/IPnEdr6xNs+nYadZv/7cL4CWors18eqQzq8LYsfkrsSuyWxY2qIEVABERABCqagMRuRS+vJicCIiACIiAClUAgEqJhLqUqdmuwedoM1NhdvXS6vfvaClu/arbNbpoCEwbxCXnFLFjkYSKxNil2vaguSimgzu4AH6i12/F0wH4/edN++B0ZkrdbbdGsGtR0xSZc77xrD1t77NDJFjt0+pZde9DLnsa0uKOJXXbkQhIisQbytJ8SFv+x1mt/0rzxc2ajhszQkGFZAwkYl7sUjzxYSoCijqUVOF8KMF6fPsLnzGKtgtxm2wHUp6W4pYzle9bb5TPfUzaSHrrCE+MKpR2i/igb2X8kdSk7o2uDjoxa5vY8AKnJOTBiDulzR/8UrdE8KGnZjv/Fx4jPEo35P5hLPzYi49yC3KWc5jXsa0j75Hh4Sp3nmGTAlhyJ9xNlekDhZ3g2L7HLmsIUw9U1NaEfBo0ROA45ki/+x9lzrFEPXMv7oLl5pUtd1lSeCWnMXxywhMSPP/5k//n6a7t95zYkN0pReMccLT3nUfsvoQ95X0dZ4OU5g9xh+r3q90X6mnBfpO/B9Cd6JQIiIAIiIAIiMF4EJHbHi7TGEQEREAEREAEReE4ClEzpjEu6heE67Dm7zukyjs/H6Ee19di0KpRjaErYtleX2paXF9qSedMhSiEnXeLGr4cMcZMV+h6E1DU8evoSKMXQbueuPbR2ZDM21Q/a0mVzbd6KjXbu6gP79ch5O33prrU+rU5XXnhGCYZo1GeKXW8Y5hkkNE8EbemvXHSCfFLuwPe5rGP2rrs5XOoZspwaTvARHSzFwCOiGN5RnOIM+qMcY/vovbflR/gv6oWfe1YqzjMDOIqDbaPxgnzihmy4ig+PNYwawg6vec3wIykv/YP4a3bjkSVjYd9o5B3yBY/weXg9/KdLYrSPsmq5yZpfk+x32BUZ57kKnI4PnBwyGjm6Nuo7es/4ONuRSjFEGbsHsSkaS0qwFAK5MVuX83WGHDEaKPUiNULWF5zrjBkzfOO3Tz/9BL+Y2OjZzr0oO8EavV9//R+vMcxsZ5bnKOdDYpf3ZXSDlPNKKnYREAEREAERKF8CErvlu3aKXAREQAREQAQmCQHqqYkUuxFmxjGyGKyyPhRV6LL66j7b0DzdXl2LmrXLkbU7c7o11IeM09BTJEL4HF6zNmtiEFm7qJvb2mV2v73Pa7ZSCteiPMLDnqnYOO22nTh3zW7dRU3VQRTfTR3oIwe5+yyxm+oOL6II4+eCnAwK0yOPNaJCdNEax5P63FsPQ5eSh/g4LS7jI/I6ZBCzLEAyazjUr6XYHZ6xyyvpmFgz12OJd8WePLZ4gBkNUvI0eT4ZV3jH+YX+I5FVjXrB7rQY5mhHliGjPji/LB/zdOpgbWDOJ8SP08nxuB7xY7jYDd1QIq9fv8F27dxpW97cgrq/C/yySOweOHDQrl+/5pm50Vih3yCTI26Z48fHjr/m2ixbvty2b99mu3fvtsWLFyNbuca4cdypU6cgdr/2Td9YdqPcD4ldid1yv4cVvwiIgAiIQPkTkNgt/zXUDERABERABESgwgnQcpWK2B0NNTNzu/HosQXT+2314um2ZtlMW7Zkri2aOwNZi7UoFVBtNZgOZ5RIMFsRgtLf80/tWbe1zp4O1Fh7T8Lau1BLFnVsHz3psIs3IMVa7trte22ofwuhl6iLBTJU8MU+GPIS+aJD3o/2JluPUdapCz40cNfKhh5/mFRKU0bnfBBq25CZidPe3n9ATPLy4CeDRPTmyR/Rn7izNi1LAvAajh36CBEGsZp8zeuYaoxGqXbJvvwpPXj87NDXMVnqvYauw+W4nm8pP3nkKnYZS6xbvzbXH2E8lqhIy+qor7QcDr1lE7v8hKUUuKnczg8/dLG7aNFCvyCI3e/tgGfsXvdzLJ3B8hvhCGsSRDmxOsAAIdki2xNLLmzYsME++mi3bdu23bN1Gf91bKJ38OCvtuebPXYNIplrmuwxWzdlcU5il/dI7EtSFqumIEVABERABESgsghI7FbWemo2IiACIiACIlCBBKh/0lIySLvSUkJBbfRDfvUh1D6bCrnbOGXQZjfW2pI506x5KeTuonnI3m2wafU1KM/AP3ln3VlXd/CR1RBq2ECsv8ae9tdZKzJ2b91vs8s379vlG/es9UmXPWrvsR7WdIW8HByIeJBD/FGY5c+maih2KQ+REOuikqUYXPahMaKidk3LvyFh4DO/xht6uIw48kG8NnrNy0KfaItGUaZqyjUO6XeMb7y/Ua5heHiMeHjQFNqhUTVq3/qr0a4ZsbPn/4DDZZNpw8Quh0DMDHfdupfs3e3v2muvb0bG7kI/d+XyFfvpp5/st99/t1u3buEcSjFgTdl3tinl+r1rbGq0N9543T744ENb/8orHgNl+IUL5+2HH360n3/+2drb2n0MIi3nQ2KX391sd0s5r6piFwEREAEREIHyIiCxW17rpWhFQAREQAREYBISoP6JRCZlH11RaSmhICchxhL9/qgZ7LU6/Kl+PQTu9Jp+a5pabU3Ta21GQ601NtVbU0O9NTZOQzbjFMxnELV1+62js8+etHVZR3fCHj56ag+e9NrDjgF73Mk6qW5Rw9rDo6RdCjnEH4W5PbKpmpCxG9jzc8YQiV2O6q+zDu+ts34SnQz8wruiid1osDyeM+OciLswsOfPoUem2KVMZ7Ztb2+Py9xVq1Z5WYRp06bjFwj9Xhrh6pWr9ufNm9be/sQ3gmOP+YrdhsbptnTpMlu5cqXNnDnTs41ZnoEbp7VcumRXr16rCKnrrLR5msTu0K+h3omACIiACIjAuBOQ2B135BpQBERABERABERgbASoz0pd7CY3/4LIxStEi4xcRF0D0VuT6EXtXZ7rt7opVVaHerv1dTX+YO1Ril1uXNXbO2hPu/usq2fQOp/229O+atTSRRkCPJjxWFWFOrxA4eItlcLKEg6F14vDtWHIVI2kepCL4yB2OTdOL1tAY7uJCtK6nMRudFtwg7Jp06ZZQ8N0q586FTWLaxxnd3eXdXZ0eS3nvv6+tNhNkcJsY9yjtU99PMKLqupqH6+xsQG/uKj3e7YPv7jo7OyCQG7HcyfOFeOuHSGgIp4enrHLwQr/fSziFHLu2teMN0HsCP8WxW6S2Gd6KQIiIAIiIAIiMD4EJHbHh7NGEQEREAEREAEReG4ClAmlL3bD9BCruw+UH4DvqMIP1tJN8M/cB1ErFZ+hBKlVIZsXZUe9tAFlIUvQDqDEAhNze1F2t6+/ygYov5BxmYDQjTa18q45UMq4FUeQZVM10TnGEF6novGpjxwJW0dXe9NhP8KnUZt0v+lXwy6ZkBPxOEeeb3FDYwzZ/vw9M2OXbVgvl/Vtq3HTscZyAjcg2/F+cinnoQ74e1+iDODROCE7m7d2RoP4VJMfRQKQ4/KXEVx71vmNHuzT+4m6ipY93leZvJbYDfdRmSyXwhQBERABERCBiiQgsVuRy6pJiYAIiIAIiEAlEaABKm2x6+LSRVVkq8g/LrBor5JaDLKXQshtbtSKm34lH7wqcl1MkGOPKPCAn+E1hXH8GFW2xRuO4XXGECNcmV6TERokT7O33HocvR99SgJOMyX200wyxS5LZ7Burmd6J69ja95TLMUQxCvWEO1C3WDcScn7je18xZLLxjs2df/ywywHr+XNSrHL8FwK85nX8nIe3j8bhtf+HH3mb8rrh8Qu77EyXsDyut0UrQiIgAiIgAhkJSCxmxWLToqACIiACIiACJQOAYqgtEQM8ikph0onyKTUYkCR6KC85cHNzvgczQEyBFm8rMfrMtfPI5uSYjfWyt94X2wf3vlPt2ZBoIWz/DDeINb2OV9GMxj98mg+o7cKPHLr8Vk96fMkzSwyLVPs5sQqedtEIjbfEgms6+v3e/IezSmGMm4ksSuxW8a3r0IXAREQARGoEAISuxWykJqGCIiACIiACFQuAdqntEQsWbEbX4BEH95FMhOZkIOMnw/OBTKEn6EN8inxKpwPjo1tQ31eNGQrfxhEcOrgpak3aS6pUwV4EUU+ele5jp2axejd6dOcCDjNAovdcJPlNPyojSR2iSf97RwVVpl9GJXYiIfNbF1l7MaJ6LUIiIAIiIAIjD8Bid3xZ64RRUAEREAEREAExkSAoiQtEUtf7CJeZuN6uQUUVkC6LeubmsvduPRBvh/e8hEXqWxRnTyB6rxDs3XxGcVv1At7Hno13hbgiMczcnfpNRm5DT9xFTl6E32aMwGnWSixm/OouTWk2PXQcruBcuu0hFspY1dit4RvT4UmAiIgAiIwSQhI7E6ShdY0RUAEREAERKB8CVBepiViELulOhvGygcybD3LNhK7OOf1FDgPfs6D0habSqFoLgoz+Bk2qcJLPrzWrqdARu3ZhO3YZ+glfBLOeQcF+MHecjs4evQY6Yoottx7HaknnQ8EnGgWnNyYb8IPfjmzSOcJj6tIAXjufaizghGYVf+s70ORAhmHbpWxOw6QNYQIiIAIiIAIPAcBid3ngKZLREAEREAEREAExo9AYpjcDPpk/CIY60iUtxS7QWqGjF1IXHbjcjcycGhHsctP0Da0DnPzS1OSKC21XezyQ16SDCv0zKsLc4ytp2eJLPY2th4LM4vK7WUkmtH9ULkzL72ZSewqY7f07kpFJAIiIAIiMNkISOxOthXXfEVABERABESgjAiEzZyeJQ9LeEIuYUPBhKFRhjkxVzc6XIHiNC9JS7rMuXur6BI9i4AITCABiV2J3Qm8/TS0CIiACIiACDgBiV3dCCIgAiIgAiIgAiVLoOzFbsmSVWAiIAL5EpDYldjN9x7S9SIgAiIgAiKQLwGJ3XwJ6noREAEREAEREIGiEZDYLRpadSwCIpAnAYldid08byFdLgIiIAIiIAJ5E5DYzRuhOhABERABERABESgWAYndYpFVvyIgAvkSkNiV2M33HtL1IiACIiACIpAvAYndfAnqehEQAREQAREQgaIRkNgtGlp1LAIikCcBiV2J3TxvIV0uAiIgAiIgAnkTkNjNG6E6EAEREAEREAERKBYBid1ikVW/IiAC+RKQ2JXYzfce0vUiIAIiIAIikC8Bid18Cep6ERABERABERCBohGQ2C0aWnUsAiKQJwGJXYndPG8hXS4CIiACIiACeROQ2M0boToQAREQAREQAREoFgGJ3WKRVb8iIAL5EpDYldjN9x7S9SIgAiIgAiKQLwGJ3XwJ6noREAEREAEREIGiEXCxm0iYDXIIPOsQAREQgRIhILErsVsit6LCEAEREAERmMQEJHYn8eJr6iIgAiIgAiJQDgQSCVpdSt2qVLjPVrzPbpHqLOcXbpdzbj16w1KPb/Tox/ZpKc+1lGMj5VKOr5RjKzy78O0f+m/AoL8dSH4d+EwmxeCSHGICn1K/ZIvFMAgAfOgQAREQAREQARGYOAISuxPHXiOLgAiIgAiIgAg8kwClQSQOgjTJJhiGdTNYBLnignnYSGM/4dMpdHzotNBdjn1mw68o9bmWcnylHBtXepJ9x0J2buYtzkXyhcKzxG4mHb0XAREQAREQAREoPgGJ3eIz1ggiIAIiIAIiIALPTSAuTthJwhKJKjyeYTEnmXRyufQMJM+9BPlcWPJyMtxT+Uxx+LWYdCHWouTZFWKSGfRK+JcnErv8t3fomitjN+P+1VsREAEREAERmAACErsTAF1DioAIiIAIiIAI5EpAYjc3UgWSibkNlnurkpeTnMpQWZX75EZqWaC1KHl2hebGpfBJjwQ29/NFYCexK7Gb+w2oliIgAiIgAiIwfgQkdsePtUYSAREQAREQAREYMwEamrjsUcZudoRgVATPln2sMZ4tqGQr8DwLGlvEpUAxlnJsnOoky4qX2JXYjb7hehYBERABERCBUiIgsVtKq6FYREAEREAEREAEMgjQbrnhSp6nvRwuGDIu8jbDz+V7Jh5HPn0Vy8AWKr585jbStYWac6HnWKi44vMuVIzFiI1xlnJ8pRtb9j3CGG8Us2rsxr8Fei0CIiACIiACIjA+BCR2x4ezRhEBERABERABEXguAnFxwg4ou3IRXlXPNdroF2XGMnrrkT/NdQ4j9zD8k0LFNrznyj4z2e4TriYFZCGOycguk1v8eyexm0lH70VABERABERABIpPQGK3+Iw1ggiIgAiIgAiIwHMTiIsTdpKrFM213VgCy4xlLNfG25ZybPE4J8PrUl6LUo6N90Ypx1eM2LJ9H+L/JlS+2M1KIHsqc7amOicCIiACIiACIlAEAhK7RYCqLkVABERABERABApFIC5O2GeuwibXdmOJs1CZjsWILZPTWOY1mduW8lqUcmy8Z0o5vmLElu17Ev/eSexmI6RzIiACIiACIiACxSUgsVtcvupdBERABERABEQgLwJxccKOxiJsxtJ2tCAZA4/oObzL72ehYoviKmRs+c2s/K4u1FpEaxA9F4JEoWIr1n1SqPgiZtFzqbHLFg9jjccrsZuNks6JgAiIgAiIgAgUl4DEbnH5qncREAEREAEREIG8CcTlCUVSrsdY2j6rz3gMz2qb6+eFiq8YseU6h0poV6h1IItirEUpx1fKsXE9Chkf+4sfmWvN98UcLz72+L9OJLLPbVClGMZ/MTSiCIiACIiACMQISOzGYOilCIiACIiACIiACIiACIiACIjAUAISu0N56J0IiIAIiIAIlAoBid1SWQnFIQIiIAIiIAIiIAIiIAIiIAIlSEBitwQXRSGJgAiIgAiIAAhI7Oo2EAEREAEREAEREAEREAEREAERGJGAxO6IaPSBCIiACIiACEwoAYndCcWvwUVABERABERABERABERABESgtAlI7Jb2+ig6ERABERCByUtAYnfyrr1mLgIiIAIiIAIiIAIiIAIiIALPJCCx+0xEaiACIiACIiACE0JAYndCsGtQERABERABERABERABERABESgPAhK75bFOilIEREAERGDyEZDYnXxrrhmLgAiIgAiIgAiIgAiIgAiIQM4EJHZzRqWGIiACIiACIjCuBCR2xxW3BhMBERABERABERABERABERCB8iIgsVte66VoRUAEREAEJg8Bid3Js9aaqQiIgAiIgAiIgAiIgAiIgAg8F4FMuTs4OPhc/egiERABERABERCBwhGQ2C0cS/UkAiIgAiIgAiIgAiIgAiIgAhVJQGK3IpdVkxIBERABEShzAhK7Zb6ACl8EREAEREAEREAEREAEREAEik1AYrfYhNW/CIiACIiACIydgMTu2JnpChEQAREQAREQAREQAREQARGYVAQkdifVcmuyIiACIiACZUJAYrdMFkphioAIiIAIiIAIiIAIiIAIiMBEEZDYnSjyGlcEREAEREAERiYgsTsyG30iAiIgAiIgAiIgAiIgAiIgAiIAAhK7ug1EQAREQAREoPQIJObNm6ftTEtvXRSRCIiACIiACIiACIiACIiACJQEAUrdbGJ3cFD/r2RJLJCCEAEREAERmLQEJHYn7dJr4iIgAiIgAiIgAiIgAiIgAiLwbAISu89mpBYiIAIiIAIiMBEEJHYngrrGFAEREAEREAEREAEREAEREIEyISCxWyYLpTBFQAREQAQmHQGJ3Um35JqwCIiACIiACIiACIiACIiACOROQGI3d1ZqKQIiIAIiIALjSUBidzxpaywREAEREAEREAEREAEREAERKDMCErtltmAKVwREQAREYNIQkNidNEutiYqACIiACIiACIiACIiACIjA2AlI7I6dma4QAREQAREQgfEgILE7HpQ1hgiIgAiIgAiIgAiIgAiIgAiUKQGJ3TJdOIUtAiIgAiJQ8QQkdit+iTVBERABERABERABERABERABEXh+AhK7z89OV4qACIiACIhAMQlI7BaTrvoWAREQAREQAREQAREQAREQgTInILFb5guo8EVABERABCqWgMRuxS6tJiYCIiACIiACIiACIiACIiAC+ROQ2M2foXoQAREQAREQgWIQkNgtBlX1KQIiIAIiIAIiIAIiIAIiIAIVQkBit0IWUtMQAREQARGoOAISuxW3pJqQCIiACIiACIiACIiACIiACBSOgMRu4ViqJxEQAREQAREoJAGJ3ULSVF8iIAIiIAIiIAIiIAIiIAIiUGEEJHYrbEE1HREQAREQgYohILFbMUupiYiACIiACIiACIiACIiACIhA4QlI7BaeqXoUAREQAREQgUIQkNgtBEX1IQIiIAIiIAIiIAIiIAIiIAIVSkBit0IXVtMSAREQAREoewISu2W/hJqACIiACIiACIiACIiACIiACBSPgMRu8diqZxEQAREQARHIh4DEbj70dK0IiIAIiIAIiIAIiIAIiIAIVDgBid0KX2BNTwREQAREoGwJSOyW7dIpcBEQAREQAREQAREQAREQAREoPgGJ3eIz1ggiIAIiIAIi8DwEJHafh5quEQEREAEREAEREAEREAEREIFJQkBid5IstKYpAiIgAiJQdgQkdstuyRSwCIiACIiACIiACIiACIiACIwfAYnd8WOtkURABERABERgLAT+P/yK+z85VZV8AAAAAElFTkSuQmCC" - } - }, - "cell_type": "markdown", - "metadata": {}, - "source": [ - "# ⚡️Codegen: Import Loops\n", - "\n", - "### Analyzing and fixing *import loops* in the Pytorch repository\n", - "\n", - "This notebook demonstrates how to use the Codegen SDK to detect, analyze, and fix problematic import cycles in the official PyTorch repository. Specifically shown are the following:\n", - "1. Detect import loops\n", - "2. Visualize them\n", - "3. Identify problematic cycles with mixed static/dynamic imports\n", - "4. Fix these cycles using codegen\n", - "\n", - "![image.png](attachment:image.png)" - ] - }, - { - "cell_type": "code", - "execution_count": null, - "metadata": {}, - "outputs": [], - "source": [ - "!brew install graphviz\n", - "!uv pip install pygraphviz" - ] - }, - { - "cell_type": "code", - "execution_count": null, - "metadata": {}, - "outputs": [], - "source": [ - "from codegen import Codebase\n", - "import networkx as nx\n", - "from utils import visualize_graph # utility function to visualize a networkx graph" - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "## Loading and Parsing the Codebase\n", - "\n", - "First, we'll create a Codebase object for PyTorch. The SDK will parse the entire codebase and build a graph of all imports." - ] - }, - { - "cell_type": "code", - "execution_count": null, - "metadata": {}, - "outputs": [], - "source": [ - "codebase = Codebase.from_repo(\"pytorch/pytorch\")\n", - "# codebase = Codebase(\"path/to/pytorch\") # uncomment this if you have pytorch cloned locally" - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "## Finding Import Cycles\n", - "\n", - "Let's find all import cycles in the codebase. The SDK detects both static and dynamic imports, marking them with different colors in the visualization:\n", - "- Red edges: Dynamic imports\n", - "- Black edges: Static imports" - ] - }, - { - "cell_type": "code", - "execution_count": 19, - "metadata": {}, - "outputs": [ - { - "name": "stdout", - "output_type": "stream", - "text": [ - "🔄 Found 12 import cycles:\n", - "\n", - "Cycle #1:\n", - "Size: 11 files\n", - "Total number of imports in cycle: 28\n", - "Number of dynamic imports: 4\n", - "Number of static imports: 24\n", - "\n", - "Cycle #2:\n", - "Size: 2 files\n", - "Total number of imports in cycle: 3\n", - "Number of dynamic imports: 1\n", - "Number of static imports: 2\n", - "\n", - "Cycle #3:\n", - "Size: 1068 files\n", - "Total number of imports in cycle: 7125\n", - "Number of dynamic imports: 1577\n", - "Number of static imports: 5548\n", - "\n", - "Cycle #4:\n", - "Size: 6 files\n", - "Total number of imports in cycle: 9\n", - "Number of dynamic imports: 3\n", - "Number of static imports: 6\n", - "\n", - "Cycle #5:\n", - "Size: 3 files\n", - "Total number of imports in cycle: 17\n", - "Number of dynamic imports: 15\n", - "Number of static imports: 2\n", - "\n", - "Cycle #6:\n", - "Size: 4 files\n", - "Total number of imports in cycle: 5\n", - "Number of dynamic imports: 2\n", - "Number of static imports: 3\n", - "\n", - "Cycle #7:\n", - "Size: 2 files\n", - "Total number of imports in cycle: 3\n", - "Number of dynamic imports: 3\n", - "Number of static imports: 0\n", - "\n", - "Cycle #8:\n", - "Size: 8 files\n", - "Total number of imports in cycle: 15\n", - "Number of dynamic imports: 2\n", - "Number of static imports: 13\n", - "\n", - "Cycle #9:\n", - "Size: 2 files\n", - "Total number of imports in cycle: 2\n", - "Number of dynamic imports: 2\n", - "Number of static imports: 0\n", - "\n", - "Cycle #10:\n", - "Size: 2 files\n", - "Total number of imports in cycle: 2\n", - "Number of dynamic imports: 1\n", - "Number of static imports: 1\n", - "\n", - "Cycle #11:\n", - "Size: 2 files\n", - "Total number of imports in cycle: 2\n", - "Number of dynamic imports: 1\n", - "Number of static imports: 1\n", - "\n", - "Cycle #12:\n", - "Size: 2 files\n", - "Total number of imports in cycle: 3\n", - "Number of dynamic imports: 1\n", - "Number of static imports: 2\n" - ] - } - ], - "source": [ - "G = nx.MultiDiGraph()\n", - "\n", - "# Add all edges to the graph\n", - "for imp in codebase.imports:\n", - " if imp.from_file and imp.to_file:\n", - " edge_color = \"red\" if imp.is_dynamic else \"black\"\n", - " edge_label = \"dynamic\" if imp.is_dynamic else \"static\"\n", - "\n", - " # Store the import statement and its metadata\n", - " G.add_edge(\n", - " imp.to_file.filepath,\n", - " imp.from_file.filepath,\n", - " color=edge_color,\n", - " label=edge_label,\n", - " is_dynamic=imp.is_dynamic,\n", - " import_statement=imp, # Store the whole import object\n", - " key=id(imp.import_statement),\n", - " )\n", - "# Find strongly connected components\n", - "cycles = [scc for scc in nx.strongly_connected_components(G) if len(scc) > 1]\n", - "\n", - "print(f\"🔄 Found {len(cycles)} import cycles:\")\n", - "for i, cycle in enumerate(cycles, 1):\n", - " print(f\"\\nCycle #{i}:\")\n", - " print(f\"Size: {len(cycle)} files\")\n", - "\n", - " # Create subgraph for this cycle to count edges\n", - " cycle_subgraph = G.subgraph(cycle)\n", - "\n", - " # Count total edges\n", - " total_edges = cycle_subgraph.number_of_edges()\n", - " print(f\"Total number of imports in cycle: {total_edges}\")\n", - "\n", - " # Count dynamic and static imports separately\n", - " dynamic_imports = sum(1 for u, v, data in cycle_subgraph.edges(data=True) if data.get(\"color\") == \"red\")\n", - " static_imports = sum(1 for u, v, data in cycle_subgraph.edges(data=True) if data.get(\"color\") == \"black\")\n", - "\n", - " print(f\"Number of dynamic imports: {dynamic_imports}\")\n", - " print(f\"Number of static imports: {static_imports}\")" - ] - }, - { - "cell_type": "code", - "execution_count": 20, - "metadata": {}, - "outputs": [ - { - "data": { - "image/png": "iVBORw0KGgoAAAANSUhEUgAABIAAAASACAIAAAAIyqENAAAABmJLR0QA/wD/AP+gvaeTAAAgAElEQVR4nOzdZ1xTZ8MG8JNFQhZ7740MF26cuHBvrXVhbdVOux6r7VO3rdrtqrVVwVlH61ZcoIA4EEVF2XtvCNnrvB/yyEvVOkNOgOv/gV9MTs65EovNlfuc+6aRJEkAAAAAAABAy6NTHQAAAAAAAKC9QAEDAAAAAAAwEBQwAAAAAAAAA0EBAwAAAAAAMBAUMAAAAAAAAANBAQMAAAAAADAQFDAAAAAAAAADQQEDAAAAAAAwEBQwAAAAAAAAA0EBAwAAAAAAMBAUMAAAAAAAAANBAQMAAAAAADAQFDAAAAAAAAADQQEDAAAAAAAwEBQwAAAAAAAAA0EBAwAAAAAAMBAUMAAAAAAAAANBAQMAAAAAADAQFDAAAAAAAAADQQEDAAAAAAAwEBQwAAAAAAAAA0EBAwAAAAAAMBAUMAAAAAAAAANBAQMAAAAAADAQFDAAAAAAAAADQQEDAAAAAAAwEBQwAAAAAAAAA0EBAwAAAAAAMBAUMAAAAAAAAANBAQMAAAAAADAQFDAAAAAAAAADQQEDAAAAAAAwEBQwAAAAAAAAA0EBAwAAAAAAMBAUMAAAAAAAAANBAQMAAAAAADAQJtUBAADgpVVWVmZlZYnFYpFIJBKJxGKxRCKRSqUCgcDc3JzP5/N4PD6f7+Dg4O3tzWazqc4LAAAA/0MjSZLqDAAA8Cz19fVxcXGpqakP0tLS0zOyszIVcoWTuweXL+BweaYCAYfHY3O4LA5H2ihSSiUKmVQhk4kb6utrqqsryp1cXH19fQMDOvj7+fXs2bNTp050Ok5/AAAAoAYKGACAMRKLxfHx8TGxsRcvxTxMTfUJ6ujWIdDe3cvJw8vRw8vGwYn2YiVKLpWU5ueW5uWW5GWX52WnJd9UKeT9BwwcOjgsLCwsICCgpV8IAAAANIcCBgBgRORy+cmTJ3dF7Y65eNHNxzegZ2hgjz4B3XtxuDx9HaI0L+f+jatpNxNTbySamnJmzZw5e9YsNDEAAADDQAEDAKAeSZKJiYmRUVGHDh1y8vAKHTMpdOQ4oYVlSx80MyU5/sSRq2dOeHp5zZ0ze/r06TY2Ni16UAAAgHYOBQwAgEoajebw4cOr135TW1fXd8yk/mMnOXl6GziDSqlMvnIx4fiRu9fip0+fvnTJEi8vLwNnAAAAaCdQwAAAqKFSqQ4cOLDmm280BH3U3IX9xkxgMCiemba+pupM1O9n9+0aOHDg6lWrunbtSm0eAACAtgcFDADA0EiSjIyM/Hr5cqGV7bj5H3YbNJRGo1Ed6v811FSfjvr93J9RQ4YM+eG77zw9PalOBAAA0HaggAEAGNS9e/cWvPtuRXXtrC+WdwodQHWcfyUWNRz/fcv5P6P+8/nnX3zxBRYTAwAA0AsUMAAAA5FIJBs2bPjpl19Gznp7wvwPWSYmVCd6vrKCvF1rvqopLty6ZfOIESOojgMAANDqoYABABjCxYsXZ86e7d2x6+wlK60dHKmO83LiTx3du2HVkMFhv23bJhQKqY4DAADQiqGAAQC0LI1Gs2Llyk2bt8xftaHX0JFUx3lF0kbR9hVfFKel/nXkcJcuXaiOAwAA0FoxVqxYQXUGAIA2q7KycvyEideSU/77x37/Lt2pjvPqWGx2r+GjTXiCT96Za2pq2qtXL6oTAQAAtEoYAQMAaCmxsbHT3ngjdNSE6Z9+yWSxqI6jH/npD3/+dEGPkK67IyO5XC7VcQAAAFoZFDAAgBZx6NChdxYseHfNjz2GhFOdRc9kEvHmLz7SNtafPXPa0tKS6jgAAACtCZ3qAAAAbdCWrVvnL3x38ZbItte+CIIw5fE/++V3Sw/f3qGhhYWFVMcBAABoTTACBgCgZ+vWrfvhp5+Xbt/n7h9AdZaWdeyPLef37TwfHd2xY0eqswAAALQOTKoDAAC0KR8t+vj46TNr/jxp4+hMdZYWN/7t99kc00FhYbExMehgAAAALwIFDABAb9asWXP0xImV+46ZW9lQncVARsx8i8liDQsPv3b1qoeHB9VxAAAAjB0KGACAfmz//fcff9m4uj21L52h02Y11NaEDR5y/VqinZ0d1XEAAACMGq4BAwDQgxMnTsyeE/H1zoMeAUFUZ6FG1LrlRfduX7kcKxAIqM4CAABgvFDAAABe140bN4YOH754866A7u13eWJSq/3l8/c4GkX0mTN0OqbYBQAAeDr8PxIA4LXU1dVNnjo1Yumq9ty+CIKg0envr9uYX1K2Zu1aqrMAAAAYL4yAAQC8OpIkx0+cKGVw3l37I9VZjEJ5Yf7SqSP/PnJk8ODBVGcBAAAwRhgBAwB4dT/99POde/cjvlxFdRBjYe/q/s6K9dNnzCgvL6c6CwAAgDHCCBgAwCu6efPmkGHDVu875uLtR3UW4/LHqi9V1aXno6NpNBrVWQAAAIwLRsAAAF6FSqWKmPvWjE+/RPt60pwvlmfnFezatYvqIAAAAEYHBQwA4FX8/PMvWqbJkCkzqA5ijFhs9tvL1/1n8eLq6mqqswAAABgXnIIIAPDSysrKOgQGfr2j/a769SI2f/GRt53l9t9+ozoIAACAEUEBAwB4aRMnT1bzLSOWrqQ6iFGrr6n6dNTAs2dO9+7dm+osAAAAxgKnIAIAvJyLFy/GxydM/eAzqoMYO3Mrmykffv7e+x/gmz4AAIAmKGAAAC/n6+UrJr73CVcgpDpIKzD8jdnV9fUnT56kOggAAICxQAEDAHgJV65cycrOCpswjeogrQOdwRg77/2Vq9dQHQQAAMBYoIABALyEVavXjH3rPRabTXWQVmPg+Mml5eUXL16kOggAAIBRQAEDAHhRt2/fTr59e8hUTD3/EhhM1ui5CzEIBgAAoIMCBgDwolatXjNq9tscLo/qIK3M4EnT09LTrl27RnUQAAAA6qGAAQC8kKqqqnPnoodOm0V1kNbHhMMJm/zmjp07qQ4CAABAPSbVAQAAWof9+/d3CR0gtLSiOkirNGDclKVTRmzauNHU1JTqLC9HrVaLxWKxWNzQ0CCXy2UymUqlUiqVMplMqVTqbujuecZOGAyG6SNcLtfU1JTD4ej+yOfzra2tWSyWwV4RAABQCwUMAOCF7IraPWzuu1SnaK0c3DycvXxOnjw5depUqrM8TiKR1D4iFotFIlFjM1Kp9BnPpdPpHA6HzWazWCxTU1OlUqlSqZ7cjCRJmUz2jF0JBALLR6ysrHQ37O3t2ZjuBQCgzaFhfUwAgOdKS0vr1bvP9vgUlokJ1Vlaq7P7dhUnJ549fYqSo2s0mrq6utqnUSgUzbek0WgCgYDP5wsEAqFQKHhEKBSampqy2WwOh8NisXS9i8FgvFQMmUymG0ZrIhKJmocRiUTNk9ja2jo7O7u4uDg5Obm4uFhYWOjn7Wh/GhsbMzMzKyoqJBJJXV2dWCyWSCQSiYRGo5mbm/MfsbS0dHNzc3Nze9m/WQCAF4cCBgDwfEuWLr1XUPb28m+pDtKKNdbXLRzUrSA/39bWtkUPpNVqa2pqKv+ppqZGo9E0bcNgMMzNzS2foKteNBqtRRM+g0ql0jWx6urqkpKS4uLikpKSpqEzHo/n4uLi5ubm6+vr4+OD8bF/o9Fobt26df369Ydp6ekZGZmZGVUVFfbOrlZ2dhwuj83lcQVCtimXxeZotRq5RKKUSZUyqUTcKBU1lBYWyGVSTy9vPz+/AH+/oKCggQMHOjo6Uv2aAKDtQAEDAHi+DoFBb/xneXDvvlQHad3WLZj5/tzZc+bM0eM+6+vry8rKKioqmrpWdXV1U9fSjW/Y2dnZ2NjY2Ng0neMnFArp9FYzDZWujBUVFRUXFxcVFVVXVxMEQafT3d3dfX19fX19vb29Uca0Wu29e/diY2PPX7yUEB8ntLD079rD0dPHwcPTycPL3tXjxYevRXW1JbnZpXk5Zfm5hekPHiTfcHZxHRwWNjhs0MCBA21sbFr0hQBAm4cCBgDwHJWVla5u7pHXH5hwOFRnad2O/bGVqCzaHRX5ak8nSbK2tra8vLykpKS8vLysrKy8vLz5hVUWFhY2Nja6umX7SNub36KhoSEzMzMjI0N3Th1BEAwGw93d3c/Pr3Pnzm5ublQHNLSHDx8ePHhwx65ImVwe0K1nUO9+/l27u3j76Wv/Go06P/3h/cT4hzcSUpNudAgMiJg9e+bMmVZWmJIHAF4FChgAwHMcPHhw3S+bv951iOogrV5O6t2fP36npKjoRTYmSbKqqqqsmfLy8qbrtZhMpp2dnYODg4ODg729vb29va2trUn7u0Kvvr5e18QyMzMrKysJgrCysurcuXPnzp29vb1b0SjfKygvL9+3f/+uyKiSkpK+o8b3GzvJO7hzSx9ULpVcP38m4cSR9JTkMWPGzpk9a/jw4bhgDABeCgoYAMBzzF+wQMwxm/zeJ1QHafW0Gs28PsHJt5K8vb2ffFQmk5WUlJSVlZWWlhYUFBQXFzevWzY2No6Ojg4ODo6OjtbW1k5OTkwmJvL9h5qampSUlOTk5NzcXJIkeTxecHBwx44dg4KC2tgJillZWd98++2hQ4e69hvUd+zkrv0HMZiGHuesKS+LP/l3/IkjWqXiy6VLIiIi2tibDAAtBwUMAOA5PL193l79g3/X7lQHaQt++GjenEnj58+fr1ardScTNk01UV9fr9uGwWDY29s7OTk5OzvrGpeVlRWFE2O0OvX19Xfv3r1z505mZqZGo+FwOCEhIaGhoV5eXlRHe12pqanfrl9/8sSJgeOnjnnrXSt7B6oTEWnJN//a+kNhZvr777332aefCoVCqhMBgLFDAQMAeJaKigp3D4/dSemG/4q9TToV9bu2LM/Tw6O8vLxpqgwLCwunZhwcHHBOl15IpdJ79+4lJyenpqZqtVo7O7s+ffr06tXL3Nyc6mgvLScn55NPP7ty5Ur4jIgRs94WWlhSnegfHiRdO/bbxvy01K+++uqjDz/E8CwAPAMKGADAs8TGxi74cNG6v85RHaSNuJcYf+Nw1ID+/ZydnZsaF4/HozpXG9fQ0HD9+vVr166VlZXR6fSAgIA+ffp06tSpVfQEuVy+bt36H3/6MfzNuWPffo/LF1Cd6F9l3b0d9e1yulq57detffti0lQAeDoUMACAZ9m2bduBU9GLfviV6iBtRHVZ6adjBjaKRDilkBK5ubmJiYlJSUlyuZzH4/Xu3XvQoEHW1tZU5/pXMTExC999z9TCat7X3zh7+1Id5/lIkrxy/Mi+79eEhw//6YcfWnrVOwBojVDAAACe5eNPPilT0ad9+DnVQdoIkiRnd/PNyszEyrYUUiqVt2/fvnr1amZmJp1O79SpU1hYmK+vcdUbkUi0YOHCizGxsxYv7ztqHNVxXo6ornb/D2tvxZzb/ttvkydPpjoOABgXxooVK6jOAABgvH78+RevkF5uvh2oDtJG0Gi0m+dP9+7R3cPDg+os7ReDwXB2du7Tp0+PHj0IgkhOTk5ISLh79y6NRnN0dDSGC/Du3LkzeOhQmsDiy+37vII6UR3npbFNTbuFDfcM6rTskw/z8/KGDBnSKs72BADDwAgYAMCzuHl4fvDDr16BHakO0rppNRqNWqW7vf3rzycOC1u4cKExfNAHgiBkMlliYuKFCxfq6uoEAkGfPn3CwsIonKhj9+7dHy5aNPm9T0fNfpuqDPoiqq3ZsmSRsqH2ryOHn7r6AgC0QyhgAADPYsJmb79y29imXKOEVq2Wi0VKqUQll6kUcrVCrlYqVHK5RilXyeUqhUytUKjkMpIkNSolqdEQBKHRqLVq9XP3zOFwdEsG02g0U1NTU1NTTjNcLrfptqmpqUAgEAgEQqHQ1NS0xV9ze6JWq5OTky9dulRQUMBkMvv06RMeHm5lZWXIDFKpdE5ExI3k24t+2ObRIdCQh245pFZ7dPumU1HbI3fuHD9+PNVxAIB6KGAAAP9KoVBwOJyD9wuYrKfPQV9bUX47LsbZy+fVVgnTajR0BoMgCHFDfUFmWmD33q+WU1RXW5KT5eLj91I70R39sUMrpRJZQ51CKpE3NigkYnmjSCkVyxtFCkmjSi576n5oNDqLw2GyOSw2h8nh0OgMJsuEIAgancZg/W9pWhaH07R99v0UQto4csQImUzW9P8gqVSquyGTyeRyuVwuVygUMpms+TaPYTKZuibWVMl0ty0tLS0tLc3NzTHC9mpycnIuXLiQkpJCp9N79uwZHh5uZ2dngOPW1dWNHD2aMBV8sGGTKY9vgCMa0oObiT9+vOCbNWvefXch1VkAgGI4IxkA4F81NjayWCb/1r4Iglj99ptufh1snJxfYedqlerL6WM3HDlLEERlSdHp3X+8cgErzEz7c+N3b321+sV3olapls+auPinX/Mf3L0bd0ldWSKtr5XW16oV8uab0ZlMNk/A4Qv41jZsnoAjEJpw+SYcUyabw2SzWWxTJpvNYJm8VNrSmvq8xJiJEye+4Pa6JqZQKORyuVQqbXykoaFBLBaLRKKSkhKxWKxSqf6RnE43MzOztLS0srKyfMTKysrKyorNZr9U4PbGy8vLy8urtLT03Llzusnrg4ODx4wZ4+rq2nIHLSsrGxYebuvlv3DN9wxGG/xwEtijz8rdf6145838gvz169ZRHQcAqIQRMACAf5Wfn9+5a8jOa6lPfVSjUU/v6Lnz2n0uX0CSWt2nRlKrJUmSzmCQJElqtXQGo7aywszKqukzpUatkkmlfKGZRCSa16/TvuRMBpNFkqRWq2naQ0Nttbm1LUEQ/7YTgiCUcrmortbS1o7OYKTeuPrnxu9W7z2q24lWoyFJbdOWdDqDRqdL6+sq8rNpalVjdaWkrlpSW928azFM2DxzS665JZ3NsXR0ZvMEbL7AxJTH5vGfPHRTMBqd3lBbbW5lo3s36HSGbnL5pthPfd9uXoxOPLInLjbmVf5K/p1cLtdVspqamtpHdLfl8n+0Sj6fb2tra29vb9sMWtlTVVdXR0dHJyYmarXa4ODgUaNGubu76/0oubm5g4cODeobFrF0Zdten6CqtPibd94c1K/fH79vx7QcAO0WfvkBoP06cuSIRCIJDAwMCAjgcrlPbiASibj8fz0V6vuP3tFo1GvfmRk+ffaFw/vW7DtGEMTFIwcy7tz64Nuf0m8nRW1YpVGpCIKorSj/cvser8COf/228cyenTZOzly+wNzKWq1ULps9ee3+45kpyTu/Wbb+8JlDm3+IP32MTqczWawlWyOry0qf3IlWo9m0ZFHOg3scLq+qpGjJ1khdnqadnNm788qJw1xTUwGXp5FLu/UbIK+vYzLous1odAbfyrpe1Jid9oBrbtl/wrQjv29dvf/4oc0/xO/b23To4oKCJw/d9NrTbyftWPOVSqk05QvkEsmynX8e+GW9g5vHxPkfEgRxcNP3BEG88dF/nvq+MU1MFArFK/x9PZvuIjE7OzsvL6/HHpJKpc37WFVVVUVFRVJSUvNBMwsLi6YyZmdn5+DgYGNj07bLwIuwtraeOXNmeHj4uXPnEhMT79+/HxQUNGbMGDc3N30dIi0trd+AAWPffn/0nPn62qfRsnF0Xrnn6LqFs2fNnr1v717dpY8A0N6ggAFA+6VSqRITExMTE+l0uoeHR1BQUGBgoKura9PHbrFYzP33a1G+2LJrcoDz6r1/p9+++dQNsu7e/ulkjKuP/94fv7l4aJ96vPLMnp2bzsZxBcJd3y73Du6SeO7U2v3Hm7a/FXsh9uihH45d4AqE+39ad+5AVMjAoY/txGtlx4LMdLVa/cvpKzQabf9P62KPHuw7ajxBEBqF3M7KMj32rLUJbfjAgRqVUrdbUqGQq9RBPQeZ2TlcOXOyvq5uwcdfy6WSiN5Bf97Ny7hzS6lSveChm7+6vLQHukf/2vbLH6u/HBOxYNvyxRPnf0iSZNzJv5ftOPBv7xuLZaJUKl/4b0kPuFwul8t1dv7HmaIkSdbW1lY+Ul5eXllZmZ2drdFodBuYmJg4ODg4OTnpfjo6OlpYWBgytvGwtraeMWPGyJEjz58/Hx8fn5qa2qVLl7Fjxzo4OLzmnouKioYMGzZhwaIRM9/SS1TjJ7S0+u/OP1fOmbzo4483bdxIdRwAoAAKGAC0X03T6Gm12tzc3JycnOPHj/P5/KCgoKCgoICAgNc8Sdve1d3Vx58gCGdPnzvxMRkptzqF9ucKhARBzF26Ui6VPLZ9WvKNkIFDdBsMGDd51bzpIQOHPrYTgiA8OgROX7Q4en9kQfqDkoyHPh0C6jLu9+gYWJR4MdDXuyDlJs/S2tbLr7gg/8HdO++t28QztyjNz7179Ur+hXMPbl7z6djlyagveOjmnL18dI/2GBJ+Zs/OxZt2aFSqvIepcqnE0s7e3tX9X98XGkEYwdnvNBpNd0lYhw7/v8ibRqOpqampqKgofaT5QBmXy3V0dHR0dNT1MWdn56cOnLZVFhYW06ZNGzly5IULFy5dunTnzp2uXbtOmDDBxsamaRutVhsXFzdw4MAX2WFNTc3Q4cP7jZvSftqXDpcv+Or3/ctnTbC3W/vVV19RHQcADA0FDADahabJG3TTNuhuZGVlNW3Q1LXEYvH169evX7/OYDC6d+8ue6ImPZX20bCJQiZtulNg/r8BEzqdTpIkT2DWdBSJSCRtbHhsJ+bWtuWF+brbarVKpVQ8uRO1UpESE3312CHfgABPK6FHrx4EQcjrqmUyuZ1PwJWzpz7ZtIvF4Vw/f/r00b++PXiKZ27xIOnaz5+9N3LW2wPHT3X08MpPe/Bk/hc59GNPYTy6gkWpUDBNTAiCGDRxWvypo1JxY9iEac94r1RKpYmxXnDFYDB0ZyEGBwfr7tFqtVVVVSUlJU2VLCEhQav93yV2VlZWrq6urq6uLi4uLi4uFK6dZTACgWDixIkDBgw4e/bs1atXU1JS+vTpM2bMGDMzM4Igrl69euDAAY1GM3jw4GfvRyqVjh4z1qNTt6kfPv1U1bZNaGm1ZNueZTPG29rZvfN2q1/uDABeCgoYALQdYrG4+aU+OvX19WKxWP201ahMTB6fvo9Go5EkyePx+vbtO2DAAJFIJGn8/LnH5ZtZVBQXKeVyFpudknBZN3/Gk7oPHn5w8/cSkYgnFO78Zplvpy5ajbZpJnqCIHoPH/31zAliUQNPIIw/+bdvp666+7UaTUNZsbq20sPWKmbLepLU+vv6mPL45g7O12IvaujMfhOmXdn0fedx02vq97E4nIyU5B1rv16x65Bu+bK0Wzc69xs04Z33tRrNkV9/5gmFBEGwTEx0R3/2oZ9Umpdj7eBEEERBRlpJbraTp/fVMyeCevYhCGLguCnL50zWarVzvlj2jLdLrVS2ohkv6HS6nZ2dnZ1d167/e0/UanV5eXlpaWlRUVFhYWFmZuadO3d0DwmFQl0Z07Uya2tr6oK3LCsrq5kzZw4ePPjkyZMJCQk3b94cOHDgoEGDjh8/ThDE4cOHzczMunXr9m9PJ0lyytRpdKHFvK+/MWBq42Ln4rbkt73/mTvVzdV12LBhVMcBAMNBAQOAVkksFpeVlZWXl+t+6krXY1cW8fl8S0tLNzc3Pp+vWyGKz+frFozS3bh9+/Yff/yh21hXvVxdXQcNGtStWzcWi0UQBEmSUrH4uWHc/QP8uoR8EB7KE5j5dQlRq56+9LDQwnLI5DffG9LT1tnVwd1jyNQZcSf/nte305bziboNrB0c+44a/96QnubWtgJziw9WrS98cLeTv2/M1vW6C7qYdJpzcBcm3yzyp/VME45KqfTt3DXt1o3+/5wrYs/3a5Qy2Zr5M3X9qnf46Ly01GWzJjVtTxAEg8ny6dh5Xt9OH3+/5clDL960ozQ/96mvYvGUkct3HNA9Zf0Hb9FoNIGF5dKtUQRBWNk72Lm4CS2tnr2Ik1QsMjcze+67arSYTKazs7Ozs3OPHj1099TU1BQWFur6WFFRUWrq/6bN5HK5Li4ubm5uHh4eHh4ebe8SMgcHh/nz5+fm5h47duzcuXOxsbFNv4M7d+7k8/n+/v5PfeKGDd9l5OatOXDy36bKbCc8OgS+t+7nN2fOvJeS4ujoSHUcADAQTEMPAK2ARCIpLCwsKyvT1a3S0lLxo15Eo9EsLCx0F/NYNmNlZfXkANdjUlNTN23aRBAEk8ns3r37wIEDH5ti+7kLMTcnFjWY8njPXcJIpVRq1CoOl/e/Q8hlbI5p06NKqaQ8K606L6uhvFgplRAEYcLlWbq4W7p4Wrt5mpr9/yf4xvo6vpn5i0/T99TtHzu6SqlUKeS6K8GeLS35ZtT6ld8ePCVtbNQNqemseWfGhPkfPHstshO7tjGqS3Y8qr5tj0gkaupjhYWF1dXVuvvNzMzc3d09PDzc3d3d3d2bLkFsG5KSknbs2NH0oYJGo5mYmCxevPixuU8Igrhx48aw8PDV+447e/kYPKYx2rNhVVXWg8sxMZiYHqCdwK86ABgjjUZTUVGRk5OTnZ1dUFBQXl6u+2BHp9MtLS1dXFwcHBwcHR0dHBycnZ05HM6rHcXU1NTc3Lxv374DBw4UCARPbsBms1kmJlJxo+5cvmfjC19oVIdlYsJq1gx1/UfWUFeZk1GVl1lbmE+SWgaTZe7kYuXqZenqYWbrQDytZTVdoPWCnrp98/b1ZLbnotFoTe0r6+7t03t2yKWS564ELa6r82675+YRBCEUCnXzuOj+KJPJSkpKdP8x5+bm3r17V3e/mZmZt7e3l5eXm5ubm5sb6wVKvjFLTU1t/pUuSZIqlWrjxo1LliyxtPz/X5+6urop06ZFLF2F9tXkzc++XDl70ooVK9esWU11FgAwBIyAAYCxEIlEaWlpubm5+fn5RUVFutnA2Wy2q6urh4eHm5ubo6Ojra2tHr8kVqvVDAbj2YNIbh6eH/64zTMgWF8HbaLVaOpKCiqz06vysmQNdQRBmArNbTx9bb38LJzdjfzULHFDfVFWRoduPXmKYA8AACAASURBVJvuqa2suHv1cvew4Xyz50xEsfHz994YNXzhwoUtnNFIVVZW5uXl5efn6/47102xyGKxXF1dvby8vLy8PD09hcLnD0IalaKiorVr1z75iYJGozk4OCxevFg33EeS5OixY1UcwcI1P1AR03hVlRZ/MSn8yKGDQ4YMoToLALQ4FDAAoJJKpcrOzk5LS0tPTy8sLCRJUjfngZubm6urq5ubm7u7O7Wn5QwLHxE0bKxuoS29UMllVbmZVbmZVfnZGqWCoNHM7Z1tvHxtPHwFNnb6OooxWzo5fNvGnwcNGkR1EOppNJri4uK8RyoqKnT329raenp66vqYo6Oj8a8HnZOTk5KSUlJSUlJSUl9f/9ijvr6+ixYtYjKZ+/btW/L1sg1HLzw29AoEQSRGnzz00zfpDx+2q7UNANonFDAAoEBxcfHDhw8fPnyYnZ2tGwFwcnIKCAjo0KGDt7e3UU2R9/Enn5SrGVM/+Ow196NSyKtyMioyH1YXZGs1GjqTae3qZePla+3hy+E/5ezHtookydndfLMyMzHlwJNkMll+fn52drbufEXdrwabzXZ2dvZ+xPg/nUulUt18/bq5+4uLi6VSaffu3adMmeLXocPbK7/r2j+M6oxGav27cwb37vHN2jVUBwGAloUCBgCGU1pampycnJSUpPumXyAQ+Pr6dujQISgoyGgniNu2bdufp8999P3WV3u6Si6rzMkoz0itKcwjtRoWx9TW29/OJ8DKxYPeLi+4rykv+2T0gEaRyPhHdailVqsLCwt164Pn5ubqhpXodLqTk5Ouifn4+Ji1kskkGxoaSktLt2z99V5u4cc//kp1HONVXpj/xaThN2/caL44OAC0PShgANDiysrKbt26lZycXFZWRhCEs7Nzt27dgoODnZycjP9TeGxs7MKPPv72SPRLPUulkFdmp1dkPqguyG3qXfa+gVauHjS6UV/c1dLuX0s4unFdyu1kqoO0MjU1Nbo5PHJyckpKSnQrQdva2vo8YuRrjt27d6/fgAE/HI+xtLOnOotRO7T5h5J7SXGXLxv/v40A8MpQwACgpdTX11+7di0pKamkpIQgCEdHx5CQkO7du9vZtaYrncrLyz08PXcnpTOYz5+kTq1UVGanlWc8qCnM1Wo0LI6prZefnW+gtZtnO+9dTU7v/kNWkLF/716qg7RiMpksOzs7Ozs7KyuroKBAt8i4ubm5j4+Pt7e3r6+vg4ODsX1879W7T4cBQ8fMbaczr7w4lULx+biwHzesnzJlCtVZAKCloIABgP5lZ2fHxMSkpKRoNBorK6tOnTqFhIR4e3tTnesVeXr7vL36B/+u3f9tA1KrrSnMLU27V5mVplGrWGyOrbc/etdT/fDRvDmTxs+fP5/qIG2ESqXKy8vLzMzUjY8pFAqCIHg8nu4cRR8fH1dXVzqdTm3I8+fPz5n39sbohBf5FgOunjlx9o9ND1LvG1uLBgB9QQEDAL2RSqWJiYlxcXEVFRUsFqtbt279+/f39PSkOtfremf+fAnXYvK7Hz/5UGN1RdnDe2Xp9+TiRjqDYePh6xjY2drd28gnkaeKVqOZ1yc4+VZS623jxkyr1RYUFGRlZWVlZeXk5EgkEoIgTE1NfXx8/Pz8/Pz8nJ2dKflM37d//8BBI4a/GWH4Q7dGWo3ms7GDfvn+u/Hj9Tb5KgAYFRQwANCDgoKCy5cvJyUlqVQqW1vb/v379+nTh8fjUZ1LP/78888Nm7b+d+fBpnuUUnFZ2v2ShymNVRU0Gs3MwdkxoJO9XxCL/YpLQrcTOal3f/74nZKiIqqDtH0kSZaWlmZmZmZkZGRmZurKGI/H8/X19fX19ff3N9hpiteuXRs9bvyWC9dNXnXB9HYo9ujBuD+jUu7cxiAYQJuEAgYAryUnJyc6Ovr+/fsEQfj7+4eFhQUHB7exDw2VlZWubu6R1x8wmcyK7LSytHvVBTmkVmtqZuEY0MmxQ0euuSXVGVuHY39sJSsL90RFUR2kfSFJsri4ODMzMz09PSsrSyaTEY/mINWNjNnbt+DEGMNHjLAP7jZu3nstd4i2R6NWfTyy/67ftw8bNozqLACgfyhgAPCK0tPTT58+nZmZyWaz+/XrN2TIEKOdSv71hXTrPnDMBGVdlVImZbI5tl5+jh06Wbp6tLGq2dLWLZj5/tzZc+bMoTpI+6XVasvLy3NyctLS0tLS0qRSKUEQQqHQx8fHy8vL29vbzc1Nj4e7e/fugEFhWy5eN+Xx9bjb9uDcgaiHsdHxVy5THQQA9A8FDABeWnZ29smTJ9PT09lsdmho6IgRI4RCIdWhWoRcLk9KSkpISMjPzycIwsrV0zm4q62Xf/tcwus1NdbXLRzUrSA/39bWluosQBAEodVq8/PzMzIyMjIycnJylEolQRAWFhZ+j1hZWT3j6cePHw8PD3/2sukffrSoSKyY/cVyPUdvBxRy2Tv9Ot+9c8fLy4vqLACgZyhgAPASUlNTT5w4UVBQwOVyBw8eHBYWxuVyqQ7VIgoKCuLj42/evKlQKMzMzHx8fFasXPXj2QSWiQnV0Vqr6P2RhUkJ0WdOUx0EnkKr1RYVFaWnp6elpWVnZ6tUKoIgzMzMvL29O3ToEBAQ8FgZKy8vX758uZWV1dy5c318fJ66T7Va7eDktOS3fR4dAg3xGtqcX7/8JDS4w4oVqK8AbQ0KGAC8kLKysiNHjqSmpvL5/IEDBw4ePLhNVi+ZTHbr1q0rV64UFRXRaDR/f/9+/fp16dKFTqd37hoy7K33eg0dSXXG1urr6WOXffH5tGnTqA4Cz9G8jGVlZenWGbO2tvb29vb29g4KCrKwsLh8+fKBAwd0p+CGhYVNmDCBxXp8ivmTJ08u+nzx9ydiKHgNbcL96wmRK5fk5mTjVGeANgYFDACeo76+/tSpU1evXmUwGGFhYSNHjuS0xdnMsrKy4uLi7ty5o1KprK2tQ0ND+/TpY25u3rTBL7/8cuj0uc827aAwZOtVXpi/ZHJ4RXm5qakp1VngJSgUipycHN1Uivn5+VqtliAIBwcHlUpVU1PT9BHiqUNhk6ZMEXh2GPvWuxTkbhNIrfb9IT3/PnyoT58+VGcBAH1CAQOAf6VUKmNjY8+cOaNQKLp27Tpp0qRnXxPSGqlUquTk5AsXLhQXFzOZzE6dOvXq1SsoKOjJtWurqqpc3dx+jUkSWmDOw5d2cON3fIVoxx9/UB0EXp1CocjNzdUNi+Xm5jZ/SDdE07dv36lTp5qYmBAEUV9f7+jktDH6qqWtHTVx24QDP62zIOXbf/uN6iAAoE8oYADwFCRJXrt27fjx4/X19b6+vpMnT9bv3GjGoKKi4vLly9euXZPJZJaWlv379+/bt69AIHjGU8ZPmMh39524cJHBQrYNKoXig2G9Thw92rt3b6qzgB7k5+d/++23j91Jo9FIknRwcJg7d66bm9uRI0dWf/fD8t1/U5Kwzch5cO+nj+aVFhdTHQQA9AkFDAAeV1JSsnfv3tzcXFtb2/Hjx4eEhFCdSJ9IkkxPT4+Jibl//z5Jkl5eXoMHD9Zd5fXc596+fXvw0GFbLl7ncNvIGtOGcXbfrvQr5zGhdpsRHR199OhR3W06nU6SZPPPEnQ6PTw8PPrc+TqG6dQPPqMoYxtBarXzQjsm3bj+bzOdAEBrhJmUAeD/qVSq06dPnz9/nslkTp48OSwsjMFgUB1Kb6RS6bVr1y5dulRTU8PhcPr27RsWFubo6Pjie+jatWvXLl0uHto3OmJ+y+VsYzRq1enI33bvxLVzbUd6ejqTyeTxeEKhUCgU8vl8Ho/H5/P5fL7uj3w+f/GSpbO+Wkt10laPRqcH9egVExODAgbQlmAEDAD+Jysra+/eveXl5UFBQW+++WZbutwrLy8vNjY2OTlZrVY7OzsPGDCgZ8+ez16/6N9cuXJl0tSpWy7cYL3S09uhS0cOXD/2Z3LSTaqDgN6oVKon5zxsrqyszNPLK/JGGpZteH1n9u5syLh3+NBBqoMAgN5gBAwACKlU+vfffyckJAgEgrlz5/bq1YvqRPpBkuT9+/ejo6NzcnLodHpQUFBYWJi/v//rzOk8YMAAH2+fmKMHh78xW49R2yqtRnNix5YtP/9EdRDQp2e3L4IgYmJiAkN6on3pRXCv0NW//UKSJCajB2gzUMAA2rvk5OQDBw6IxeKePXtOmTKFz+dTnUgPpFJpfHx8bGxsXV2dQCAYPXp0//79zczM9LLzNatWvvHmjH6jxnMFQr3ssA079+dua3PzMWPGUB0EDCo+4apvSA+qU7QRzl6+JElkZGT4+/tTnQUA9AMFDKD9amxs3LNnz927d21sbObNm9ehQweqE+lBZWVlbGzs1atXFQqFnZ3d1KlT+/XrZ6LXb+IHDx7cv3+/Q5t/iFi6Uo+7bXvqa6oOb/o++uwZfHPf3qQ+eND3jblUp2gjaDSaq7dveno6ChhAm4ECBtBO3b17d8+ePRKJZPjw4WPGjHnuOUXGLzs7OyYm5s6dOyRJ+vv7h4WFBQcHt9BH/80bN3YIDBwwbopHQFBL7L9t2Lth9dSpU9rMGa3w4jIzM6Z5eFGdou2wd/fKyMigOgUA6A0KGEC7o1Qqjx49GhMTY2VlNX/+fF9fX6oTvRa1Wn3r1q3z58+XlJSw2ezQ0NDBgwc7ODi06EEdHBy+Wvrl7yu+WPvnSdoLzF/fDqXdunE3IfZQejrVQcDQRCJRbU2NnUtbWzmQQvbung/xqwTQhqCAAbQveXl5O3furKysDAkJmTlzJpfLpTrRqxOJRLGxsfHx8Y2NjZaWlpMmTerbt69hXpFCoXB0dLA1E1w8vG/otFkGOGLrolIodqxa+t2GDdbW1lRnAUPLyMhwdHFjtv5BdePh5OF1/vI5qlMAgN6ggAG0F1qt9sKFC8ePH2ez2W+//Xb37t2pTvTqqqqqYmJi4uPjVSqVm5vb5MmTu3fvbrAly7KysiIjI6urqydNmvj18uX+IT1cvP0Mc+jWImr9Si9317lzcRVQe5SRkeGE8w/1ytHDKysDI2AAbQcKGEC7UFFRsWPHjoKCgqCgoDlz5giFrXX6voKCgpiYmJs3b5IkGRwcHB4e7uVluI96KpXq5MmT58+f5/P5CxYs6Nq1q1qt+fmThd8cPsPmmBoshpFLjD5569LZeykpmHujfSouLrZ0eIn1zeG5bJycG+rrxWJx25ilFgBQwADavps3b+7du5ckyTfffLN///6t8WOxbkWvmJiYtLQ0JpPZo0eP8PDwlr7Q6zG5ubmRkZEVFRUhISHTp08XCAQEQXz66SdX4uN2rv7q3bU/GjKM0SovzP99xRd/Hzlib29PdRagRmNjI4en555QVVosrq+3cXIuyEwL7N77lfej1WjoTxsqFzfUF2amB3Q30gljGAymQGhWXV2NAgbQNqCAAbRlarX6r7/+iomJsbe3nz9/vpOTE9WJXppujo3o6OiysjIOhxMWFjZ8+HBzc3NDZtANfF24cIHD4cycObNfv35ND9FotKhduzp27nz52OGB46cYMpURUimVP3+68LNPPx08eDDVWYAyDaJGDpen332mJFzJTLk1YuZbp3f/8coFTK1SfTl97IYjZ598qCg7c/d3q9cdOv16MVuQmaVVdXW1u7s71UEAQA9QwADarJqamu3bt+fn5/fs2XPGjBlsNpvqRC9HLpdfvXr1/Pnz9fX1VlZWEydO7N+/v6mpoc/0y8vLi4qKKisrCwoKmjVr1pPdz8LC4sihQ0OHD7d1cjHab9ANgNRqty5d5O7k8N+vvqI6C1CpsbGR42yrr73JJGL6o4lGPToEffbzb7rbJEnWlJcJLCzYHFOSJEmtlkanN9RWm1vZNH+6Ui4X1dVa2trRGQyFTFaYla5RqxhMFkEQGrVKJpXyhf9Yn722ssLC2qZpalOVQiEW1VvY2OmOSGq1KqWCRqObcDhNMR47tEajptMZuhMNdI8+dcztZXH5/MbGxtffDwAYAxQwgLbp7t27kZGRKpVq6tSprW44ora29uLFiwkJCQqFwsXFZfLkySEhIXSDz/au0WguXrx4/PhxExOTxwa+HtOzZ899e/bMmj3n650H2+3KYFHrVzaWF5+KjTX83xQYlQaRyFlPpyDu/GbZ9fOnGUyWjYOTnYtrZkryzm+WrT98pq6qYvW8N7kCQU15Wc+hI3oOHbljzVcqpdKUL5BLJMt2/mlpa6fVaDYtWZTz4B6Hy6sqKVqyNfL8wb1qpXLZ7Mlr9x//67eNZ/bstHFy5vIFS3+NIgiioab6yzfGKOSyuqrKZTv+dPcPOLz1p9O7/7CwsWOwmF9u21NekLfn+7XV5SVcvuCX01d0CdNvJz126AO/rHdw85g4/0OCIA5u+p4giDc++s/rvxVMExOlUvn6+wEAY4ACBtDWaLXaY8eOnT9/3sbGZsGCBc7OzlQnegm66Q3j4uLUarWXl1d4eHjLLab8bMXFxZGRkUVFRYGBgbNmzbKwsHj29mPGjNmwYf2S+TNW7zvm4OZhmJDG48ivP9+Pu3T9WqLu0jhozxobG015ejgF8XZczJ24mE3RCQwGc0XEP87vvXnpnJtfh0XfbZZLJVHrV2nU6ry0Bz+djHH18f9r2y9/rP5y8aYdBZnparX6l9NXaDTa/p/WxR49+M6ytVfPHl+7/3jGnVtn9uzcdDaOKxDu+nb57SuXhJZWddWVK6MO2zq77vp2eezRg5MWLrp4eN9vsUlsU+7f2zfF/HUgoFuvvLT7m6ITdANiTR479JiIBduWL544/0OSJONO/r1sx4HXfysIgmCxTBQKhV52BQCUQwEDaFPq6uq2b9+em5vbpUuX2bNnt6JlvgoKCs6ePZuSkkKj0bp27RoeHu7i4kJJEt18/SdOnGAymc8e+HrM/HfeKS8rW7dw1qq9x8ys2tH6V5cO7485tOfa1at2dnbP3xraOhqNRpLk6+8n486tTqEDdPOLdhs0rCQ3q+mhTn36H9r845dvjOkWNmzCO+/XVJQ7e/m4+vgTBNFjSPiZPTsJgvDoEDh90eLo/ZH56Q8e3Lzm07HL/+855Van0P5cgZAgiLlLVxIEkZZ809HN09bZlSAI7+DONy9G37hw1oRjGrVhNUEQ4oa64pysgG69HNw8bRwf/0rrsUMv3rRDo1LlPUyVSyWWdvb2ru6v/1YQBEESenhLAcBIoIABtB0PHjzYsWOHQqGYPn36wIEDqY7zorKzs8+dO3f//n0Gg9GzZ8+RI0dS+Dm+pKQkMjKysLAwICBg9uzZzx34esyyZcsqq6pXzpn85e/7rB1a35QnryB6/66/tvwYc+mSh0e7G/eDpxIIBHKJ5PX3Q2cwtFqt7jbrn5ew2ru6b7t0425i3LVzpz8dP/S91d8xmP/7PKNUKJgmJgRBPEi69vNn742c9fbA8VMdPbzy0x40PZ0nMGuqiBKRSKNWEQTRdFmXrkCqVUp7F7fQEWMe3UknCOKpI3tPHnrQxGnxp45KxY1hE6a9/vugo1apWt11vADwb1DAANoCkiTPnz9/7Ngxc3PzRYsWubm5UZ3o+XQzy589ezY3N5fNZg8aNGjYsGEvW3j06LGBr759+77aqY+bN210XrfuqzfGfLl9n5tfB73nNCrH/thyft/O2JiYjh07Up0FjIVQIJBJxK+/n8DuvTYv/UTaKGKbmt68GG3r9P9DT5ePHcpJvTfvv2u6DRqaPTqlrqqyICOtJDfbydP76pkTQT37EASRdutG536DJrzzvlajOfLrzzyhkGViotVotRpN98HDD27+XiIS8YTCnd8s8+/azdnL97Gj9w4ffWTrz66+HQTmFhcO7c2+nzJg7OTmG5Tm5ei+ZHny0APHTVk+Z7JWq53zxbLXfx90VEqFiYmJvvYGANRCAQNo9VQq1d69e69fv+7j4zN//nzjX2RZV71OnjxZWFjI4XCGDx8+fPhwnj4uGnllpaWlkZGRBQUF3t7ec+bMsbV9rTnclixZwhcI/hsx5T+bd3YI6aGvkEZFq9HsWP1VbsrNm9evu7q6Uh0HjIhQKKyV6mEELKhn6OBJbywaPZBlwnb28mn+UO/wMXEn/v584jCFTObTsYt7h0BrB8f1H7xFo9EEFpZLt0YRBDFg3OT1H7y1bNYklVLp27lr2q0bDCbLp2PneX07bTmfOGTym+8N6Wnr7Org7hE26Y3MlNuPHd3cyiZ8RsR7Q3s7eXgxmMwP1/1SW1HefIPFU0Yu33GAIIgnD21l72Dn4ia0tDLV33poUlGjmZnZ87cDgNZAPydqAwBV6urqfv3114KCgn79+k2fPp2hj/mOW45uUa8zZ85UVFQIhcL+/fsPGTLE8DPLN9c08EWn00ePHj1s2DB9zflx6NChdxYseHfNjz2GhOtlh8ZDJhFv/uIjbWP9mdOnrKysqI4DxuW///3vw8r6mZ/pZzUClUJBkmTT+YHNKeQyGkEz4XDSkm9GrV/57cFT0sZG3j+/gWqsr+ObmTf/pVbIZbrrylRKpUatevaSZRq1Si6V8f79W61/O/Sad2ZMmP/B66wZ/Zg5Pfwf3L+PLzsA2gaMgAG0YllZWb/99ptMJps9e3ZoaCjVcZ5FLpdfuXLl4sWLIpHI1tZ25syZvXv3ZjIp/ieoqqoqKioqKyvLy8srIiLiNQe+HjN16lQbG5tpb7yRkXxj+qdfMlksPe6cQvnpD3/+dEGPkK67j//VimZ5AYMRCATyvBJ97Y317xc+6XpUExqN9mRTEpg/flZz07NYJias553Ux2CyeMLn/+Y2P3TW3dun9+yQSyV6bF8atUrS2IgvOwDaDBQwgNYqPj7+wIEDAoHg888/N+b5D3TV69y5cxKJxMnJadKkST169KB8qSiSJBMSEg4dOkSS5MSJE/U48NXcoEGDUu/fn/7mjK/fHPfxj7/aubSCa/Oe7fKxw1Hrlq9cseLjRYuozgJGysXFpSb6gkGP6O07Z7HerrZ6zUNbOTh1Cu3fPWy4Ho9SUVxkYWVF7XnaAKBHOAURoPVRqVT79+9PTEz08vJauHCh0V70JZFIYmJiYmJipFKpi4vLiBEjunbtSsmiXo+prq6OiorKzMz09PSMiIho6UkXNRrNipUrN23eMn/Vhl5DR7bosVqOtFG0fcUXxWmpfx053KVLl+c/Adqr5OTkcZMmbzyXSHWQtuNW7IXYPduvXU2gOggA6AdGwABamfr6+q1btxYUFAwYMGDatGnGedFXY2Pj5cuXL126JJPJdOspG8ksebqBr8OHD2u12okTJw4dOtQAY3EMBmP1qlUD+vefOXt24qmjs5estHZwbOmD6lf8qaN7N6waMjjs1J3bRlv4wUj4+fmVFxepFIpnnD0IL6UkL7uDvx/VKQBAb1DAAFqTgoKCrVu3isXiWbNm9e3bl+o4TyESiS5evBgbG6tUKo2qehEEUV1dvXv37oyMDA8Pj4iICHt7e0MefciQITlZWRs2bPh8/OCRs96eMP/D515/YgzKCvJ2rfmqprhwd+SuESNGUB0HWgE+n29ta1telO/ijc6gH+X5uUO6daI6BQDoDQoYQKtx586dXbt2MZnMjz76yM/P6D7Z1NbWXrhwIT4+XqVSeXl5jRs3znhCNg18qdXq0aNHjxo1ipKL0Hg83sqVKydNmrTg3XeXTDo1e8mKTqEDDB/jBYlFDcd/33L+z6j/fP75F198gUVg4cX5+fmX5OWggOlLeX6O34ypVKcAAL1BAQNoHS5dunT48GEbG5v333/fwEM3z1VdXX3p0qW4uDiNRhMcHDxq1Ch3d3eqQ/2/mpqa3bt3p6enOzs7R0REuLi4UJunY8eOiQkJkZGR/132HzNru/ELPgoZOMQYLo1rIqqtOR31e/SByCFDhtxNSfH09KQ6EbQyQYGBhRlprfeKR6NCkmRBVmaHDm18VXeAdgWTcAAYO7VavW/fvsTERG9v73fffZfP19vKnq+vrKzs7NmzSUlJJEmGhISMGDHC2dmZ6lD/cP369QMHDqhUqiFDhowdO5byie+bU6lUBw4cWL12rZbOHBWxoP+YiXSqr+irr6k6E/X72X27Bg4cuHrVqq5du1KbB1qpgwcPrvtl89e7DlEdpC3IT3+4fuHM8tJSo/qaBgBeBwoYgFGTSCS//fZbRkZGaGjojBkzjGfKjbKysujo6Js3b5Ik2bVr1zFjxjg4OFAd6h8aGhr27t177949JyeniIgIo13AVKPRHDp0aPWatfWNjX3HTOw/drKju6FHnNQqVfLli/EnjtxNjJs2bdqXS5d6e3sbOAO0JZWVla5u7pHXHzx1AWV4KScjt8sLMw/s20d1EADQGyP6MhgAHlNZWbl58+bKysrRo0ePGTOG6jj/U1FRcfr06aSkJIIgevXqNXLkSBsbG6pDPS45OXnfvn0ymWz48OHGNvD1GAaDMX369DfeeCMhISEyKurLqSNdvX17j5oQOnKc0MKyRQ9NkmTm3dvxJ45cPXPC3d197pzZR/fsaulJ+aE9sLW19fD0zLhzK7i3Mc4V1LqkJ117e/oUqlMAgD5hBAzASGVlZW3btk2lUs2bN69TJ6OY/6q6ujo6Ovrq1au6Ua9x48YZ4Yd1kUi0d+/eu3fvOjo6RkREuLm1srWP5XL5iRMndkXtjrl40cPPP6BnaGDP0A4hPThcva3BWlaQd/96QtrNxNQbiWy2yayZM2fPmhUYGKiv/QMQBPHhR4vK1bTpi76gOkjrptVo3uoTdPfOHQ8PD6qzAIDeoIABGKOEhIT9+/cLhcL333+f8kkjiFZSvYhmA19Dhw418oGv5xKLxXFxcTGxsRcuXkp/+NC3Y2c3/0AHDy9HDy8nDy8re8cXvCBEIZeV5uWW5eeU5OWU5Wal306SSyX9+g8YNmRwWFhYQECAUV1YIpfLlUqlUqmUSqW6GzKZTKFQKJVKhUIhufSUWwAAIABJREFUk8maHiVJUiaTNX+uVCpt/keZTKbVapvvmU6nmzSb+t/U1FQ3GSadTudwOAwGg81ms1gsFotlYmLCZDI5HA6bzeZwOBwOh8vlch7hcrmYE/IZKisrU1JSEhIS/jp1dvWBE1THad2y7t7e8p/3CwvyqQ4CAPqEAgatXllZWUZGRkZGRklJSaNYLBaLa2rrxGKxWCKh02kCvoDP55ubCc3MzAR8vqurq7+/v5+fn6Vly57c9cpIkjxx4sSZM2fc3Nzef/99MzMzavO0luolEon2799/584dBweHiIgIo5qG8fXV1tbGxcWlpqY+SEtLT8/IzspUq9VObh5mVtYCC0sOX8A2NWUwWbqN5RKJSimX1NeL6+uqy0sry0odnJx9fX07+PsHdPDv2bNnly5dDDwLv0QiEYt1v5T/u9GcRCLR1S25XP4ie9P1JVNT06bqSKPRuFxu822aP9r8j2q1WqlUNt3f1Nl0bU0mk5Ek+ViReyomk8nn83k8Ho/H4zdj1ky7KmkkSRYWFqakpKSkpJSWlhIEYW5uvisycvWfp2wcjWtintZl94ZVzlzW5k0bqQ4CAPqEAgatT1ZWVkxMTFxCwsO09OzMDLVa7eLp7eDuaWnvxOFyOVweh8fjCYRsUy5JknKpRCYRSxtFcplMLhHXlBaV5GaXFOTzBQJfX7/goMAB/fuHhYU5OjpS/bIIgiDUavXu3btv3LgRGBg4f/58DqXXr9fU1Jw9e9b4qxdBEMnJyfv375dIJH379p06dapJa1jg+DWVlZVlZ2dXV1dXV1fX1tZqNBqRSEQQBJPJFAgEbDbbysrK2tra0dHR19fX1NS05ZKo1eqGhob6RxobGxsbG5t3LYlE0nwkqomuw+hqDJ/PNzExYbFYpqamHA7HxMREN/RkYmJiYmLC5XJ1N0xNTdlstgGmotENr6nVarlcLpPJZDKZ/BGFQtH06iQSSdONJ18jm802NzcXCoWW/2RlZdVmuplWq83NzU1OTr5z505dXR1BENbW1h07dgwJCfHy8npz5kyGnevEBR9RHbO10mo074Z1O3vqVLdu3ajOAgD6hAIGrUNZWdm5c+cuxsTExMRIJJLgHn18Q3q6+Pg5untaOzi97DlUGo26qqS4JDe7IDMtPenag1s3nJxdhgwOGxwWNmzYMKoGneRy+fbt2x88eBAaGjpz5kxKVgrWeax6jR071thWHmsiFov379+fnJxsZ2cXERGBFataiFgsbmhoqKur0/2sr69v+qOu+DXHYDCaxoV4PJ5AIGgaINLdr7unzZQQHYlEIhKJGhsb6+rqGhsbde9MfX29SCSqra19bHCPx+NZWlra2NjY2to2/TQ3Nzeq00GfQaVSpaWl3bt3LyUlpbGxkUajubq6BgcHd+vWrflsqOfOnXvnvfd/PhNPYdRW7U587Klffxw9ckSPHj1CQ0ON9sQNAHhZKGBg1KRS6bFjx3ZF7U6Ij+vYs49/jz7Bvfp6+AfS9FpO1CpV1t3b968nPLx5NTv13qjRoyNmzx4+fLghryCqr6/fvHlzcXHxqFGjKJzwsBVVL4Ig7t+/v3v37sbGxrCwsAkTJrBYLKoTtW4KhaK6urqmpqaqqqq2trZ511KpVM23ZDAYQqHQwsLCzMzMwsLC3Nxcd0N36l2LDri1UlKptLa2tra2tqamRnejurq6qqpKIpE0bcNisWxsbOzs7Ozt7R0cHBwcHOzt7Y1qOFcikdy/f//evXupqakKhYLJZPr4+AQHB4eEhJibmz+5vVardXJx+eSXP7yDOxs+bRuwafEH/ToH0Wm0srIyOp0eHBwcGhoaHBxM4ddzAKAXKGBgpBISEv7YseOvv/5y9wsIHTOxz4ixfKEhBqZqK8rjTv6dcPKvxrqaN6e/+c7b84KCglr6oCUlJZs2bWpsbJwzZ06PHj1a+nBP1bx6BQcHjxs3ztiWVG5OqVQePXo0NjbWwsJizpw5/v7+VCdqTdRqdU1NTU1Nje4MRt2NmpqaxsbG5ptxuVxzc/OmltX0U3daXWsZqzFyUqm0srKy6pHKysry8nKxWKx7lEajWVlZ6cqYk5OTi4uLvb294RcDrKmpSUlJuX//fkZGhlarZbPZfn5+ISEhnTt3fu5p0p//5z/p5bVv/XeNYaK2JTKJeH7/LmkPH7q6uhYUFMTHxyclJcnlcqFQ2K1bt759+zo5OVGdEQBeEQoYGBeSJM+ePbt6zdrc/PxBk6b3HzvJ3tWdkiR5D1PjThy+fPRwv379ln3935brRWlpadu2baPT6e+++66vr28LHeUZampqLl68GBcXp9FogoODx44dawzzLj5Dbm7url27KisrQ0JCZs6c+djsC9BEq9XW19c3b1m6G/X19c3/5edyudbW1rprxnR0tzGiSBWxWFxaWlpeXl5aWlpWVlZWVtbQ0KB7iMlkOjo6uri4ODs7Ozs7u7i4tNx4Y2lpaXJy8v379wsKCgiCEAgEgYGBISEhAQEBL352QFpaWs/evbdcuMETClsoZ1t1Our3gltXL54/13SPSqW6d+9efHx8eno6SZJubm79+vXr0aNHGzubF6A9QAEDY6HVak+fPr185aryysoRs94eNm0Wywj+pyKXSi4dOXDijy3e3l5fLlmi95MDExMT9+7da25u/uGHHza/dsIwamtrL1y40Iqql0ajOXPmzJkzZ3g83owZM7p06UJ1IiNSX19fWVlZUVGh+1leXl5TU6NWq5s2YLFY1s3oWpaVlRUarPGTSqXFxcVFRUW6n//H3n3HNXV3jwO/gTDDHkKQvVE2CEGWoIgKqKio6ONutVpbqx32aetotY+2T2tbta6qdW9URARREQh7zxKQFUbYEAgJ2ff3x32aH1+1KvMSOO8/eIUk3HtKTci553zOp7m5Gfs/SyAQpkyZYvo3IyOjYabN2FCN4uLigoKCtrY25P8O1Rha2XNReLiKic3SrTuGE9hkI+DzP5rrdefmDT8/v1cfbW5uTktLy8zMZLFYioqKM2bM8PHxmWCjXwGY2CABA+NCcnLy1m0fcoWihe9v916wUFZ2fG3fxOP2P715JebPU3Y2NidP/D5t2rThHxNF0YcPHz58+NDQ0PCjjz567QqK0SN1qReCIAwG4/z58w0NDfb29mvXrsV9QD+OsL611tZWSbrV1tY2cMyDmpqanp4eNtpBUtpSgxLERCESiZqbmxsbG+vr6+vq6hoaGrDZ+rKyslOnTjU1NTU3N7ewsJgyZco7HpDH45WVlRUVFZWUlLDZbAKBYG5u7uzs7Ozs/O4H+ScFBQUBs+eceJY1gpuJT3iPr18siI/Ozsx4w3PEYnFFRQWVSi0oKBCLxWQy2cvLy9fXFy6pADD+QQIGcNba2vrpZ589iotf/enXsxZHjOx0jZEl4PMfnDsRff7k1g+27t+3l0Qa+ocJkUh06dKlzMxMBweH999/fywbSLDUi0qlCoVCBweHsLAwY2PjMTv70IjF4idPnjx48IBIJC5btszX1xfviMaOSCTq7u5ub2/HutGwyQ2dnZ2St24ikairq2tgYKCjo6Orq4stFoIxGJOKWCxuaWmpr6+n/w2rj6mpqZmamhobG1taWlpZWb3aN8jhcLBhhgUFBe8yVGPIgoKDDV28wjZsGcFjTmAioeCTBX7nTp+aN2/euzyfyWSmp6dTqdSuri5FRUUPDw9/f//xvIgXAAAJGMCNWCy+fOXKrl27nHwD1+7ep6YpHQN2O1uaLx3e/6Io98fDh9euXTuEI/B4vNOnT5eVlfn5+UVGRo7ZPKvu7u6EhATpSr0QBOno6Lhw4cKLFy8sLCw2bNigq6uLd0SjiMfjDVz5w2AwXs219PT0sOoWdgPqWuAlfD6/rq6uqqqqurq6pqYG21daTk7OzMzM2tra1tZWU1OztLS0sLAQG6qhqKjo4ODg4uIyffr0Udp7kEqlLlkWcfxJ5nhoLB//ku7fSrl5qTA/b1A/haIojUaTFMSwFWKenp7japAmAAADCRjAR2Nj44rIyHZm76Y9/7FycsU7nEHLfvb44qG9ft4zz/7xh6qq6rv/IJvNPn78eE1NTXBw8JIlS0YvwoGkNPVCUTQ1NfX27dtisTgsLGzu3LkTbPIej8fDsizsK7ZqS/KerK6ubmBggA0lx9ItLS0tGD8NBgVFUQaDUV1dXVVVVVFRwWQyJQ/JyclZW1v7+fnZ29uPwZYbgbPn6Du4Ldv6yWifSNpxOexdobPOnTkdEhIytCMwmcysrKznz593d3crKSm5u7sHBgYaGBiMbJwAgOGABAzg4NmzZ5GrV3sGh635fA9Raiet9bP7/ti3u6G8JOrObWfnd9rlpqOj4+jRo+3t7ZGRka9dWj3iJKmXQCCws7MLDw83MTEZg/MOX29v7+XLl4uLiw0NDTds2DAB2mm4XG5LS0tTU5OkxtXV1SV5B9bQ0CCTyQYGBpKvsJADjAgGg1FSUlJUVFRdXY0gCIlEIpFIbDYb24JMQUHByspq2rRp06dPH9VN/yorK909PH64E69nJB1vQXi58tNBdmPN47i4YR5HKBQWFhampKRUVlYiCGJjY+Pn5+fi4gIXcQAYDyABA2NKKBQeOHDg2O8ntn5/xG3WHLzDGQFJ929fPLzv2/37P9nxlhlfTU1NR48e7evr27Rpk6vrqBf9ent74+LisDEbjo6OYWFh43/MhkReXt7Vq1f7+/uDgoIWLlw4ljtijxSsutXU1CSpcXV1dUke1dTU1NfXh3QLjBIURevr64uLi3NyclpbW5HXDTNsbW2tqKioqKig0WjYzmNaWlpYJmZrazsa/yC//Pe/n6Vn//vMlRE/8oTRWFX5dWRYcVGRmZnZSB2zra0tNTU1LS2tr69PTU3Nz88vICBARUVlpI4PABgCSMDA2Onq6gpbtKiXK/j4pxPa+mM9cn301JaX/bpri+9Mrwvnz/9Tt31FRcXJkycJBMK2bdusrKxGNZ6+vr7Hjx8nJSXx+XxHR0epmHAoweFwbty4kZWVpa+vv2HDBmkZrIyiaGdnZ2NjY2NjY1NTU2NjY3t7u+TdVVNT86XqFgzJAKMBGyKfl5eXn5+PdRuSyWQ3Nzd3d/c37HKBoiidTv/rr7/++uuv6upqsVgsIyNjamrq6Ojo4OAwgsVnDodjazdt1e79HrODR+qYE8x3G5YvWxD8zTffjPiRBQJBdnZ2YmJiY2OjvLy8p6cn9CUCgCNIwMAYaWxsDAoONrZ3eW/fofE2ZX74OH2snz9+T0tJIfr+vVevLBYUFJw7d45EIn300Uej2krH4/GSkpLi4uL6+/stLCzCw8NHO9kbWSUlJZcuXWKxWIGBgeHh4eN5I+D+/v6mpiYs18JuSKbAKysrT506derUqYaGhlOnToV0C4w2gUCADTMsLCxksVjYEHknJycXF5fBDpHncrk0Gq2srKysrKyzsxNBEC0tLSwTs7GxGf5L8t69e9s+3vHf+0+VVQaxdHaSeH7vZvz5k6UlxaM6F7eqqioxMREb1GFhYTF79mzoSwRg7EECBsYCjUabM3eu5/xFq3b+e4LNUZAQCgTHv/yY1dzwOC5u4IeexMTEW7du6evr79ixQ1NTc5TOjqVe8fHxHA7HwsJi4cKFtra2o3Su0SAQCO7evfv8+XNNTc1169aNt+DFYnF7e7ukwNXU1NTR0YE9JCMjo6enJ0m3DA0NtbSkY54nkHaSIfKFhYVcLlcyRH7GjBkjMhuTwWAUFxcXFxfX1taKxWIFBQU7OztHR0cnJ6fhNLCtWLmypY+74+eTw49wImHUVn8dGfbo4UNvb+8xOF1HR0dKSkpqaiqbzdbV1fX19YUNxAAYS5CAgVGXk5MzPyQkdMMHCzduxTuW0YWi6KUfvy1KevI0IcHS0lKy1bK5ufn27duHs2/YGwiFwoyMjAcPHvT29pqamoaEhDg6Oo7GiUYPnU4/d+5ca2urp6dnZGTkeKgXcTichoYGST8hg8EQCATYQ6qqqliuhaVbBgYG0rhEDUgvFotVUFCQn59fWVkpEokUFRXt7e1dXFzs7e1HaYh8X19faWlpcXFxWVkZl8uVkZGxtrZ2dnZ2cXEZwnZhfX19rm7ugas2zF05lG08JiQBj7dn1cKN/1r15ZdfjuV5uVxuRkZGYmJiW1uboqKij49PUFDQyG4BBwB4LUjAwOjKzc0Nmjt3/dcHfUPD8Y5ljNz+/Qj1/s301NSkpKS0tDQnJ6f3339/NLrpRCJRenr6w4cPmUymgYFBaGioq6urdBUYURRNTEy8e/eunJxcZGSkp6cnXpF0d3c3NDTU19c3NjbW19djzVcIghCJRGxr46lTpxoZGU2dOhX23QK4YDKZWN5VVVUlFotVVFScnJycnZ3t7OzGrFlXKBRWVFQUFBRIeh1NTU1dXFwG2+tYUlLi7eu778/bZtPsRy9aKXJm3260pz0uNhaXVkAURUtKShITE8vLy4lEoqenZ3BwsJ6e3thHAsDkAQkYGEVVVVUzfXxW7PgyYMkKvGMZU9d/OdxQnOPs6Ojn57dy5coR/5uKomh+fv69e/fa29v19fXnz5/v4eEhdU38nZ2df/7554sXL2xtbdevXz96/ZmvQlG0ra0Ny7gaGhoaGhpYLBb2EIlEMjY2NjIyMjIyMjQ01NPTk5WVHbPAAHhJd3d3fn5+Xl5eTU0NiqIqKir29vZubm7Tp0/H8V+mWCyurq7GMjHsaoWRkdGMGTPc3d21tbXf5QgnTp48/NPPh27HKZEm+zi+1NjoG0cOFhcW6ujo4BtJY2PjkydPsrOzURR1cHBYsGDBCA5jBAAMBAkYGC0MBoMyc+bslevDNmzBO5axhqLomb1f9Lc1xsXGjmznIZZ6RUdHt7a2amtrz58/39vbW+pSLwRB8vLyrly5wuPx5s+fHxoaOtqFO6FQ2NzcjKVbWJmLx+NhD2lqamIZF/YVVnCB8aCzs7OwsFCSd2lqatrb2zs6Otrb24+31zudTi8oKMjNzW1vbycQCGZmZu7u7m5ubm/tZItctepFY/MXJy5K726Qw1dRkHvogzWPHj708fHBO5b/6ejoePbsGbZ7pIWFxbx586SurR2A8Q8SMDAqenp6fP38rSm+q3Z9hXcs+BCLRL9+ulVVRhwTHT1Sa4TKy8ujoqIaGho0NTWDgoL8/f2lcfVRf3//9evXs7KyyGTypk2bRmlEPpfLbWxsxKpb9fX1DAZDJBIhCEIgEPT09LACl7GxsbGx8SitzQNgCDo6OoqKiiR5l5aWlrOz88DNu8azurq63NzcvLy8rq4uAoFgaWmJ1cT+6SXG5/MXhIYKFEgf/3icMM6yyrHRWFW5b+3SM6dORkRE4B3Ly3p7e5OTk589e9bf329kZDRnzhxp7LMAYNyCBAyMPLFYPCdoroyGztbvj4z/Dw2jh8/lfv9e5Cwvz2NHfxvmocrLy+/du0en01VVVYOCggIDA8fziPY3oNFoFy5cYDKZPj4+y5cv/6dt04aAw+HU19fT6XSszNXW1oa9uRGJRAMDA0mBy9DQcFRHPAMwBAwGIy8vr6SkhE6nI6/bNFmKoChaU1OTk5OTn5/f09NDJBIdHR29vLxeW7tjsVh+s2aRbR3f2/sfXKLFUVdryzerFn752WeffLID71j+EZfLTUtLi4+P7+3tJZPJYWFhUrfSGIDxCRIwMPK+/fbba1H3vrsaLTdyH6+lVE9nxxdL5p4+8fuSJUuGdoSqqqro6OjKykoSiRQQEBAUFDRKg85Gm0AgiImJSUhIUFVVXbdunb39cBffD8y46HR6e3s7dr+ioqLRAAYGBrCIC4xPWN6Vm5vb0tKCDMi7LC0t8Q5tBIjF4oqKioyMjIKCAj6fr6am5uHh4eXl9dJeiK2trV7e3jPDIpZ88DFeoY49FrN735olq5dHfH/wAN6xvB2Px6NSqfHx8SwWy9TUdNGiRdOmTcM7KACkGyRgYIQlJyeHLVr0n5uxBqbmeMcyLpRlp//yyea83NzBrmauqamJjo6m0WiKior+/v7z588fD/PZh4bBYJw/f76hocHFxWXNmjVD6/rDugolGVdLSwv29qWgoGBoaGhiYmJiYmJsbEwmk+ECLRjPsLwrJyentbUVQRAymezm5ubu7k4mk/EObVRwudzCwsLMzEwajYaiKJlM9vLy8vLykgwUramp8fb1nbUkMmL7p/iGOja6Wlv+s3l10Cy/UydPStGb1Uu7TS5atMjGxgbvoACQVpCAgZHU1tbm6Owc+ek3k2fo/Lu4eeynqqyUjLS0d+y4a2pqio2NzcvLU1BQmDVr1rx586R3f0zJoHkikbhs2TJfX993/1nIuMCEgaJoVVVVfn5+QUFBd3c3gUAwMTFxdXV1dXXV1dXFO7ox0t3dnZ2dTaVS29vbZWRkbGxsKBSKq6urvLw8nU6fM3euqYPr5u9+lJWVvqWt766lvu4/768OXxh29LdfpfGNi8vlJicnx8XF9ff329nZhYeHm5iY4B0UANIHEjAwYlAUnTtvnryuwaY9k66b/83EItHB9yIDvTyP/PzTm5/Z3NwcExOTn58vKyvr5eW1cOFCqd51qre39+LFi6WlpWZmZhs3bnzrTkGQcYGJB6t3ZWZmdnR0EAgEY2NjBwcHT0/PQW2cNcHQ6XQqlZqTk8PlcpWVld3c3CgUiqamZkhomIyqxsf//V1eOhut36qqpPCHret2f/75F198jncsw8JisR4/fpyUlCQUCp2dnRcvXqyvr493UABIE0jAwIi5du3a7m/2/HT/mRwMOXhFV2vLroUBSYmJrq6ur31CR0dHfHx8WloagUCYOXNmaGjoW4c4j3P5+flXrlzp7+8PCgpatGjRaxdi8Xg8+gDt7e2SjAsbUYhlXPr6+pBxAeny0khAc3Nzd3d3V1dXaX9djyAej1dQUJCRkVFRUYG1Jrq5uf3y229dHN4nR06paU60DSGynz0++fXOUydOREZG4h3LyGCxWE+ePElMTBSJRN7e3osXL1ZRmey7ugHwjiABAyOjt7fX2tb2vf0/uvrPxjuWcSrmz1PFzx7lZGW9NAqsq6vr0aNHaWlpKIq6urqGh4dLe0sSl8u9c+cOlUrV0dHZuHGjhYWF5CGhUNjY2FhXV0en0+vq6lpaWsRiMYIgCgoKRkZGWLplYmICGReQUli9Kzs7u62tDfl7fReFQpH2F/Wo6urqyszMzMjIaGtrk5WVLadVlJWX7/j5pJ2bB96hjQyRUHD1yKG0h3dvXLs2e/ZE+xPZ3t5+7969vLw8EokUEhISEBAA0+oBeCtIwMDI2P7Rx8U19Z8cOYl3IOOXSCT897L5X+zcsfn997F7uru7ExISUlJSRCKRq6vrokWL9PT08A1y+Orq6s6dO9fW1ubr6xsRESEnJ9fS0iLJuBobG4VCIYIgRCLR0NDQ1NTU1NQUy7jgbzaQXq+dqzHJ+wwHC0VRGo2WkpJSWFhYXV2dnpEZun5zxLad0r5FWEcz47dPt2oqK968cX3q1Kl4hzNaaDTarVu3mpqajIyMVqxYYWVlhXdEAIxrkICBEVBSUuLj5/dzdKKWHnSBvwktP+en7RsqaDQlJaWEhITExEShUOjg4LBw4cJR2o94LA2ct+Hn5ycvL19fX19dXc1msxEEkZGR0dPTk9S4TExMpHQrMwAkmpubsT7D5uZm5O+8y8PDYwJcScFRb29vRkbGvXv37kVH65ta7Pj5hIa2tNYPs57End77+fZt2779dv+E3w9DLBanpaVFR0ezWCxHR8cVK1bo6OjgHRQA4xQkYGAE+Pj6WXkHhG34AO9ApMCJr3Za6WnJEYk8Hg9LvYyNjfEOarg4HE55efn9+/exDiKRSITdr66uLsm4LC0tpXeWIwADdXZ2FhYW5uXlVVdXI5NgjjwuUBQtKira9emnWdk5/9r11dyVa6SrFNbR3HTp8P6q4vzLFy8GBQXhHc7YYbPZ0dHRVCpVVlZ2/vz58+bNm/CZJwBDAAkYGK6UlJQlERHHEzIn6tyqkdXRzPh88eyDBw6EhISYm0vrVmlvGFdobW2NFbjMzMxUVVXxjhSAEfNS3oXtm0yhUGAM96h6+vTptg+381Hkg4M/WTu54R3O24mEgvjrF+/8fmTtmrXfHzwg1ZNsh6yxsfHmzZuVlZWGhoZr166F1wgAL4EEDAzXnLlzjVxnhm3YgncgUuPk17vsjQ1+OfIz3oEMgkgkamxsrK2tra2traura21txd46lJSUlJSUuru7SSTSv/71LxcXF7wjBWCEdXV15ebm5ubm0ul0BEF0dXXd3d3d3d0NDQ3xDm2yEIlER48e3bd/P2Ve2MqPP9fQGb8r6wqozy//8K3BFN1TJ084OjriHQ6eUBTNysq6detWf3//rFmzFi9erAATkgH4GyRgYFgKCgoCZs858SxLUZmEdyxSo6W+bvfS4Jrq6nE+GK2jowNLt2pra+vr6wUCAYIgcnJyxsbG2OQMEol0//79hoYGV1fXNWvWQIchmEg4HE5xcXFmZiaNRkNRVFNT08XFxc3NzcLCAkZ04qK5uXn3v/8ddSfKb+HS8M3bdcjjaKAFiqI5iQn3zxxld3ce+PbbdevWwT8STE9Pz/Xr1wsKCnR1ddeuXWttbY13RACMC5CAgWFZuHixqqnt0q078A5Eyvz22TZfZ/uDBw7gHcj/0d/fj6VbGBaLhSAIgUDQ09MzNTU1MzMzMzMzNDTEGvozMzOvXbsmFovDw8Mn3mBlMGnxeLyioqKcnJyysjKRSKSmpubu7u7h4WFqagofqccDOp3+089HLlz40z0gaMkHn0w1t8Q3HlQszkt+FnXiCI/Vu/OTHR988AHUeV6Vl5d37do1Npvt4+OzbNkyRViwACY9SMDA0L148cLV3f3E02zSpOxxHw56Zfm3a5c2MxhKSko4hiEWi1uH9FUMAAAgAElEQVRaWurr66uqqqqqqiRLuZSUlExNTS0sLExMTMzNzV/aW7O/v//KlSu5ubkmJiabNm2CgW9gAhCLxRUVFZmZmYWFhVwuV15e3sHBgUKhTJ8+HUYIjENtbW3Hf//9t99+m2ph5b94uU/IYiXSWG8B3FRTlf4omhoTpUYifbn7i1WrVhGJxDGOQYr09vbeuHEjLy/v1f0hAZiEIAEDQ/fNnj05lbVbvvsv3oFIpb2rFn3z+a6VK1eO8XmZTCY2OaO6urq6uprP5yMIIisrO2XKFEtLS0tLS2NjYzKZ/E8X+ysrK8+fP89kMgMCApYuXQofOIC0o9PpmZmZubm5vb29RCJx2rRpbm5uLi4uUMcY/3p6eu7cufPnhYsFBQUzAoP8w1fYe86UlR3dNyVmZ3vaowdpMVEt9XXLly9ft3btzJkzoTr6jgoKCq5evcpmsxctWhQcHAy/NzBpQQIGhghFUVMz8/cPHpk2g4J3LFLp8fWLdVkpj+MejfaJJBMLq6urX7x40dvbi92vrq5uaWmJlbneZVcusVgcGxv76NEjEom0fv16e3v70Y4cgNGDbZ2clZXV3t5OIBDMzc2xrZNfqvcCqVBXV3f58pULly42M5ptXdydfGbZU3xMbexGanI9p4/1V05maVZqeXZGQ3VV0Ny569etDQ0NhSx9CFgs1vnz5//66y9bW9tNmzZNzimRAEACBoYoOTl55b/WHH+SCVewhqavt+eDWW411dX6+iO8e7WksRBLuurr69+lsfDNOjo6zp07V1NT4+DgsG7dOpgvD6RUd3d3fn5+ZmZmfX098vcWXjNnztTW1sY7NDAC6urqEhIS7ty9m5WVLRIJbVzcTaztDMytpppbGpiaq2povstBxCJRW1MDo7a6qaaqmV7TUPFXVVmpg5PTnNmBswMDvb29YeDQMKEompCQcP/+fRKJtGnTJjs7O7wjAmCsQQIGhmjjpk1sRfUVH3+OdyBS7MiO95cEz961c+fwDzXMxsI3KyoqunDhAp/PX7hw4dy5cyHlBlLnpZGG2tra7u7u3t7esIJxokJR9MGDBzdv3iyn0dgcDpvNbm9tJamq6ZIN1LS0VTU0FUgqCIIoq6gKBQI+j4uKRH3MLhaT2dvdyainq6ioWFrbTLOztbOxsbe39/X1hULNiKusrDx37lxvb++CBQtCQkJkpGqjbQCGCRIwMBQ8Hk93ypRDt+PIJmZ4xyLFsp/Gx509VlSQP4SflUwsxL5ijYUEAmHKlClmZmbY0EIjI6Nhzg8QCoV37tx5/vy5np7e+++/b2RkNJyjATDG+Hx+QUFBdnb2X3/9JRaL1dXVJSMN8Q4NjJG6uronT57k5+cLhUI9PT1bW1tlZeWOjo7u7m4EQfr7+xUVFQkEgoKCgpaWlra2tq6uroWFBVREx0Zvb+/58+fLy8ttbW3fe+896K0AkwckYGAokpKSNmz+4OeY53gHIt0EPN46z2n0utp3uQwvFoubmppqamqwjEsysVBFRUUyI97MzGwEe2M6OzvPnj1bU1Pj4uKydu1a6LoBUoROp1Op1JycHC6Xq6Sk5OTk5ObmZm9vD1fZJ6fOzs7ExEQqlcrj8czNzefPn+/g4ADF/PEARdG4uLiYmBgtLa3t27eTyWS8IwJgLEACBoZi3759udUNm/Z8j3cgUu/A+oh/7/x4+fLlr330tY2FMjIyenp6w28sfLOCgoJLly4JBALY5gtIkY6OjoyMjMzMzI6ODhkZGXt7ewqF4ujo+NYZM2Ay4HK5ycnJjx8/ZrPZBgYGwcHBHh4ekJOPB3/99deZM2dQFH3vvfccHBzwDgeAUQcJGBiKmT6+PivWUeaG4B2I1Lv9+xE1Puv0qVPYtzwer6GhYfgTC4dDKBRGRUUlJibq6elt3rzZ0NBw9M4FwIjgcrmFhYWSJV5kMtnLy8vLywvW7YBX8Xi81NTUJ0+edHd36+joBAYG+vn5QYqOOwaDcfz48e7u7hUrVsyaNQvvcAAYXZCAgUHjcDhaWtqnknLVNLXwjkXqledlX/zuy7NnTtfW1g5sLCSRSJKuQlNTUxKJNDbxdHZ2njlzpq6uztPTc/Xq1TBkGYxnKIpWV1dnZmZmZ2fzeDwSieTq6kqhUCwtLfEODYx3QqEwPT398ePHHR0dGhoaQUFBvr6+8I6Hr76+vpMnT1ZVVQUGBkZEREBxEkxgkICBQUtISNi+67PDUY/xDmQiEAoE73k7/Gv1ahRFx6Cx8M2g7RBIi9bW1uzsbKzVENs9mUKhODs7D3PqDJhsUBQtKSl5+PAhnU4nkUgBAQGBgYFjdsELvEooFF68eDE7O3v69OmbN29WVFTEOyIARgUkYGDQvvvuu+wX9I3fHMQ7kAni4MYVH7+/8V//+heRSMQrBoFAcPfuXWg7BOMch8PJy8vLyMioqamRtBrOnDkThqeB4UBRtLi4OC4urra2VlFR0c/PLygoCPpX8YKiaHR0dFxcnImJyY4dOyAfBhMSbh/4gPT6i0YzsII1siOGbGbBYDBwzL5aW1v/+OOPhoYGCoWyatUqaMIB441YLK6oqMjMzMzPz+fz+RoaGgEBAd7e3nClAIwIAoHg5OTk5ORUVVX1+PHjhISExMREd3f3BQsWwE5xY49AICxevFhXV/fKlSs///zzzp074QoLmHigAgYGzdnVLfzjLx28fPAOZIKIvXyOV1955dIlXM6en59/6dIloVAIbYdgHGIwGGlpadnZ2b29vfLy8i4uLhQKxc7ODgaIg9FTV1cXFxdXVFREIBA8PT1DQkJ0dXXxDmoyys3NPX/+vI6Ozq5duzQ0NPAOB4CRBAkYGBwURVXV1H55mKytD5t1jIzC1KTYU7/k5WSP8XklbYf6+vqbN2+eOnXqGAcAwD8RCATFxcVUKhWbamhiYuLp6UmhUKAZCYwZBoMRHx+fk5ODIAiFQgkJCdHR0cE7qEmnuLj49OnTGhoaO3fuhN8/mEggAQOD09TUZGVtfTnvBVyBHiltTQ1fhAf19vSM6Unb2k6dOtXU1DRz5szIyEh5efmxPDsA/6S+vp5KpWZnZ3O5XDU1tZkzZ3p7e0+ZMgXvuMAk1dHRER8fn5aWRiAQZsyYERISAv8ax1hpaempU6fU1NR27twJpUgwYUACBgbn+fPnH3z8yaE78XgHMnGgYvFqVyt6Xe2YLTYoLCy8cOGCSCRavXo1hUIZm5MC8AZcLjcnJ4dKpdLpdAKBYGtr6+vrC1MNwTjR3NwcHx+fnZ0NaRguysrKTp48qaKismvXLvjNg4kBEjAwODdu3Pj1j/NfnLg4soft62HSK8unz/AazkHEIpGMdH5c2zHPJzrqtqur62ifSCwWx8bGxsbG6urqbtmyBWYYANzR6XSs5MXj8TQ0NDw9Pf38/KDXCIxDL6VhoaGhUJAZMzQa7cSJE0pKSp9//jm8P4AJAKYggsFhsViKyiO/DKOtqSH20tnhJGBCgeCryIU/3okbwajGjLqWVkdHx2ifpa+v7+zZs+Xl5Y6Ojhs2bFBWVh7tMwLwT7CB8klJSY2NjTIyMjY2Nr6+vi4uLrD1Khi3yGTyhg0bgoODHz9+nJ2dnZOTM2PGjLCwMMgHxoCtre327duPHj169OjRzz//HOYiAmkHCRgYnBFMwFAU7WxpVtXUVFBUMrOz//TX05KHeP0csVisqExCxWKCjAwqFsvIyna1tapra8vK/u8fLZ/L7e3u0pqih1W9eP399S9oIqFARpYoFouwp6FiMYqi2BEEfB6BICOvqIggiIDH6+tlaurqvTaYgXdiAfR0dWho/+9Kp0gklJGRxZbAYU8YftlNRUNztBMwOp1++vTp7u7u0NDQ0NBQWMIH8IKVvLKysvh8vqamZnBw8KxZs7S0tPCOC4B3YmBgIEnDsrKycnNzvby8QkJCNDU18Q5tgrO2tt68efPJkyePHTv26aefwo4pQKpBAgYGh8ViKYxEAtbd3npg0yplVdXOlmbPoPlewaHn/7P3h9uPEAQ5//2ezCePZIlyRpbWRDm5sPVbLv74nUggQBCkq7XlqzOXzWynH/tyR3VZsaIyqb2p4csTF2xc3M//Z6+Qz9+7dlnkji9uHP3vwav3EQR5eud6RUFu4JIVl3/6vqOlSVlF9bfY5Nsnfom9dFZTV09WjvjVqctaU/ReCmb9l/uxIGn5OecOfi3g85VUVLls9t7zN7Sm6J3a+wXZxGzJ5o8QBLl57CcEQVZ+/PkwfxsKSsocDmeYB3kDKpV648YNRUXFjz/+2M7ObvROBMA/6e3tzcnJSU1NxXa9c3JyolAo9vb2UPIC0kiShj18+DA1NTUjI8PLyys0NBSmpY8qR0fHdevWXbhw4cSJEx999BGO+2cCMEzwbxcMTi+LpUBSGf5xsp89NrGx2/Hf41wO++IP34mEQuz+3KQnRekpx+PTZOWI329eQ5STQxDkRVH+LzGJxla2V4785+mtq3NXrhUKhb/FJhMIhGu/HH5+76aNi/v7e79Pi4v+/lp0aVbaq6erLS85Fp+qqavX29319PbV089zFJSU7545lhh1fdnWT14KRigQYOdFEKS2vAw7ddSp384e+OqLY+cCl6w8te+LJZs/QlE0Jebu3nPXh//bIBLleDze8I/zKoFAcO3atfT0dBMTky1btmhra4/GWQD4JyiK0mi05OTk4uJikUikr68fERFBoVBUVEbgbQQAfBkYGGzevLm+vh5LwzIzM/38/IKDg9XV1fEObcKiUChdXV3R0dEXLlzYtGkTdHMAKQUJGBicvr4+RdURWHbsNNPv1vEjX60Mcw+cG/7+h93tbdj95blZ7gFBWKOgV3BoATURQRB9Y1NjK1sEQQzNrQqoiWZ20yN3fBF/7UIdrawsO8PK0eWtpyObmOsaGCIIkvUkTl5R6eKPBxAE6evpbqx+sWzrJy8FI8m+EAQxtLDCTu0xZ96jy+cRBLFz8xAJBLV/lXI5bC09fX1j0+H/Nojy8nw+f/jHeYlk1ryvr+/KlSvhYiEYS9hgw8TERKzk5ezs7Ovra2trCx+YwARjbGy8bdu2xsbGR48eJSYmJicne3l5LVq0CNYpjZIFCxb09fU9e/aMRCJFRkbiHQ4AQwEfyMDgyMnJ9wkFwz+OvrHpqWdZRekpGY9jdy0O+vDgz9j9alrarfV07Daf24/dUNX4X2+9jIwMiqJlORm/frptwZr3Zi1ebmBmUVde9tLBxSIRdoPX/7++PqW/928VCvj6Ribe88OwbwkEmVeD+flegp6RCfYE2b+TFj6PR/x7s6yAJSuoD+9x+liB4SuG/6tAEEQsFo34uO3i4uI///xTIBCsXbvW29t7ZA8OwBu0tbWlpqZSqVQOh6Ojo7NkyRIfHx/YQxlMbIaGhps3b66rq4uOjqZSqXl5eUFBQbNnz4alSqMhIiKip6cnKSlJS0srODgY73AAGDRIwMDgqKupNnf0Dv84SfdvVZcWb/rmoHtAUFVoYXdHK3a/55z5+9ZFtDU1KCqTUmOjNV+340d5bpazb0D4+x+KRaI7J38lqakhCCInLy8WicUikYq6ZmtjA5/LlVNQKExN0tD5P0fwmhd658SvxtZ2qhqaT25dqSopnDaD8lIwbU0NIqFQhzwVQRB6RXlTTdVUc8u0Rw/sPWdiB5m1KGLfumVisXjd7r3D/1UgCCLk88VicV1dnYKCgoKCgqKiopKS0pALBTBrHuAC6zZMTEwsKSlBEATbywsGG4JJxdTUdMeOHdXV1ffu3YuOjn727NncuXMDAwPlBjRWgOEjEAgbNmzo6+u7d++evr6+k5MT3hEBMDiQgIHBUVVV5dIZwz+O17ywlAd3P1syl9ffb+XoYmpnnxwdhSCIvrHp/NUbvlm92NjK1tjahtPX9+rP+i9a9sP2jXvXLBXw+dbOruW5WQiCyBLlrBydN/k4/Z6QbuPitn2eN0lV3cbFTSgQDvxZDW3deavXbwvymmpmIUskfnT4t1eDmTaDss5z+r5z1xEE0SEb/LB9I4FAUNXU+vffu59p65P1jEzUtLSVRmI5HIIgAj6/paXl0KFDA++U+5uysrKysrK8vLzktuR+Eok08FtlZWWBQHD16lWYNQ/GEofDycjIePbsWWdnp6Kioo+Pz+zZs8lkMt5xAYAPCwuLzz77rLy8PCoq6u7du8+fPw8JCfH29oaLESOISCRu2bLl0KFD58+f3717t4GBAd4RATAIsBEzGJzjx4/fT6RuO/TriByNx+0nIARsxRempb6undHoQPFBEOTW8Z/7ens2fvXda3+WxexWUdd4qUzE4/Zjc+T7enuUSCTJzPqXiIQCLqcfK529IZjyvOyLP3x76OZDDov10pMPvr86fPP2Ye4cLXFgfcTHmzfZ2dnxeDwul9vf38/lcnk8Ho/H43A42J08Hq+/v7+/v/9dXrNycnLq6uqKiopYSU1JSUlRURH7FiuvDXxISUlJUnkbkf8cMHnU19enpKRgM+X19PT8/f19fHyg5woADIqi+fn59+/fb2tr09fXX7hwoaurKyyDHEHYtUt1dfUvv/wSLjgCKQIVMDA4qqqqXM5rqlJDM3DTLYym7pR96yL8wpaIRKLMhNhvzlz5x0g0XrPpiuSAKmpvGkIlS5Qjqb3cEPJqMBgCgTAw+3pRlB97+RyXwx6p7AtBEBaz29ramkKhvOPzBQIBm83mcDgcDkcgEAgEAg6HU1ZWlpeXRyQSp02bpqCggD3E5/O7u7ubmpoEAsG7JG8vld1IJNJLVTgikYiV3QZW3lRUVGDCx6QiFAqLioqoVGp5eTmBQHBwcAgMDIQBGwC8hEAguLm5OTs7p6enP3z48MyZM6ampiEhIY6OjniHNkHo6+tv2LDh1KlTZ8+e3b59O9QYgbSAChgYnPv373/348/f/Hlr9E7R38cqyUwTo+Jpbp5qWniOTe/rYTa8qLBz9xx4Z1dba1Fa0ozAYBX1EdvvZbOfc1pKio2NzdB+XCwW379///Hjx4aGhlu3btXR0fmnp3G5XKykJimvSUptWHntnx56awzy8vJYGY1EIin8TWkArPKG3SCRSNiNER89AkZbb29vRkbG8+fPu7u7VVVVZ86c6e/vD9sbAPBWfD6fSqXGxcWxWCwLC4vw8HArKyu8g5ogoqOjHz16tGDBgkWLFuEdCwDvBBIwMDjFxcXBC0J+f5aNdyATRz+7b52HXV9f39A6ALlc7rlz54qLi11dXdevXz9K3V9YnY3P53P+ht2DFeIkVTgOh8Nms4VCIfZM7PYbDvtqwU35by9V2wZW5EbjPxC81YsXL54/f15QUCAWi01NTQMCAtzd3aHyCcCgcLnc5OTkR48ecblcOzu7pUuXGhkZ4R2U1ENR9MSJEyUlJe+99567uzve4QDwdpCAgcHp7+9XVVW9nFuhoATN1iOjuqz498+21dVUD+FnW1tbT5w40draOnfu3PDw8HHYAMbn87FVbRgOh4OtcOsfAKvLSb59a84mKaYpKytLbkgyNOxbLHNTUlKCDGGYUBQtKSmJi4urqakhEolOTk6zZ8+2sLDAOy4ApFhfX19CQkJiYqJQKHR1dV28ePGU1438Be+uv7//0KFDTCbzyy+/hIEcYPyDBAwMmpGxyc5j501tp+EdyARBfXjvr6cPH8c9GuwPlpaWnjt3TiQSbdiwwcXl7btRSwuBQCDJ0CSJ2cCc7aWEjcPhvCFnU1BQUH6jgTkblNcG6u/vp1Kpz58/7+rqUlNT8/f39/f3h71lARgpHR0dMTExWVlZsrKyPj4+oaGh8PoaDmwgh6am5ldffSX/976dAIxPkICBQZsdNNclZOnM+QvxDmSCuHnsJwN59JcjRwb1U8+ePbt9+7a2tvaHH34IV/sGTiX5J2w2G8vWeDzePx1HTk5OSUlpYN8jiUQikUgqKirYVwyJRJrYf907OjpSUlKwnZSnTJkya9YsPz8/yE4BGA0MBiM6OrqwsFBRUXHu3Llz5syBOaJDlpeXd+bMGT8/v9WrV+MdCwBvAs05YNDsbG2baofSLwdeq6WuOjBs/rs/XyAQXLlyJTMz08rKasuWLXDFFEEQOTk5DQ0NDY13GosiFArfnKphmEwmm83mcrn/dMaXEjPJt5KcTUVFRerGItfU1Dx58qSwsBBF0WnTps2ZM8fOzm4ctrYCMGEYGBhs3bq1rq4uKirqwYMHiYmJCxYsCAgIgIF+Q+Dm5kahUFJSUmxsbGAxGBjPoAIGBu2PP/64cOfep0fP4R3IBLFzge+1Sxe9vb3f5clMJvPkyZN1dXW+vr6RkZEwRXC0iUQiNpvd19f3hq/Yjde+l8rIyGDJGDasX5KYqaqqYl/V1dVVVVVxLy6hKEqj0RITE4uLi4lEoru7e3BwMFRWARhj5eXlt2/fbmpq0tPTW7RokZubG94RSR8ej/f999+zWKxvvvkGBrSCcQsSMDBoL168cJsx43x6qQx8+h+2rrbWj+f5MLu73qWlrbq6+tSpUxwOZ9WqVe+YsIExM7ANsqenh8lkvtQAiVXVXjvTH5sDqaGhoa6urqysrK6urq6ujnVCYrfV1NRG6XK4SCTKzs5OSEhgMBgkEsnf3z8wMBDKqgDgRSwWp6WlxcTE9PT0mJubL1261NLSEu+gpAydTv/xxx/NzMx27doFhUQwPkECBobC0Mj4k6Nnzac54B2I1Eu6f7s88dGTx/FvfWZWVtbly5cVFBS2bNlibW09BrGB0cDj8dhsdm9vL+tv2O2B94jF4pd+SlZWFiuaYRUzyQ2MmpqaqqrqYOc98ni81NTUp0+fYjM2/Pz85syZo6T0+u3IAQBjicfjJSUlYdPqHR0dIyIiYEzioMTHx9+7d2/RokULFizAOxYAXgPWgIGhmBUwqyQzFRKw4SvPTg+aHfjm54jF4lu3bj1//tzExGTr1q2amppjExsYDdgW1VpaWm94jkAgkNTQXrrR1dXV2NjY09Pz6k/Jycmpq6vr6uqq/w0rqWloaGhpaQ28DMxisRITE5OSkjgcjoGBwfr16z08PKCdFYDxQ0FBITg42NvbOzY2NikpqaysbObMmQsXLlRTU8M7NOkQHBxMo9FiYmJsbGxg2wwwDkEFDAzFhQsXTl66uvvkJbwDkXofzvGMuXf3DWuFeTzemTNnSktLZ8yYsW7dOtwXC4HxgM/n9/b29vb29vX1sVisnp4eFovFZDJ7enq6u7t7e3tfmssvIyOjpqamoaFBIpF6e3sZDIZIJCKTyT4+PhQKRUVFBa//EADAW7W2tkZHR+fn58vLy8+aNSskJATGJL4LJpN54MABRUXFPXv2KCoq4h0OAP8HJGBgKOrr66dNn34urUQO/gwMA6Ou5usVIV2dnf9UfGAymb///ntDQ8O43WcZjE9YViZJyXp6etra2hobG9ls9qvv+VjpDBsjKambaWtra2trq6urwwoKAMaD2traqKioFy9eaGhohIaGent7w2vzrYqKik6cOAFT6cE4BAkYGCJX9xmz1272Cg7FOxApduv4zwqszosX/nzto01NTcePH+/t7V2zZg2FQhnj2MCEwWAwHj9+nJ2djaKog4NDSEjIlClTsNwM097ejt1gMpm9vb0D/yjIysqqqKhoaGjo6Ojo6OhI+hv19fXhGjwAY6+4uPj27dttbW1kMjksLAzGJL7V+fPns7Ozd+zYYWdnh3csAPx/kICBITp27Nj1B48+O34e70Ck2M4FvhfO/hEQEPDqQ2VlZWfOnJGRkdm6dSuM3ABD09jY+OTJEyz1cnV1DQsLI5PJb/4RyfKzzs7Orq4u7GtXV1dHR4dAIJA8jUAgqKmpaWtra2lpYV+1tLR0dHS0tLSg1QeAUSUSiahU6sOHD1kslq2t7ZIlS0xMTPAOavxis9n79++Xk5Pbt28fXDYC4wckYGCIOjs7DY2Mfn+aqaGti3csUomWn3Pss62N9fWv9h9SqdRr165paWlt3779rZ+YAXhVXV1dTExMaWkpkUj08vKaN2+ejo7OMI/JYrEk+Vjn37q6ujgczsCnKSsrSxIzjK6urp6eHixfBGAEScYk8ng8V1fXpUuXwp5X/wRrRJw9e/by5cvxjgWA/4EEDAxdaNhCfWfPBf/aiHcgUumP/bsdjMkrli+XkZFRVFQkEony8vJycnJUKjUxMdHU1PTDDz+EgVdgsOh0+sOHD4uLi+Xk5Pz8/IKCgkZ7bCZWNGtvb+/o6JB0M7a3t3d2dg78+6KsrKyrq6ujo0Mmkw0MDHR0dKCPEYBhYjKZDx48SE9Pl5OTCwoKCg4OhtfUa505cyY/P//TTz+1srLCOxYAEAQSMDAcUVFRX3174NDtOLwDkT4CHm+Lv2t6WmpRUVFSUtIbnrlkyZLg4OCxigtIsaamptjY2Pz8fFlZWS8vr9DQUA0NDRzjEQgEWO9ie3t7W1tba2srlqSJRCLsCQQCQUNDY8rfsEKZrq4u1MoAGJTm5uY7d+6Ulpaqq6uHhYXBfI5X9fX17d+/X1lZec+ePfAOA8YDSMDA0PH5fBMzs22Hj073mIl3LFIm/tqF8ufx1JRkBEGePn16586d174SCQTCwYMHh988BiY2BoPx8OHD8ZN6vRmTyWxubsYSs46Ojo6ODgaDMXCBGVYrkxTKoFYGwLsoLy+/desWg8Egk8nLli2zt7fHO6LxJTs7+9y5c8HBwUuWLME7FgAgAQPD88uvv16Nuv/V2et4ByJNRELBjvm+F8+dDQoKwu5JSUm5du3aSy9GAoFgY2Ozc+dOPGIE0oHBYMTExBQUFMjKynp7e8+fP18a9+kWi8VdXV2SJsbXZmXq6uoGBgaSrMzQ0FBVVRXHmAEYh0QiUXp6enR0NIvFsrOzW758uYGBAd5BjSOnTp0qKiravXu3qakp3rGAyQ4SMDAsHA7H2NT002PnbZxhGO67SmCyd/oAACAASURBVIy6kXHvel5ONvZteXn56dOnxWIxkUjkcDgDX5IkEsnHx8ff3x9WV4OXdHV1PXr0KC0tjUAgzJgxIzQ0VFd3Qo3DEYvFA9sXW1pampubmUym5AkaGhpkMllfX9/AwEBfX3/q1KkkEgnHgAEYJzgcTnx8/LNnz1AUnTlz5qJFi+BqBYbJZH777bdaWlpff/01dGkCfEECBobr++//E5tEhXn070gsEu0Km3X8lyMLFy5EECQ1NfXq1auamprbt29XVFQ8duxYc3Mz9qqUk5PT0dFpbm6WkZGxt7f39fW1t7eHvxmAxWI9efLk2bNnIpHI1dV18eLFU6ZMwTuoMdLf39/W1obVx5qbmxkMRktLi+SvmLKyMplMNjExwWplxsbG8vLy+AYMAF66urqio6OzsrKUlJTmzZs3e/ZsIpGId1D4S0lJuXr16vLly2fPno13LGBSgwQMDFdPT4+JqemeP2+b2U3HOxYpkBJz98nF06XFRQQC4dGjRw8ePDA2Nt6+fTs28JDL5Z45c6asrAxBEGxmLp1Op1Kp2dnZPB5PXV2dQqH4+fnBqrDJic1mJyYmPn36lMvl2tnZLVu2zNDQEO+gcMbn87HiWFNTU1NTE4PB6Orqwh6SkZHR09ObOnWqoaGhgYGBoaEhVJLBZFNTU3P79u2amhotLa1FixZ5enoSCAS8g8ITiqI//PBDc3Pzt99+O57XyoIJDxIwMAIOHTp8/f6DfRfvTPJ39rfictg7Q/zPnj4VGhp69+7dhIQEGxubbdu2Ddy7ViwWX79+PSUlZd++fZL2fS6XW1hYmJmZWV5eTiAQbG1tKRSKm5sbTHOaJLA9f+Lj4zkcjoWFRXh4OAxT/idYlay5uZlOpzc3Nzc0NPT19WEPKSkpGRgYmJiYmJiYkMnkqVOnQk0ATHgoiubn50dFRXV2dpqbm0dERJibm+MdFJ7odPrhw4fd3Nzee+89vGMBkxckYGAE8Pl8Byen4PVbZy2OwDuWce3yfw8IWhsfRN+/fPlyenq6i4vLpk2bXptEFRQUuLi4vHp/c3NzRkZGamoqm81WVlZ2c3MLCAiYOnXq6McO8CEWi9PS0h48eNDb22tmZrZ48WJbW1u8g5IynZ2dTU1NDQ0NDQ0N9fX1nZ2d2P3y8vKGhoZGRkZGRkbGxsaQj4EJjM/nP3/+HDZuxly7di05Ofnjjz+ePh06dwA+IAEDIyMlJSV8WcQvsckqaup4xzJONVZVfh0Zlpeb+/jx49LSUn9//8jIyKHVDAUCQXFxMZVKpdFoKIqamJj4+vp6eHjAqO4JprCw8N69ey0tLWQyOTw83MnJCe+IJgIul9vY2Ein0+vr67HeRaFQiPzdsmhiYmJsbGxpaWlsbAwlfTDBMJnMhw8fpqWlEYnEgICABQsWDOy/mDw4HM7evXuVlJT27dsHl10ALiABAyNmxcqVbKLyxj3f4x3IeISi6IGNK5bOn6ugoFBdXT1SW5G0trampaWlp6ezWCwlJSV3d3d/f38jI6PhHxngq66uLioqqrKyUkVFZcGCBQEBATB/ZZTw+fympqb6+vq6urq6urqWlhaxWIwgiKKiorGxsampqZmZmYmJyWQuF4AJpqGh4fbt2xUVFRoaGuHh4ZNzYVh6evrFixcXL148f/58vGMBkxEkYGDElJaWLl68eMN3P9u5eeAdy7jz9NbV5JsXVyyPYDAYy5YtmzNnzggeXCgUFhUVZWZmlpaWisVirCA2Y8aMyXlpU9pJZpfJy8vPmjVr0l6ixguPx2toaMDqY3Q6XTJlUU1NzdTUFCuOWVpawvJLIO2Kioru3LnT1tZmamq6YsWKybYwDEXRI0eO1NbW7t+/H+ZagbEHCRgYGdnZ2VevXiUQCDdu3zkc9VhNUwvviMaRhqqKw5tXr46M7O/vX79+/YwZM0bpRN3d3dnZ2UlJSV1dXXJyco6Ojr6+vnZ2dqN0OjCy2Gx2bGxscnKyWCz28fEJCwvDZmMCHPX19WGVsdra2pqaGg6HgyAIkUg0NjY2Nze3tLQ0NzdXV4e+ayCVRCJRUlJSTEwMl8udhAvDGAzGwYMH7e3tt23bhncsYNKBBAwMl0AguHv3bmJior6+/ubNm/fu21dSVbf71KVJ2NLwWrx+zuFNK7w9PYlE2S1btozBkl8URWk0GpVKLSgoEIvFZDLZy8vLx8cHtqkdt8RicXJyckxMDJvNdnJyWrJkib6+Pt5BgZehKNrc3FxTU1NdXV1TU9Pa2or9AdXR0bGwsLCysrKysoL/cUDqsNnshw8fJiUlYQvDQkJCJs9y4tu3bz99+vTDDz90dHTEOxYwuUACBoalra3tzJkzDQ0NFApl1apVCgoKXC7Xw5PiGrxw4aateEc3Lvy57zN9VWVVVdXt27ePcY8Hk8nMyspKSUnp6OggEolOTk6+vr62traQG48rNBrt1q1bTU1NZDI5IiICpnJJCzabjWVi1dXVdXV1fD4fQRA1NTUsE7OxsSGTyfBaA9KioaHh1q1blZWVk2phGJfL3bNnDzaNQ1ZWFu9wwCQCCRgYuoKCgkuXLgkEgvDw8IGbytNoNIqX1+e/X4DFYE8v/yFobdDQ0Pjkk0/wGhYvKYgVFRUJhUI9PT1vb++ZM2eqqqriEg+QaGtru3//fl5eHolECgkJgUkb0kskEtXV1VVWVlZVVVVVVXG5XARBSCSSpaWljY2NlZWVkZHRZPg4C6RdcXHxzZs3Ozo6Js/CsLS0tEuXLi1fvnzgxxgARhskYGAohEJhVFRUYmKinp7e5s2bDQ0NX3rC7du3t2zdtv/iHUNLa1wiHA8y7l3vqaFpaWnt3r1bU1MT73AQDoeTl5eXmJjIYDCIROK0adMoFIqLiwt86B97HA4nPj7+2bNnKIr6+/svXLhQSUkJ76DAyBCLxS0tLdXV1eXl5TQajc1mIwiiqKhoZmZmZ2dna2trYmKCd4wA/COhUJicnPzgwQMej+fp6bl06dKJvRgVRdFDhw61t7cfOHBARUUF73DAZAEJGBi0zs7OkydPDmw7fO3TTpw8uf+7AweuResavJyeTQZ5j+520Io1NTX37Nkz3hZf0el0KpWalZXF5/M1NTU9PDz8/f0n1dprHKEompaWdu/evb6+PkdHx4iIiClTpuAdFBgtKIo2NTVVVFTQaLTKykqsMqatrW1ra2tnZ2djYzOxP9oC6dXT0xMTE5OamiovLx8UFDRv3rwJPPmzurr6v//976xZs1auXIl3LGCygAQMDA6NRjtz5gyfz4+MjPT29n7zk7/+5ptL165/d+W+uvbkmvFa8iyWUZSjqqp68ODBcTtDvL+/Pzc3Nzk5uaGhgUAg2Nra+vr6QkFsVNHp9OvXr9fW1pLJ5BUrVsCAyklFLBbX1tZiZbHa2lqhUEggEKZOnWpnZzd9+nQrKyvYEBaMN3Q6/datW1VVVZqamosXL6ZQKHhHNFpOnz5dWFi4Z88eAwMDvGMBkwIkYGAQqFTq9evXVVVVP/jgAzMzs7c+H0XR997fnJFf+PXZa0qkyVLZL0uMayzMUlJSOnz48LjNvgbCCmLZ2dk8Hk9dXZ1Cofj5+cG+KCOLw+HExMRgc8bmzp07f/58+LQ9mfF4vBcvXtBotPLy8qamJhRFFRQUbGxs7O3t7e3toRwNxg8URfPz86Oiojo7O21sbJYvX/7qooMJoKOjY//+/RYWFjt37sQ7FjApQAIG3olAILh27Vp6erqFhcUHH3zw7m0zIpFo5apVxeUVX566PBnqYIWPo1vLCuTl5X/66SfpmuTL5XILCwszMzPLy8slBTEnJyfIE4YJRdGsrKw7d+6wWCxHR8fIyEgtLdglD/x/LBarsrKyuLi4uLgY22dMR0fHzs7O0dHRzs5uAvd9ASnC5/OfP38eGxvL5/M9PT2XLVs28cY43b179/Hjxx999JG9vT3esYCJDxIw8Hbd3d2nTp2qq6vz9fVduXLlYD+Royi669PPbkXd/frsNX1j09GJcVzIjbnd+aJMWZn0448/SO/Hpubm5oyMjNTUVDabrays7ObmFhAQgNcIR2nX0NBw/fr16upqPT29FStWwIh58AZYj2JpaWlpaWlDQwNWFsMyMUdHx4n3eRdIHSaTee/evaysLCUlpXnz5s2ePXsiXaHjcrl79+5VUlLau3evrKxsc3NzY2PjjBkz8I4LTEyQgIG3ePHixZkzZzgcTmRkpI+Pz5CPc/jw4Z9++eXfp6+a2U3Mz6BpNy/2NdVqa2t/++230pt9SQgEguLiYiqVSqPRUBQ1MTHx9fX19PSUl5fHOzTpwOPxYmNjnzx5Aj2HYAh6e3vLysqwZIzL5RIIBHNzcycnJycnJ9jrGeCrqqrq1q1bdDpdX19/+fLlE+m6Umpq6uXLlxcuXNjV1ZWenm5jY/PJJ5/gHRSYmCABA2+SnJx848YNNTW1LVu2DH8/EJqv7+/5BapHTrjPChqR8MaP+NO/ENg9ZDL5m2++mWCfs1tbW9PS0tLT01kslpKSkru7u7+/v5GREd5xjWuFhYU3btzo7u52dXVdsWKFhoYG3hEBaSUWi2tqaoqLiwsKCtra2hAE0dHRwWpi1tbWsHUswAWKounp6ffv3+/t7XV2do6IiJgYy4Y5HM6+fftYLBaCICiKqqur//jjj3gHBSYmSMDA66Eoevfu3YSEBDMzs61bt6qrqw/3iD/9hHz+eX1oqGtWlt/CZZE7v5QlSn2ZCEEQdm9P9C8HtFVVLCwsPv3004n6eUgoFBYVFWVmZpaWlorFYqwg5uHhIV3r3MYAk8m8efNmfn6+hobGihUrXF1d8Y4ITBwMBqOkpKSoqKimpgZFURKJ5ODg4ObmNn369In6zgPGMx6Pl5CQEB8fjyCIn5/f4sWLpfcvglAopFKpDx8+7OvrIxD+/2fjX3/9FTZpBKMBEjDwGkKh8MKFCzk5OS4uLhs3bhyBrrMnT5D58xEvL+TZs9bu7shVq5vaOz85clLPSLo3JK0uK376x6+mxsZOTk4ffPDBZBjg3t3dnZ2dnZSU1NXVpaio6OzsTKFQYJw6giAoiqampt65c4fP58+aNWvRokVSMQMTSKPu7u6ioqKCgoLKykqxWKyiouLs7Ozm5mZjYwOZGBhjra2tN2/eLCsr09DQCA8P9/T0JBAIeAc1aDQa7fjx4wKB4KX7d+/ePfz2HwBeBQkYeBmbzT558uSLFy8CAwOXL18+Au+klZUIhYKoqSHZ2ciUKQiCCIXCffv3/37i5Hv7Ds2cFzYCQY85sUj06PLZumyqlaXljBkzNm7cOBmyLwkURWk0GpVKLSgoEIvFZDLZy8vLx8dnvG05PWbq6+uvXLlCp9NNTEzWrFkDLZpgbLDZ7JKSkry8vLKyMpFIpKys7Ojo6ObmNm3atAnWCw3GueLi4ps3b3Z0dFhbW69cuVIa5zZVV1cfO3aMy+UO/GC8du3at255+lZsNruvr6+vr4/JZLLZbBKJpPK3EWgvAtIJEjDwf7S3tx87dqy9vX358uUBAQEjcEQWC/H0ROrrkdRUxNl54CNPnjx5b/NmPRPz9V8flK7piJVFeecPfO1gbaWjo+3t7b1mzRppvOA3IphMZlZWVkpKSkdHB5FIdHJy8vX1tbW1nTy/EIFAEB8fHxcXJysrGxoaGhQUNKlScTBO9PX1FRYW5ufn02g0kUhEIpFcXV09PDysrKwmz4sR4EsgECQmJsbGxgoEAm9v78WLF6uoSNn+n83Nzb/99huTycQ+GxMIhKCgoKVLl77jj4tEoqqqKhqNVllZWU6jldMqqqur2ltbEQRRVFJSJqkokUgkNbX+Pja3n81hs9ksFoIgaurqZuYWNtbW06fZ2djYWFtb29nZQQPFhAcJGPj/ampqTpw4wefzN23a5OTkNDIHFYuRb75BXFyQiIhXH+zv7z98+PDPR44ER65fvv1TuXHfPt7X23Pn+M8pMVEfbN7c3d3t6+u7evVq+HwjKYgVFhaKRCI9PT1vb++ZM2dO+MHZ1dXVly5damlpcXBwWL16taamJt4RgcmOzWYXFhbm5eWVl5eLxWJNTc0ZM2Z4eHhAVRaMje7u7vv372dmZpJIpJCQkICAAOm6JsVkMo8ePcpgMFAUJRAI06dP/+ijj97wfBRFS0tLExMTE54+S6WmEOXkjSyt9E3M9UzMpppbTjWzVNXUIqmq/dPnBE4fi8NiNdfVNNVWNdfVtNZVN9ZWd7W1uXt4BM2ZPTsw0MPDA4YPT0iQgIH/KS4uPnPmjJKS0vbt201MxnRpVkVFxdZtH1ZW10R89Jn3/IUy43INA4/b//TW1bunfgsJWRAcFJSamurl5bVu3TrIvgbicDh5eXmJiYkMBgMriFEoFHt7e+n6A/wuBAJBTEzMkydPFBUVlyxZ4uvri3dEAPwfbDY7Pz8/IyMDm9hBJpPd3Nw8PT2nTJmCd2hg4quoqLhx4waDwTA2Nl75/9i777imrvYB4CfsvRGQvYkKiBHZyBJFcS8UB1j3rKO+auuoWq2bauveVVFUtIAD2QSUFaaQMCXsMAQChISM+/vj/srLq9aKBm7G+f7hJ2ac+7CS+9xzzvMEBZmbm2Md0SD09PT88ccflZWVAAANDY2jR49+/Bx07cOfd+8mJCTgJCRsndxsHF1tnd34spyH/r7tbWZ6Sdbr4sz0lqYmVze34EVBc+fOVVFR+fbBIQEBEzAIAABycnKuX7+uqan5/fffa2pqYhLD48eP9x/4md7TM2PlRs8Zc6UEppVWb0937L1bMbcu244Z88uhgy0tLS9fviQQCCtXrhS9vIJfqFQqkUjMzMzs6+tTV1efMGGCl5eXhoYG1nHxR0VFxe3bt2k0mp2dXXBwMKwyDwmylpaWrKysrKyspqYmtJ+Ys7Ozo6MjrO0GDSkej5eUlBQdHc1kMp2cnIQrf+jr67ty5UphYSEOh/vtt98GVnckkUi3bt8ODw9X1dR2mz6HMNHPwMJq6CJ5T2vKT0tOj3lSWkCaPmNmyLKl/v7+sNaOCIAJGAQyMzNv3rypo6Pz/fffY3sqiSBITEzMwUOH6xoaAles8569QE4By6IOnW2tseG3Xty57uLisn/vTy4uLlFRUc+ePXNwcFi9ejXMvv5Vb29vTk5OSkpKbW0tDoezsbHx8PBwcHAQ3m8dk8l8/PgxkUhUVlZetGgRrDIPCZGampqsrKzs7OyOjg5paelx48a5uLiI1Y5NaPj19PTExMQkJSXJyMhMmjRJiFrS83i8O3fupKen79mzx9jYuK+v786dO8dPnmpta3WbNstzxnxT/LB2oG5tbCBGR6ZFP2Z0da5fu3bz5s1w0btQgwmYuEtNTb13756BgcGWLVv4tmOHxQLftpsrPj7+l6O/ZmVmOPkFeMyYa+vsPpzrEtksVnZibFp0ZMGbtKnTpv60Z4+DgwMAIC4u7tGjR6NHj16/fr2wfIQICHRCLCsri8ViqaqqOjs7e3p6Cl3jzsrKyps3bzY3NxMIhMWLFwvd/nIIAn/v2MzIyCCRSGw2W01NzcnJyd3dHS5NhIYOlUq9f/9+VVWVjo7OggULxowZg3VEXwS9KKyqqlpQUHDsxAlVLZ3pKzeM9/LDdqNEeWFe9PULha9T161dt23bVh0dHQyDgb4aTMDE2qtXryIjI42NjTdv3sy3AuJsNvDzA46O4OTJbxyJSqX+eefOrVu3O+l098DZE/ynmo+xl5Qcqsynj8mk5Ga/eRn95mW0hZXViuXLgoKC+pOEhISEiIiIUaNGbdiwAWZfX4fJZGZnZ79586aysrJ/Qsze3l7wv59sNvvJkyeJiYnKyspLly61s7PDOiII+lY9PT1ZWVnp6enoBLWlpaWrqyuBQIA7/qGhgCBIZmbm48eP6XS6nZ3dwoULBf8aXG9v79lz5/744w9NfaNZqzfburhjHdF/1VWW/3Xl98z4FyEhIT/9+KOuri7WEUGDAxMw8RUbGxsZGWllZbVhwwZ+FjxduxZcugROnwZbt/JryMzMzNt/3omJiWlrax0zwRXv6DLG2d3EGo/75pVsXA67vDD/bUYaOfsNOTfH1Nx8zuxZy5Yutba2Hvi0jIyMmzdvWlhYbN68GZ6dfLva2tq0tLTMzMze3l4VFRW0h5jAXoCvq6u7ceNGXV3duHHjgoOD4cQXJGIaGxvfvHnz+vXrrq4uOTk5R0dHLy8vAwMDrOOCRBCDwXj58mVCQgIOh/Px8Zk2bZqsoFY/fv78+fqNGzVGGs7f9IP1WALW4XwarZb65NLZrPgXBw8e3LB+PdwbJkRgAiamoqOjY2JixowZs3btWmk+lru4cAGsXw+WLgW3b/NtzAGqq6sTExPjExMTExMZDIaRhZWeibmusdlIU3N9U3NtA0NZuc9tK2d0d9FqqA3VVQ3vKpqqKxurq2oqy3X1Rvr5+ozU03N3d/fz8/v4VYWFhRcuXBg5cuT27dsVFBSG4usST2w2u7CwkEgkUigUBEGMjY09PDycnZ35+Qv5bXg8XlxcXFRUlLS09Ny5c2GpQ0iEcTicgoKC1NTU0tJSBEEsLS09PT3HjRsn+BPUkNCh0WgPHjwoLi5WU1ObPXu2s7Mz1hH9j/r6+p27dr2Ki1u0dY/XrE900BE0VSVF1w/ukeJxLl447+rqinU40BeBCZg4Qvcy2drarl27lp8frunpwMcHjBkD0tLA0NfXqqqqKi0tpVAoZAqFUlpWVlZKa2yUlZNXVVdXVFaWkf3vnB6T0cPo7u54/57L5egbGllZWY2ysbGxsba2th41apSenh6Px9u2bZuNjc3atWs/OEpZWdnZs2fV1dV/+OEHIargJFwaGxuJROKbN28YDIaysrKrq6sgTIg1NjbeuHGDSqXi8fjly5fD7c6QmGhubk5LS0MnxBQUFAgEAlrCFIfDwcKJEB8VFhbev3+/ra3NysoqKChIX18f64gAj8c7der0ocOHfOYumr9xu7yi0Kx34HG5rx78+eDsiQXz5505fRqu1BB8MAETO69fv759+7aZmdmWLVv4OfXf2QmsrICkJMjJASNH8m3YwWCz2W1tba2trUwms6OjA71TQkJCVVVVQUFBS0tLU1Pzn+rvnT9/vry8/NSpUwOfUFdXd+rUKRkZmZ07d2JVnV98oBfgBWFCDEGQ5OTkx48fS0hIzJkzZ+LEibBMHCTgEATp7e1lsVhMJrOvr4/BYLD+1tvby2QyWSxW//1sNpvJZKIv5PF4vb29Awfpv7//OR+TkJDoX7guJSXVvzBbRkam/w9WVlZWUlJSVlZWVlZWRkZGQUFB9m/y8vL9txUUFGRkZGRlZfm5Eh4SEmg3rdjYWC6X6+bmNnv2bL5tRx+8lpaWxUuWVNc1rP/1N2MrPFZhfIuOtpbrB3+kVZU9fvQQ7lUWcDABEy+5ublXrlwxMjLaunUr/z/twsOBqSkQsLUEXygxMfHBgwe7d+82MTFB72lqajp58iSPx/vhhx/09PQwjU680Gi09PT09PT07u5u9AK8r6/vsP0Iurq6bt26VVRUZGpqumLFCswn4iAxx+Pxuv/W2dmJ3ujq6qLT6eiNnp4eNLn616HQdAhNePrTpIHLqj95m8FgtLa21tfXczgceXl5PT09HR0dKSkpNpvNZrPR57BYLC6Xi95mMpk8Hq//tWw2G00Cv+SLRRMzBQUFJSUlZWVlZWVlpQH6/wtXRYqY9vb2p0+fZmRkKCoqTps2zdvbe/hblaSmpi5ctAg/wW3VgV8/v5dB8KU8fXjz1/0/Hzjw/ZYtWMcC/SOYgImR4uLi8+fPjxgxYseOHRheZBJMjY2NBw4cmDVrVkBAAACgo6Pj+PHjPT09W7du7U/JoOE0cEIMADA8JRPJZPLNmzc7Ozu9vb3nzp0Lz/OgYdDd3d3e3v7+/fv379+j+RWdTu/q6urPuz7+mJaQkBiYkwycTUKnm/pvD5xl+pbfZxaLlZWVlZiY2NDQICsrO2HCBB8fn5GDWeyATs2xWCx0Fq7/NnqDyWT29vait7sH+OQpipyc3MB8TElJSUVFRVVVVUNDQ1VVVV1dXXD2kUJfjkKhPHjwoKGhwcjIKCgoyNzcfHiOy+Pxjhw5evL0qZX7jroGzBiegw61qpKisK1r3Fycr16+zLcOQxBfwQRMXJSWlp47d05dXX3Hjh2qqqpYhyOIdu3apaOjs3XrViaTefLkyYaGhg0bNowePaydFqGPoRNiaWlpPT09aMlEDw8PbW1t/h6Fw+FERUW9evVKTU1txYoVVlZW/B0fEnMcDqejo6Ojo6Ozs7O1tbWlpaWzs7Ozs5NGo3280k9aWlpVVVVVVVVRUVFBQeHj2yoqKlh1M6+oqEhMTMzLy+PxeObm5r6+vkPaWp3NZnd2dnZ0dDAYDAaD0dPTg37f0NsMBgO9/cGr0G+gtra26t/U1NS0tLTQ23BFscDicrnJycnR0dFMJtPJyWnu3LlDvfWazWYvCwnJzivY9tsVXSOTIT3WMGN0d138aXt3U33syxewV5gAggmYWKirqztx4oS8vPwPP/wA9zL9kxs3buTk5Jw4ceLy5csUCmX58uUuLi5YBwX9v09OiI0dO5YvVXebmpquXr1aW1vr4OCwdOlSOD8MfTUWi0Wj0VpbW98P0N7eTqfTBz5NSkpKTU1NYwB1dXUNDQ10Pger5OrL0Wi0pKSkN2/eMJlMXV3dSZMmOTs7YzVj3NfXR6fTOzo62tvb+//t6Oh4//49nU7vXxuJkpGRUVdXV1NTU1dXV1dX19bW1tLS0tLSUldXF/xvu5ig0+lRUVFpaWkyMjKTJk0KCAgYol+tnp6eOfPm0Tq6dpy7pqAsgkW2EAS5c+JQbuLL+FevLC0tsQ4H+h8wARN9dDr9119/7e3t3blzJ5830tTXA11dICp9JzIyMm7cuIHH48lk8ty59lheWAAAIABJREFUc/39/bGOCPqEpqam169f83FCjEgkRkRE4HC4BQsWuLsLUJ9NSMBxudz29vaWlpbW1taGhobGxsaWlpa2traBn6ronBU6/dI/IaOtra2hoSECp/tMJjM9PT0hIaGtrU1FRcXHx2fixImC1quDwWD0TzyiN1DNzc0Dd6ZJSkr252P9WZm2tragfTnig0ql3r9/v6qqSkdHZ8GCBWPGjOHv+O3t7QFTp+GUVLecPC8j0gVgnl794+WfV2NfvHBwcMA6Fui/YAIm4ths9unTp6urq9evX29ra8vPodvbwYQJwN4ePHrEz2Gx09HRsWvXLgRBvLy8Fi1ahHU40Of09xAjk8k4HO7rJsSYTOadO3eys7ONjIxWrlwJF2lAn9He3k6j0Zqbm2k0WlNTU3Nzc2tra3+1CUlJSU1NTZ2/oSmWhoaGOGxGQhCkqKjo+fPn7969k5WVdXNz8/PzE4qlFj09PWj+jP6L3mhvb+//sQIAFBUV+/Ox/txMU1MTrmMcBgiCZGZmPnr0qKury87ObuHChVpaWnwZuaGhwdvX12zshO/2/iIhKheRPyP+4b17p3+JiYqCFxkFB0zARBmCIDdu3MjMzFy0aJGXlxc/h+ZywfTp4OVLEBEB5s3j58jYQdujKSoqnjp1Cn64CouPJ8Q8PT2/5EO6sbHx0qVLjY2Nzs7OS5YsEYcTZegL8Xg8Go1WX19fX1/fn3QNLDOopqaGJlojRoxAb2hpafFlNaxQq6ioiI2NLSoqAgDY2tpOmzZNGCsYcblctJ1Jf0qG3hi400xKSkpXVxf90aNlIXV1dfnZ1gUagMFgvHz5MiEhAYfD+fj4TJs27Ru/1R0dHW4eHlYT3Jfu3MevIAXf65fR137elZKcDMvTCwiYgImyZ8+eRUVFeXt7BwUF8XnoHTvAqVPg0CHw0098HhkjeXl5ly5dUlVV7ezsPHHiBKwaJFwGOyGWkZFx9+5dCQmJJUuWODo6DnO0kKDp7Oysr6+vq6tDk67GxkYOh4M+pKCggGZZurq66I0RI0bAU+3PqK+vT0pKysjIYLPZ5ubmM2bMsLGxwTooPujp6UHzsZaWFnQWlEajDczK1NXV0awMTcl0dHQ0NDQwDFjE0Gi0Bw8eFBcXq6urz5o1y/l/G97k5+ePHTv2S8bp7e318/eX1dTd8Otv4nalNS7izqNzJ16np8P9YIIAJmAiC80obGxsNm/ezOfNBuHhYPFiMG8eiIgAIvH+RaVST506pa6uPm3atGvXrq1evZpAIGAdFPQ1Ghsb37x585kJsYHLDletWgXbfIkhFovV2NiIplsNDQ21tbU9PT3oQ9LS0iNHjtQfYKiLsImq9vb2+Ph4IpHIYrGsra2nTZtmbW2NdVD8R6fTm5qa0GSssbGRRqMN3AQoKyv7wSyZrq4ubG7xLQoLC+/fv9/W1mZtbR0UFIQ2QigsLPzjjz9CQ0Od/60NKZfLnTt/flNn9/Zz1yQlxfEH8ehC2JuoRxlvXsMl95iDCZhoqq2tPX78uKam5s6dO/m8h7i7G5iYAF1dkJEBlJT4OTJG2trafv31Vy6Xu2vXLhUVlW3btrm5uQUHB2MdF/T1/mlCrKGh4fLly83NzR4eHkFBQfBMSBwgCNLS0tKfbtXV1bW0tKAffDgcTktLqz/XMjAw0NbWFoHaGIKju7s7KSkpMTGRwWCYm5tPmTLF1tZWtKcd2Gw27W9oStbU1MRisdBHJSQkdHR0Bmb4cDvZYPX19cXGxsbGxnK5XC8vr4CAgGPHjrW2tkpKSm7fvv3z3cNWfPddVsHbn67dF+2qG5937dCPjeTCNGIqLDCDLZiAiSAmk3nkyBE6nb5nz54hucBPIgFlZSASjZKYTOaJEydoNNrWrVvRN+7jx4/T6fTDhw9jHRrEB3V1dUQiMTMzs7e3V15evq+vT0ZGZvny5bAYlGhra2urrq6urq6mUqlUKrW/0ZaiouLAdGvkyJFwMeEwYDKZKSkpsbGxPT09BgYGkyZNmjBhglgluu3t7ehEGbrGtaGhof93UlZWVk9PD/1tRH8z4QL4L9Ha2hoREVFQUCAnJ4d+M3E4nKKi4p49e/6pAMyly5cPH/31l4jnSipi3QoV4fFObvrO2lDv5o0bWMci1mACJoJu3LiRkZGxcuVKuLnl83g83oULF4qKikJDQ52cnNA7o6OjY2JifvnlF35VW4Iw19vbe+nSJTKZDADonxAb0u6x0DDr6OhAcy006eru7kbv19LSMjY2NjY2NjAw0NfXV1NTwzZOccZkMpOTk+Pj47u6uvT19WfMmGFvby+2kz9tbW39U7KNjY1NTU392w5VVFTQTAxNyfT09OBlgn+Sk5Nz9epVAED/nLaOjs6uXbvk5eU/eObbt2/dPDx+unbffDQsQQG66Z275k45eujn5cuXYx2L+IIJmKhJT0+/ffs2LKT+Je7evZuamjpz5sypU6f231leXn7y5MklS5Z4eHhgGBvEL+3t7ZcvX66qqnJycvLy8nrz5k1WVhaTydTQ0PDw8HBzc1NVFeuroUKqp6cHzbXQfzs6OtD71dTU0IzLxMTE2NhYSSSWSYsSFotFJBJjY2PpdLqxsfGMGTP43t9JGHG53P7Cm2hi1r+XDF0oa2BgYPg3dXV1rOMVFBcvXszPzx94HovD4UaNGrVx48aB19d6enrGjR8/cf7SKcGhWIQpiMoL846uDn6dnj5q1CisYxFTMAETKQ0NDUePHtXW1t69ezcsq/15ycnJ4eHhzs7OoaH/847M4XC2bdtma2u7atUqrGKD+KWsrOzKlSsMBmPOnDm+vr7onUwmMzs7OyUlpba2VkJCwtra2sfHR+S3pgg7JpNZU1PTn3S1trai9ysqKqK5FvovnOMSCn19fUQi8eXLl3Q63czMLCAgAJbG/gCTyWxoaOgvyzmwVIySkpKhoaGRkRGaj40YMUI8J/PJZHJYWNgnH/Lz85s/f37/f4OXLqW2dmwLuzxcoQmHqOsXMqMfk3Ky4WYwTMAETHSw2exff/21paVlz549urq6/Bz63Tugrg5E6MymvLw8LCzMyMho+/btH1diOHfu3Lt372A3MKGGIEhiYuKjR49UVVVXr15tZmb28XOoVCq6Q6yvr2/EiBHu7u5ubm5wzkRwdHR0VFZWVlRUVFZW1tTUoJ9WsrKyBgYG6DSXkZGRnp4e/DsVUiwWKzk5+eXLl2iJjpkzZ4pkpUR+6ejoqKmpaWxsbGhooFKpTU1N6F+ElJSUtrY2+ueA/isjI4N1sMOhuLg4Pz+fSqXW1dVxuVwAAPpWgH5bli5dijYdfvjw4ZZtO45FvlKEFU3/F4Igx9Ytdx1rG3bmNNaxiCOYgImO27dvp6enf0kl1sHp6gJOTkBGBuTmApG4zNbW1nb06FFJScndu3d/8np5fHz8w4cPf/rpJ0NDw+EPD/p2TCbzxo0b+fn5NjY2K1eu/Pym9t7e3pycnMTExIaGBikpKXt7ew8PDzweP2zRQv24XG5tbW1/0tXZ2QkAkJCQMDAwMDc3R+e4dHV1YcYlShgMRlxcXEJCAovFGj169KxZs4yMjLAOSgj09PTU1tbW1NTU1tbW1tbSaDQejwcAkJCQ0NPTQyfHjIyMDAwMRH5+g8Ph1NfX9y9Irq+vRxBEUlLy+++/19PTs7KxCd13dLzXJKzDFEStjQ3bZ/oQU1K+sIsaxEcwARMReXl5Fy9edHNzW7ZsGT/HRRCwYAF4/BiEh4OFC/k5MkaYTOaxY8daWlp27NhhYmLyyefU1dUdOnRo7ty5/v7+wxsdxActLS3nz59vbGz09vaeN2/eP/Vi/hiVSk1MTMzOzuZyuXp6ei4uLh4eHiJ/7oI5BoNRVVWFJl3V1dV9fX0AADk5OXNzczMzMwsLC1NTU1iEQOR1dXXFxsYmJydzOBxHR8eZM2fCMkiD0tfXV19f35+S1dfXs9ls9KH+UjSojwtUiBg2m11bW0ulUtva2l6/fpNZTNl+9irWQQmup1f/KE9Pep2eBi9sDTOYgImC3t7eAwcOSEpK7t+/n89nKkeOgB9/BD/8AI4f5+ewGEEQ5Pz580VFRd99991nSkQiCLJz505DQ8PNmzcPZ3jQtyspKbly5QqbzV66dGl/ZctBodPpb968SUlJaWtrk5OTc3R0nDhxIpwL5a+WlpbKyko06WpsbEQ/hjQ1NS0sLNCka+TIkeK5rUXMdXR0xMTEpKen43A4V1fXGTNmwEbYX4fH4zU1NfXnY/3NGHA43IgRI/qTMSMjIxG+ulFcXOzs6nriSdwIffgG/o+4XM7ueQE//rD9g/3w0FCDCZgouHnzZkZGxubNm/lczebVKzB1Kpg4EcTGApFoWfv06dMXL15MnTp15syZn3/m1atXCwoKzpw5A3v1ChEikRgeHq6iorJu3TpjY+NvGQpBEAqFQiQS8/LyeDyesbGxh4eHk5OTmGyu4Dsej0elUvvXFtLpdACAhISEoaGhubm5ubm5hYUFrJ8BoZqamqKiokgkkqysrJeX19SpU+XEuG0uXyAI0tzc3N8Zr7a2Fu0NjTaG7q9hY2hoKDLluxAEcXP3sHCZOGvVRqxjEXTFWa/Dtq0tLy3V0NDAOhYxAhMwoUehUMLCwtzc3JYuXcrPcREEjB0L2tsBiQS0tfk5Mkby8/MvXrxoa2u7fv36f51qR6v5b9u2DW4KFwocDufu3buvX782Nzdfu3YtH6+ad3R0ZGZmJiUltbe3y8vLjx8/3sfHZ+TIkfwaX4Sh1+ArKyvJZDKZTGYwGODvEhoWf4MrPKF/UlVVFRkZWV5erqamFhgY6ObmBidF+QX926ypqenPx9Clv/35GFrPw9jYWHjzsWfPnq1ev/HMsxQpof0ShtOZrWs9x9n+cvgw1oGIEZiACTcWi3Xw4EE2m33gwAH+n8rQaKCpCdjb83lYLNBotKNHjyorK+/evftLvlHv37/fvXv3l8yVQZjr6Oi4dOlSVVWVh4dHUFDQUExacjicgoICIpFIoVAQBDE3N/f19R07duyXbzATEwiC1NXVlZaWlpaWlpeX9/b2AgCUlZWtrKysrKwsLS1HjhwJdxpAXwhBkLy8vKdPn9JotJEjR86fPx/2LBoKPB4PLWKBqq+vR7tCS0lJ6evrGxsbm5qampiYCFfFURdXt7EBsyctCMY6EOFQW1G6L3gWtboarkQYNjABE2737t1LSUlZt24drGDzGSwWCy3Q/5///OfLN/Ps3btXUVFx165dQxob9I2qq6svXLjQ1dW1YMECLy+voT4cjUZLT09PS0vr6elRUVFxcXGZOHGipqbmUB9XwLW2tqLTXBQKBe1WJCcnZ2pqisfjbWxsjIyMhOi8DRI0XC43LS0tOjq6q6vLzs5u3rx5Ojo6WAclyj6YH6NSqWg+NrADhIWFhSBXSUlKSgoKXnI29rU0XDT+xU5sDA308vjxxx+xDkRcwARMiJWVlZ0+fXr8+PErV67EOhbBhSDI1atXc3JyBlug/969e0Qi8dSpU3CVlMDKzc29fv26rKzsmjVrrKyshu24/RNiZDIZh8PZ2Nh4eHg4ODiI1RIpNOmqqKigUCgdHR0AAFlZWTMzM5h0QUOBxWK9evXq5cuXCIK4urrOnDnz8+0lIH7hcrl1dXUVFRVoStbff0xVVbV/saKgLSf29vE1c/GatgyeGg1CeWHesbVLa6hU2AxzeMAETFhxOJyDBw8yGIz9+/fDz6HPePXq1ePHj319fRcsWDCoF+bm5l66dGnt2rUODg5DFBv0LRISEh4+fKitrb1x40asrog3Njampqamp6ezWCw1NTUnJydvb291dXVMghkGra2tFRUVFRUVb9++bW9vBwOSLnNzc1NTU7gmExpSzc3NT58+JZFIioqKkydP9vX1hXWShllvb291dTWaj1VVVXV3d4OPNo+ZmJhg+HPJysqaMnXaHwmZsnIiXnCf735ZuWjJ3Flbv/8e60DEAkzAhBWaVyxfvtzV1ZVvg3Z3g8ZGYGnJtwGxVl5efvr0aXNz861btw721JDBYGzfvt3T03PRokVDFB70dXg8Xnh4eGpqqoWFxbp16zC/XNfb25uZmZmSkoK2cnZwcJg4caKlqPwddXZ2lpSUkMnk0tLS/pkuCwsLa2trKysrY2NjsZr3gwQBhUKJiIior6/X09NbsGAB3BiGFQRBaDRadXX1u3fv3r17V1dXx+VyAQCysrJGRkamfxvma1LLQkJYSpoLN+0YzoOKhoL0lDtH91WWl2EdiFiACZhQ6urq2rt3r7a29p49e/i5zmfRIvD8OSgpAfr6fBsTO11dXYcPH+bxeHv37v26snhHjx7t7e09ePAg32ODvhqDwbh06RKFQnFzcwsODhaoKRcqlUokEjMzM/v6+nR0dNzc3IS0lTObzS4rK0Pzrvr6egCAtLS0hYWFlZWVtbW1iYmJQH3bITGEIEhmZubjx4/pdLqdnd3ChQsFeUuSmEA7IL979w5NyVpaWtD7VVVVTU1NzczMzMzMjI2Nh7SZB4PBGKGj8+ujlyNNzIbuKKIK4fHW+06IehL5dV00oUGBc/dC6enTp0wmc8GCBfzMvs6eBffvg02bRCP7QhDk+vXrnZ2dW7Zs+eqi5Hg8/sWLF+3t7SK8qEy4tLa2/v77701NTYGBgdOnT8c6nA+h29Nnzpz5+vXrlJSUyMjI58+fo4U69PT0sI7uX6AFDMlkcklJSUVFBZvNxuFw+vr6/v7+o0aNsrCwEN6C1JDoweFwzs7OdnZ2MTExSUlJFAolICDA398frkjEkLS0NJplof/t7u7unxwrKyvLz88Hf3f/MzMzQ1MybX43uXny5IkZfjTMvr4OTkLCbdqsW7dvwwRsGMAZMOFTW1t75MgRR0fHFStW8G3QzEzg6QnGjgVEIhCJqkExMTHR0dEzZsyYNm3aVw9CoVDOnDnD53We0NeqqKi4cOFCX1/fihUrBH9j3getnAW2cn1XV1dZWRmZTO7f1oVWjcfj8WPGjIGXHiDB19TUdP/+fTKZrK2tHRQUNGbMGKwjgj4B3UGKllWsrq5GFyvKy8ubmJiYm5t/SSWP69evOzk5jR49+jPP8fOfbOnhN2nBEj5HLzZqK0oPLJ3T1NgoKyuLdSwiDiZgwufkyZNUKvXnn3/mW8/y1lYwbhzo7QW5ueCLq7QLsrKysjNnzlhZWW3ZsuVbNqiw2eytW7eOGzeOn7ku9FXy8vKuXbumoKCwfv16ExMTrMMZhJaWFiKRiFauV1VVdXZ2xrxQB5vNrqioQKvG19TUIAiCrjCEBQwh4VVYWHjv3r329nY7O7ugoCDYHEKQsVis2tpaKpVaWVlZVlbW1dUFBlTysLCwMDc3/6DtGIfD2bJlC4fDmTBhwvz58z+5sKWhocHC0vJScq7i1y57gQAAu+ZOPn744KxZs7AORMTBBEzIZGdnX716debMmVOnTuXboNu3g7Aw8PIlmDSJb2Nih06nHz58GEGQr976NVBYWFh9ff3x48fhKSmG0IKHurq6mzZtEtLzKrRyfXx8fFVVlZSUlL29vYeHh42NzXD+XqGF4wsLC8lkMpvNBgBoaWnh8Xg8Hj969Gg5OblhiwSChkJvb290dHRSUpKUlBRckShEOjo6Kisr++fH0LZjaC/B/smxpqamY8eOoc+Xk5ObN2+eu7v7B++f58+fv/vXs+1nr2LwNYiQv65f6KurDL97F+tARBxMwIQJm83et28fDof7+eef+bkfg8UCCQmAjxkddhAECQsLKysr27ZtG1/K0MXGxkZGRu7bt09fJLbGCR0EQWJiYmJiYszMzDZs2IB5wcNvhxbqyMjIYLPZurq6np6e7u7uQ7fYo7u7u7i4uLi4mEwm0+l0AICKigoejx81atSoUaO+/QoFBAma/hWJI0aMWLx4MR6PxzoiaBBYLBY6M1ZVVfXu3bv+yTEVFRW0CisAAIfDIQhiZma2dOnSkSNH9r921py5OnaOkxctxyZ0UfGOXHx83VJaYyPWgYg4mIAJE7T0/OrVqwkEAtaxCCg0X+LjDCGVSj1y5Mj8+fP9/Pz4MiD05Tgczs2bN7Ozsx0cHL777jtRKgLR1dWFFupoa2uTk5NzdHT08fEZeCbxLRAEqampKS4uLioqevfuXf8KQzTp0tfXh9O5kGhDECQjI+PRo0c9PT2urq5z585VVFTEOijoazQ3N797966qqiozM7O3t3fgQ+j7mLe396xZs2RlZREE0dTW/vnPJ/pmFhgFKyIQBFnpZvcmPc3GxgbrWEQZnJ0XGiwW69WrV4aGhuPGjcM6FgFFpVKjoqIsLS2nTJnCrzGNjIyUlJQoFApMwIYZg8G4cOFCWVmZj48Pnwt+CgBlZeXJkyf7+/tTKJTExMS0tDQikYgW6nBwcPi6jYtMJrOkpOTt27dFRUXoZJeWltbEiRNtbW2tra1FKX2FoM/D4XAuLi729vaRkZFpaWn5+fmzZ8/+eMUaJPhGjBgxYsQIJyenvLy8DxIwdP4gMTGxoKAgODiYzWZLSknB7Ovb4XC4MU6uiYmJMAEbUjABExoJCQldXV3Lli2DHyGfxGKxrl27JiMjExoaysfOsDgcztra+u3bt1wuV9Dq14mwjo6Oc+fO1dfXz5kzZ/LkyViHM1RwOBy6Bau5uTktLS0tLe3y5cuDLdTRv7OrpKSEw+FISEiYmpr6+fnZ2NgYGxsP9ZcAQQJLQUFhyZIlTk5Od+/evXPnTlZWVnBwsK6uLtZxQYP2/v37zs5O8Pfiw4EPKSkpKSsrE4nEtrY2O2cPjAIUNXhHl7iExPXr12MdiCiDSxCFQ29v748//qilpbV7927+JGD19aLR76vfjRs3MjIyVq1aNX78eP6OnJqaevfu3R07dvBlUxn0rxoaGn777bfu7u7Q0FC+/zQFGZvNJpFI8fHxtbW1/YU6PrmDpb+MYUFBQVNTE/i7drydnZ29vb28vPywxw5BgovL5cbHx0dFReFwuMmTJwcEBMDiHMIlPz//6dOnGhoa6urq6urqmpqa6urq6H/75/anTZ9h4uzlO28RtqGKhvqqiv1LZ79vbcU6EFEG34OEQ1xcXE9Pz6pVq/iTfWVkAC8vcPEiCAnhw2gCgEQiZWRkeHh4DMX5OnoGTKFQYAI2DKqqqn7//Xcej7dlyxYrKyuswxlW0tLSzs7Ozs7O/YU6SCTSwEIdbW1tJSUlZDK5uLiYyWTicDgjI6PJkyfb2dmZm5vDuXEI+iRJSUn0z+TOnTsxMTF5eXnLly+H88NCZOzYsWPHjv38cwoLC32+2zw88Yi8kabmLCazsbFRT08P61hEFpwBEwI9PT179uzR19ffuXMnH4ZrbwfjxoGeHpCXJxqTYG1tbYcOHVJVVd2zZ88QVZP78ccfVVVV+fP9h/4ZhUK5cOGCjIzM5s2bDUWiJd23oNPpb968QQt1SEpKKigooAXBFBUVbWxs8Hi8nZ2dqqoq1mFCkNBAECQtLe3x48csFmvSpEnTp0+HeyNFA5PJVFJWvp1FllOA1Vb4Y9fcyZd/P+vl5YV1ICILzoAJgdjYWCaTyZ+meAgCVqwAVCr46y/RyL4QBLl161ZfX9933303dLW88Xh8eno6k8mEvZKGTl5e3tWrV1VVVbds2aKjo4N1OBjr6up6+/ZtdXV1T08PAIDH46HZl7GxcUBAgL29PR83OkKQmMDhcB4eHnZ2dvfu3YuNjc3NzV22bJm4zbSLpPLycq0ROjD74iM9E7PS0lKYgA0dmIAJuq6uruTkZDwez58PibAw8PQp2L0bTJ/Oh9EEQEJCQmlp6axZs4yMjIbuKDY2NkQisayszM7ObuiOIs5SUlLCw8N1dXW3bNnyhcUnRFJra2tBQUFRUVFpaSmPx5ORkTE3N7e1tR03bhybzUYLdVy8eFFNTc3d3d3HxwcW14agwVJVVV23bh2JRLp3797p06fd3d3nz58/dNfvoGFQWloK6x/yl66JOaW0FOsoRBlMwARdXFwci8WaMWMGH8aqqAC7dwNXV3DwIB9GEwCNjY1Pnz41MzMb6kJ5eDweh8NRKBSYgA0FtHubiYnJpk2bRKDV8mDxeLzKysrCwsL8/Pzm5mYAgIaGhqenp729vZWV1cBqAXPmzJk2bVpGRkZSUlJMTExcXJyTk5O3tze/GohBkPggEAiWlpbh4eFEIpFMJi9duhQW3RZepaWlusZmWEchUkaampfEx2AdhSiDCZhAYzKZRCLRxsbGzIwf7ywWFuDcOTBpEhCJAlA8Hu/mzZs4HC4kJGSol2MpKioaGBiQyeQhPYoYQhDkwYMHSUlJo0ePXrNmjVhdhGaz2Wj5+IKCArRtl56e3r9W1JCVlZ04ceLEiRMrKirQBmKpqanf2EAMgsSTiorKmjVrSCRSeHh4WFiYp6fn3LlzxepdSGSUV1aOMIRVVfhJz9g0qqIC6yhEmSiciIuwlJQUBoPh7+/PtxFXreLbUFiLiYmprq5evHjx8OwXwuPxcXFxnZ2dsOwBv/B4vD///PP169eOjo4hISFiUhi6q6uruLi4sLDw7du3LBYLbds1ZcqUcePGDWrtpYWFhYWFRWtra2pqKtpATEtLC62XCNclQtCXIxAI1tbWDx48SElJKS4uDgkJgQVvhU5HR6ehFfxo5idVTa221hasoxBlYnHGI6S4XG5SUpK+vv6oUaOwjkXgVFdXv3jxYvTo0Z6ensNzRBsbm1evXlEoFCcnp+E5omjj8Xi3bt1CmwcEBweLfAn1hoaGoqKigoKCqqoqBEEUFRXHjBnz7W27tLS00HWJWVlZiYmJkZGR0dHRBAJh8uTJcF0iBH0hJSWl7777zsnJ6fbt26dOnXJ3d1+wYIGMjAzWcUFfqqurC1bg4C9lNXV6ZyeHwxGTa6PDD35bBVdmZmZ7e/usWbNE/twIKgR8AAAgAElEQVR0sDgczq1bt+Tk5JYtWzZs3xxLS0spKSmYgPEFh8O5evVqXl6el5dXUFCQqP6G83i8qqoqdHMXjUYDAGhpaXl7e9vZ2VlZWUlKSvLrQLKysh4eHh4eHui6xKysrIyMDLguEYIGZcyYMXv37r179y6RSKyoqAgNDYW9woRFV3e3vCKW+4e5HHYvg6GkooogCMLj4SQkOt+3qmlqAwA+vmegjx/lcjkSEpLoxyL6qAT/Piy+nJyCoqSUVGdnp6am5vAfXRzABExAIQgSFxenrq7+rZ2FeTwgcqdfz549a2hoCAkJUVNTG7aDysjImJmZlZSUDNsRRVVfX9+FCxdKSkomT548Z84crMPhPxaLVVpaSiKRCgsLGQwG2i45MDDQzs5uqM/n0HWJLS0tRCKRSCTCdYkQNCjKyspr164lkUh379799ddfJ02aNHPmTD5eK4GGSBedjmEC9vjS2ed/XtfWN1BQUp69euOtXw+w+/rklZSZPT37rt+n1VKvHf5x4D0aI/67b4KSm/3Bo+G/HdMzNp2zehMA4MG5kwCAoM0/YPJ1ycjIsFgsTA4tDmACJqCKiooaGhrmz5//rZO/R4+CvDxw6xYQldOvurq62NhYPB7v7Ow8zIfG4/FlZWVNTU26urrDfGiRwWKxzp8/T6FQpk+fHhgYiHU4/NTR0ZGfn5+Xl1deXs7lcmVkZPB4vL29vZ2dnbKy8nBGoq2tPWfOnKlTp2ZnZyckJERGRj579mzChAk+Pj5wXSIE/SsCgWBhYXH79u3Y2NjS0tLQ0FD4ni/gurq65DA6ySnNy3n+5/VzL1IVlFVuHN1flkd6Ry4+E51oZGnz+OJvVw/tmR6y5oN7dp67NnCEj59/cf/OOas3IQiSGh2571o4Jl8XAEBaRhYmYEMHJmAC6tWrV/Ly8m5ubt80SnY2+Pln4OICRKV9MI/Hu337trS09HAuPuxnY2Pz119/kclk+GH8dRgMxrlz5969ezd//nw/Pz+sw+GP5ubmvLy8vLy86upqBEFUVFRcXFzs7e3xeLy0tDSGgcnJyXl4eLi7u1MoFCKRmJ6eTiQS4bpECPoSqqqqGzduTE5OjoyMPHz48Ny5c728vER1sbQI4LDZUlLYvN+W5ufYu3kqKKsAAEJ3/0wmZRmYWxpZ2gAAJvhNef7n9ekhaz6454MRPnh057lrXDb7XclbJqNHQ0dX18hkuL+kv0lKSXE4HKyOLvJgAiaIqqury8vLAwICvmV3PujuBsHBQEkJ/PknEJUVFC9evKBSqcHBwRoaGsN/dBMTEwUFBQqF4u3tPfxHF3ZdXV1hYWH19fXBwcEeHh5Yh/OtGhoaSCRSUVERlUoFAGhoaKCbu6ytrQUqt8HhcHg8Ho/HNzc3p6WloesStbW10T1jCgoKWAcIQQIKh8N5e3uPGjXqxo0b9+/ff/v27fLly1VUVLCOC/oEBUVFZi8Dk0MrKqsiCILe7qHTGfROyb8XLvWxWFIyMgCAj+8Z6ONHvecsJMY8YXR3+cxeOAxfwj9h97FgV4ahAxMwQRQfHy8lJfWtZ/mbNoHychAZCYyM+BQXxhobG1+8eGFlZYXV6buEhISVlVVpaSmPxxOok2zB19XVdebMmcbGxtDQUOGtYoIgSE1NTWFhYXZ2dn9RDR8fHwKB8JnOXQJixIgRH6xLfP78uaOjo6+vr56eHtbRQZCA0tHR2blz57Nnz54/f37w4MFly5bZ2dlhHRT0ISVlZWZPNyaHdvSd/OD3kz10uqKKyvUj+9Q0tail5PqqCn0zi/TnUWOcXAEAH98DAGh4V6mlp//JR71mzt+/fB6Px1v+n32YfFGoPlYfTMCGDkzABA6dTs/LyyMQCN/UbyoqCty8CVauBLNn8y80LCEIcvv2bQkJieXLl2N4pmtjY5Ofn19dXc2f1tjioT/7CgkJEcbsCy1mSCKRcnNzOzo6AAB6enqBgYHjx48XutRl4LpEtI9zWlqajY2Nh4cHXJcIQZ8kISExffr00aNHX79+/Y8//nB2dl68eDE8MRUoKsrKvT092BxaXcNv3uL1fk4jDIz0TEzHefmmPX96bOMKHA6nrK6x+/ytmnKKlt7IgfegL9w5f+r+a+EAgI8f1dTV0zE0VtHQxLCyCI/LZfex4CqJoQMTMIGTlpbG4XAmTpz4TaMoKQF3d3D6NJ+Cwl5KSkpVVdW8efO0tLQwDAOPxwMAKBQKTMC+UFdX1+nTp5uamoQu+2Kz2WQyub+YIdox2d/ff7AdkwVQ/7rEpqampKSkN2/ekMlkHR0dHx8fFxcXeGYJQR8zMzP76aefwsPDMzIyqFTqd999Z2hoiHVQ0P9TVlZmMrBJwAAACzZun716E5fDllNQJJOy1LV1jj6IYXR1Kf69YPXjewAAd3JKAQCffD4AAIfD+c1fPMxfyEBdHe1S0tLDXEFKrMAETLDweLy0tDQDAwNzc/NvGsjHB/j48Cko7HV2dv71118GBgY+WH9Rurq66urqZDJ56tSp2EYiFPqzr9DQ0AkTJmAdzhdhMBhkMrmwsDAvL4/FYklLS1tYWNja2jo6Oore9g9dXd1FixbNnj0bXZcYHh7+5MkTV1dXf39/YU8yIYjv5OTkQkND7ezs7ty5c/To0YCAgMDAQAFfeywmVJSVezFagoiSlpGRHrC5C4fDKf7v58XH9/zTo+UFuc/+vMZk9Ix2dBmiaL9EV0e7BuwANpRgAiZYCgoK2tralixZgnUggiU8PLy3tzc4OFgQ+rHg8fisrCwWC25O/Rd0Ov3MmTNNTU0rVqxwdHTEOpx/0dXVVVxcTCKRSkpKOByOjIyMjY0NgUAYO3asnKgUEf0n/esSi4qKEhMTExMTU1JSxo4d6+fnB2d6IegDBALB2Nj4+vXrMTExVVVVoaGhondpRujo6ujQmmlYRwEAAIYWVst37vv8PZ9/VFNP397N09Fn8lCF+GXe05p0dYVsjb1wgQmYYElJSZGXlxeWuYLhUVRUlJeXJzjngjY2Nq9fv66oqBg9ejTWsQguOp1++vTp5ubm1atXOzg4YB3OP2ppaUGLyL979w5BEGVlZScnJwcHBzwe/60t+IQNDoezs7Ozs7Orra2Nj4/Pzs4mkUiwbD0EfUxLS2vHjh3Pnz9/9uzZoUOHVqxYga5Oh7BibW1V+DIe6ygAAEBJVQ0/3unz93z+UY0ROt6YFj9E1b+rsLGxxjoKUSZeZxgCrrm5mUKh+Pj4wKmVfkwm8+7duxoaGjNmzMA6lv+Hx+NxOByFQoEJ2D/p7Ow8depUa2vrqlWrBDP7am1tLSgoIJFIVVVVCIKoq6u7u7vb2dmNHj1aEGZZsWVoaBgaGjp37tyUlJSkpCS0bL23t7e7uzt8a4IglISERGBgoLW19dWrV3/77Tdvb+958+bBdw+sWFtbN1y8hHUUIqXxXaWTjQ3WUYgymIAJkOTkZACAp6fnV77+4UNgbw+srPgYEub++uuv9vb2DRs2CM6Zn4qKip6eHplMxjoQAYXWPGxtbV29evXYsWOxDud/NDY2kkikvLy8uro6AIC2tra/vz+BQDAyMoIbOT6goqIyffp0f3//rKys+Pj4iIiIqKgouD0MggaytLTcu3fvrVu3EhMTq6qqVq1ahW2ZKLFlbW1dW1mBIAh8J+eXJmqV9XSMl0GKNpiACYq+vr6MjAwbGxtdXd2veT2FApYvB87OIDGR36Fhpra2Njk5edy4cYLWdwWPxycmJtLpdLj0/wMMBuPs2bM0Gm3FihWCk3190DRZiJp3YU5WVvaT28MmTZpkamqKdXQQhD0lJaX169cnJiZGRkYePnx46dKlBAIB66DEjr6+Pg6Ha2+maeh81RkU9JH6qgpra7gEcQjBBExQZGdn9/T0fGX1eS4XLF8OcDhw4QK/48IMgiAPHjyQkpKaN28e1rF8yMbGJiEhobS0VPBrSwyn3t7esLCwurq6kJAQQfjOoHkXiURqbGwEA/IuCwsLrEMTMv3bw2pqahISEuD2MAgaCIfD+fr6WlhYXL169cqVKxUVFXPnzhW3TaTYwuFwllbWdZXlMAHjC1Yvo4XWZGlpiXUgogy+QQiKtLQ0NTU1e3v7r3nxmTMgKwuEhQERulzx5s2b8vLy2bNnawpeIVQrKytJSUkKhSIIaYaAYDKZYWFhNTU1wcHB2Pb7QvOu7OxsGo0GhLlpsgAyMjIKDQ2dM2dOamoq3B4GQQMZGxvv2bPnzz//TExMrKysXL16NVyOOJxcnJ0puVl2rh5YByIKKLnZ+FGjYRfmIYVDEATrGCBAo9H27dsXEBAwa9asQb/43TtgawtsbUFaGhCVHcBMJnPfvn2ysrL79+8XzOuIJ06caG9vP3LkCNaBCIS+vr6zZ89WVFQsWrToW3uIf62P8y4CgQDzrqHDYrGysrLi4uJoNJq8vLyLiwvcHgZBAIDU1NSIiAhpaemQkJCvvKgKfeDsWbBly+eeYGiYsGHDtsi/9t9+PFwxibK7p48aKUqfOX0K60BEmSCe2oqhtLQ0AICzs/PXvPjYMcDhgOvXRSb7AgA8efKks7Nz8+bNgpl9AQBsbGxiYmKam5tHjBiBdSwY6+vr+/333ysqKhYuXDj82Read2VlZTU3N4O/57smTJigo6MzzJGIm4+3h6Wmptrb2/v7+5uYmGAdHQRhxtPT09TU9PLlyxcuXIDVEflj4UKwbRvgcj/9qLs7ePRorJRU6f4DrF6GrDyct/lW5Kz00EM/Yx2FiBPQs1uxwuPxMjIyLCwsvrL8xrlzYMkSIEJNSGpra1NTUwkEgiDXecfj8TExMRQKRcwTMDabff78+dLS0vnz53t7ew/PQREEqaysJJFIubm5HR0d4O+8y8nJScx/HMPvg+1hWVlZcHsYBBkaGv7444+3b99OTEysra1duXKlmpoa1kEJMx0d4OsL4uMBj/ffO3E4gCBg9Wpw7hyQkdEEwMLKipKXY+/6taWkIQAAAIwuekXJW3d3d6wDEXGSBw4cwDoGcVdQUJCenh4YGGhkZPQ1r5eUBF/3QoGEIMilS5d6eno2bNggLy+PdTj/SE1NLSEhAYfDjR8/HutYMMPlci9dulRcXDxr1qzJk4e8Xi2ad8XFxaG7LKqrq3V0dDw8PJYtWzZt2jRra2tFRcWhjgH6J6qqqg4ODh4eHrKyskVFRRkZGdnZ2QiCGBgYwMv/kBiSkpIaN26cgoLC69ev37x5Y2hoqK2tjXVQwgxBwJMn//2vhASQkgKXLoH9+/uX/5SVllVSa2xdYObwTfLTU3oaazdv2oR1ICIOzoBh7/Xr17KysrBwLSo7O7uysnLWrFkCvplEQkLCysqKQqHweDzxvMyPIMidO3cKCwsDAgICAgKG9EDl5eXofBedTsfhcJaWllOmTHFwcIAXlQWNqqrq9OnTJ02alJ2dHRcXFxER8fz5cy8vLx8fH5geQ+IGrY5obGx85cqVs2fPTp06NTAwELa++FKdneDhQ6CkBIKCAABg9mywZg1gMgEAAIcDI0aAJ0/A/27cmDJl8votWxdv3YVFuKIjNzluasAUrKMQfbAIB8bodPquXbucnZ2XLVuGdSzYY7PZ+/fvx+FwBw4ckJaWxjqcf5GQkBAREbFnzx5jY2OsYxluCILcu3cvNTXVy8tr0aJFQ3SIqqqqnJwcdJ2hhISEpaUlgUBwcHCA7deEAo/Hy8vLe/XqVXV1taysrLu7u5+fn4aGBtZxQdBw6+7uvnbtWklJia2tbWhoKLwY8TkcDoiNBX/+Cf76CzCZYOJEkJz8/w8FBYEHDwAAwNkZREaCjwoscTickQYGOy/cNhtlO6wxixA2i7XKc2xWRoaNjQ3WsYg4OAOGsYyMDC6X6+rqOriXIQgQxatoL1++bGtrW7NmjeBnXwAAPB4PACgpKRHDBOzJkyepqalOTk5B6LVJvkLramRmZra0tOBwODMzM39///Hjx6uqqvL9WNDQkZCQIBAIBAKhoqIiNjY2MTExOTl57NixkydPFsM/GUicKSkpbdq0KTo6+sWLF7/88su6desMDQ2xDkogRUWB1asBjQbk5cHMmWDZMuDv/99HFy8GDx6AVavAuXPgU30vpKSkFi9aTIx6BBOwr5adGGtlZQ2zr2EAEzCMvX79WkdHx9zcfHAvW7oU6OiAUyJVIbS9vT0uLs7CwsLBwQHrWL7IyJEj1dXVKRTKkC7AE0AvXryIjY21t7cPCQnh43KaT9YzdHFxgb10hJ2FhYWFhUVdXV1cXFx/lY4pU6bY2dlhHRoEDRMJCYmZM2eam5tfu3bt2LFjS5Ys+cq6x6LN1BRYW4NffgHz5oGPr7hNmQKuXwehoZ8ZYPmypX7+k5fs+ElSSggu4wqgtOjI0OVwQdZwgEsQsVRVVXXs2LHZs2dPmTKY5baxsWDKFLBuHTh/fshCw8DVq1dzcnJ2794tRFfHb968mZ2dffr0afHpQpucnBweHm5jY7Nx40a+TFR+sn8XrGcoqtra2uLj49PS0vr6+oyMjHx9fSdMmCCeuygh8fT+/fuLFy9SqVQPD4+goCCBbbUy5Hp6QG0tGIKZllFjbGdv2knw8uP7yCKP/r5tna9TbQ0VXvccBrAKIpaePXtWV1cXEhIiJyf3pa9hscDMmUBKCjx5Ar78VQKvqqrq4cOH7u7unp7CVECWxWKRSCQLCwsxyRYyMzPv3Lljamq6efNmGRmZbxmqoaEhOTn53r17z549KysrU1FR8fLyWrJkSWBgIKxnKMIUFBTGjBnj6ekpIyNTUlKSlZWVlZWFIIihoSEslgiJA3l5eWdn546OjvT09NLS0jFjxgziBEA0pKeDgwfBihUgKQmsWcP34Xt7e59HPXWbOovvI4u8F/duGqgpf7diBdaBiAVxvfQiADgcTm5uLh6PH1wltyNHQGkpuHsXiFD9NwRBIiIi5OTkZs6ciXUsgzN69GgcDldSUjJmzBisYxlyhYWFN2/e1NfX37x581fP+LW2thYUFGRkZNTU1IC/1xk6Ojp+ZRM8SDgpKSlNnz7d398/LS0tPj4+IiLi5cuXnp6evr6+CgqwiSok4qSlpZcvX25mZhYeHn7o0KFVq1ZZW1tjHdTQa24G166BmzdBWRmQkgIBASAkZCg2tK9eteqXX36hlpGNrUSnP+owYLNYL25fefr4MdaBiAu4BBEz+fn5Fy5cCA0NHcRC8IoKYGsLnJxAUpIoFeHIycm5cuXKnDlzhqGXFN8dPnyYy+Xu378f60CGVkVFRVhYmLq6+g8//PAVRQjb2try8/NJJFJlZSUAQEtLi0AguLi46H1UxgoSN1wuNz8/PzY2lkqlysnJubq6Tp48GTYYgMRBRUXFpUuXuru7h6eVIsZycoCjI7CxAQsXghUrhrR/6Y8//ZReWLL5xB9DdwjR8/zO9TJifGpyEtaBiAs4A4aZzMxMaWnpsWPHDuI1FApQVQUXL4pS9sXhcP766y81NTVvb2+sY/kao0aNio2NbW9vF/DGZd+ioaHhjz/+kJOT27Rp06Cyr/fv3+fl5ZFIpKqqKgRBNDU1fXx8CASChYXF0EULCRdJSckPiiWmpqaOHz8+ICAAzotCos3CwmLPnj2XLl2KjIxsbGwMDg4WigrAX2n8eJCbC4alyNa2rVvPmZk1VFeNNDEbhsOJAC6H/ezmpTs3b2AdiBiBCRg2mExmUVHR2LFjB7f4OzAQVFeL0tYvAEBKSkpzc3NISMg37inCCh6Pj42NJZPJg+4lICTa29vPnj3L4/G2bdv2hVvd2tvbc3Nz+/MuDQ0Nb29vAoFgbm4Om5BC/wQtllhTU5OQkJCVlZWZmWlrazt16lRTU1OsQ4OgoaKurr5jx47Hjx8nJibW1dWtX79e6HvltbSAe/dAXh64efPDh4arxLGmpuaKFd9FXzu/5tDJ4TmisEuMjNDX0/P19cU6EDECEzBs5ObmstnsCRMmDPqVopV99fb2Pn/+3MDAQHgL8lpYWMjIyIhqAtbd3R0WFtbd3b1ly5Z/bVxDp9NzcnJycnL657smTZpEIBBMTEyGJVhIFBgZGYWGhgYGBiYmJhKJxMLCQrRmva2tLczeIZEkJSW1cOHCkSNH3r9//9dff127dq2ZmRDO23A44OVLcOMGiIkBfX3AzAx0dGC4WX3nDzusbWwCQ9fqm8EFF/+Cxex9evns1YsXsA5EvMA9YNgICwurqak5fvy4+JagBQAA8OTJk5cvX27evHn06NFYx/L1zp49S6VST548KWIniH19fWfOnKmurl61atW4ceP+6Wk9PT15eXnZ2dllZWU8Hk9NTY1AIIwfP97U1FTEviHQMKPT6SkpKYmJiQwGw8DAYNKkSbBmPSTCKisrL168yGAwFi9e7ObmhnU4g1FTA5ydQWMjUFAA8+aB0FAwcSLmeyV+/vnnx89j9996BD+JPi887Fh7ZUn8q1dYByJeYAKGgc7Ozl27drm7uwcHB2MdC5Y6Ojr27t1ramq6bds2rGP5JnFxcY8ePfrpp5/+dY5IiHC53D/++KOkpGTJkiXu7u4fP4HNZpPJ5IyMjIKCAg6Ho6CgYGdnRyAQxowZA0+RIT5iMBhoGkan07W1tQMCApycnMT80hUkqjo6Oi5cuFBdXe3h4bFo0SKh6c2AIGDxYuDrCxYsAIOv0jREWCzWGFu76Wu/d58GS9L/o0bqu13zppBycqysrLCORbzAzzAMZGdn83g8JyenL3o2goCuLsF5R+Oj6OhoNps9f/58rAP5VqNGjQIAlJSUiEwChiDI9evXi4uLZ82a9UH2xeFwSkpKSCRSXl4ei8WSkZGxt7d3dnYePXq00JwrQEJFQUEhICDAz8/vzZs3sbGxt2/ffvbsmb+/v7u7O0zDIBGjpqa2Y8eOO3fuEInEpqamNWvWKCsrYx3UR4qLwQeLVnA4EB6OUTT/SFZW9vwfvy9asmScp4+CsgieRPHFzSN7t23dCrOv4QdnwDBw5MiRrq6uI0eOfNG0eEQE2LABvHgBxo8f+tCGT3Nz84EDBxwcHFatWoV1LN8KQZD//Oc/enp6W7duxToW/oiIiEhISPDy8lq0aBF6D4/Hq6qqysjIyM7OZjKZ0tLSeDyeQCA4ODh8dU8wCBosBEFyc3OjoqKampqUlZUnTZrk7e0tpPV7IOgzEhISHj58qKmpuWHDhpEjR2IdDgAAgI4OEBEBLlwABQWgvByYm2Md0BeZM28eR0kjZPfPWAciiNKfR0WeO04uKRa7buACAF4+HG7Nzc1UKnXKlClflH0xmeA//wHy8mDUqKEPbVjFxMQgCBIYGIh1IHyAw+HweHxOTg6LxRKBbCQ+Pj4hIWH8+PFBQUEIglRWVpJIpJycHDqdLiEhYW1t7ezsPOgCnhDEDzgcjkAgjBs3rqioKDo6OjIyMi4ubuLEiX5+fvLy8lhHB0F84+vrq62tfe3atWPHjoWGhg6uYw1/8XggIQFcuwaePgUsFjAzA4cOYVhdY7DOhoXZ2ds7TPS1d/XEOhbB0trYcOOXnx6E34Of5piQPHDgANYxiJeEhITy8vLFixd/UT+lY8dAZCS4fHnYircODxqNdu/evQkTJnh4eGAdC3/09fWRSCRLS8svLNQusEgk0p07dywtLWfOnEkkEm/fvh0fH19dXY2WQAgJCZk4caKBgQFc+gVhCIfD6ejoeHh4GBsb19XVZWVlEYnEvr4+Q0NDUW6jBIkZHR0dAoHw9u3b5ORkBEGsra2xiQNBgJ8fyMkBM2aA334DYWHA0xMoKGATzOBxOBxlZeXTP+91mzZbXlEJ63AEBZfLObE+ZNG8uWvWrMY6FjEFlyAOt3379klJSe3bt+/fn0qjASsrMHo0SE/HvJoQf12+fDk/P//nn3/W1tbGOhb+oNPpO3fu9PX1FeotbeXl5WFhYXJycgoKCs3NzQAAY2NjJyen8ePHq6qqYh0dBH0amUyOioqqqqqSk5NzdXUNCAgYVLtwCBJkDAbj0qVLFArFzc1t8eLF2Fz8ysoClpZAXR2DQ3+D3t7ely9fJiQkcDgcaRnZ1KycvdcfSMC9ygAAAO6e+qW2MCedSIQXrbACL2MPq9raWhqNNnPmzC969u7doKsLhIWJWPZVX1+fm5vr7u4uMtkXAEBFRUVfX7+kpATrQL5SW1tbamrqq1eveDxed3e3srJyYGCgk5OTsE/oQeIAj8fj8fiKioro6OjExMT09HQ3N7cpU6bAqwaQCFBQUNiyZcuDBw+Sk5ObmprWrVs3hGU5yGRw9SrYtg3o6//P/V/RsxRTXC739evXUVFRdDodj8fPnTtXV1fX3cPz8YWw+Ru3Yx0d9nJTE5Meh+fl5sLsC0MwARtWJBIJAPCZlkr/hSBATg4sXy50b3z/6q+//pKUlAwICMA6ED4bNWrUq1ev2tvb1YXnMmFHRweJRCKRSGjrZBwO5+rqOnnyZF1dXaxDg6DBsbCw2Lp1a0VFRWxsbGJiYmpqqouLS2BgoJrwbFaBoE+SkJBYtGjRiBEjHj58ePz48Q0bNvD5LbqnB0REgKtXwevXAIcDtrYgJISf4w8vMpkcERHR0NCgp6cXFBREIBDQ+++H3yOMH29sM3qC3xRsI8RWfVXF+d3f3/nzT2NjY6xjEWswARtWJBLJ0NDwi946cThw/jwQuQWiVCq1sLDQy8tLU1MT61j4DE3AKBSKi4sL1rH8i56enqKiIhKJ9PbtW7R1sqKiIoPB2Lhxo1B3xP4/9u4zrKlsawDwDiRUQXqTDiK9l1DUoShIUwEVAUVEsWDBPpaxjCOO5dorFlCKY8NCkYggUkNvUhUEQVCK9JqE8/3Iffi8yiglyUlgv79mYrLPUjTnrF3WgiBlZWVlZeXq6uoXL16kpqZmZGQYGho6OjpOpvV2aGqytrYWFxe/cePGyZMn161bR7MjYQcPgmHh0f0AACAASURBVAsXQEcHkJAAu3cDX1/AshXJa2trHz16VFlZKSAg4OXlZW5u/m1TSgUFhZjoaNsFC7h4eLXNJsn587H62vTluJ/XgX377O3t0Y5lqoNFOBintrY2Li7Oyspq5syZo/3M5Np8CAC4e/duW1ubn5/f5Ku6IyAgEB8fj8Ph9Ji1Ykp/f39OTk5kZGRERER+fn5fX5+pqambm9uXL18aGhpWrlw5PFMIQSxNUFDQ2NhYV1e3v78/MzPzzZs3TU1NUlJS06bBI/gQCxMTE9PS0srNzU1JSREUFKRN58n4eIDFghMnwLVrwNYWsObcaFtb2+PHjyMiIrq7u21sbPz8/JSUlH6sNS0jI6OpobFn/Rpts7mColNug31vV+dfvu7Lly75448DaMcCwSIcDBQZGUkgEI4ePTplz9VUVVWdPHly/vz5rq6uaMdCF+fPn//48ePp06dH1WOAUchk8tu3b7OzswsLC0kkEg8Pj76+vpGRkYqKChsb2927d9PS0hYuXAjnw6BJqaGhgUAgZGVlIQiir6/v7OwMd9hCLK29vf3KlSu1tbVWVlZLly4d2+1maAh8syg0CfT29sbFxSUmJpLJZBMTExcXl18e/rxz9+72nTv/DHsqKafAmCCZwWB/f+BaDy0VpbDQUKZ6RJmy4BZExsnLy5OVlZ2y2RcA4NmzZ5ycnPPnz0c7EHpRU1MrLS2tr6+nzcTkxAy38MrOzu7q6hpunayvrz/cuPbFixfUigUw+4ImKykpKR8fH0dHRwKBkJaWlpeXp6Wl5eTkJCsri3ZoEDQeAgICO3bsuHXrVmJiYnt7u4+Pz697kXd1gSdPQGgosLcH27YxJEy6o1baePbsWVdXl5qampubm7S09Gg+6L1yZd3Hj4FrPfffjJCQladzmExhoK/3P1vXyoiL3AkJgdkXk4AJGIPU1tY2NzcvXrz4F+8jkQA7+ySboKIqLy+vqKiwt7enYwUntKmrqz9+/Li0tBTdBKyhoSE3NzcjI6O1tZWNjU1BQWHhwoVGRkbfbfvMzc199uyZioqKh4cHWqFCEGOIiop6eXnNnz8/Li6OSCQWFxfr6ek5OTlJSUmhHRoEjRknJ+eGDRuio6Ojo6Obm5v9/f3/tfhTTg4ICgL//AO6usCMGWBSbD9BEIR6/2pqapKRkfH19VVTUxvTCAcOHJg2bdpBr0V7r4UpqGvSKU4m0d3RfnKjt6K01P1792APT+YBfxIMMtr6hxcugLt3AYEAJt0mmejoaG5ubhsbG7QDoaMZM2ZMnz69rKzM1taW8VdvbW3NyclJS0v78uULAEBOTs7a2trIyGjEnkg1NTUhISESEhIbNmyA38jQFCEmJrZy5UoHB4e4uLj09PT8/HxqiQ64KRFiORgMxsnJSUhIKDw8/O+///b39x9hUTcwEOzfD9jZwYIFwM8P2NsD1u+CVV5eHhkZWVtbKygouGrVKjweP74lnYCAACEhoc2rlwb856qO+Vyax8kkmhvqA9d6WM6effNGELzXMxX4w2CQvLw8OTm5X+w/7O4GJ08CSUkw6bYpvn379t27d87Ozry8vGjHQkcYDEZNTS03N3dwcPDXe0Jo5LtS8pKSkr9s4dXS0nLp0iUODg5/f38eHh7GxAlBTEJYWNjT03PBggXx8fHJyck5OTn6+voLFy4UFxdHOzQIGhtzc3MhIaGgoKDTp0+vWbNGW1v7f3554UJAIgFfXzC6vXlMrqGhITo6Ojc3l4eHx8XFxcrKaoJtrFauXCkgILBi5Uq/P0+Z2jrSKk7mUVtZdtzPa8M6vyOw3h7zgUU4GKGmpub48eMuLi6/WBg5dAj8+SeIiwNorJ/QVWBgYEtLS2Bg4OQrfvgdIpEYHBy8ZcsWetdz7+3tLSoqGi4lLygoqKenh8fjf9nZo6en58SJE1+/ft2+fbuioiJdg4QgJtfa2ko9CUkt0bFo0aKpfEwXYlFNTU2XLlxobmlZtHgxKvsv6O3r16+xsbFpaWlsbGympqYLFy6k4VmG1NTURYsXz128zD1gDzv75FmWSHr6IOT4oVMnT67z80M7FmgEk+evGjMb1f7DlhZw7hywsJh82VdJSUltbe2iRYsmffYFAFBXV8dgMGVlZXRKwEgkUllZGZFILCwsJJPJvLy8xsbGeDxeVVV1NNswKBRKUFBQU1OTr68vzL4gSFhY2MvLy87OLi4uLi0traCgwMjICPYNg1hJTo7YtWt7IiOv2dlFRkY2NzcvX76cnfW3GlL19PRQW6uTyWR9fX1XV1eaNxG1sLAoyM9ftnz5H8sXBpy5KibN8uV5Bvv7I84E5ibGnTpxYombG9rhQCODCRjdUU+LysnJ/eKOHhgIOjvBX38xKi7GiYuL4+Limjt30u6x/hY/P/+MGTNKS0tpO+zQ0FB1dTWRSMzOzu7v78fhcDo6Ong8XkNDY/Q3WgRB7t69W15e7urqamRkRNsIIYh1iYiIeHl5WVtbx8XFZWVlZWdnGxkZOTk5iYiIoB0aBP2L3l5w7x64dg3k5AB2dl4Hh62enqFNTSkpKS0tLevWrePm5kY7xAkZGBhISkp68eJFX1/fmIocjoO0tHRyUtKff/65x83O78hJlt6O+Kn6/bnt61SVlIoLCwsKCv788083Nzdzc3NY/JDZwC2IdFdbWxsYGPiL/YcIAuzsAAcHiIpiYGiMQN1+aWdn9+sKkJPF48eP4+PjT5w48ctuJKNRW1tLJBJzcnI6OzuxWKy6urqBgYGenh4nJ+dYh4qJiXn+/PmcOXM8PT0nHhgETUqfPn2KiooqKCjAYrFz5861s7ObxIVbIRaWkQHMzICEBPD2BuvXA3l5AACCIDExMdHR0ZKSkps2baL5YhFjUOvLR0VFdXR0KCoqLl68WEVFhTGXJhAInitW6M+18dixn19QiDEXpRUyifT89tXnt64cPnR427YADAbT1ta2d+9eBEHU1NRWrlwpJMRiv6PJDSZgdPf06dMXL1789ddfv97T0t0Npk1jSFCMc+XKlZKSksDAQJpkIyyhtLT0/PnzPj4+eDx+3INQS8lnZmY2NzdjMBhFRUUDAwNjY+NxPwvm5ubeuHFDTU1t8+bNbJOxzwEE0VBdXd2zZ8+Ki4s5OTltbGzmzZvH6usJ0CT04gWwsQE/FKLIzc0NDg7m5ubevHkza/W7QxAkLy/v6dOnTU1NEhISzs7O+vr6DF66+fr166HDh0PDwl03BCzw9GFjkc2cJVnpt4/ulxITvX7tqqbm/xfWDwwMrK2tBQBwcnIuWbLEwsICLoUxCZiA0d2hQ4ewWOwff/yBdiAoaGxsPHLkyJw5c6ZUpykSibRt2zZ9ff3Vq1eP9bMtLS3Z2dlZWVkNDQ0AADk5OWNjY0NDQwEBgYmEVFdXd+rUKUFBwT179sCyhxA0StXV1c+ePSsvL+fl5bW1tbW0tGRYdVMI+n8fPgACAaxfP/pPVFdXX758mUQi+fn5ffs4zsyqqqoeP35cVVUlKCjo4OBgbm6O1lwhkUj8/Pnz/j/+QLCcqw8GKqproRLGKH1t+hJ68khpVvqZ06e9vLy+y68IBEJkZCQAAIPBIAgyc+bMlStXwlJDzID9MKxNSU8NDQ0xMTFz585l2AI6U3n06FFDQ4Ovr+/krj7/HXZ29srKyurq6nnz5o1yqqm3tzc3N/fRo0cPHjwoLy/n4OCYM2eOt7f3ggULFBUVJ1i8pKOj48yZMwiCbN++fYKJHARNKYKCgqampsrKyh8/fiQSiampqQiCyMvLwzVkiBEoFBAdDbZtA1u3guhosGIFGPUWMkFBQW1t7YKCguTkZAEBASZfB6utrb1z587Tp08HBgacnZ1Xr16toKCAykINmUyOiIiIioravHnzxg0bBvt6j27fVP22UFxOQVCU6dpUtDQ23L946tqBHfPmzH725ImJicmPf2j8/PyvX78e/t+2traUlBR2dnYlJSW4FIYuWISDvvLz8wEAenp6aAeCgra2tpycHENDwyk416Kurl5WVvbp06efHxomkUiFhYWZmZklJSUUCmX69OnW1tbGxsa/LCU/eiQS6cqVK52dnVu2bJmCPwgImjg1NTU1NbWysrJHjx5FRka+efNmwYIFKE7PQ5Nffz84dQrcuAHq6gAfH/DzA+vXAyWlMY0hKSm5Z8+eixcvhoWFtbW1OTk50SnYiWhsbHz+/Hl+fj4Oh7O1tbWzs0Nxj0Z7e3tQUFBVVZWsrCz1lPWOHdvXrl1z5crVwDXLpRSUl2zeqYW3QCu8bzV9qou5cyPpyf2FCxfm5eb+ZIpfTExMSkrq8+fPQ0NDAAAEQchkcmRkZGlp6Zo1a+ABVxTBBIy+8vPzxcTEZsyYgXYgKCAQCGQyef78+WgHggJ1dfXHjx+XlpaOmIAhCFJVVfVtSUNdXV08Hq+pqUnbRzoEQe7cuVNTU+Pp6amqqkrDkSFoqlFTUztw4EBeXt6TJ0/CwsISEhKcnJwYf0AFmhI4OUFYGJg2Dfz9N/DzA4KC4xtm+vTpu3btun79enR0dFtbm5eXF/PMGrS1tcXExKSlpWEwGAsLC0dHR3Q3aFRVVV27dq2zsxMAoPRNrsvPz//773s2bfK/cvXq6T2bJeUU57q44+fbc/GgsK9niEIpSHuT8uxh7psEH5/VZf/yjPEdfX396Ojob1/BYDCqqqrTJl3RAdYCEzA6am1tra+v/1nxw44OEBAA9uwBk+7huKenJz09XUtLS0ZGBu1YUDBjxozp06eXlpZ+l382NDQQiUQikdjR0cHGxjZr1iw8Hj++koajER0dnZ2dbWNjM2fOHHqMD0FTCgaDMTAw0NXVpZZoCwoKkpeXd3V1nZo7zCE6wmBASgqgxZ4FTk7OjRs33r17Ny0traenZ82aNbgfinYwWHd398uXL4dbezFD9/OUlJR79+5R14gAAMrKyt+9Ydq0abt37dq8adO9e/duB4fc/mu/ic0CC2dXLRNzxlTp+FBWkvzsYVrsUyFBoVUrVz64dV1cfLRbIvX09L5NwHA43MaNG9XU1OgTKTRaMAGjo7y8PARBfrb/8NIlEBIC3N0nXwL26tWrgYEBOzs7tANBB3V6KS8vj0Qi4XC4tra2vLy8jIyMuro6AICcnJytre1EShqORl5eXkxMjIaGhqurK/2uAkFTDTs7++zZs42NjRMTEwkEwn/+8x9tbe3FixdLSUmhHRrEgjIywLVr4M8/wXc7z2mXk2CxWB8fH1FR0ejo6DNnzvj7+6O19NHf3//mzZvY2Nj+/n41NTVXV1fUp2jJZPI///yTkpJCrVFBfVHpX3Z7cnNzr169evXq1TU1NaGhYSGBf3R1denOtlQ3MdfCm9P8kFhvd1dpDrEkM604LbmzrXW5+/I/YmIMDQ3HOo60tLSoqGhzczMAgIeHp6+vb9L06WZpsAoiHZ08ebK1tfXvv/8eeY9Kby+QlwfS0iA3F0yuTSwDAwN79+4VFxffs2cP2rGghkgkBgcHz58/v66urry8HEEQCQkJQ0NDExMTBsz2ffz48dSpU8LCwrt374ZlDyGITnp6eggEwvBcvouLC+zdDI1KVxcIDwfXroHCQoDDgZAQQP9awa9fv75//76EhMTmzZsZ3CJscHDw9evXcXFxvb29SkpKixcvnjlzJiMDGFF7e/v169erq6u/fVFAQODEiROjHCEnJyc+Pj4+IYGYniEuLa1ubDZT13CGorKUvCI375izXDKJ9Ln2Q/2H99VvC8uyMt6XFGtoa8+ztrKxtv7tt98msnRJbU/q4OAwe/bsY8eOsbOz//HHH1OqOhoTggkYvXR2du7evdvS0nLZsmUjv+PsWbB9O4iMBJOuQ/HLly8fP37s7++vra2NdiwoIJFIZWVlqamphYWFAABeXl59fX08Hv/jrgY66ejoCAwMJJPJe/fuhY+DEERvw6dZ2NjYTE1NFy5cCI+2Qz9z8CA4dw50dQEZGbB2LVizBkhKMubKBQUFN2/e5OHh2bx5M2NWn77tqiwvL+/g4MAkDwaDg4N//fXXly9fvn2Rus147dq1Yx1tYGAgMzMzISGRmJVVUVFR/7FWSFRMWlFZQk5huqg4n4Agn4AQJw83B8d/axpTKOS+nu7erq7OttbO1pamjx/qq6sa6z+KiompqMzS09W1sbaaM2cOrRqo1tfXd3V1UbcdlpSUXLx4UVdXd/1YGhtANAcTMHpJSkq6d+/ejh07Rj4eQCIBRUUwfTooKgJMcyiWJshk8v79+7m5uQ8dOjSljqf/WFoDi8Xy8vIePXqUkeeeyWTymTNnampqAgIC4NEUCGKYhoaG6Ojo3NxcHh4eOzs7Kysr1A/bQEzqyBGQmgr8/MDixQDL6JMgwy3C1q1bp6GhQb8LUbsqP3nypLm5WVJSkgmL1rS3t9+/fz8vL+/b/YdLly61trae4MiDg4Pv3r2rqKiorKxsaGhsbm1paWkdGBzo7OikvoGHl5eTg0NYWFhURERcTFRFRUVFRWXWrFmMmbt5+PDhq1evPD094flwFMEEjF7OnTtH7X478sP3/fvA3R3cugXG3quXyaWkpISFha1evdrExATtWBikoaEhNzc3IyOjtbX129IaUVFRr169OnHiBK0msUYjLCwsJSXF3d3d0tKSYReFIIiqrKzsyZMntbW1QkJCzs7OeDyeqZ44IQgA0NjYeOHChc7OzpUrV9LpTk1t21BfXy8kJGRvb8/MbRsuX75cVFQ0/L979+6Vl5dHLxxGoFAop06dqq+v//3330dTRxGiB9iImZby8/NDQ0O7u7txONzz58+NjIx0dXVHfquSElBQAJ6ejJ/9oquhoaFbt25xc3P/2I598mlra0tPT4+IiHj+/HllZaWYmJitre2qVavmzp0rLS2NxWIRBMnMzJSWlmbYF9ybN29iYmLwePziSbevFYJYgqioqIWFhZSUVGVlZVpaWm5uroiICOpF3iAUUCggMRFs3Qrq64G5OdrR/A8+Pj4jI6PS0tLk5GQEQWbNmkXDwUtKSm7evEkgEDAYjIuLy6pVq9DqqjwaNTU1T5480dXV1dTU/PDhAxaLdXd3Z9pckVbY2NhUVFRSU1PLy8vNzc1hTQ5UTKqnf9Rhsdiqqqqqqirqdw2ZTP706dPITcC4uYGvL6Pjo7/CwsKmpqbly5dP4u+v3t7eoqIiIpE4XFrD0dFxxNIaKioqOByurKwMj8czILCqqqoHDx7Iysp6eXkx4HIQBI2IeoxER0eHOiFy8eJFLS0tV1dXSUad84FQVl8PgoLArVugoQFMnw7MzNAOaATftgjr6elZtmzZxHOkqqqqZ8+eVVRU8PLyOjo6zps3j4uLiybR0snQ0FBYWBgHB4e7u7uAgICJiQmRSJwi2YiYmNjy5cuDg4MfPXq0fPlytMOZimACRkvDO/4RBMFgMNSOTyIiIps3b5aQkEA3NsZISEjg4eExNTVFOxDao5bWIBKJhYWFZDKZl5fXwsLi56U1cDicsrJyaWkp9e8DXcPr6OgICgri4eHZuHEjPHkCQajDYrHW1tampqZxcXGJiYl//vmnubm5s7MzPz8/2qFB9HTrFli3DlAowMAA/PkncHcHzFprjtoi7M6dO69fv25vb/f19R33vePDhw+xsbFFRUWcnJy2trZ2dnYsUX2XQCDU1dV5enpSe0DLysrKysqiHRTj4PH40tLSpKSkmTNnjqO6PTRBMAGjJQ4OjuH/Hj5cp6ysPEWyr0+fPr17927+/Pl0aiuMih9La+jo6ODxeE1NzdGs8qmpqZWVlX369ImuuxBJJNKVK1e6urq2bdsmKChIvwtBEDQmPDw8Li4uv/3227Nnz1JTU7OysubNm2dnZwdnSSat2bOBtzdYvx4YGaEdyq9hsdjVq1eLiYmNu0UYtfZMXl4eDoezsrJasGABq0wxtLa2vnjxQkFBYfbs2WjHghoPD48PHz5EREQoKSnBhwcGg2fAaKm7uzs5OXn4fzEYjKioqL+/P3ZyHfT6N0+ePPn06ZOPjw9LTH39UkNDQ1JS0p07d169elVfX6+srOzk5OTt7W1iYiIuLj7KFS1OTs7k5GRRUdF/a+xIE+Hh4cXFxZ6enj/r+g1BEEq4ubn19PQ0NTXr6uoyMzMzMjI4OTllZWWZ9mAMNFrNzd8vcAkLg4ULwYhHD5gSBoOZNWsWNzd3enp6cXGxjo4ONzf3aD7Y2Nj46NGjiIiIpqYmc3Pz9evXGxoastD0a1BQUEtLy+bNm1klY6QHLBarqKj45s2b+vp6ExMT+I3ESFMiMWCYbyc1MRgMOzv7unXr/mcPdH8/GBwEk/Ffe1dXV3Z2tq6uLqs3nmpra8vLy8vIyKirqwMAyMnJWVtbGxsbj684rLS09PTp08vKyubPn0/rSP8rISEhLS1tzpw5U3kaD4KYn7y8/K5du3Jycp48eRIWFpaWlrZkyRK6Ts1A9NLfDx48AGfOABIJvH0LWP+x1cbGRlhY+NatW8ePHw8ICJCSkvrJm6lrR2lpaRgMxsTExMnJieXu+0QisayszNHR8ee/06lAXl7e3t4+KioqKSkJFk9mJJiA0dK3CRiCIMuWLfu+0WFICNizB6SkAOZoREhDycnJJBLJysoK7UDGafSlNcYEg8Goqqrm5eWRSCR6bDp6//59ZGSkoqLiv/b7hiCIaWAwGCMjIz09vTdv3kRFRZ08eVJbW9vd3V1YWBjt0KDRefcOXL0KgoNBezuQkQHr1wMSCXxz+oB16enpbdq06erVq2fOnNm8ebOcnNyP72lra3v58mVycjKFQtHX11+0aBErVvjs6el59OiRmJiYnZ0d2rEwBXt7+7dv3z5+/HjWrFkwI2UY2AeMlrq6unbu3Al+0kxdUxP09ID378HkKrNDoVD27dvHx8d34MABtGMZmx9La+jr6+PxeCUlJVqtxWdkZISEhAQEBFCb0NPQ169fAwMD2djY9u3bRz1DDEEQq+jq6nr+/HlqaioWi7W1tbW1tYUHw5hdZSVQUwMIAqysgL8/cHaeZLdyAEBtbe3FixcHBwc3bNjw7T2rq6srPj4+MTGRTCZraWktXLiQdftHBQcHZ2ZmBgQEqKqqoh0Ls/jy5ctff/0lKSm5Z8+eKVIHEnVwBYyWhm+fQkJCI5QCT0sDJSUgMHDyfWXn5OS0t7ezUO+pfyutoaGhQfOvHg0NDQwGU1paStsEjEQiXbt2ra+vb+fOnTD7giCWw8fH5+npaWVl9fDhw6ioqJSUlMWLF8NjGExNRQUcPw6cnACtZ9OYh5yc3M6dO8+dO3fp0iVfX199ff2enh4CgfD69evBwUE1NTUXFxeWLhVYWVmZmZlpZmYGs69viYuLL168+P79+y9evHB0dEQ7nCkBJmD/hSDIp0+fWlpauru7e3p6Ojs7Ozo6SCQSFosVEBDg4+Pj5eWdNm2aqKiolJTUv5W/oyZg1KNfIxxjvXULYLHA25vevxfGS0xM5OPjMzAwQDuQX2toaMjNzc3IyGhtbWVjY5s1axYej9fT06Pf0WF+fn4pKamysjLaDhsREVFbW7tixQoFBQXajgxBEMNISkpu2bKlqKjo/v37wcHBr1+/dnd3h/+omUJpKVBX//7F3bvRCIWhJCQkdu/efe7cuRs3bujp6ZWWlvb19ampqS1atEheXh7t6CaETCaHhYXx8vK6uLigHQvTsbS0fPv2bUxMjKamJqv/oFnC1E3AysrK8vPzy8vLS8rKKysrq969Y2NnExAW4eadxs3Dy8nNw83Hx8XN09/X29/d1d/X19/b09vd1dH2lTQwqDRzpoqKioaa6qxZs/T09KhLHAAAdnZ2NjY2Nze3ETZPd3WBhw+BgwOYdPtrq6ura2pqHB0dmXn/zIilNYyMjBhT/khNTS0hIaGjo2P69Ok0GfDly5fp6emWlpYWFhY0GRCCIBRpa2urqaklJibGxsaeOHHCxMTE1dV1KhdnQ9PgIHj2DAQFgVevQG4u0NdHOyAU8PDw6OvrEwiE3NxcERERf3//mTNnoh0UDURHR3/58mXNmjVjrbY/FWAwmJUrVx45ciQkJGT//v3M/EQ3OUytBKy6uvr169evEhMTExMHB0kqOnoS8kqSWoa6zsukFJQERcVHM0hHa8un6vefPlSV1FYnZIRV7tiJAYilpaWNlZWVlZWBgcHIZWSyswGFAnx9afxbYgIJCQlYLHbu3LloBzKC70prCAsL29raWlhYMPjcsLq6+qtXr8rLy01MTCY+Wnl5+ZMnT5SUlNzc3CY+GgRBzACHw9na2hobGz9+/DgzM7OoqMjBwcHS0hKex2Ccujpw7Rq4eRM0NQFxcXDgAAtVk6eVgYGB1NTUuLi4zs5OeXl5CoVSV1dXXFw8CRKwhoaGly9famhoGLFCizZUCAgILFu2LDg4+OnTp0uWLEE7nEluShThKC8vDw0LCwsL/9r2VdPIVM3YTNPEXG6WGk222iMIUl9VWUxMK8tKe5uZISAgsGzZ0pUrVmhqan7/1vZ2wMc3yQ6Atbe379u3z8jIyMfHB+1Y/h8DSmuMNZ5t27YZGBhM/E+ptbU1MDCQg4ODWvWEJuFBEMRUampq7t+/X11dLS4uvmzZMg0NDbQjmhq0tUFxMTA1BZs2ATe3yVHbcPS+Tb2kpaXt7e319fUpFMrNmzfz8/PnzJnj4eHBugcUEQQ5depUXV3doUOHWK5oPoNdv349Pz9/+/btKioqaMcymU3mBKy1tfXevXt37oZWVFaYL3C2cHSZpWfIRs/8BxkaqizKT42KTIt9Jisru3qV9/Lly8XFR7WwxqKePn364sWLvXv3MsOO4R9La2hra9OptMZYnT17tqGh4eTJkxO5gZFIpJMnTzY2Nu7cuZMZ/sAhCKITBEFSU1OfPn3a3d1tZGTk5uYGa+3QXWIiEBCYgnsOR0y9hm9VQ0NDL47K+AAAIABJREFU1LZ1enp6a9aswWJZcufU69ev//nnH1dXV/r15Jw0uru7Dx8+zM3NffDgQbgRkX4mZwL27t27wOPH79+/r423sHB2NbKcj2Nsd3YyiZT3JiHl+aP81KSFixYd2LdvUk5hkkik33//XUJCYteuXehGwvjSGmNFIBAiIyMPHjw4Y7x7WhAEuXnzZk5Ojre3t5mZGW3DgyCICfX29lIbpOJwuHnz5i1YsIBFH3+ZTkkJEBCYgjsMv/Nt6jVjxgwHB4dvU69hCII8fvw4Pj5eVVV1w4YNXFxcqEQ7bh0dHYcPHxYSEtq3bx/qs7EsITs7++bNm3Z2dixU3ZrlTLav8qKiomOBgbGxsTZuHhfi0oTE0Fl9wuJwxjZ2xjZ2Ha0tMXdvmpqZ/2ZpeeiPAyxRJ3D0iERid3e3tbU1WgGgW1pjTNTV1SMjI8vKysadgL18+TInJ8fGxgZmXxA0RfDw8CxbtszMzCwiIiI6Ojo7O9vd3V39x9J80CgNDYGYGHDhAkhIANu3g9On0Q4INdTUi0AgdHR0zJgxw93dfcTUiwqDwbi5ufHx8UVGRp49e3bLli28vLwMDngi7t2719fX5+npCbOvUTIyMsrOzn758qWBgQFLdx1gZpNnBaysrGznrt2pqal2nj4LVvjyCwqhHdH/6+nsfBF+O/buTWMjo1MnT+jo6KAdEW0cPXq0u7s7MDCQwV9qP5bWMDQ0ZHxpjTFBEGT37t0yMjJbtmwZx8crKyvPnj07c+bMgICAf+uCAEHQZIUgSGZm5qNHj7q6urS1tT08PAQFBdEOiqU0NYHgYHD1KqitBdOng2XLQEDAJG7n9RODg4MpKSnU1EtKSsrR0fEnqdd33rx5c+/ePQkJiYCAAFbZE1tcXHzp0iUbGxtYVWJMvn79euTIERERkf3798OnDnpgP3z4MNoxTFRPT88fBw+uW79ey9I24MxVvdmWnD/24EKPSE4mIiWthrew9fBu+Px5z+aNX740mZuZMc/uuPGprKwkEAj29vYMK45EJpMLCgqePHkSHh6el5c3ODhoYWHh7u7u6uqqpqbG5BNyGAymrq6upKRk3rx5Y81XOzs7z507x8HBERAQMEJ/OQiCJjsMBiMtLW1ubt7b25uTk5OamorD4eTl5Vm3KAKjnT8P9u0DkpLgwAEQHg5cXICoKNoxMRqZTE5LS7t27VpeXp6wsPDy5cvd3d2lpKRG/7dIXl5eXFw8LS0tNzdXS0uLyW+7AID+/v6LFy/y8PCsW7cObt8dE25ubk5OzoyMDG5ubiUlJbTDmYRYPgGLioqyd3D82j+461KwsY0djoO5shqOtq/WC224Wps/W87D4jjUDEzmLlySGBf7x++7xMXEtLW1Wff2+eTJk6amJh8fH3pnkgiCvH///sWLF3fu3CESie3t7QYGBi4uLsuXL9fU1GSVSTgAQH9/f15enoqKiuhYbvxDQ0OXLl36/Pnzpk2bpCZdEzkIgkaPg4NDW1tbW1u7trY2LS2tsLBQRkYGLoWNiqoqWLgQnDgB8PipVt4QfJN6ZWVlCQsLu7m5eXp6jin1GjZjxgw5Obn09PSsrCx1dXUm3PD/rYcPH5aXl69evXrcm/+nMnl5+bKysuzsbCMjI+ZPtlkOC29BbG5u9vbxyS8s8t77p7G1LdrhjEzx3h3dI3tTgx80mf5Pw9z8lNchxw7MVFQMC73Lik/VPT09e/bs0dXVXbNmDf2u8vnz5+zs7MzMzObmZgwGo6ioaGpqamRkxHIngKk6Ozt37949f/58FxeX0X/q0aNH8fHxS5YssbGxoV9sEASxEARBkpOTnz592tfXN3fu3EWLFsG18f9XVQWqq8G8eWjHwRTIZHJGRkZ0dHR7e7uUlBS119zEd5R9+PDh4sWLCIJs2rSJaZdHqqqqTp06ZWBgsHbtWrRjYVWfP38+evSokpLStm3bWHfBgDmx6oLsmzdvli1frm9peyY6iZOLeW880jFP+0XEmo1Nv3tdb7al5rPEe+f+1tbVDQ8NtbVl0gTy36Snp5NIpNmzZ9Nj8J6eHmppjerqagRBJCUlXVxc8Hj89OnT6XE5huHn55eUlCwtLR19AlZYWPjq1SsdHR0UK51AEMRsMBjM3Llz9fT0Hj9+nJSUlJeX5+rqisfj0Y4LVUNDgEAAly6BuDggJQVqaiZZ182x+jb1kpSUXLx4MU1SLyoFBYWdO3eeP3/+3Llz69atG6HxKdrIZHJYWBgXFxc8+jUREhIStra2MTExRCLR1PT7R1loIlgvAUMQ5Pz584eP/Ln6j2MWDovQDudnuBsbhPOyq7xWIyPdBnCcnCv3HFI3NnP38PTy9Dzzn9Ms1G8hLS1NVFSUtk36hrsnFxQUUCgUAQEBS0tLMzMzGRkZGl4FXerq6gkJCZ2dnaPZttHU1BQcHCwqKurj4wNnniAI+g4/P7+Pj4+ZmVl4eHhwcHB6erqnp+fk7jw5ss5OcOMGuHoVVFWBadPAunXA338qZ190Tb2GSUlJ7dq16/z581evXvXx8TE0NKTt+BP04sWLhoYGb29vFjqnwJzs7e1zc3MfPnyora0NNyLSEIttQWxpaVm2fHnd56aAM9ckZOXRDucXVG5d0Tz1V9L96K86P2vs2NL46fyODQLcXI8fPZSQkGBYeONWUVFx5swZNze3ebTY4/Fd92QuLi5dXV0DAwNNTc3JV3intLT0/PnzPj4+v5yrJpFIJ06c+Pz58549eyZTCgpBEM2RSKS4uLi4uDgMBmNrazvl2oXV1gIlJaCoCHx9wdq1QIiJaiAzGDX1iomJaWtrk5SUtLOzo0fq9a329vbz5883NjZ6enrSaVPMOHz58uXo0aMKCgrbt2+H05cTR33q++2335YvX452LJMHK31Hf/z40Wb+fAUdo6NnbuJY4RAtrqO9S2nmV229n79NRHLG4buP7548ijcze/XypbKyMmPCG7eUlBQsFjvx7S6NjY05OTlEIrGlpYU5uyfT3MyZMzk4OEpKSn75pxcREVFXV+ft7Q2zLwiCfg6Hwzk5Oenr64eHh0dHR+fn53t5eSkqKqIdF6PIyYHsbKCrC6bwo/a3qZeIiIiXl5e5uTkDJjEFBAR27tx54cKF8PDwwcFBZtgtjyDI3bt3AQArVqyA2RdNzJo1S19fPzk5efbs2dLS0miHM0mwzApYWVmZzfz5+AWLPHfsQzuWMcBQKCPuPxxRbOjNJ9fOx0RHM/NW/u7u7j179ujp6Y27/EZHR0dOTk5ubm5VVRUAQFJS0tTU1NTUlMmLKdHKxYsXa2pqTp8+/ZMbQ0pKSlhY2OzZs728vBgZGwRBLI3aLuzBgwe9vb0WFhZubm4sWrLoX336BO7dAzt2TOVc6zsUCiU7OzsqKqqlpUVERMTOzo4xqde3BgYGrly5Ul5ebmtrO6YqU/SQlJR07949FxcXljtdz8za2toOHjxIXVREO5ZJgjVWwLKysuwdHJzW+DutWod2LGMz+uwLAGC/Yg0vv4Ctnd2D+/eZ9osjPT2dTCbPmTNnrB8kkUjU7slv374dGhoSFBS0srIyNzefarMp6urqb9++ra2tlZeXH/EN9fX19+/fl5aWXrZsGWNDgyCItWEwGDwer66u/s8//6SkpJSWlnp6empoaKAdFy0kJYFLl8CzZ4BMBmZmwMwM7YDQR029oqOjm5ubGbnq9SNOTk5/f/+rV68SCAQAAIo5WHt7+7Nnz6SlpWHdYNoSFBScP39+dHR0Xl6evv7PjtVAo8QCCVhiYuJiV9e1h/42W+CMdix0N3ehGy//9CXLloWHhjo5OaEdzvcQBElNTRUXFx998+Xvjnhxc3MbGxvj8XhVVdWpuTeA+jBUWlo6YgLW29t77do1HA63YcMGFirKAkEQ8+Dn5/fz8ysuLg4PD79w4YKBgYGHh8e0adPQjmtcEATcugUuXgRFRYCLC3h5AX9/wGT1HhiPeVKvYRwcHP7+/jdv3iQQCAMDA+7u7qjc4iMiIvr7+1euXMk+hauw0ImdnV1GRsaDBw80NTU5WOEcEJNj9kbMubm5jk5OG/8+bzLPHu1YGERKQUlJS3enn89sCwtZWVm0w/kfFRUVr169sre3H03fj4aGhvj4+JCQkMTExPr6emVlZScnp5UrVxoaGoqKik7N7AsAMG3aNCKR2NXVZW5u/t0vIQhy+/bt6upqX19fpu2sAkEQSxAXFzc3N+/p6cnMzMzIyODn52fJ7QYYDAgIAJ8/g717QVgY8PAALNg5k4YoFEpWVtaNGzfS0tK4ubldXV29vb3l5eWZ4ZbKxsamr6/f2tqampra0dGhpaXF4KhycnJiY2Pnz58PC6bTAzs7Oz8/f3p6Og6Ho20R7KmJqVfAqqqqFjg4eO78w/C3qdVRUQtvsTHwnJOz8+vERF1dXbTD+X/U8hsmJiY/eU97e3tubi6RSPz48SMAQE5Ojtr5kY+Pj1FhMjt1dfXU1NTe3l4eHp5vXycQCPn5+QsWLNDT+0XhFgiCoF/i5ub28vIyMTEJDQ0NDg7Ozc318PAQFBREO64x+ucfICYGplRdx5FQV71iYmKampqEhYWZYdXrR2xsbN7e3uzs7CkpKf39/atXr2ZYhH19fQ8fPhQWFnZwcGDMFacgIyOj5OTkFy9e4PF4YWFhtMNhbcy7AtbU1PSblZXNch87z1VoxzJmwvk5g0LCyARuGDMUlXn4+A9s2+zm6sokXSy6u7vDwsIMDAxGrBFCIpEKCgqePHly7969t2/fsrOzz5kzZ9WqVXZ2doqKipO4sOE4UO+j8vLykpKSwy9WVlaGhITMnDlz1apVzDCXCUHQ5CAsLGxhYUGhUIhEYmpqKi8vr6ysLDN+yfT1gTt3ABYLvmtlxscHmCzNYLBvV724uLhcXV1XrVrFJKteP8JgMNra2n19fampqXV1dXp6eozZDRgREfH+/Xs/Pz+WaOfDumRkZJKTkzs6OuBJsAli0imlnp4e63nzdObOc169Hu1YxoyjvW2O1+IPy1YUHAycyDjzlq1ob2meb2eXnZk5ffp0WoU3bmlpaWQy+btGH0NDQxUVFUQiMT8/f2BggIeHZ4of8RoNNTU1dnb20tLS4e+vzs7OmzdvTps2bc2aNcw2owlBEKvD4XAuLi66urqhoaFhYWH5+fkrVqxgoqWw2lpw5Qq4eRN8/Qo2bwYXLqAdELNAECQvL+/p06fUVa+lS5fOnTuX+Zu8YTCYpUuXcnFxxcTEXLt2bf369fQ+0lxZWZmRkWFqaqqmpkbXC0EyMjKmpqbp6em2trawTc5EMOk/443+/nxiUp47D6AdyHhIJsVjKJTG32hQgWeJ//bPNdU+vr6Rjx5NfLSJQBAkLS1NXFx8uE1ZQ0MDkUjMyMjo7OzEYrHq6up4PF5HR4f57w2o4+LiUlRUfPv2LfV/h4aGgoKCurq6tm/fzgyZNgRBk5KiouL+/ftjY2NfvHhx5MiRpUuXmqFeSzAzE5w8CZ49AxQKmDMHbN4MFi1COSTmQE29nj179uXLFyEhIVZJvb7l7OzMyckZGRl5/vz5TZs20a8jAolECg0N5eXldXV1pdMloG85OjpmZmZGRUVt3LgR7VhYGDP+Y7537x4h/tWJyJcsuoQikRhP5uFtMfm+xML4rD1yYt9Sh0uXL2/y96fJgONTUVHx5cuXJUuWtLe35+Xlpaen19fXAwDk5OTs7OxMTExYtcQWSjQ0NJ4+fdrY2CgpKRkZGfnu3Ts3N7fR15aEIAgaBywW6+zsrK+vHxIScufOnZycnJUrV6K5y72wEMTEAA8PsGMH0NFBLQxmQqFQMjMzX7x4MXzWy8zMjEVr+tna2mIwmMjIyLNnz27ZsoWXl5ceV4mKimpqalq7di18DmEMISGh2bNnv379urq6ego1fKc1pmvEXFlZaWRi8vvVu7P0WLLOLNvgoKOp5hfzuZkXbtBqzI/vyg+tcHmdkIDijttr164VFhYqKSm9f/8eQRAJCQlDQ0M8Hi8qKopWSCyttrY2MDBwyZIloqKiV69e1dbW3rBhA4vOOEAQxHIoFEpsbGxsbCwXF5eLi8t3e8sZp68P9PYCeJofAAAAmUxOT0+Pi4trbW0VFhZesGCBqakpa616jSg5OTkiIkJaWjogIIDmOVJ9fX1gYKCamtrmzZtpOzL0E52dnfv371dWVt66dSvasbAq5vqH3dvbu8jFxWXdVhbNvgAAosRUbE/3Zytalm2UnanqsW2v25KlBfl5/Pz8NBz5l6hHvFJTUwsKChAEaWhosLCwwOPxwxsRofGRlZXl5+cvKCior68XFRX18fGB2RcEQQzDzs7u5OSkqakZEhISFhZWWFi4YsUK+m6BTkoCHz4AH5//eZGbG3Bz0/GiLIJMJmdkZMTExLS1tbHQWa9RmjNnDicnZ0hIyOnTpwMCAmi44jo0NHT37l0cDufl5UWrMaHR4Ofn/+23316+fFlZWQlL0o8Pc62A7d6953Vmzu/XQ1n3YVQp7Lbm6b/iErMHhGg8pXc2wE9LUe7K5Uu0Hfbf1NbWUrsnd3V1sbOzUygUBwcHBwcHFt0IwYRu3bqVnZ2NxWJ///13luzPA0EQ6yORSFFRUS9fvpw2bZqHhwft91n09YHw8P92UhYXB3V1ALaY/wY19YqOjm5vbxcREbGzs2PC4vI0kZOTc/v2bUFBwW3btomIiNBkTAKBEBkZuXz58t9++40mA0Kj19PTs2/fPmlp6V27dqEdC0tiogSstLTUBI8/GflSXEYO7VgmhL2/n0KHw6btLU3bHH+LJxCMjY1pPviwr1+/Zmdnp6amNjU1YTAYRUVFU1PTpKSkvr6+Y8eOsW5izITOnz9fWlpqbW29dOlStGOBIGhKq6ysvHPnTktLi4mJyfLly7lpsirV0gJOnfpvbUMZGbBxI1i7Fu42HDYwMJCamkogEDo6OqSkpKgNMydl6jWsuLj4+vXrfHx827ZtExMTm+Bora2tR44ckZKS2rNnD3w4QcXz589jYmICAgJg8clxYKIE7DdLqxk6xq4b4HbSfxUdElQQH5WdmUnzZaje3t6ioiIikVheXo4giKSkpIGBgampqYiISENDw5EjRxwcHJydnWl70amsqKjoypUrCILABAyCIGYwMDDw6NGjlJQUISEhHx8fGtQEamsD0tJATQ1s2QI8PGAn5WHU1CsuLq6zs3PGjBnz58+f9KnXsMrKykuXLnFycm7btk1KSmrc4yAIcu7cuffv3x84cODbjpoQI/X29u7fv19cXPz3339HOxbWwyxfiKGhoVW1tRvO30Y7EKZmv8I35fmjoBs3NqynTXs0MplcWlpKJBILCwvJZPL06dMtLS0NDAy+PeKVlpYGADAxMaHJFSEAQFtbW0hIiIiICBcXV0lJCdrhQBAEAU5OTk9PT11d3Tt37vznP/+xtLR0dXWd0DEkQUHw7h2YwEP25NPf3//mzZu4uLje3l5paWl3d3d9ff0ptXqjoqKyZcuWixcvnjlzZuvWreNuJJWWllZeXu7k5ASzLxTx8PDY2Ng8f/68oqJi1qxZaIfDYphiBayzs1NZRWXD8fM6ZnPQjoXZVeTnnPJfVVlRMcEt1NQjXllZWd3d3TgcTltbG4/Ha2pqfjcJNzQ0tGfPHjExMbjHl1aGhoZOnz5dU1Ozc+fO4uLi2NjYY8eO0WpDPARB0AR1dXWFhoYWFhbOmDHD19d3xowZv/5MbS0IDgb79gEODvoHyJJ6enoSExMTExN7e3uVlJTs7Oy0tLSmVOr1rdra2vPnzyMIsnnz5nHUMW9vbz9y5IigoOC+ffsmTakSFtXT07N3795Zs2b5o9oqiRWxHz58GO0YwJmzZ7909rpuCEA7EBYgIin1obS4oaba2spqHB///Pnz69evQ0NDCQRCTU2NjIyMg4PD6tWrTUxMxMXFf7wZFBcXp6amOjg4yMrK0iJ8CDx58iQ7O3vJkiUGBgbs7Ozp6emSkpJycqx97hGCoEmDk5PTyMhIVFQ0MzMzJSWFk5NTQUHhX1OFpCSwYwfYuBG8fg3MzABsZviDrq6uly9f3rx5s7S0VFZW1sPDw8XFZcQb7tQhICCgoaGRlZWVnp6urKwsPMaTgcHBwZ8+ffL39xcSEqJThNAocXBwUGsHGBoawj5sY4L+Clh/f7+cgsLWM9dV9Y3QjWSCsL09FE5OhJ3ukzF17ysOei6qrakZfS3Xnp6evLy8jIyM6upq6hEvU1NTPB7/y6LD169fLy4uPnnyJA8Pz4QDh0BFRcXZs2c1NDQ2bdqEwWCGhoa2b9+uqqq6nkZ7SiEIgmilpaXl9u3bVVVVGhoa3t7e398vgoPBuXOgqAhwcwMPD7BpE9DVRSlSJtXV1RUfH//69evBwUElJSVnZ2dVVVW0g2IijY2N586d6+vr8/f3H/0GtqysrFu3btna2rq4uNA1PGiUvnz5cujQoblz5y5fvhztWFgJ+ku3QUFBUoozWT37AgAohd6adf1ifGxynwR9dyTLKM9SN8Jfvnx5//79P38niUQqKysjEokFBQUUCkVAQMDS0tLMzGyUu657enqKior09fVh9kUTnZ2dN2/eFBAQGO76xcbGpqqqWlZWRqFQYH1/CIKYioiIyI4dO6KioggEwtGjR1etWqWpqfn/vxwTA5qbwaFDYNMmADdR/6+vX7/Gx8enpKSQSCQ1NTVnZ+dxbLSb9CQlJXfv3n3mzJlLly5t3LhxNJX0uru7Hzx4IC4u7uTkxIAIodEQFxfX0tJKT093dnbm5eVFOxyWgXICRiKRTp3+z5qjp9ENgybE0pJJfHz0zr6oFvltObF+xdatW0dc8EUQpKqqitrFq7+/n4uLy8jIyMDA4McjXj+XnZ1NJpNNTU1pF/jUhSDI7du3u7u7d+zY8e1PTV1dPT8/v7q6mgY1xyAIgmiKnZ190aJFGhoawcHBly5dsra2Xrx48X9P3Vy7BgQEYG3D77S2tr569Wo49Vq0aJG8vDzaQTEvYWHh7du3U3OwdevWaWtr//z99+7d6+7uXrduHQ52k2Mm1tbWRUVFycnJCxYsQDsWloHyV2doaCi/iJgW3gLdMCaOvb9PuCCnzmExYy43U1tPQV3r5q1bAVv/p2p/Y2NjTk4OkUhsaWlhY2ObNWsWHo/X09Pj5OQcx1UyMjIEBATglgmaiI2NLSsrW7Ro0bcVJgEAWlpaAIDS0lKYgEEQxIz6+mYmJR22sblbXf3q1at3796tWbNGTEwMrnp9p6WlJS4uLj09fWhoSEtLy9HRER7uHQ1hYeEdO3acOXPm+vXrfn5+Ojo6//bOoqKinJwcS0tLeLtkNqqqqjIyMklJSfPmzYNlUUYJ5T+ma0E3bL1WoxsDTYhkE9kGB5vMZjPsigtWrLl27jg1Aevo6MjJycnNza2qqgIASEpKuri4mJqa8vPzj3v8xsbGmpqaBQsWTJHmJHT17t276OhoFRUVW1vb735JUFBQQkKipKRk4cKFqMQGQRA0stpacOUKtZMyx4oVa+7e1dTUDA8PP3bsmIeHB+xNMqy5uZlAIKSlpSEIoqWl5ezsPO7q6lOTkJAQNQcLCgpau3at7kiHCfv6+sLDw4WFhRctWsT4CKFfsrGxCQ4Ozs3Nhd8Mo4RmAvb+/fvS0pJt1t8/krIiUWIawGCaTRm3lKdjMffaHzsePHjQ2NhYXl4+NDQkIiJib2+Px+PFxcUnPn5GRgYAAI/HT3yoKa63tzc4OJiXl3fNmjUjZrMaGhqJiYldXV18fHyMDw+CIOh7eXng2DHw7BmgUMCcOWDzZrBoEQAAj8fLycnduHHj9u3bpaWlHh4e49teMWk0NDQQCISsrCwEQfT19Z2dnSUkJNAOiiUJCgru2rVrOAfT09P77g0PHjxob2/fsmULFxcXKhFCP2doaPj48eOUlBSYgI0SmgnYnbt3zeycOLm4UYyBVkRyM7vlFPpFxBh2RXZ2rLn9wtevk7i4OI2NjfF4vKqqKq3K2iIIkpWVpaioCO8lE4QgSEhIyNevX7du3fpvNSc1NDQSEhJKS0vh1xYEQUyhthbExAAPD7BjB/jfLWGSkpJ79+6NjIxMTEysqalZu3attLQ0WmGiqL6+Pj4+PjMzk42NzdjY2N7eniZTn1MZPz//9u3bz549GxQUtGrVqm9viOXl5RkZGebm5hoaGihGCP0EFos1NjZOSEhobm4WFRVFOxwWgFoChiBIaGiY76QovwEASL92l7uxgcEXne3sdmGbX0VZGTc3jZPYkpKStrY2e3t72g47BSUkJBQWFi5YsOAn9Z1UVFRwOFxJSQlMwCAIYgrOzqC+/t9OeeFwuGXLlikqKoaFhf39999Lly6dM2cOgwNEUV1d3YsXL/Ly8tjZ2U1MTBwdHeHjJq0M52AhISEIglD34AwMDISGhvLz87u5uaEdIPQz5ubmr169IhKJsEblaKCWgKWkpAyQyeoGk+SJc1BAcFBAkMEXVVTXwnHzvn79muaZUkZGBg6HMzQ0pO2wU01tbe2TJ08UFBR+/mWEw+FmzpxZWlqKIMhUbs0JQRAK0tNBXh7YtOl/XmRn/2WNDSMjI0VFxZs3b4aHh5eWlnp7e9N8KpDZVFVVxcXFFRUVYbFYCwsLBwcHQUFG3/cnPT4+vm3btp07d+7OnTsIgpiamkZGRra0tKxfvx52xGFyUlJS0tLSGRkZjo6O8GHml9gPHz6MyoXPX7jAJ6OkYz4XlatPGp1fW98X5zs7O9NwzL6+vtDQUB0dHXgAbCL6+/svXLhAoVC2bdv2y84Y3d3d+fn52trao2+uDUEQNH4kErh/H/j6gqNHQUoK2LwZjP00Fw8PDx6P7+vry8jIKCwsnDVr1mQ9yPr+/ft79+5FRka2t7fPnTvXz8/P2Nh40iecaOHk5DQyMiorK0tOTqZQKK+omQaJAAAgAElEQVRevTI0NHRwcEA7LujXSCRSTk6OqqqqsLAw2rEwO9QK3L1KSNRk/erzqNPEWyQkvqbtmNnZ2SQSCbb/mqDw8PCmpiZvb+/RfA1R97WXlJTQPy4Igqa27m4QGAjk5YGnJ/j4ERw6BN69A+NNnLBYrLu7+4YNG9rb248dO5aenk7bYFH3/v37s2fPnjp1qqKiwsrK6q+//lq2bBmcKaM3Hh6egIAAWVnZ2NhY6pZXtCOCRsXExISdnZ1axQ36OXQSsK9fv1aWl6sZGKNy9clkpo5ec9OX2tpaGo5JJBKnT5+urq5OwzGnmuTk5KysLCsrqxHL6f5IUlJSRETk7du39A4MgqCpDocD588DMTFw/Tr48AEcPgwmXGxJV1d37969YmJid+7cCQsLI5PJNIkUXWVlZSdOnDh16lRNTY2tre3x48eXLVs2keYu0Jjw8PAoKSkBAEgkUm5uLtrhQKPCx8enrq6em5s7ODiIdizMDp0zYElJSSraOpzccDvvRLGzYzUMTZKSkry9vWkyYGtra3V1tbW1NWz/NW4NDQ0PHz6Uk5NzcXEZ/afU1dVTU1N7enp+uV8RgiBo/Dg5QXY2kJWl7aji4uJ79+69d+9eSkrKx48f/fz8RFizUzOCIMXFxTExMTU1Nby8vI6OjtbW1vD0EePV1dW9efNGXV29v7///v37CIJYWVmhHRT0a6ampsXFxYWFhUZGRmjHwtTQechOSHytZmyOyqVpbsbLGONt67mavqAVgKqR6avERFqNRu1nYmwMFyfHaWBgICgoCIPB+Pr6jqkfvKam5tDQUFlZGf1igyBoaunuBpcvg46O71+ndfZFhcPhVq5c6ePj09DQEBgYyHJL+giCFBUVHT9+/PLlyy0tLY6OjseOHXNycoLZF+MNDQ3duXOH+jcqICBg5syZDx48SEhIQDsu6Ne0tbW5ublzcnLQDoTZoZOAJb15o2E8SY4YiScnSsW/IKG3LUHTxDwp6Q2tRsvKyhIVFZWTk6PVgFPNP//809jYuGLFirH2hFFVVcVisSz3yAJBEDP68AHs3AmkpcGmTeCffxh5ZTwev3PnTi4urkuXLkVFRSEIwsirj8/Q0BCRSDxy5Mjly5fb29uXLFly/PhxJycnWGYDLbGxsXV1dW5uboKCgpycnJs2bZo1a9aDBw9iY2PRDg36BRwOp6GhUVZWRiKR0I6FqaGwBZFCobx/Vyk3a5IcMRIqyO1Q16Sg105adqZqY8On7u7uadOmTXCoxsbGhoYGR0dHmgQ2BWVnZ6enp5ubm49j5Z2Tk1NZWbmkpAQWo4cgaPxSU8HZs+DZM0ChACsrsHUrYPhXury8/P79+2/fvh0dHf3x40dfX18uLi4GxzBKZDI5PT2dQCC0tLQICgq6u7tbWFjgcDi045rS6uvrX7x4oaqqamHx31JtnJyc/v7+ly9ffvbsGYIgsCIik9PS0srJyamsrISNs38ChRWwmpoaLm4ePoZ3zaIHbE83X/X7rzr6KMaA4+QUk5R6//79xIfKzMwEAMD2X+PT1tYWEREhJiY27npNmpqanZ2ddXV1tA0MgqApJDwcxMQADw9QWAgSEoCzM0DjQC8vL++mTZtcXFyKi4uPHTvW2NjI+Bh+bmBgICEh4cCBA+Hh4QCApUuXHj161NLSEmZf6BoaGrp79y47O7uXl9e3c5EcHBz+/v5qamrPnz+Pjo5GMULol7S0tNjY2IqLi9EOhKmh8L1cUVEhqzST8delB4HSYszQUJuGNrphzFBQqqiomPg4ubm5MjIykpKSEx9qqkEQ5Pbt2wMDA76+vpxjb6dDpampCQCAuxAhCBq/gwdBXR24exdoo3xjwmAwtra2Gzdu7Ozs/Pvvv/Pz89GNZ1h/fz819Xrw4AE3N7ePj8/Ro0etra1h6sUMYmJiamtr3dzcREVFv/slDg6OTZs2aWtrR0VFRUZGohIeNBq8vLwKCgqFhYVoB8LU0EnAJOQVGX9dehAoKQYAtGtooRuGhLxS+YQTsOrq6qamJlh+Y3xiYmIqKysXL14sLy8/7kEkJSWFhYVhAgZB0KgUFIC0tO9flJQEPzy5okhbW3vfvn0CAgLXr1+PjIxE90hYV1dXVFTU3r17Hzx4MH36dD8/v4MHD+LxeFj1l0nU19fHxcWpqqrOnj17xDdgsdh169bp6OgQCASYgzEzLS2tr1+/NjQ0oB0I80LhS6esvFxCXonx16WHDnXNao9VXYrK6IYhKa9YVl4+wUGysrIwGIyBgQFNQppSampqYmNjVVRUbGxsJjiUhobGhw8fenp6aBIYBEGT0NAQePoUWFoCPT2wbRva0fwatUK9lpYWgUC4fPlyX18f42Po7OyMjIzct29fdHS0pKSkv7//gQMHDAwM4IFb5jG8+XDFihU/+blgsVg/Pz+YgzE5LS0tAABcBPsJNM6A1X4UmyHD+OvSQ7OxWcHBQIQdnXZqwyRk5d9XVU9khKGhodzcXGVlZWFhYVpFNUUMDAzcunWLm5vb19d34vdyWIwegqB/1dUFgoKAhgZYvBjk5YEtW8DDh2jHNCpcXFwbNmywtbV9+/bt8ePHGXkkrKWl5f79+/v27SMQCEpKSnv27Nm9e7c22vszoR9FR0fX1tYuWbLklx3kqDmYnp4ezMGYlrS0tLCwMDwG9hMoZA7tHR08fHx0GnyIQmFjZ2fkB7/V3FDf3d6uoK45wXHGik9QqLWlZSIjVFRUdHZ2Ojk50SqkqSM8PLypqWnjxo0CAgITH41ajL6kpASWQoEg6HuFhWDdOqCsDM6dA2vWAJZq2s7Gxubi4iIrK3v37t2///57zZo11Dly+mloaCAQCNTmllpaWo6OjrDDCtOqq6ujbj4crnz4c9Qc7Pbt2wQCYWhoyM3Njd4RQmOlqamZkpLS19cH2zmMCIUVsO6uLm7eiRZMHxGZRPp92Xjq7Y77g98pSH0TG3Zr4uOMFb+g0NfWCSVgWVlZbGxsenp6tAppisjMzMzMzJw7d66Ojg5NBqQWo3/79i1LNM+BIIihLCxAUhKoqABbt7JW9jXM0NBw165d3NzcV65cefOGZh0sv1NXVxcUFPTnn39mZ2cbGxsfPnzY398fZl9Mi0wmh4SE4HA4b2/v0W8kYWNj8/Hx0dPTi4+Pf/ToEV0jhMZh5syZQ0ND1dUT2p81iaGRgHV3c/HQ5s6BIEhLY8NA/383lA/09X18V04hkxAEGaJQBvp6B/v7EQShUMj/ff/Q0BCFQv1vCpnU3dnx4we/e/O3Q1FfJw0MtDV/GY4B193F96Gqr6d7oK/3x/CoI7S3Nv/3ohTy8IM19VdH/H0JlBSN6c+BZxp/d1fXmD7yLTKZXFBQoK6uzke3lclJqaWlJSIiQlJSkrZzb9Ri9PX19TQcE4IgFtPfD0bsOTt3Lipl5WlIRkZm7969cnJyERERYWFhlH+5D47P+/fvL1++/NdffxUWFpqYmBw+fNjHx0dCQoKGl4BoLiYmpr6+fsmSJUJCQmP6IDs7+9q1a3V1dePj4x8/fkyn8KDxUVJSAgDABOzfoLAFsbu7i5tGU3c7Ftrw8PG1fm40mbdg1e+HbwceJA8OHlzp5rltb+jpYy2fP/FM41t7MPCfC6f+Cn8KAHj16F5Ffs6m42cfX78QG3pbdIY0zzS+vVfvDH9w+dbd373ZymXZ8FDnY948vHI25u5NQVFxdhx237VQYWFhjbN/ZxUXbG36zI7FiUrOEJeRHQ6vPC/71l/7SYOD3NP4+nt6Dt7+5975E5JyCi5+mwEA9y+eBgC4b9n14+9L7unDdnUtMOp5IBwHx9DQEJlMxmLH8wMtLi7u7e2F9Q/HZGho6Pbt22Qy2dfXl4OD4//Yu8+AJtKtD+AnISH0Lk2KFBGEgF1EdBV0RQVXELCBiigWxL7Y21pXrwUVUSwBrCBrA6UoYEHFBQtNioAgvfcS0t4P2ZfrRVcJJEzK8/u0N2Zm/nIxmTNz5jxc3LOZmVl4eHhGRoa2tpA8KokgCAcqKyEoCE6fhrIySEsDHvfpYUJeXn7z5s0hISEvXryora1dvny5lJRUH/eZlZX14MGDgoICEolkY2Mzbdo0rrSFI7xWXFwcExNjYmIyfvz4XmwuJibm5eUVGBgYGxsLAHPmzOF2QKSXlJSUFBUV8/PzsQ7CpzC4kNba0sKtFkTdISYHrt87GRFPbW+n02jLdx8kiIsfvHEfAD5npR+6+eD4vSffbpXzPuXR1Stnop4fCY3UNjR69yzu6w2/1bWrpvq6J7evX0hIPhkRb2XnUHf8oGRFebKUdOWXwjPRiWeiXjCZ3a/kfc7K3HTqwpHQyAn2sy/t327jNO/Zg78AgMViPY+4M2m2y3ePmLpjf8+rLwAgiosDAJVK7fkmX0tOTiYSidxqohMRkZGR+fn5Tk5OXC+T0DB6BBFR79/DihUwaBBs3QoaGhAcDMbGWGfiFQKB4OHh4eTklJWVdfjw4crKyp9v8z0sFistLe3QoUOnTp0qKyubNm3a4cOH586di6ovgUCn0ykUCpFIXLRoUa+nWLFrsGHDhsXGxqL7YHzFwMDg8+fPTCYT6yD8CIM7YEwmE8elDoq014nb5zmMsvnVcbk3gUik0zq7/khDV3+AptZ3t8r5kGIxfqKUrBwAeGzbBwAdbT+a+t21qzePo8QlJIOP7gcAan1tcMzDuvLSzMZGppYOSULSMPjiORrtOJ1ObGoacuF0i66e9stnOGWVBYd2vztwfMwUu8SQy/Zjx9Nra2ROH0u2mjhPXNwuKLDB2FQrOuLj2t8H/P16wOvnyf/xl6ysMD155OXF6wCg9iKB0NqikJWZuWHrj34QOBwA9O5XvKOjIz093cLCQkJCohebi6b8/PyoqKihQ4fa2NjwYv+mpqaJiYmtra3SgvmYB4IgHGMywcUFvnyBOXNg3TqwtMQ6EM+xV2oeMGAAhUL5888/V65caWRk1PPNGQxGcnJyVFRURUWFrKysvb39lClT0OP+giUyMrK0tHTRokWcNh92w+5FRPfB+I2+vn5KSkpZWZmW1vdPyEUZBnfApKWlf1zw9Nz5uDdOK9aWFuRvnD21srjo6z/6usux61Er9mNa0rLyXQ9itTY1NdXVfr1htzd/vSs6rVNdW3f8dIfx0x3mTbARY7HKps74pDkQWCwAKHSeb1RW2onHi3V2NA82qhs+UjsnK0xRqWLyr1rREZ1U6liAVi2d0nmLjG8GP3vwl9IsZ6UPb784uhY6LzC6HJCz3Lva0lrzSXTDULLcp2wAUEp9K11cVGrnwCQSxevrfvBzoHd2AgCJROrFz/DDhw+dnZ2jR4/uxbaiqb29/fLly9LS0kuWLOHRGjJoGD2CiBw8HoKDoaAAbt4Uheqry4gRIzZt2kQgEPz8/F69etWTTeh0elJS0t69eykUCo1Gc3V1PXz4sIODA6q+BEtxcXFsbKyJiYmVlVXf99a1PlhsbCyaTc8n2I+BoS7E78KgAJORkW1vbeHKrkKO7R81earPkVPK6hpVpcVEcXEmg9ltsoWMvGJlSTF7GseHxKcAMNp2Wubfr1qbmgDgyqHdb55EdW347Zu/Ns7OviAzXcfIxHSMFSH1LQA0Gw5RHEou/1LY1txEJZEekEh2RZ81Yx4mG5tSWdCiqJial1vGZBJaW18+elAzYRKpoW6OziBGc3Pa6xfmU6Z1KigwiUSqigpVUQlwuE4FRUJrCwAwxEkAoBkb1TZQGwCy1mzqVPzRxSFaJxWHwxGJxF78DJOTkyUkJExNTXuxrWi6fv16XV2du7u7vLw8jw7RNYyeR/tHEARjublQVdX9xfHjQSSvEw8aNGjbtm0aGhrBwcERERE/mAFLpVLj4uJ27NhBoVCYTKarq+sff/xha2vbu68/BEN0Ov3KlSvi4uIcTT78MbRGM7/R1tYWFxdHczi+C4MWRFk5ufYW7hRgpQV5m51+pba3DzYfPnS0pZgYYbD5ME9rC+9DJ7veM8h46JDhI9fYjZeWlR8yfCSdRpdTVJrivGD1lLGqWjoag/Rs5szr2tA/9lW3N399OAXlAXYLl6yeOm6gnsH66koAaDIcrN1YTzQyWWo/iShOMh2kfyn9Q0sndaOb06kDx4cAqGhoPrhyfgitM9dg8I1RllQJyVY7B8K+bUOGj/qfUZDsT5///QxqNB46MCayYqKNRE0VsKBDVe3ffg7tra1S0tK9+AhraWnJysqytLRE31499Pr16+Tk5MmTJ/P0kbmvh9Hz6CYbgiDYSEyE06fhzh3w9YVDh7BOwy8UFRV///33S5cuRUZG1tTULFq0SOx/V+bs6Oh49uxZTExMa2vrwIEDHR0dx4wZgxfwgZCiLCIioqysbPHixYqKilzcLbsGCwwMjImJERcXt7fnwgpDSK+JiYnp6uqiAuy7MCjApGVkuNWCuPvKLWpHOw5w4v///NLBG/epHe0kCclRk6d2vc33zOWWpkZJaWkxsX/+vq5rNjl6+TDotK4qqGvDb9986FZE165cVm9w8lrT0dZus2szq7rK5OwJMWqHrqzsxTuxndIy4hISjEO7KyfYXPNYOSj8pnx1lZm84nqrCZL5eXonA2hxMYYhlyQrKwAH860mKL1/K1VaIllepvQ+ReZzvmRlhUJmOqGtVT77o2RVpXz2x4rJU3XvhtnMsSubOj171fof/Bya6uuUVQb04gf47t07BoOB+g97qKam5tatWxoaGv3QX25qapqdnV1SUoJmISKIMGhvh2vXwM8PMjNBWhpWrIDFi7HOxF9IJNKqVatu3br17NmzhoaGlStXslsKm5ubnz59GhcX197ebmBgYGdnRyaT0ZUpgfbly5fHjx+bmJiMGzeO6zvvqsEiIiIAANVg2NLR0YmPj6dSqb17TEaIYVCAycvJcasFEQBIEt17vr99BQBk5Lp3ixHFxYn/Oz28a8Nv3/w1MQJRWo4oUVVRZz48Y9N2FpHIECeBmBh7X+0amk2GRgBQ6Dw/Ss+g9M99Gb672RsWOzg919C8f+tqvYnZvtmuJQAlM2YBQM6KtTkr1gLA+31/st95/8M//bKJV24R2tvokj+Zz9vSUN+7B1jfvn0rKys7ZMiQXmwraphM5uXLl+l0+rJly/rhhqGZmdlff/2FhtEjiJA4dgz27AFdXTh6FJYtA65e9RcaeDx+wYIFampqt2/fPnr0qJubW0pKyosXL2g0Grv0Mjc3xzoj0lfsyYfcbT7shl2DXbhwAdVgmNPQ0GCxWBUVFWgl9G4wKMAGamrWlJf1/3G569nNB91Ko8GUC4rp73OXrel6RdvQaPH/V19s8jp6FuMnjraZ1vMD/bT6AoCq0uJe/GY3Nzfn5uZaW1ujLo6eYK8wM2/evP4Z5qOpqckeRj99+vR+OByCILy1fDmYmICjI/RqtUaRYmtrKyYmFhoaevToURwORyaTp0+frq+vj3UuhDvu37/Pi+bDbggEwooVK1ANhjn2Mujl5eWoAOsGgzPvoSbGFYXC0A/arTQqtp+dtv2PhqFmXa/IyCuYjBr79XuUVNUmO86Vkefy+iRlhfmmJhwvF/P+/Xsmkzly5EjuhhFKnz59iomJMTU1nTRpUr8ddOjQoQUFBa2t3OnXRRCknzCZUFjY/UUNDXBxQdXXT5WUlFAolNDQUBaLJSYmRiAQJk2ahKovoZGfn//kyRMLCwuuTD78MXYNZm5uHhER8fDhQ14fDvkuTU1NAKioqMA6CN/BoAAbMmRIeaEQjqTsGKDWoaKKyaErCwt60Ub49u1bGRkZjtZdEU1tbW0UCoWnc+e/iz2MPjs7u9+OiCBIn3R0QEgImJnBpElAp//8/chX8vPz/f39Dxw4kJycPGbMmH379u3cuVNWVvbcuXNv3rzBOh3CBVQqNSgoSEpKys3NrX+O2FWDPXjwANVgmJCWlpaVlS0rE/jGN67D4GrckCFDSgvy+v+4Qqz0cx6nBVhLS0tubu748eNR/+FP3bhxo66ubvXq1XJycv15XBMTEwKBkJGRge5SIgi/KymBs2chMBDq68HQEDZvBiYT60wCIy8vLyYmJi0tjUAgWFtbz5w5s6s5bcuWLWfOnKFQKM3NzVOmTME2J9JHoaGhVVVVK1as6M8v065exAcPHuBwuBkzZvTboRE2DQ2N8vJyrFPwHQwKMENDw7ramraWZikZ2f4/uvBhMOhlX4oGDx7M0Vao/7CHXr58mZycbGtr2/8Pf5NIJAMDAzSMHkH4XUUFGBhAZyf88gts2AAODoAubPUAi8VKT0+PiooqKCggkUg2NjZ2dnbd1ldUUFDw9fUNCAi4fft2U1OTo6Mj+jAUUKmpqS9fvrSyshoxYkQ/H5pdg50/f/7+/fsAgGqwfqahoZGXl0ej0dCKR1/DoAATFxfX0R1Ukp9rZIHO/rmg/HOBgqIip1MQ3717Jy0tjeYf/lhVVVVoaKiWlpajoyMmAczMzHJyctAwegTha+rqcPAg2NhAv59ZCih26RUZGVlUVCQjI2Nvb29raysl9f2JUyQSac2aNZcvX46JiWlqalq0aBFq3BA4LS0t165dU1ZWnjt3LiYBCATCypUrUQ2GCQ0NDSaTWVVVNXDgQKyz8BFsPsWsrcd/TBbUlm4ck2kzx07/ZjDWQf6Rmfx6/HhrjjZpa2vLzc0dNmwY+hr7ASaTSaFQmEymp6cnVpdtzMzMACAjIwOToyMI8h3fnYuzeTOqvnqCTqcnJibu3r3b39+/sbHRxcXl0KFDDg4O/1Z9sREIhOXLl1tbW79+/fr8+fM0Gq3fAiNccf369ebm5iVLlkj8/6qt/Y9dg5HJ5Pv37z969AirGCJIQ0MDAFAXYjfYnH9PsbHJTn6FyaH7TrKiTCEzjdjUiHWQf2Qlv55qa8PRJu/fv6fT6aj/8McePXpUUFAwe/Zs9gwfTGhqaiopKWVmZmIVAEGQ/6qogL17QUcHnj3DOorgoVKpcXFxO3fuvHr1KoPBcHV1PXDgwJQpU3q4PCsej3dzc5s2bVpqaurp06c7Ojp4HRjhllevXr17927KlCmYD/1i9yKamJjcv38/KioK2zCiQ0VFBQDq6uqwDsJfsBmJO2XKlJWrVtFpNIIA9oNKfykEgFbtQRjnAAAAFouV8ebVhf8c4Wird+/eSUlJof7DH/jy5cujR48GDx5sa2uLbRJTU9OXL1+2tbX9+AoxgiA8lJwMJ09CeDjQaDB5MmB3FV8QtbS0JCQkJCQktLa2ampqOjo6jh49uhf9FzgczsnJSV5e/vbt2ydOnPDx8ZGVRU+S87v6+vrbt29raGj89ttvWGcBACASid7e3v7+/vfu3QMAtNJmP5CXl8fhcA0NDVgH4S/Y3AHT1NRU19DMS/+AydH7SIZdgOnwxYpyRTlZRCLB2JiDRcDa2tqys7OHDRtGQCvS/AsajUahUMTFxZcuXYr5A9/sYfQfP37ENgaCiK5Vq2DMGPjrL5g3D969g/h4GDv251shAE1NTRERETt27IiMjFRWVvbw8Ni9e/fYsWP70v1ua2u7aNGi4uLiY8eO1dbWcjEtwnUsFotCoVCpVA8PD/4ZwMCuwYyNje/duxcTE4N1HOFHJBKlpKRQAdYNZqfgU2xt0l+/MB4xGqsAvca+A9aiMwjjHAAAkJ6UOHnyZI6KhA8fPtDp9P4fQyRAwsPDy8rKPD09OR1twgtdw+hHjRqFdRYEEUnTpoGSEqxZAxoaWEcRGNXV1fHx8S9evKDRaAYGBnZ2dlwcJGtlZSUtLX3x4sXjx4+vX79eVRWbFTiRn4qLi8vJyZk9e7auLl9cs+7CrsHOnDlz9+5dcXHxyZMnY51IyCkqKqICrBvMZjDYz5yZEieQDbjSX4o6FRRpcvI/fyvvvY2Lcpg5k6NN2P2HJiYmPIok6LKysp49ezZ8+PAxY8ZgnQUAgEQiDR48mD2MHussCCKSZs+GgwdR9dVDxcXFFApl9+7dCQkJJiYm27Zt8/X15foyHhYWFmvXrm1paTl27FhpaSl3d45wRXl5+b179/T19adNm4Z1lu8QFxf38fEZPHhwaGjo06dPsY4j5BQUFFAB1g1mBdj06dPrqiqLcrKwCtBrZb/OyPVcjXUKAICq0uKCrEyO+qo7Ojqys7PNzc1R/+F3tbW1BQcHy8vLu7u7Y53lv8hkcnNzc1FREdZBEESovX0LixaBtzfWOQRVXl6ev7//gQMHUlJSxowZs2/fPm9v70GDBvHocEZGRmvXru3s7Dx+/HhhYSGPjoL0DpPJDAoKwuPxS5Ys4dt5y+Li4mvWrDE0NLx169bz58+xjiPM2AUYuo78Ncz+VRCJxHlz5z1/EI5VgF4rtnfMXc4X39BP74U5Oc2RkZHp+SYfPnyg0Who/uG/uX79ekNDg7u7u7S0NNZZ/os9jD49PR3rIAgijBgMCA+H8eNh1CgICwMmE+tAAobFYqWlpf3555/Hjh3LycmxsbE5cOCAh4eHmpoarw9taGi4ceNGAPDz8ysoKOD14ZCei4iIKCwsdHZ27odfg75grzKnq6t748aNFy9eYB1HaCkoKDAYjJaWFqyD8BEsL0ssXuT+MvIuk8HAMINAe/3w3pLFizja5N27dxISEqj/8LuSkpJSUlImT57MLnj4h5qamqqqKloNDEG47/17MDQEFxfIzYWdO6GwEAICsM4kMBgMRlJS0r59+/z9/auqquzt7Q8fPjx37lxFRcV+y6Crq7t582YikXjq1Kns7Ox+Oy7yA0VFRTExMSYmJhMmTMA6y89JSEisX79eR0fnxo0bb94I6hK1fE5BQQEAUBfi17AswMaMGSMvL5/2Gl1y6I2c9ymdHe2//PJLzzfp6Oj4+PGjhYUF/wwj4h/19fWhoaEaGhpOTk5YZ/kOMplcVFTU1NSEdRAEES6GhqCuDhcuwJcvsH8/qKtjHUgwdIvdYHcAACAASURBVC3qxZ5x5+rqevjwYQcHB0x6BzQ1NTdu3CgpKenv748GxmKus7Pz8uXLJBJp8eLFmI8R7iFJScn169dra2sHBQX9/fffWMcRQuyLMvX19VgH4SMYN+Yu81z6+FYwthkE1ONbIZ5Ll4qJifV8k7S0NBqNhuYffovFYgUFBXV0dCxZsoQ/q1MzMzMWi4VWZEYQLpOVhdevwcsLJCWxjiIYOjo62KVXWFiYmJiYq6vr/v37bW1txcXFMUylrq6+adMmWVnZc+fOpaWlYZgECQ8Pr6ysXLhwYX/eCO07KSkpHx8fdXV1CoWSnJyMdRxhw16yD7Ugfg3jAmzVypXZb/8WxFEc2KosLkqOj1nr48PRVu/evSORSKampjxKJbiePHmSnZ3t4ODAu+fF+8jIyIhEIqEuRATpJTodwsJg+nRoa8M6iqBiL+q1devWsLAweXl5Dw+PP/74w9bWlk9GOqmqqm7evFlRUfHChQuoBsNKWlra8+fPx44dK4jrpsjKym7cuJFdg6WmpmIdR6hISEgAQHt7O9ZB+AjGBZicnJy3t/e9i2ewjdFzcrlZsgV5WKeAexfPengs5WjxEyqVmpGRYW5uzp93eDBUXl5+//59fX19Ozs7rLP8KwKBYGxsnJmZyUDPTCIIRxob4fhxMDSEuXPh7VtALWqcq6mpCQ0N3b59e2RkpKampre3986dOy0tLfltup2SktLvv/8+YMCACxcuoBPo/tfc3Hz16lUFBYV58+ZhnaWXZGVlN2zYoKqqGhgYiMp4LpKUlARUgP0v7D89N6xf//55fFmhYMwvsji429LbA9sMtRXliQ/vbd60kaOtMjIyUP/ht+h0+qVLl/B4vIeHB7+dTHRjZmbW3t6en5+PdRAEERxbtoC2NmzeDDIycPEifPkCAnhhHkMlJSUUCmXXrl3sRb22bt3Ki0W9uEhOTm7dunVKSkroBLqfsVis4ODg5ubmpUuXSklJYR2n9+Tk5NavX8++lYqGD3MLKsC+hf0Zp7KysqfnsgeX/LEO0iOS5aXt6hgvx/ng8rkFCxbo6OhwtNX79++JRCLqP+zmwYMHJSUlLi4uHN1OxASZTMbhcKgLEUE4UFEB5ubw4AGkp8OyZSAhgXUggdG1qFdycvKYMWP27Nnj7e2tp6eHda6fU1RU3Lhxo5KSEupF7E9xcXHp6ekzZ840MjLCOktfKSgobNq0SUFB4cKFC2i0JlcQiUQCgdDR0YF1ED6CfQEGAL6/b06KfViUy/dPgrFYklUV7eoDMYxQXvT56b2w7du2cbQVg8HIzMwcOnQoiUTiUTBBlJ+f//jxY1NTU2tra6yz/JyioqKmpia6IIcgHLh8GRITwcEBBGQaG+a6Leo1efLkgwcPenh4aGhgfOWRI+waDD0P1m/Kysru3bs3aNCgGTNmYJ2FOxQVFTdt2iQvL+/v75+Tk4N1HGEgISGB7oB9jS8KMA0Nje3btl/+YxufL5It3lAv1tHRrqGJYYbgw3vWr1/P6WXI7Ozstra2YcOG8SiVIKJSqUFBQdLS0kuWLBGUUblkMrmsrKy2thbrIAjCZxoa4NgxiInp/jp/zIcQCCwW6+3bt3/88Ye/v39ZWdm0adP6f1EvLmKfQKMarB/QaDR2J7+npydHk5n5nJKS0saNG2VlZc+ePZubm4t1HIEnKSmJCrCv8UUBBgCbN29itbc9vReGdZAfkSovA4A2dcwKsFfREWX5OVu3bOF0ww8fPuDxeDKZzItUAurWrVtVVVULFiyQk5PDOktPsVeIRsPoEeS/8vNh3TrQ1gZfX7h5E+s0AolOpyclJe3evTswMLClpcXe3v7IkSNOTk6YLOrFRV/XYKh3gHdu375dWlq6cOFC/u/k55SysvL69eulpKTOnj376dMnrOMINlSAdcMvBRiBQDgfcO7asQPNDfy7TJtkRRkAYHUHjNrRfv0/BwL8/Tn9UmSxWOnp6YaGhux1GBAASE1NffXqlbW1tWBNJTEwMJCWlkZnEggCAPDhAzg5gZERnDkD1tYQGwsUCtaZBAx7Ua/t27dTKBQmk+nq6nro0CEHBwdJYVkV7esaDDWS8UJGRsbz589Hjhw5duxYrLPwhKqq6saNGyUkJPz9/QsLC7GOI8BQC2I3/FKAAcCECRPs7KbdPHkE6yD/qtzm10eJH2rGWGFy9FC/o6OGD3dwcOB0w8+fP9fX11tYWPAilSBqbm6+du2aioqKi4sL1lk4g8fjTUxMsrKyaDQa1lkQBGtVVRAdDZ6ekJEBUVEwdSp60KvnmpubIyIitm3bFhYWJisr6+HhwV5PWfjWKVFUVNywYYOMjIy/v39BgWDMWxYUzc3NwcHBCgoKbm5uWGfhITU1tY0bNxKJRD8/v6KiIqzjCCopKSlUgH2NjwowADh14sS7p7FvHkdhHeRfdaioMrCYY/Eh8enzB+Hn/M/2Ylv2cijoATA2FosVEhLS3Ny8ePFiCQEciUYmk2k0GupHRxCYOhWKiyEwEIYOxTqKIGEv6rVt27bIyEgNDQ2+XdSLi5SVldk3MU6fPo1OoLmFxWIFBQUJwdz5nlBXV1+3bh0Ohzt16tSXL1+wjiOQiEQiunb8Nf76wFVTUwu7devC7t+rStDv93811FYHbN9w5dIlbW3tXmz+4cMHLS0tFRUVrgcTRM+fP09LS7OzsxPQUbmmpqZoGD0ickpKIDi4+4s4HCgrY5FGUHVb1GvLli3sRb0EZQpRX6iqqq5btw6Px58+fbq8vBzrOMIgLi4uIyPD3t5eQL9MOaWlpbVhwwYcDnf69OmysjKs4wgeMTExJpOJdQo+wl8FGABMmjRprc+aUxtX0VGhDAAALCbz7O9r3N3cZs+e3YvNq6qqKioq0O0vturq6r/++ktbW9ve3h7rLL0kKyurq6uLhnohouLDB3B3B319WLoUSkqwTiOovruol76+Pta5+tXAgQM3bNjAZDJPnDhRWVmJdRzB1jV3fvr06Vhn6T/a2tobNmxgMBgnTpxAZTyn8Hg8g8HAOgUf4bsCDAD27tmjqaJ0/cRBrIPwhbCz/8HTOo4cPtS7zd+9eweo/xAAAJhM5pUrV5hMpqenJ0GQh1OTyeSamhp0AoEIOfb6XSNGwI0bMG0avHwJWlpYZxI8WVlZR48ePXbs2MePH62trQ8cOCBwi3pxkba2to+PD5VKPXnyJFrPo9eEde58T7B/hWg0GqrBOCUmJoYKsK/xYwGGx+OvX7uaFPUgLlzUZwonPrwfF3btr9u3xcXFe7eHDx8+KCsra6ETF4CYmJiCgoLZs2cL+skHezkBNAsREWY0GixYAM+egY8PfP4MERFgaYl1JkHCXk/50KFDp06dKi0ttbGxOXTokJubm5KSEtbRMKavr79q1aqWlpZTp041NjZiHUcgCfHc+Z7Q19dfu3ZtZ2enn59fdXU11nEEBrsFkc/X++1P/FiAAYCGhsaT2NibJw4mxT7EOss/iE1No39fo/Y8vt+OmJ6UePmPrffv3dPV1e3dHhoaGgoLC4cNGyYKLf4/VlZW9vDhQwMDA1tbW6yz9JWOjo68vDx6DAwRZkQi/PUXlJSAnx/o6GCdRpCwF/Xas2ePv79/XV2dvb09ez1leXl5rKPxCxMTk+XLl9fW1p4+fbqtrQ3rOAJG6OfO94SBgYG3t3drayu6ldpz7DE/qADrwqcFGACQyeS7d+6c37U5K+UN1lkAACQrSrUj7kj313SQ/IzUE+u8bt64MX78+F7vJDU1lcViof5DBoMRFBSEx+OXLFkiBLUoDoczNTX99OlTR0cH1lkQhBvy8qCurvuLo0eD4CySzg/a2tqioqK2bdtGoVBYLJabm9uRI0ccHByEfkJdL1hYWHh4eJSWlp49exZNZuu5hoaGoKAgZWVld3d3rLNgzMjIyNvbu6mp6cSJE/X1/LuALf9gd6uiLsQu/FuAAcAvv/xyLSTk2Jqln7Mysc4CEjXVANAxoD9uuFd8Kfxz9eKTJ0/MmDGjL/tJTU2VlpY2NDTkVjABFRkZWVRU5OLiIjT9EmZmZnQ6PTs7G+sgCNI3b9/CokVgbAz+/lhHEWD19fW3b9/etm3bvXv35OXlly9fvm/fvgkTJgj0w668Nnr06Pnz5+fn51+4cAENZ+sJJpN56dKltrY2T09PoVmquy+MjY29vb0bGxtPnDiB2ll/in0HDBVgXfi6AAOAWbNmHTly+JDXwoKPGD/xwi7AqMoDeH2g4rycfYudfTdtWurh0Zf9tLe35+TkWFhYCPHqLj3x5cuXmJgYExMTa2trrLNwjampqZiYGOpCRAQVgwG3b4OlJYwaBbdvw9KlIGirovOJqqqq0NDQXbt2PXnyZODAgd7e3jt27Bg1apSIf+z30C+//DJz5sz09PSgoCDUGfVTERERnz59mj17tqjNz/wBExOTVatW1dXVHT9+vKmpCes4fI19Bwxd7OgiAJfHVq5YIS0ltWbp3HX/OTfMehJWMUg1VQDQocLbAuxT2vs/Vy3evnXr5s2b+rir9PR0Op0u4v2HdDqdQqGQSKTFixcLQfNhFwkJCQMDg7S0NBaLJUx/L0RUHDgAe/fCgAGwezd4e4Ow3JruT0VFRfHx8X///TeLxSKTyTNmzNDT08M6lOCZNWtWW1tbQkKCvLz8nDlzsI7Dv3JycqKjo83MzKZOnYp1Fv5iamq6bNmywMBAPz+/jRs3SktLY52IT6E7YN0IQAEGAO7u7oqKigvd3Jbt+XP8jFmYZJCoqQEAKi8LsJSnj89uWRt4/vy8efP6vrfU1FRxcXETE5O+70pw3blzp6ysbOnSpYqKilhn4TIzM7Pc3NzS0lI04hIRPEuWgLo6LFoEqJGJQywWKz09PTo6Oj8/n0AgjBkzZsaMGWpqaljnEmBz585tamqKjY2VlZX99ddfsY7Dj5qbmy9fviwnJ+fh4YEu+X1r+PDhy5Ytu3Tp0smTJzdu3Iieuvwu9AxYN4JRgAGAvb191KNHDrNmNdZWz3D37P8AzYP0y22n0aV4dW0jLvzm9eMH7t25Y2Nj0/e90en0jIwMU1PTXs+vFwL5+fnx8fEWFhZCOayJTCbfuXMnPT0dFWAINDVBeTkMGcK1Hb59CyNHcm1vzc0gK/s/r+jqwooVXNu/aGAwGMnJyTExMWVlZRISEjY2NtOmTVNQUMA6l8DD4XBLly5ta2u7c+eOtLR0XwZfCSUWi3X58uXm5uZ169bJyMhgHYdPjRw5kkqlhoSEnDlzZt26dRISElgn4jvs5kPUHd1FkH4QVlZWz589i78V5Ld5dXtrSz8fvdB14Wt/Ci/2TO1oD9ix8UGgX0JcHFeqLwDIzs7u6OiwsLDgyt4EEZVKDQoKkpGRcXNzwzoLT2hqaiorK6PVwBCg02H7drh2jZv7DAkBrjwSw15MefRoQH3/fUClUuPi4nbs2EGhUFpaWromy6Pqi1sIBMLKlSu1tbWvXbv2/v17rOPwl4cPH2ZlZTk4OBgbG2Odha9ZWVm5u7t//vz59OnTVCoV6zh8h12AidrK3T8gSAUYAJiamqa+f68hI/H7b1M+pb7DOg4XlBbk7ZznIN7RcvniRfYCu1zx4cMHPB7PxR0KnNu3b1dVVS1YsEBOeCdZm5mZff78ubW1FesgCKYIBJgwgcv79PODvjQaUalAoQCZDBMmwLNnMGMGoCUTeqW5uTkiImLbtm1hYWFEItHV1fXQoUNosjwvSEhI+Pj4KCsrX7ly5fPnz1jH4RefPn16+PDhkCFD7OzssM4iAMaPH+/i4pKfnx8QEICWN+iGXYChFtYuAlaAAYCsrOytmzd3bd96yGthzI0grOP0ScLd0B3zHVYv84yMeNDU1HTw4MGCgoK+75bFYqWmphoaGopst0BWVlZiYqKlpeWIESOwzsJDZDKZyWRmZmK/SAOCmcuX4fp1iIr653+eOgVeXtDcDA0N4OsLFy/CunVw9ChMmQKFhQAAjY1w5gycOAGXLkF4OHh7w8WL8Ouv8Po1HDkCU6ZAZSW8ewfTp/+zw+houH0bduzgIFJtLejpwdKl0NgIR49CcTGcOAGoYOBQTU1NaGjotm3bIiMj1dXVvby8/vjjD1tbWyKRiHU0oSUnJ7du3ToSieTv719dXY11HOw1NzdfunRJRkbG09MTdY71kK2trbOzc1ZWVkBAAJ1OxzoOH0F3wLoR1H9Rq1atevb0afzNoP0ec0sL8rCOw7GKL4VHVrg/uOD3OCZm06aNOBxu1KhRZWVlR48evXXrVh9vXhcWFjY1NYns/MO2trbg4GB5efm5c+dinYW3jI2NxcXFURei6PrwAVJTYeFCsLL65xVPT3j5Ekgk6OgAU1MYNw4SE2HZMnBwgNu3AQDevAF9ffDwAD8/MDeHpCRYvBg8PeE//4EtW8DGBu7dgxEjgL3CQVISFBSAiwsQiVBT09NUysrg6AjXrkF+Pvz+O8jL8+BvLsyKi4spFMquXbsSEhJMTEx8fX19fX1HjhyJrhz3gwEDBvj4+HR2dvr5+TU3N2MdB0ssFiskJKSxsXHp0qXy6F8xJ6ZOnTpz5szMzMxLly6hqetd2OM3UCXfRYB/EMOGDfuYmbHYdc7O+Q6UQ7s72gSjEYtOo9275O/r9OtYc9PM9PSu+RC6urrKysosFishIWHPnj19WeIpNTUVAES2//DWrVsNDQ3u7u5C36VDJBKHDBmSmZmJPuJFVFgYjBoFANA15FNWFpydgUKBv/4CFxcgkUBDA5SUQF0d2GeTU6ZATQ28fAlUKkhIgJISiIuDmhqoqAAOB8rK/7yN/QT5nTswaBAAwN69oKLCQTB/f1i4ENC9Gg7l5eX5+/sfOHAgJSVlzJgxe/bs8fb2NjAwwDqXaNHV1V22bFltbe3Zs2c7OzuxjoOZmJiYtLS0mTNnivgs5d6ZNWuWnZ3d+/fvL168iL6g2dAQjm4E+wdBJBLXr1/37u1bWnXpplk2SY8f8WgtRRyDjmNw4VZyytPHG+1/KX77+m1KypnTfl+3CLJvgrH/u6Gh4cyZM4GBgb27Apeenq6hoaEqkkvrpKamvnnzZuLEiWZmZlhn6Q9kMrm1tTU/Px/rIAgWBg6Ely//+e+uXpe1a8HfHzo6vt/1d+gQSEmBvX33GRvsuyvd7rFYWEB4OLBYUF4OZWXdd8VkQkQEWFvDmzd9/puINBaLlZaWdvjw4WPHjuXk5NjY2Bw4cMDDw0NDQwPraCLK3Nx8/vz5hYWFIrtA8+fPnx88eGBkZDRz5kysswgqR0fHX3/99d27dyEhIaL5W9QNKsC6EZgx9D9gYGAQ/ejR3bt3N27afOfcydkr1o77dSaOq/8fD/g7ydrD9fW5oHKb3iwSwmKxkuNi7gWebm2o+8+ff/7bMl8jR46MiYlhvx8A3r59+/Hjxzlz5kzg5An7urq60tJS0VzMpKWl5dq1ayoqKk5OTlhn6Sfm5uY3b95MT08fPHgw1lmQfjd3LoSHw8qV0N4OtbXQ2Ajy8qCsDDY2/zzE9fw5FBZCURGkpEBeHrS0gJ4e+PlBaSkAwKVLUFQExcXw6hXk5EBpKbx7By0tkJoKZWWQmgoODhAcDKNGgaMj7Nz53+O2tsKVK3DqFBQUgIoKFBeDMK700A/odHpKSsqjR48qKytlZWXt7e1tbGzQQq78YOLEiZWVlU+ePFFWVha1BZrb2touXrwoJSWFHv3qIycnJyqV+uzZMzwe7+7uLuJdxEwmE4fDifgP4WvCUICxOTo6/vbbbw8fPty5e8/NE4dnLVtt4zRXjMCdHhjx+joAoHVbyqYHWEzm22dxf/kfp7Y0b1i/buXKlSQS6d/erKurO2DAgJqamq6LJR0dHdeuXfvw4cOSJUtke3b0tLQ0FoslmgPor1+/3tzcvHHjRtFZgkNRUXHgwIHp6emiU3Mi/6WiAgkJUF8P4uIgIQFdDzdra8PQoQAAnp7g6QkAcOzYP3+0cCHMmQMSErBmDRAI8McfAADbt8P27QAA58//87au0ZqxsdDaCl+XBOfOwa5dUFcHgwdDQAAsWoQGbPRCR0fHy5cvY2JiGhsbVVRUXF1dJ06ciAZs8BVnZ+e6urrY2FhFRUVurRDD/1gsVlBQUF1dnY+PD1rnoI9wONz8+fOZTOaLFy/ExcX/7eK7iGAwGGgCx9eEpwADADwe7+DgMHPmzPv37+/bf+Dueb8Jvzn/MstZU6+vPfTiDXUA0Kmg+NN3dqn4Uvj8wV8vHvwlLyuzb+cOFxeXnvzmjRo1KqproBkAAOBwOG1t7Z5fE01LS5OWltbT0+t5VOGQlJT07t27qVOnGhkZYZ2lX5HJ5KioqJqaGhWOntJBhIbiV59LJ07A33/Dli0/ej/78gShxx/+3T58SCTQ04OTJ2HhQkDfppyrra199uzZ8+fP29vbtbW1nZycxowZg+4z8CH2As2NjY1hYWGKiorDhw/HOlF/iIuLS01NnT59uqmpKdZZhAEOh1uwYAGVSk1ISBATE3NxccE6EWZYLBb6oPuaUBVgbHg83tHR0dHRMTExMSg4eMc8ey19Qyt7J+uZs2U5qaC+Jt7YAD0rwFqaGl9FPUh88FdRbpajo9NVyuXJkyf3/JZrtwIMj8cvW7as57PUqVRqbm7uyJEjRe23vKGhISwsTF1d/bfffsM6S39jF2Dp6emTJ0/GOguCtfnzYcECUFfn4SGWLv3nrhrCodLS0tjY2OTkZAaDYWBgYGdnZ25ujnUo5EeIROLq1av//PPPK1eu/P777zo6Olgn4q2CgoK7d+8aGBjMmjUL6yzCA4/He3h4MJnMJ0+eSEhIODg4YJ0IGwwGQ9ROTX9MCAuwLtbW1tbW1v5nz8bGxlKCQ1YeO6Az2MjM0po8bqLxiNHinHSpiTfUA0Cn/PcLMAaDXpj9Mf31i49JiZlv/x42fPhaL88FCxb0YhkuLS0tVVXV6upqFotFIpE6Ozt/0LL4rY8fP9JoNFH7UmexWFevXm1vb1+7dq0I9vDo6+vLysqiAgwBAODi2IbOTrh5E+rqYMOG/3kddfBzLi8vLyYmhr1iBJlMnjlz5iD2eEmE78nIyPj4+Bw5csTf33/btm1C3JXX3NwcGBgoKSm5fPlydKLMXXg8funSpZ2dnZGRkQQCYXrXQouihE6nE3reeSEChP9nQSKRHBwcHBwc6uvrnz17FhefEPqfP4q/fDEyH6ZPHqapZzBQz1BDz0BG7kfLXIg3NtAlpZji4uz/2dbcVFZYUPY5v7Qg73NGaubbN9o6urY2NtvW+0yaNElZWbkvgUePHv3w4cOxY8c6OjoeO3bs8uXLO3bs6OE+09LSxMTERG1o7IsXLzIyMuzt7UXznAaHw5mamqakpFCpVI7KdQT5vvp6uHABzpyBsjIwNoZ16wCdjfUKi8VKT0+PiooqKCggEAhjx46dOXOmaM6nFWiqqqqrVq06deqUv7//5s2bhfJjlsViXblypaGhwcfHR1Gxl71CyA+IiYmtWLEiICDg3r17eDx+2rRpWCfqb52dneL/fxaNAABONIdj3r59Oz4+XkZGJisnNzs7u6jws6ycvJa+oeIAVWkFRSk5BUlpGQAgSUpS29sBQK24SK6qPF5apr66srSwoKGuTkd30JAhQ0yHmgwfNszGxoaL84LLy8uzs7PZdzMKCwuPHTumpaX1+++///TKAYvF8vX1HThw4Pr167kVhv/V1NTs379/wIABW7duFdmLKykpKRcvXly9erVoDl9BuKa6Gg4cgCtXoKUFLCxg0yaYOxfQVybn2OMNo6Ojy8vLZWRkxo8fP2XKFDk5OaxzIb336tWr4ODgESNGeHl5Cd8ktzt37sTExMyePVs0b870GxqNdubMmdzc3Hnz5k2aNAnrOP3qxIkTjY2N+/btwzoIvxDRE9bW1lYxMbGjR4+yP0bpdHpBQUFubm5lZWV1dXVDQ0NDYy2DwYAmkADA4/EEvYHEYUPdBgxQVVU1MjIyMDDgXaubhoZGVzk3aNAgZ2fnW7duhYeH/3R+zufPn5uamkTq05PFYgUHB9Pp9CVLlohs9QUApqamYmJi6enpqABD+gSPhytXwNoaNm2CKVOwTiOQ2OMNHz9+XF9fr6ys7Orqam1tLZT3TESNlZVVSUlJXFxcZGSkkD3Gk5aWFhsba25ubmdnh3UWIUckEtesWXP69Olbt27h8fiJEydinaj/cPpMjdAT0XPWyspKVVXVrotYBALByMiIP6fnTZ48ubCwMCEhYdCgQZaWlj94J/sBAxFZgJgtLi4uNzfXyclJS0sL6yxYkpSUNDQ0ZK9AIHyXZpH+o6wM+fmAeuR6pbm5+enTp/Hx8W1tbVpaWrNnz0bjDYWMi4tLdXX1w4cPVVVVxwrL2ndVVVVXrlwZMGCAh4cH+vroB+Li4mvWrDl58uSNGzdIJJLQ/CL9VGdnpxRas+QrIvrdUFlZqaamhnWKnlqwYIGmpuaNGzfKysp+8La0tDQNDQ3RecCgoqLi3r17+vr6U6dOxToL9shkcmNjY3FxMdZBEAHR2QnXrkFnZ/fXReYDhIuqq6tDQ0O3bdsWGRmpoaHh7e29c+dOS0tLVH0JGRwO5+npqampefXq1YKCAqzjcAGNRgsMDKTT6V5eXujkuN9ISEisW7dOR0cnKCgoOTkZ6zj9BD0D1o0ofj20tra2trYKUAFGIpFWrlyJw+HOnz/f0dHx3ffU1dWVlpaKzvxDJpNJoVBwONySJUvQWQ4AkMlkAEhLS8M6CML3Ghvh2DHQ1wd3d7h9G+s0gu3Lly8UCmX37t0JCQkmJiZbtmzx9fU1NzdHdxKElYSEhLe3t4SEREBAQF1dHdZx+ur69evFxcULFizQ1tbGOotokZKS8vHxUVdXp1AoqampWMfpD6gA60YUz1wrKioAQLDuFKmpqbm7u1dWVl69evW7UkhsBwAAIABJREFUb2C3n4nOI0AxMTGFhYVOTk4CVEjzlLq6uqqqKrsNFUG+r6IC9u4FPT3w9QVlZbhwAZydsc4kqPLy8vz9/Q8ePJiSkjJmzJi9e/d6e3vr6+tjnQvhOWVl5ZUrV7a1tZ07d67z23vIgiMhIeH169eTJk2ysrLCOosokpWVXb9+vYqKSmBgYEZGBtZxeI5Go6EC7GuiWIBVVVUBAAcn7g0NcOUK5OXxMFMPjBo1ysbGJiUlJT4+/ts/TUtLk5aW1tPT6/9g/a+8vPzhw4dGRkaiNkTox8hkclFRUVNTE9ZBEH61bh3s2wcjR0J0NHz4AF5egB6J5hCLxUpLSzt06NCxY8dyc3NtbGwOHjzo4eGhztPFrxE+Y2houHDhwuLi4pCQEKyz9NLnz5/Dw8MHDRrk4uKCdRbRJS8vv2HDBgUFhfPnz+fk5GAdh7fQHbBuRLEAq6mpAQAVFZWebvDpE3h6QmIiDzP1jLOzs6GhYXh4eN7/VoNUKjU3N5dMJotCMx6TyQwKCsLj8e7u7qjP52tkMpnFYonChTSkl/btg3fv4PFjmDYNrafMKSqVGhcXt337dn9///r6ent7+8OHD8+dO1eIV+ZFfsDKymry5MnJycmxsbFYZ+FYc3PzhQsXSCSSl5eXKA8Q5geKioqbNm2Sk5M7e/bsp0+fsI7DK0wmk06nowLsa8J/vv6turo6IpHIwZIsDQ0AAHywNKGYmJiXl5e0tPSFCxe+vtHx8eNHGo0mIg+ARUdHs5sPBauJtB8MHjxYQkICdSEiAAB0OpSXd3/R2BiGD8cijWBramq6f//+tm3bwsLCSCTSokWLDh8+7ODggIYWiDhXV1cjI6M7d+4I1mWvrjWXPT09lZWVsY6DgJKS0vr16yUlJc+ePVtYWIh1HJ5gN+uiAuxroliA1dbWKikpcXDzpLERAIA/1tCUl5dftmxZS0vLpUuXmEwm+8X09HQxMTETExNss/WD8vLyR48eGRkZ/fLLL1hn4TsEAmHo0KGZmZl0Oh3rLAh2WlogMBCGDgV3d6yjCLzKyspr165t37790aNH6urqq1ev3rNnz/jx49FNAwQA8Hj8ypUrlZWVL1++zH60QSDcvXv348ePv/32m6mpKdZZkH+oqqpu2rRJXFzcz89PKKcZswsw3q2gK4hEtADj7KoPuwCTl+dRHk4NGTLEwcEhJycnIiICAFgsVnp6upGRkdBfjkXNhz9FJpOpVKoQtzEgP1JRATt2gI4OrFgBBALMn491IAFWVFREoVD27t2bmJhoYmLi6+vr6+trYWGBPnmQr0lLS69cuZJOp587d+7fZhTzFbTmMt9SU1Nbt24dDofz8/Mr/7Z/QcBRqVQAQAsxf03kCjAmk1lfX89ZAcZu9uObAgwApk+fPmzYsKioqA8fPhQWFjY1NbGnkAs31Hz4U2QyGYfDoS5EUfThAwwaBIcOAZkMDx5AZiZ4emKdSfCwZ2wcPXr00KFD7PGGe/bs8fb2NjAwwDoawqe0tbXd3NzKy8uDgoJYLBbWcX4ErbnM57S0tHx8fGg02qlTp9jTCoQG+/KEpKQk1kH4iMgVYI2NjQwGg7MCrLMTJCX5pAWRDYfDLV68WFlZOTg4OCkpCf5/GSghxm4+HDJkCGo+/AFZWVldXV0RWVQE+R/m5rB8OSQlwbNn4OCAZmxwik6nJyUl7du3z9/fv6ysrGu8oYaGBtbREH43duzYKVOmvH//Pjo6Guss/6qjo+PcuXMMBmPFihVC3y8juPT09NauXdve3n78+PHa2lqs43BNe3s7AEhISGAdhI+IXAFWX18PAIocTdTYsgXa2mDAAF5l6hUpKalVq1bRaLSXL1+y14DCOhEPsZddRs2HPUEmk2tqaiorK7EOgvQvPB7OnIGxY7HOIXja29vj4uJ27NhBoVA6OztdXV3//PNPNN4Q4cicOXOMjY3v37+fmZmJdZbvYA/eqKioWLRokZaWFtZxkB8xMDBYtWpVc3PzqVOnGtmPwAg+VIB9S+QKsIaGBgAQjm9WLS0tBwcHGo0m9E+ER0VFFRUVzZkzZwCflcF8iH0vNC0tDesgCG9QqRASAubm8OUL1lEEXm1tbWho6JYtW8LCwmRlZT08PA4cOGBra4seVEA4hcfjvby8lJSULl++zIc3Lu7fv5+ammpnZzd69GissyA/Z2JismrVqrq6uuPHjwvH2p7sAgy1IH5N5Aow9uUEeX56oKsv2I0EJSUlr169wjoLr5SUlLCbDydOnIh1FgGgo6OjoKCAHgMTQjU1sG8faGvD4sXQ3g4lJVgHEmDFxcUUCmXnzp3x8fFaWlre3t47d+60tLQUhaUUER6RlpZetWpVZ2dnQEAAjUbDOs5/vXv3Ljo62tTUdNasWVhnQXrK1NR02bJl1dXVfn5+ra2tWMfpK/QM2LdE7stGyAqwzMxMCQkJLS2tGzduCOXoUiaTGRISIiYmhpoPewiHw5HJ5E+fPrW1tWGdBeGeXbtAVxf27gV9fQgPh5wcsLLCOpNAysvL8/f3P3DgQHJyMnvGhq+vr4gsoojwmra2tqura3FxcVhYGNZZ/sG+1qCmprZ8+XJ0fUGwDB8+fPHixaWlpWfOnBGIGZs/gO6AfUvk/jU2NjYSCATh+CWg0+lZWVlDhw5dsWIFgUAIDAxk/4oLk0ePHhUVFTk7O6Pmw54jk8lMJvPjx49YB0G4h0gEGxt4/BiSkmDOHEAnUhzqmrFx7Nix3NzcrhkbmpqaWEdDhMrEiROtrKyeP3/OD20pTU1N/v7+RCLR29tbOE57RI2lpaW7u3thYeHp06fZk9wFFHoG7FtC/uzQt5qamuTl5YXjXkpeXl5HR4eZmZmqqqqHh0dAQACFQlm1apVw/O0AoKSkJCoqytjYeMKECVhnESTGxsZEIjE9PX3UqFFYZ0G4ZPdurBMIqo6OjpcvXz5+/Li+vl5OTs7e3t7W1hZNgUN4Z8GCBcXFxTdu3NDW1tbW1sYqBoPBCAwMbGxs9Pb2Fu4xXcJt/PjxVCo1NDQ0ICDA29tbQNcy7ujowOFw6PHar4ncZdTGxkY5TgfKOznBkSO8idMnGRkZOByOvZi9hYXF1KlTU1NTHz9+jHUu7uhqPnRzcxOakrJ/kEgkIyOj9PR0JpOJdRaEQ1QqXL4M165hnUMYNDU1RUREbNu2LSwsTEpKys3N7dChQw4ODqj6QniKSCR6eXlh3pZy8+bNT58+ubi4mJmZYZUB4QobGxtnZ+esrKyAgAA6nY51nN7o6OiQlJRE53JfE7kCrKWlRVZWlrNtoqLg0yfexOmTjIwMbW3tromOjo6OgwcPvnv37ie+TMsp1HzYF2QyubW19fPnz1gHQXqsvh4OHwY9PVi2DC5cwDqNYCstLb127dr27dsjIyM1NDS8vb137do1YcIEAb14jAgcVVXVpUuXVldXX7lyBZPVmePi4l68eDFu3DgbG5v+PzrCdVOnTp0xY0ZmZualS5cE8dJqe3s76j/sRuQKsLa2NmlpaQ426OyEjg6+WoWZraampry8/OsrW+wxuHJycoGBgexp+4ILNR/2EXuoAJqFKBjKy2HDBtDRge3bQV0dbtyAhASsMwkq9oyN/fv3JyYmmpiYbN26lT1jA115RfqZubn51KlT09LSYmNj+/nQ2dnZ4eHhBgYGbm5u/XxohHd+++23adOmvX//Pjg4GJOqvi/a29vRU4jdiNYzYHQ6nUqlclaAsVdg4L8CLCMjAwC6tRbIycl5enqePHny8uXLGzZsENCRR2jyYd8pKytramqmp6fPnj0b6yzIzzQ3w+nTMG4cbNkC9vaAfuc5x2Kx0tPTHz169PnzZxKJZG1tPXXqVDU1NaxzISLN0dGxsLDw3r17BgYGhoaG/XPQmpqaixcvysnJsdsg++egSP9wdHTs6Oh49uyZwJ0goTtg3xKtf5zswdycPQDAXn5BRoY3iXovIyNDWlpaT0+v2+tGRkazZ8++c+fOvXv3nJycMMnWRw8fPiwqKnJzc1NRUcE6iwAjk8kxMTG1tbXKyspYZ0F+yMgICgpAVxfrHAKJSqX+/fffsbGxVVVVsrKy9vb2NjY2nF1lQxDewOPxy5cv379//6VLl3bu3CnD+xOJjo4Of39/KpXq4+PT9XgCIjRwONz8+fMZDEZiYiKJRJo7dy7Wif5RV1eXm5vb1NTU2NjY3Nzc0tLS0tLS1NSkoKAgLS0tIyNDo9FIJFJycrKRkZHQLATVR6JVgLEXs+tNAcZnX+c0Gi0nJ2fYsGHfvcf166+/FhYWxsbG6unpDR8+vP/j9UVJSUl0dLSxsbG1tTXWWQQbuwDLzMxEC1jzERoNHj6Eb29LouqLc83NzU+fPk1ISGhtbR0wYICrq+vEiRPRU14IX5GTk1u2bNmpU6coFMqaNWt4esuCxWJduXKlvLzc09Nz0KBBvDsQgiEcDrdw4UIqlRofH4/H411cXPo/Q1tb26tXr96/f5+VnZ2VnZObm9PU2DhQd5CsvCJJSkpKVk5CSookKU2UkOgsraa2t3a2t7c0NVLbWs+eDywrLlJSVjYaYmwyxMh4yJBRo0ZZWlqK5nRE0SrA2HfAOLs4KisLXl4wbBivMvVKTk5OZ2fnv402wuFw7u7uJSUlISEh2traAnQfCTUfcpGBgYG0tHRaWhoqwPhCUxNcvAh+flBcDHFxgJ6M74Pq6ur4+PgXL17QaDRdXV1XV9cxY8YIaMc1IvSGDBkybdq0qKioJ0+eTJ06lXcHun//fmpq6owZM0aPHs27oyCYw+PxHh4enZ2dT548kZaWnjFjRj8ctLOzMykpKT4h4fGTuLfJyVr6Bobmw9V09SYv+sVNz1BVS1tMrEcFBYNOq/hSVFqQV1ZYEJP09uyFixXFX8aOGzfF1sbWxmb06NGi0zcrKn9Ptt60IGpr8+FEMvYA+qFDh/7bG6SkpFasWHHkyJHAwEBfX19B+YVGzYdchMfjzczM3r59S6VSRfPyEr8oKwM/P7hwARobwcwM9u8HdHe3t4qKiuLj4//++28Wi0Umk+3s7AwMDLAOhSA/MWvWrE+fPt29e1dfX59Hv7Fv3ryJjo62sLCYNWsWL/aP8BUxMTEvL6+AgID79++LiYlNmzaNRwdiMBjx8fFBISF379xV1dQcOsbKysV9+bEAOUWl3u1QjEAcqG84UP+/j0Q21FRlvHn14s3L8xcvN9XXOjs7L1m8eMKECUJ/FV4wzsu5paOjA4RiKe7MzMxBgwb9eJ6+lpaWq6vr9evXw8PD582b12/Zeq1r8iFqPuQWc3PzN2/eZGdnW1hYYJ1FhM2dC4mJYGMDmzeDnR2asdEL7Bkb0dHR+fn5BAJhzJgxdnZ2GhoaWOdCkB7B4/HLli07cODAxYsXd+3axfVnFD99+hQSEjJw4MClS5cK/WkrwkYgEFauXHn69Om7d+9KSEj88ssv3N1/ZmZmcEjI1WvXxCUkrR3mnIiIVx3Ik1XFFVRUrWfOtp45GwDKCgtePPhrnps7AYdbvHjRInf3wYMH8+Kg/EC0ejY6OzsBQNDvBlRWVlZVVfVkacWJEydaWlomJCT8/fff/RCsL5hMZnBwMJFIXLx4Mfr+4BZTU1MCgZCamop1ENF29CgkJ0NcHEyfjqovTtHp9KSkpL179/r7+5eVldnY2Bw8eNDDwwNVX4hgUVRU9PDwaGhoCAoK4u4M8erq6gsXLkhLS3t7ewvB9WWk54hE4po1awwNDW/evJmYmNj1elVVVV/Wa46Pj/9lso2V9YSPpdXrTl44+ejFnFXreVR9daM5SH/u2t/PxL72OnjyTXb+yNGjp8+c+erVq344dP8TrQKMfQdMXFwc6yB9wl7cqYdr2y9YsEBDQ+PatWuVlZU8ztUnkZGRX758cXZ2VlLq5X1t5FuSkpKGhoZpaWkCt2aIoGKxoKWl+4vjxsGoUVikEWzt7e1xcXE7duygUCh0Ot3V1fXPP/+cO3cumu2GCCgzMzNbW9u0tLSnT59ya5+tra2nT5+mUqmrV69G354iiEQieXt76+joXL9+PTk5GQDKysqOHTvWu8vuT548GWs5znX+fN2RVuefpizdddDIYiS3I/8cDocbOtpy5f7/nE9I0Rxm+ZvTHEur8REREf2fhKdEqwATjjtgGRkZsrKyuj0bm0Yikby8vFgsVmBgII1G43W23ikuLkaTD3nE3Ny8ubm5sLAQ6yDCjkaD27dh9GhYuxbrKAKvpqYmNDR0y5YtYWFhsrKyHh4e+/fvt7W1FfSPbgRxcnLS09MLDw//8uVL3/dGo9H8/f2rq6uXLVuGxh6KLElJybVr16qrq1MolCdPnvznP/9pamqKjY3l6MLr48ePzcwtPJZ7jXJwOReXPHu5N0kC+3WTJaSkZy5adibmFdl2xvKVq0aPtXz58iXWobhGtAowKpUKnN4Ba2mB+npgMnmViUNUKjUvL8/MzKznfXqamprz5s0rKSkJCwvjabbeYTAYISEhqPmQR9hPf6WlpWEdRHi1tMCpU2BoCK6uUFHBbxNTBUtxcTGFQtm1a1d8fLyWlpa3t/fOnTstLS3RhENEOIiJiS1fvlxcXPzSpUvsE5JeY7FYV69ezc/Pnzt3LnrKV8TJyMhs2LBBXl4+PDycPW2uvLw8MzOzJ9uWlpY6u7oucHe3Weh58uFzW+f5BD5bzENcQmK629LTMa+G2/0202HWYg+P6upqrENxgWh9q/XmDtiRI6CkBE1NvMrEoezsbBqN1sP+wy7jx48fN27c8+fP37x5w6Ngvfbo0SPUfMg7KioqGhoaqADjlaQk0NWFDRtARgauXIGCAnQHrBdYLFZWVpa/v/+BAwdSUlLGjBmzZ88eX19fc3NzrKMhCJcpKyu7u7tXVlaGhob2ZT/3799/8+aNra3t5MmTuZUNEVyVlZUtLS0AwL7xhcfjY2JifrwJnU4/dcpvqKlpC550MvLZpNkueDGx/sjaKwQi0W7BktPRifVMgpGx8Sk/PwaDgXWoPhGtKYidnZ1iYmJiHP2G8dlCzBkZGXg83sTEhNMN58+fX1hYeP36dR0dHf55fp09+dDExAQ1H/KOubl5TExMbW2tsrIy1lmEDpkMlpawYgXY2wO6S8M5Op2ekpISExNTVlYmISFhY2Pz66+/KioqYp0LQXhoxIgRVlZWL1++HDp06KhePSD66tWrqKgoMzMzZ2dnrsdDBE5GRkZAQACDwehqO2Qymbm5uUVFRf/2uMrHjx9d581jEki7Kbf1hnJ2TR9DMvIKS7b/YWnncGb/tps3b926eUNPTw/rUL0kWmcMdDqd4xWxWltBXBz45oZsZmYme4FdTjckkUirVq3C4XCBgYHsO4GYYy+7TCAQ3NzcUPMh77C7U9izWxAuk5aGhw9h1ixUfXGqra0tOjqaPWOjvb3d2dmZPWMDVV+IKJg3b56amtr169dra2s53TY3N5d9LdXLywt15yIA0NLSIi8vz2Kxvj6VwuFwjx8//u77g4ODx1lZjZ7huP/6PQGqvroYjxh9JDxab5TViFGj7t69i3WcXhKtf7oMBoPjT6uWFv65/VVWVlZbW2tqatq7zdXU1Nzc3MrKyvrY+cAt0dHRRUVFc+bMQcsu85S+vr6cnBzqQuyrJ0/Ayek7Qw4RDtXU1Ny6dWvr1q13796VkZHx8PA4ePDg1KlT0QRtRHSQSCRPT8/Ozk4KhcLk5CHz8vLygIAAGRmZ1atXo7E0CJulpeX+/fs9PDzYj3KwyzAWi/X27dtuj0u1t7cv9/Ly3b5j6/mrDh4rcQJbwIuJEVx9Nm88Fei1ctVyL68+PlGJCUH90fcOk8nkrP8QAFpb+acA42gA/XeNHj3aysoqMTExKSmJe7l6o7y8/NGjR0ZGRhMnTsQ2idDD4XCmpqY5OTnsZRgQzjAYEBYGI0fC1Knw5Am8e4d1IAFWVFTEnrGRkJDw9YwNjj+WEUTw6erq2tvbf/r06afP6nRpaWnx9/dnMpk+Pj7oXjHyNTExMUtLyz/++GP+/PlycnLsF5lMZnx8fNd7cnNzh48cmVlYcuzekyHD/4+9+45r6nobAH4CAcIeYQ+RvRNAGQqohC1DQBmKgljrXl12Wa217tZiq7ZOFFBEXCggKBsEFAQJIyxRREGQJRsSkveP+ysvRVFGkpuQ8/3Djx+43POgjDz3POd5ZsJwFCPL+YdvJheWV1rPt2loaEA7nMnhrQRsKjtgnJSAlZWVSUpKqqqqTucmK1asUFNTu3LlSlNTE7MCmyw6nX7x4kUMBrNq1SpYfMgGBAKBRqNVVFSgHQi3OX8e6OmBgADw+jXYvx/U1wP4vGDyGAwGmUwOCws7cODAmB4b8Nsf4mWurq76+vp37typq6v75MVI0/m2trbPPvtsmi8DoJkKi8UuWrRo//79/v7+4uLiAICcnBykL2JBQcF8W1trj6Vf/XlOTEIS7UiZRkpWfte5aC0LG+v587nrRQ7PJWCTftT6++/g4kWWRDNJAwMDz549m1QD+g8SEBBYu3YtAADFw2APHjx48eKFt7e3vLw8KgHwGiMjIywWC6sQJy03F9DpICwM1NWBH34A8JHzJNFotPz8/J9//vnkyZMvXrwgkUi//vpraGiosrIy2qFBEPowGExoaKiwsPD58+c/XqHAYDDOnz9fV1cXEBAAu4NCHycgIODg4HDgwIFly5YJCQllZmampaU5OTsH7vje67NNM++xF4aPb8UX37mHbrS1s8vJyUE7nInirS6IUylB5JjxGhQKZXh4eDr1hyMUFRWDgoIuXLgQExOzatWq6d9wUpqbm+/evaupqQmb57KNkJCQrq4umUym0+nw0PYkHDsGxMQALJCbvO7u7oyMjPT09N7eXllZWX9/f1tbW3hkBYLGkJKSWrly5enTp69evbp69erxLrtx40ZxcbGzs/OiRYvYFxzEzQQFBZ2cnBYsWHD27Nldu3dvOfyX+UIHtINiIdegUGl5RQ8vr8uRke7u7miH82m8lYBNpQSRY5SXl/Px8enr6zPlblZWVpWVlTk5Obq6ulZWVky550QwGIyIiAgGgxEcHMy9/xfciEAgVFRUPH/+XEtLC+1YOFJ5OejtBZaW/3mj5Myp02CblpaW9PT07OxsKpWqrq7u7+9vaWkJv9khaDzm5ua2trY5OTkEAsHc3Pz9C1JTUx88eGBubu7r68v+8CCuFhkV9dOen7/7J0KXOAftWFjOyslNWFRsxcqVF86dW7p0KdrhfAJvJWBjenRyFwqFoqmpKSIiwqwbBgYGPn/+/PLly7Nnz1ZQUGDWbT8uLS2ttrZ26dKlnDOLjEcQicSYmJiSkhKYgI2VkwOOHAHx8cDKCuTloR0NF6utrU1OTkZ6BZmYmLi6usIvNgiaCH9//+rq6sjISA0NjTHdNQoKCmJjY3V0dNasWcO9L2AgVNy+ffvrr7/5KfyahsEUu2dzHcJ8u50nwkM/Wy0jI8PhZVa89VQSg8GMTKnjLk1NTa2trVNuQP9BQkJC69atQyrLaTQaE+88ntbW1ri4uNmzZzs6OrJhOWg0GRkZFRUVeAzs/zEY4O5dYGsL7OzA/ftg5Upw6RLaMXGl4eHhJ0+eHDx48OjRo1VVVba2tnv37t28eTPMviBogoSEhEJDQwcGBpAKkZG3V1ZWXrx4UUlJadOmTQIcM48U4gp5eXnBq1dvP/Y372RfCIO5VlsO/emzdGkRZ3ct5rkEDO0Qpqi8vBwAwNwEDACgrKzs5+dXX19/8+ZN5t75fQwGIyoqanh4OCQkBNYjoYJAIDQ1NbW0tKAdCGfIyQFeXoBCAT/9BBoaQEQE0NVFOyYuMzAwkJqa+uOPP545c6a9vd3Dw+PgwYMrV65k2446BM0YmpqaLi4uFRUV2dnZyFtevHhx6tQpKSmpHTt2MLH4BeIFZWVl7p6e6385SpzPi51759o7rf5ur4ura3V1NdqxjIu3ShAxGMykJh4CAMCpU8DYGPXe0xUVFWJiYrNmzWL6nRcsWFBTU5OWlqarq2tqasr0+4/IzMykUChLliyBDdDQQiAQEhMTS0tLHRxm8kncibKzA5cuAV9fICaGdijcp7W1NSsrKzs7u6+vT1VV1d3d3draGj6hh6Dp8PT0rKiouH79up6eHgaDOXHihICAwLZt2yThYVRoMpqamhydnQO3fzfPxQPtWFCzYMmytuYm18WLiwoLpaSk0A7nA3guAZvcB9DpYMsWsGkTugkYlUqtrq42Nzdn0Q5eUFBQfX39pUuX1NTU8Hg8K5Zoa2u7deuWqqqqi4sLK+4PTcTs2bMlJCTIZDIvJmDv3n2go0ZwMBqhcLeXL1+mpqY+fvyYTqdraWm5urqamJhwb3EBBHEOfn7+0NDQ/fv3nzt3rre3d3Bw8IsvvoD7ydCkDA8PBwQut3L1dPQPQjsWlPms29pYV7t6zZpbN25w4C8pnqsEm9wZsIEBwGAAHI5l4UxIdXU1lUplev3hCBwO99lnnw0NDZ09e3Z4eJjp92cwGJcvXx4aGgoJCZn0GACIeTAYjImJSU1NDTKWkVfU1YHt24GKCuCqEY2cZmSY8v79+5Fhyrt374bDlCGIuZSUlBYvXvzy5cuOjo4NGzZoamqiHRHEZX7eu7elsyvoyx/RDoQjrN1z8Glp+V9/nUA7kA/guR2wSSdgAABhYRbFM0Hl5eUYDMbQ0JB1S6irq3t7e1+/fv3u3bve3t7MvfnDhw/Ly8s9PDxYUUIJTQqRSHz48GFFRcXcuXPRjoX1CgrAkSMAOd+4ZAkc5zU1NBqtsLDw3r17b968weFwJBLJ2dlZGs6khiAWoFKpFRUVAAAGgyEqKop2OBCXSU9P/+vEyUOxiVhYEA4AAEBIWGTHH//sCvK2tLSwtrZGO5z/gAnYRyEJGNrDQ8vLy2fNmiUuLs7SVRwdHWuN5905AAAgAElEQVRqapKSkvT09AwMDJh1287Ozhs3bigpKbm5uTHrntCUGRgYCAoKksnkmZ+ABQeDyEggJARCQ8E33wA9PbQD4j5wmDIEsROdTj9//nxNTY2Hh0daWtrFixd//PFHeLQSmqA3b94ELF++/pej8qrwYff/m6Wjv+qb3YErVpQUF3PUcUreKkHk5+efXIldfz8AKO+AtbW1vXnzhnX1hyMwGExISIi0tPT58+ffvXvHrNteuXJlYGBg9erVWCxvZfucSVBQUFdXt6ysbNLdaLiOrS3YuRPU1YFz52D2NVktLS0xMTHff/99fHy8rKxsaGjovn37HBwcYPYFQSyCNAouLi5evHixp6enn59fU1PTnTt30I4L4hpbt2+fS3KxcoIPu8dy8Fuhpmf0/Q+cVZbJW6+JsVjs5AZeMRhATu4DZ/fZCGlAz9L6wxGioqJr1qw5duxYeHj49u3bp3+0Iz8/v6SkxNXVdfbs2cwIEGICIpFYVlZWW1urO7O7rq9bh3YEXAkOU4YgVNy+ffvhw4fW1tZeXl4AgPnz5z99+jQlJcXMzAyeBIM+KSUlJS09IywhC+1AOFTorl+/8Fi0OiTY0tIS7Vj+h7d2wCadgGlrg5YWsHYtyyL6tPLychwOx7afvzo6Ou7u7hQK5f79+9O8VVdX17Vr1xQUFDw8eLcRKgdCuibMnInMbW3gl1/AH3+gHQd3g8OUIQhFGRkZSUlJBAIhJCRk5NHnqlWrREVFL168SKVS0Q0P4nBDQ0ObtmxZ9c1PohISaMfCoaRk5Zdu2LFh0ybOKf+BCRhHo9PpVVVVhoaG7Gwe6O7urqend/v27efPn0/nPleuXOnr6wsODoYl7BxFSkpKTU2tpKQE7UCm7eVLsH07UFcHe/aAlBS0o+FWcJgyBKGroKDg6tWrmpqan3/+OR/f/78qExcX9/Pza25ujouLQzE8iPMdPnxYSELaztMX7UA4mtuqNd39g2fOnkU7kP/huQSMTqdzTvr7SbW1tf39/eypPxyBwWBCQ0OFhYXPnz8/gLQhmbyCgoLi4mIHBwdtbW3mhgdNH4FAaGlpaW5uRjuQqWpoAKtXA21t8NdfYMECkJ4OEhLQjon7tLW13bx58/vvv7927ZqoqOjKlSsPHDjg6ekJe69BENuUlZVdvHhRRUVl69atgoKCY95rZWVlbm6ekpJSU1ODSngQ53v58uXR335bu+cgnAjycfz82NBd+3/44Yf29na0YwGABxMwAAAXbYIh7WjZnIABAKSlpVetWvX27duYmJgpfHhPT09MTIysrCxSyw5xGgKBAADg4k0wDAbExAAXF/D4MUhMBIsWoR0Ql3n58mV4ePiuXbuSk5OVlJQ2b968a9cuOzs7uFkNQexUVVX1zz//SEtLb926VURE5IPXrFixQkxMLDIyEhYiQh906PARm8Xeatqw19Sn6ZtbGFnaHD9+HO1AAODBJhwAABqN9v5zJs5UVlampKSEx+PZv7SZmZmtrW1OTo6BgcFkzyxGR0f39PSsX78e9kzjTLNmzZKWliaTyc7OzmjHMiWqquD1ayAjg3YcXIbBYJSWlqalpVEoFCwWa2lp6ezsrKKignZcEMSL6urqTp06JSYmtmPHDikpqfEuExcXDwgIOHfu3O3bt/38/NgZIcT5mpubL126ePTWA7QD4Rre67f9usb/66+/ZvVsp0/i0QQM7UAmpKur69WrVw4ODmgF4O/vX1tbe+XKFU1NTVlZ2Ql+VElJSWFhob29vY6ODkvDg6YMg8GYmJjk5OT09vZyer0ZnQ4SEoC7O+D773Y9zL4mAxmmnJSU1NTUBIcpQxDqGhoa/vrrLwEBgR07dnzy16uFhUVRUVFqaqqpqSn8xQqN9ttvv1s7uyvOmo12IFxDw8BIhzjn1Km/v/12J7qR8FYJIrLxNTQ0NNEPSEwEjo6gooKFMY2voqKCwWCwYQLYeISEhNatW0ej0c6ePTvB+Wm9vb1RUVF4PN7b25vV4UHTQSAQ6HR6WVkZ2oGMb2gIXLgADA2Blxe4fRvtaLhVd3f33bt3v/322/DwcCqV6u/vf+TIkYCAAJh9QRBaGhsb//jjDz4+vi+//FJRUXEiHxIUFCQmJnbx4sXBwUFWhwdxi/b29tNnTnt9thHtQLiM78btvx37vR+Z9Ise3krAcDgcAGASjSWamkBqKkDpP6m8vFxAQADdx10qKire3t4vXrxITEycyPUxMTHd3d0rV65E/qkhjqWvry8kJMShzeh7e8Hx40BbG3z2GRgYAGFhwNUV7Zi4z+hhyng8Hg5ThiBO0NLSEhYWRqfTt23bpqysPMGPEhMTCwwMbG1thaOZoREnTpwgzF8AT39Nli5xjqqWXnh4OLph8FYJIpIVTOIBErJXhsaBMQaDQaFQ9PT0UD8W7+DgUFlZmZCQoKurq6f3se/z0tLSR48e2dnZsb9rCDRZAgIC+vr6ZWVlNBoNKc3lIMHB4OZNYGwMDhwAgYGA08LjeHCYMgRxpvb29rCwsP7+/m3btqmrq0/qY+fOnfvkyZPU1NQ5c+bA0cwQg8G4EH7xs32/oR0IV3JaEXLm3KlNmzahGAMv7oBNYtsRvQSsvr6+u7sbxfrDERgMJiQkRFxcPDw8vLe3d7zL+vv7L1++LCUl5esLJ1FwBwKBMDAwUFtbi3Yg7/nuO3DnDiCTwcqVMPuaOBqN9uTJk0OHDh09epRCoVhZWf38889wmDIEcYjOzs7ff/+9q6try5YtU6ttWb58uYiIyKVLl2BHRCg7O3uQRjOcY4V2IFxp7iKn+vp65DElWngxAZtECSJ6CRhyOIcTEjAAgLi4+OrVqzs7O6Oiosa7JjY2tqOjY9WqVeP10oU4DZFIxGAw6Fchvn+80MICeHoCONJkwnp6ehITE3/44YczZ850dHR4e3sfPnw4NDR0gsdLIAhite7u7rCwsM7OzvXr13+8luQjJCQkli1b9ubNm6SkJOaGB3GdSxERdl5LMXy89TKeWbACAvNcPaIuX0YxBt76n0MOP3BFCWJFRQUej1dQUGD/0h9kZGREIpGKiooePnz4/nspFEpubu68efOMjY3ZHxs0NeLi4urq6mhOA3v6FAQHg+XLUQuA+40c9IqLi5OQkFi5cuWvv/7q5ubG6c0tIYiX9PX1/fnnn83NzWvWrDExMZnOrebPn29kZJSYmNjQ0MCs8CCuMzAwcP36dTsPWHA0dXZeyyIiIyfYYY4VeCsBExYWBpPaAbOyAuvWAbbPCujr63v+/DmnJTO+vr6qqqoxMTFv374d/fahoaHLly+Li4vDESVch0gktra2NjY2snvh1FTg5ATMzMC1awCPBwwGuwPgfrW1tWfOnNmzZ096erqWltbmzZt//PFHOEwZgjjNwMDA8ePHGxoaQkND58yZM/0bBgUFCQgIREVF0en06d8N4kZxcXGqmjoqmtpoB8LF9EznCAjh0tPT0QqAtxKwSZcgOjqC06eBhAQLY/qQyspKOp3OIfWHI7BY7Nq1a+l0+oULF0b/3L9169bbt2+XL18OH7pzHQKBAABgaxVifT2wsgKOjuDRI/DNN+D5c/D337DacOKQg14HDx48evQomUy2tLTcs2fPjh07CAQCBv4zQhCHGRoaOnHiRH19fVBQkKWlJVPuicfjlyxZ8uLFi7S0NKbcEOI6cXfvWjgvRjsKrmfp7HHnbjxaq/PWAXekBHESCRhKKioq+Pj4dHV10Q5kLCUlJW9v79jY2KSkpMWLFwMA6urqMjIyzM3Nzc3N0Y4OmjRVVVU8Hk8mk13Z1uddSQnQaGDfPrB5M4CjqCaju7s7Nzc3PT29o6NDQkLCw8ODRCLBpx4QxLFoNNrp06dramqWLVtmZ2fHxDuTSKQnT57ExcURCAR5eXkm3hniCunp6V+fCEE7Cq5nbGUTe+xXtFbnrQRMUFCQj4+P8xMwCoWipaWFFExyGgcHh4qKirt37xoYGKipqUVEROBwuICAALTjgqbIxMQkMzOzq6tLgj07vYKC4MkTdiw0g7S0tKSnp+fk5AwNDampqbm7u1tbW8NSQwjiZDQa7Z9//ikrK/P19XVycmLuzTEYTHBw8L59+yIjI7/88ku4+81Tqqqq+vr6Z+vDeT/TZTDH8lltbXNzMyoNF3irBBGDwQgJCXH4IPnm5ubW1laOHaWF/NwXFha+cOFCXFxcU1NTQECAlJQU2nFBU0QgEBgMRnl5OfNv3d4Ofv0VtLUx/848o7a29uTJk7t3705PT9fX19+xY8euXbvgQS8I4nBI9lVaWurh4eHi4sKKJRQVFV1dXaurq3Nzc1lxf4hjpaWlmVjNh/0Pp09ASEifaJaVlYXK6ry1AwYAwOFwk5gDhgbkpTDHJmAAACkpqZUrV54+ffrBgwf6+vpWVnAMBRfT09PD4XBkMnnevHlMu+nr1+DYMXDmDOjpAbKyYMMGpt2ZN9BotMLCwvv3779+/VpISMjW1tbR0RH2lIcgroBUHpaWlrq4uHh6erJuITc3t6KiouvXrxsbG0tKSrJuIYijpKSmGVjORzuKGULfYl5qWhoqPeR4LoHG4XCTKEFsbwednawM5wMoFIqIiMisWbPYvO6kmJqaioqKMhgMS0tLWPzA1bBYrIGBQXl5OXMme9bVge3bgbY2OHYMEIngzh2YfU1Kd3d3cnLyjz/+GB4e3t3d7eHhcfDgwZUrV8LsC4K4ApVKPXHiBJlM9vT09PVlbZdwLBa7atWq/v7+mJgYli4EcZSchzlGlsx7YMrbjK1sMjLhDhhbTK4EccMGkJEBWlpYGdF/0Gi0qqoqExMTPs7eXE5OTu7t7RUREbl16xaBQBBne6d+iIkIBEJxcXF1dTUTGm+eOAFOnACLF4OffgJMavnFI5qbmzMyMkYOevn4+FhYWPDz86MdFwRBEzU0NHTq1CkKheLl5eXu7s6GFTU1NRcuXJiRkUEmk5GuttDM1tnZ2d7WpqKhhXYgM8QsXf26Z7U0Gg2LZXdCxHMJGA6H6+jomOjVVCpg739JXV3d4OCggYEBOxedrObm5oSEBE1NTR8fn2PHjkVFRW3cuBHtoKCpQxJ+MpnMhARs506wcSPQ0WFGXLyitrY2OTm5tLQUAGBiYkIikTj8JwAEQe8bGho6efJkZWXlkiVLkC7B7OHj41NSUhIdHa2np4e0eoZmsKqqKuVZ6vxYeAyYOcQkpUTFxF+8eKGtze6hahy9zcIKwsLCkyhBpNHYnIBVVFQAzj4AxmAwIiIiGAxGcHCwrq6ug4PD06dP4SFgriYuLq6hoUEmkxmTGojMYIBXr8a+UVERZl8TRKPR8vPz9+7de/To0aqqKltb2717927evBlmXxDEdQYHB0+cOFFZWent7c3O7AsAgDQibm9vv3v3LjvXhVBRVVWlogHnLzOTqqZ2VVUV+9fluR0wISGhSSRgw8OAvSVAFRUVioqKMjIy7Fx0UjIyMmpra319fZWUlAAAPj4+lZWVV69e1dbWhtNIuBeBQLh169br169VVVU/fTWdDm7cAHv3AhoNVFQAzi6X5UDIRK+0tLTOzk5JSUk40QuCuBqSfdXU1Pj7+zs4OLA/ADMzMyKRmJqaamlpyeEHyKFpqqqqUpitiXYUM4rSbM2qqir21AyPxnOvnHA43NDQ0ESf9LM3Aevp6Xn58iUnb3+1tbXdvn1bTU3N0dEReQsWiw0NDR0eHka2xdAND5oy5PAAmUz+xHV9feCvv4CmJvD3B11dYONGMDzMjvhmiubm5piYmO+///7mzZsSEhKhoaEHDx709PSE2RcEcan+/v6wsDAUsy/E8uXLBQUFo6Ki6HQ6WjFAbFBOqVSeDQ+AMZPibC1KZSX71+W5HTBhYWEGg9Hf3y8iIvLpq4eH2VmCSKFQGAwGJydgly9fHhoaCgkJGd0bQFVV1cvL6+bNm2lpaSj++oGmQ1lZWV5evqSk5GPFM2/fAmNj0NIC9PVBeDgICgJwGtXEMBiMysrKtLQ0eNALgmaS/v7+P//88/nz5wEBAfb29ihGIi0t7eXlde3atYyMDBKJhGIkEEs1vHpF9FRBO4oZRV5VrfjpI/avy3MJmJiYGACgp6dnQgnY77+Dvj6Wx/SviooKLBarq6vLthUnJTc3t7y83N3dXU1Nbcy7nJ2dyWTyrVu3DA0NkdJEiOuYmJggRXHjjtWWkwMrVgA7O+DtDcsOJwiZ6JWcnNzY2IjD4WxtbZ2cnBQUFNCOC4Kg6err6zt+/Hh9fX1gYOCiRYvQDgeQSKTCwsK4uDgzMzNpaWm0w4FYorurS0RUDO0o/h99eJiPn7/nXWd9NcXIgiub40tIy7xtbWX/ujz3KmokAZvQ1UQiYOJ02k+hUChaWlqc2cWoq6srNjZWUVHRzc3t/fdiMJjg4GAAQEREBKx/4FIEAoHBYCBzwMf1xx/A1xdmXxPR1dV19+7db7/9Njw8vLe3d2SiF8y+IGgGGMm+li9fzgnZFwAAg8EEBQVRqdSoqCi0Y4FYpae7W5hjEjAalfpdgAcAoOV1Q0LEObTDmSJxaZn2tjb2r8tzL6SQBKy3txftQMZqbGzs6Ojg2KqkK1eu9Pf3BwcHC4xTdaagoLBkyZK6urqUlBQ2xwYxhY6OjoiISElJCQAAlJaCFStAYSHaQXGlV69eRUVF/fDDD/Hx8Xg8PjQ09NChQ56enhPadYcgiOP19fWFhYW9fPkyJCRk4cKFaIfz/1RVVUkkUllZWXFxMdqxQCzR29uDY8uZYQaDQR8eBgC0tzQPD9NG3j40MNDa1Ii8a7C//2VN5TCNqmFg/FXYaQDA8DBtpB0Ag05HLqMODna8bR5vCQaD0dn2FnnLfz783wBYTURMvKe7iw0LjcFzJYjIYfeJ7oCxESc3oH/y5ElxcbGjo6OW1seOfjo6OpaUlMTFxRkbGysrK7MtPIgp+Pn5DQ0NS4qLh7y9Be/cAVgssLEBc+eiHRfXeP+gl6ur68e/ZSAI4jrd3d1hYWGNjY2rV6+2srJCO5yxPD09i4qKYmJiDA0NObOgBpqO3t5eYVFxNixUWVRw6cgvw1QqAKC9+c0PZyI19I3++m77s3IyTkT07euG705dvB8TRRsa2h28LPibny4c2H04NvHPnVsN51q7LA8BAIQf3CMtp0CjURMizknLKfALYH/4J1JGXmH0Eud//ZE6NCQsJj7Q27v7wtXo44eV1DV8120FAMT89RsAIHDbN6z+TAUEBYcGh1i9yvt4dAeMMxMwMTExDmwg29vbe/XqVTwe7+Xl9fErMRjM6tWr+fn5w8PDh2FzPK6Tl0dISKAOD1eVl4ONG0F1Ndi8Ge2YuMPIRK+wsLDq6mp7e/v9+/dv3rwZZl8QNMN0dHT89ttvjY2Na9as4cDsCwAgJCTk5+fX0dGRmJiIdiwQk/X19Q3TaDhRNhVT1JQUbT18/OjNZPulASnXLtdXV9JotOMJmUeu33PyX5l+K+bz3fuxgoL7r8SNfAjJNzDzzg0AwPAw7eG9u3MWOabEXj6dXvDH3bT5rp5pN6LHLPGcUv5V2OlDMfF2Ht7n9v0w8uEMBiPr7s1F3n5s+DSxgkJDQ4NsWGjsuuxfEl3IDhinlSDSaLTa2loCgYDBYNCOZaxr1651d3dv3759Is/SZGVlvb29Y2Ji7t+//8HTYhDnolCMs7P5li0jf/ONybp1aEfDHbq6ujIzM9PT03t7e2VlZX19fe3s7GCpIQTNSK2trWFhYR0dHZ9//rm5uTna4YzLzMzMxMQkJSXF2toatsWCpkxx1uxZOvoAAFVNneLsNA0Do+XbdyZdufiisrz8cZ4Owez9DyHMszu16+uWVy9f1lZpGBhVPX0iiBO+dGQfAKDnXcerZzXLNu4Yfb2qlg6yhKWja2LkhZ1/nR+mUp9XlA309cooKCrOms2OzxMlPJeACQsL8/PzT3QH7MoVIC4OPD1ZHBSoqakZHBzkwPrDsrKy/Px8Ozu7iR9Os7e3Ly4ujo+PNzExmdBUX4hDrFolumSJVng4+dmzFQwGBz4L4CgNDQ2ZmZn5+flUKlVdXd3f39/S0pIPtieBoBmqsbHx+PHj/f39mzdv5sBf1mMEBATs3bv36tWrX3zxBdqxQEwjIiLCj8UO9PaJSkiwYTlxqf/10uTj42MwGOUFeWFfbVq8au0ib39lDa0XlA+07MLw8S3y9suOv1VfTSH5Brxrb1NUU7dx+9+raAxm7K9I/n9HPQ0NDmIFBQEA9r4B2fG3+nq6ST4BrPrE/os2NCgoiEKxLs+9XMBgMKKiohNNwH75BYSFsTgiAACgUCgAAE7rwDEwMHD58mVJSUlfX9+JfxRSiIjFYi9evAgLETkUlQoKCsa+UUAA4PEEAqGzs/Ply5dohMUFGAwGhUI5efLk/v37c3JyDAwMdu7c+cMPP1hbW8PsC4JmqhcvXvz2229DQ0Pbt2/n/OwLACAnJ+fs7FxZWVkIeynNLKKiov293agsTSl8ZGpn7/P5Zj3TOeTc7OFhmoCgIH2YPqZVhr2Pf3b87cqiAgsH13muHnXlpbN0DYws5ze+qMu8cx25pvH5s6GBAQBAfRXldV0tAOBh4h1jq/kAgEVL/B6nJpHzsue5erDn86IODQkKCbJnrdF4bgcMACAmJjbREkR2DWKuqKhQVlbmtMEdN2/ebG9v37hx42RLqvB4vI+PT3R09L179zw82PQtBE3I0BC4ehXs2weamsDz50BObsz7TU1Nb9y4QSaT1dXVUQmQY1Gp1CdPniQlJTU1NeFwOHt7e0dHRzwej3ZcEASxVlVV1alTpwQFBbdv385FZR1ubm6PHj26du2asbExDodDOxyIOURFxQZQOkSzcMmyw1vW7F61lDo0pGtqTil8xI8V0CGYfmZL3PHbyZHLFGfNlpCWMbaaLyAoKIWXcw1avclpnoqGFj8Wu/XQceSanX6L95yPBgDIKikf3rIGg8GIS8t8f+oSAACvqKSgpi4hg2dbt/3eri5xCUn2rDUaLyZgk9gBo9EAPz+LwwFdXV2vXr1ycHBg9UKT8uzZs6ysLAsLC1NT0yl8+MKFC4uLixMTE01NTbnoN9ZM1tMDzp8HR4+C16+BpibYvx98qIZBXl5eQUGBTCZ7sr7yllu0t7dnZGRkZ2f39fXJyckFBATY2NjA9mIQxAtKSkrOnj0rISGxY8cOeXl5tMOZBAEBAX9//1OnTiUkJCxduhTtcKCpoNPpXV1d79696+rqQv6irKzc38uONnIGcywPXUtA/r7Aa+kCr6UAgN9u3u/u7BCTlBo5pLD/StzgQL8QTpho8//zGH6JvDHyd79NX/iu2zLQ1z+6bDKqsAoAQHnyWFpO4WBMfF939+j3YjAYR78VrPzk/qO7s11WVpZty43gxQRMTEysufkDEwk+YHiYDQkYhUJhMBgcVdVAo9EiIyNFRUUDAqZYg4uMZt67d29ERMR3330Hq7NQRqUCQ0PQ0AAIBPD778DP7yPDlAkEQkpKSkdHB6dtybLfs2fP0tLSioqK6HS6jo6Og4ODqakpPB0HQTzi0aNHFy9elJeX37FjBzf+PCQSicjPc2traxUVFbTDgT6ASqW+e/eus7Ozr68P+cu7f3V2dnZ3d9Pp9NHXKykp9bElARvPyMGwEUI44Y9/CD9WQFTiwyNkAXIy6N/sq6akKCHy/EBfr5HFvGnGOXHdnR2oFLPwaALW29vLmEibAbYkYBUVFVgsVltbm9ULTVxcXFxTU9PatWvFxac+bgKPxyMdEVNTU52cnJgYHjRpAgLgu++Amhrw8ACf+rInEAgPHjwoLS1dsGABe6LjNMPDw0+fPk1NTX327BkWizUzM3N0dNTU1EQ7LgiC2CcjI+Pq1atqamrbtm2bzq9CdAUEBFAolOjo6K+++go+PGI/Go3W09ODJFcjadVIrtXR0TEwMDDmQwQEBERERKSkpNTV1UVERCQlJSUlJaWkpJA/165b//b1K1Q+F6ZT09YN2bl79FvwSipEmwUWJBd2htHc8FJjNgpnLng0ARseHh4YGBAW/kTWDvB4IMnawlDkTL+Ojg7nVDQ1NDSkpqaamJhYWFhM81b29vaFhYV37twxNTWVe++4EcRWmzZN8EJtbW1RUdGSkhIeTMD6+/tzc3MfPHjQ0dEhLi7u4uJib2/PjU++IQiajuTk5Js3b+ro6GzevPnTLxU4mKysrIuLS3x8fGFh4fR/p0PvG9nCGp1cjeRaXV1dDAZjzIcgaZWIiIiysvJIcoVA3vWRVNnIQL/ixTMWf05sIiYpZTD3P8P0ZOQV7NnV/HDEmxfP3Oaj8K3BiwkYMgqsp6fn0z9VyWRWB/P69et3795xzgEwOp1+6dIlAQGBoKCg6d8NKUTct29fZGTkF198AR+/sUN1NTh0CNjbg1WrpnYDPj4+Y2PjJ0+eDA4Ocs5zAVZrbm7OyMjIyckZGhpSVVV1d3e3trYWEBi3agKCoBmJwWBcv349JSXF2Nh4/fr1goIotEdjLjc3t4KCAqQbB1cnk6hAtrCQhGp0lSCSa7W3tw8Ojp3hO3oLayStGtnCkpaW5p9GaZWenl7aoyvT+5yg/3jzok4vdCX71+XFBExMTAwA0NPTwwl7MhUVFQAAzjkAlpiY2NDQsGrVKmY99VdUVHR1dY2Pj8/Ly5s/fz5T7gl9WEkJOHgQxMYCAN5vbzgpBALh0aNHlZWVRCKRObFxKgaDUVlZmZaWVlpaCgDQ19cnkUgmJibwYQEE8SA6nR4VFfXw4UNTU9PPP/8cy5Y2yKyGxWIDAgL+/PPPhISEZcuWoR0OxxmzhTUm1/rIFtZIleDoLSwpKanJNo6eFD09vcbntay7Pw9qqKvV09Nj/7oz4YfLZCE7YBPtRM9iFRUVEhISHNIn8M2bN0lJSbq6ujY2Nky8rZubW1FR0bVr1wwNDYngdeUAACAASURBVKWkpJh4Z+h/ysvB99+D+HiAxYKQEPDdd0BXdzr3MzIywmKxJSUlMzgBGxwcfPz4cWpqKtJW3tbW1tHRUVFREe24IAhCB41GO3/+fFFRkbW1dUhIyEzqHWVkZEQkElNTU62trTnk9QbbUKnU3t7eDx7BevfuXUdHx/sDSwUEBJBsamQLC0mxkFxLRkYGxa8NPT29xoaXwzQqPxYWaDBBz7vOvt6e2bNns39pXkzARnbA0A4EUKnU2tpac3NzTnjcjhQfIkWDzI0Hi8UGBwcfOXLk2rVr69atY+Kdof8ZGgL374OVK8Hu3YAZ3VyEhYW1tbXJZPKEetVwm9bW1qysrJycnN7eXllZWV9fXzs7O5Y+s4QgiMMNDg7+/fffFArF2dnZ19d35v3cCwwMrKysjI6O/vrrr2fSZ8dgMEZatI/p2N7V1dXZ2fl+iSAWixUXF5eUlFRWVjYwMJCUlBQXF5eSkkL+lJCQ4OTicykpKbys7Ku6WnVdA7RjmQnqqymaWtqo7HXDBAxNtbW1VCrVwIAjvovS09Pr6ur8/PxYUZmpoaGxcOHC9PT04uJiMzMzpt+f15mZgaYmwNReEQQCobKy8sWLFxoaGky8Lbrq6+vT0tIeP35Mp9O1tLQcHBzMzMxm0nNuCIKmoLe39+TJk8+ePXNxcfH19UU7HJaQkZFxdna+e/fu48ePraysPv0BnGR0lWBra+vocsGPb2GpqqqOPoKFkJCQ4Oof+7Y2thUF+TABY4ryR7mLFqLTb4x3EzBOKEGkUCgAAH19fbQDAW1tbXFxcbNnzyaRSCxawsfHp7S0NDo6Wk9PD+42TB2dDtLTwftdW5jdqY9IJF67do1MJs+ABIxGo5WUlKSkpNTV1WGxWEtLSycnJ16rw4Eg6INaW1v//PPPt2/fBgUFzezWr66uro8fP75+/bqJiQmn/Rbu6+sbOX81Or9C/qTRaKMvxmAwEhISo7ewEOLi4tLS0uLi4jPj8N54HB1IUbfj3YJC0Q5kJqgsyPvxqx2oLD2Tv0bHIywszMfHN6EdMBIJ+PiArVtZFAmFQlFSUuKEJteXL1+mUqkrV65k3WMhISGh5cuX//XXX7du3WJKi0WeQ6WC6Ghw8CCorAS5uWAea8cUysrKKikpkcnkJUuWsHQhluru7s7NzU1PT+/o6JCQkHBxcSGRSPAgIgRBiBcvXpw4cWJwcHDjxo0EAgHtcFgLi8UGBgYeP348Pj7e39+fzat/sNcF8vfOzs7+/v4x1yO7WFJSUrNnz5aVlR09C2uajQS5HYlE+vb7Hxh0Ooab9/E4weBAf+XTokWLFqGyOi8mYBgMRlRUtLu7+xPXDQ+D9HRgbMyiMHp7exsaGuzt7Vl0/4nLy8srLy93d3dXU1Nj6ULGxsZWVlbZ2dlWVlYcNXia0w0OgpgYsG8fqK0F6uogLAyYmrJhWQKBkJyc3NbWhsqQ+GlqaGjIzMzMz8+nUqlqamqwrTwEQWNQKJR//vmHn59/x44dWlpaaIfDDoaGhqampunp6fPnz2d6FQCdTu/q6mpvb0dGDI+UCHZ1dXV0dLx/Fmt0L8GR5Grkz5m9izUdurq6oiIizyvLNQ1N0I6Fu1UWFWjr6qLVEZ1Hv74lJSW7uro+cRGy5c2yHwEUCoXBYKB+AKynp+fGjRsKCgpubm5sWM7Pz6+srOzKlSu7du3i6iJstnJ2BllZQE8PhIeDoCDAriyCSCQmJyeTyWROeEwwQQwGo7S0NC0trbKyEgBgYmJCIpFQ/y6DIIjT5ObmRkVFSUtLb9u2TUFBAe1w2CcwMJBCoVy5cuWbb76ZQjeOkblYI2exEG/fvm1vb6fT6aMvHjmLpaKiMmbisLS0NBxKNmX2JPvS/ByYgE1TWf5DR5adu/kkHk3AJCQk3r59+4mLkGOdLNvmplAofHx8utNrFz590dHRPT09GzZsYM/mgLi4uLe39+XLl1NTU52cnNiw4kywcyfYvBksWwbYm7JqamqKi4tzSwI2MDBQUFDw4MGD5uZmHA5nb2/v6OjIjXt3EASxWnJy8q1bt1RUVLZu3cprNcnS0tKurq5xcXGPHj2ytrb+4DVDQ0NtbW1IfeDIjlZHRwfSWnDMxUjzQGVlZWTSjIyMjJSUFPIXISEh1n9CvMjby2v3gUNL1mxEOxAuxmAwHt9P2Hz+LFoB8G4C9uzZs09cxOIErLKyUkNDA4fDsej+E1FaWlpYWGhvb8/OgkA7O7u8vLz4+Pi5c+dywvk3LuDujsqyGAzG2Ni4oKBgYGAA3S/Uj0PaymdnZ/f19cnLy/v7+9va2sJf/BAEvY9Op0dHR2dlZRkYGGzYsIGTf7KxjrOzc35+/vXr11VUVJDtrDE9Bt+fPiwiIiInJzd79uyRuVjIuSwZGRne/DdEl6en59rPP39dV6uiCU9zTFH10ye0oYGFCxeiFQDvJmCDg4OfeFnJyhLElpaW1tbW8R4+scfAwMDly5dlZGS8vb3ZuS4Gg1m+fPnBgwdjY2PhWLD/qK8Hx44BMTGwfz/aofwPgUDIy8urqKgwNzdHO5YPqK2tTUtLKy4uhm3lIQj6pKGhobNnz5LJZGtr6+DgYF5o5IDsZSH7V+3/6ujoaGtro9Fov/7668iVWCwWqQzU1dVFGl1IS0tLSkri8Xhu79s+8+BwOD8/v+z4m4HbdqIdC7fKvnN9dUgIij8EeDcBAwB0dXV9LAETEgIbNwJLS1YEgDSgNzQ0ZMXNJ+jGjRsdHR2bNm1i/+OrWbNmIWPBysrKjFnW5oSbVFWBQ4fA5cuARgMBAWhH8/+MjIywWCyZTOaoBIxGoxUWFj548ODVq1dIW3kXFxdlZWW044IgiHONDPsikUj+/v4zaRgx0v2ira0NSa5GJ1pjGj4LCAjIyMhIS0traGjU1dW9ffs2MDBQU1MTGUCMVvzQFIQEB/uvCArY8jXshTgFNCo1Nyn+SFYmijHwegImLy8/7kUiIuDUKRYFQKFQcDjc7NmzWXT/T6qrq0O6ERKJRFQC8Pb2Li4ujomJ0dPT4+nedA0N4OuvwfXrAIMBfn7g++8BJ7VCFhIS0tXVJZPJdDqdE56AdnV15eXlpaWldXZ2SkhIeHh42NvbI5P9IAiCxjMy7GvFihUoFh1NE9LJ/e3btyMNMFpbW9++ffv+MGKkYlBTU1NSUlJOTm6kjTsejx/JPFtbW/fs2fP06VO02nBD02FrayskIFDx5JGRBWtn0sxIhRkPNDQ00N0A4NEETFJSEgDw6UaIrEGn06urq3V1ddHa+qTRaBERESIiIn5+fqgEAADA4XC+vr4XLlxITk728PBAKwz0iYiAlBSwejX47jugo4N2NB9AIBAqKiqeP3+Obpvmly9fZmVlIW3l1dXVfXx8LCwseKGCCIKgaaqvrz9x4kR/f//nn3/OUZv5HzS6zeCYRKuvr2/0lUiPQTk5OW1t7dGJFh6Pn8ghWFlZWRKJdP/+fViKwo0wGMzaNWuSLofDBGwK7l8OX7/2M3Rj4NEEDNkBe/fuHSqrv3z5sre3F8XW2PHx8U1NTZ999pm4uDhaMQAArKyscnNz7927Z2FhwVNdgP8DjwcvXwJRUbTjGBeRSIyJiSkpKUElARtpK490DTU2NnZ1deWRiT0QBE3f6GFfHDV/kkqltra2tre3t7W1tba2IgWEbW1tYxpg8PPzIyeyTExMkOpBaWlpPB4vLS0tIiIyzRjc3d3z8/NjY2MNDAzg8yyus3Xrlt9+/+1lTeUsHX20Y+Em1SVPXtfVrF69Gt0weDQBQ3cHrKKiAgCAVgL26tWr+/fvGxsbW7LmeNukrFix4pdffrl69er27dvRjoUtcnKAldXYQV4cnH0BAGRkZFRUVMhksq+vLzvXHRgYePjwYWpqaltbm7CwMIlEcnJykpGRYWcMEARxtfz8/IiICCkpqW3btikqKqISA5JoIfnV6L+MeQUiIiKCx+Nnz54t8y8k0WJpAwwcDufl5RUVFZWZmUlCbyASNDWSkpLr16+/e/7vzYeOox0LN7l5Kmzn19+gPoaORxMwERERLBaLVgJWWVkpJSWlpKTE/qXpdHpERAQWi12+fDn7V3+fgoKCk5PTvXv3ioqKOL8yZFpycsDhwyA+Hpw7Bz5DeeN7sggEQmJiYktLy8fOTDJPS0tLenr6w4cPBwcHFRQU/P397ezsBAUF2bA0BEEzA4PBiI+PT0hIUFZW3rZtGxuGfdFotM7OzvcPaLW1tY3e0ULqBlVUVIhEIlI0KCsrKycnN/3trKmxtbXNzs6+e/eupaUlPE/Ldb768ktNLS3f+h1K6hpox8IdnleU1ZYWb7h7C+1AeDUBw2Aw4uLin0jAhobAu3dAQgIwdaDQ0NDQs2fPLCwsmHjPiUtJSamvrw8MDJSVlUUlgPctXrz48ePH169fNzExmZndOHJywJ49IC0NiImBbdvQGuo1HUQiMTExkUwmOzo6snShkbbyDAZDX1+fRCKZmJjMpGZlEASxAZVKvXTpUkFBgYmJydq1a5nb6XdSiZacnJyBgQEnJFrjwWAwAQEBR48ejY+PDwwMRDscaHLk5eVDQ9fEh//z+c+H0Y6FO9z8J2z7tm3oHsBB8GgCBgCQkJD4xBmwmhpgbAxOnACbNzNx3ZqaGhqNhkr9YWtra3x8vIaGBkf1gBIUFPT19T179uyDBw8WL16MdjjM9u234MgRICUF9uwB27cD7hw8ra6uLi0t/fTpUxYlYEhb+eTk5MbGRiEhIRsbGwcHB1S2iCEI4na9vb1///13TU2NnZ3dihUrply/Nzw8jJzOQrT964Olg6qqqkQiEY/Hy8rK4vF4PB6PeoHTxGlpaZmammZmZtrZ2amoqKAdDjQ53+78xtDIyCUoFJ4E+yRK4aPKJ4/ir0ahHQgAvJyASUpKNjQ0fOwK5FEWs2uvKRQKBoPR12f39wmDwYiKihoeHg4ODuaEfuKjzZ07NyMjIykpaf78+WwoFGGr5cuBuDjYuhVISqIdytRhMBgTE5OcnJyenh7m1qi0t7dnZGTk5OT09vbi8filS5fa2tpy2hNiCIK4RWNj44kTJzo6OgIDA+3t7Sf4UX19fciOFrKXhfzZ3t5Op9NHruG00kHmWrZsWVlZ2bVr17744gu0Y4EmR1VV9fvvvj+/9/ufI2/CgpGPGB6mhe/fdfjQIWnOeBTOuwmYhIREd3c3g8EY9+sVScCY/dVMoVCUlZUl2f5y/OHDhxQKxcvLizPn1QYEBOzfvz8uLi4kJATtWJjK1BSYmqIdBBMQicSsrKyysjJra2um3LC6ujo9Pf3p06d0Ol1HR4dEIpmamnLaowEIgrgIhUI5ffo0nU7fuHEj4UMDFYeHh5EGGCNZFpJ0jW7vzs/Pj8fj5eXlDQ0NkUQL+ZOLdrSmQFZW1sHBISkpiUwmf/CfDuJkX3315cWIS5lx1xd5ozZbiPMlXDorKSq8Zs0atAP5H55OwGg0Wl9fn+h4PehYkIB1d3e/fv3awcGBifeciK6urhs3bqioqLi4uLB56QlSU1ObN29eXl7ewoULUZxPPXXDwyA6GuTkgH/+QTsUltDX18fhcCUlJdNMwJBqwwcPHrx69QqLxZqZmTk6OmpqajIrTgiCeFN2dnZ0dLSEhMTmzZvV1NQmsqmFTCs2MDAYybLk5ORkZGR480mQm5tbXl5ebGysoaEhFsu7Lw65kaCg4NnTp32W+c0lOYtJcHG5Det0vG2+feZEeloq53x38+732MgoMHYmYBQKhcFgsP8A2JUrV/r7+7ds2cLJP1V9fHyKiopiYmJ27tzJTdvoVCqIigIHDoDaWqCmBlpbAcc0OGEiLBZraGhYXl5OpVKn1ivl3bt3WVlZGRkZPT09EhISHh4eixYt4oSDsBAEcS86nd7a2hoXF1dYWCgpKammphYZGTlmZjE/P7+0tDTn98NAFw6HW7JkSUREREZGBqv7LUFMt2DBAkcH0pXfD6zbC7txfMCFX3etXLnSzMwM7UD+H+e+HGc1JAHr6uoatySPNQkYFovV0dFh4j0/qaioqLi42NHRkcPH10pISLi6ut6+fbuwsBCtLpGTQ6OB8+fBoUPgxQugoQFOnwarV4OZ2y2dSCQWFRVVVVUZGxtP6gPr6+vT0tIeP35Mp9PV1dX9/PwsLCzg0E8IgiZlcHDw7du3LS0tb/+FDDIe2dR69+7ds2fPZGVlDQ0NR7IsWVlZnt3Umqz58+dnZWUlJCRYW1vDlvRc58+wMIKpaf79BdbO3NdsmaUeXItqqqm8d+0K2oH8B0zAxu9Er6UFHjwATN2tolAompqaQkzta/9x/f39MTExeDzey8uLbYtOmZOTU25u7o0bN4hEIhfMfeLjA3/9BTAYEBYGNmxg7rgCDmRiYsLHx1dSUjLBBAxWG0IQNDVIq/fGxsampqaRAsLRfd75+PiQUcUDAwM9PT3Gxsaenp7y8vJwU2s6MBiMv7//0aNH79y5s2LFCrTDgSZHQUHh2tWrS3x8NQyMFdTU0Q6HU7ysqbxy7EB6airysp9z8G4ChrTB+FgCJi4OmLoL39zc3NHRsWDBAibe85NiY2M7Ozu3b9/OzqxvyrBYrLe395kzZx48eODO+fOy+PhAfDxQUwO8sZkjKiqqra1dUlKyYsWKj9eIwmpDCIImCDmshexrtfyru7t75AIsFisrK6usrGxqaionJycvLy8vLy8jI/P69euTJ08ODAyEhoYyqzkQpKWlZW5unp2dvWDBAlVVVbTDgSZn4cKF27duOf7Vxr1RtwU4/yk26w309YZ9sWH/r7+am5ujHctYvJuAfXoHjNkqKioAAOxsQF9dXZ2bmzt//nxDQ0O2LTpNc+bM0dXVvXfv3rx582RkZNAOZ5TubkCjjR3kxY39QqaBSCTGxsbW19eP1ygFVhtCEDSeDzbGaG1tHbkAi8VKSUmpqqoi1YNKSkrKysofLCAsLi6+cOGCgIDA9u3bdXV12ft5zHB+fn6lpaWxsbGwJT032rNnT2ZWdtRvv4b+8AvasaDv7M/fmRNNtjB1nC+z8G4ChsPhhISEPjGLmakoFIqIiAjbWvwNDQ1FRkaKioouXbqUPSsyi5+f34EDB+Lj44ODg9GOBQAAQHc3uHABHDwIAgNBWBja0aAJScBKSkrGfBnDakMIgkZ7P9dqbGwc/QsXybWQxhhIojXxDoSpqamxsbFycnJbtmxRUFBg5efBi6SlpR0dHRMTE0tKSohEItrhQJPDx8d3NfqK2Zw5yhpaLstn1lyfSbrx9/EGCvl2QQHagXwY7yZgAABxcXG27YDR6fSamho9PT22HQW+c+dOS0vLunXruO4o7axZsywtLfPy8pycnJSUlNAMpb0dHD8O/vwTdHYCKyvg6opmMBwAeSZdUlKyZMkS5C2w2hCCeNyYXKuxsbGxsbG/v3/kAiTXUldXV1JSGun2jsfjp9Dtlk6nR0dHZ2Vl6evrr1+/Hp74YhFXV9fc3NzY2FgjIyNObp4MfZCiomLK/fsLFi4Ul5aZ7+qJdjjoSLl2OfVaRN7Dh+yfuztBPP19JSkpybYE7MWLF319fWyrP2xoaEhNTTUxMZkzZw57VmSuJUuWPHnyJC4ubsOGDagFkZICfH1BdzewtQW7dgFOHaHGZqampvfu3Wttbe3t7YXVhhDEU3p7e1taWpqbm5ubm5G/tLS0DA4OjlwgLCwsLy9vZGQkLy8/cl6LWWffu7u7T58+XVNTY2dnt3z5cvjThnWEhIS8vb0vXryYlpbm7OyMdjjQpBkZGSUmJDi7uoqKSxBtFqIdDrsVpN2P/uNAWmqqhoYG2rGMi6cTMAkJidra2nHf3dICbt8GixYBZtSXIwfA2DMBjE6nX7p0SVBQMCgoiA3LsQIej7ezs0tPT6+rq0Otks3cHCxYAL76CtjboxMARzIyMrp3796RI0fevXsHqw0haKYaGhoaSbFaWlrevHnT0tLS09MzcgGSaxEIBPl/ycnJsW73u6Gh4e+//+7o6PDz84NTqtjA2to6IyMDaUnPae3joImwsrKKvHQpOGT1rgtXNQ1N0A6HfSoK8k9+v/1uXBxHTf16H08nYJKSkj09PcPDwx9+kFZXB9avBxERTEnAKisrZWRk2FOtnpSU1NDQsHLlSukxHSO4iru7e15e3s2bN7/++mt0IpCRAfHx6CzNkUaqDQEAvb29Li4uJBJJSkoK7bggCJoWOp3e3t4+clIL6fw+uuc7UkOopqaGHNaaTg3h1BQWFkZERGAwmI0bNxIIBPYsyuMwGExAQMCRI0fu3LmzcuVKtMOBpsLLy+vYsd+/Wrti58lwPbO5aIfDDiUPM8O+2njxwoWFCzl934/XEzAGg9HV1fXhRIV5g5gHBwefP39uZWU1/Vt9UnNzc2Jioq6urq2tLRuWYx1xcXEHB4eEhITy8nIjIyPWLlZfD06dAvv2zeAxytOB9DYsKCgYHh5WV1dXVlaura11cXERFRVFOzQIgianr69v9HwtJOmiUqkjF0hKSiorKxsYGHy8DyF7MBiM+Pj4hIQEeXn5TZs2KSoqohIGb9LU1Jw7d+7Dhw8XLVoEW9JzqTWhodJSUiGrV27Yf8zaaTHa4bBW/v2EM3t2Rl++vHgxF3ymPJ2AIQ/vOzs7WZ2AVVdX02g0NtQfMhiMyMhIBoPxyUlNXMHZ2TkrK+vmzZuGhoas+nTq6sCBAyAyElCpwN4ettkYjUajlZSUpKSk1NXVYbFYU1NTpNqQTCZXV1eXlZWx55kCBEFTM9IeA8m4Wltb37x5M/rIloiIiJyc3Jw5c5B9LWTcloCAAIoxjzYwMHDhwgVk+PvatWuFhYXRjojn+Pr6Pn369Pr16zt27EA7FmiKfHx8pKSkfJcu7e3sdPCbsfO170VduPH3Hwl379rY2KAdy4TABAx0dnZ++N3MS8AoFAoGg9HT05v+rT4uMzOzpqbG19cX5eaBTILD4VxdXWNjYwsLCy0sLJh897o6cPgwuHAB0Olg8WLw88+AOxuWsMKY3oZjqg0NDAyEhITIZDJMwCCIQ9BotJaWFiTLQpKu169fj+4yheRaxsbGSJalpKSkoKCAw+FQjPnjWlpaTp069ebNGxcXFx8fnxnwSJEbycjIODg4JCUlsaMUBWIZe3v7lAcP3BYv7upo8/58ywz7bqIPD1/542DB/fjcnBx2ztqdJpiAsSkBU1VVZfUx1s7Ozri4OFVV1Zl0QHnhwoWpqam3b982MzNjcjPc774DN2+CwEDw44+ALc1RuMKYasMP9jYUEBAwMDAoLS2l0WiwQzEEsdnw8DCylzW6G+HoEVtCQkLy8vK6urry8vIKCgrIn9xVMFxWVnb+/Pnh4eF169aZm5ujHQ5Pc3Nzy83NvXHjhoGBAVqVqND0zZkzJ/fhQy9v75qnhRsPhIlLcXGPgNHaW5r/2rlFcJian5uroqKCdjiTwNMvnpDhAOPOYubnB9LSQEhomqt0dXU1NTU5OTlN8z6fdOXKlYGBgeDg4JnUnFdAQMDT0/PSpUu5ubkLFixg5q0PHgT79wMdHWbek2uNV2043vVEIvHp06dVVVXwmSgEsdT7ZYSjj2zx8/NLS0srKysTCISRccbsbI/BdAwG4/79+7du3ZKSktq0adOsWbPQjojX4XA4Nze3mJiY/Pz8+fPnox0ONHXa2tpFhYXf7Pz2W1/nrUdPGsyxRDui6SrNzzmxc2tgQMDvvx0V5LYz/DydgImKigoICIy7AzZvHmhvn/4qFRUVDAaD1buiBQUFJSUlLi4u6urqLF2I/aytre/fv5+QkDBv3rypH06g0cCYvRotrenHNgMg1YaZmZnd3d3vVxuOx8TEhI+Pj0wmwwQMgpiFRqO9fft2ZGsL+Utvb+/IBRISEoqKitbW1oqKioqKigoKCng8fiZtSlCp1KioqPz8fB0dnfXr18OR7hxi4cKF6enpcXFxc+fO5bqXudBoOBzurz+PW1tZbt682mvt5iVrNmK48wfIMI167cSx1NioixcueHl5oR3OVPB0AgYAkJKSGjcBYxIKhYLFYrW1tVm3RG9vb0xMjLy8vKfnDBx5zsfH5+7ufu7cOaQX06Q//vlzcOgQePECJCczPzhuNqbacNmyZROfpCwuLq6hofH06dPAwEDufdYOQShCtraampoaGxuRfa3m5mY6nY68F+n8rqWlpaSkhHQjVFFRmdldKDo6Ov7+++/6+no4Z5nT8PPz+/j4nD59OjU11c3NDe1woOkKCgqaO3euf0Dg4/sJn+0+qGVMRDuiyakoyD+/7wclWXzxkyfcu+sAEzCpcUsQmaSqqkpbW1to2qWMHxETE9PT07N27VrO6V7FXHPmzImPj09KSrK1tZ3EoaPqarBvH4iOBhgMCAoCg4PTLyidASZbbTgeIpF48+bNhoYGWCMEQR9Ho9E6OztHN39/9epVd3f3yAUiIiJKSko2NjZycnKysrJKSkqKioozaWvrk2pra0+fPt3X1xccHMwtTcx4irm5uZaWVlJSko2NDZzLPAPo6ekVFz05e+7czs8C59g7B3+7R0JaBu2gPq27s+Nq2KG85Pif9+zZtnUrV/+Q5PUETFJS8vXr16y7f1NTU0dHB0vnwZWXlz969MjOzo6Ler9MFh8fn5ubW3h4eF5enp2d3ac/oKsLbNkCrlz5X+r100+AlTuQ3GJq1YbjMTMzu3nzZklJCUzAIGi0MYO2Pri1paGhMbK1paqqysndCNkgOzs7OjpaXFz8q6++msLDIIg9li1bduTIkcTExMDAQLRjgZiAj49v/bp1Xp6eO7788itP++VffL/Qexk/P4fmBdShofsxkddPHvNbtvRZTQ0ej0c7ouni0H9otpGSkurr6xscHGTRDlVFRQUAgHUTwAYHB69cuSIpKenr68uiJTiEpaVlQkLCvXv35s2bCh50BAAAIABJREFU9+lNMDExQCYDX1+wbx9gffd/zjedasPxIK3VSkpKZmThKwRNxJitrcbGxtevXw8MDIxcMHprC2mSwdUdMpiORqNFR0fn5OTMmjVr06ZNH57JCXEGTU1NU1PTrKwsEokkLy+PdjgQcygpKcVER6elpX3x1de3Tv/p+dlGe58AAU466Tc40J8SE3U3/B8tDY37SfdmzPwbXk/ARhohsuinSWVlpYiICOu2CG7dutXa2rphwwYREREWLcEh+Pj4XF1dIyIiHj9+/OlGTHx84NEjWHA4NDT0+PHjjIyMhoYGLBZrYWFBIpGYWDBtamqanJzc1tY2A55FQdDHMRiM9vZ2pOd7U1MT0iejo6ODgQwsAQCHwykoKBAIBKQ9BgJ2LPiId+/enT59+tmzZ/Pnzw8KCoIzLTifj48PmUy+devW+vXr0Y4FYiYSiVRSXJSTk7Nr957YE7+7B3/utmqNEA7lQ6cDfb2p16PvnDupra11/szpGfa0l9d/3iH1Vx9OwIqKwLffgj17gK3t1G5Op9Orq6sNDQ1ZVKX6/PnzzMzMOXPmmJmZseL+nMba2joxMTExMdHa2vo//6R1dUBEBCgq/udq3s6+WlpaMjMzc3Nz+/r6pKSklixZYmdnx/SWYkQiMTk5mUwm29vbM/fOEISu4eHhjo6O0Vtbr169GhwcHLlAUlJSWVnZyMgIbm1NTW1t7ZkzZ7q7u319fV1cXNAOB5oQBQUFOzu7jIyMZ8+eacFOwjOOra1tRlpqRkbGL7/u33DupM3iJXZeS/XM5rI5DAadXl6QlxV3Pf9B4sIFC+PvxM2YXa/RYAI2/izmtjaQkgI2b57yzevq6gYGBlhUf0ij0SIiIoSEhPz9/Vlxfw7Ez8/v4uJy+fLlgoKC/3031teDY8fA6dNg7Vpw4gTaAaKPwWBUVlZmZ2cXFxfT6XR1dXUSiTT9asPxaGpqSkhIlJSUwAQM4mo9PT1v/oXsbrW1tY2c2kK2tkxNTZWUlJC5xoqKinC7ZjqQQ18iIiLbt2+fwaeXZyQPD4/8/Pzr16/v3LkTPnGYkRYtWrRo0aKKioqIyMgT32ziwwraevrYeS5VnDWb1Uu/elaTffdm9t0bQgICq4NX/XP4V5a2EEcXr/8K+VgChvz2ncbPFwqFAlh2AOzevXuNjY0hISFTbqLAjWxsbJKSkhITEy0VFTFI6kWlgsWLwdq1aIeGsv7+/sLCwtTU1KamJiEhIRsbm0WLFqmqqrJ0UQwGY2xs/OjRo76+vhlfBAvNGJ2dnSMTjZEu8KN74SKntvT19eHWFisMDg5GREQUFhZqaWmtW7eOp35/zQzi4uIuLi5xcXFPnz7lkeob3mRoaHjo4MED+/dnZGSEX7q009dZRk7ByMrG0HK+sdV8SbwssxZqb2kuy88pf/Sw/HFuX3eXn5/f9avRNjY2M/6nLkzAxk/AkMr+aVQPUigUPB4vJyc35TuM582bN0lJSXp6evPmzWP6zTkZPz+/k5MT5fBhcPAgGB4Gy5aB3bsBb88CbmhoyMzMfPz48eDgoLy8vK+vr52dHdvSISKRmJubW15ebmFhwZ4VIWjiaDRaS0vL6HTrzZs3I5WE/Pz80tLSysrKc+bMUVZWhg0JWa25ufmff/5pbGy0s7MLDAyEu4hcysnJKSsr6/r16yYmJvA/cWbj4+MjkUgkEol67tzjx49T09JS4q6e+uELZfXZWgQzpdmaSrO1VDW1FdRm8WMnNAaJRqW+qX/+6nlt0/O6N/XPakqKWl6/nmdj4+RA2r/zizlz5vDOAEBe/84RFBQUFhb+8CgwJAGbago+MDDw4sWLT7eLmDwGgxEREcHHx7dq1aoZ/4Tgfba2thm3b5c2NxMiI4GxMdrhoAYZ55WdnU2hUDAYjL6+PolEMjExYfOXhKGhoaCgYElJCUzAINSNHm2M/NnW1jbSJENEREROTs7Y2BjZ15KVlVVWVp6psxM5UElJSXh4OI1GCwkJYcVvRohtBAQEPD09IyIicnJyFi1ahHY4EDsICAjY2NjY2Njs/umn/v7+vLy8oqKiyqqqnPys/2PvvuOaut4/gJ+EsMIIG0JAQBCIjKCyh8hGwVFatVbUqq1abW1t7bfbvVu7tLb9ts5qrVZwgFhUlgFkiBKQrSAKyAgrICsk+f1x+0v5olVGyEnC8/7DF3LDvR8Q4T73nPOcsrLSttZWU/MJOgaGmjq6mjp6SkoUNU1N4gO7OzoE/fwn7a0dbW0tjQ2Pax4aGhnZ2tox7e1m+Xi4vrvOw8NjfDYrGu8FGEJIR0fneSNgI72dLSsrEwgEYzH/MDk5+f79+/Pnzx+LsTXZp6ys7Bke/kNPzwYKZXwuHWhvb8/KykpJSWltbSVmg/j7++PqQ6iiomJvb3/37t3+/n54FAqkRigUtrS0EO0xiAGuQVsbE00ymEwmUW4ZGhrCTEJchELhhQsXrl69amhouGbNGgaDgTsRGC1vb++UlJT4+HgPDw91dcy98oCUqaurE8Ni4ve0tbVVVFQQq2e5XG5/f39nZyefz1dRUdGwNldRUdHX19fX1zcxMbG1tZV4PzA5BTdMSEdHh8vlPuOAuTlatQqNtIM8MS5hJ+lNqJqbmy9evGhpaTnwW1+R1dSggwfR1q0Duxr6+/tfuXLl+vXr42319r1795KTk/Pz84ntvCIiIjw9PbE/wmexWAUFBRUVFWO33x0Y57q7uxsbG8XTCIk3+Hw+cfTprY3Nzc3HaGtHMFwdHR2HDx8uKSlxdnZevnw5LBZVDCQSad68eQcOHLh69ercuXNxxwGY6ejowCyY4YICDNFotHv37j3jgJMT+vnnEZ+2tLR0woQJmv8/CCspp06d4vP50dHRY9TaXobU1qLdu9Gvv6K+PuTnhyIixEeoVKqXl1daWtrjx4/pdDrGjNLR09OTm5ubkpJSW1tLoVBcXFyCgoJkpwUwi8U6efIkh8OBAgxIRFdXl7j/+7/NJCRWbRkYGNDpdBMTE8X/eSifqqurf/rpp7a2tsjIyMjISBiBVCSOjo5MJvPatWvTp0+HHbQBGC4owJCuri6fz5dsGzeiy1Z4eLikTki4efNmUVFRRESEubm5ZM8sWxob0ddfo++/R93dKDgY7d6NXAdvQxEUFJSWlpacnLx48WIsGaWjoaEhIyODzWYT23lFRkYGBARIvKofJS0tLSsrKw6Hs3DhQrjBAsNCNMkY2P99YJMMMplMrNSaOnWqyf/T0NDAmxkMEZvN/uOPP9TU1NavXw9PZxTSK6+8smPHjri4uKVLl+LOAoCcgQIM0Wg0hFBbW5sEC7Di4mIk6Qb0nZ2dMTExxsbGM2fOlOBpZdGGDej0aTR7Ntq8GU2d+syXGBkZOTs737x5c+7cubJWkIwesZ1XcnJyYWEhQsje3t7Pz2/KlCky+5jf2dn5woULtbW1Y934Hsg1cU/Cf5tJSDTJIIouOp1Op9PH5+Jsecfn83///ffMzEwLC4vVq1fjWqEKxpqZmZmHh0dmZmZAQICCPxcGQNKgAPunE72pqamkzllaWqqsrCzZSWKnT5/u7Oxcs2YN9jU/Y27rVvT++2jatOe/Kjg4mMPhpKWlRQyYnSjvOjo6MjMz09LSmpub1dTUfH19g4KCZH+apYuLy4ULF/Lz86EAA2IdHR1E2/fHjx8Tb7S2toqPamlp0el0Ly8vExMTYhqhnp4exrRAUhobG3/66afa2lroNT8ezJs37/bt2+fPn1+/fj3uLADIE/jJ+M8ImKROSAxf2NjYSLBSKiwsvHXrVkBAgAJvCv6PoX2Otra2lpaWKSkpoaGhClCUVldXs9nsrKwsPp9vYmKyYMECX19feWkkQKfTjYyMCgoKIiMjcWcBeAza3bi2tpbH44mPEj0JxS3gTU1NiR+8QMEUFBQcPXqUz+dDr/lxQldXNyAgIDExsaSkBCaaAjB0UID9PQL2jK3A+HzU2Yk0NdEwb+7r6ura29uDgoIklbCnp+fUqVN6enrz5s2T1DllApeLvvoK3b6Nrl4d2QkCAwOPHDmSm5srv7/pie28rl+/XllZSaFQWCyWn5+fPP4ac3Z2TkpKam1thdXYCk8gELS2tor7ZNTV1dXU1Aza3djS0hJ6Eo4rQqHw8uXLly9fNjQ0XL16NQyGjx/h4eHp6ennzp37/PPPYRkwAEMEBRii0WgkEukZI2Bxcejll9H162iYpVRJSQmS6AKwmJiY1tbWtWvXqqmpSeqcmDU2on370I8/oq4uFB7+d6E7fK6urufPn79+/bqXl5fc/dzncrk3btzIyMjo7OzU1tYOCwsLCAiQ3+rFxcXl+vXrBQUF/v7+uLMASRriwi3Y3Xg84/F4hw8fLi0tZbFYy5cvh42hxhUqlRoREXH27Nns7GxPT0/ccQCQD1CAISUlJS0trWeMgI10I+aSkhINDQ1JLUitqKhgs9keHh4sFksiJ8Sspwdt2YIOHkRPnqCwMLRlCxrFz2slJaUZM2acP3/+3r17kyZNkmDMsUPMUGWz2Xfu3BEKhRYWFvPnz3dzc1NSUsIdbVSsra01NTU5HA4UYHKtq6tL3Pz9+S3giYoLdjcGZWVlhw8f7ujoeOmll8LCwuD7YRzy9/dPTk6+dOmSq6srrPoDYCjg/wlCCNFoNGJ1eFdXV+ft24bd3SQSCXE4CCF0+zYSChFCyNoaWVm98FT9/f0VFRVOTk4S+SXU399/6tQpKpU6f/780Z9NJqiooCtXkLc32rIFSWLeoK+vb1xcHJvNlv0CrLu7+9atW0lJSY8fP1ZWVnZ3dw8JCVGYiTpkMtnR0fHWrVs9PT2KM1Sr6IaycIvJZBK1FoPB0NbWxpgWyBqRSHT16tULFy5oaGhAr/nxjEKhzJkz58iRI2lpaRJcfwGAAhvXBVh6enpTU1NbW1tLS0t3d/fbb7/N5/N9amqWJiT886IPP/z7jatXh1KAVVZW9vb2Sur3UFxc3OPHj1esWKGlpSWRE+JHJqMbN5Dk1t9ramqyWKy8vLz58+fL7Ffp0aNHaWlpOTk5vb29RkZGUVFRvr6+iredEYvFysrKKioqmvaiDpZA+mDhFpCsjo6Oo0ePFhUV2dnZrVy5ErqqjHPu7u7Xrl1LSEjw8fGBZ3AAvNC4LsAePXqUmpqKECKRSCKRSCgUIoS6g4NRairq6vqflxoZocDA55zq7Nmz2traTCaT2AHM3t5+9PFqamquXbvm6Ojo4eEx+rPh0d2NenrQoHVNkv497efnl5eXl52dHRwcLNkzjxLRYIPNZpeUlJBIJHt7+8DAQEmNjsogBwcHZWVlDocDBRh2Ty/cqq2t7e/vJ47Cwi0wSuXl5YcPH+bxeJGRkRERETK7RSGQGhKJNHfu3IMHD16/fh3a4QLwQuO6AAsNDb1x44ZQKBSvcEAIWU6ejKKi0KlTSPxOEgktWoSeu0Snvr4+KSnp/PnzZDJZVVW1qKjI3t7e2Nh4xNmEQuGJEycoFMqiRYtGfBKc+Hx09Cjatg3NmYMOHRrTS9nb2xsZGbHZ7KCgIBmpbdrb27OyslJSUlpbW6lUamBgYHBwsMLvRqqqqmpnZ1dYWCgQCOR9SZt86ezsrKure/6OW97e3sTWxiYmJvLb6wVgJxKJkpOTz507B9MOwSBOTk62trZXr1719/eX2QkpAMiIcV2A6evru7u7Z2dnDyzAbGxs0KJF6OTJf14nEqEXVUGampriYbS+vr7ff/8dIcRkMt97772RZbt27Vp1dfWrr75qYGAwsjNg09+Pjh9H27ej6mrEZKKxH5UikUi+vr6xsbGy0Iqjuro6OTk5NzdXIBBYWFhERER4enqOn7EFFot19+7de/fu2dnZ4c6isIiFW+Jaq66urrOzkzhEIpH09fUZDIarq6t4g2PFm+wKcIFph+D55s6d++WXX/7111+Ks3AdgLExrgswhNDMmTOzs7PFf1VSUrKwsEAWFsjAADU3I5EIkUjI0hK5uz//PJqamuIqjniDTCbPmTNnZKm4XO7ly5etrKzkr6Ech4Pmz0cVFcjGBp04gV577fkjh5Li4+Nz6dIljK04enp6cnNzU1JSamtrKRSKi4tLUFCQtbU1ljAYOTs7//777xwOBwowSSHKLfFMwpqamo6ODuIQmUzW09MzNzcnZhLCwi0wpmDaIXghGxsbZ2fn1NTUgIAA+Xt8DIAUjfcCzMTExMXFJT8/XyQSkUikiRMn/t1B9ZVX0E8/IYSQSISio1/YjP7pZ8xhYWETJ04cQSSRSHTy5EmBQLB06VL5+w1naYk0NNAvv6Bly4a7gfVoYGzFUV1dnZaWlpub29fXZ2hoqKgNNoZIR0fHwsIiPz9/wYIFuLPIH6FQ2NLSQnTIIIqup/tkWFlZicstWLgFpIOYdhgTE0OlUmHaIXi+efPmFRYWJiQkLF26FHcWAGTXeC/AEELh4eF37txBCIlEIhsbm7/fu2jR3wUYQujVV194Es0B+wiTyWQjI6OIiIiR5UlPTy8pKZkzZ46pqenIzoATjYbu3MFyZSm34uDz+QUFBUlJSffv3ycabPj5+U2ZMkX+amZJY7FYFy9erKurk8tvYCka2JZQ/OdzNjhmMBiwwQ6QPph2CIaFwWC4u7vfvHkzJCSETqfjjgOAjIJf58jS0pLJZJaUlCBiARjBzw+Zm6NHj5CzM5o8+YUnERdgxEqwFStWjOzJdHt7e2xsLIPBCAsLG8GHS1tSEvLxQbLRcJZoxZGenj7WBVhDQ0NGRkZ6evqTJ0+0tbXDwsL8/f0VvsHG0BEFWH5+PhRgAw1qS1hXV9fQ0EB0XkUIqaurGxkZERscGxgYEN0yZKSjDBjPKioqfv31V5h2CIZl7ty5eXl5Fy9eXLNmDe4sAMgoKMAQQig8PJxoFG4l3umLREILF6KvvkKvvTaUM4gLMJFIFBkZaWFhMfSr19TUMBgM4mbr9OnTxI5ksv6oOzMTffYZSk1F33+P3nkHdxqEECKRSN7e3hcuXHjw4IGlpaXEzy/uKV9aWioSiaytrYOCglxcXKDd3yAMBsPAwIDD4cyaNQt3Fmy6u7vF5RaxzXF9fb14mSiVSjU0NHR3dxfPJNTX14dyC8gUmHYIRkxfX9/X1zc1NbWysnJkazEAUHiyfZcvLfb29lZWVr29vf+zdGfRIrR/P1q4cChnEBdgZmZmw73v/OWXX3R0dJYsWfLw4cM7d+4EBwfLdPOGggL0+ecoLg5paqIvvkBLluAO9A8PD4+LFy/m5uZKtgBra2vLzs4W95T39fUNDAyE4Z3nYLFYycnJbW1tOjo6uLNIQ1dXV1NT08DRrebm5oHlFp1O9/X1JWotU1NTmMQFZBxMOwSjFBkZmZWVFRsbu3HjRtxZAJBFUID9bebMmcQeyv+YOhWtXo2GditPFGBKSkorV64c1pBIR0dHQ0NDfX39li1bKBSKvr7+iHsnSsPBg+jdd5GKCnrvPfTpp8jQEHeg/6Gnpzdx4sTc3NyXX3559FNlRCJRaWkpm82+c+eOUCgkesp7eHioqKhIJK0Cc3Z2TkpKKiws9PPzw51F8rq6ugYu3KqtreXxeOKjNBrN1NTU2dmZGN0yMzNTk405ugAMEUw7BKOnpaUVGBiYkJBQXFw8eQjrOAAYb6AAQwghPp+vqqra399/7Nixzs7OJ0+etLa28jo6yT09grXraNpaOjo6Ghoampqa+vr6NjY2NjY2g+7CNTQ0SCTSCDpn3Lt3j3hS3t/fz+fztbS0mpqazMzMJPnpSVBICFqxAm3ahMzNcUd5Nnd399OnT5eVlY1mwgyPx7t582ZaWlpzc7OampqPj4+/v7+5rH7KMsjW1lZDQyM/P18BCrCBXeDr6upqa2t7enqIQ0QXeEtLSzqdbmhoCF3ggbwTiURXrlyJi4vT0tLasGGDra0t7kRAjoWGhqalpcXExDCZTJhiDcAg47QAq6+vT0lJybt9u6i4pKys7GH1Ax09PYblRJq+oYo6VVWdqkqlamjRKFoG/f39DS1tfbVNvd1P+rq725qbHj+oauE2mU2wsLOzc5jMnOLiEhgYyGAwJk+eHBoaOtwk9+7dI/p2EGVYU1PTzp07w8LCIiMjZXEZmJ0d+uUX3CGex83N7c8//8zNzR1ZATZwG2U6nR4VFeXn50elUiWeU7GRyWRHR8e8vLyenh45Gv8husATtRbRC/7pLvC2trbQBR4oJB6Pd+zYMZh2CCRFXV09PDw8JiYmLy/P1dUVdxwAZIvs3eKPmebm5tTU1KTklKTk5OoHDxymuU10mmLrHzbj9bUMK2uqlvbQT9X9pLOu6n7dg8qaynvsX4+uXrOGbsoIDgo8d+5cQECA4XAm5pWXlw96D7EjGf5ZH52d6OxZtGIF5hjDpKGhwWQy8/LyFi1aNPSb4+7u7lu3biUnJ9fV1RHbKPv5+cGi89FwdnbOzs4uKSmZMmUK7izPNqwu8HQ63cTEBP//SgDGRnFx8dGjRzs7O2HaIZCggICA5OTkixcvTp06Fb6pABhI8Quw7u7uixcvHj1+4kZq6iQnZ6a7T/RnO2xZ05RHsZJHXUPT2pFl7cgi/iro55dz7tzNSt/9zffLXn/dy9tn+bKlUVFRL9yNt7e399GjR+LF+iQSSUVF5fXXX586deqIs0lATw/66Se0axdqakJ2dsjHB2eY4XN3dy8sLCwsLBzKl7G6uprNZmdnZ/f19RkZGUVFRfn4+Azc1Q2MjJOTE4VC4XA4MlKAPb8LPNGWkOgCD20JwbjS398fExOTkpKiq6u7ceNGmW4BBeSNsrJyRETEyZMnMzIyFGBGOgASpLAFmEgkYrPZx44fP3fu3AQbO5/ZUYu37tekjUlPNiWKMnOaO3OaO0Koq4OX+Vf8lwcOvbV27byXXlq+bFlgYOC/3cndv39fXH0hhIyMjN566y2cGxcKhSgmBn38MaqsRA4O6Icf5K76Qgi5uLioqqrm5OQ8pwDj8/l5eXnXr19/9OgRmUy2s7MLDAx0cnKCe25JUVVVtbOzKygoEAqF0n/wOZS2hD4+PsTCLSi3wLhVX1//66+/Pnr0aOrUqUuWLIHp1kDifHx8kpKS4uPjoYUVAAMpYAEmFArPnz+/bfuOxubm6XNe2f3nFbqF1Ys/TEKoWtrB818Lnv9aY83DG3Exr7/xphaV+vlnny5cuPDp7oj37t0Tv+3u7h4dHY15Bf+CBSgmBk2ahE6fRgsWIPmcMKCiosJisW7fvt3V1fX0/UR9fX1mZiaxjTKNRgsLC5sxY4aenh6WqIrN2dm5qKjo/v37kyZNGtMLidsSiouup8stJpNJ1FoMBkNbexjzjQFQVFlZWb///rtQKFywYEFQUBDuOEAxkcnkyMjIX375JTU1dQTr5AFQVKSBIzDyTigUxsTEfL5pE1+IIle85Tf7JSUlzBWmSCjMS0uK/fGb7va29ze8t3r16oE9Cfbv319eXk4mk+fPnx8YGIgx59+SklBlJVq+HMlg/4/huHv37oEDB5YuXerz/yN4A7dRRgjZ29v7+flNmTIFZqWPnba2to8//jg4OPiVV16R7GkfP35M7G78b13gxQu3oAs8AE/r6ek5efJkbm6uqanpm2++CbsagjElEon27t3b0NCwc+dOGGUFgKA4Bdiff/658cP/qGnT5q56xyMonCRLN9YikSgv7frFnw+0NdXv3b178eLFJBKpv7//vffeU1dXX716tY2NDe6MCkUgEGzcuNHGxmbdunVNTU1sNjszM7Ojo4NKpXp6egYFBRkYGODOOC7s3Lmzu7t7x44dIz7DC7vADyy3TExMoAs8AM/34MGDX3/9lcvlBgQEvPzyy7LYbhconOLi4u+++27WrFlz587FnQUAmaAIBVhFRcXat98uLi1f+vEWt0CZHuC+w045vnuThZnZzz8eUlVVjY2NXbVqFZ5uv+XliM1GK1diuLRUHD58OC8vz9nZmcPhENso+/n5eXp6Qt9waYqPj4+Li9uyZctQVjY+3Zbw8ePHfX19xFGiLaGpqamBgQF0gQdgBEQiUXJyckxMjLq6+rJly5ydnXEnAuPIN998U1VVtWPHDpgEDgCS9wKsu7t7z569+7/eHxD16msbPlZVl4OhbUE/P/H08bMH9y9bsnT79m06OmPSF+R56uvR1q3o8GFEoaBHj5C+vrQDjLH29vasrKxr1651dHQoKyt7enrOmDFDdve2VmiPHj3asWPHSy+9FB4ePuiQuC2heDLh013gB41uwXxRAEaMx+MdPXq0uLjYzs5uxYoVGH71gPHtwYMHe/bs8ff3X7RoEe4sAOAnx3MP8vLy5i9cqGdqvjcmUZptNkZJiaI8a8kbrgGhx3ZvcmKxzpw+7e3tLaVrd3aiH35Au3ahjg70yito505Fqr5EIlFpaSmbzc7PzxcIBObm5l1dXVOnTo2OjsYdbfwyNzfX19fncDgzZsxoaGgYWGtBF3gApIbD4Rw/fry7uzsyMjIyMhL+cwHps7S0dHFxYbPZwcHBw9ouFQCFJK8jYAcOHvzs888Xf/BZyAI5vr2+cSnm6K4vPv344//85z9j/htRKESTJ6OyMhQYiPbsQW5uY3s5Kers7MzMzGSz2Y2NjSoqKq6urv7+/paWlt999111dfVXX30FIydSNrALfF5eHpfLJZFIg9oSimstQ0NDWJIHwBjh8/mxsbEpKSl6enorV66Ebb4ARg0NDVu2bHFzc1uxYgXuLABgJn8jYDwe740338zOu73leIyl/WTccUZl+pyXbZynfLthdeK1a6dPnTI2Nh7Di5HJaNMmpKeHnpoMJr+IbZSzsrL4fL6xsXFUVJSvr694/2sWi1VcXFxZWQk9TsaUuAu8uBc8l8sVHyX+OWxsbKZMmQJd4AGQJtjmC8gUY2NjT0/PmzdvhoaGwroAMM7J2QhYYWHh7LlzJzpw9lAbAAAgAElEQVRPe2PzbjWqBu44ktHX03N096a7GakXz593dXXFHUcOdHR0EHt5NTY2UiiUqVOn+vn5TZo0adAoItEGPSQk5OWXX8YVVfEM6gJfU1PT0dEhPvp0F3hlZWVxR0qMsQEYb8TbfL300kuwzReQEc3NzZs2bXJwcFi7di3uLADgJE8jYOnp6XPmzp3/zsawRa/jziJJKmpqq7fuSzl/Jigk5NzZsyEhIRI4aU4OqqtD8+ZJ4FQyQ7zKi8Ph9Pf3E0Ne3t7eWlpaz3y9jo6Oubl5fn4+FGAjIxQKW1pampqaxANcNTU1vb29xFElJSVdXV0rKytxuUWn01VUVJ4+j4ODQ35+fm9vL/SIB0AKuru7T506Bdt8ARmkr6/v6+ubmppaVVVlZSU3q/cBkDi5KcDi4+MXR0e/uWWv98w5uLOMiYCXFuobm85f+OpPh3549dVXR36ie/fQp5+ic+eQpSWaPRspKUkuIzY8Hu/mzZtsNrupqYlCobBYLD8/P3t7+xcunGOxWHFxcfX19SYmJtKJKr8EAkFDQ8PjARoaGvr7+4mjKioqJiYmLi4uRENCYu3WEBfXsVis3Nzc0tJSFos1lp8BAABVVFQcOXKktbU1KCgoKioKtvkCsmbWrFmZmZlxcXHr16/HnQUAbOTjR/Nvv/329vr17339E8vHH3eWMeTs7ffpf0+uXbO0pqZ248YPhv3xLS1o+3Z06BASidCaNWjTJnmvvgY1NjQxMYmKivLx8dHU1BziGYgCjMPhQAE2SH9/f319PTGuRbzR2NgoEAiIo+rq6iYmJh4eHkStZWJiMpq2hI6OjhQKhcPhQAEGwNgRCARxcXGJiYkaGhpvv/22o6Mj7kQAPAONRvP397927Vp5ebmtrS3uOADgIQcF2I8//fTF5s2bjpy1mqz4v05snFy2HD+3883XBIL+jz76aBgfyeMhOzvE5aK5c9HevcjObswySgOxl9eNGze4XK6ysrKLi8sQh7wGMTMzo9FoJSUlYWFhYxRVLog33XpOF3g3N7cx6gKvrq4+adKkgoICoVAIHSkBGAv19fVHjhyprq6ePHnysmXLYJsvIMvCw8PZbPbFixc//PBD3FkAwEPWC7CLFy9+/Mmnm4/9Ke8ND4fOzMZ28/Fzm6Ln6RsYvLFy5VA/TFsbffQRcnND/nI8SDhoyItOpw9qbDhcJBLJzs4uPz+/v79//EzFGUq55e7uLs1Nt1gsVklJSVVVFXTBBkDixP02FixYEBgYCNt8ARmnqakZGBiYkJBQUlLCZDJxxwEAA5m+JU1JSVn6+uv/OXh0/FRfBJMJlp/9cnrj6/P1dHWjoqKG+mEbN45lqLHV1taWnZ2dlpbW3NwsHvKSyM9le3v7nJycyspKRZ3q0N3dLS63iOaE9fX1gzbd8vHxIWotU1NTGo0m/ZAsFuvMmTMcDgcKMAAkqKOj47fffuNwOAwGY+XKlQwGA3ciAIYkNDQ0LS3t/PnzI5jbAoACkN0CrKCgIOqVV9Zs38909cCdBQMLO+b73/68fMUKIyMjX1/fwYfv3UM8Hpo6FUc0SRIIBAUFBRkZGUVFRUKh0NzcPCwszMPDQ01NTVKXIKq4kpISxSjABu5xTPzZ3Nw8qNzy9fUlyi3Z2XRLT0+PwWBwOJxhPFAAADxXcXHxsWPHeDxeYGDgyy+/PH4G+YECUFdXDw4OvnjxYmFhobOzM+44AEibjP68rqurCw4Njf7wC4+QmbizYOPo4fPm1n1z5827lZv7T7fW5ma0fTv68Ufk7Ixyc7EGHJWGhob09PSsrCwej6empubj4+Pr62tpaSnxC+np6RkaGpaVlUn8zFIg3uNYXHQN3OOY2HTL2dnZ1NTUwMDAzMzs3zryywIXF5f4+PiGhoax3XAcgHGAz+fHxsampKTo6uq+//77ivF0CYw3QUFBycnJFy5ccHJygkEwMN7IYgEmFAoXRy/xjYwKeGkh7iyYeYfPrrlX/sqCBTczMlRIJHT0KPrsM8TlouBg9M03uNONBJ/PLygoYLPZpaWlIpHIwsJizpw57u7uY7pDlL29fUZGRk9PjwQH1saCuNwS/9ne3i4+OrDcotPp5ubm8rWtlrOzc3x8PIfDCQ0NxZ0FADlWW1t7+PDh2traadOmRUdHU6lU3IkAGAlVVdXQ0NCYmJjbt29PmzYNdxwApEoWC7AvNm2qb2l76/uPcQeRCfPXbth5J3fHure3JV1HVVXIzQ3FxKDp03HnGra6urqsrKz09PQnT55QqVRfX98ZM2aYmZlJ4dL29vZsNruiosLJyUkKlxuiQeVWbW0tj8cjDpHJZD09PQsLCzqdbmhoKI/l1tMmTJigq6sLBRgAIyYSiZKTk2NjYykUyvLlyz09PXEnAmBUAgICkpKSLl68OGXKFOiRC8YVmSvAUlJSfjj0454/EyjKyrizyAQSmfz2vgMfvRT6pr2d+Y4daNEiJFcj9d3d3bdu3bpx48bDhw9JJJK9vb2np+e0adOUpfjvy2QySSRSaWkpxgKsra1t4NBWbW1tT08PcYgotywtLYmFW3Q6nU6nq6io4Io6RkgkkrOz840bN3g8noysTANAjrS0tBw9erS8vHzixIkrV640MDDAnQiA0VJWVg4PD//jjz9ycnLggQIYV2SrAKuvr1/w6qtrduw3MpuAO4sM0dE3XLvnO9bGtfm+vhPkp/qqrq5ms9k5OTm9vb06OjphYWHTp0/HctOgoaHBYDBKS0uldsVB5VZNTU1vby9xSElJSVdX19bWVlxumZqaSrMcxYjFYqWlpd29e9fb2xt3FgDkSV5e3smTJ3t6eiIjIyMiImCsACgMPz+/69evX7p0ydXVFRrJgPFDtr7X39uwwS1opnvQuN4z95lY3tP9X1r41tp1l+PjcGd5AR6Pd/PmzfT09MbGRgqFMnnyZE9PT+yzC+zt7ZOSkjo6OiTepkIoFLa0tIhbZQwqtygUiqGhoaOjo7jcMjExGbc3T3Z2dmpqahwOBwowAIaop6fn9OnTWVlZJiYmGzZsmDABnk4ChUKhUGbNmnXixImbN2/6+fnhjgOAlMhQAZaWlnYtKfmby2m4g8ioBe9s/GB2wKVLl+bMmYM7yzMIhcLCwsKMjIzCwkKhUEin0+fPn+/h4SEjffkmTZp0/fr1yspKFos1mvMIBILW1tZBrTL4fD5xFMqt56NQKA4ODoWFhX19fYo3xxIAiausrDx8+DCXy/X09HzttdfkfSEoAM/k5eWVmJgYHx/v6ek5TuaDACArBVhfX9+qNWsWf/CZpjaGXWLlgqqaevSHX6x9++2goCANDQ3ccf5RX1+fm5ubmZnZ0tKirKw8ZcoUPz8/Wdtakdj/t6qqalgF2PPLLXV1dSMjo2nTphFd4Im1WzL1WcsgFouVl5dXWloKG78A8BxCofDy5csJCQkaGhrr1q2D/y9AgZHJ5IiIiCNHjrDZ7MDAQNxxAJAGWSnAvvzyKxVNmv/cV3AHkWmeoRFp58/u2Llr966duLOg7u5uou6qqqpCCFlbW0dERLi6uspmq3ctLS19fX0i6r/p7+9vbGwcWGs1NDQIhULiKJVKNTQ0JMotYoBLX18fyq3hcnR0JJPJBQUFcEMJwL+pr68/fPjww4cPHRwcli1bRqPBc0mg4Nzd3a9evXrlyhVfX1+YHwHGA5kowGpra/fu27vt1AW4nX2hZZ9s/ejlsDdWriCGdKRPJBLdv38/KyuL6K5Bo9ECAwN9fHyk01B+NKysrO7evSsUCok5gU+XW/X19SKRiHgxUW65u7uLyy3oOSYRGhoaNjY2HA5n8eLF8P8dgEFEIlFaWtq5c+fIZPLixYuny+GOIwCMAIlEioiI+Pnnn1NSUsLCoBEAUHwyUYDt3felZ1jkhEn2uIPIAZMJlgFRr+7avfvwr79K+dKtra05OTk3btzgcrmy011jiLq7u3V0dHp6en777bfOzs66urrm5uaB5RadTvf19SVqLVNTU3jkPHZcXFzOnj1bVVU1ceJE3FkAkCGtra0nTpwoLi62tLRcsWKFsbEx7kQASM+UKVMsLS0TExP9/f1lcyoNABJEEt+D4tLc3GxpZbX7zyumlnA3NiTN9Y/fi5heXFRkYWEhhcvx+fyCggI2m11aWioSieh0upeXl7e3t4x013imrq6upqamgaNbT5db4qEtBoMB21JJU3Nz86effjpz5sx58+bhzgKArMjLyzt16lR3d3dISMicOXOgHzcYhwoLCw8ePDh79uzIyEjcWQAYW/h/xO//+utpM4Kh+ho6fRO6X+RLX+3/+sD3343phYiNvHJzc3t6eqhUqq+v7/Tp02WwCXJXV5e4CzxRbnG5XPFRGo1mamrq7OxsYmJy5swZNze35cuXY0wL9PX1TU1NORwOFGAAIIS6urr++OOP7OxsAwODdevW4ZpeDgB2Tk5ORMvigIAAmWo2BoDEYS7AeDzeoUOHNp+IwRtD7sx9Y93GecGffvIxnU6X+Mnb2tqysrIyMzMbGhrIZLKjo6OXl5ezs7OMPJEVl1vEn7W1tTweT3xUXG4RA1zm5uYDGzdnZmY+fPgQR2rwP1xcXBISEhobG42MjHBnAQCnoqKiEydOtLe3+/n5zZ8/HxrNg3Fu7ty5X3311bVr1+AJHVBsmG+pDx36cbKrp4UtE28MuWNsbuEZMuvgDz/s3LFDUuckphpmZWURnSqMjY0jIyO9vb319fUldYkRGFRu1dTUdHR0EIfIZLKenp6lpSWdTjc0NHy63HraxIkTU1JSurq6qFSqVOKDZ2OxWAkJCQUFBcHBwbizAIBHX1/f+fPnU1JStLW13377bUdHR9yJAMBv0qRJ9vb2ycnJgYGBsDoAKDDMBdjho0df+2gL3gxyKvjVpd+/v3rb1q1KSkqjOY9IJCorK8vKyrp9+3Zvby8x1dDLywtLg4S2traBC7dqa2t7enqIQ0pKSrq6ulZWVgOXbw13x0YrK6vk5OTq6momE2p+nCwsLHR0dDgcDhRgYHyqrKw8evRoY2PjtGnTFi9eDLOtABCbM2fOvn37EhMT58+fjzsLAGMFZwGWnZ3d3t7u5OmLMYP8snOZpqJOTU1NDQoKes7L6uvrtbW1nzngQ2ygnJWVxeVyyWSynZ2dp6fn1KlTpbYFx6Byq6ampre3lzhElFu2trajKbeeRrQtefjwIRRgeJFIJCcnp4yMjM7OTk1NTdxxAJAegUCQkJBA7LC8Zs2aKVOm4E4EgGyxtrZ2dHRMS0sLDg7W1dXFHQeAMYGzADt+4jff2VHk0Q3gjGfeEfOOnTjxnAKsoKDg8OHD8+fP9/X9p8rt6urKy8u7efNmZWUl0dUwKirKy8trTMf6hUJhS0uLuFXGoHKLQqEYGho6OjqKyy0TE5Ox6G5vZGSkqqpaV1cn8TOD4WKxWGw2++7du56enrizACAldXV1R44cefTokYODw9KlS3V0dHAnAkAWzZ07d9euXVeuXHnttddwZwFgTGArwPr6+v4488cXR87iCqAAZsxb8MGcwM4ffnh6DEEkEiUkJMTFxYlEouzsbF9f3/7+/uLi4qysLA6H09/fr6OjExAQ4O3tbW5uLvFgAoGgtbV14Nqturo6Pp9PHJVaufU0EolkYmJSW1srhWuB52MymWpqahwOBwowMB6IRKLk5OTY2FgKhRIdHe3n54c7EQCya8KECS4uLhkZGaGhoQYGBrjjACB52AqwK1euGJjQLexgJtjIGZqaTZzseOHChejo6IHv7+npOXbs2J07d0gkEkKovLz82LFjBQUFT548UVVVdXV19fT0tLe3J46OnkAgaGhoePz4MZfLfbrcUldXNzIymjZtmqmpqYGBAZ1Op9Ppkrr0CDAYjJycHIFAMMq1c2CUKBQKk8ksKiri8/mjn1wKgCzjcrnHjh2rqKiwtrZ+/fXXofknAC80Z86c/Pz8hISEpUuX4s4CgORhK8DiL192DZ6F6+oKwy14VtzlywMLsMbGxkOHDj1+/BghJN56OCsra+LEiV5eXm5ubqPcYL6/v7+xsXHg0FZDQ4NQKCSOUqlUQ0NDotwiBrj09fUxlltPYzAYxKcwFh38wbCwWKw7d+6UlZVB/zegwLKysn7//XehUBgVFRUSEiKd0X4A5J2pqem0adNu3rwZFhZmbGyMOw4AEoatALuelLxq5ze4rq4wHD18dv16UCQSEUVOUVHRL7/8Iu4cKGZkZPTuu++OYIeZp8ut+vp6cV1HpVLpdLqPjw/RBZ4Y4xr9JzWmGAwGQqi2thYKMOycnZ3JZDKHw4ECDCgkHo/322+/FRQUMBiM5cuXj8V8bwAU2Jw5c27fvv3XX38tW7YMdxYAJAxPAfbo0aPGhnobJxaWqyuSCbb2QqGopKSEyWRevXr1woUL4sGogRoaGm7fvu3l5fX8s3V3dw8qt5qbmweVW76+vkStZWpqSqPRJP8pjTEzMzOEUG1traurK+4s452Ghoa1tXVBQcFrr70mU8OkAIxeXl7eqVOnuru7w8LC5syZIyMb2QMgR4yNjV1dXbOyssLDw2EQDCgYPL8SkpOTHd08lSiw8GO0SCSSg7tXUlJSRkbGrVu3nvPKW7duDSrAurq6mpqanl9uMZlMotwyMzPT0tIaw89EWrS0tLS0tKAPh4xwdnaOiYmprq62tLTEnQUAyeju7o6JiWGz2QYGBm+99dakSZNwJwJAXs2ePfvWrVsJCQnLly/HnQUAScJTgF1PTrZ3e8FoDBgipptXStqNb/Z/FRoaKn7n/fv3k5KSuFwuiUQiaioNDY179+4RXeCJcovL5YpfT6PRTE1NnZ2dibVbZmZmo1wqJssYDAYUYDLCxcUlJiaGw+FAAQYUQ0lJyfHjx9va2vz8/ObPnz+Cid8AADEjIyN3d/ecnJyZM2eamJjgjgOAxOApwDIyMlfvWoDl0orHwd17+4/fEFsMI4Sqq6tjY2NLS0uJOV1E9UUikbKzs7OzsxFCZDLZwMCAwWC4urrS/5/UNl+WBQwGo6ysrKenR4GLTHlhZGREp9MLCgrmzp2LOwsAo9Lb23vu3Dk2m62jo7N+/frJkyfjTgSAIoiIiMjJybl8+fLKlStxZwFAYjAUYH19fQ+rHzCsYVaGZNAtrdpaW1taWoRC4YULF27dukUUXeLJhMTbqqqqS5YsMTExMTExGeddvxkMhkgkevz4sZWVFe4sALFYrL/++ovL5cp+BxcA/k15efnx48e5XK67u/uiRYuoVCruRAAoCCMjI09Pz5s3b86cOdPU1BR3HAAkA0M/3IqKCj19A6qmIiwokgVKShTTCRZZWVnHjx8vLCwU112Duhr09vY6ODiYm5uP8+oLIURswtPU1IQ7CEAIIRaLhRDicDi4gwAwEnw+PzY29uuvv+7t7V29evXKlSuh+gJAsmbNmkUmkxMSEnAHAUBiMIyAlZWVMSbaSP+6CoxhZdPU1PTBBx8ghJqbm2tra+vq6mpqampra+vr68V9ER8/fmxtbY01qUwwNDRECDU2NuIOAhBCyMrKikaj5efnBwUF4c4CwPBUVlYeO3asoaFh2rRpixYtUoxORQDIGkNDQ09Pz8zMzPDwcKKVMQDyDk8BRreEMkCSjC0nlpWVEW/r6+vr6+s7OzsTfxUIBPX19XV1dbW1tQMnJY5nNBpNRUUFRsBkBIlEcnZ2zsjI6Ozs1NTUxB0HgCHh8/lxcXHXrl1TU1OLjo728/PDnQgARRYREZGdnZ2QkLBq1SrcWQCQAAwFWHFpqQkUYBJlamlddCv9mYeUlJQYDAaDwXBzc5NyKplFIpEMDAygAJMdLBaLzWbfvXvX09MTdxYAXqyqqurYsWP19fWOjo5LlizR0dHBnQgABaevr+/l5ZWenl5TUwODYEABYFgDVlf32IAu08som+pqqorvPvMQr7Wl5Fa2lPO8kBHD/OHDh7hTyBNDQ0MowGQHk8lUU1PLz8/HHQSAFxAIBHFxcfv27Wtvb4+Ojn7nnXeg+gJAOmbNmqWkpBQfH487CAASgKEAa+fx1DVkeqJRfnpawsnDzzz0sLzk1De7pZznhbR09Zqbm3GnkCeGhoY8Hq+npwd3EIAQQhQKZfLkycXFxXw+H3cWAP5VTU3N7t274+PjmUzm5s2bYdohANKkp6fn7e2dn5//6NEj3FkAGC0MBdiTzk61sS/ARCKRUCBACLVx/+610NvT3dvd9T+vEQrFRwndTzoHvYbf29va1PD8q4hEorbmf4ZTBIJ+8WorcYwxpaWj29LMffHrwP8j+nAM3Ioa4MVisXp7e0tKSnAHAeAZhEJhYmLi7t27m5qaiIEvXV1d3KEAGHdgEAwoDAxrwDp4PHUNjbG+Sunt3OP7tpFJpI72NmVllaBXFiX+cYLf2xu1en3IgsUIobMH97MvXyCTyRRl5Y8PHTM0NTuya1PW1ctKFGVDOsPYfAJC6M9D31w+8auuobGSMuXTn37TMzJ++iqHd3zG7+tT19TqefJk05E/9IyMf9r0H7qFVdSqdxBCZw58hRB6df2HY/rJqmtodD15IhKJBrWeB/9G3IkeppLLCCcnJzKZzOFwxP1jAJARdXV1R48effjwIZPJXLZsGZReAOCiq6vr6+ubmpr64MEDS0tL3HEAGDkMI2CdnR3SmYL4oOTuhq9/PHCFrUShFGalf3c57YNvf0784zhC6FbKtZTzZ/eevfzd5bRp/sGJp4/fvpF850bygb/SD1xhC4UChBCvteX6n6d+Tsn9Ji7ZO3x2cszpZ16lqqTog29/3nMm3i9y3q/bP0UIBUa9mnYpBiEkEoluxMXOmDd/rD9TZRVVkUgE07eGjhgBg2VgskNDQ2PSpEkcDgd6dQLZQQx87dy5s76+fsGCBe+++y5UXwDgNWvWLGVl5cuXL+MOAsCoYBgBe/LkiRp1zEfAEELGEywNTc0QQnRLKydPXxKJZGDK4NbVIoRK8rKnzQimamkjhPznvrJt5SIlijLLx19VTR0h5BoQWltZkX3tioqa+vF92xFCne2tNfcrXnnrvaevYmY9acIke4SQe3B4wm9HEELMae4CPr+q+G5P1xM9YxOTCZZj/ZlSVFQQQr29vSoqKmN9LcWgr6+vpKQEBZhMYbFYZWVlVVVVEydOxJ0FAFRXV3fs2LHq6mpra+vXX3+dGDYHAOBFo9F8fX1TUlJgEAzINQwFGJlMFv3/1sBjSn1AmaeiqjbwkI6BUf3DB8Tb/f18fl8vWUlJvGGxsqoqQqif32dibuEzczbxThLp2aOFSpS/v4Z9vb2U/69/AqIWsuPPd3V2BL60UFKfzvOIRAghMhnDeKacIpPJurq6sAZMpri4uJw9ezY/Px8KMICXSCRKTk6OjY0lkUhRUVGhoaEwuxsA2TFz5syMjIy4uLh33nkHdxYARgjDLbuGpmb3k07pX3cgr7DI22lJnbx2kUjEjou1ZU11cPO8nZbU1cET9PNzrv+FEPIKj6wsKpxgy3Rw9657UJl26dzAM9RV3e/r6UEIVZeV1FbeQwhlJFxy9PAmjs6YOz8n6a+Cm2yv8EgpfDr8vj6EkKqqqhSupTB0dXXb2tpwpwD/0NfXNzMzu3PnDu4gYFxramrav3//2bNnLSwsvvjii7CwMKi+AJApNBrNz8/v7t27VVVVuLMAMEIYRsA0NbW6nzyR/nUHMqCb+kbMWxvsoWNgpKWj+58Dh2n6BkEvv/pu5AxlFVUz60kIIR19w/DFr68N8WJYWStRKO/s+W7gGf4zf9bmw6eJU+19ewWJRNLS1fvk0HHiqL4J3djcQltPXzqr3fh9fWQymULB8K8pv2g0Wl1dHe4U4H+4uLjEx8c3NDQYGw9ueAPAWBOJROnp6X/++adQKIyKigoJCYFpBQDIpvDwcDabHRcXt379etxZABgJkvSXvDs4OS/+dIf9VDcpX/dp/L4+fm8PsRLs7/f09opEIhW1f+YrCvr5PV3dGtrazzoBKsnLOb536+4z8V0dHYNes+PNxS+tetvBzWuMwg/UWPvok1fCW1tapHAthfHnn39ev3794MGDysrKuLOAvz18+HDnzp1RUVFhYWG4s4DxhcvlHj9+vLy8fOLEicuWLTMxMcGdCADwPOfOnbt27drGjRsnTZqEOwsAwzZOpyASlFVUBlZfCCFlVdWB1RdCSImi/G/VlxiJRBr4mgrO7W83ruvpeiKd6gsh1NHaoqunL51rKQwajYYQam9vxx0E/GPChAn6+vocDgd3EDCOiESilJSUrVu3VlVVRUVFffjhh1B9ASD7wsPDVVVVoR0ikFMYJq3p0GhdHR3Sv+5YMLexXfafTYPeqU9nsHymuwVK7xF+R1urgYGB1C6nGIgCrK2tDb50MsXJySktLY3H42m/6MEHAKPH5XJ/++230tJSMzOz119/3dzcHHciAMCQaGpqzpgxIzExsaKiAgbBgNzBMAJmaTGhsfaR9K87FjRpOkxXj0Hv1DMyDnhpoSZNR2ox6h8+mDjRSmqXUww6OjoIIejDIWtcXFxEIlFBQQHuIEDBiUSipKSkrVu33rt3b968eZ999hlUXwDIl7CwMDU1tfj4eNxBABg2DAUY096+/sF96V9XgT1+UDnZ3h53CjlDFGAwBVHW2NraUqlUmIUIxhSXy/3666/Pnj1rbGz88ccfz5w5E/ptACB3NDQ0ZsyYUVpaWl5ejjsLAMOD4VeOnZ1d/YNK6V9XgdU/uG9nZ4c7hZyBAkw2KSkpOTg4FBcX9/T04M4CFJBIJGKz2du2bSNWfH366acw8AWA/AoNDVVTU7tw4QLuIAAMD54C7OH9CulfV4HVVkEBNmyqqqpqamowBVEGubi49Pf3l5SU4A4CFA2xx9fJkycZDMZnn30WFhYGA18AyDUNDY3AwMD79++XlZXhzgLAMOBYA2Zp2dvdzWuFnumSwYO1VB0AACAASURBVO/tbXxcZ2NjgzuI/KHRaDACJoMcHR0pFEp+fj7uIEBxCIXCpKSkbdu2PXjwgGh1SKfTcYcCAEhASEiIurr6pUuXcAcBYBgwdEFUUlKysbWtLit28vSV/tUVz8OKUgbDTFNTGjs+KxgowGSTmpqanZ1dYWGhUCiEAQowenV1dcePH3/w4IG1tfWyZctgm28AFAmVSg0KCoqPjy8tLbWH9fBATuC5uZnh71+ccxPLpRVPYVaGv78/7hRySVNT88mTJ7hTgGdgsVhPnjy5d+8e7iBAvgmFwsTExJ07d9bW1kZFRW3cuBGqLwAUT3BwMJVKhUEwIEfwFGBBgQHFOZlYLq14SnMzg4MCcaeQSxoaGk+ePBGJRLiDgMFYLBaJRIJeiGA06urq9uzZExsba2Fh8cUXX8CKLwAUlbq6+owZM2AlGJAjeH4b+fv7lxfkdz/pxHJ1RSIQ9Bfn5cyYMQN3ELlEpVIFAkFvby/uIGAwHR0dCwuLO3fu4A4C5JJ44Ovx48fEii8Y+AJAsYWEhFCp1IsXL+IOAsCQ4CnA9PT07CdPLr2di+XqiqQ8/7aRscmECRNwB5FLGhoaCKGuri7cQcAzsFis5ubm2tpa3EGAnKmpqSEGvqysrIiBLxKJhDsUAGBsUalUYhAM9gQDcgHbfIzgoMC7Wem4rq4w7malBwUG4E4hr6hUKkIIloHJJhcXF4QQzEIEQycQCBITE3fv3t3Q0LBgwYIPPvjAyMgIdygAgJQEBwerqanFxcXhDgLAi2ErwObNnZuVGC8SCnEFUAw5Vy9HvfQS7hTyihgBgwJMNpmamhoZGUEzejBENTU1u3fvjo2NtbOz27x5c1BQEAx8ATCuaGhoBAQElJeXwyAYkH3YCjBfX19VZeXiW1m4AiiA+0UF7S3ckJAQ3EHkFTECBlMQZZazs/PDhw9bW1txBwEyjRj42rVrF5fLjY6Ofuedd/T09HCHAgBgEBISoqamdvnyZdxBAHgBbAUYiURauiSafSkGVwAFwL4UsyR6CYWCYTM3xQAjYDKOxWKJRCKYhQieo6qqavv27bGxsfb29ps3b/bz84OBLwDGLQ0NjRkzZpSWllZUVODOAsDz4OzJu3TJkptXL/f2dGPMIL8Egv6MhIvLli7BHUSOQRMOGWdjY6OpqQkFGHgmPp8fGxu7b9++9vb26Ojo9evX6+rq4g4FAMAsNDRUTU0tPj4edxAAngdnAWZjYzN5skNuUiLGDPIrn51qZGhINCoAIwMjYDKOTCY7OTmVlZVBkQwGqays3LFjR2Ji4uTJkzdt2uTn54c7EQBAJmhoaPj7+8MgGJBxmHelfGv1qr9+O4w3g5z667df16xehTuFfFNVVaVQKFCAyTIWiyUQCIqLi3EHAbKit7f37Nmz+/bt6+joWLly5TvvvAMDXwCAgcLCwmAlGJBxmAuwxYsXd7Q0Fd6EfvTDU1Fw50Fp0coVK3AHkXuqqqo9PT24U4B/5eDgoKKiAr0QAaG0tHTbtm1JSUlTpkzZsmWLu7s77kQAAJlDDIKVlJTAIBiQWZgLMGVl5Y8+/PDCf7/HG0PuXPj5u40fbNTU1MQdRO6pqqr29fXhTgH+lYqKir29/d27d/v7+3FnATh1d3efOXPm22+/7evrW7Vq1erVq7W1tXGHAgDIqNDQUFVV1YSEBNxBAHg2zAUYQuiNN96oq7pXkpeDO4jceFBaXHwr+6231uAOoghUVFSgAJNxLi4u3d3d8CBzPLt79+7WrVuTk5OnTp26efPmadOm4U4EAJBpmpqa/v7+xcXF9+7dw50FgGfAX4Cpqal98P77F385gDuI3Dj/83fr16/X0dHBHUQRQAEm+5ydnclkMsxCHJ+6urpOnjx54MABkUi0du3aVatWwcg/AGAowsLCYBAMyCz8BRhCaO1bbz0sK85PT8UdRA6U3Mouysnc8N57uIMoCJiCKPu0tLSsrKzy8/NFIhHuLECq8vLyNm3alJ6e7ufnt3XrVhaLhTsRAEBuaGpqTp8+vaioCAbBgAySiQJMU1Pzm/37j+74jN/bizuLTBMI+o/u/HzP7t16enq4sygIFRWVXviuk3ksFqutre3hw4e4gwApaW9v/+mnn/773/+qqalt2LAhOjpaTU0NdygAgJwJDQ1VUVGBQTAgg2SiAEMILVq0yNrS8uLhQ7iDyLSEE7/SNNTfWLkSdxDFAVMQ5cKUKVMQQrAj83ggEomysrK2bt3K4XACAwO/+OILOzs73KEAAHJJW1ubGAS7f/8+7iwA/A9ZKcAQQv/9+af44/9teFSNO4iMauM2nv/5wK///S+ZLEP/avIORsDkgpGRkYmJCRRgCo/L5X733XdHjx7V0dH56KOPFi5cqKqqijsUAECOhYWFwSAYkEEydCtva2u7bu3aw9s/hZUez3R4+2eLFy8mhgKApMAImLxgsVg1NTVcLhd3EDAmRCIRm83etm1beXl5WFjYp59+amlpiTsUAEDuaWtr+/n53b1798GDB7izAPAPGSrAEEKbvviiu6Up7shPuIPInMTTx+vvl61csbyrqwt3FoWioqIiFAphjynZ5+LigmAWooKqq6vbu3fvyZMnGQzGF198ERUVRaFQcIcCACiI8PBwZWXl+Ph43EEA+Ids/ZJTV1e/EBvr5uFhO8XVfqob7jiyorq85PS3e1KTk/v6+j744AMLCwsmk8lkMidOnAi3KaNETHDq6+uDr6SMs7KyotFo+fn5QUFBuLMAiREKhdeuXbt06RKJRIqKigoJCYEp1gAAySJWgiUlJT148ACG1oGMkLmbzkmTJv106NB7H6zdE5OorQu9/lBP15NvN6z57vPPp06dihAqKyvLzMysqqpKSEhQUVGxtbVlMpn29vYMBoNEIuEOK3+UlZURQn19fVQqFXcW8DwkEsnZ2TkjI6OzsxN2glIMNTU1x48ff/jw4aRJk5YsWWJsbIw7EQBAMYWHh9+4cePy5cvr1q3DnQUAhBBS2rJlC+4Mgzk6OhYV3f3r/DnvmXOgqPjhk/e+6GhbnJqKXnsNaWkxmczbt28/efIEISQQCLhcblFR0Y0bN1JTU2tqapSUlExMTHBHlidVVVUlJSUzZszQ0NDAnQW8AIlEys7OZjAYZmZmuLOAUeHz+QkJCUePHu3t7Y2Kilq8eDEU1QCAsaOqqsrj8bKzs52cnHR0dHDHAUDG1oCJ/XDwYDe38cS+rbiDYHbm+y8b7pfN/PprxOWi2bNRd7eqquqqVasoFApRmgqFQuKVnZ2dubm5SkpKWPPKH+IrJv4yAlnGZDLV1NRgGZi8u3///o4dO+Lj45lM5ubNm4OCguBBGwBgrM2cOVNZWfny5cu4gwCAkMwWYFQq9fq1q0UZqRd+/QF3Fmyu/nHixoUziVeuaISFoa+/Rnl5aPVqhJCZmdnChQuf7hXp6+vr6OiII6kcIxacQAEmFygUyuTJk4uKivh8Pu4sYCT6+vpiY2O//PJLHo8XHR39zjvv6Orq4g4FABgXaDSar69vQUEBtEMEskBGCzCEkKGh4dW//ko8eTjp3GncWTDIuf7Xme/2Jl65YmFhgRBC69ahVavQb7+h775DCE2fPt3NzU382JhEIikpKbFYLIyB5RQxAiYQCHAHAUPCYrF6e3tLS0txBwHDVlRUtHnz5sTExKlTp27bts3Pzw93IgDA+EIMgsGeYEAWyG4BhhCaOHHiXwkJv+/fcSvlGu4sUlV4M/3HzzbEx8U5Ozv/894DB5CPD/rwQ3T/PkJo8eLFenp6RA0mEolUVVV/+OGHs2fPwq5WwwIjYPLFycmJTCbDLET50tXVdfLkye+//14gEKxZs2bVqlVaWlq4QwEAxh0ajebj48PhcKqrq3FnAeOdTBdgCKEpU6bExsT88Mm76Zcv4s4iJbnJV/e/9+apkyd9fHz+54CKCoqJQadPI2trhJC6uvqqVauI+iEoKGjbtm1TpkxJSkraunVreXk5luTyCAow+aKhoWFjY8PhcGC7dnlx69atzZs3p6en+/n5bd26FbaSBwBgNGvWLBgEA7JAFrsgDmJlZRUcFPSftW8iEsluiivuOGMr9cKfv2756NzZszNnznzGYU1NNHmy+G86OjoqKiotLS2rV69WV1d3dXU1NTW9c+fOjRs32tra7OzsYG+rF6qrq7tz5463t7eeHux5IB+6u7tv377t4OAAy4dkXFtb25EjRxISErS1tVevXh0YGEjs+gAAALioqam1t7dnZ2ezWCwajYY7Dhi/5KAAQwgxGIzZkZFbPvqghdvk5OmrqC2zEn77NebQ19evXvX19R3ih0ycONHJyUk8n8fU1NTb27upqSk7O/vWrVvm5ub6+vpjllcRPH78+Pbt215eXvCFkhc0Gi0pKUlTU5PJZOLOAp5NJBJlZ2cfOnSotrY2ICBg9erVsMcXAEBGmJmZpaam8ng8V1cFf6YPZJmsT0EUYzKZNzMyithJP33+Ab+3F3ccCevn8w9v/yz5j+M3MzKIDZeHiEQiGRgYDHyPlpYWscqiq6tr//79J0+ehFVhzwFNOOSOvr6+mZkZLAOTWU1NTd9+++3Ro0d1dXU/+uijhQsXqqqq4g4FAAB/09XV9fb2vnPnTk1NDe4sYPySmwIMIWRubp6Znk7qbP180ey6B5W440hMY+2jzdEvddRU3czIsLa2HsZHCgSoouKZR6ZNm7ZlyxYWi8Vms3ft2gVNV/8NrAGTRywWq76+vqGhAXcQ8D+EQmFSUtL27dvv378fGRn5ySefWFpa4g4FAACDzZw5U0lJ6cqVK7iDgPFLngowhJCenl7ilSvr3nzj80Wzb8TF4o4jAbnJVz9+ZeacsJCUpOvDnqWzbBmaPh3V1T3zoLa29ltvvbVq1Soej7d3797Y2Nj+/n4JJFYsUIDJI2LHhfz8fNxBwD9qamr27Nlz9uxZMzOzzz//fPbs2bAGFQAgm/T09Dw8PPLy8ur+5Q4KgLEmH2vABiKRSJ6enr4+Pls2vldTec/Bw5uirII71Ej09fSc2Lct7vAPZ//4Q9zPcHjodPTjj4jNRkuWoH+51zE1NfXy8mpoaMjIyMjPz7eystLR0RltdAXS1NSUk5Pj5uYGa1TkCI1Gy8jI4PF4gzuFAhz4fP7FixePHTvW29sbFRUVHR0NXeYBADKOwWCkpKR0d3dDa1aAhZyNgIn5+voW5Oer9HRsiPDPunoZd5xhu5V67f3ZAb0Njwry84OCgkZ4Fi8v9NVXKCsLvf/+c16lra29du3aVatWtbe379mzB4bCBoI1YPKIRCKxWKzKykoej4c7y3hXUVGxffv2xMREBweHzZs3BwUFKWqTJACAIjEwMPDw8MjNzYXZ7AAL+RsBE6NSqYtefZVpZ7dv0ye5SVdtnKdo68pBJ/GWhvojOz67eurI3l07v/ryS01NzVGdzsMD3b+PDh9G1taIxXrOC01NTT09Pevr6zMzM2EoTIzoGOnm5mZiYoI7CxgGCoWSlZVFp9MnTJiAO8s41dXVdebMmTNnzpDJ5Ndeey0qKkpdXR13KAAAGCpTU9PU1NSuri4YBAPSJ68jYGKRkZElRUWzAqd/ujDizPf7nsjwE/Guzo5zP37zWaS/i7XFvfLypUuXSua8P/+MnJzQhg2os/P5L6TRaOvWrVu+fHlLSwsMhRGI/Xzhmb3csbW1pVKpsAwMl4KCgq1bt7LZ7KlTp27evNnT0xN3IgAAGB4jIyM3N7ecnBwYBAPSJ/cFGEKISqXu3LHjVm5uT+2DdSEep7/Zw2tpxh3qf3S2t509uH9dsGdLeVHOvn37NTVGO/A1EJWK/vwTXb+OhnZOT0/PTZs22dnZJSYm7t69+9GjRxJLIoegAJNTSkpKDg4OxcXFPT09uLOMLzwe7+eff/7hhx8oFMq77767atUqSf40AwAAKZo5c6ZIJEpMTMQdBIw7ilCAEezs7C5eOH8zI4PCa3onzPv4ns0tDfW4Q6G25qaTX+1cF+LZ9/hBWkryXwmXLebMQVu3ojfeQHy+xC5jZ4dcXIb+cn19/XfffTc6OprL5e7evTs2NnbcLoIi+h+OpAMKwM3FxaW/v7+kpAR3kPFCJBJlZWVt2bLlzp07fn5+mzZtmjx5Mu5QAAAwcnQ6fdq0aVlZWVwuF3cWML4o2n2ng4PD6d9/z79zx0BJuH6m7941S9MvX+yT+jNyfl9f1tXLX769fF2wp3pPe05WVuy5cy5EjWRqigwN0eHDKDwctbVJOZgYiUQibqEmTZqUmJi4a9eu8TkUBiNg8svR0ZFCocCOzP/H3n0GRHVtbQBe0+ggHZShdxQGUBFpUkUFNGLBGuUmURM1akyMJSh2TbETWxQLqGAkYoUoIL0oUgSlKIoUBUV6m/r9mPt5jTGGMsOZGdbzK5lw9nkhlFln7732wHh7vLKysvLatWvnzZuHxysjhCSAv78/l8uNi4sjOggaXCStAOMzNjY+8dtv1VVVC2cGpkef/sLN9mjIt8U5GRyOcLc8cTmcR7k5x0O/X+Rqe+vUkdkBkyqfPYs8e9bS0vIvHzdyJABAYiI4OsLTp0KN9HFqamorV66cN2/eq1evdu7cefXq1cF2IhYWYOJLRkbGzMyssLBwsH3TDrC3xyuXl5f7+vquX78ej1dGCEmMoUOH2tnZZWRkNDSI1u4VJNkk+aBMVVXVL7/88ssvvywvLz9z9uzJ0O9f1deNGD3WwmGs9RgXAwsrkiAWnvF4vOdlJUXZ6Y9yMh7kZKiqqM6ZM/uXjPSPLc6xswP+s5bychg5EmJjwdW1/0n+p7kZaDSQk+vJx/KnwszNzU+fPn3t2rXi4uJPP/102LBhgswjwrAAE2sMBuPhw4ePHz82MzMjOotkqq6uPnPmTGVlpbGx8fz584cOHUp0IoQQErCAgIC8vLw///xz9uzZRGdBgwWJ/wZ0kKisrExMTLydmJiYmNjR0WnOsNM2MB5qaDzMwEjH0ERVq0eNyBtf1dU+fVLz9MmLZxUvnz0pL8ynUileXl5eHh6enp5GRkb/PsTFizBz5n//mUwGKhXCw2HOnH58Zu/ma4TRo8HNDU6e7NV1PB4vMTHx8uXLXC534sSJEydO5J+RJdnu379/9OjRVatWWVhYEJ0F9VpTU9PatWu9vLxmzJhBdBZJw2Kx4uLibt68SaPRJk+e7Onpic8pEEKS6vDhw0VFRdu2bVNRUSE6CxoUJHkG7O/09fWDg4ODg4MBoLS0NC8vr6Sk5OHDvMzLUY/LygB46lpDlVRUFJVVaTIyJBJJTlGps7WFy+OxurpamxtbG9801NdxOVxjU1MzMzOGpUWQt5utra2VlVV0dLSenl6Pqi+AvzTM4HKBzYZ58+D5c1i7VgCfpIoKuLvDiRPg7g696XRPIpG8vLwYDEZERMTVq1dzc3MXLFgg8WuNsAmHWFNWVtbT08vLy8MCTLDKy8vPnj1bV1c3YsSIuXPnqqqKwRGLCCHUZ/7+/gUFBX/++WdQUBDRWdCgMLgKsHeZm5ubm5u/+0pNTc3Lly9fv37d2NjY0tICACwWi0ajAYCioqKKioq6urq2traOjs7fnwSrqqqePn2aw+E4Ozv/+72NjUFB4X/HdvF3sKxbB2/ewI8/9v9Tg0OH4N49+OorGDUKetmmTF1dfcWKFdnZ2dHR0bt27XJxcZkxY4YE77bHJYjiztbWNjY2tra2dvCsmxWqjo6OmJiYtLQ0BQWF4OBgPOALITQY6OrqWltbp6am+vr6KisrEx0HSb7BW4D9nY6Ojo6OTt+u1dDQ4HK5Z8+eZbFY7u7u//LRZDLY2UF6+n9LLxIJKBRYuhTWrevb3d8nIwPR0TBqFMycCTk5PdwM9haJRHJ0dLSysjp37lxqauqjR4/mz58vqSv0sAATdwwGIzY2Nj8/Hwuw/issLDx37lxjY+PIkSPnzJmDB3whhAYPf3//Bw8e3Lp1C5dUoAGAK68EQ11dHQB4PN758+d7dKKfnR1wucBf+ebtDYWFsG8fCHDlsZkZhIVBcTH88EPfBlBSUlqyZMmiRYu6u7v37dsXEREhkSfeYgEm7nR0dDQ1NfPz84kOIt6ampoOHz4cFhZGoVBWrlyJxysjhAYbfX19Kyur5OTk5uZmorMgyUcJDQ0lOoMkkJaWfnuIxKNHj1gs1vut599TVwexsWBoCKdPw7ZtoKEh+EwMBqiowJIl0I83UsOGDXNxcWlvb09NTc3MzNTQ0NDW7lGrEnFRXV2dn5/v4uKC+27FV0NDQ35+vrOzs6ysLNFZxA+Px0tOTj5y5Ehtba2Xl9eiRYsk7GccIYR6SENDIyUlhUQi4SnzSNiwABMMKpWalJTEZDL5//rkyRMmk2lpafmPUytSUqCvDxERYGUFnZ0QEgL19WBtLeBYjo79qb74aDSajY2NoaHhgwcPUlNTX7x4YWZmJjG7wp49e1ZYWOjh4TFkyBCis6A+otFoGRkZmpqaEt8zRuDq6+uPHTt2584dbW3tL7/80tnZmUrFdekIoUFKRUXlyZMn/MeyEvM+B4kmLMAEJj8/v6mp6e2/PnnypKWlxdra+sM1mIYGODsDv887jwcrVkBsLHzxBcjIDFTe3tHU1HRxcWEymZmZmZmZmUpKSnQ6nehQAlBRUVFUVOTh4aGoqEh0FtRHKioqycnJXV1dY8aMITqL2OBwOLdu3Tp27FhTU9OkSZOCg4PV1NSIDoUQQgTjT4JRKBRJ3fqORATuARMYjb8tI0xJSTlz5gy/0fnHSEnBgQNQVwebNwsrnCDIyMgEBQV9++23cnJy4eHhhw4damxsJDpUf7HZbADAp/5ijUwmW1tbl5SUdHR0EJ1FPDx+/Hjr1q0xMTFGRkYhISEBAQH4I4AQQgBgbGxsbm6emJjY9rZVNUJCgAWYwGhoaLw91Zo/66WmpmZqatqji8ePhylT4OBBKCwUXkJgsfo/homJSUhIiK+vb3Fx8ebNm1NTU8X6LG9+AcY/bACJLwaDweFwHj58SHQQUdfR0REVFfXzzz83NzfPmzfvm2++0dLSIjoUQgiJED8/v+7u7sTERKKDIEmGBZjA8Bshvl1w6OnpuXXrVicnp54e8nvgAEhLw9KlIKR6JjYWzM2hurr/I9FotMDAwPXr16urq0dERPzyyy91dXX9H5YQ/AKMwl8LisTW8OHDpaSksBfixxUWFm7evDkxMdHe3n7Lli2urq7Y/xMhhN5jbm5uamqakJCAqyqQ8GABJjD8AmzIkCEzZsyQl5cvKyvraenFp6cHa9ZAQQGUlQklH50ONTUwdy5wOAIZT1dXd926dYGBgU+fPt26dWt8fPy/L7YUPbgEUTJISUlZWFgUFRXx/4ei9zQ1NR05ciQsLIxKpa5YsWLRokW46REhhP6Jn59fV1cXToIh4cEmHAIjJSWlqqoaHBxsYmJCpVL5Tdt716lizBj47DMwNBRKvmHDgEyG8HBQVAQnJ4EMSSaTTUxM7OzsKioqMjMzHz16ZGxsLF5v7IqKiioqKgICAnASTNwxmczc3FwzM7O/78YczHg8Xlpa2q+//lpbW+vh4bF48eKhQ4cSHQohhESahoZGSUlJQUGBm5sbblJAwkAS6w08IovNZoeGhnK53C1btojQ7AqXC15ekJ4O6ekwerQAB+a/ybt48SKbzfb29p48ebIIfdYfdeHChaSkpMOHD/duuhKJntbW1jVr1ri5uc2ePZvoLKKiuro6IiLi6dOnurq68+fP19fXJzoRQgiJh6KiooMHD06ZMmXSpEm9vba7u7usrKy0tLSsrKzhzZuWlpY3jU3t7e2tbW3tbW3SMjKKCgpKSkpDhigpKiiqKA8xNTU1Nzc3MzPDE3EGD/F4lyx2qFRqQEDAyZMn79y54+3tTXSc/0cmw9mzYGMDCxbAvXsgJyeogUkkkqurq7m5+dmzZ+Pj44uLi+fOnWtkZCSo8YWHzWaTyWSsviSAoqKioaFhfn7+rFmzcGsTi8WKi4uLi4sjk8mBgYE+Pj74TY4QQj03YsQIAwOD27dve3p6yvzbEUFdXV2ZmZlJSUmZ2TmlpaW11VXqWto6hsbaBkaKKmrSKtqauqZyCkrScrJSUjIcDruzva2jtbWro72hs+NZ5Ys/07Jqnj6prapUVVMzM7ewYzC8PD3GjRunoqIyMJ8sGnhYgAmLg4NDQkLC9evXx44dKy8vT3Sc/0enw6FDkJ0NQng3pqmp+c0336SlpcXExPz444/jxo2bOnXqv/7aIhabzRaXyTr0rxgMRkxMTFVVlZ6eHtFZiFRWVhYREVFXVzdixIg5c+bgAV8IIdQHfn5+YWFhycnJvr6+f/+vPB4vJyfnz1u3bick5mRlDdPXt3Jwtvad4rvEWMfQWFq218+4OWzWy+eVNRWPK4oLf9i2ozxoluXw4d5ent5eXp6enlJSUoL4nJCowCWIQvTw4cP9+/dPmDBh6tSpRGcZUC0tLZcuXcrKyhoyZEhgYKCjoyPRif7Rb7/9VlxcvHfvXqKDIAGor68PCQnx9/cPCAggOgsxOjo6YmJi0tLSFBUVp02bJso/egghJPp27tz5+vXrHTt2SEtLv32xoqLizJmzp8+e7ezqYrh6DHdwHuHopKwm4O3HXR3tD+9lF2enP8hIaax/OWvW7AWfzndwcBDsXRBRcFGKEFlZWVlaWiYkJPTlwOLYWBg1ClpbhZBL6JSUlIKDg5cvX06lUsPDw8PCwt68eUN0qA/DGTBJoqmpqa2tPWib0efm5m7cuDEtLW3MmDGhoaFYfSGEUD9NnDixra0tJSUFADo7O3/77TcnZxeGrW3ag4cLN+4Mu529ePOPLn5TBF59AYCMnLy9m+f870J+/OPWD+HRtV0cv8lTTM0ttm3bLr5n/6C3sAuicNHp9Dt37nR2djIYjN5dWV4Oe/YAmw0+PsKJJnSa1RfShwAAIABJREFUmpqurq4UCiUjIyM5OZlCoRgZGYna5pysrKz29nYR2qeH+qexsTEvL2/s2LFygtviKPpev359/PjxuLg4ZWXlRYsW+fj44GIVhBDqPy0trfz8/NLS0nv3cmcEzSytrHaeOuvL7b+M9Q3QousN2FsaZTUNhvM4v08/1zIwSkq4vfablTW1L6xHjMCmHeILCzDhUlJSqqury8nJsbe3711/dnNzyM2FiAiYOhW0tIQWULgoFIq5uTmDwXj69GlmZmZhYaG+vr6ysjLRuf4nIyOju7vb09OT6CBIMKSlpdPT09XV1cWiB0z/cbncxMTEY8eOvXr1avz48YsWLdIS218XCCEkat68eZOSknLq9Onnr958Hvpj4JIV+uZWVCoxjelJZLK2nsGY8X4u/lPv5mR/9/XS4ocPh1tZ8c+hReIFlyAK3SeffEImky9fvtzrK/ftAyoVVq0SQqj/x2bD5s3w8KEQbwFAp9PXrl07b968V69e7dq1Kyoqqru7W6h37Lnu7u53F3YjcWdoaKikpFRQUEB0kIFQVVW1a9eu6OhoOp3+ww8/BAYG4nk1CCEkECwW68cffzI0MkovfPjd4bM/nLhgbjuS6FD/pTGMHrx+y77rKW00udEODosWLxbZjR7on+AMmNDJycm1t7dnZmaamZn17imFqiowmXDqFAwfDsOHCyVcZSXMnw9JSRAcDMLcCkUikfT19ceOHdvQ0JCRkZGZmammpiYKB8ImJSVJS0s7OzsTHQQJBolEqq+vz8/Pd3d3l+BleEwmMzY29vTp093d3YGBgXPnzlVSUiI6FEIISYjk5GQ//4AH5Y+/2Xfcd85CZXXBb/HqP1l5BVsXd4/AoDt/xm9Y862Ghoatra2obfRA/wQLsIGgr6+fmppaVVXl4uLSu58NR0c4fx5UVUFIm5RUVEBLC44fh85OGD9eKLd4h4yMzKhRo3R0dIqLi9PT02tqaoyNjWVlZYV934+4deuWkpIStiuQJCQSKTs7W0dHh06nE51FKPjHgz548MDa2nr58uVWVlb4FxchhASioaFhxcqVIRs3+X76xaJNu5Q1NIlO9C9k5OQdfCaaWNvt37n1zOlT9nZ2Ojo6RIdC/w4LsIEgJSXF5XKzs7PpdHrvpn1oNPjPf6D3p7D3gr09PHoEJ0+CszMMyLaZoUOHurm5USiU9PT05ORkDodjbGxM1CmxN2/e1NDQGDVqFCF3R8KgpqaWmJjI5XIl739rS0vLuXPnYmJipKSkFi5cOGXKFGKfXyCEkCS5fv26p7e3At1wTVj4iDFOYvRsS0OH7jVjTnNLy9oVS6kUqpOTOIUfnPAcsAHCYrFCQkKkpKQ2bdpEoVCIjvNXDQ3Ab9JYUAADeGZrdXV1ZGRkRUWFjo7O3LlzjY2NB+zWb61YsYLBYPznP/8Z+Fsj4Tly5MjDhw9/+eUXidkTxePxsrOzo6OjOzo6XFxcpk+fLuJHnCOEkBhhs9lbt2499OvhL7fvsR/nRXScvqt9+mTvqsX6OkPPR0ZiTyZRhk04BgiNRvPz86urq0tPTyc6y9+oqcGpU9DYCFlZA3lbOp2+Zs2a4ODg5ubmn376KTw8vHXAzz1jMpnYhEPy2Nradnd3l5SUEB1EMOrr6/ft2xceHq6goPDNN9/MmzcPqy+EEBKUqqoq13Hjoq9c2x51TayrLwAYZmi8I+q6go6h3ciRaWlpRMdB/wiXIA4cXV3d3Nzc4uJiNzc3kTv818gIFi0CW9sBvi2JRKLT6S4uLh0dHZmZmWlpaTQazdDQcGCmzlks1vXr101NTYcLqccJIoiKisqtW7ekpKRsbGyIztIvHA7n1q1bx48fb2ho4HeZ19AQxb3gCCEkppKTkz08PRmeE5ftPqA4RIXoOAJAoVJtXT0UVNW/+/ILJUUlB4fRRCdCH4AF2MAhkUja2trJyck8Hs/S0rIvQ3C50NoKQpqxkZcXyrA9wH+jbGZmVl5enp2dXVpaamBg0Ltj0/qkq6srPj7e0tLS3Nxc2PdCA0lKSqq0tPTJkyc+Pj7iuw7+yZMnhw4dysnJMTY2XrZsmYODA1FbJRFCSCL98ccfQbNmLd76y4Q5CyXsF6y+ueVId+9t361saW729PAgOg56n0R9t4k+S0vLESNGJCQk1NXV9fpiNhvc3GDhQsHHEg1mZmYhISEzZ858/vz51q1bo6KiOjs7hXpH/nFkuARRItna2ra0tDx9+pToIH3R2dkZFRX1888/NzU1zZw5c/Xq1aJwZgNCCEmSU6dPLwz+z6q9xxy8JxCdRSh0Tcy3R10/d/H3BQsXstlsouOgv8ACbKAFBQUBwKVLl3p9JZUKDg7wxx8QGyv4WKKBQqF4eXlt2rTJ2to6MTFx06ZN2dnZwusTwy/AJPi0qMHM1tYWAMTxRObCwsLNmzcnJiaOGDFi06ZNXl5e4juJhxBComnXrl3frlmz8dRFGydXorMIkaqm1qYzMblFjz4JDBT2Q23UK1iADTRNTU13d/eCgoLi4uJeX7xtGxgYwPLlIOxmFS0t8OqVcG/xz9TU1L766qtVq1bJycmdPHnyl19+qa6uFsaNmEwm4AyYhFJTU6PT6fn5+UQH6YXm5uajR4+GhYXxeLwlS5YsXbpUWVmZ6FAIISRpQjdvPnTk2NbIWENLyd8BrqA0ZMNv5142twVOn85isYiOg/4LCzACBAQEKCkpXbx4kcPh9O5KOTnYvx+qqiAkRDjRAACgsxPs7CA4WIi36AELC4u3KxK3bdsWHh7e3t4u2FvwCzCcAZNUDAbj5cuXfVnuO+B4PF5qaurGjRvz8vJcXV03b95sZ2dHdCiEEJJAR44eDTt85IcT57V09YnOMkCkZeW+PXCi5nXjpwsXcrlcouMgAGzCQQgqlSorK5uRkaGgoGBoaNi7i83NoagIzpyB8eOBThdKPhoN6urg5EnQ0wNC3wWSyWQjI6OxY8e2trZmZWWlpaVRqVQB9kh88eJFTk6Ok5MTnpUhkWRkZFJTU1VVVQk5Yq7namtrDx8+nJycrK2tvXTpUlHskooQQhIhNjZ22bLlG347Tzc2JTrLgKJQqQ4+k84fPlhVWTl+vA/RcRDOgBHExcVFX1//6tWrbW1tvb744EHw9AQFBSHk+n+hoWBtDatWwfPnQrxLzygrKwcHB69atUpJSSk6Onrnzp3Pnj0TyMi4BFGy6enpqaioiPIqRA6HEx8fv3379qqqKn9//3Xr1hkYGBAdCiGEJNOdO3fmL1jw3aGTg2Hl4d/JKSh+f+Tsuajon376iegsCGfACEIikYYNG5acnNzd3W1tbd27ixUVYf580NQUTjQAAKBQYOxYOHwY8vNh/nwQgR4A6urqLi4u0tLSeXl5KSkpLS0tRkZG/Vw9WFFRUVBQ4OHhgTttJBKJRHr16lV+fr6bm5sIltnl5eWHDh26e/euiYnJ8uXL7e3tJawJMkIIiY6Kigovb++vdu5nOLsRnYUwsvIKtm6e21Z/bWVpgQfwEAsLMMKoqqq+ePEiKyvL1tZWSUmJ6Dh/o60NHA6EhwOdDvb2RKcBACCTySYmJo6Ojm/evMnMzExNTZWWltbX1+/zisTy8vLi4uLx48fLE3cGGhIqKpWalZU1dOhQPT09orP8T0dHR0xMzLlz5zgcTlBQUFBQkIJQJ7QRQmhwY7FYk/z8x/gFes+YS3QWgikqqxhaWa/96ougmTPx6TOBsAAjkpGRUXJycm1t7dixY4nO8iHOztDVBcHBBJ7R/HeysrIjR440Nzd/+vRpRkbGvXv3NDQ0NPs0H/jw4cOysjI/Pz8RnB5BAqGqqpqUlMRkMh0cHIjO8l+FhYUHDx589OjRyJEjv/76a1NTU+wyjxBCQrVi5aqnL+oWb/mJhAsNALToeu0tLccO7F24YAGFQiE6ziCFBRiRZGVlORxOZmYmnU4XxYNWKRTw8RGp6ustNTU1V1dXDQ2NwsLC1NTUJ0+e6OvrKyoq9mqQwsLCioqKyZMn4y8gSUUmk6urq4uKiry8vAjvbNHU1HTq1KkrV64oKCh88cUXEyZMwMofIYSE7erVq9t27PzhxHk5hd69SZBgVg6OiZcvPa+oGO+DDTmIgQUYwYyMjLKzsx89euTm5tbHMiAtDVgsUFUFAGCz4euvITMTPD0FFnHFCpgwQRS2gb2HRCLR6XQXFxcAuHfvXnJycltbm4mJSc/fZ+fm5tbW1gYEBAgzJiIYh8O5d++evr4+gc84eDxeWlrar7/+Wltb6+HhsXjxYlF84IIQQhKnqqrKd8KEFT//qm9uRXQWEUImk22c3H5ct9qWwTAxMSE6zmCEBRjBKBSKoqJienq6lJSUqWnvm6LW14O9PeTlwaefAokEZDK0tkJ9vSALsIkTRbD6eotGo1laWo4aNerVq1fZ2dmZmZkyMjJ6eno9WdaVk5PT1NTk6+s7ADkRUdTU1G7fvk2hUGxtbQkJUF1d/euvv6akpAwdOnTp0qXOzs6Ez8UhhNAgsSA4WM929PhZnxIdROTIKSiq69B/DFm3eNEiGo1GdJxBBwsw4g0bNqy0tPTevXtjx46VlZXt3cXy8sDjQXg4aGlBYSE8egTx8TBkCBQWwsmT4O4OnZ2wcSOMHQuXLsFvv8GDB7BpE7i5gbIyNDfD8eOQng7FxVBRAWFhUFsL69aBiQlERkJoKPj6QlkZ/Oc/MG8eAEBcHOTlwblz4OUljK9DfygoKDg4OOjr65eWlmZmZhYVFeno6KioqHz8qvT0dCaT6SnAYhWJHiqV+vjx47KyMh8fnwHebcVisW7cuHHq1Km2trYpU6YsXLjwX78nEUIICUp8fPy+AwdW7ztGw/XeH6JrYp6Xeudl9XMPDw+isww6uBmReCQSKSgoiMViXb58uS/Xr1sHo0fD6tWQkgJz54KTEwDAZ59BejpIS0NXFwwfDgoKYG0NaWnw+ecQEAAXLwIAZGeDkREEB8P+/WBjA1lZsGABfPYZ/PwzfP89eHrC5ctgbw9FRQAAWVkQGQmvXgGNBq9fC+6zFyQbG5vQ0NCZM2fW1dXt3r07LCzs9UejdnZ2ysjIDFg8RBQGg9He3v7kyZOBvGlZWdnWrVuvXbtmYWERGhrq6+uLXeYRQmjAdHd3L122fMHaLXKKotdoWmQs3LB17969paWlRAcZdPANgUjQ1dV1cnLKzs6uqKjo9cVUKpw+DSwWZGYClwv8R+yKijB9OoSHw6VLMGMGAIC0NAwdCqqqoK0Nra0AAN7e8Po1pKdDdzfIyICqKkhJgZYWqKsDiQRqav/9MH6JcukS5ObCt9/C3Lmgri6wz1zQKBSKl5fX9u3bPT09i4qKNm3aFBUV1dnZ+cEP7urq6vWUIxJDtra2JBJpwE5k7ujoiIiI2LNnT2dnZ3Bw8PLly9XU1Abm1gghhPi279gxRGuo86TJRAcRadp6BpPmf/7V0mVEBxl0sAATFZ988om0tPSFCxe4XG6vL7a0hEmToLwcYmMBANhsAICvv4awMOjqAjm5D1+1YwfIyYG/P/B4f3mdv0zrvcVatrZgaQk8HixYADU1vU44sOTl5YOCgjZt2sRgMBITEzds2BAfH8/mf1ne0dnZiQXYYKCsrKynp5eXlzcA98rNzd24cWNaWtqYMWNCQ0MdHR0H4KYIIYTeVV1dvXfv3uAfthMdRAxMXbT8UXn51atXiQ4yuGABJiqUlJQmT55cWVmZkpLSl+uPHoXhwyE+Hq5dgwcPoLkZ1NTA0xMmTvzvB6SkwLNnUFkJ9+7BgwfQ1gaGhrB/P+zbBwDw229QWQlVVZCRAaWlUFMD9+9Dfj4UFEBtLRQUQEAAtLaCigpkZsKNGwL7tIVJW1t70aJFK1euVFFRiYmJ2bJlS25u7rsfgEsQBw9bW9uGhoba2lrh3eL169f79+8/duyYrKzsypUrg4OD8YBvhBAixO4ff3KaOHmYoTHRQcSAlIxM4OIVoVu2Eh1kcCHx3pv9QMThcrk7dux49erV5s2b+3g8eWMjSEmBjAzwO9r/8gusXv2xj+/qAhkZYLOhh23ZmpvB3R2ePoXiYtDR6UtCIvB4vOzs7EuXLrW0tFhYWEyfPl1XV5fH43355Zfjxo2bPXs20QGR0NXU1GzZsmXKlCmTJk0S+OBcLjcpKSk2NpbNZnt7ewcEBGBHKYQQIkpDQ4OBoeGu3+OG6hsSnUU8cNisrye4nA0/6e3tTXSWwQK7IIoQEomkp6eXnJzc0tJiZ2fXlyFkZUFKCshk2LMH9u+H+fPh48cN8euunvcGkJEBOzs4ehQsLaFvCYnAPzHMzc2NTCbzTwx78+bNsGHDEhMTLSwsLC0tiQ6IhE5JSSkrK6uxsdHV1VWwI1dUVISFhWVmZhoYGCxfvtzBwQHP9UYIIQJt3baNKz/Ea8ZcooOIDTKZQqZQL50J/0/wQqKzDBY4AyZyIiIiUlNTV61aZWFh0fdRXrwAEgm0tQWX6x2VlaCvL5SRha+pqenatWtpaWlUKpXFYvn5+U2ejDt0B4WLFy8mJCTs3LlTUL3gOzs7L1++nJycLCsrO3XqVFdX1wFuc48QQug9zc3N+gYGm85c0jfDp6u9wOruXj5+bMzvF11cXIjOMijgDJjIMTY2zsjIKCkpcXV17XvfakVFkJXtxdRWr/RteaRokJGRsbGxsba2rqqqamxsrKqqkpaW1tXVxRbhEo9Go2VkZGhqahoYGPR/tMLCwkOHDpWUlNjY2CxbtszCwgKrL4QQItyBgwcbOlmT5n9OdBAxQ6FSOVxOwpXLs2fPIjrLoIBvOkWOvLz81KlT6+rqbt261cchOjth2jTYsEGguSSKvr7+tGnTAEBeXj4qKiokJCQ1NRVngyWbiYmJgoJCQUFBP8dpamo6cuRIWFgYhUJZvnz50qVL8XhlhBASEadOn/GYPofoFGLJY2rQrVu3Pn6AKhIULMBEkZOTk5mZ2fXr1/v4YyArCywW/PQTJCUJOprkaG9vB4A5c+YsWrSITCZHRERs2bKlsLCQ6FxIWMhk8ogRI0pKSjo6Ovo2ApfLTUhI2LhxY0FBgaen58aNG0eMGCHYkAghhPosNze3rq7O1mUc0UHEkpKqmq2Ty4ULF4gOMihgASaKSCTS7NmzuVzu+fPn+zjEiROgqQmffgpv3gg02t+w2dDdLdxbCAe/AFNQUBg5cuTmzZvnzZvX2toaFha2b9++58+fE50OCYWtrS2Hw3n48GEfrq2qqtq9e3d0dLSWltbatWuDgoKkpaUFnhAhhFCfnT5z1iVgKoWKfWj7yDlgWvjpM0SnGBSwABNRw4YN8/T0LCoq6uOKKQ0NCA+HmhpYvFjQ0d7R2AgODrBpkxBvITT8Aox/UhOVSnV1dd2yZYuvr+/jx4937Nhx8uRJnIWXPMOHD5eSksrPz+/VVd3d3TExMTt27Kirq5s5c+a6dev0xbYJDUIISSo2m30h6oJbwHSig4ix0R7jH5eXl5SUEB1E8mEBJromT56spqZ24cKF7r5NMU2YAEuWwO+/w7lzgo72/1RUQFcXfvkF/nrAsVjgr0N796hcOTm5wMDAbdu2ubi43L17d+PGjREREU1NTcRlRAImJSVlYWFRVFTEZrN7eElhYeGmTZvi4+NHjBixadMmLy8v7NeCEEIi6NatW4rKqoZWuDK872jS0mMnBkRERhIdRPLhOwnRJSUlNX369Ddv3ty8ebOPQ/z8M/j4/MtRYP108CDIysJnnwGLJcS7CEF7ezuZTJaVlX3vdWVl5Xnz5oWEhFhbW6elpYWEhMTExPCny5AEYDAYnZ2d5eXl//qRTU1NR48eDQsL4/F4S5YswWYbCCEkyuLi4u09xhOdQuzZj/O+GRdPdArJhwWYSLO3t7e2tr5169aLFy/6cr2cHPz5J3h4CDrXO/T0YPt2KCiAffuEeBchaG9vl5OT+6fW4cOGDfvyyy/Xrl1rYWERHx+/bt26mJiYzs7OAQ6JBI7BYJBIpI+v7OXxeKmpqZs2bcrPz/f09Ny8eXMfD0ZHCCE0UG4nJg53cCI6hdgb7jC2qLAQl/8IGxZgoi4oKIhEIkVGRopuk/SlS8HZGTZtgsePiY7SC+3t7e+uP/wgAwODpUuXrlmzRl9fPz4+fsOGDfHx8Sxxm+tD71JUVDQyMsrLy/unH6iqqqpdu3ZFRERoaGh8//33QUFBMjIyAxwSIYRQrzQ0NDwpLze3H0V0ELEnK69gMnxEamoq0UEkHB7ELOrk5eW5XG5mZqampiadTic6zoeQSODoCIWFEBAAqqpEp+mphIQEGRmZnpz4rqqq6uTkZGJiUllZmZWVlZmZSSKR9PT0cC+QmGpra8vLy2MwGEOGDHn3dSaTGRsbe/r06Y6OjilTpixcuBDXHCKEkFi4fv36o6eVXjPmEh1EEryset5QXTlhgi/RQSQZvoMUAxMmTNDS0vr999/7fH6R0FlZQWIimJgQnaMX+EsQe/7xlpaW69ev//zzz6WkpKKjozdv3pyTkyO605Lon/HXE763CvHdZhuhoaG+vr5YYCOEkLhISEyyGD2W6BQSYvgYp9sJCUSnkHD4DkMMUKnU2bNnt7S0xMbG9mug0lL45hvAmgEAANrb2xUUFHp1CYlEGj169ObNmxctWsTlck+cOLF58+asrCwulyukkEgYNDU1tbS03jajb2pqOnbsWFhYGJfLXbx48dKlS1XFZyIXIYQQAGRmZVnYOxCdQkJY2I0qefRQdB/6SwQq0QFQj1haWo4aNSo5OdnR0dHQ0LCPo1y4AHv3grY2rFkj0HTih8PhdHd3/+sesA8ikUgjR45kMBgpKSlxcXHh4eF//vlnQECAra3tP7X0QKLG1tY2Pj7+1atXJSUlv//+e3d3t6ur6/Tp03G7F0IIiR0ej/e4vIxuYkZ0EAkhLSunoT20vLycwWAQnUVi4QyY2AgKCpKVlT179mzPjzB6X0gIeHrChg2Qni7QaOKnvb2dx+P1agnie6hUqqen544dO+bNm9fe3n7kyJEtW7bk5ubiokSxwP+jsmfPHn6zjbVr186bNw+rL4QQEkc1NTUAoKKhSXQQyUE3NCktLSU6hSTDAkxsKCkpBQYG1tTUxMf39XwGMhnOnAFlZZg9GxoaBJrur9LSRPxYMP65Xn2bAXsXlUp1dXXdvn07vww7duzY1q1bsQwTcUwmk78BrKmpKTAwcP369QYGBkSHQggh1EelpaW6Ria4CEWAtA2MsAATKizAxImLi4uFhcWNGzf6eCwYAOjowKlTUF0Nn30mrM1gCQng5ibix4IJqgDj45dh27ZtmzlzZmtrK5ZhoqywsDA0NDQ+Pl5NTQ0AnJ2dsdkGQgiJtdLS0qGGxkSnkCjaBkYPS0qITiHJ8J2HOCGRSHPnziWRSGfOnOn7m3s/P/juO6ipASGdsufhAY6OEBoKz54JZXxBEGwBxiclJeXl5bVt27bAwMDm5uZjx47t2rWrqKhIgLdA/dHc3BweHh4WFsZms4ODg2fPns3lcvF/EEIIibvS0jItvb5uj0cfomNoUlKCM2BChE04xIympmZAQEBMTExycrK7u3sfR9m+HdhsENKOFzIZjh4Fe3tYvRouXRLKLfpNGAUYn7S0tK+vr7u7e1paWlxc3MGDB+l0uo+Pz5gxY3B1BFF4PF5aWtp7zTbYbLaMjEx+fr6joyPRARFCCPXdi5cv1UaMJDqFRFHTHvqitpboFJIMZ8DEj4+Pj76+/h9//NHY2NjHIahUYVVffNbWsHQpxMTAtWtCvEs/CK8A45OWlvby8tq6deuUKVOamprCw8O3bdt27949XJQ48Kqrq3/88ceIiAh1dfXvv//+bbMNKpVqZWVVXFzMZDKJzogQQqjvWtvaZOV7d66MYFU8fPDj8s8+8jqbxVozfeKA5+o7RRXVN28a8E2L8GABJn7IZPKnn37KYrEiIiKIzvLPtmyBYcNgxQro6iI6ygfwT7cQXgHGJyMjM2nSpB07dsycObOtre348eMhISGpqal4btjAYDKZV69e3blzZ3V1dWBg4IYNG947woHBYDCZzBJc5o4QQuKstbVVRk64f9A/ztByxOp9R3k8HpfDAYA39XUcDvvt6wDQ3dn5vLyEw+51fzL+mDwer6nhFf8VDof9ti56e0eBU1AawmGzW1tbhTE4AlyCKKbodLq3t3d8fPzdu3dHjx5NdJwPUVKCw4ehu1u4U2191dbWRiaTZWVlB+Be/NmwcePGZWZmXr9+PSIi4ubNm15eXm5ubjQabQACDE5FRUXnzp1raGiwsbGZNWsWv+XGe2xsbCgUSkFBgY2NzcAnRAghJBAtra2yQn6i+nFl+bknd2xcuDb09I9bOCwWALype7n+2Fk2k3lyx8bdF2+c3LGRzWRu/HT69nOxvRq55P7dE9s2sJhMWQXFrvb2jScvnN+/e6i+YeCi5QAQdfBnAJj19XcC/4zIFApNSrqzs1NJSUnggyPAGTDxFRAQoKmpeeHCBQE8n/jzTzh3ThCh/mryZJgxQ/DDCkJHR4esrOxAbsp62ykxODiYQqFER0dv3LgxISGBJdr9+sVRS0tLeHj4wYMH+c02li5d+sHqCwDk5ORMTU0LCgpwThIhhMRXW2urDKFLEN8qL7i/fPf+n2LiPaYF3Y6OfPv6Fxu3U6Wkelt98T19VLx639FdUddc/T/5bet6z8BZyVcuAQCPx0u5GuP+ibDeaElJS3V3dwtpcIQFmLii0Wjz589vb2+/1M9GF1wurFsHn30G9+8LKJoYaG9vV1Ag4Jc1lUp1dHQMDQ1dsGABjUaLjo7+4YcfEhIScBuSQPB4vKysrNDQ0OzsbFdX1y1btvxrgw0Gg9Ha2vr06dOBSYgQQkjgOtrbZWTliE4BAKCtZ6BnagEAdCPTjrYWgYxJNzblj+ngPaH0/j3LkQ4cFuvpw6Ib3lnuAAAgAElEQVSS3BxVLW1tPQOB3OXvaFLSWIAJDy5BFGNmZmbOzs5paWmjR48ePnx4H0chkyE6GkaPhqlTIScHtLQEmlFEtbe3C3sD2EdQKBQnJ6exY8c+ePDg6tWr0dHRN27ccHd39/T0JDCVuKuuro6MjKyoqKDT6cuWLTMyMurJVQwGIzo6Oj8/39gYz5BBCCGxRKXR2L3fXiUMisoq/H8gk8mC6mBBof73vTqzu5sqJQUAHoFBqdf+6Ghr9ZwaJJBbfBCHzaZSsUwQFpwBE2/Tp09XVlaOjIzs11MKY2OIjobaWggMhMHxtKO9vV1OjuCnZSQSycbGZv369UuWLFFTU7t27dr69esvXbrUJKTz2SQXi8V622zD399/3bp1Pay+AEBNTY1Op+fn5ws1IUIIIeFRVFTsam8nOsXH0KSkuBxurxpm1D59wuzqAoDK0kc1FY8BIP3GlRFjnADAfcqMnIS4wszUsRP8hRQYAFjMbmlpaeGNP8hhASbeZGVlg4KCGhoarly50q+BvL1hzx7IyIBFiwQU7a+eP4fwcKGM3CdELUH8OxKJZGdnt379+u+++87MzOzWrVsbNmwIDw9/+fIl0dHEQ2lp6datW69du2ZhYREaGhoQENDbJ3YMBqO+vv7FixdCSogQQkioFJWUOtvbiE7xMRQqzdTG9jMXRkdrT9clrpkxqbL0IQCoDx22e9l/VviNKyvI/c/6rQCgpj1US1ff3G6UUJvvM5lMLMCEB+cWxZ69vb2dnV1CQsLIkSN7/uD/A5Yvh6IiaGsDFgsE3p1v3TqIigIGA+ztBTxy73E4nO7ublFb7GdiYmJiYlJVVXX79u2cnJzs7Gxra2s/Pz8DAwOio4molpaWS5cuZWVlKSkpBQcH9/k8ZVtb22vXruXn5w8dOlSwCRFCCA0ARQUFYgswc7tRuy/eAIBd0df5r7hNnuY2eRoA8F8HgO3nYru7OqVletp+OeJeKQA8ys1R0dDaGXWto7VV/p2GhCQSyXvGHAF+Cu/pbG/jsNlDhgwR3i0GOSzAJMGcOXNKS0sjIiI2bNhAoVD6PlBYGFAoIIzegLt3w5UrsGQJZGUBmeB51/b2dh6PR/gSxA/S1dUNDg729/dPTExMTU0tLCw0NjaeMGEC9kl/F4/Hy87Ojo6O7ujocHR0nDlzZn/KaV1dXXV19YKCgokTxemUTIQQQnyKiopdHYJfgtja1JhyNea9V56XPRru4PTuiwbmlu+98k+YXV23L/6l6XQPBySRSG+rr/KC+9fPnujqaB8+emzPP5feam18M0RZGfeACQ9+ZSWBkpJSYGBgREREfHz8pEmT+j6Q8H7S6HTYtAm++w5OnIAvvhDWXXqmvb0dhH8Kc39oaGgEBQWNHz/+9u3bqampYWFhRkZGvr6+DAZjIFvni6aamprIyMgnT570qtnGx9nY2CQlJTU2NqqoqPR/NIQQQgNJRUW5rblZ4MNSaTRNHd13X1FUVqFSqe+9qDCkp384+jCgronZgjUb3/2vakN1GM5uoz19e3jTvml+06CmriHUWwxyJEE1aUHE4vF4e/fuffLkyQ8//CCiK6lYLLCzg1evoLQUlJUJDPL48eOffvrps88+c3BwIDBGD3V1daWnp8fFxbW0tGhoaHh4eAzaE5xZLFZcXFxcXByJRPL19Z04caKgHs6VlJTs3bt37ty5bm5uAhkQIYTQgNm+fXvGo8efhewgOojkSLka8yjhevzNG0QHkVjYhENCkEikefPmUSiUU6dOieipsjQa7N0L9fWwdy+xQUR/BuxdMjIyXl5e27ZtmzlzJpfLjY6OXr9+/Y0bN9pFu+OTwJWVlfGbbRgbG4eEhPSh2cZHmJmZycvLFxQUCGpAhBBCA8bc3PzlswqiU0iU2qdPrCwtiE4hyXAJouTQ1NScOnXqhQsX4uPjBbObZf9+yMqCyEiB7dry8YFz5+CTTwQzWl+JVwHGJy0t7eXl5enp+eDBg5s3b8bGxl6/fn3UqFGTJk3SkvSj2wTVbOMjyGSytbX1vXv3urq6ZGRkBD4+Qggh4TE3N6+ueEx0ColSV1nhFYD7ooUICzCJ4u7uXlhYeO3aNWtrazqd3t/hnj6FCxdATw927xZEOgAAmD1bYEP1lTgWYHz8o8NsbGweP34cHx+fnZ3Nb5Y4ceJEgWyFEjX8ZhsXL15sb2/vf7ONj2MwGFlZWUVFRaNGjRLSLRBCCAmDmZlZw6v6ro52GTnx+8summqfPrGwwBkwIcICTKLwFyJu2bIlPDx83bp1/V2jtWcPVFXBjz8CnQ7LlwsoI/E6OjoAQDS7IPYQv2d9fX19UlLS22aJXl5ednZ2ZKKbTApKfX19ZGRkSUmJjo7OV199ZWxsLNTbDR8+nEajFRQUYAGGEELiRVpaepgO/cWzp4ZWI4jOIgl4PF7Nswpzc3Oig0gyLMAkjZqa2rRp0yIjI2/evBkQENCvschkiIgAb29YtQrodJg6VUAZCdba2komk8W6AOPT1NQMCgqaOHFicnJyUlLSsWPHNDU13d3dxb1Lx7vNNvz9/QXYbOMjpKWlLS0tHzx4wGazsfEuQgiJFxsbm4qHD7AAE4iaiseysrLa2tpEB5FkEvKwHL3L1dV1xIgRN27cePbsWX/HkpWFy5fBwADmz4cKCdnh2traqqioKDH93JWUlAICAnbu3Dlz5kwOhxMdHb1u3bqYmJimpiaio/VFWVnZtm3brl27ZmRkJPBmGx/HYDA6OzvLy8sH5nYIIYQExcvD/dHdDKJTSIgHWWnu7h5Ep5BwWIBJIBKJNH/+fBkZmVOnTrFYrP4Op6EBN2/C5s0g2F1GHR2wbRu8eiXIMXuGX4AN/H2Fit+lY9u2bZ999pmqqmp8fPwPP/xw9uzZ2tpaoqP1VHt7e0RExJ49ezo6OoKDg1evXj3A/UUYDAaZTMZeiAghJHY8PT0fZKXh0UoCUXI309vLk+gUEg5X2kgmZWXlGTNmnD59+tq1a1P7v3TQ1BRWrxZErncUFMDGjVBVBUePCnjkf9Pa2qqmpjbANx0YZDLZwcHBwcGhsrIyMTExIyMjLS3N2Nh4woQJ1tbWIjvp926zjTFjxsyYMUNBQWHgYygqKhoaGubl5QUFBYns1wohhNDf2djYcNjsmorHdGNTorOINx6XW5ST6bnvZ6KDSDhKaGgo0RmQUOjq6tbU1KSnp1tYWKiqqhId5290daG8HM6cAT8/GDZsIO985coVXV1de3v7gbzpAFNWVrazs3N0dKTRaMXFxRkZGTk5OTwej06nUygUotP9RX19/fHjx2/fvq2srLxo0SIfHx8pKSmiwrS1teXl5dnY2CgTelY4QgihXiGRSNnZOW0stom1LdFZxNuzR8XZ8Vd37dxJdBAJh0sQJdns2bPl5OTOnDkjgIWIwrB7N8jKwsqVMIBrBthsdldXl+QtQfwgdXX1wMDAd7eHrVmzJioqqrGxkehoAAAcDic+Pn7z5s1Pnjzx9/fftGkT4U1v7ezsAABXISKEkNjx8fYqzkwlOoXYK8hI8fTE9YdChzNgkkxGRkZZWTktLY3JZA4fPlyQQ585A5aW0M+5FCUl4HDgzBmwsgLBxvtnzc3Nt2/fZjAYpqaDZZUClUo1MjLy9PTU19dvbGy8e/funTt3ampqVFRUVFRUiEpVXl5+6NChu3fvmpiYLFu2bOTIkaLQQF9eXj43N7e+vn7cuHFEZ0EIIdQLenp6369eNX7Wp9IyskRnEWPh29avXvE19qAXNizAJBydTq+trc3IyDAzMxPYxqcbN2DGDCgvh8BA6OdWGQcHiIyEtDRYurS/Q/XMq1evUlNTR40apa+vPwC3Ex0kEklLS8vR0dHa2rqzszMvLy81NbW0tFRGRkZLS2sgtzx1dHRERUVFRUVxudygoKCgoCCRmpBsbGy8f//+2LFjJeCgAoQQGjwUFBRSUlLbmSzjEQyis4irqselN8+eOHLkiKjtVpA8WIBJPgsLi8zMzKKiIhcXF8F09DY1hdZW+O03eP4cpkzpV+FEo4GDAyxdCgO15aa6ujo7O9vFxWXQHnChrKxsb2/v5OREoVCKi4szMzMzMjLYbLa2tvYAbL7Kzc09ePDg48ePx4wZs2zZMlNTU1FrdyEtLZ2enq6mpmYk2LafCCGEhIxCIZ87He4ROIvoIOLqyonDTnaMyf08RRb1ABZgkk9KSkpLSys5Obmrq2vECAGdUTh+PFRUwJkz0N0N3t79GkpXF4YMEUyqHqioqMjPz/f09CRw9Z0okJWVtbS09PLy0tLSqqqqysnJSUxMFOq6RH6zjfj4eFFotvER/FW7bW1tTk5ORGdBCCHUCyYmJiHr1zn4TFJUHtR/4vuGx+UeCfl2984dOjo6RGeRfNiGflBgMBijRo26c+eOjY2NlZWVAEYkkeDkSWhpgV27QEoKNm8WwJgDorW1FQAI6XIugqhUqqOjo6OjI79tfU5OTm5urr6+vqen5+jRowW1AoHNZsfFxd28eZNEIk2ePNnX13fAzlbuAxKJZGNjw6/B8PsEIYTEiKys7NSpU1OvXAr6+juis4ifgowURQUFBwcHooMMCsTvekcDY86cOYqKihEREV1dXYIZkUqF6GiYPBnE6kwtfgGmpKREdBDRoq+vHxwcvHPnTn9//4aGhvDw8HXr1l29epX/5eqP0tLSLVu2XL161cTEZOPGjX5+fqJcffExGAwul/vgwQOigyCEEOqdpV99dSvqbHdnB9FBxM/18CPLln5FdIrBApcgDhb8hYgpKSmtra0MhoD2p1IoMGsWODoKZrQBkZOT8+LFiylTphAdRBTJyMiYm5vz1yVWV1ffu3evP+sS29vbo6Ojo6OjeTxeUFDQzJkzxWVCSVVVNTExkcPhjBo1iugsCCGEekFHR+fPP281NDaZ2Y4kOos4KS+4f/30sbNnzojm7gDJI+qPopEAMRgMJyen9PR0a2tr/nlHAiDADgo8Hly8CGpq4OUlsDH/pq2tTaR67omgt+sSy8rKEhMT8/LycnNzTU1N3d3d7ezserIukcfjZWdnX7x4sb29fcyYMTNmzBCX0ouPSqUOHz78wYMHTCYT/xQhhJB42Rjyw7SZM31nL6BJSxOdRWz8cXT/t6u/Fa8/1mINC7DBZdasWY8fPz5z5oyBgYHIdaHo6IAVK0BVFQoL+3vC2D9raWnB9Yc9ZGZmZmZm1tTUlJqaeufOnePHjyspKY0dO9bd3V1VVfWfrqqvr4+MjCwpKdHS0vriiy8IP1u5bxgMRm5u7qNHjwQ2XYwQQmhAjBs3zszULOly9Pig+URnEQ/PSh4+ys2JuxRNdJBBBJcgDi78M3lTUlKqq6vHjBkj+A7gXC4kJkLf+ndLSYG8PJw6Bbq6YG8v4GD/7+bNm6qqqmPGjBHS+JLn7bpEOp1eV1d39+7dpKSkyspKRUVFdXX1d7+FWCzWjRs3Tpw40djYOGnSpM8//1xTU5PA5P2hpqZ2+/ZtKpWKBRhCCIkdnWHDftqyafysBWQ8z6oHTm7bMCvwk0kTJxIdZBDBAmzQUVZW5vF46enpsrKygj/paPduWLgQVFWhbxWOnR38/jvExcGXXwKNJuBsAAAQGxurr68vsBWYgwaZTB42bJizs7ONjQ2PxysoKEhPT7979y6TyRw2bBiNRisrKzt06FBeXp6pqemyZcvs7e3JZDHu8UOj0crLy8vKynx8fETtpDKEEEIfZ2JicvnyH3V1dZaj8Hnrv3iQlXbj9LHzkZGysrJEZxlEsAAbjExNTcvKyjIzMxkMhoDX49nYQGoqHD0KcnLg7Nzry8lk0NKCkydBQQFcXQUZDAAAmEzm1atXraysBNOLf1BSVla2sbFxd3cfMmRIRUVFbm7unTt3MjIybt++TaFQ5syZI3Y7vv5JZ2fn/fv3raysPrLeEiGEkGhyHDPm268WO0+aIq80cGeNih02i/XT0uCd27Y6ilVDNQkgxo+oUZ+RSKQFCxZQqdTffvuNxWIJcmglJYiPBx8f+P57WLu2LyNMmwZjxsDu3dDvBuh/h4eACYqcnJyXl9fWrVt9fX05HE59fT0AqKqq0mg0DodDdDrBsLOzI5FIBQUFRAdBCCHUI1wu98WLF9nZ2dHR0bm5uUsWLzmzK5ToUCLtSviRoZoan376KdFBBh1swjFIqaurz549Ozw8/NKlS7NmzRLk0HJycOUKTJ8Ou3cDmQw7dvTuchIJDh2Czk4QQq9CfgGGXRAForq6OjIysqKigk6n+/n5PXv2LC0t7dixY0OGDHF0dPTw8BC5Li+9pKysrKurm5eXN23aNKKzIIQQ+gAul/vy5cvnz58/f/68srLy+fPnTCYTAOTl5deuXTtt2jRzS8t7SbdGefgQnVQUvX5RG/tbWFpKCq60H3hYgA1ejo6ORUVFd+7csbKysrGxEeTQMjIQEwPz54OtbV8uF9rhSy0tLYAFWL8xmcz4+Pi4uDgymezv7z9x4kQqlWpvbz958uSCgoLbt2/Hx8cnJCQwGAxXV1cLCwvx/c3OYDCuXr1aW1s7bNgworMghBD6n+Tk5Ozs7KqqKn7FRSKRSCQSl8sFAAqFsmTJEn4XqH179ixbucpipIMCLkT8Kx6Pd3zTmi8+/wJ7TREC94ANahYWFnfv3r1//76jo6O0YI/LoFBgxgwYPlyQY/bbkydPCgoKvLy8lJWVic4irh48eHDo0KGCgoIRI0YsW7bM1tb2bbMNfqMOFxeX4cOHs1is/Pz8jIyMnJwcNputpaUljgdqycnJpaSkqKiomJqaEp0FIYTQ/7DZ7OvXr7+76J3H4/Gf982fP/9tqy0rK6uC/Lz4Py46TfpEfJ8GCkPsiV8rC3IvnD9HE07PM/RxWIANajQaTU9PLyUlpba21sHBQeJ/Nz18+PDRo0eTJk2Sk5MjOov4aW5uPn/+fExMjJSU1Jw5cwIDA//py6iiomJnZ+fh4aGurv78+fPs7OzExMSamho5Obn3OteLOCUlpaysrDdv3rgKoSUMQgihPlNVVa2vr6+pqXnvdV9fX19f37+8Mn78gT2/MFlsU4awTrgRO+UF909sWfdnfDyu7yAKLkEc7ExNTX18fOLj41NTU93c3IiOI1y4B6xveDxeWlra77//3t3d7erqOn36dBkZmX+9SlZW1tXV1dXVtbKyMjU1NSsrKzc3V0tLy9nZ2dnZWVxaoTAYjMTExMbGRnHf0oYQQpKExWKpq6u/9+KIESM++eST916Ul5e/dPHiWCcnExtbM8bIgQooutpamvev/urggQOWlpZEZxm8cAYMgZmZWXFxcVZWlq2trRCLEyYTvv8e7O2hV7NP+flQVQU6OgKJkJ2d/erVK39/f4GMNkhUVVUdPnw4JSVl6NChX331lZubG5Xauwc3bzvXa2hoVFZW5uTkiNGEGI1Gy8jI0NTUNDAwIDoLQgghAID79+//+uuvBQUF6urqHR0dAEAikeh0+tdff/3BBXWampoampq7f1jnNnmaVA8eIEowLoez75slTqPsNoaEEJ1lUMMCDAGZTDY3N09NTS0rK3NychLW+blJSbBsGcTGQkAA9HALVlcX2NlBaip88QWQSPDqFdy7B/14H5yamspisby8vPo8wqDCZDJjY2NPnz7d0dExZcqUhQsX9mcWiEaj6evru7u7W1padnZ25ufnZ2Zm3rt3j8lkDh06VGR3iKmoqCQnJ3d1dY3p29niCCGEBOfly5cnT568efOmtLT07Nmz58yZc+/evfb29iFDhqxevfojayvs7e1LHj26cPyws98nVOrg3fV0YtuGtpdVv1+8iFu/iIUFGAIAkJeXl5eXT0tL43A4wpqSNjICBgNOnIDISPD2Bm3tf7+ESgUKBU6fBh0duHgR5syBN29g5sw+R7h9+7aMjIyLi0ufRxg8CgsLDx48WFRUZG1tvXz5cmtra0FNVamqqo4cOdLV1VVRUfHp06e5ubmJiYnV1dVycnIaGhoCuYUAkUikFy9eFBQUeHh44J8rhBAiSkdHR0xMzOnTpxsbG318fBYvXmxgYEChUDQ1NfPz81euXKn9b+8r/CZNSrj1543o806TppAplIGJLVIuHvql4M6fSQkJ2IqMcCQej0d0BiQqfv3118LCwpUrV1pYWAjrHsnJMGUKkEhw5Qr0pLHBy5dgYQFtbcDvdGRrC3l5fb752rVrdXV1ly5d2ucRBoOmpqaoqKj79+8rKysHBQXZ2wtx1zKPxyspKUlNTc3Pz+dwOEOHDh07dqyrq6tIdUnJy8s7cuTI559/Pnr0aKKzIITQoMPj8bKzs3///ffW1lYbG5ugoKD3dn9VVVXp6ur2ZKiOjg6/gABQUF626wBJSOt9RNWtqLN/HNmXlZGBK+pFARZg6H9aW1u3bt1KJpNDQkLk5eWFdZuCApg4EVgsePoUPtKJoakJ9u2DPXugtRVIJOB/oyoqQktLn++8bNkyBwcHPPH9n3C53KSkpCtXrjCZTHd39ylTpvSk2YZANDc3Z2VlJScnNzQ00Gg0GxsbLy8vY2Pjgbn7xzGZzNWrVzMYjM8//5zoLAghNLiUlZVFRUVVV1dra2vPnDlzeD+Ot2Gz2SdOnCgrK0tKTta1Gfnpmk0ivglZgDLirp7Ysi7lzh1ra2uisyAALMDQex4+fHjgwAFra+uvvvpKiL+Ynj6Figr4+F6s33+H2bOBzX7/9devQU2tD/fs6upasWLFhAkTpk6d2ofLJd7z588jIiIqKyv19PTmzZunr68/8BneTojl5eVxuVx9fX1XV1cHBwcBH1LXe2FhYeXl5T///HNvG5AghBDqm6ampj/++CM7O1tWVtbf39/Dw6M/e9S7u7sPHz786NEjT09PFxcXT29vA5uRX2zaNRjWIt6Ojjy/b+e1K1ecnZ2JzoL+Cwsw9L7Lly/fvHlz2rRp48ePJzjKtWswbRqw2cDl/u/FnBzo00qw+vr6kJCQGTNmeHt7CyyhROjs7Lxy5cqdO3ekpaUDAgL6+UdOIJqamrKzs/kTYjIyMqNHjx43blwPV5gIQ3p6+pkzZ1asWGFlZUVUBoQQGiRYLFZiYuL169eZTOaYMWOmT5/ezxbNLS0tBw4cqK6u9vPzCwgIAIDGxsZJ/v4gq7jil8OS3Rfx8m9h8REn4m/etLW1JToL+h98moveN3ny5KdPn/7xxx/GxsYErwHz94fYWPjkE2Cx/leDVVT0rQDjHwImLsdPDZjCwsJz5841Njba2NjMmTNHRE67UlZW9vX1HT9+PH9CLD09PTU1lcAJMRsbGzKZXFBQgAUYQggJVWFhYVRU1OvXr83MzIKCguh0ej8HfP369f79+1+/fj1v3ry3XbhUVFQSbt2aNmPGjkVz14SFyykq9Tu4yOHxeGd/3JJ/58/01FQTExOi46C/wBkw9AEtLS1bt26lUCjC3Qz2rtevgcsFTc0P/KeUFJg0CTo7/1uDbd8O69f34Q4FBQW//vrr119/3Z8V5JLk9evX58+fLyoqUldXnzNnjih/WfgTYklJSY2NjfwJMXd39/7/Ve6Vn3766fXr17t27Ro8ewYQQmggvXz5Mjo6uri4WFlZeerUqWPGjOn/79uampoDBw50dHQsWrTo79ufWCzWfz77LONu7qp9x4YZGPXzXiKlvaXl1/UrmU2v427cEMEOwwjb0KMPkJaW1tPTu3PnTm1t7ejRo4X+jpPHAz8/+OUXGD8e/v5rQl8fPDwgOhpYLODx4P/Yu++4JrLuYeATIHQIHYIoXUCRFoFQpVhARQER1rr2rruuiPWxrL2uXdS1L2ADuwsoRWoQQZoSqhSJUhMS0kiZ9495Hl5/6rqUJBPwfv/IJ5Bk7gkKmTP33nNMTSEfH6iuDvq/RZD+VVVVVUlJyfjx43E43JePFRRAhoYDeAODjEAgSEtLu3jxYktLi6+v7/Lly/F4PNpBfY+ioqKFhYWvr6+RkRGdTi8sLHz58iWZTJaVldXX15eVyAp+JpP55s2bMWPGgOq9AAAAosVkMuPj42/cuEGj0SZPnrxs2TJjY+OBn3tUVlaePHlSKBSuW7fum+WdZWVlQ4KD2V1du9ev0jEwHDFSPG14JK66tGjv4p+cbG0S7t0Dn1nSCSRgwLfp6Ojw+fzs7GxFRUWxL0TEYKBhw6AbN6BLlyBHR+jrifLhw6FJk6C7dyE2G8LhoNJSqKoK8vPr0yBv376tqKiYMmWKkpLSl48dOgQFBEA/xsxGdXX12bNnSSSSqanpmjVr3NzcBkthCRkZGTweTyQSXVxc5OXlyWRyXl5eampqe3u7srKylpaWWEdXU1NLS0tTV1cXY5MGAACAHwxyQTA6OrqqqopAIKxatcre3l4kl9WKiorOnz+vqKi4fv367xRex2Awnp6e/n5+uzeur35bYu/pM9jbND+/89fZzeu2b9t65NAheXl5tMMBvg0sQQT+kVAoPH78eE1NTWRkpCQ2gxUXQ1OnQi0t0IUL0IIF33jC27eQnx+kqAgdPgyVlUF79nzxOAzDNBqNwWAwmcyurq7Ozk4MBqOhoaGqqqqqqpqampqVlXX27NnBkm+IHIvFevz4cVpaGlJRys/Pb1CvpuPz+UVFRdnZ2eXl5TAMDx8+3MPDw9XVVXw9xHbt2oXBYHbu3Cmm4wMAAPxQysvL79y5Q6FQRowYER4ebmlpKaojp6en37p1y8DAYN26db28PNfe3j53/vzK2rpVB06a2kjvmvzvoLY2/7l7C7WpPv7uXWneVgBAIAEDvo9Go+3du1dOTk5Cm8GamqCgIOjNG+jwYWjjxm884dAh6I8/oAkTIBOTNhhmvX790Nu7urLSNSVlK5fr3tpKhKB2RaXxsHCLAZ6rojqdRoU5HKqAfwmGJ3d1jZeVrVJTi4CgNB9fDz7PqrGRe+UKXiiEtm2D/v4bgiAoMRFiMCc19nMAACAASURBVKCiImjfPrG/WckqKCiIi4tjMBgEAmHWrFkDrCglVZAdYhkZGW1tbXJycvb29l5eXtbW1iJPL5ECoXv27NH75mZFAAAAoHeam5vv3btXUlKiqqo6efJk0VbfTUpKSkhIMDExWbt2bZ8qb8EwfPLkqZ27dnpPnxmxNnIQVeYQCPhJsdfvnjk2e/aso0eOSGj3PjAAIAED/sXbt29Pnz5ta2u7evVqSUyYdHVBq1ZBUVGQre2XDxUVdf7xR+KoUdw7d9oqKo7JYTO6uesmTzfTM/DuYjTPXmDWxXDfuSnr6u0RD+/J8Lo7rUdjeLx2J+dxc0JePE5Vrasd++uym3uPaz+Ot8p+uXn0mKBXubUd7Y8Mh71paf774sVJOJx2fT20ahW0axe0Zk1f95hJrdbW1tjY2Hfv3unp6c2ePdvGZoiscf8C0kOMRCIVFBTweDxNTU0XF5dx48Zp96tr3DfV1dUdOHAgLCxswoQJojomAADAD4XFYiUmJqakpMAwPG7cuOnTpyuKrgq8UCiMi4vLyMiwsbFZsWJF/45MoVA2btqUlJw8+7dt46aHSf9SkZq3JZd/36IAwReizxOJRLTDAXoF7AED/oWenp7kNoNBECQvD4WEfFEOMTc3d9/+/XW/bYgpK33Eh2z0DF2tR3vE3Nfi8bzNLJwUlboWr1TV1VPksLXf5NeFzVJu+qDU/LF+xk/axQXy1A6Dlyk18xbLsVn6uZmdS9cYKigYMBjD9//hoKQ01oGgPn+p3d+P1tQ3Co8duVpUnN3aYjh7ti4abYhFTiAQPH/+/OLFi21tbRMnTly2bJm+vj7aQYkLBoPR1dV1dHT08fHR1dX9+PFjYWFhampqdXU1FovV19cf+OVVHA6XnZ3NYDDc3d1FEjMAAMCPQygUZmVlRUdHv3v3ztbWds2aNS4uLiLcFMDn869cuZKbm+vq6rps2bJ+b39SU1ObERpqb2d3Yu8u0vO/9YyMdQ0lWnS39z7Wv79xaPedU4e3Rm3889JFFLtlAn31g26GAfpk2rRp1dXVCQkJZmZmkuwMVldXd+Pmzes3bnQxWV5BodbhcyfTO4v2HBmW+FjjXWkTBlMzb7H3/LD6kJkCxa/qakCQ1YVTDFPzTz4T7PZ/tWkHuaCFwWBkZKwcCCrquG2Xbxnev+P37OG2ekqIm5uxscnUJYtnzZo1eIu3VlVVxcTEfPz40dLScs6cOVJe51CElJWVvby8vLy86uvrSSRSXl7exYsXlZWVCQTCAIvXYzCYMWPGZGVlMRiMobSGEwAAQNzIZPKdO3eamprwePzChQtFvkOJy+UiqZ2fn194ePjAp60mTZp0+uTJly9fntu0RmfYiODl6+w9xokkVJFoqCI/uHC64OWLRYsWx5HJYGH8oAMSMODfycjILFmyZO/evZcuXZLMZrDk5OR9Bw4WvM53nTB5/rb9BAvLbl19DrVD7Zdljjs3yXI58jQqlkHv1tBsIXo0e/23HKJOPkn5Q6My5YNmWbFKw/tmL1+LG38qNX+CIEi9ukK9skK56YPSR4rWm9eq72uUmj9pvC2VYzFx5HdKLc048rvWCYGujxNiit80zl96c6T1rUfxmzZvDggM3L51K4FAEPdbFiEmk3n//v2srCxlZWWk76T0r6AQB2NjY2Nj49DQ0JKSkszMzKysrIF3c3ZwcMjIyCgtLQWTYAAAAL3R0tLy4MGDgoICFRWV8PBw0W73QtDp9FOnTn348GHq1KlBQUEiOWZHR0diYqKhoWF1VdXVq1cP7N6kqqk9bcmasX4TZGXRPHmuKCp4cuV8WV726tWr7165MHgvE//gwB4woLcksBkMhuGHDx/u2bfvY3NL0MIVPiHhCkrK8tQOvxkBbc7EN78fESgoYOmdMBYrkFeAZWUhCLK8Gl21cMU/HVCWyxUoKGAEfLjXfy7l2Cy+0n/L6NGpHcm3rj+7cdnZ2Xnnf7Z7enoO/D2KFQzDeXl59+7d6+rqcnV1nTlzZp/2Hw9tzc3N2dnZubm5dDpdUVHRwcGBSCT2dUecQCCIjIy0tLRctWqVmOIEAAAYGr7Y7jVt2rRvtIEZsLa2tpMnT7a1tc2dO9fDw0NUhz179mxZWdm2bduQdRM8Hi8mJubw0WPNzc0eU4K9p4eZjfqyrbNYtVI+ZDyKz3ocz2UxV61YuW7dWtDga1ADCRjQB/fv309MTJw5c+b48eNFe2QYhu/cubNr9+9sHm/aktVeU0Nk/9eIQ4bPs9/7H9NbN6h2jqSTl9j4/3ZMtrx6QbP0TeWSNbRRX5XrECkOi5l868aTqxesrKz2790zbpwULUL4XEtLS0xMDJlM1tPTmzNnDmhX9U1CobCioiIzM/PNmzdCodDAwMDd3d3d3b33SwovXbpUXFx87Nix/s2hAQAADHk9VwMZDIaNjU1ERISYlsE3NDScPn2aw+EsX77c9uvaXf315s2b6OjoiRMnzpgx4+uHbty8GRMbq4rT9AgKdRrnP8JS9EV3e7R9bCrKepn9JKG6rHh6cPDP8+aNHz9eJH3SAHSBBAzoA6QzWG1tbWRkpJmZmagOW15evmLlqveNjeHrotwmTsF8a3GC6a0b9vv+w1NTzz96rsXdC4IgxdZmCIPh6Eho3TOPy31xLzbh/ImJE8YfP3ZMqrZU8Xi8xMTExMREDAYzadKkwMDAH7bXWe8hxeszMzNbW1vl5ORGjRpFJBIdHR3/dW1Mfn7+n3/+uXLlSgcHB8mECgAAMIi8ffv23r17FApl2LBhM2fOFF/p3fLy8ujoaBkZmTVr1ohwg3p3d/euXbuEQuHu3bv/6UIbn89PTk7+Kzb2+fPnQiFs6+pu4+I+huiJNzYdeAC09tYyUs7bV9nv8nI6Wpu9vMfNigifMWMGWNIylIAEDOgbKpW6b98+OTm5bdu2DbwOAYvFOnTo0B8nT06etyRk6Rrsd6cUtIoKXH9dptjakn/07IfAaQMcun+YdPrdM0fT7t/etm1b5IYN0pDnVFZWxsTEfPr0ycrKas6cOUO4zqGY1NfXZ2Zm5uXldXd3a2houLq6ent76/xzEwI2mx0ZGeni4vLzzz9LMk4AAAApR6FQ7t279/btWzU1tWnTpnl6eop8u1ePnJycv/76S0NDY+3ataK9JHr37t0XL16sWrXK3t6+N89/+/Ztamrq85TUzIyXEEZmuLmlgYkZ3sQMb2JuZGahqaevpPKPiVM3h9PZ0Uapq6W8r6HUVjc3vKe8r6G2tbkQieP9/fz9/ERbKBKQHiABA/qsoqLixIkTFhYW69evH8jf1sTExCXLlhlZWi/YukfPaERvXqLQ3jbm8O8lW3Z3a2j2e9yBqykr/nP3FgUMfOP6NRSnQeh0enx8PIlEUldXnzFjBuj+MRBsNvv169cZGRkNDQ0YDMba2ppIJBIIBCwW+/WTT5w40dDQcPToUfGdWwAAAAwiXV1dT58+TU9Pl5GR8fb2FtN2rx5JSUn3798fNmzY2rUi3grV1NS0b98+GxubtWvX9vW1QqGwpqamoqKCTCaTKyrIFZWVlRWtzc3y8go4TU15RUV5BQV5BUUBn89mMQV8Pq2jncNm4zQ0TM0trK1GjraxsbKyGjlypLW1NVjiPuSBBAzoD6TN/IQJE8LCwvrxcj6fv2379kt/Xl6y6yBxwmSRhycBsFD4LObq3TNHDx44sGrlSkmPDsN5eXl37txhsViurq7h4eGg7b2oUCgUEomUlZXFZDKR4vXjxo37orlKenp6XFwcUo0DrTgBAACkAY/HS01NffbsGZfLdXJyCg0N/c4KgoETCoWxsbGZmZkDabX8nYMfOXKkqalp586d2traojpmW1tbe3s7i8WCIIhKpaqpqcnJycnLy2tra+vo6PS7XxkwqIEEDOgPGIYvXbpUUFCwdOnSsWPH9um1Hz58CP/pJ2oX+5dj53o58SW13r8rO7FhhZO93fWrVyVWj+jDhw8xMTG1tbVGRkZz5swR4WY8oAefzy8uLs7MzCSTyTAMI8XrnZ2dkQ97Go22efNmf3//mTNnoh0pAAAAOmAYLiwsjI+Pb29vNzExCQ8PF3enUC6Xe/HixbKyMnd397lz54q8FkVycnJ8fLw4Ko0BwBdAAgb0E5fLPXDgQEdHx+bNmw0NDXv5qqdPn/68YIHPjFkR6zaKqpOGZmlRp81oodw3lopJAJvZdXFnVOO70vh7dx0dHcU6Vk+xDRkZmYkTJ4JiGxLQ0tKSk5OTk5PT2dmpoKBAIBDc3d0tLCwOHDjQ1dW1f/9+tAMEAABAQW1t7b1792pqarS0tKZPn+7q6iruhpOdnZ1nzpxpbGycMmWKqJp9fa65uXnPnj3Dhw/fuHEjWF4OiBtIwID+a25uPnDggLq6+pYtW3qz2vt8dPTWbdvXHDrl6OUrqhiUmxrHT/Wlj7R59cd5lqGRqA7bV89v34z748DtW7cmTZokpiFKS0vj4uLa29vHjBkza9YsUa2OAHpDKBSWlZVlZWWVlZUJBAI9PT1tbe3y8vIdO3YMGzYM7egAAAAkp6exsrKyckBAgJ+f3zf3yooWhUI5ffo0nU6fN2+eODY8wzB89OjRurq67du3S1WVY2Cokt21axfaMQCDlaqqqp6eXkZGRnNzM4FA+P7Vr4MHD+4/cHDbn3E2BBcRxsBTx/HV1Iwf3DG5F8cws+wysxDhwXvP3NbebLT9b0t/1tPTcxL1PFhnZ2dcXFxCQoK8vPzs2bNDQ0OVlZVFOwTwfRgMRl9f39nZ2cfHR1dX98OHDzU1NRAElZaWKigoGBgYgKlIAACGPCaT+eTJk6tXr3769MnT03PlypWjRo2SQE8qMpl86tQpLpe7cuVKJycncQzx4sWLrKyskJAQ0F8EkAwwAwYMVEJCQlJSUlBQ0NSpU7/5BBiG1/+24W7C/W1/xhqMMBFHDBrvSl1+Xa7aUPc+fG7xf/YJxX817puqS4sOrfx508aNUVEbRXJAGIazsrLu3bvH5XI9PT3DwsJEu+EY6DcKhXLkyBEulysQCBQVFR0cHIhEorW1GNtxAgAAoEUgEOTk5Dx8+BBprBweHt77rQcDlJWVFRsbi8Ph1qxZI6YVB8jiQyMjo6ioKLD4EJAMMAMGDJS1tXV9fX1WVhYej//6L7JAIIiYNSsnv3DntbvaBuL6e83R1a8PCVdpbDB+eLdbQ7PDgSCmgb5PS9+A4DPh8PYoWgfVz89vgEdrbGw8f/58RkYGHo9fuXLluHHjwDSL9FBTU2MwGLW1tUg3sMLCwtzc3Pz8/K6uLh0dHTBFCQDA0ADDcEFBQXR0NIlEwuPxS5YsmTJlysC7gPZy6CdPnty7d2/YsGHr16/X09MT0yjR0dFUKnXt2rXq6uriGAIAvgZmwAAR4HA4Bw8e7Ojo2LRp0+cXqGAYXrxk6avikq2XYhWVJVEn3ejvR5QJgWgV5EC0faTsnBe64Ze1kZGR/TtCd3f3kydPnj9/LicnN3Xq1AkTJoBrclKoqqrq6NGjs2bN8vHx6ezsfP36dU5OzocPH3raiDk5OYH6wgAADF4VFRXx8fH19fUSq7TRg8/nX7t2LT8/39HRcdGiReL7W/r8+fN79+6FhIQEBASIaQgA+BpIwADRaG5uPnjwoJKS0tatW1VV/9v0ffOWLbcTHuy+maCKk1CJdinxqaFux9zgwwcPLlq4sK+vLSkpiYuL6+josLOzmzVrlpaWljgiBAZOKBRGRUUZGRn9+uuvPd+sr68nkUh5eXlMJlNJSWns2LFEItHCAp2tiQAAAP3z8ePHx48fS7jSRo+urq7z589XV1f7+fmFh4eLL+traGg4dOiQsbFxZGQkuNAJSBJIwACRefv27ZkzZ0aOHPnLL7/IyMicOXt2z779e2If6uB/xDJxNWXFexfPiouNmTy5t52maTTa7du3CwsLNTQ0IiIixLTVGBCh69ev5+XlHT169Is1h0gbMRKJVFZWJhQKDQwMxo4d6+HhAdJpAACkHJVKffr0aXZ2toyMjJub2/Tp0yWz4LAHhUI5c+YMlUqNiIjw8fER30BcLnffvn0MBmP79u2gsDAgYSABA0Tp77//fvDggb+/v1AoXL123a4b8cNQKkvYY9SpI0yjEfWhEZIfujgn48RvK14kJzs7O3//mUKhMC0t7dGjR93d3T4+PtOnTwfFNgaF4uLic+fOLVmy5J/+iWk0Wl5eXlZWVktLS8/SRAKBIMlryQAAAL3BYrESExNTU1P5fL6Tk1NoaKiOjo6EYygvL7948aJQKFy2bNno0aPFOtb169dzcnK+8wccAMQHJGCAKMEw/Oeff5aWlt65c+eXk39aoVQMo4csl+sTMQVHfvchcNqb3Yd5Et9fm3b/9oPzfxS/efOdqY+GhoaYmJi6uroRI0bMnTvX2NhYkhECA8Hj8TZs2DBmzJilS5d+/5n19fWZmZn5+fkcDkdZWZlAIICliQAASAk+n5+bm9tT5HDGjBnDhw+XfBipqal3797V1NRcvXq1uFssFhQUXLx40cvLa+7cuWIdCAC+CSRggIjR6fTxEybY+gVOXbAc7VggCIJkurtHnT5iefk8R98g//DpNmc3CQdwbut6LIfx7MmTr1exs9nsR48epaenKygoBAUF+fr6gjXog865c+fIZPLx48d7U6OSx+OVlJT0LE3E4/Fubm5ubm6g9BYAAKiAYbiwsDAhIaGtrc3Y2Dg0NNTa2lryYQiFwjt37qSlpZmZma1cuVLcfxKpVOrvv/+uqqq6fft2BQUFsY4FAN8EEjBAxBYuWvSu7kPUuWtS1RDJ4GUKYet6eRr13S9RFcvWSnLobg5n+6ygVUsW//bb+s+/X1JSEhsbS6VS7ezsZs+erampKcmoAFHJycm5fv36unXr+rRahkqlvnr1KjMzs7W1VUZGxsrKysvLy8HBQQItTQEAABDl5eXx8fGNjY1aWlqTJ0/29PRE5YObyWReuHChoqLCxcVl/vz54l6hLRAIjh492tjYuHnzZiMjI7GOBQD/BCRggCjdunXr1w2RhxKS1TSkLp1Q6GgnbP2tadLk+hBJ7wdrrK7YPnt6cmKim5sbBEFtbW1xcXFlZWU6OjqzZ88W9zJ3QKyYTGZkZKSnp+ecOXP68XJkaeKrV6+4XC6yNHHcuHGoLP4BAODHUV9fn5CQQCaTVVVVp0yZ4u3tjVafyaampnPnznV0dAQHB0+aNEkCI966dSstLe2nn37y9fWVwHAA8E0gAQNEpqmpadTo0Zujb1o5jkU7ln8AwxBK83Ip9+KSrkeXFhfn5OQ8fPiQz+ePGzcuODgYLH4YAo4ePdra2nrw4MF+XzxGliZmZmaSyWQYhpGlie7u7hIuPgYAwJCH1JcvLCzEYrG+vr6BgYFKSkpoBVNWVvbnn3/CMLx48WI7OzsJjJiXl3flyhUXF5fFixdLYDgA+CcgAQNEJiw8nKuovnDbHrQDkVJ7FkaM93Cl0+kWFhZz5swxNDREOyJANF68eHH37t0tW7aYmJgM8FDI0sSMjIy2tjY5OblRo0YRiUSwNBEAgIFra2t7/Pjxq1evZGRkPDw8Jk+erKGBWotOGIYTExMfPnyoq6u7atUqPB4vgUEbGxsPHz6sp6e3adMm8XV2BoDeAAkYIBovXryImD3nxNMMlUFVTkChox1XUd7i5imBsSh1tb/PD7108eK0adOkaoMcMECtra3bt28PDAwMDg4WyQFhGK6pqSGRSMjSRBwORyAQPDw8wHYFAAD6gcFgPH/+PCUlRSAQODk5BQcH6+npoRgPl8u9cePG69evLS0tly9fLpmpfiaTuX//fjabvXXrVsmX1weAL4AEDBCB7u5uWzu7yYvXeE+bgXYsfeP0n0iTe3E1cxeVbdgmEH/rrZhj+xkNVcmJieIeCJCw3bt3wzC8a9cu0R6WzWa/fv06JyentrYWgiBTU1M3NzdnZ+cv+j4DAAB8E5PJTEpKSk1N5fF4NjY2YWFhqF/HaW1tPX/+fFNTk7+/f1hYmGRq/wqFwhMnTlRWVq5duxbsuwakgazIzxiAH9CBAweqGinzonYMuomdtrFEpeaPpndjhiU/pdo7cfQMxDqclSPhxokjlubmqNT5BcSns7PzzZs3Li4uqqqqIjwsFos1Njb29PR0dnZWUFCorq7Oz89PSUn58OGDvLy8jo4O6FsAAMA3cbnclJSUCxcukMlkKyurZcuWBQQEoN7x4u3btydPnmQwGPPmzQsICJDYOcPdu3fz8/NnzJiBlMICANSBGTBgoGg0mrGJya4bCcZWNmjH0k/DEh877tyE7eqqWrT83S9RQjkx1sDNevow8fKZt2Wlgy5ZBb6jvr5+//79M2bMmDhxovhG+WJpImjoDADA17q7uzMzM//++28Gg2FmZhYcHGxlZYV2UBAMw8nJyQ8ePMDhcCtWrBj4jtneS09Pj4uLGzt27JIlS8AnLyAlQAIGDNSePXv/zsyJPH0Z7UAGRLGtxWnbBlzFuxePUnnqOPENJBQINkzzPXn0iKj2CwHSAIbhLVu2aGtrb9y4UQLDcTicoqIiEonUUzWRQCC4u7tra2tLYHQAAKSTQCDIycl58uQJjUYbNmzYlClTCAQC2kFBEARxudxr164VFhaOHDly2bJlkqzvWlJScv78+REjRvz222+g7DAgPUACBgwIk8kcYWKy6fwNizEOaMcyYDCs9OkjGy/24oRp929n3Lpe9KYQXIobSuLi4l6+fHn48GFJLvJBqiZmZWW1tLRgMBhra2sikejo6AjOMwDghyIUCkkk0pMnT9rb2/F4/LRp0xwdHaXkI6a5ufn8+fMfP36cOHFiSEiIJBdO19XVHT9+HIfDRUVFga4egFQBCRgwIMeOH4978HjrpVi0AxlMBHzer5O9r166KNblaoCEvXv37uTJk/Pnz/fw8JD86PX19cjSxK6uLkVFRQcHByKRaG1tLSVnYAAAiAkMw4WFhQ8fPmxubtbS0po8ebKHh4f07A4tKiq6fv06j8ebO3cukUiU5NCtra2HDh2CICgqKgrdqo8A8DWQgAH9x+VyjU1NVx8+M9p5yO5qVa+uoFuIfvV8Utz1spRn2ZkZIj8ygBaBQBAZGWlhYbF69Wq0YuDz+e/evSORSEVFRQKBQFNT08XFxdPTE5x8AMDQIxAI8vLynj592tbWpq2tHRgY6ObmJicnh3Zc/8Xn8+Pj41NTU/X19ZcvXz5s2DBJjs5gMA4fPkyj0davX29mZibJoQGgN6TlFxUYjB49eqShqz+Esy/V+ve+YYFtLu6Fvx9hG4iyTaRf6E+3Th5+9+7dqFGjRHhYAEWysrKjR48uKiricDiK4m9p8E1ycnJ2dnZ2dnZMJrOwsDAzMzMpKSkpKcnY2NjV1ZVIJKqoqKASGAAAIiQQCPLz858+fdrS0qKtrR0eHj5u3DjpSb0gCKJSqRcvXqytrXVwcPj5558l3DmDw+GcPn26ra1t9erVIPsCpBMoQw/0X9SmzaN9JlraOaIdiLjwVVWFWAWT+DjTuzE8DQ3aqDGQiBZ0ycrJtTU1NjfUjff3F8kBAWkgFArz8/NNTEzweFGm6/0gLy9vbGzs5eVFIBAUFRWrqqoKCwtTUlLq6upkZWX19fWlZ4USAAC9JxAIXr16denSpezsbEVFxaCgoIULF1pYWEjVbzSZTD558mRra2tISMhPP/2ExYqxsPDXuFzu6dOn6+rq5s2bN3bsWEkODQC9B5YgAv3U2to6wtj4fMorda0hXngNV1FO2PKLxruyZk+fwj1HRVWlo+LN61MbVnxoaJCVlRXJAQHUcTicDRs2ODs7L1iwAO1Y/g+hUFhRUUEikQoLC7u7u3E4HIFAcHNzGzFiBNqhAQDQK1/MegUGBrq7u0vbx4dQKHz69OnTp081NDSWLVsm+dmn7u7uM2fOVFZWRkRE+Pr6Snh0AOg9MAMG9NPly5fb2TzfGbPQDkTsuDq69SERGIFgxKMEHg7XNlY024h18IYvbt90sLMzNTUVyQEB1MnJydXU1FRUVEyYMEGqql9gMBhdXV1HR0dfX188Ht/Z2fn69euMjIyCggIul6unpweqJgKA1Ppi1mvGjBkLFiwwMTGRqlkvCII6OzvPnTuXm5trZ2f3yy+/6OvrSzgAHo939uzZioqK0NDQ8ePHS3h0AOgTMAMG9JMjYeyEBSuIE6egHYjk4MrfMixHirBN852zx+Q7225cvyaqAwKoe/nyZWxs7IYNG0aOHIl2LN/T0dGRn5+fmZnZ2toqIyNjZWVFJBKdnJzk5eXRDg0AgP9CZr2ePHnS2tqqo6MTEBAgVRUOP1daWnr9+nUmkzl9+vRJkyZJ/goUn8+Pjo4uLS0NDg4ODAyU8OgA0FcgAQP6o76+frSt7eWcMiw4XRuAj/Xvt8wMpHZ0SNsyEqDfaDTa5s2b/fz8wsPD0Y6lV+rr6zMzM/Pz8zkcjrKysp2dHahfDwCo43K5WVlZz58/p1KpUp568fn8R48eJScna2pqLlq0yNLSEpUYLly4UFJSMn369MmTJ0s+AADoKymqmQMMIqmpqbbObiD7kuWwFagdLHw/q+vijU1VcRqFhYXOzs6iDQxAi4aGhrGxcVFR0WBJwIyNjY2NjSMiIkpKSpBOYiQSSVtbe+zYsd7e3jo6OmgHCAA/lq6urrS0tLS0NCaTaWhoGBIS4uzsLJ2pFwRBzc3Nly5damxsdHR0nDdvHip1Vru7uy9cuFBWVhYUFASyL2CwAAkY0B8vUlOtXYZs9fneG3XyiOmdv8o2bK2d9XP/CiSOdnFPSU0FCdhQ4uDg8ODBgw8fPhgZGaEdS29hsVgCgUAgEGg0WkFBQW5ublJSUnJyspmZmZubm7OzM1qF9QHgx9HR0fH8+fPs7GwulztixIjw8HBXV1dpnosmkUixsbFCoTA8PNwfpYq+G1g+1QAAIABJREFULBbrzJkzNTU1QUFBU6dORSUGAOgHsAQR6A/DYUa/nbliNmoM2oGgDFdR7rR9g2ZpUbuTc+HeYwwzi74e4eXDe29fPHmRnCSO8ABUUCiU3bt3D/azAQqFQiKRcnJyGAwGFotFliba2tpK7ZV4ABi8Wlpa0tLSMjIy+Hy+ubl5QECAnZ0d2kF9D4fDiY2NzcvLw+PxS5culXCT5R50Ov3kyZNNTU1hYWGg6gYwuIAEDOizyspKZ1filZxSDDgVgyCMgG8ec23UHwcxQkHl0jUVK9b1qUpHR0vzukkeVGoHKEM3lOzYsUNBQWHbtm1oBzJQPfXrCwoKeDyehoaGk5OTh4fHIJrcAwBp1tDQkJKS8urVKxiGx4wZM3XqVGNjY7SD+heVlZXXrl3r6Ojw8fGZMWOGhNt89Whrazt58mRHR8eCBQvAKhJg0AEJGNBnly5duh7/4LeTf6IdiBRRe1/jtH2DeiX5+dOXHL2+1d5dP8U79vo1Dw8PMcUGSF58fHxycvL+/fu1tYdIlzwWi4UsTaytrYVhGI/Hu7m5ubu7q6mpoR0aAAxK1dXVSUlJJSUlcnJyY8eOnTx5suTrtvcVj8d78OBBSkqKqqrq/PnzUZymo1AoJ0+eZLPZy5Yts7W1RSsMAOg3kIABfbZm7bp2GcWZq9ajHYh0wQiFarVVdAurvr7w5IaVs4MCly9fLo6oAFRUV1cfOXLkp59+GnqdQD9+/EgikfLy8qhUqpycnK2tLZFIHDNmjJwc2FEMAP9OIBAUFBQkJSV9+PBBSUnJx8fHz89PXV0d7bj+XVNT05UrVz58+GBrazt//nwcDodWJGQy+fz587KysmvXrgWNNIFBCnxkAn1WTiY7TpmBdhRSB5aR6Uf2BUGQgYk5uaJC5PEAKDI3N1dXVy8qKhp6CRgejw8JCQkODiaTySQS6c2bN0VFRSoqKgQCgUgkmpmZSXPNAABAEZvNzsnJefHiRUdHh5qa2tSpU/39/ZWVldGO698JhcLnz58/evRITk5u7ty5Xl5eKAaTmZkZFxenrq7+yy+/4PF4FCMBgIEACRjQZ5UVFVPW9LnaxI9Jq7iQbm7JV/3eMi1DU/N3L55ILCRAAjAYzJgxY0gkEovFGhQnWH2FwWBsbGxsbGzmzp2L1K/PysrKyMjQ0tJydnb29PTU09NDO0YAkBafPn1KSUkhkUjd3d3Dhg2bP3++q6vrYJk0bmtru3r1anV1tbm5+cKFC3V1ddGKRCgUPnjwICkpafjw4atXr9bU1EQrEgAYOLAEEegbNputpqZ2s6BSQVEJ7ViknRyza9IEN1hOrnj73qaJU/7paTVvS85GrqqrrZFkbIC4FRcXnzt3btGiRa6urmjHIglI/XoSidTQ0ABBkLGxsaurq4uLC9gkBvzIkI1epaWlEARZW1v7+fmNGTNmsMwSwzCcmpr64MEDGIZDQ0N9fX1RjJzD4Vy+fLmkpIRAICxYsED+h29DCgx2IAED+qakpGTS5ClnU16hHcjgYPAyxeH3rcpNjZ98xhft2M8y/EbtODaz62cXm66uLtBqaSjh8XgbNmywtbVdtmwZ2rFIFIVCQcp1tLe3y8nJjRo1ikgk2tvbD5br/QAwcHw+//Xr10lJSRQKRUFBwcXFxd/ff3Ctl/v48eONGzdqa2tNTU0XLlyIboGQ1tbWs2fPfvr0aeLEiSEhIYMlgwWA7wCfiEDf1NbW4keYoB3FoPFpnP+LJ2k2p45a3Phz/FTfd79uqp6/5IvnKKmoamhr19fXW1n1ZwsZIJ2wWOyoUaPKysp4PB5aZZpRYWhoaGhoOHXq1JqaGhKJ9OrVq5KSEmVlZaSTmLW1NTh5AoYwOp3+8uXL9PT0rq4uHA43depUPz8/FRUVtOPqg54dXxgMJjQ0dMKECeh2/6uuro6OjuZwOAsXLvxBFhQAPwKQgAF909nZqYx2vaaO5k+FGalG5pbWToOg9QdfSbl0046G4JmOOzaqV3+72Iamtm5LSwtIwIYYe3v7N2/eVFRU/IBVkjEYjIWFhYWFRUREBLJJ7NWrVyQSCWwSA4aqurq6Fy9eFBYWCgQCc3PzOXPmODg4DLrG5Y2NjTdu3GhoaLC0tJw3bx66E1/IGsj4+Hg1NbXIyEgTExMUgwEA0QIJGNA3DAZDUVkV3Rj2LJltbGWjO2wwtYLttLJ5GftQhtf9zUfVNDTb29slHBIgbnZ2djIyMkVFRT9gAtYDi8USCAQCgdCzSSwpKSkpKQnZJObq6qqqivLfEwAYCB6PV1JSkpmZWV5eLisr6+Dg4O/vb25ujnZcfcbj8R4/fvz8+XMFBYXw8HA/Pz90J6tZLNa1a9eKi4stLS2XLl2KYtV7ABAHkIABfdPV1aUgqapuMAwLhQJZWTkIgmChEIZhGVlZgYDfVFu9J+a+sqqaQMD//FGMjAwsFMrIyna0NOO0tZGHIAgS8HlsFktVHffFwWGhECMj09nRpqGtC0GQQMCXkZFFPnKQR2VkZUX5dmRlBbLfrlyirI6jUqkiHAuQBioqKhYWFsXFxXPmzAHr7jQ0NPz9/f39/SkUColEys3NvXPnTkJCAtgkBgxSHz58yMjIyMvL43A4GhoaU6ZM8fb21tDQQDuu/igvL4+NjW1pabGzs5szZw7q76KhoeHChQvt7e1+fn5hYWGyIv0sBgBpAD7wgL5hMBiKKhK6Yv32Vc6tU0f2xjyAIOjFvbiKN6/XHPjj6LqlAgF/39K5AbPmP78b8/mj/mGzrh/+XcDjQRDU0fxp68Wb5qPt4i+cenbziu4wI2VVtS3nr2P/VzqJXJh/ee82Xne3kqoah8ncceVW3MlDeGPT0GVrIQi6ffooBEE/rdso1jeIEQhGnzhYM3cxVl6+u/vbk2PAoGZvb19ZWfn+/XszMzO0Y5EWhoaGoaGhISEhPZ3EkE1iSCcxc3NzkKwC0uzzKS8MBmNtbe3l5eXg4DBIk4TOzs67d+/m5+erqaktWbLE2Rn9hf2ZmZm3bt3CYrHLly93dHREOxwAEAuQgAF900lnKCqjuZ9409mrYaOM9vyVQC78RiXGquLCPx6njrC0/uv4/hd3YvjB3c9uXjn9d4aymvrVAzsLX6a4TgjsefL78rfIk+OjT/65Z2vQguXRO6NCl62FYTjjccKOy3Hifi/ahfmWV6LNYq+/t7DsZrPFPRwgeY6Ojnfv3i0uLgYJ2Be+7iSWnZ2dmZmpra09duxYsEkMkEKfPn3KycnJyspiMpnq6uqTJk3y9vbW0dFBO65+gmE4Kyvr3r17XC6XSCTOnDkT9fXAHA7nr7/+ys/PNzY2XrZs2eD92QLAvwIJGNA3PF63rKL0LsU2GGEywtIagiAjM8s3makVRa/tPbyV1dQhCFq4ZfcXTzYyt0Se7DI+4NnNK1GnLwt4vPfvyjgsppa+gYH4iz22ORNT7yU67YxaVfym5WgL5OEBScHVR0CEtLW1jYyMioqKQkJC0I5FSn2xSSw3NxdsEgOkCp/PLy4uzszMJJPJEAQN9ikvRENDQ0xMTF1d3fDhw2fPni0NV4jq6+svX77c3Nzs7+8fGhoK1iQDQxv4/w30jaqqKpXNkthwQoEAucP91qBfP6qmoYnckZGRgWFYRQ3X0+mOSacL+Dx1Le2el8v+7+97N5crJy8PQZBvaETmk/usLoZfSITo38y3dNqMTo979Cli6pIqMuTuDp06Ba1cKZmhAcmwt7d/+vRpc3MzuvXEpB/YJAZImw8fPuTk5JBIJCaTqaamNnHiRC8vL11dXbTjGhAWi/X48eP09HSk2Iavry/qpRqFQmFiYuKTJ08UFBSWL1/u5OSEbjwAIAHg8wzoG3U1NW47RTJjqeI0mz80dnM4WAWFoqx0DR293j+KcPafdPvMUSadrqKufmX/DmunsRPC51Le1+jgh0EQVF9R3lRbPczMIvvZI1tXdwiCfKbP3PlzmFAo/HnTDsm8RwiCYFnZuBHGmvNm/0QiQe7uEhsXkAwkASsqKpo0aRLasQwOyCax4ODgiooKsEkMkLzOzs7Xr1+TSKSGhgYIgoyNjUNCQohE4mBv6CcUCrOzsx8+fMhgMFxcXGbOnKmOdlMZCILa29uvXr1aVVVlbW29YMECTU1NtCMCAEkACRjQN+rq6lxWlWTGMrEeZeVIWBPgoaKGs3Ik8Hn83j/632g1tcaHzV413lXPaATexNRvxk8QBEXNnLzzchwEQTp4w0NrFmEwGDVNrS3nrkMQpG2A1x9urK6lrSSpQiOIbg4bHj4cioqS5KCAZBgbG2traxcXF4MErE9kZGSQTWKzZs0qKioqKChANonp6+s7OzsTicTBPhEBSBukugaJRCorKxMKhVpaWpMmTRoy2xErKyvv3LnT2NiIx+OXLFlibW2NdkQQBEEkEikuLo7P54eGhk6cOBFcWwF+HJieBVoA0BuXLl2Kefh03bHzEhuxi96ppKLSU1O+T48ieN3dAj7vi9oh5QWvrh/afeD2ExaDofLZVcC9S+eELFsz2tlNJMH30vafpp48fHDChAmSHBSQmFu3bqWnpx8+fFgarjcPXlQqtbCwMDc3t7GxEYIgZJMYkUhUUUGzLBAw2MEwXFNTQyKR8vPzORyOkpKSvb09kUi0trYeGvkAlUp98OBBXl6ekpJSQECAv7+/NKzmZbFYsbGx+fn5hoaGixYtGj58ONoRAYBEof9LCAwuampqHAnuAYMg6Iv+XX16FIGVl++pPv8FDAbTk31VFRc+vXmZw2JKOPuCIIhBpbJYrJqaGg0NDRwO9/8/HTMzod9+g6KjIQJBwiEBImRvb5+WllZcXOzl5YV2LIOYpqbmdzaJDfaiCIDkffr0iUQi5eXldXR0yMrK2traEolEOzs7achPRILL5SYnJyclJQkEAk9Pz+nTp6upqaEdFARBUFlZ2fXr1xkMxoQJE4KDg4fMDxwAeg/8pwf6Rl9fn9rSjHYUIjDcYuTPUf9no5c2fpi9h7ezn6TXicFCYWvzp5SUlGfPniHfUVdXx+FwmpqaTiUlLqWlMkRi+88/87ZsweHxypLqgg2I0MiRI5WVlUECJirf3CSmoqLi5OREJBItLCzQDhCQajQa7c2bNyQSqa6uDoIgExOTiRMnOjs7D6V6mzAM5+bmPnjwoLOzc9SoUeHh4Xg8Hu2gIAiCWCxWQkJCVlaWhobG+vXrrays0I4IANABliACfUOhUCwsLW8WVA2NtRnSoKWpcVPoxFd5eVQqlUaj0Wg0KpXa2dlJpVLpdLpWZ+esrCzbxsYOVdU77u5llpZaWlpIeobcamhoaGhoaGpqqqurgxkAqXX58uXCwsJjx44pKiqiHctQw2azi4uLSSQSmUyGYdjAwGDs2LFubm6giRDwuY6OjsLCwsLCwtraWhiGNTU1iUSiq6urlGQmIlReXh4fH9/Y2KinpxccHEyQmgUUJSUlMTExnZ2drq6u4eHhYPEw8CMDCRjQZ2rq6scfp2sbDLUPLbQUZaU/vXCi4FXe1w8JhUI6nU6lUjHx8fjDhxVaWxM3bizH45Ekjcvlfv5kDAajrq7ek499kZ6B8350vX79+tKlS6DCsli1t7fn5eWRSKTm5mYMBmNpaenm5ubk5AT+8//I2traCgoKCgsL6+vrkbzLycnJ0dHRwsJi6F1GfP/+fUJCQmVlpZqaWmBg4Lhx46RkdR+dTo+PjyeRSDo6OnPnzrWxsUE7IgBAGUjAgD5zcCKErNs8xs0T7UCGiKc3L3MbKv+6ceNfnsdkQn/9BS1f3vMNHo/X2dlJo9E6Ozvb2tqQO8htR0eHUCj8/NVYLBaHw+FwOGSbmYaGho6ODnJHS0sL9T4wQx6Xy92wYQOBQFi4cCHasQx9yCaxnJwcBoMhJycHOon9gNra2oqLiwsKCpD5Li0tLQcHBwKBMFTbGDQ3Nz98+LCwsFBeXt7HxycwMFBJSQntoP6roKAgNjaWyWR6enrOnDlTQUEB7YgAAH3g0wjoM2trq6b31SABE5VPdTUeo3pREVhF5fPsC4IgLBaro6PzT+usWCxWa2trZ2fnF0laU1MTh8P54snKysq6urq4/0GSNBwOp6urC3adiYSCgoKVlVVJSYlAIAArRcUN2SQ2ffr0t2/f5uXlFRcXl5SUqKqqjh071tXV1czMDO0AAXGhUCilpaXFxcU1NTUQBGlra/v6+g7hvAuCIBqN9uTJk+zsbAwG4+npGRQUhMP9e20qyejs7IyJiSkuLtbT01u+fPnIkSPRjggApAVIwIA+G21jk1dZjXYUQ8fH9zVWIVP7+WIKBeruhkxMvn5EWVnZ2Nj4my9iMpnILBmy0wxJz6hUal1dHZ1O/+LJSkpKyFJGHA7Xs/0MWdmopqY2VM9pxMHe3r6srAzpN4p2LD8EWVlZOzs7Ozs7DoeDdBLLyMhIT0/X0tJydnb28PDQ19dHO0ZABHg8XlVVVVlZWWlpaUtLCwRBeDx+8uTJBALByMgI7ejEqKurKzk5OS0tjcfjEQiE6dOnS0/LMqFQmJ6e/vDhQx6PN3ny5ClTpoD5ZwD4HFiCCPRZcnLymt8iD8YnoR3IUMDn8RYSR1WQyf08UYiIgJ48gbZsgTZuhESxroPP53+elX2epNFoND7//3S7lpWV/Twf+zxJ09DQkP+H0v8/LDqdHhUV5evrGxERgXYsPygajVZQUEAikRoaGiAIwuPxbm5ubm5uoD/bYNTe3l5WVlZWVkYmk7u7uzEYzIgRI+zs7JycnAwNDdGOTryYTObz589TU1O5XK6NjU1ISMg/XW5DRV1dXUxMTENDg7Gx8bx580CPLwD4GkjAgD5jsVhaWtrR6a/VNbXQjmXQK3+dd3X3purKin6+vqICWrMGevECsrCATp2CAgNFGt2XkF1n31zZSKfTv/hj8vWus54ljpqamtKzP0GSDh061NnZuW/fPjBziC4KhVJQUJCbm9ve3i4jI2NlZUUkEh0dHcHuFCknFApra2tLSkrIZHJDQwMMw8jiXjs7uzFjxmhoaKAdoNgxmczU1NSUlBQ2m21ubj5t2jSpmlFnsViPHz9OT09XUFAICgry9fUFG4wB4JtAAgb0h7unl0f4fLdJ/V04B/zPnTPHNPjM6PPn+38IGIZu3oSioqDmZmjGDCg6GkKj+jaPx0Oq53d0dDAYDKSGPnJLo9G+KNgIQZCSklJPYoYUb/w8VcNisZJ/CxKQmJh4//797du3g0vC0gCG4ZqaGhKJlJ+fz+FwsFisnZ0dkUi0tbUFZ41ShUajIZNd5eXlyBZWIyMjW1tbW1tbc3PzH+Qfi8PhvHz5MjExkcViSWHqBUFQQUHBrVu36HS6nZ3d7NmzNTU10Y4IAKQXSMCA/ti5c9frmvrF/9mPdiCD3u8/h23b8OvMmTMHeiAaDdq5E3r8GCothaSvuQqXy/0iJUMm0JDvdHd3f/F8ZWXlL8qBfJ6hDd707OPHj7t27Zo6dWpQUBDasQD/H4/HKy8vJ5FIRUVFAoFAQ0PDycmJQCCAns4oYjAYVVVVlZWVFRUVFAoFgiBFRUUbGxsk7/oRJrt6sFis1NTUFy9esNlsS0vLoKAgaetf3NLSEhcX9+7dO11d3VmzZo0ePRrtiABA2oEEDOiPly9fLli67NjjdLQDGdy4HPZC19ENDfUi2znNYkGDsGghh8P5OjHruf/N9OybiRlCytOzHTt2yMvLb9++He1AgG9gsVjI0kSkdjkejycQCKCns8TQ6fTKysqqqqqKiopPnz7BMIzBYIyMjGxsbEaPHm1hYfGjFXJgMBjp6empqaksFsvMzCwwMNDOzg7toP4PHo/37Nmz5ORkDAYTEBAwadIkKf8LDABSAiRgQH9wuVw9ff19t54YmpqjHcsglvf87+Sr594UvEY7EKn2ebsz5LZnBxqNRmOz2V88/zt7z7S0tFDvyZuQkJCUlLRv3z5wTi/N2tvbX79+nZWV1dLSgsFgzMzM3NzcnJ2dUf//M/TQ6fSqqqrq6uqamhpkW5eMjIy+vr6FhYWNjY21tbWKiKb0+Xx+bW3tp0+furq6mEwmlUrt6upisVhYLFZNTU1FRUVVVRWHw6mrq5uamurq6opk0H5rbW1NSkrKzc3l8/k2NjYBAQHStuAQgqCSkpLbt2+3tbWNHDlyzpw5BgYGaEcEAIMGSMCAflq8ZAlDQe2ndVFoBzKIHV27OGLKpF9++UWMYxw7BkEQtG4dNESvSrLZ7G/mZsgtj8f74vkqKipIFZDPN54h99XV1SVw7bampubw4cMRERF+fn7iHgsYuPr6emSTGIPBwGKxNjY2oKfzAMEw3NLSUldXh6wwbG5uhiBIRkZmxIgRI0eOtLS0tLS0FEmRnnfv3pFIJHJFxbtyMplMrq97r6aO0zU0VFRSVlRWUVBWUVZTl1dU4vN43WwWl8VkMbvYXQwOi9lUV6esomxhOdLG2nqUjfXo0aO9vLwktuixqakpOTn51atXMAyPGTMmMDBQCjvXUSiU27dvk8lkTU3NsLCwsWPHoh0RAAwyIAED+ikjIyNiztwzybmYH2MDtMh1ddJW+I6trakR41VDGIZ8fKCMDMjWFjp7FvL2FtdA0uo7s2dUKvXrhtRYLPbz9Y04HK7nSw0NDU1NzYH3UIZhOCoqytDQcP369QM8FCAxQqGwoqKCRCK9efOGy+UqKysTCAQikTiE2/uKFo1Ga2hoqK+vb2hoqK2t7erqgiBIRkZm+PDh5ubmyGSXSHq+19TUpKWlPU9JSUtL4/MFo8a6GJiYG5qaDzO1wJuaq6r3qkOxUCBopXyg1NU21VZ/qqtpqCivKisZZWs7Yby/n6+vl5eXqCblvlBVVZWYmPj27VtZWVkXF5dJkyZJ4ZwSi8VKTExMSUnBYDB+fn5TpkwBtUMBoB9AAgb0EwzDpmbmi/ccHe3shnYsg1Ji7LWG/KzEZ0/FOwxSIzEyEmpthaZOhc6fh4Z0Z9I+YbFYn2dlnZ2dDAaDRqMxGAw6nc5kMr9+iZqampqaGrJOSU1NTVNTU01NTV1dHYfDIQ/1ZtybN2/m5OQcPXpUTKdxgPiw2ezi4uKCgoKysjKhUAh6Ov8TFotVX19f9z80Gg35vqampsn/mJqaiurcvba29saNm9dv3mxvb7N1drNxcbd19Rgx0lpU6TGb2fUun/T2Vc67vJyG6kpff/+FP8+fNm2aSJakwjBcWlqamJhYU1OjoKDg4eExYcIELS2p6/ICw3BeXt69e/cYDIadnV1ERARYRw0A/QYSMKD//rNjRx65ZsWeo2gHMij9Z9a0HZsiJdSTt60N2rwZunIF0teHamuhH7IHV1/x+XwGg9HZ2Umn0+l0ek96RqfTke9/XVtfVlb283wMuVVVVVVXV0cSNlVVVRkZmZKSkrNnzy5cuJBIJKLy1oCB+6Kns7Gxsaurq4uLSy+T8KGnq6urqampqakJybhaWlqQswsVFRUTExNjY2Mk6cLhejUH1Us0Gu3u3btXr10vLS1xnRDoNS1stLObzICnqb+PTu3IfvYw+3FC0/vqsJkzF/78s4eHR/8yPRaLlZWVlZaW1tHRoaam5uPj4+Pjo6qqKvKYB66uru7WrVvv37/X19ePiIgAdQ4BYIBAAgb0X3V1tSOBcPZFXi/XdQA96ivKd/884yOFItF+xLm5EJkMLVwouRGHNB6Px2QykakzFov1+VpHFov1zSWO0P9qhCDnW3Z2dsgqR2RnGnIfh8OBVW2DyI/Z05nD4TQ3N3/8+JFCoSC3bW1tyEOysrJGRkbm5ubGxsYjRozA4/Hi+P/c3Nx87Pgf586dNbEa5TU9zGtqiKKypOeTKe9rsp4+yHqcoKqstHXzptmzZ/d+Z2BbW1tGRkZmZiaLxdLX1x83bpy3t7d01g+kUqnx8fGvX79WUlIKCgry8fH5QRqvAYBYgQQMGJDg0FDlEZZhK39FO5BB5uSGld5Odnt+/x3tQAAxYrPZyHQZMmPW1dWFLG5kMBiNjY3fTM8gCEJqsiGTZsjsGbK4UVVVFblVVVWVl5eX8HsBvu+Lns6KiooODg4EAmFo9HTm8XhIlkWhUJqamj5+/Nje3o48hMFgtLW1hw0bZmhoOGzYMDweb2hoKNa3XFdXd+z4H9euXXX2Dwhdvg71SrywUFjwMuV+9AkWjfrb+l+XL1/+/XWJ9fX1qampr169EgqF5ubmAQEBY8aMkc5rLt3d3Wlpac+ePeNyua6urmFhYT/sBC8AiBxIwIABKSoq8vHzP/uCpKQijasmpNOnhrpNMybV1tSgXukYgiCoqgoyNYVASTfJIpFIV69eXbVqlbGxcVdXF7K+secOAknV+Hz+1y/HYrFIJqauro6Uz0Zue5I05EtQqU/yvtnTmUgkGhsbox1ar3C53Nb/aWtrQ+60t7cLhULkCRoaGkiuZWhoaGhoiMfjJTbX19TUFLV586OHD31DfwpauELbAC+ZcXsDhuGCly8eXjhNa/20e+fORYsWfZGFdnd3v3r1Kj09vbGxEYvFEolEf39/PF6K3sLnYBjOycl59OgRjUYbOXJkeHj48OHD0Q4KAIYUkIABAzUxIMDQ3mXaopVoBzJonNv6q73piGNHj6AdCASx2dCoUZCCAnTiBBQQgHY0PxAmkxkZGenh4TF37tzvP5PD4SCzZwgkT0MaGSF36HT6P02mKSoq9kya9WRoyH0VFRVk6aOysjLobSUOTCazsLBQmns602g0JMXqSbRaW1sZDEbPE2RkZLS0tHR0dAwMDHoyLpHUKuwrPp9/8tSp33//3XtaWOiKX3Da0vIz/FpJTuaNQ7u0ceoXo887OjpCENTc3Pzy5cvc3FwWi6WhoYGsNpTOjV6IioqKu3fvNjY26unpBQcHEwgEtCMCgCEIJGDAQOXm5k6dHnz2OUkenMb1QtvHpt+CfCsrKgyZquSaAAAgAElEQVQNDdGOBYKEQuivv6CNG6GWFmjqVOjUKcjUFO2YfhTHjx+nUChHjhwZ+OojgUDweUqGJGk9XyLfYTKZX1cNQcjKyiorK/fkY9+/BbNqfYViT2c+n49sSqTT6cgGRSqVitxvbW39vEuegoKCrq6urq6ujo5Oz622tvbA+y4MXFZW1opVq7phzOIdByztHNEO598JBPzE2Gt3Th/19fHx9PBAMnBzc3N/f38HBwdp+JH+k5aWlgcPHhQUFCgrKwcEBPj7+4PfdwAQE5CAASLg7eNr4uIZvHgV2oEMAmc3/2I9TP/smdNoB/IZKhXasQOKjoawWGjTJmjHDkgqNyQMMSkpKXfu3ImKijI3l9AmFh6P1zN7xmKxvnP7T1NqEAQpKCh8PnWmpKSkqKioqKj4+ZfILfIdRUVFcA6HEHlPZ6FQ2PNPxmAwOjo6kOSKTqcjidbn01kILBarqamJw+G0tbV1/0dHR0ddXX3A70/02Gz2L7/+evde/E+/bh4fNmtw9ZzsaP50ee+2srzsFcuWrV+/XiquuP0zJpOZlJSUkpICw7C7u/v06dPBdi8AECuQgAEiUFZW5ubhceT+c71hYJn495QXvDq2dlFlRYX0LEP6/8hk6NdfIRwOun0b7VB+CO3t7du2bZs4cWJoaCjasXzp8zP7f7pls9kcDofD4bBYrO8fDYvFIlkZAsnKlJSU5OXllZSUsFisgoKCvLw8FotFvuy5o6CgoKCgIM0zBv3wrz2dWSwWn89nfgb5gX/9JZvN/vr4WCxWXV29p3t4z52eMpsSf8f9RCaTZ8ycqaqLX7nvuLqWNtrh9NPrtOfR2zcsXbJk39490nklQiAQ5OTkPHz4kMFg2NjYhIeHS3muCABDA0jAANH45df1BRXVv524iHYg0ksg4G8JC9yyYf3ixYvRjuWfMZkQ6A4sKXv37uVyuXv27EE7kIHqScaQO2w2m8Vicbncni+RPO3z53xnku0LGAzmnxIzOTk5pCCkoqKijIyMjIwM0tfhi+8jR4AgCDlIz2H/NRuRl5f/+qSZzWb3fG6yWKzP7yN3hEJhz7vj8/nd3d3ILYfD4fP5bDabx+Mhs5FIlznkhUjNhp5aF9/8OSBzjz0+Xx2KtAXH4XBDo7v3X3/9tXrNmsB5S2auWj+4Jr6+1v7p46nIVQoY4b07d0xMTNAO5/+DYbigoODhw4ctLS3GxsZhYWEjR45EOygA+FGABAwQDQaDMdLaetGOgwSf8WjHIqUeXj5XlpaYn5c3BMpSAyLx+PHjJ0+e7N6928DAAO1YUIBM9XR3d7PZbD6fz+Fwuru7eTwem81GkhbkCVwuF0ldkCcgs0PIC6H/mw4NFkpKSnJycgoKCsj6TCwWy2QykfZxEAThcLjhw4ePHDlSS0vr8xRraGRW/6q7u3vFylV/JyWtO3beymGIlH8QCPi3ThxOv38rLiZm4sSJaIcDQRBEJpMTEhLq6+s1NTWDg4NdXV2lsxQ+AAxVIAEDRObWrVsbt2w9+jAVO6Q7kPZP20dKZLB/Rnq6g4MD2rH0BQxDERFQQAC0YAEE8kZRa2xs3Lt3b0hISAAoQTkwPZNOSIYG/W9u6pvf/+K1XC5XIBB8/+A9i/2QpZLI/c+XRyopKfWcv/ZMrPXMvCkoKMjJySkrK38+Bfe1H7On8+e6urqmBQfTOLxfj0er4jTQDkfECtJfnNm87szp0/P+rfapWFEolCdPnvRU2vDz85POBtAAMLSBBAwQpUmBgbKa+kt2HkA7EOkiFAj2LIqY4OVx9MhhtGPpo0+fIB8fqKICcnGBTp+GXFzQDmio2bZtm7q6+qZNm9AOBJAWX/R0VlJSsre3HzI9nb+jo6MjcPIUOZzWuiNnh+pVvJqy4gMr5m+KjNy0KUryo3d0dDx79iw7O1tGRsbb2zsoKGgQ7QkEgCEGJGCAKLW2tto5OESs3+odJHV1BVB0+9Th6ldZudnZyL6UQYbHg86dg3bsgBgMaO5c6MgRSF8f7ZiGjtu3b6elpR06dAiHw6EdCyBdvtnT2c3NbcSIEWiHJnr19fXjJ0wc6eK+aNvewb7p6/uaG+v3LZkdMi3o5Ik/JJZRI0UOU1NT+Xy+k5PTjBkztLUHa10TABgaQAIGiFhGRsbUadP233piaCqh4tpSriwv+8T65QWvX5sO6hZbHz9CmzZBf/0FeXlBL1+iHc3QQSaT//jjjzlz5nh7e6MdCyClvtnT2d3dfcicQ9fW1np4efmGzQlbtR7tWCSho6V5/9LZ/t6eFy9cEPfOq+7u7rS0tL///pvNZtvY2ISFhRkZGYl1RAAAegMkYIDo7d2772ps7L64J6A1M629dVPIxIvR50NCQtCORRRyciA5ObAQUYSEQmFkZKSpqenatWvRjgWQdij2dBaf5uZmoru7Z3BEyLIf6FeAQaPunBc6K2zGgf37xDSEUCjMzs5+/PhxZ2enqalpaGgoKHIIANIDJGCA6AmFwkmBgQJl3OoDJ37kwkpcDnvf4p/Ge3me+OM42rEA0uvKlSsFBQXHjh0b1KfRgCR9s6ezg4PDoOuZRqfTvcf5DBvtsPg/4spDpFZH86f/zJm+cf36334T/bxfeXn5nTt3KBSKgYHBtGnTnJycfuTPYgCQQiABA8SCTqd7eY8bPsZp0fa9aMeCDqFA8Mf65Tgs5tGDB9LZf1Nknj79f+3dZ1yT1+M28BP2SBiCMpQ9g4ATBXEyRKs4cNSJ1r3rqrPiXq3WbZ2tq26tgoiD4SrVIhZR9hRUlCEjhJB5Py/ylL8/3BhyJ+H6vugHQjjnAity5dz3OcTPj+jq0p1DWT169Gj//v1Tpkzp0EFFNt0G+fjkmc4KTiAQ9P2mn0TfYNamnap939eHFD3LCxszeNuWn0NDQ2U1Zk5OzsWLF7Ozs42MjPr37+/r66vae7cAKCkUMGgsxcXFPr6+3QaPHDBxOt1Z5I2iqP0rFlYU5sbFxKj46T0ZGaR1a9KqFdm6lQwZQncapcTn8xcsWNC+ffsJEybQnQWUEo/He/z4cWJi4tOnTyUSiYmJSceOHbt27dqiRQu6o33MsG+/zX9Vumjv7+oaTXcb9MzHiRunjo24fPnr7wItKiqKiIhITEzU1tYODAzs06cP9pcHUFgoYNCIcnJyfHx9h89Z7DdkBN1Z5OqPrRtS78X+de9us2bN6M7S+CIiyJw5JD+f9OxJdu4kHh50B1I+u3fvzs7O3rJli4ovlkIjq6iokJ4kVlhYSAixsbHp3Llzp06dWCwW3dHq27V799btOzecu6qjp9IvUX2G+GsRJzavSk5K+pzCLBKJeDxevT/Q8vLyyMhI6f7yPj4+AwcOVMA/cQB4GwoYNK7ExET/gIDxy9Z2H9BUlkfO7d569/LZ+/HxTWizKS6XbNxItm4lYjFZvpysXEl3ICVz9+7dEydOzJ07l81m050FVIGCn+mcnJzctXv3lUfO27Fb051FIRxas6ym6FnMzZsfv4uPoqhDhw7p6uqO+e8o53r7y4eEhJiamsolMgB8FfVVq1bRnQFUmaWlpb+//+KZUymKcmnvRXecxiURiw+tXZYUdyM2OtrW1pbuOHKkpUX8/Mi4caS4mLi5kY4d6Q6kZIyNjaOjo3V1dd3d3enOAqqAxWK5uLj4+fmx2Ww1NbWUlJSHDx/eunWrqKhIXV29efPmNN4kVl1d7ecfMHjavA49/enKoGg8fLqFH/+NW1nRrVu3Dz2Hoqg//vjj/v37hYWFXl5eWlpa0dHRBw4cSE9Pd3FxmTp1qp+fHw5WBlAWWAEDecjJyQno3du9q9/4pauV4u7wBhAJhbsXz65+/eJ6VFTz5s3pjgNKZvPmzW/evNm0aZOq/gUBGinUmc5Dhw0r5Yvn/LxH/lMrsqJnecu+7XclPPxDHezixYvXr1+Xvm1nZ1deXl5RUWFraxsSEuLi4iLHpAAgAyhgICcvXrwIDApq6eoxZfVm1bvluoZTtWX2xOYs/T8vXmAymXTHUTACAdHSojuEort+/frFixeXL19Oy+/E0ETQfqbzhQsXZs+d//PlaF19/Jys79alc5GHdqU+ffrulaLXrl37888/337ExMRkyJAh2F8eQEnhEkSQEwMDg1EjR5747VDUmROeXbrrsQzoTiQzOSnJ6yeO7Nyh7dkzp3WxG3s9b94QNzdSWUk6dybYkuvDDAwM4uLiDA0N8WI2NB4tLS0bGxtfX18fHx9DQ8Nnz579+++/sbGxqampEonEzMysUbeBqampCR4wMHTZWhtn3Ov4HraurR/cvFb2uqhHjx5vPx4fH3/mzJl6RcvBwWHQoEFoXwBKCgUM5EdXVzc0dGxJ0cu182eZWdlYOTrTnUgGbp49sXvx7OXLlv60aZPSnYIqD0VF5NYtcuwYOXmStGpF3NzoDqSg9PX1Hz58WFxcXO93L4DGoKen5+jo6Ofn5+npqampmZWV9fDhw5iYmLy8PHV1dTMzs8Y4PGrZsuWlNfxvZy+U+cgqw6lth3ULZn87fLixsbH0kYcPHx45coQQUu96peLiYjab3SQ22gVQRbgEEWgQGxs7cvTozr37j/lhhYbSrorUVHMOrFxUlJl2/tzZNm3a0B1Hsb29Vf327QTfrveR3uOxfv16U1NTiqIqKyuNjIzoDgVNQt2Zzo8ePRIIBPr6+u3bt5ftmc4pKSnePj4//3mzRStcZPsxJ3/ZWJmfcfP6dUJISkrKnj17xGIxIUT6B/H272wdO3acPHkyXTkB4GuggAE9Xr58OWLkqJclpRPDNrq0U75N8+7fvHps40q/Xj0P7NuHm74+C49Hdu4k69aRCRPIjh10p1FEubm5mzdvlp7HmpSU5OHhERoaSncoaFoa70znHj17WbXzDpk2RyY5VRifVzM/uNf+Pbtbt269fft2gUBACNHV1TU3NzczMzMzM2vRooX0vwpyqAAANAAKGNCGoqjjx4/PX7CgTddeY35YYWiiHKeXvCrIP7IhrDAzdfPGjfj9+IsVFhImk/x3dQ1I1dTUpKSkJCUlJSYmUhTFYDAoiurVq9eIEU3rBHNQHOXl5dLtOmRypvOtW7eGjRi5++Z9TezH8xluXz5/+/SRTRvWGxgYSEsXXuYDUDEoYECzkpKShT/8cDk8YuS8JQFDRzEa4cYDWRHU1l46tOfK0QOzZ81e8eNynLgCMiEWi9evX//ixQtp76p7vHfv3kOGNJXjy0FhyeRMZz//ANtO3fqPn9J4OVWJRCye16/7gb17+vbtS3cWAGgUKGCgEO7duzd9xsyqmpqBk2d16z9Y0fapr63h3jh97MqR/W08PPfu2Y196mRJJCLz5pHZs4mzKmzK0jDPnz/fuHGjWCx++wdy//79g4ODaUwFUIeiqJycnPv37yckJNTW1urq6rZp06ZDhw7u7u6f3K4jISEhMKjP3pgHOnr68kmrAm6cOZ4YeTHhwX26gwBAo0ABA0VBUdSVK1fWrF33vKjom9DJgcPHaOno0B2K8LjVcRdPXzq428nRcd2aNf7+/nQnUjl//UX8/AghZM4c8uOPxNCQ7kD0uH379smTJ99+ZPDgwX369KErD8B7vfdM5y5dulhZWX3oU4IHDjS0d8PdX19ELBLOCfI9deJ4z5496c4CALKHAgYK59q1a2vWrc/KzvYbMrL7wKEWNna0xMh5+vhO+IXbl8/17NEzbMWPHTsq304hSiM7myxbRs6dIyYmZMUKMmsWaZIb+h8+fDghIaHuZ/Lw4cNR+EFhfeaZzqmpqd5duuy5+UDfQHXOfpSPyGOH8v+5G3PzBt1BAED2UMBAQcXHxx86fPj8+fM2Ti4+/QZ37TeIaSiPLblLi17eibhwL/xCTVXlqFGjpkye5Iajq+Tjxg0ydy5JSyMzZ5Ldu+lOQ4Pa2tr169eXlpZKJBJCyJgxY7p160Z3KIBPePXqVUJCwj///FNcXMxgMOzt7X18fLy8vHR0dAghCxYuzHhdPuHHdXTHVD48bvWU7u3SUlOtrbFxP4CqQQEDhcbj8S5fvnzk2PHbt+Lcvbxdvbp4ePvau3moyXSFRCgQZCY9fPogPuX+vdy0lAEDB4wbO7Z37944WFnehELy66/Ez4+4u9MdhR75+fk//fSTRCKhKOq7777z9vamOxHAZ5HeJPbgwYPExEQul6ulpdW2bVsvL6+gvn3n7Tjk6NGW7oBKadfi2QFe7ZcvX0Z3EACQMRQwUA7FxcXXr1+/GRMTFxdXWVnp0cnHuYO3laOzpZ1Dc4uWX7p3olgkfP288EVudkFmWlrC36mJ/9jY2vn79Qrw9w8MDGzYPssAMhEdHX3u3DlCyNSpU9u3b093HIAvIxKJUlNTExMTExMTRSJR1I3obVF36Q6lrJLu3Tq5aWV2VibdQQBAxlDAQPnk5OTExcXduXsvJTU1OyuTX8tvZe9gaedgYtGSadTMwLiZLpPJYDD0WYYUJeFyqgghnIry6ory6orykucFL/KyXxY8MzQycnZxdXdj9+zRw8/Pz9zcnO4vCz7szh3SrRthMOjOIQ8URe3duzc5OXnWrFkeHh4fetrz589zc3Orqqq4XG5lZaX0DR6PZ2RkxGQy9fX1mUymsbGxiYmJi4sLjkwA+RCJRJmZmcnJycnJyWVlZY+Tnzh49xiC7TcaipJIpvt5RYZf9vLyojsLAMgSChgoveLi4vT09IyMjMLCwuKS0uKSkvLyckJINZerrq6uq6PDYDCam5qampq2aG5qZ2fn4uLi4uJiZCSPO8pABm7dIr16ka5dyY4dpGmsCNXU1Kxbt27cuHF1Bx6UlZXduXPnyZMnKalpGZmZWZmZhFCW1rZMQyNtPT1tXT09loG2nr6aujq/pkZQy+PXcLmcKn4N901JcfHLF+YWlk7OzmxXVze2a+fOndu3b4/La0GGSktL09LS0tLSUlJSamtrGQyGtbW1o6Pj+O8mbI+8ZWrRku6ASuz4z2stddT37N5FdxAAkCUUMABQbAIB+fVXEhZGOBwyZgz56SfSBJYr8/LyeDxeTk5ObGxcdGxsVkaGS5u21q7ulnYOlrYOFrb2phaWnzmUkM9/mZ/7Ii+7KD+3KC87LfEfblVlt+49egf49+rVy8PDg9E0lhZBtvh8fmZm5tOnT1NTU4uLiwkh+vr6bDa7devWHh4eLBbr0qVLP67dsObkZbqTKres5H93L5heWPCM7iAAIEsoYACgDF6+JEuWkBMnCItFtm8n331Hd6DGwuPxLl269PvRY7fj4hzcWrM7+bp37uLaoZO2jq6spnhd+OzJ/b/SEuKf3L+noa4+ZvTocaGhH7ncEaCOdLErOTk5LS1NKBRKF7tcXV3ZbLazs/PbK6uzZs8plqiPmLOIxrQqQCIWT+jinvTokb29Pd1ZAEBmUMAAQHk8fEjmziXz55OQELqjyBhFUXfu3Dly9OiFCxdsnFy7BIf49h0gh6MXspL/vRt+4a+rly1btpwwftzoUaNwPyTUw+fzc3Nzk5OTHz9+XFZWRghhsVjOzs5sNtvT09PwA4enu7q1Hrl4lYd3V/mGVUFbZk2Y8O2QSZMm0R0EAGQGBQwAlApFqdhuHCKR6PTp0+s2bORwuV2Dh/QYONTc2lbOGcQi4aM7cffCzz+6Gzds2LBlS5c6OzvLOQMompcvXz558iQtLS0rK0skEqmpqVlZWbm6unp6ejo4OHz8ytXi4mJrG9sj91O0dHTkFlhVXTl6sCY//fTJk3QHAQCZ0aA7AADAl3jvr31CIdHUlHuUryUQCE6fPr1m3TpKQ6vfuKndg0Nke8Dd51PX0PTy6+3l17uyrPTG6aNenTv7+vquWbWqY8eOtOQBunC53PT09LS0tCdPnlRUVBBCDAwMOnbs6OnpyWazP387zdjYWLf2HdG+ZMLDu+uGw3soisLtmgAqAytgAKDk8vKIry/5/nsybx7R0qI7zWeRSCSHDx8OW7XKxLLVoMmz23X3U6hfrarK31w9fuj6H0e6d+/+y9YtTk5OdCeCRkRRVEFBgbR3ZWRkSCQSNTU1Ozu7Nm3auLq6WltbN+B/zhkzZ5Wr6w6bOb8xAjc1FEVN7OKR8OA+/iYCqAysgAGAkqusJM2bkyVLyLFj5JdfSFAQ3YE+4d9//506bfobTvX0jTvcO/vSHec9DIybjZizaMCE6eGH97bv0GHevHlLlyzR1ZXZLiCgCDgcTmZmZlpa2uPHj6uqqgghpqamvr6+0p0Mdb5u8eppSorP0LEyStrUMRgMG2eXtLQ0FDAAlYEVMABQfhIJOXGCLFpEXr8mAQFk2zbi7k53pveorKz8cUXYkSO/9xs3JWTqHA1luGzyVUH+7+t+LCnM27NrV79+/eiOA19FJBLl5uampKSkpKQ8f/6coihtbW1nZ2d3d3c3N7cWLVrIaiJzS8tlB0+1csSdhLJxYOUi/w6eP/zwA91BAEA2sAIGAMpPTY2EhpKQELJlC9m0iVy+rIAF7Pr162PHjXPt4L3tyu1mZkqz06C5te3SAyfio8K/mzS5e7euhw8e/NCud6Cw6h2UTAgxNTXt2rWr9M4uTVm/EMDhcEqLi82sbGQ7bFNmbmuflp5OdwoAkBkUMABQFUwmWbWKjBlDWrakO8r/EIlEK8LC9u0/MG3dVi+/3nTHaYgufQe06+53aPXSNu3anT97FptzKL7Kysq0/1RWVhJCWCyWh4cHm812c3MzNjZuvKkzMzPNW1lrams33hRNjaWdQ9zdGLpTAIDMoIABgGpxdKQ7wf94/vz5tyNHllVxN56NbNHKmu44Daerz5z9065bl8718vdfvnTZ4sWLFGrjECCECASCnJyctLS09PT0goICiqKk22n4+/s3eDuNBsjIyGhp7yCHiZqOlnaOmZkZdKcAAJlBAQMAVcflklmzyJIlxMVFzjNHR0ePGDWq+8Bhc+ctUVdXhZ+3PQcNs3Nz3zF/+v1/Hvxx/Li+vj7diZq6t/cwlB7YRf67wlAm22k0QGFhoYmFYq1CK7sWLVuVl5VxuVz8jQNQDarwCwEAwMfcu0dOniR//EFmziRhYaQxL75626lTp6bNmDFz446OvQLlM6N82DizN567umfp3B69el27etXU1JTuRE1R3W1d6enpXC6XEGJgYNCmTRs2m+3h4WFkZERjtqqqKh19ptymk4jFdB2gJzfqGppMA4PS0lIUMADVgAIGAKouKIikpJBly8j27eTYMRIWRmbOJBqN+9Nv1+7dK8JWLvn1mEs7FbxdSltXb+7WX39b96NX587RN244OOB6M3ng8/m5ubnS0vXs2TNCiLa2tr29PZvNlucVhp9UxanWlVcBEwmFy0YO+Ol8lHymo5GhsUlpaamNDbY2AVAFKGAA0AQ4OpKzZ0l0NJk3j8ydS16+JJs3N9JUFEWtWrVq7/4DK4+es3FmN9IstFNTV5+0cuOlQ3u6dO16PSqqbdu2dCdSTRKJpLCwUHqFYWZmplgsVlNTs7KyCgoKYrPZTk5OGo38UkIDVFVV6bSU07oon8cryEoXi4TqGppisUhNTV3aQimKkojFDAaDoaZW+abUyKR53acI+fzqqgrj5mZ1j1AUVfaqiGVsrK3zP4fdURRFSSRvj1BvCkoikdvimx6LKT2uDQBUgML94AYAaCwBASQpiRw4QPr3b7xJZs6aHXUzev3pK6YWlo03i4IYNGmmrj7Tz98/NiYGHUyG6q4wTE1N5fF4hBBTU9MuXbqw2Ww2m62np0d3wI+p4nBaymsF7LcNYSKBICx06PqTl/eFLbKwsQuZMpsQcmbXltKiF/npKUKBQJfJquVyw3473ayF2bm92yKPHTJubqauqbFs3/FmLczKS16vnThKj8Uqe1XUObDv+CWr6gZPf5RweN3yt0c4tWPz21MQQkbMkdPZXJpa2gKBQD5zAUBjQwEDgKZEXZ1Mn954w69aterKtWtrTlwyaGbSeLMolKCR4zQ0NIP69o2/dw/XIn4NDoeTmZkpPa3rzZs3hBB9fX03Nzdp6VKie+04HI6OvG5Vmhy2/q+oy+tPXiaE+IWM2LdyUciU2RRF3Ym4OHrekrg/z26LiLV2cr2wb8ehtcumrfk5+twf++MStHX1Lh7YFXvh1NDpc/+JuW7jwv7+5921Ndyjm9eIhMK3T0jPS0t5e4Tg8VPfniLs8Cn5fJmEEA1NTT6fL7fpAKBRoYABQJNHUeT8eRISQr7uaqJ9+/fv2bd/7cnLTad9SfkPG1X5ptQ/MPB+fLy5udKcMa0IamtrMzMz09PT09PTX758SVGUhoaGo6Nj9+7d3dzcFOe2ri9CURQtsdkdOomFwrzUp7U13GZm5s3MLFo5OFk7uRJCOgX0uXr8twc3o7R0dI/+tJYQUl1Z/jwna+j0uW26dD+7+5dlI4I7+vUePHmmxv8eS11vhEW7Dr89hbm1rdy+OgZRvv8TAOBDUMAAoMkLDyfDhxN3d7JtGwkIaNgYly9fXrxkadjvZ1u0tJJtOqUQMnUOp+KNf2DgX3fv0rsFn+ITCoW5ubnS0pWfny+RSBgMRsuWLQMCAqS3dWlpadGd8auwWCwel0vL1L1Cvr175c+aao7f4G8JIer/3SAn4PM1tLREQoG5lY1v32DpgwyGGiHE3Np2X8yDx/F3/r4eOX9Q4NY/b5hZ/d9GF/VGeHcKuREKBdo42xpAVaCAAUCTFxxMjh4lP/xAAgNJQADZsYO4uX3RAPHx8aHjxy/ac8SO3bqRMiq+0B/Cdi2aPXT48BvXrqmpqdEdR7HU7aWRnZ2dmZlZW1tLCDE1Ne3UqZOjoyPtG8fLlqGBAY9bLZ+5NLW0JGJJ3U70PQcOWzluqEQiGbc4LD899VlG2ovc7Jb2jn9dDXfv3MWnT//ze7dbO7NZRsY3z57IfpLk5uV969LZnKfJE39c17FXYHb/pOIXhWKRyNSipZaODjWV5fMAACAASURBVCGk3gj1ppDP1yglEgiUvZkDQB0UMABo8tTUSGgoCQ4ma9aQPXtIu3bkl1/IzJmf+dllZWXDvv32u+Xr2B06NWpMBcdQU5uxcXvY6EGr16xZvWoV3XEUwrundbFYrNatWyvdbV1fhMVilcurgKlraDp5tp3Ytc2eG/F6LAMTcwszKxuDZibSffBNLSw3z5rAYDBYxs2W7j2qb2DQZ/T4GYE+Le0c1DU0Zm/aQQjx6RN8J/ziwpDefB7PybOdm5f3uM6tVx4+5dSm/bsjEELqTSE31VVVBgYG8pwRABoPChgAACGEEGNjsm0bmTaNLFhAPD0/85Moiho/YYJ7lx7dg0MaNZ1S0NDUnLd9/5Khfbt17RrQ0Is5lV1lZWV2dnZaWtrTp0/Ly8uJop7W1XgMDVhFpfLbMH39ycv8Wl7dDvIMBiNg2Cjp28bNzTaeuVLD4ej/V12GzZgXMmVWbQ2v7hFtHd2w307za3kMwpCuep14mFE3+Lsj1JtCbqoq3qhqYwdoglDAAADe4uJCrlz5/Kdv2bL1aXrmhrORjZdIuTS3bDV51aaRo0cnJyVZWFjQHUdOqqurMzIysrOzc3JypEcka2pqOjo6+vr6Ojo6Ojs7q8vrtChFwGKxap+9lOeM0vaV9fhR5PHDtTXc1l4+dR9iMBj6/7twpK6hqW+g+d4R3uvtEd47hRyIxaLqqioTk6a1uw+ACkMBAwD4DKWl5J2Xn+/fv792/bp1J8M/8ttbE+Tdu1/qP3+PHhsafeO6Ct8Mxufzc3NzpZcXFhQUUBT19hHJjo6Ompr1f8tvIlq1alV2M1b+85pYtGzj293LL0j6rpWj87hFX3Wb1rsj1JtCbkpePDc0MmIy5XrRIwA0HgZFUXRnAABQbElJxMeHTJlC1qwhhobSx4RCoWebtj1Hfhc4fDS96RSQUCBYOqzvsoXzJ02aRHcWWarbSyMtLS0rK0skEhFCTE1N2f9R8COS5SMhISFk+Igd1+7RHUR1JN6Kjjm67378X3QHAQDZwAoYAMCnMJnEz4/s3ElOnyZr15KJE4m6+tatv6jrM+V/K4hS0NTSmhi2cdHsCQMHDmzevDndcb4KRVEFBQXSywtTUlLqNjDs2LGj6m1gKBOurq5FzwuEAoEmdu2TkZd5Oa6uLnSnAACZQQEDAPgUR0cSGUmuXSPz55OpU8nevcU//rhh44aVRy+o/IYKDcbu0Kl9z4AlS5cePnSI7iwN0TQ3MJQJFotlYmr6uvBZKwcnurOoiKL8XL/27nSnAACZQQEDAPg8ffqQgACybx9ZufL8hg29hoxoyqd+fY6xi1bO69dj0sSJPj5y3bGgwcrKyjIyMtLT0zMyMioqKgghurq6zs7Orq6urq6ulpaWdAdUGk7OLi/zclDAZOXVsxyXkUPoTgEAMoMCBgDw2TQ0yKxZcRYWa2bO2nJwAd1pFB3LyHjYrAXTps9I+veRwi4VVlRUZPyntLSUEKKpqeng4NCzZ09XV1cbGxsV3kek8bi7uRVkpXcK6EN3EFVAUVRBVqarqyvdQQBAZlDAAAC+zNItWwfPnK/HZNEdRAkEDh9z7cThy5cvDxo0iO4s/6e6ujo3Nzc7O7veBoYdOnRo4hsYykr3bl237j1AdwoVUZidoabGcHZ2pjsIAMgMdkEEAPgCcXFxI0aP2Xk9HhsMfKbYi2funj2W9CiR3kWwD+0a7+Dg4Ojo6ObmpquLswRkpqioyM7e4eiDVE1tbbqzKL3I44c5WU/PnjlNdxAAkBmsgAEAfIE1a9f1/24a2tfn6zEg5OKv227evNm7d285Ty0QCHJycqQbGGZmZorFYkKIqalp165dsWt8o7KwsLC2sclMfiTnA4tVUnpC/LghCrSADABfDytgAACf659//gnq+82e6Ps6evp0Z1Em104eSY2Nunf3jhzm+vhRXS4uLjjNVj5mzJz1Rk1n+CzcKvlVJGLxxC4eiQ8THB0d6c4CADKDFTAAgM+1fsPGfuMmo319Kf8hI//cvyM+Pr5Lly6NMf7bpSs7O1soFBJCDA0N27Rpw2azW7du3axZs8aYFz7C36/X6s0/ExSwr5OX9pTJYqJ9AagYrIABAHyW4uJiG1vbX2MTDIzx2/wXO7Nriz6v4rfDh2U1oEQiefXqVU5OTlpaWmpqKo/HI4QYGBg4OTnhqC5FUFlZaWFpuTPqXjMzc7qzKLE/tm5ori7a9+uvdAcBAFnCChgAwGc5efJk+6490b4apsfAoYuHBO3etesjt10JhcIrV650797dxMTkQ8957/nIbm5u0r00rK2tFXa/+6bG0NDwm3797l65OHDiDLqzKCtKIvkr8s8/z5+jOwgAyBgKGADAZ/n96LGgiTPpTqGszK1tbZxcw8PDR4wY8d4n5OXlHTly5NWrVy1atPD19X37Q9LSJd01Xno+so6Ojp2dHZvNdnV1RelSWONDQ+cs+AEFrMGePojX09Hx9vamOwgAyBgKGADAp6Wmpubn53foEUB3ECXmGxzy+9Fj7xYwoVAYHh4eHR1NURSDwcjMzPT19a2oqKi7vLCsrIwQoq2tbW9v7+fn5+DgYG9vj/ORFV+fPn2qJ03KS31q5+ZOdxaldDfi/LjQULy+AKB6cA8YAMCnLV6y5Enh60lhG+gOosSqKyum9uyQn5dnZmZW92Bubu6RI0dev35d94iWlhaLxZKWLk1NTUdHRxcXFxcXF1tbW5QupTPn+7nPOLxxi1fRHUT58Gt5k7u1TU5Ksre3pzsLAMgYVsAAAD7tcnjESPwS+XWYhkaenbtERUWNHz+eECIUCiMiIm7evFnvaQKBQFtbOygoiM1mOzo6ampq0pAVZGTSxAnde/YaPmuhrj52//8ycRfPtG/fAe0LQCXh1UQAgE8oLi7Oz8tzaduR7iBKz9XLJyYujhCSnZ29Zs2a69evSyQSiURS72l+fn4hISFsNhvtS9l5enp6e3e+cfoY3UGUjFgkvPL7vhXLl9EdBAAaBQoYAMAnxMbGurXvqKWjQ3cQpefu3TU2Jub8+fNbtmwpLi5++0MMBqPuXpeMjAw60kGjWBUWduXIAUFtLd1BlMntyxcszMwCAwPpDgIAjQKXIAIAfEJMbKyrlw/dKVSBPdudy63x9PQMCgricDgcDqeyspLD4VRXV0vf4HA45eXleXl50g056M4LMuDt7e3u5hZz4VTf0d/RnUU5SMTi8MN7dm/7he4gANBYUMAAAD4hOiZ2yvptdKdQBQw1NffOPnFxcVOnTmWxWHTHATkJW/Hj6NBxgcPHaOCa0s8Qfy2CpacXHBxMdxAAaCy4BBEA4GNevXr1quilo0cbuoOoCJcO3rfv3qU7BciVv7+/g51d5LGDdAdRAoLa2jM7flq7ehVWgAFUGAoYAMDHpKWlWTs4qWvglXvZsHZyTU1NozsFyBWHwwkdO+bq0QMlL5/TnUXR/Xlgl6uTY0hICN1BAKAR4RJEAICPycjIsLDFTtAyY2nnkJ2ViVu8mggul3vjxo24uDg+n//tsOEnflo7b/t+ukMprlcF+VePH3qYkEB3EABoXChgAAAfk56RYW7rQHcK1dHMzJyiqKKiIktLS7qzQCPi8/m3bt26du1aTU2Ng4PDoEGDLCwsnF1dH92Oad/Dn+50CurIhrC5c+e6uLjQHQQAGhcKGADAx6Smpbv3HkB3CtXBYDBa2TlkZGSggKkqPp9/7969qKgoDodjb28/cOBAV1dX6Ye2bd36w9JlrTv5aOvq0RtSAf11Nfx1fvayq+F0BwGARocCBgDwMRkZGb2nYgVMlixs7TMyMnr16kV3EJAxPp9/586d69evczgcW1vb7777rnXr1m8/YcSIEX+cOnV47fIZG7Ct6P8ofl5weO2yC+fO6urq0p0FABodChgAwMcUvXxhatGS7hQqxbSldX5+Pt0pQJa4XG5sbGxcXByXy23VqtXYsWM9PT3fe5vfsSNH2rZvf+vS2Z6Dhss/p2ISi4S7Fs36fvYsf39cnAnQJKCAAQB8EJ/PFwoEesyGn1glEYvV1NVlGOldnIrywqwMNy/vRp1FhlhGxq9LCulOAbJRVVV1+/btmJgYHo9nZWU1fPjwzp07f2SHFWNj43NnzgQGBTm6t23l6CzPqArrxJZ1zZh6YWFhdAcBADlBAQMA+CAOh6OpqdXg02NFQuGykQN+Oh8l21T1PM/OPL5l/cYzEY06iwyxjJvlpv5Ldwr4WqWlpTExMXfv3hUKhQ4ODn369PH09PycT+zUqdOK5T9uXzB9/Zkr2jpN/Yq7f2Kux1+9nJyUpN7Ir9QAgOJAAQMA+CAOh6PHZDb40/k8XkFWulgkVNfQFItFamrq0pUBiqIkYjGDwWCoqVW+KTUyaf72Zwn5/OqqCuPmZtJ3KYoqe1XEMjb++K+qlERSXlrSrIVZ3SOC2tqq8jfNWphJl+DeO069uepmpCSSetnq5ackkgav7OkxWVUcTsM+FxRBTk5ObGzso0ePKIpq27Zt3759bWxsvmiEBQvm37l3d+fCmQt2HGzsJWJFlpv6ZN/y+efPnbWwsKA7CwDIDwoYAMAHfWUB+21DmEggCAsduv7k5X1hiyxs7EKmzCaEnNm1pbToRX56ilAg0GWyarncsN9OS7vTub3bIo8dMm5upq6psWzfcQaDrJ04So/FKntV1Dmw7/glq947UXnJ6+/799TQ1BTU1i7bf9zcymbXku9zUpJ19PRLXhQu2XukRSurd8epN1ddeUt/lHB43fJ62erlJ4SMmPNDw74tGlpafD6/YZ8LNBIKhQkJCXFxcQUFBRoaGt7e3kFBQebm5g0YisFgnDl1yj8wcO/y+TM3bm+ah8K9KsjfNG3s1q1bAgIC6M4CAHKlRncAAADFxeFw9PQbXsAmh63X0NJaf/IyIcQvZMTt8AuEEIqi7kRcbNetV15ayoLt+zedudKt/6BDa5cRQqrK30Sf+2N/XMK2iNgufYJjL5z6J+a6jQt73R+XtkXE8nk8kVD43olKXj5fuOPAL5djuvYbdOynNc8y00Ui0Y7I2z+djwocPibuzzPvjvPuXG8P+G62evl7DhrW4G+LppaWAAVMqVRWVkZERCxduvTo0aMVFRVBQUHr1q0bN25cw9qXlK6ublRkZEluxuntm2UYVVlUvSnbNG3sD/PnT5wwge4sACBvWAEDAPggGb4wz+7QSSwU5qU+ra3hNjMzb2Zm0crBydrJlRDSKaDP1eO/EUIe3IzS0tE9+tNaQkh1ZfnznKxFuw6f3f3LshHBHf16D54880N3o1k7uUqH6hz4zfVTR+3YrUd+v+jaySP56Skp//zt5NmuTZfu9cZ5d66h0+fWDfhutnr5za1tG/69oAhpkiseSoeiqIyMjNu3byclJUkkEgcHhxEjRrRr105WdysZGhpGRUZ29vExMDXtN3aSTMZUCjXVnA2TRw0ODl68eDHdWQCABihgAAAfxGQya7jVshqtV8i3d6/8WVPN8Rv8LSFEXeP//wQW8PkaWlqEEJFQYG5l49s3WPo4g6Fmbm27L+bB4/g7f1+PnD8ocOufN8ys3nOzjaaWlvQNiVjUopV1SsLf2xfM+GbspJ6DhlvaOeSnpbw7zrtzvT3gu9nezd9gQqFA678xQTG9efMmISHhzp07paWlGhoa7dq1CwgIsLe3l/lErVq1ir5xo1uPHhKRKPi7aTIfXwFVvSnbNC20Y1vPbb9spTsLANADBQwA4IMMDAxqqhtewDS1tCRiSd1O9D0HDls5bqhEIhm3OCw/PfVZRtqL3OyW9o5/XQ1379yFEOLTp//5vdutndksI+ObZ09kP0kqflGQ8zR54o/rOvYKzO6fVPyi8L0FrCArPS/1qZ2b+93IS96B36Q9fNC2W6/Bk2dKxOLzv27XNzC4delsvXHencvNy/tlXo700LN3s9XL3+DvCSFEJBBoa2t/zQjQSGpqahITE//++++cnBxCiI2NTUBAQKdOnfT19RtvUjab/c/9+wG9e5cWvRy/ZBVDTZVvjih+Ubhxyuh+QUG7d+1UU+mvFAA+AgUMAOCDmEzm1xQwdQ1NJ8+2E7u22XMjXo9lYGJuYWZlY9DMRFefSQgxtbDcPGsCg8FgGTdbuvcoIcTIpHmf0eNnBPq0tHNQ19CYvWmHcQuzO+EXF4b05vN4Tp7tPnTYl6Wdwy/zpxFC9FgGS389IhQINs+aEDZ2iFAgcG7bPu3hA58+wfXGUVfXqDcXIWTRsG9WHj713myEkHr5G4zLqTQyNPz4c8RiMUVRGhr4R0oeBAJBSkrKw4cPHz9+LBQKDQ0Ne/fu7ePjY2lpKZ8A9vb28ffu9Q7qs2fp3Onrt6prNPDgBwVXmJ2xYfLo8aFjN2/aRHcWAKATg6IoujMAACgoPp+vo6Nz5smzBh8FRgjh1/Lqdn5fN3n04CmzWnv5pCX+c3Tz6o1nrtRwOPoGBm8/XywS1tbw3n6QX8tjEIaWjs5HZqEoilNRbmDcrO4RTkU509Do7dvY3h3n3bkIIR/JVpf/C77+d4T/vk+j7OWhgwfrPV5TU5Obm5udnZ2dnZ2fn7969WoTE5OvmQg+jsvlPnnyJDk5+enTp3w+X0NDw83Nzdvbu23btrScSVVRUdEvOFikqTv7591fc/q5Ynry971t86f9tGnTlCmT6c4CADTDi4sAAB+kra2tpa1dU815u9h88SA6uoSQrMePIo8frq3hvt1eGAxGvYZDCFHX0NQ30Hx3BE5F+Z2Ii/WebOvCbt2pi3SoeiFZRsbvTfLxuT6U7b35G6a6vNzxv2ZVVlYmbVxZWVmvXr2qe02QwWAYfmqVDBqmpKTk8ePHSUlJOTk5EolEV1fX09Ozbdu27u7uOh8t+Y3NyMgo+saNCRMnLh3a5/tf9tm7edAYRoYkYvGFfTuiThw+fvRocHAw3XEAgH4oYAAAH2Nh2bLk5fOvKWBSJhYt2/h29/ILkr5r5eg8btGX3UmloanZoqVVvQeZhvVb1td7b7Z6+b9GyYuCLi7dDx48mJWVVVlZ+d7n6Ovr4/pDGaqsrMzOzk5LS8vOzi4qKiKEsFisTp06dejQwc3NTXG+1bq6uqdOnjx27NicCd8OnTm/75iJyn5EWGVZ6d6l34uqKxMTEhwcHOiOAwAKAZcgAgB8TFDfb9wC+nfrP5juIKpjyZCgA7t3mpubR0VFpaenv/c5ampq5ubmRkZGhoaGxsbGBgYGb/+XlgvklE55eXlmZmZGRkZmZmZJSQkhRENDw87OzsXFxcPDw8bGRpG7TXJy8pBhw8zsnaeu2fLuKrGySI6/u3vJ7FEjRmz5+Wfs/AkAdRTlRS8AAMXkxnZ9mZdDdwrVQVHUi/xcFxcXCwsLV1fXwsLCqKioR48eST8kfY70+kNdXd3i4uKsrCzh/x4/zWAwWCyWtJgZGhoaGhoaGBgYGRkxmUzp203zN12KokpKSgoKCgoKCgoLCwsLCzkcDiFEXV3d1tbWy8vLxcXF3t5eWb45np6e/yYmTpsxY26/7mN/WNEtOESR6+K7KstKT2xZl3Qn5tDBg4MH4+UbAPgfKGAAAB/j6uLyKCKK7hSqo+xVEYPBMDc3l75rZWU1ZcqUFy9eREVFJSYmSiQSBoNBUVSbNm1GjhwpfQ6Xy62srCwvL6+srKyoqKiqqnrz5g2HwykoKOBwOGKxuN4U2trahoaGLBbLwMCg3htMJpPJZOrp6cn1a24EIpGorKyspKSkpKTk9evXz58/LywsrK2tlX7U2NjYzs7O2trawcHBwcFBSTf9ZzKZJ44du3Xr1rTpM2LPn5ywYr30cHAFR0kkt8MvnPh57Td9+5xOS2vevDndiQBA4aCAAQB8jIuLS9GuPXSnUB0v83KcnF3qrWa0bNly0qRJAwYMuH79+t9//y0Wi42N/+/eNn19fX19/fduiU5RFIfDqaqqqqysfPeNkpISDofz7pX2ampq+vr6TCZTOrL0DRaLJX1bT09PV1dXR0dHT09PR0eHxsOaRCJRdXW19MvhcDjSr0jqzZs3by8YtmjRwt3d3dra2srKysrKisVSnS0Ee/bs+Tjp359/3hI2elDA8DGDpsxmGiju7izpjxKObgzTUWNcvRLh7f3+QyMAAHAPGADAx7x+/drWzu7oP+lfsxM91Lly9CC/MOuP48c/9ITy8vKbN286OTm1a9fu66eTSCQcDkfaXjgcTnV1NZfLrf4Pl8uVvisSiT40gra2ts5/6rqZhoaGrq4uIURXV1dNTU1LS0tDQ0NdXV261vTJFTYejycWi2trawUCgUgk4vF4IpFI+i6fz5fmrKqq4vF49T5RQ0OjWbNmzd+h2QT+58zLy5u/cGF0dHTQiHH9xk02NDGlO9H/eHL/3qX9OwuzM8JWrJg5YwZuUwSAj0ABAwD4BAcn5wmrf2Z36ER3EFWwZfaE74aFTJ6sWEch8fn8ulbG4/F4PF5NTU3tf3g8Xm1trfQRHo/H5/P5fH5jxNDT09PU1GSxWNLLJqUXTBoaGjKZzLrb3mhckVMEKSkpGzZt+vPixe7BQ0KmfW9qIaejoj8iOf7uud1bip8/WzB//pzZs1XgAlcAaGwoYAAAnzBl6rRqHYOhM+bRHUTpScTiiV08HiU+VIH9uIVCoVAoFIvF0jLG5XIJIXw+XywWSz9U7/na2tpvr4pIF8309PQ0NDS0tbWl78ozv1LLycnZuGnTqVOn2vr26DZgaPse/vJfoC4tenEn/MK9iAsMsXjZ0iXjxo1Tlg1OAIB2KGAAAJ9w5syZTTt2r/j9LN1BlF72k6Sd86Y+LyygOwiogtevX586derI0WP5+fm+/QZ2GzDEuU2Hxp60pppz/8bVe+Hns54k9Q8e8N240MDAQFxwCABfBAUMAOATiouLrW1sj9xP0dLRoTuLcvvz4B5GyfNjR4/QHQRUSkpKytFjx46fOCEQijy9fV29unh4+5pb28pqfKFAkJn08OmD+LR/4jMe/+vdpct340KHDBmiSpudAIA8oYABAHyam7vH8AUrPLt0ozuIcts4ZfTsieNDQ0PpDgIqiKKop0+fxsbG3oiOuXf3jh6Txe7Y2cLeydLW3tLWwdLOQfOzLxGsLCt9kZv9Ii/n1bPcgvSUlMQEG1vbAH9/f79ePXv2bNasWaN+IQCg8lDAAAA+bdny5f/mFk5etZnuIEqsqvzNdD+vZ/n5LVq0oDsLqDixWPzvv//+/fffqWnpaRkZWRkZr18VmbVs1dzCkmlkrG9orMcyYKipqWtoikVCQoiwtraGU8WtLK8sK33xLE9Qy3dwcnJ2dm7NdvXw8OjRo0fdyXUAAF8PBQwA4NMyMzM7eHkdvJOEqxAbLOqP3188+vvqlQi6g0BTxOVyMzMznz9/XlZWVlZWxuVya2pq6j5qbGysr69vYmJiZmZmb29vbW3dxHebBIBGhT2XAAA+zdnZ2cnJOfF2tE9Qf7qzKKu/Ii6sXraE7hTQROnr67dr104mh8sBAHwlvMADAPBZvhsX+lfERbpTKKuiZ3nPc7P790d9BQCApg4FDADgs4waNerfv25XlJXQHUQp3bp0dvjw4bq6unQHAQAAoBkKGADAZzExMen7zTcxZ0/SHUT5CGpr4y6cmjRxIt1BAAAA6IcCBgDwuVYsXx557GBtDZfuIEom+vzJ1m6tvb296Q4CAABAPxQwAIDP1a5dOy+vjjfPHKc7iDIRi4SRR/avXPEj3UEAAAAUAgoYAMAXWLNqVcTv+wS1tXQHURqxF8+2tLDw8/OjOwgAAIBCQAEDAPgCPj4+ri4ucRdP0x1EOYjFoojDe1eFraA7CAAAgKJAAQMA+DJrV6++sG87t6qK7iBK4PrJo2amJv369aM7CAAAgKJgUBRFdwYAACUz/Ntva7SYE35cR3cQhVZRVjKvX48b16517tyZ7iwAAACKAgUMAOCLvXr1ypXNXnrgDyfPdnRnUVy7Fs1ysWyx79df6Q4CAACgQHAJIgDAFzM3N1+xYsXva5dTEgndWRRUasL95L9ur1+HRUIAAID/gQIGANAQ38+Zo0GJb2BL+vcR1NYeWr1k65YtJiYmdGcBAABQLLgEEQCggR4+fOgXELD6+EUbZzbdWRTLgZWLqcqSa1evMhgMurMAAAAoFqyAAQA0UMeOHdesXv3L95N53Gq6syiQ+Kjw5Huxfxw/jvYFAADwLqyAAQB8lUEhIeVC6vste+kOohBeFeQvG94vIvxyt27d6M4CAACgiLACBgDwVY789lv+06S4i2foDkI/IZ+/be6URT8sRPsCAAD4EKyAAQB8rYSEBP/AwIU7D7l39qU7C20kYvH2BdNZapLIiAg1Nby6BwAA8H74NxIA4Gt5eXmdPHHil++n5KY+oTsLbY5uXs0rfXXuzBm0LwAAgI/AP5MAADLQv3//Xbt2bpgy5mV+Lt1ZaHBu99aUv+KiIiOZTCbdWQAAABQaChgAgGyMHTNm4bx5m6aOrSgtpjuLXN04fezWxVNxMTEtWrSgOwsAAICiwz1gAACyNHfe/Ivh4csOnmzR0oruLPIQefzQ5f07b8XFubu7050FAABACWAFDABAlrZv+2XG5EkrRg7IS0uhO0vjoijq3J6tV3/7NS42Fu0LAADgM2EFDABA9n77/fcFC39YuPMQu2NnurM0ColYfHDN0mfJiTevX7eyahJrfQAAADKBAgYA0CguXLgwYeLEKWt+9gnqT3cWGaup5uxaNEuttubqlQhjY2O64wAAACgTXIIIANAohgwZEhEefmxj2JENYUKBgO44MpOb+mTJ0D52Zqax0TfRvgAAAL4UChgAQGPp3r370+Rk3quCFaMGvCrIpzuODNy+dG7thG8Xzv3+9MmTurq6dMcBAABQPrgEEQCgcUkkkrVr127bvmPSqk1d+gTTHaeBuFVV+1csfJ2beeH8OU9PO/B/dwAABB5JREFUT7rjAAAAKCsUMAAAeYiLixsTGmrt2nrc0jXKtUM9RVG3L5//Y+v6vn2C9u3di6OWAQAAvgYKGACAnNTU1GzevHnbjh3fjJ00eMpsTS0tuhN92su8nN/WLa989XLvnt1BQUF0xwEAAFB6KGAAAHKVkpIydfr0wpdFYxetbN/Dn+44H8SpKP/zwK7Y8yeXLF68cOFCLWWoiwAAAIoPBQwAQN4oijpx4sTyH1foGhoNmjKnk38QQ02BtkSqKC2+cuTAjTPH+/btu+Wnn2xsbOhOBAAAoDpQwAAA6CGRSC5cuPBjWJhQQvpPmN4teLC6uga9kUqLXkT8vj/2wqk+ffuuW7OGzWbTmwcAAED1oIABANBJIpFERkauXL3m+YsXnXv36zn4Wzt2azlnEAoEj/+6/VfEhYRb0SEhISvDwpycnOScAQAAoIlAAQMAUAjx8fHHjp84c+a0WStr3+Ahvv0GGpk0b9QZKYkk/VHCnfALf1+LcHR2njAudMSIEaampo06KQAAQBOHAgYAoED4fH5kZOTvR47evHHDysHRrXOX1p193Tp66zFZsprieU7Wk/v30hP+fvIgnsVkhoaOHTtmjKurq6zGBwAAgI9AAQMAUEQ1NTX37t2LjYu7GR3zNDnZsbW7jWtrc1uHlvaOlrb2zS1bqamrf844PG71y7ycl/m5L3KzX+XnpCU+EItEPXv0DAzw79WrF3oXAACAnKGAAQAouqqqqjt37jx9+jQ1LT0tPT07K7OGW9PS1s6gWTOmoTHTyJjBUNNlsQghYqGAX1srrK3lVpZzKspLXr54U1rSytrGxcWltRvbxdnZ29vb09OTwWDQ/TUBAAA0UShgAADKp6SkJDs7u6SkpKysrKysTCwW19TU8Pl8AwMDdXV1PT09U1NTU1PTVq1aOTg44AgvAAAAxYECBgAAAAAAICcKdPQnAAAAAACAakMBAwAAAAAAkBMUMAAAAAAAADlBAQMAAAAAAJATFDAAAAAAAAA5QQEDAAAAAACQExQwAAAAAAAAOUEBAwAAAAAAkBMUMAAAAAAAADlBAQMAAAAAAJATFDAAAAAAAAA5QQEDAAAAAACQExQwAAAAAAAAOUEBAwAAAAAAkBMUMAAAAAAAADlBAQMAAAAAAJATFDAAAAAAAAA5QQEDAAAAAACQExQwAAAAAAAAOUEBAwAAAAAAkBMUMAAAAAAAADlBAQMAAAAAAJATFDAAAAAAAAA5QQEDAAAAAACQExQwAAAAAAAAOUEBAwAAAAAAkBMUMAAAAAAAADlBAQMAAAAAAJATFDAAAAAAAAA5QQEDAAAAAACQExQwAAAAAAAAOUEBAwAAAAAAkBMUMAAAAAAAADlBAQMAAAAAAJATFDAAAAAAAAA5QQEDAAAAAACQk/8Hw24PPgxEakwAAAAASUVORK5CYII=", - "text/plain": [ - "" - ] - }, - "execution_count": 20, - "metadata": {}, - "output_type": "execute_result" - } - ], - "source": [ - "import_loop = cycles[0]\n", - "cycle_list = list(import_loop)\n", - "\n", - "\n", - "def create_single_loop_graph(cycle):\n", - " cycle_graph = nx.MultiDiGraph() # Changed to MultiDiGraph to support multiple edges\n", - " cycle = list(cycle)\n", - " for i in range(len(cycle)):\n", - " for j in range(len(cycle)):\n", - " # Get all edges between these nodes from original graph\n", - " edge_data_dict = G.get_edge_data(cycle[i], cycle[j])\n", - " if edge_data_dict:\n", - " # For each edge between these nodes\n", - " for edge_key, edge_data in edge_data_dict.items():\n", - " # Add edge with all its attributes to cycle graph\n", - " cycle_graph.add_edge(cycle[i], cycle[j], **edge_data)\n", - " return cycle_graph\n", - "\n", - "\n", - "cycle_graph = create_single_loop_graph(cycle_list)\n", - "visualize_graph(cycle_graph)" - ] - }, - { - "attachments": { - "image.png": { - "image/png": "iVBORw0KGgoAAAANSUhEUgAAAikAAACFCAYAAACe0miiAAABWmlDQ1BJQ0MgUHJvZmlsZQAAKJF1kE9LAlEUxY9mCSnYoqWLgRAMLMR00dKGEMHFYEr/FjHOTBro9JoZqWjRF2jTJjctatMnCNwU1K59URH0AQraFMymZLrPqUaLLhzej8PhvsMF/AGZsXoAQEO3jGJuRlhYXBKCT/AhihAiGJMVk2UlqUARfL/9Y99SmuZ6gu+Kx44PX5/3W62h85vZxrL/b75vhlXNVOj9ICUUZliAL04sbVqM8xbxqEGliPc4V10+4lxx+bSbKRVF4iviEaUmq8T3fGelx6/2cKPeVL468PZhTS/PcZ8URQEi0phGjpRB6Z9supsVsQ6GbRhYQxU1WBCQJYehDo04Dx0KJpEgTiFJyvAb/76d5+280OoN+irveeUwcLZC9VTPiz0CkSRwuctkQ/65qM8OmKtTKZdDbWDwwHHe5oHgONC5c5z3tuN0ToCBB+DC/gTm/mIG6OCHqAAAAFZlWElmTU0AKgAAAAgAAYdpAAQAAAABAAAAGgAAAAAAA5KGAAcAAAASAAAARKACAAQAAAABAAACKaADAAQAAAABAAAAhQAAAABBU0NJSQAAAFNjcmVlbnNob3SChXrxAAAB1mlUWHRYTUw6Y29tLmFkb2JlLnhtcAAAAAAAPHg6eG1wbWV0YSB4bWxuczp4PSJhZG9iZTpuczptZXRhLyIgeDp4bXB0az0iWE1QIENvcmUgNi4wLjAiPgogICA8cmRmOlJERiB4bWxuczpyZGY9Imh0dHA6Ly93d3cudzMub3JnLzE5OTkvMDIvMjItcmRmLXN5bnRheC1ucyMiPgogICAgICA8cmRmOkRlc2NyaXB0aW9uIHJkZjphYm91dD0iIgogICAgICAgICAgICB4bWxuczpleGlmPSJodHRwOi8vbnMuYWRvYmUuY29tL2V4aWYvMS4wLyI+CiAgICAgICAgIDxleGlmOlBpeGVsWURpbWVuc2lvbj4xMzM8L2V4aWY6UGl4ZWxZRGltZW5zaW9uPgogICAgICAgICA8ZXhpZjpQaXhlbFhEaW1lbnNpb24+NTUzPC9leGlmOlBpeGVsWERpbWVuc2lvbj4KICAgICAgICAgPGV4aWY6VXNlckNvbW1lbnQ+U2NyZWVuc2hvdDwvZXhpZjpVc2VyQ29tbWVudD4KICAgICAgPC9yZGY6RGVzY3JpcHRpb24+CiAgIDwvcmRmOlJERj4KPC94OnhtcG1ldGE+ChW8zpUAAEAASURBVHgB7X0HfB3Ftf5R793qvbjJvWKbbjrYMTW0QIDQEhIej0ASkn9oSSDvURJ4lBBCDcT03g0GG+OCbblKtiQX9d5713++uZrV3qtbpVUz5/x+9+7s7NRvZmfOnHNm1i0xMbGfmBgBRoARYAQYAUaAEZhgCLhPsPJwcRgBRoARYAQYAUaAEZAIeP6QcPDy8SAffy+tyq2NndTfNz6CJJ8AL/Ly9pBl6RNlaBNlGQl5irT6+/upt7tvJMlwXEaAEWAEGAFGYMIg4BSTEhYbQCFRAVSwp4qiUkPI08uDyvLqXKpEWFwg9XT1UnNNu0vxjAwcNz2cZp2SpCX5zcv7qa1hZMyBlpiLjtmnJlF0WqiMBcbi86d3uZiCefBTfjqb6kqbKeuTI+YPJthdYLivZBRrS5onWMm4OIwAI8AIMAITDQGn1D3pi2MpJsM0oWaemEhgOFyl+Wel0vQV8a5GMzR84d5q+uzJLNqzrsDQdIeTWNbHR2RZSg/WDif6kDiY9Bsr24b4TzSP1PnRtGRNxkQrFpeHEWAEGAFGYAIi4BSTEpEQRNUFTQR1iX+oD1UXNjpdFQ9Pd/Lwcic3NyJ3dzfpxr27h/CwIKhAQqL8ZRiLR6Y0EF+kZyuMZRxr9329/dTX61glopVF5KcnWRdRDj2hbvC3JKhgUFZvv6ECK6hmUJaRqpuQt5v42/3ZUTqSVWFWBGDs7uFOvgJX/xAf+cwvyJu8fAfL4zbQJniIMGhfW6RhYqWuiIO8VLuizqg7/EzPTG3vNtDuwEv+LPCVgfmPEWAEGAFGgBEQCAzOVhZwBIT50slXzdJ8px8fT/iBFq/OoPbmLvr6hX3ac1uOM26ap01UvoHedNbPF8igkCDs+aJAujGhLflRBoVEB2jJHNpeTnlbyrR7xGuqbqPgSH/NL/ubIoJ0xEjyD/ahxWKlHyjqryhnYzEV7K6SkyrKUZJTQ3u/LFSPKWluFM06OZE2vpJNLXUdMtzc01ModmqYFqY8v552f350xEyJluCA47Qb5pH3ANNRcajeTN0DlVL8jAgCIwKCtAUMJxgjqIUqjzTQ9OVxlLYohurLWwlqPVBrQwdteTOXutp75L0z7YOAJ12ZSe0tXZIJjEwOkXGh4vviH7tp0aoMikwOln74U/2gs7Wbvnpur+bPDkaAEWAEGAFGQCFgk0npEJPN9+/lU8LMCDnZbv/gEE09LpawEscE7ayB5oaXs+Ukufzi6QRD1b0DqpbuDtMEiIJknpQoGZQjWZWmiVOohTKWxFJdSQvVFDepskoG5agIU1XQKJkC2JdUHW2UDJMWaAQOSCWWXjhVSh72ry+kxqo2ylgaK8vXUNFK+CE/2Lbs+6pQGKqaMkvMjJBlAIMCmilUYmBQwGiV59VTjHBPFenAHgd+RtLm1w9K6cWKH8/QyqNPHwzKlrdyCeo2MChb386lOaclU8q8KIm1Cusb6CXbOzQmgKYti6NMwXRBOgNytn0QFnmA8cjZUCzxi5tmYtTQ7pCczBCMLuyaNr6Sg+DU2+NYqiUD8h8jwAgwAozADw6BoTqKAQjAhNQUNRFUFvXlglkQbh8/LzGxNUo3/JwhSFywcwU7WLCqhhu/7s5eLTom9Jbadjq4qYTqy1po96cm48/E2VO0MHAgrQMiDCQC+78uks8gKTCKwsUEC0lK0f4aUcdm6u7opbytJmlO4ixTWYr2V0vJUESiSSqAyR3SnWIRBwR1R5Iod5NgSEqyayUzV3qgVhroWtbHiHIDSzBHUB2BybIkYAZM8QPzUFdqcvuIcuvpgJAWoY0PfV8ubFtaKTZjUArkbPuo9La+nSeNrNFHsgWzAups6za1u8AUpPoBysTECDACjAAjwAhYQ8CmJEXZJmBlXJpbS0FT/KS9Qtu+TjmRtzUZsysGqgqs9mvF5KmoQ0xcYGgCLOwjMNEqgpQD5B/irbxGfA2K8JNpQMqAn56g/gJVFzZJdUaCkJ5gUldMUolgREDK9iNY4HXKNbOln/obqf2JSseVq7K/AdOppF+4wrZHT1D3KKoXEiOo3pQaydn2QXyoiKAuYmIEGAFGgBFgBEaKgE0m5ZSrByfYpNmRQjoQKfOaeWKC2KUTJ3amjGzLrCq4OqXEzXzOlI+VOkWFNbtqUgPNYfZ4WDcDhYEKpbnOfKu0YjBwLcutF8xJOO1xL6DETCE1EbYyUI/pKXdzqZQm6P3Gw60wVDijDHq3KpM1KQwJaFV8Z9tnPLeYq7rwlRFgBBgBRuDYQMAKa2Cq2HphzHh4e4U0slz//F6CUSbOFIH76xf3u1z7fqGO8LGyywW2KZj4w+ODtDRhYAs1E1QCetJvfcbOEZBlGH14W+4OoQIBQbWjp2ahcgLhLA8leVBXqFMUFWfXSOlP6oJoKV3CvaLWgXNXIHlScfVXFU5d25u6JsQul9DYQFUkYUAbKNsEUhFX2kdLwI4Dkh3s+FHGvHaC8iNGgBFgBBiBHzgCNiUpULkERfpJG4aOlm4KFkwBjEbhHg611HdIg8nkuZHyPA/YKMBeAlSaWycNdGGsiTyw4wRUtM985w6MdrGLBoazCAsazjkjUG1gsoRUCDuIYB+Dg9Bg6wJGbPbKJKm2wYF1UHlAtQNbHOyGAcHWokswVzACBZWJ8isCw4UdR6hnnzAKLdpXI+1xotNC5FZhZeOiwlccbqCpwlAVu4GKxa4h2GgoZkmFsXVF2ZRtCWxhvHw8pVoO4ZURr624lv6ZJyVIxiRUqHnAAOrr5Gz7WKZp7b5lgIkD9tjx1COwd7a+1tJjP0aAEWAEGIFjFwGbTAqqHCGkG/nbyqRUA1KHGmGPMVyCwauPv6d24iuMSdWhage+LZFMgd4WBJM5mAY9wQ4laU4kJQ/Yi2CHjWJ09OGccWML7rTl8WJrbLpkWJT6auu7ebTwnDS5qwc7e0CwjynJMT90rVTcpy6MptpiYWCrMwJGeNQHZ8LAUDZBqINAYF4Oflcq3fo/TNDwTxNpxYqdMDiDZvv7h/RBbLqxy0gxawgUkRhEJ16RKcNvWnvAFE/kayJxJotVRY/pKSRSwAKEMmHbtSJn2wfh7eWB5zAwDheHASaLdkR7gynjLchAhokRYAQYAUbAEgG3ifQVZBwyhoPHYHipV6+g0Ofeuojyxc4T7D7BGSbWwlhWbiT3UDdBcgN1B6RKwyFIN8DcYWcTmCkwKhONIA3COSmfPL6TsFMJW4SUOsyyrPbaxzIs3zMCjAAjwAgwAiNFwK4kZaSJuxofDAF+9ggT/VioByA9GWk+YLSg5pos5EiV50z7TJa6cjkZAUaAEWAEJj4CNg1nJ2TR1VaTCVm4yVkoSHmYGAFGgBFgBBiBiYjAhFL3TESAuEyMACPACDACjAAjMD4ITC5JyvhgxLkyAowAI8AIMAKMwDggwEzKOIDOWTICjAAjwAgwAoyAYwSYSXGMEYdgBBgBRoARYAQYgXFAgJmUcQCds2QEGAFGgBFgBBgBxwgwk+IYIw7BCDACjAAjwAgwAuOAgEtMio+XD0UGR5K/t+m7OeNQ3jHNMtgvmLw8xAFnTIwAI8AIMAKMACMw5gg4dZibr5cv/fq8OygxwvS9nL1Fe+ipdU+NeWHHMsPwwAh64NIH6N3t79Dnez8fy6xdysvD3YMWpS6mI1WHqaZ58EOHLiViJ3DCyhXkNyXMZojq3TnUkHfU5nN+wAgwAowAI8AIDBcBp5iU4zKWSQbl9S2vUW55LrV2tg43v0kTr7u3S076VU1VE7rMYCCvO+U6+njXR/Rh1oeGl9UNXyz29JDpegX4k7uXF3U34wONppOB3dxdEsYZXj5OkBFgBBgBRuDYRcAukwJVB1bqC1MWUHdvN23J3yKRgFtP3p7e1C9Og4V/iH8IRQdHU0FNAXX1mL5yjLBQESVEJFBlYyU1tjVq0d3FJOft4U3ubu4UHRpDBVVHKdA3kAJ8A6iioUILN5YOlAmM2N1v/XHI93bAFPT29VLSlCQqri2W9Y4Li6PCmkKtiAoPhEuNSqW6ljqqb63XniuHG7kR4iJ8UW2RTFc9U1fkB1yRlgpbWG3KC+o3PAd5ew66uwSD1dfXp5IY0bV43SYtftyJSyhizgwq+ORr6qgdWh8E9A4KIK+gQGqvrqW+bt0nDsQ3gdy9PKWfu4cH+UaEUluldcmPm3geEBtJPe2d1FEnvjxtedKwSMs3PJTcBfPUXl0n2mhoXd29vai/p1c+8wkPIQ/BXLVViY9EWqal1Y4djAAjwAgwAhMNAbsnzt5/yZ8oKjhqSJl3F+6if3z5D83/oSsfpub2ZuoRk2nSlGTpj4n1Vy/+UjIfN552I81PXqCFx+T+6CePUHtXO5044yS68vgr5aQK5qC2pZbCA8LFd+7cBFO0mV7a+JIWbywcsLn50yV/1rLSq3uC/ILooSselowJygcmrK+/TzIK1ULicvebd8uvAD942V/Jz9tPMnjKpiWvPI/+/tnfNOZhasxU+tVZt0oGBZmByXv525c0RhB+YEIeu/px2nZoG81NmivThP/hysP0xtbX6a41v8ftEMKz9dnrh/iP1EMxKfmvfzSESfENC6HUNWeQp7+flk3Vzn1UuW23vA9KjKWU1adTS4n4QGSC6evSvV1dVPLVZmo6avriMqQyGRefQ75TwrU0+rq6Kftfr2n3AXHRlLJqpWBQBvhrgVvJ+i1Un3tYCwNmaNYNlws11BEKSkkgD29v+aytopoOv/OZFo4djAAjwAgwAhMbAbuSlL9/+jc5AV978nUUGxZLD7z3F1mblo6WIbXCKr+ju0OoHT4Wk+ghOmH6iTLMKZmnSgalSEga3tvxnmRKFgjJzGXLL6MXNrygpfNh1gc0Mz6TpsVOk2mkRKbQsozlY86kgEl68P0HKCwgjG4+/eeC6RhKB8sP0qGKQ7R64WrJMOwp3E0XLr2I0qLT5D1iQMIBZgxMzjnzz5X1Wpm5kr7c/6Vk3G4585fk6e4pMWlub6JLlv2Yrj7xp7S/eD81dzSbZXpcxnEEJujt798WGLdTamQqldaV0v3v3CcZlztX/YY25X6rMSbVTdVm8Uf9RjBsaRecSe6CGajYtovayqspdvlCilo0h1pLKyVjosoAJqP8ux3U29FF8acuo/iTlmpMSuSi2ZJBAWNTf/CwkMgEUPjMDBVVfqE55dxTCcxMxdZd1NveQbHHL6aElcupubCUejrMP+YYOi2NuhqbqGJzFoEh8o+OHEyLXYwAI8AIMAITHgG7TArUFCAwH729vVRWX2a3Qg999JCYPEtkmJzSHHk9SUhKQI8IyUlndyfBH9KBBSkLzZiUTbmbpGQCTMq3BzdSQ1sDzUqYJSfynj6d2kCmNnp/UJNAddM8wIi5Wckq6+hOyi7JkUzKjiPbaae4B5MSJiRAQs6hxQCTB7UR7HievPYpybiBScmIyZBMzPbD2+mzPZ/K8L5C8nLJcZfQ8mkr6AsLQ13U/49v/lFLd8eRHdKN9gjwCZBuqNActY+WgMGO4NRE8vD1pcbDBdR8xCQVKdu0ndIvOoemzJ1hxqQ0HSmimj0HZAnCZ08j/6gIrTReA1IYSFu6W9vkD9IPRQGxUYIR8qKG/KNUnbVfeuMejErYzHSq3pWtgsprv1CR5b76vubXeGhQJad5soMRYAQYAUZgwiJgl0lxpdRgQBSDoo8HGxVIBvBcUYlgZNKj06VEQfmBEeocsGGBW9mzQOXR0zl2TIoqj71rZ3eXqI9p1d4h6tXZY6qbsg9BXNRXGRjDnqRJSEuABSg21KTuUIwc/LJLsiWTEhMSjVszOiykNhOZ/CJN6pmQ9BTCT0/eoUH6W2oSEg9FXQ2NQroxRd1K5iVMSE7A3PQKqUhzcbmUgoBhAUGlBGoR/opaigTjfLxQjYUGKy/t2lY2yOBonuxgBBgBRoARmDQIGMak1LRYN4IEEjCKdYb6hX3HIJkULc7GVfFgK6IIdh6jQ/p0+6U9CfLRZW03276BcrnrIii3PmWVSJFQG01oGqjP0Q/WUXuVSfqmytsnJHB6go2JIsvm6WxoopznXhfSl5kUOi2FQqemCqYnmbKffY36RToKG7M2Hmxulax2ba8xL4v2gB2MACPACDACkwIB57iHEVQFahuoJPRSBpy3ooxOR5D0kKixsbG0du1a+bvnnnuGPB9LD0iAYGgLwg4pHAyndjVVDuxagg2OoswBt3qm/B1dIaUBKSmNo/Cj8Rw7bEC+EWHS9gP2H+oH5sIVwo4gGNzmrf2QKrZkSfuT4LREmURnvWlXWKAwwlUUlBhn9kz585URYAQYAUZg8iNgmCTFFhQbDnwjjGQvpztX/4Y+3PkBnTDjRLmjRW1nthVvOP4eYuvqSAm7mQLEFujQAdUMdvukRqXJnUtguFyh28/9tTCMfZfOmnu2jAZbG1B+Rb7c2bRQ2OWsXvgjahHqMFwh+fku7zsZxtk/qMZgs7I4bYmwpSkinOtSVl8qd1s5m8ZIwzUVlEj1TIwwlvURKpm67Dy5yydi9nSCHYh+5429vGJWLCSxXUrYthRK5iRkaooM3llj2u7cWl4lmZ/gtCSKXjpPblHGVQBHdcLQlokRYAQYAUbg2ELAOCbFUnY/gNOGnA2UET1VTKKL5W4ZeBdUFxAOhgMplYy6Sj9s5B2Q7WOLr7NkxNkgN6y8UTtZF/lilxJ+KN9v1t4pi4IyqfKauXXndYB5iBCn1v789F/IOLA5+Trna+kWtaPHP3+cbjv7NjpvwXmmNEXcFzY8r9mxSM+BP0cY/Oe7V+nSZZfJrdyIAmxVXvp0RuxWjWKZkPA//PZncmtweOZUwg8EKUrt/lyTW4urlDbS2+zP3cOTIuZPp8iFs6U/VEOV2/dQx4AEBZ2i4MOvKPVHp1PU4rmmdAVuxV9+J5gkk12QPsF+wfAwMQKMACPACExeBOyek2JktXBgWXxYvFzpK4NSI9OfSGnhnBScGYNzU3CAXUNrw5Btxaq8kUJy4y0OzcPOHDAvk508fLylEWuP2B7c1TR0q7qj+uF0W9/QEHHoWzd1NppvxdbH9QkJEifhelo/7E0fkN2MACPACDACkxYB4yQpDiCADcrR6qMOQh1bj8F04KwUe4TzT8aLEk5ZRiEZKXazP/K+MIYVp8c6S72dXTZPknUmDZwS64zBqz0Gxpl8OAwjwAgwAozAxEdgzJiUiQ+FcSVUxqzGpTg6KeFYencfL7uJ93YOVaPYjcAPGQFGgBFgBBgBgxAYM3WPQeXlZBgBRoARYAQYAUbgB4LAqG9B/oHgyNVkBBgBRoARYAQYAYMRYCbFYEA5OUaAEWAEGAFGgBEwBgFmUozBkVNhBBgBRoARYAQYAYMRYCbFYEA5OUaAEWAEGAFGgBEwBgFmUozBkVNhBBgBRoARYAQYAYMRYCbFYEA5OUaAEWAEGAFGgBEwBgFmUozBkVNhBBgBRoARYAQYAYMRYCbFYEA5OUaAEWAEGAFGgBEwBgFmUozBkVNhBBgBRoARYAQYAYMRYCbFYEA5OUaAEWAEGAFGgBEwBgFmUozBkVNhBBgBRoARYAQYAYMRYCbFYEA5OUaAEWAEGAFGgBEwBgFmUozBkVNhBBgBRoARYAQYAYMRYCbFYEA5OUaAEWAEGAFGgBEwBgFmUozBkVNhBBgBRoARYAQYAYMRYCbFYEA5OUaAEWAEGAFGgBEwBgFmUozBkVNhBBgBRoARYAQYAYMRYCbFYEA5OUaAEWAEGAFGgBEwBgFmUozBkVNhBBgBRoARYAQYAYMRYCbFYEA5OUaAEWAEGAFGgBEwBgFmUozBkVNhBBgBRoARYAQYAYMRYCbFYEA5OUaAEWAEGAFGgBEwBgFmUozBkVNhBBgBRoARYAQYAYMRYCbFYEA5OUaAEWAEGAFGgBEwBgFmUozBkVNhBBgBRoARYAQYAYMRYCbFYEA5OUaAEWAEGAFGgBEwBgFmUozBkVNhBBgBRoARYAQYAYMR8HQ1Pd/gKOruaKHerjZXo8rwbm7u5BMSRX3dndTVWj+sNDiSCYHw8CCKi4vQ4MjLK6Gurh7tfiwdiYmRFBISILPs6emlgweLR5T9zy/zp59d6E8rrqylru5+q2mFRMZRW1M9dXe2W30+Us+Pnw6j4vJeuvn+ppEmxfEZAUaAEWAEhoGAS0yKp48/LfnZP6n4+7eo4LtXXM5u+jm3U+S048nN3YN6BKOz5emfuJyGowgrV86npqY22rEjz1HQSf/8yitX0urVy7R63Hbb05STU6Tdj6XjvvuuooSESJllb28fnXPOH4advbsb0S8Ek1JQ2muTQZmSmE6/emYdbXn3efrs2T8POy97EXdmd9MV5/lRQowHlVT02gvKzxgBRoARYARGAQEX1T1i9hgm+QRGUNSMk6jm0Fba9erttHvtncNMyX602267gG65ZbX9QMfI0yee+IDWrLmHXnvtm3Gv0Y03PibLcuhQ2YjLcvOl/uTn40b/81yrzbS62luppaGGqosP2Qwz0gcPvdBK/UKI8+BtQSNNiuMzAowAI8AIDAMBJ5gUNwqMSie/0Di7yfsEC3F/wizy8PI1C+fm4Uke3n4UKRgUUMmOd6m9oZw6W2rNwo30JiDAlwID/cjNzY08PDykG/c+Pl5DkoZaYsWKTIqODhvyDHG8vT3J3d2dFi2aSn5+3kPCwAP5LF48jRYuzLCaB8JABYJ8kKY18vf30dJHWRAWfs5Sv5hB29u7nFLxqLIAJz3h3hpGKLOXl7mgzR5uUPGgLLg6ooyMOFq2bCaFhQVaDXqdUPM0NPfTpqwuq889PD2pVTAoj169grI+f8MsjLuQ0vkFhoj28yAf/0DKWGTqd/pA8Pf285dhMhadTOFxyfrHmru5tZ925nTTsrle5O1lnUH38vISbQishvYzLSF2MAKMACPACAwLAfNZyCIJ//AEmn/5Q5LJwKP2+lKLEEQIM+fiP5F3wOCEX7ztTSrY/KoMm3bydRQ371wt3oIrHpbu7o5m2vr0VZr/SB3vvHO3ZByQTkxMGOEehJX9L37xf9KNifeRR26k1NQYeY+/o0cr6Fe/elKb6BGvrKyWYmPDZXpgBD77bAf97W/vaHHuu+9qMcnO0PJDmFtvfZpyc012GGA4Hn/8F2aT8JYtB+iee17W0oBj7dq7qLm5XU7syrYEk/y55/4/s3AjuZk2LYH++tefCUZpkDn59NPtWn1efPEO8vX1FmojE17Ia/bsFHr00Zvok0++p7///V3JZDnCzZkynn/+Crr++nMkE6jCQwr0/POfq1t5DQl0oz253WZ+6iYqeRrd8vRn6naIuifzhHPokt89TuWHsyk2fZYMB5uVT56+l7K+eFPe3/b8BvL29ZdqRzA8oMqjB+mZ//oR9faY2/TsOtBNi2d50aJMT9qyZ2iZ7rnnHsrIyBAMWjtde+21Mi3+YwQYAUaAETAGAbuSlJmrfyclI7BByfvicfIJmmKWK4xg5176IHn5BUsblb1v/IGaK/Io8bhLKDRpngxbtHkt7Xz5VirN+lDeZ7/3J3lvtLrnllueEMzGU5LZqKlpkm7c3333S1qZ//znn0oGZfPmHLrrrufpu++y5f2dd16ihYEDDMOmTdlicn+dWls7hX3FEs0odO7cVFq+fKZkfm6++TH65S+fpK+/3iMYjcHJ7Z57fiIZlO3b82QaKA/inHvuUrN8cBMVFUpTpoRIhuAvf1lL2dmFQ8IM1wPSoIceuoECAnzovfc2CyxeppKSalmfk06aI5PduHGflKTMn5+uZXPppSdLt1IjOYubloANxzXXnCnb5ze/+Rddd90j9J//rCdgo6eZaZ6C+SM6XGxdIlNbeoRe/N2V9P5jv5PR+vv79NE1d0zaTNr05j/o8389QJ7ePnTm9b/XnsEBv6aacnrzr7dSZUEuRafOoJVX3W4WBjf7803tumQ2S0qGgMMejAAjwAiMMgI2mRRPnwApJWmuPCQZkMrs9VS8fVCagHJFpB9HXr5B0s6kVtiadLc30uFvnpNFjl+wWl4hMWmrLRI7eerkfVttsbzvaKiQ90b9QWICSUZfXx91dnZJN+7VJAiVRmZmsjSq/c9/vpYSjNde2yBWwJ103HEzzIrR0tJBf/rTq7R+/W7BgOyWz6ZOjZfXsLAgeT1ypJyOHKkg7KgBM3P4cLmWRnp6LLW0tNMf/vCCTOOuu0yYrFmzXAujd/z2t/+SEosNG/bSnXc+q380IvfZZy+S6qS9e4/Sl1/uorq6ZnrqqY9kmhdddIK8rl37tbwqxgQ3UGHV1jZRRUW9ZGCcxU0mZOMPqiOozpqaWgnlKSmpoRdfXEcffLDFLMbCmSZmIL/QOpMCScfRvVuoKGenjAdG2RoV7N1G6174X9r8zr+orqyQfAOChwR77o5LaP/Gj+if/7VGPpu78vwhYfbmmZiUmenWhY6HDh2iqqoq0ReODInLHowAI8AIMAIjQ8D6yCvS9BNqHFBT2QF5xV994W5KXn65dh8YlSbd2LGDn558QwdVKnr/8XLPmJEosw4O9qcnnrjFrBhQ1+jp8OFB48/8fJOKC/FAkDzcfvtFdNZZiwk7iYqLq+nZZz+lnTvz5XNIRmCvUlBQKe/xV1hYJVU62DJsSd3dPYZKT/TpT59uqvO8eWlD6hwZGSqDgomrrGwghAHBVgQMxbp1WfLeFdxkBBt/qCd2Hs2alUyffvpnMbE30LvvbhZquU1mMUqrTMxJZJh15sMssJ2b3O+/0p7WlRdSRHyqdg9HT3cXNddVST+4O1qbpC2LWSBxEx9tKkdVrXWJzYsvviiYrRcto/E9I8AIMAKMgAEI2GRSyIoY3XLV2k+myX3fW3dTS9Uhs+L09ZpWoGae43ijGBFIR55+2iRNUMXBllk9dXV1a7cW/IvY7dFPF110P11++al0wgmzpLrowQevk5KXb7/dLyQ5JkzAqFiSKoPev66uRX9rqFvld//9r9C+fQVmaXd0DBqlfvHFDrrqqtNlfdasWSHDvfHGRnlVaTiDm1kGVm7++7//QaedtkCqmzIzk+jmm8+jGTMS6IEHXtNCf7/fhP30VA/NbziOzrZBXPsH2mQ46cybZpLswICWiRFgBBgBRmBsEbC5XFVGsiHxmVqJwpJNdibKo6XysHQGRKVST2eb2a+vZ3ASVOHH4opJ1d9/0EhU5akOF0tJiabGxlazH1QzrhCMW//97y/pppseE9udn5BRV61aJq81NY2SkUlOjtaSRJ6enh5UXz84cWoPDXBAmgNKT48zS+3AAZMhLyQqlnXu7BycdN9+e5Ms84UXniAlHbBbUZi4ilt1daPYXeUu7GCGtgEK99VXu+iOO/5Jq1bdLaVLixdPNytzW3u/PBslUZxNMprk6eVNwVNM0j64oQ5qb2kckuWsDBMfv9WK0SwC33TTTfTMM88IJvVPQ+KyByPACDACjMDIELApSQHT0VpTKLcfp538M+porKCExReY5VZ7+Hthh9JEqSdcTf5h8VS+93OxyyeUYsVunpq876gyZ71Z+LG4qa1tFoeKTRGGs2to9+7DVF5eJ41ccRIrbCFg+IqdN2++uVHYrnRLtQ0m1Xvv/bdTxVu16jg68cQ59P77m6W9yxVXnCrjqZ09uMnLK6Xp0xOk0SrsTCClAL377nfyavQfVFC///1ldM01Z4idOl7U0NAq1TVffLFT7GxaRT/+8UlyOzRUK1DzwDYGcd5661tZlLa2Tqmewq4e0EcfbZNX/LmK28cfbxP4zBa7qG4iuLFTCqowGAdD4gQMDh4soqVLZ0jGrbLSpHLRMhSObXu76YSF3hQe4k51jeZSrpg0saU7bArhtFlQWGyi3Gbc1dFGRdk7pJ+zf9c/8jZ98+rf6fiLbpRR9nz17pCoJy/xpur6PqqqMy+HCpiYmCiMqkPEjiXrW9VVOL4yAowAI8AIuI6ATSYFSeV8+CAtuPxhil+4WqbcWn2UAiJTxapbDdj9tOe139KsC+6mmDlnyh8CQopSvucTGcfyT6mILP2Nun/00bfpj3+8Up7EitNYYVOipB3Y6fPAA9cJA9okGQZ5QvKCyVxPSmWj91MqITybPz+NFixIl4/hD2mDfhvtffe9Ihkh2HkoWw8wBdjKPJTM7WGGPnfsgzo888zHdMUVK+mGG86VdYJNCfyhYkGdcQYLfiBIgt5/39xg9cMPt4pt1OfLOB9+OMikILyzuCFsVtYhaaR78slzJKMIJuWaa7DtvJ/i4yMIh+2BUDZIXaCKsqQ/PN5MG16MoN/fEEB3PNxs9viy//cUhcUkaX4zlp1B+CG9e89LJ6Vm7BcG1Paop6tTMjtrbvsfGaw0by+tf/lRsyg/OtWHAvzc6J4nbUvAkC8TI8AIMAKMwOgg4CZWgg5HWZyF0tvVbvcANuwG8guLo+62RupoGro6Hp3iDy9V7PTBbp3u7l6xK6NcXF2zn8HWXhxIBqkFpDO2CNKDpKRIaRirV6/YCj+a/jiIDbuOsGsHhrzDoZHihjwh5cIZNHv2HNHOprFWllf+GkqLxPkks9dUk4XJkLXgLvn99rWdkpl5+CfLKTFzITVUlFBTbcWQNL56LpyCxZktSy6tHfKMPRgBRoARYARGHwGnmJTRL4btHNQBYLZDkNzG+s9/Wpfc2Is3UZ+9+urvtHNZrJURkpDzz7/X2qNjxi8sWJz4K5iUjTvEibo2PjA43MoqJuWhK4+zm8SyeV5UXt1HhWWmHUd2A/NDRoARYAQYAcMRsKvuMTy3YSQIo9ADB4rsxoQ05FiivXuPSBsOW3XS7z6yFWay+9c39dGXWzpHpRp9fc4xHbaMZUelUJwoI8AIMAKMwBAEJrwkZUiJ2YMRYAQYAUaAEWAEfhAI2NyC/IOoPVeSEWAEGAFGgBFgBCYsAsykTNim4YIxAowAI8AIMAI/bASYSflhtz/XnhFgBBgBRoARmLAI2GRS4uPjxTdcTEeCT9jSc8EYAUaAEWAEGAFG4JhFwCaTcszWmCvGCDACjAAjwAgwApMCAWZSJkUzcSEZAUaAEWAEGIEfHgIT/pyU0W4S3wAv6u7qpd5u+8eoj3Y57KXv4elO7h5u1N3p3Pke9tKy98zN3Y28vD1EPj3imHl7IY+dZzEZYTT1uFjatPaA+PD32FfaR/Q/YA7CJxfaGkfnbJjRarHReH+8/UzDUle7aydBj1YdOV1zBDBOBIT4aJ6dbd2jPjZpmVk4xuP98fb1pB5xWnlf79iPFxbVt3rrTPuMFm7y3RWwdHUMvrsLzkmj1oYOyttSZrW8jjwnHZMSNy1cdpCqo42UMi+KGipbxbHmrY7qafW5h5c7rfzZXDqwsZiO7h7eUfFWEzbYc85pyRSVGkJf/GO3wSmbJxc3PZzmnZFCX7+wj9qbx+cr1uYlsn7n4+9FIVH+VFvSTL09I2MuM09KoLqylnFhUFC72acmUXRaqKwoGOXPn95lvdIG+BqJG4ozWu/PolUZMu1N/8kxoNZjk0RguC8BX/TJY538gr3ppKtmadXM/qaICveavsSueY6RYyzfH1QJk/tpYs7Y91UhFWfXjFEtXcvGmfYZLdxWXDqDWus7afv7+VqhMb7OOjmRCsQcO5yFx6RT92DCDorwI0+x+swUFcfAMFxyc3MbbtQxjddU007VhU2jnmeHYEwaBdM3kaVKACEsLpAW/yiD/IJG9uXh2Klh5BvoTYe3D/1uz6iDPZBB1sdH6LMns6j04Oh/H8go3BQ2k+X9UeUdzWvq/GhasiZjNLOYMGm3NXTKPrv++b3jXqaxfH9QWUhPMEa2NU1ciacz7TOWuJUIZg5S6oylscPqL5OKSQkM85UrLEzYEYlBssLDWblg1WNtgoNKBatDS4K/u4fJH6I0FQZiP3+d2FMfDyoaMFPBkf5SVaN/ptKDqFzFR3m8RHqWhIngaFYl7f7sqOUjs3vED40OIC8fk+rA7KETN8inrrSFNr+Rayaqgz/qC6YwaIqfTAl5gFvXE8JIbES9IeVQGOnDwI26AxP/4EFxsT6MHl9gjjoBZ5B6hjRAyEP9pIeLf3hpmmvb5c9WVKycZH1EvfSkVHB6P7gVDsrfXj9AGHxFGQOfPVWTqq9KE7y1pZ+9fFzFzT/UR/ZdW0yIrfdHlc/WFWVGOa0R6mStz6CfKPWPtXi22kelZ8JKvIsDfddaGiPxk3VC37fsk1bqiXcIfclafVS/QXkxbli2r76MeNeRDtKzRvbyQXi8Vyp9lAVpqfHNWnrW/NBn+3ocqztstY+z74+pvKYxw9qY7cz7o8rvCDcVztYV70OPULljjKwtti0xG2k+yB/vLN6zYNFvVVvpy4XFVWhMgFhkWV+kO2ofV3BzNB6gDOiztgjSbkidkudEynrZCmfLf+isaCvkOPonz42kWackaSU44fKZmvvMm+dT8f4a2re+UPOz5cCAt/yS6VJkhzD15S1mQdMWxtC05XG04eVsqUNTDyHaxCQC/4zFMTR1WRyV5NRQQuYUGQTqpqxPDlNHS7e8Txdhpq+IV9Hl9fDOCsr9rlS6IWqLnxGhNRgYrYiEIJlH1idHqPJIgwy34Ow0ip0WJt09wm7GmroHzNqi89LNBqycDcVUsMd59VVCZgTNPT1F5oM/vbonJiOUoFPsE58ixkDWWNUmXxy8RPo6nfXzBdRULZ4JBkSRpRg4YWYEQRKGuKCOli7a9m6+EA92qCiUeWICJYnOnLe1zAzDja/mUKSo68yTErWwx1822A++fHaPy6JEML0lB6xLMNBXFouVMcIoyhFqQYgsQehHGODXP79PPZZh0VcU/o76gRbRjiMsNkDkNYO2vZOnqRKmLYun9CUx9MnjO2VMR/mkiPfHGdymJAbTolXpGrMAidr2D/Il84qMHL0/dqohH+G9SV8UQ58+kTWEKYtOD6OF56bRxleyZVhPMcmfdGUmBQ4MfmW5dbT780FG3VH7YAAHbogHNSYI/W3PFwUajtJzhH9QTUUmB2up4D0AdbZ201fPmSQNYEDwfkFyp6g8v17WRzGniFdd2CjHAbxneN8OivFC9TfEi0wJobni/cHEr2jPugIqHejDYHAwTuL9UVRT1EQ7Pz5sJh0Fru0CC+QRmRwig9oaX1Q6rl4dtY8z7w/yTBP9Zcbxg2Npixgrvn83TxtrnSmXI9ycSQNMwcrr5mhBral7jMgHGaQujKYZYv5Q4yT6yJY3c6VpA/rSqdfO0RZuCI9+/f17+dRSNziOwn+k5Gg8QD9d/KN0QjgQ+jwYZKh7LAlmGeiXAWI8bRELQ1doUjAplUcaBdOQL17ARGGD0E8HN5XIiRkvYOG+aoKawhmae2aKnFhgg9LW1EVzTk82i1a0v1oyKUliUEcYEFZgeOEwQekpNDZQvCz58vlMMbGmLoimA9+WyCA9YnDPFowCBh13MSFjYMavXujmYEsDQgfc8lYuzT8rVQ5MW9/OlRM47GwUk4I8878vk2ot/eQvExB/eHGWrpkqjdbAECDtCNFhfPxda9aKQw3CriebYmFEKiYSa4SJNyIhWDJNcAeL1VeaqLNivBAHZYTUp6qgUeogMWCiTLBvwepi7hkpBFFk9oYisUrwk4MPJqZvBQOiJ2ADY1akVX6oXr4EeFGLc2qpUqQXJQZrqPrwYipD0+4O14yKUR7kg0HPkjDYL71wKkHStV8wv2DMIHXJFAwSGFL8sDJA/TCJqpcuXjB7oLK8Onl1ph/IgK7+WQgjHOXjDG5YDS29YKpkznM2lkgmYrao39Lzp9KXz+4lTGKO3h9H1cDqE+8BVofAVE/h8YEyTzXQYvVWcbhBLj5ShCoFjAZUYpCiOtM+Km0w2XvFRA6j8wXnpMp+CYbXKELamDgwkcJubOMrprT1tlIzT0yUDMqh7eVUnldPMYJZmQopnlDjwk8RGIb8bWVUI3ACM4/+hn6m1K+wn4KR/zbR77uFUTEWKN06A0VghIkA486h78sFZhGEBd7U4+LkmKnywRWLIkwqeJfRFnEDiyF9mOG6nWkfZ96fmPRQiSvGQ9QnaIq/sOFKlIsmTNrOkiPcnEkHWIGBhnnBcRdOsxrFiHxQ55knJEiVUr6oM96HpNlTtIUDMq4R7wDmqlYxlkLSjH6NxQUW0UaRM+NBmmCmwKCgLKUH62S5sTiwRmohGqwbL62Fs+ZnMdxZCzL+fuAUwZD4BniLl7xOThIYGLAKhr+1icay1ODwwoUtAwY5GMmi4+eL1bqeYNSD9JJmTZEDIZ5BRAUqEROknsCQ1BSLtHZVykFEL04uFFIM/NCxIXZDI4IgVlWEiRtMC34IB1UL3D5islAEq3l00q62HsnsKH91TZlnEp9hNQXDNaQJCc/hHa7ZWGACQj5tdpg9rPyqxOAHwiRcLRgRTPL4KUL+BwQDCcnQ/q+LpDckRqC4GabVLBgU2QYCN6QJMSEYBksCvkgLDAEGcnRylBNMSYfACwTmFPf4QXzpCoGjB4FpsqRwMYCDMS0SErqaomYxEfRKyQ7CJYq+AcIKHZQopEOKEoVkDdI5ZRzmTD9QcUdydZSPM7iBEQAd3FRKregLApdDO8ql9AySAmfeH0d1UJJLvIeg4y6YJpl7uOFXL9paT3u+OCrwbNV2BSipijPto9JBG2KcwPuOtlTtrp6P9Ip3FP1PMcmqP+KdBkFUj0kGdmUl2bVyrIDkA/gmCn89YRzL31YuxwG0KUipg/GeoU+2C1uI1rp2Qr7og3iXFCXONo1VsDcAbli4oC9CUmqNtr6dJyWuaBcsqowiZ9rHmfcnQzBXWJxgIQR868S4UpZbT2FigeisWtsZ3JypN8YXjJG25hqj8kGdQVuF5BQLPPQnSNSUWQMYVkgUMVdg5G0WfaG6oIkCQgclvjKBEf45Gg+QfMKsCNmf968vkuXZLd5XWwSGCgQVlqvk2pLb1dQNCA9mBOJNPyE1gLtdSECUCgTMCzhbvLCOSNlQqIES4WF1bElgYKYkBUsxKAYAvOBY0WGg1xNeGEWtoiN5eg3qh8GMLBQqGMvJV29zAlErCJ1OrZRwtaWzV3npr2rQrhXM0mgTVoZaOeEe2FXjKdpEbY3Gi6NIrZT9Q0wMiNqyiMFTUV1ps1whYyAGg6MnJU3S+xnpVoyENfsApV+FVAs/PalJDnWGZADSEzBTaHOkdXDToMW/M/1An/Zw3UbkExRhGjywIrMkSDX86k3t6Oj9sYyrv0f/weQcFh8kJ1dIApB2we5KyaxitawI4VR/w/ZFEPoayJn2kQHFHxYdilrEgA5px1iSYjIgPTrlmtlmWStVj/KsNSvrQJ3F4gpkkiTWCIYnks76xQI5dkEVpCSzCOMv7MQkbgPvJvwwxmF1DumGno9H/1e4IpyR5Ez7OPP+BIb5yEWQfieRKidwVWOM8rN2dQY3a/Fc9TMqH9QZ9VJ931o5YC6gV+mpMGCIsSg2ghyNB8gDc7J+PEDfs+zTqixqnHVmrlZx1HXCMykQ7cMmQtH8s1OVk2CTgEEIYn+HZKXtrBkG1ghpARiS5AEpBfRualWjz0NN0tJPvP0YBEBIEwwKGKqdHx2WjYjOs/K6uaYAA/9qwNAXS+82C2zrRouAzLUbW6FH7q8K7UxKA3gIRMxCK5xMnqZnlsmioyv7HrPIBt5gwgLpbU605Aeg3Pz6QblS0fyFQ/8SQmSN/giRa/yApAjqKZCz/UAGtvPXr3ZY62CEvYYio/JBemCc1/1zj0pau8JA0toKyNr7o0Wy4cCKMFpMmmAWICWDeBiLAqxE1WoRUXt0E61KSsvPyfZBPP1gPwZviCrqkGvuZmFfMiAdGfJwwMNsTLESCCvWMiFWj50WLvvb4tUZlLul1Hx32mDXsJLCoBdUTaNGTraPvfdHlQ0LgR0fHVK32lXfrpqnDYdTuNmI64q3EfngfTcfI81LgCM4wKCgL2HXDBbI2N6r7CPNQ4/szt54gJRdkV6rcRYSRVfJyS7tarLGhYcUA1vdsAIH1wY3VgFQa8C9y8GuF1UStWUM2zAV6d3KDxMmVCfQD8MOAYfS6AdPFc7WFbo8SFAKB1RKKCv0v6NB2JkCmpI0Oum7WmY9nljdgyCuBClxH2x5FIUnmNyqbZS/o6uSQinu3FF4a8+x4kDbBA5IEPRhFK6YmDEY6n/6lQr6JpgWSNvihdoH0h81eLraDyAhBGNrKUlTk3WQsOFRNEVnqOlKPvZww+ABhhzSPn194cZgpNpI38Z6tyqboyveJbQbjKhhY4LtnDOEDh4E4zpnyNn2cSYto8IAW+AHZktPqt9DHWyJq+or+vCO3JCMQI2z7pndcmxS6lTEw7sGlRD6kSLY+mAMs1wIqOcjucI+Bv1fSYtUWs62j733B2lBvQLc+iC5tXgPVV7qauv9Uc/t4abCGHEdaT6QbsG2D+pVawQbK2B+QNiN4Z0FLlGppnOWLMPbah99OFu4ORoPkEZHc7dcZKj0IGW27P/qGWwQQcp+T/k7cx3szc6EHocwaBCsqkOi/MQk0CgbBYMcOjj89YZj9oqHxgRXHilWbdgNASMzGGdaIxjjgjDRFrl4SBHUFtBHwwYDK2zonfU7K6zlZ80P0he8oPhh4sAqUrsf2GYMbhr4wCAVhrvQS0L/jfq5QpiMkbZST6FD4R4ToCuE+ODqYcMAwz+QOv8DhlUgiCohfsbuFBjq4mVw1vBZJiD+1MA/TVjAYxWuGCL13NkrbBVg+GU5IGAihehy9sokmiYMiYEPbCbmCkNrdfAa8sDEhH6IlQ3SwMpQkav9AOmA5opdIKiTEpnDBgEEtRPKOl0YaOr1z67kYw83qA7Ql5ZfPF2qFDDxoK4wpsX75sr7Iwts469WqPhAUFWCqSsXRtuoKwYvPQNoI7r0drZ97KVh9LMW0V9AMKIH86baD5hi0YMVMPoPxgRMQhh70LecJYwBMDJHH/AV7xnaBlvzm3QGyEX7TP1vsdhxhIUR+hLCYMU9GoS6oS1gpwVGHWUDg+Rs+9h7f1Be2Oeg78FQFZI3TIIYTyGptiRb748zuFmmZe0eYxvGRCVRhPkA7pX616h8UGcQdj/hNGy8JzCkBbYg1BOMQMr8KDnuYeMFMLJGttpHH9YWbo7GA6QBW0sw5ph/MGYt0Gk59HnAjUUJJKfKNMDyub1767WzF2McnmFQBhhQxYQLfTYIL4KrBANTNL7aHgxVEcC1XGWoQ81CxIACwzs9WYbVP1Nu7MqZJSZjnL4HwiAF5sEsrnjBTSTOyLCiqsEkceIVmQNhTBd1D0MybP8FM7RNbMdbeG66HBwxQIKw0nKFsKUb+CpSh1IBY5QdZFZ2FH2g+Hp/6FIxYScP2HFgm56yNYH9EM56mSd2WKlBBqvzLLE90lWCES2MaWFdjt0noK/+tdcp2yR9XkeEgXGqeNlR5iMCTz1tBa5CzQhpGn4gqAEtDajBmGBrKQZcvREjwjvVDxBQEFafMJBDnWBzhR0a298/JJkDiJHRtmAYUIZKMVBBZaLI2Xzs4abvS2DOFOn1zM6+PyqutSvywcoeTA8WGRWH6+UOjhqz91l0Ln3HspKQo/bR1GRW4o6GF45BACMLQ3swlKin2oIMI3Ds8sMEq8TymEDQ3nqyWmVtmOiXYxUmLhDiw6YLba8IBu2hYss68lfnSMFmBbtELMnamGMZxpn7HFE3bJcFQwTCDhhIQBy1jwws/uy9P2BiMZZhl9Pi1YPS4ooBlapKA1db7w/6EcZ4e7jp07Hlnr0yWS6+1POMJWJcED+0A7bUG5WPvs5gSkEYW9SOQdS9RjCEaqzHeAAjZLXNXpVPXW21j3puCzdnxgMskjEfgwHBD+M5yqNNDgOZgGmH7dnetwtUti5d3RITE9VrYBYxPj6eqqqqqLvbsVGqWcRJcAORKPS/tox4ILU446Z5suO7stXNsurQw2GSdqRrtow3nHsYEHv5epjyExPAWNO5ty6SgyGMH1FviC2trYyBbYDosBBF4kUYb8JWZrzgX4lzVqxNEpCQYBUFiZ3aVeRqmY3oB1g9wVBNqV2slcGIfJCu7EtiddYpGEtrKx9H74+1so2WnxHtM1pls0wX0lFgh280YVzABOcqoW18xBEDzYIRsBUfCw68Y8jDNGm4motx4Y1qH0guoAqFemI446kzuBlRayPzQZ3d3d3lO2/Z1tjdBGzVItCIsttKw9F4AEkOyqJU+5bpYNGLNPB9tOHQD5JJsQWUmD8l1w3xJTjvHR8eMrOetxWP/YkUk2K5rXuiYwPxNCZ3qJ0sB4KJXnYu3+ghoA7mspcDDhzUq/jshZ0Mz3CQJbbR2yNIbiEpYWIEnEUAKjJsIbclFHCUzqRQ9ziqhFHP3QTXukQcjgbxGtQJ+u19RuVxTKdjTRQxwSsMtYMzWxkneDW4eAYjAJWv2qllK+nR2sJrK7/R9od9S7m3aXearbxwLDwTI+AKAiNlalmS4graHJYRYAQYAUaAEWAExgyBQWvJMcuSM2IEGAFGgBFgBBgBRsAxAsykOMaIQzACjAAjwAgwAozAOCDATMo4gM5ZMgKMACPACDACjIBjBJhJcYwRh2AEGAFGgBFgBBiBcUCAmZRxAJ2zZAQYAUaAEWAEGAHHCDCT4hgjDsEIMAKMACPACDAC44DApGVSAnwCKDI4krw8vMYBtrHN0sPdg4L9gsndbdI219gCxrkxAowAI8AIHBMITLrD3NKj0+n6U2+gsADTNyz+/e3L9F3ed8dEY9iqxCkzT6FLlv2Y7nnrbqpsrLQVbNz90SZTY6bRnqLd1Nlt+uCakYVaes9/iY9r2WbU9j31b2qrNP/WkpH5c1qMACPACDACY4vApGNSzpl/LgX6BtJT656imuZqqmsxfV13bGEb29xqW2pFXWuovat9bDN2MbdZCbPpJyf8hP7y3p+puHbww2cuJmMzuIe3kJrh2wWC/KOnSIaltbxqMPzAs0EPdjECjAAjwAhMZgQmDZPi6+UrcZ4aPZVK60oprzxX3utX7PgYk7eHt7aKT4tOo+b2Zqpq0k1kIlZ4oPiseFAEFdUUUUf34HcooDrCB/CCfIPIx8uHyurLKDokmtq62mQ649HQqNPe4r3y19c3+OFAVVeogKJDY6ig6qhk3gJ8A6iiYfCLvsCtp7eHPDw8KDkimYpqzeus6oS6J01JotbONhF/6FdTPd3FR6Q8PCVe3p7elBqVRuUCn6b2JoI6CvG9PU2qNz8vP1LtpcdX5TXc65Y/PKxFXfHgb8h3Sjht+f1Dmp+ZQ7RjYHwMuXuLj7EVlIrv8uiwE8wOWJ3erm4KiIuinrYO6mxoMouubryDAigwIZbaqmqpo3bokeHuXp4UnJJA3a1t1Fpm3s+QhrunB7l5elJvRyeByQpJT6aW0krqanL9K96qTHxlBBgBRuCHgsCkYVL+fvVjWpukRKaQun/525doc95m+WxJ2lK69uRr6dM9n9JZc86SX5DEgw92vk+f7P6EQvxD6M5VvxEMyuBHtDblbqJXNv1bxr/ptJtpVsIsyajAA0xKXFic+DpuP70s1Epb8k35yMBj8HfGnDPpoqUXaTnp1T3HTzuBrjz+SvFF1T5ZT0hbwgPCZdlRzpc2viTjAac6PBOMmaIPsz6kj3d9pG7ptNmn08VLL9bqDYnNo588YiYNue6Un9GClAW0PvsrGV5FfvD9B2i+8D9n3jnKi24/79ea+3drf0sNbQ3a/Vg4ohbPodk3XSkZBOTX19NLe594iWr2mL7Cuez+28nT34/6e3vJJzRYFqkuJ5+yHn5WfnIdHgHx0bTwjhu15/Cr3ZdLux79F5ySks48iaZetkrDrae9g3b+9WlqLipTQUQ5rqDIRXOoeN23hPCKvr/vMWoqKFG3fGUEGAFGgBGwgsCkYVLuffteYTjqRnet+b2UFLyw4XmlVeEgAAAIAUlEQVRZHWvqHkyY+RX5tG7fOmlcq6Qt1wgGBgzK1kNbacfh7XTxcZfQCdNPoOySbNpVkCXTgyTlic//jzApg0F58osn6OoTf0qnzzl9zJmU7wQDBYnR8qkr6JTMUySzZNmGH2Z9QDPjM2la7DTBeHxMYOCWZSzXmBSEB4Oy7dA22nl0p2BsrqDVC1fTjiPbpX1LVHAUXSJwaO5opte3vEYJ4Ql01tyz6ZYzf0lgMPQEbE7NXCnT2pq/heYmz6O+/j5at/cL2n74e1qUuojOW7CKnl3/TyofkMY0dViXUOjTNdLtFxlOc2+5WkgqWihv7QeSEZl+1YU079ZraMOv7hVSE5PKDBKSxkMFlPPc65Sy6jQKz5xK0UvmUuX3e2RxZl13KXmHBNGuvz1HLYLpCE5LoqDEWK2oUDdNu3w1dTW3Uu4r71JQUhwln3sqzb/tOvr29j9r4eAAbomnn0DlW7KofNMOilwwy0yyYxaYbxgBRoARYAQ0BCYNk6JUEJBqtHW2SimHVgsLR0F1AT3y8aBqQD2eETuDGsWq/sUNL0gvTKR/ufQBWjlrpcaktAl1x/6S/VRYW0ipkam0r3gfFdYUSlWISmesrlAzIe+M6AyZJSY7S4IkqKunSzIp3x7cKKUWkAZBPdPT1yODo06Kqevr76VfnvkrOlkY476x9XXJ/CAQGJQdR3bIH+o9PW4GgYGxVJV9svtj+mhACnOgzCSZQHyUNS0qHU4ZB1Ko8aC0NWfKbPPf+FhINEqlu/CTr2nqpasoeuk8Kv1mq1asXY8+R5B+dDY2E6QrQcnxGpPiGSgkLUIC05hfIMNUZ+0n/BQlnLZCOsGggLHBD4xM+MwMaS9jacB79IMv6cj762QcSG2YGAFGgBFgBBwjMGmYFMdVGQyxXUgJLAlbeDHJHxG2G4qgIunu7aaIwHDlRb19pk+Rd/d0y2d4ACYAk/5EJNh8dIrygeBGWUGwqenpNDEpYLgUQcIEAgNiukbL64HSQYbjYNlByaTEhMYOYVIghZrIBDUNaNb1lw4pJuxPFEECAgYF1FJsssHx9PNVj6nw0w0086cX0clP3k8dNXVUsW03gdHo6zZh6h8dKcPWZQ8yHPU5hySTEhAn7JgsdhmVb96ppc0ORoARYAQYAecQmJgzr3NltxmqoHqQEVGB+qlfOq2dNWJ6YgqpwgnjBBVVuAaNLjVPJxxK8gHpz2hSv1C5DNLQerpLM1FTCDflHiqUGUxCk9iYlxv1wC6jiU4wkt3wy3uGFLO308TA4UFfd/eQ56q98AASF9igJJ9zipTApAqVUJSwLRliqKvHUbkt2hu4tVcf+7vQhgDKHowAI8AIjBAB24dOjDDhiRYdu3wwWaRGpWpFU4fBWbNr0QIN03HppZfS2rVr5W/VqlXDTMWYaIkRSVpCU2OmSndVo2knSmWT6dwVqIgUzRCqHlC5bpeQembvCqkUCAbK40UtJRVya7J3UKCUlEBaon76HT7OlA+7eaDO2XjrvVSfe4QCYqPIw8dHRm2rqJbXiNnTtaTCZ5qwtbbLRwvEDkaAEWAEGAGnETgmJSm2ap9TmiN379yw8gbKOppFFyy5UAb9av+XtqIM2x9bhEdKyVOSxc4dD2n8i7TAbPiLk3abxbZfV8jfx59uXHkTZRXspEuXXSajfpPztXY9bdZpdNnyy+U24vjweJomDmSrb62naout247yLKs32YBcvPQS8vH0kca4+eX5QhJlLpFxlM5Inh957wuKPX4RLbn7Vir6fANVCTuS4JRESj7rJGkE21nf6FTyMLSty86jWqHO8Y+KoGBhr4JtxEoCU/zVd2K3zok0/ScXiG3OXmKbcgyFzkijjroGsV154kubnAKBAzECjAAjMM4ITEompc/BpNdnIW5XGL+48QX69bl3iF0oi+UP/pisdxfuVkGEtMWkOpFJjGBuNULF89vVv9O2UaOA1596vSwnjFLXZ6+Xbn0+YAZU1bHrRhFsb7B9eGHqQun17vZ3NFuT6qZqem3LWsm8XHXi1fJ5qzBM/r/PH1fRnb7iADcY8q4Qu5FuWHmjjPf71+8a0wP3IP3Y89gLNOfnV1L6hWfLHwoCGxTFYEiQFFA2aofdO9iFowjMzYEX39J25bSLc1MgZZl25fmUee0lMlh3S5vZFmUVl6+MACPACDACw0PALTEx0epUHB8fT1VVVdRtRXc/vKwmTqwgvyBhLBshD4VTKoqJUzpjS/KPnz1D2PXz+pbXKSEiwWadIfmJD4uXh7nhXJVjgXzCQshHbCMG4wImxVXyCvQXO3UihRFsNYEBsUY4pj9QbE3Gc2uHvVmLw36MACPACDACziEwKSUpzlXNdijYp+D3QyJsR8bWbFuEQ+FG4yh7W/np/XFmyfH/e5fea4i7Pu8o7RZnlrhCkH44q96xli4Yj8aWQmuPND/YuTQXmtRcmic7GAFGgBFgBAxB4AfJpBiC3CRKxJb6a6JUoVds663Ze9BucZoKS+w+54eMACPACDACxx4CP0h1z7HXjFwjRoARYAQYAUbg2ENg5FtQjj1MuEaMACPACDACjAAjMAEQYCZlAjQCF4ERYAQYAUaAEWAEhiLATMpQTNiHEWAEGAFGgBFgBCYAAsykTIBG4CIwAowAI8AIMAKMwFAEmEkZign7MAKMACPACDACjMAEQICZlAnQCFwERoARYAQYAUaAERiKADMpQzFhH0aAEWAEGAFGgBGYAAj8f5n910TNg+FnAAAAAElFTkSuQmCC" - } - }, - "cell_type": "markdown", - "metadata": {}, - "source": [ - "## Understanding Valid Import Cycles\n", - "Not all import cycles are problematic! Here's an example of a cycle that one may think would break but does not because it uses dynamic imports to break the cycle at runtime.\n", - "\n", - "A dynamic import is an import defined inside of a function, method or any excutable body of code which delays the import to be executed (or loaded dynamically) until that function or method is called.\n", - "\n", - "![image.png](attachment:image.png)" - ] - }, - { - "cell_type": "code", - "execution_count": 21, - "metadata": {}, - "outputs": [ - { - "data": { - "image/png": "iVBORw0KGgoAAAANSUhEUgAABIAAAASACAIAAAAIyqENAAAABmJLR0QA/wD/AP+gvaeTAAAgAElEQVR4nOzdd3gVZdrA4UlISKEXQUBUkGqliiKCKCqKXVAU666NtfdeUNdeV/3simKhiIsFsYMFdFVAUCkqRSwoEDoppH1/jGazqDTDezhw3xeX18lpeYIkeX8zc+aklJaWRgAAAGx4qYkeAAAAYHMhwAAAAAIRYAAAAIEIMAAAgEAEGAAAQCACDAAAIBABBgAAEIgAAwAACESAAQAABCLAAAAAAhFgAAAAgQgwAACAQAQYAABAIAIMAAAgEAEGAAAQiAADAAAIRIABAAAEIsAAAAACEWAAAACBCDAAAIBABBgAAEAgAgwAACAQAQYAABCIAAMAAAhEgAEAAAQiwAAAAAIRYAAAAIEIMAAAgEAEGAAAQCACDAAAIBABBgAAEIgAAwAACESAAQAABCLAAAAAAhFgAAAAgQgwAACAQAQYAABAIAIMAAAgEAEGAAAQiAADAAAIRIABAAAEIsAAAAACEWAAAACBCDAAAIBABBgAAEAgAgwAACAQAQYAABCIAAMAAAhEgAEAAAQiwAAAAAIRYAAAAIEIMAAAgEAEGAAAQCACDAAAIBABBgAAEIgAAwAACESAAQAABCLAAAAAAhFgAAAAgQgwAACAQAQYAABAIAIMAAAgEAEGAAAQiAADAAAIRIABAAAEIsAAAAACEWAAAACBCDAAAIBABBgAAEAgAgwAACAQAQYAABCIAAMAAAhEgAEAAAQiwAAAAAIRYAAAAIEIMAAAgEAEGAAAQCACDAAAIBABBgAAEIgAAwAACESAAQAABCLAAAAAAhFgAAAAgQgwAACAQAQYAABAIAIMAAAgEAEGAAAQiAADAAAIRIABAAAEIsAAAAACEWAAAACBCDAAAIBABBgAAEAgAgwAACAQAQYAABCIAAMAAAhEgAEAAAQiwAAAAAIRYAAAAIEIMAAAgEAEGAAAQCACDAAAIBABBgAAEIgAAwAACESAAQAABCLAAAAAAhFgAAAAgQgwAACAQAQYAABAIAIMAAAgEAEGAAAQiAADAAAIRIABAAAEIsAAAAACEWAAAACBCDAAAIBABBgAAEAgAgwAACAQAQYAABCIAAMAAAhEgAEAAAQiwAAAAAIRYAAAAIEIMAAAgEAEGAAAQCACDAAAIBABBgAAEIgAAwAACESAAQAABCLAAAAAAhFgAAAAgQgwAACAQAQYAABAIAIMAAAgEAEGAAAQiAADAAAIRIABAAAEIsAAAAACEWAAAACBCDAAAIBABBgAAEAgAgwAACAQAQYAABCIAAMAAAhEgAEAAAQiwAAAAAIRYAAAAIEIMAAAgEAEGAAAQCACDAAAIBABBgAAEIgAAwAACESAAQAABCLAAAAAAhFgAAAAgQgwAACAQAQYAABAIAIMAAAgEAEGAAAQiAADAAAIRIABAAAEIsAAAAACEWAAAACBCDAAAIBABBgAAEAgAgwAACAQAQYAABCIAAMAAAhEgAEAAAQiwAAAAAIRYAAAAIEIMAAAgEAEGAAAQCACDAAAIBABBgAAEIgAAwAACESAAQAABCLAAAAAAhFgAAAAgQgwAACAQAQYAABAIAIMAAAgEAEGAAAQiAADAAAIRIABAAAEIsAAAAACEWAAAACBCDAAAIBABBgAAEAgAgwAACAQAQYAABCIAAMAAAhEgAEAAAQiwAAAAAIRYAAAAIEIMAAAgEAEGAAAQCACDAAAIBABBgAAEIgAAwAACESAAQAABCLAAAAAAhFgAAAAgQgwAACAQAQYAABAIAIMAAAgEAEGAAAQiAADAAAIRIABAAAEIsAAAAACEWAAAACBCDAAAIBABBgAAEAgAgwAACAQAQYAABCIAAMAAAhEgAEAAAQiwAAAAAIRYAAAAIEIMAAAgEAEGAAAQCACDAAAIBABBgAAEIgAAwAACESAAQAABCLAAAAAAhFgAAAAgQgwAACAQAQYAABAIAIMAAAgEAEGAAAQiAADAAAIRIABAAAEIsAAAAACEWAAAACBCDAAAIBABBgAAEAgAgwAACAQAQYAABCIAAMAAAhEgAEAAAQiwAAAAAIRYAAAAIEIMAAAgEAEGAAAQCACDAAAIBABBgAAEIgAAwAACESAAQAABCLAAAAAAhFgAAAAgQgwAACAQAQYAABAIAIMAAAgEAEGAAAQiAADAAAIRIABAAAEIsAAAAACEWAAAACBCDAAAIBABBgAAEAgAgwAACAQAQYAABCIAAMAAAhEgAEAAAQiwAAAAAIRYAAAAIEIMAAAgEAEGAAAQCACDAAAIBABBgAAEIgAAwAACESAAQAABCLAAAAAAhFgAAAAgQgwAACAQAQYAABAIAIMAAAgEAEGAAAQiAADAAAIRIABAAAEIsAAAAACEWAAAACBCDAAAIBABBgAAEAgAgwAACAQAQYAABCIAAMAAAhEgAEAAAQiwAAAAAIRYAAAAIEIMAAAgEAEGAAAQCACDAAAIBABBgAAEIgAAwAACESAAQAABCLAAAAAAhFgAAAAgQgwAACAQAQYAABAIAIMAAAgEAEGAAAQiAADAAAIRIABAAAEIsAAAAACEWAAAACBCDAAAIBABBgAAEAgAgwAACAQAQYAABCIAAMAAAhEgAEAAAQiwAAAAAIRYAAAAIEIMAAAgEAEGAAAQCACDAAAIBABBgAAEIgAAwAACESAAQAABCLAAAAAAhFgAAAAgQgwAACAQAQYAABAIAIMAAAgEAEGAAAQiAADAAAIRIABAAAEIsAAAAACEWAAAACBCDAAAIBABBgAAEAgAgwAACAQAQYAABCIAAMAAAhEgAEAAAQiwAAAAAIRYAAAAIEIMAAAgEAEGAAAQCACDAAAIBABBgAAEIgAAwAACESAAQAABCLAAAAAAhFgAAAAgQgwAACAQAQYAABAIAIMAAAgEAEGAAAQiAADAAAIRIABAAAEIsAAAAACEWAAAACBCDAAAIBABBgAAEAgAgwAACAQAQYAABCIAAMAAAhEgAEAAAQiwAAAAAIRYAAAAIEIMAAAgEAEGAAAQCACDAAAIBABBgAAEIgAAwAACESAAQAABCLAAAAAAhFgAAAAgQgwAACAQAQYAABAIAIMAAAgEAEGAAAQiAADAAAIRIABAAAEIsAAAAACEWAAAACBCDAAAIBABBgAAEAgAgwAACAQAQYAABCIAAMAAAhEgAEAAAQiwAAAAAIRYAAAAIEIMAAAgEAEGAAAQCACDAAAIBABBgAAEIgAAwAACESAAQAABCLAAAAAAhFgAAAAgQgwAACAQAQYAABAIAIMAAAgEAEGAAAQiAADAAAIRIABAAAEIsAAAAACEWAAAACBCDAAAIBABBgAAEAgAgwAACAQAQYAABCIAAMAAAhEgAEAAAQiwAAAAAIRYAAAAIEIMAAAgEAEGAAAQCACDAAAIBABBgAAEIgAAwAACESAAQAABCLAAAAAAhFgAAAAgQgwAACAQAQYAABAIAIMAAAgEAEGAAAQiAADAAAIRIABAAAEIsAAAAACEWAAAACBCDAAAIBABBgAAEAgAgwAACAQAQYAABCIAAMAAAhEgAEAAAQiwAAAAAIRYAAAAIEIMAAAgEAEGAAAQCACDAAAIBABBgAAEIgAAwAACESAAQAABCLAAAAAAhFgAAAAgQgwAACAQAQYAABAIAIMAAAgEAEGAAAQiAADAAAIRIABAAAEIsAAAAACEWAAAACBCDAAAIBABBgAAEAgAgwAACAQAQYAABCIAAMAAAhEgAEAAAQiwAAAAAIRYAAAAIEIMAAAgEAEGAAAQCACDAAAIBABBgAAEIgAAwAACESAAQAABCLAAAAAAhFgAAAAgQgwAACAQAQYAABAIAIMAAAgEAEGAAAQiAADAAAIRIABAAAEIsAAAAACEWAAAACBCDAAAIBABBgAAEAgAgwAACAQAQYAABCIAAMAAAhEgAEAAAQiwAAAAAIRYAAAAIEIMAAAgEAEGAAAQCACDAAAIBABBgAAEIgAAwAACESAAQAABCLAAAAAAklL9AD8j9zc3JycnMLCwkWLFkVRVFRUVFRUlJmZGUVRtWrV0tPT69SpU7169USPCQDARmHp0qXx6nHZsmVRFOXn56elpaWlpUVRVKtWrXj1mJ2dnegx+S8BlgAlJSUzZ86cMmXKrFmzZs2aNXv27O/mzJk/f35OTk5+Xt4aH56enl67Tp06depss/XW2/6mVatWrVu3Tk9PDzA/AAAhrVy5curUqdOnT5/9m+/mzMnJyVmYk1NYWLjGh2dmZdWpU6devXplq8cmTZrssMMOTZs2TUlJCTA/5aWUlpYmeoZNX2lp6bRp08aNG/fJJ59MmjTpy6++WrF8eXxTpbS0uls2qNOgUa0t6lWrWbtazVrVataqnJmZXrly5cyssmcoWrmyID+vqLBw+eJFyxYvWrZ40ZKFOTlzf5z34/crCwri+6Snp7dq3XrnnXbq0KFD586d27Ztq8cAAJJRYWHhhAkTxo0bN378+EmTJ0+fNq0stCpnZNRr1LhOg0Y1ateJl45Va9ZKS0/PyMpOK7f2K8jLLSosXJmfHy8dly5auHjBvJy5Py74eW5xUVF8nypVq+60444777xzp06dOnfu3LJlSz0WgADbgKZPnz5q1Kh33nln3EcfLczJiaIoIyurcbOW27bafusWrbdu3rJ+423qbNmgUqW/tB9y0fxf5v3w/Zxvps/5euqcr6fNnj5l+ZLFURRlZWfv2rFj9+7de/bs2bFjx9RUr/cDANh4FRcXf/rpp6NGjRozZsynn32Wl5sbRVG1mrW2adF6m5att27RunHzlvUabVVri/p/7bMU5fw895fvv5vz9bTvvp763bQp38/4uiAvL4qiOnXrdt5993322eeAAw5o0aJFxXxV/I4Aq2BFRUXvvvvuiBEjRr3++uxZs6IoqlO/QesOu7Zs27FVu47btGz9F3Nrbfw0e+b0iZ9OHf/J9Imf/TDjmyiK6tStu9+++x5yyCEHHXRQ1apVN/QAAACspWXLlr366qsvv/zym2+9FW+yb9ysRat2HVu169iybccG2zTZ0AMUFxfNnjZl2oRPp034dNr4TxbO+zmKoiZNmx7Qs+dhhx229957V6pUaUPPsFkRYBWjpKRkzJgxQ4cOfWH48JwFC9IrV27dftc2e3Zv13Xvxs1aJnCwnJ/nTvxg9MQPRn/x0Qcrli3NzMo6qFevo4466qCDDsrKylrz4wEA2AByc3NfeeWVoUOHvjZqVH5eXtXqNXbafc+2e3Zvu2f32vW3TOBg33099fMPRk/8YMzU8Z8UFa6su8UWvY888qijjurWrZsjqiqEAPur5s6d+/TTTz/08MOzZ81Kr1x5l87ddu950K49emZXrZbo0f5HSXHx9M/Hf/T6Kx+OHLFkYU71GjX6Hn30GWec0bZt20SPBgCwGZkyZcrTTz/96GOPLczJqVq9Rvvu+3bueXCbLnulbWSv3i/Iz/viow/fe+mFT999o3DlyoaNGh1/3HH9+/ffZpttEj1achNg6+/dd9+99957R44cWVxc3LJthx59+u227wHZ1Tb2c8QXFRZ+/uGYd154bvx77xQXFe3aqdO555zTp08fZ+wAANhwCgsLhwwZ8q9//evTTz+tlJbWofu++xx5zC57dNvYuuv3Vixd+vGbI99+4bmvPx+flpbWq1ev8847b6+99kr0XMlKgK2zwsLCoUOH3nnXXRMnTKhavUa3Q3v3OKrf1s1bJXqudbZw3i+jXxz89rDn5v34/VaNG5937rmnnnqqNxkDAKhYS5Ysefjhh/91330//vBD/a223qfPsXsfcfRfPJdGQnz39dS3hz773ksvrFi2tF379hdfdFHv3r3j9xxj7QmwdVBUVPTUU0/dcOON382eXa9R414nnLJP72OyqiT3OS1Kios/fnPky0889M0Xn1evUeOC888///zzZRgAwF+3ePHiu+++++577lm2dGmLXdodfPLpu+17YGqSn9Mib8Xyt4c999qgx+b9+MO2TZpce801xx13nAxbewJsrRQXFz/77LMDrr9+5owZ27RodeQZ5+22/4EBzmcY0pRPPx7+0L2fj32vVu3aF1900dlnn+18iQAA62fZsmX33nvvnXfdtXjRonZd9z7i9HNat9810UNVpOLioo9ef/WFB+/5/tuvmzVvft211x5zzDHO0rE2BNiajRkz5tzzzps8adJWTZsdftrZXQ8+Itm3W6zG9M/HD7731skffbhlgwYDrrvu73//uxOPAgCsvdLS0kGDBl1y6aW//Pxzq3Ydjz3v0h127ZzooTaU0pKSj94cOfje236cNaNN27b33H13t27dEj3Uxk6Arc7MmTMvvvjiF198sXa9+secd9leh/behNOrvMnjPnjq1gGzp09p36HDvffcs8ceeyR6IgCAJPDBBx+ce955EydMaNJ6h5Muu27HTpvFIqq4uGj0i0Ofv/fWxQvm9+nT57bbbtt2220TPdTGS4D9saKiogceeOCKK69cubJw/77H9z33ko3ttPIbWmlJyXsvD3/mjhsX5yw47rjj7r777jp16iR6KACAjdTixYsvvfTSRx99tFqNmr3/cf4B/U7eTDbclynIyx3x+IMjHr0/NTX10ksuufLKK51k+w8JsD8wYcKEv59yyucTJ7bpstdp195cv/Hm+14HK5Yuffbum98c/HT9Lbd84P77jzjiiERPBACw0XnhhRfOOvvs+fPm7X/Miceef9nmtuG+vJ/nzH742ksmf/Rhu/btH3v0UW85+3sC7H8UFRXdcMMNN910U3bVaidedt1eh/VJ9EQbhamf/eehay7+Yea3Rx999IMPPlirVq1ETwQAsFFYuHDhGWecMWzYsMbNWvS/4Y6WbTskeqLEKy0tHf3voU/fdn3e8mVXXXXVlVde6RyJ5Qmw/5o5c2a/fv0+/vjj3fY98LTrbqlRp26iJ9qIFBYUDHngzpcef7Bhw4bPDBrk5ZUAAKNHjz7+hBPmzp17+Cln9jnzgvTKlRM90UZkcc78h6+99JO3X+/cufMzzzzTpEmTRE+0sRBgv3r22WfP6N+/uLjkpMsH9OhzbKLH2Uh99elH9116Ts7Pcy+//PIBAwY4QSIAsHkqLi6+6qqrbrvttroNGp5z632tO3RK9EQbqbeGPjPwluvS09Ieefjhvn37JnqcjYIAiwoLCy+88ML77ruv2Y67nHfn/zXYRp2vzoqlSx+69pJxo17ed999n3vuubp17ScEADYv8+fP79u377vvvtul12GnX3dLdrXqiZ5oo/bTrBn3XPSPGV99cd55591+++0OR9zcA2z+/PlHH3306NGjux3a+4wBt1XOzEz0RMnhraHPPHb9lfW3rD/8hRc6dbLJBwDYXEyYMOGII4/84Ycfjjn30sNPPTPR4ySHwpUrH7vhireHPdelS5ehQ4c2aNAg0RMl0mYdYF9++eWBvXr9/PPPf7/qxn2POi7R4ySZqeM/uev801csWTxw4EA7lAGAzcHw4cOPO/74jKzsC+5+aDN5j68KNGbEsEeuu7R27dojX311cz47YmqiB0iYN954Y/fOnZetyL1+0HD1tR5at9/1lqGvNWzarF+/fnfeeWeixwEA2LBuu+22Pn36NGra7I4Rb6uv9bDXYX2ueWLIirz8vbp3f+uttxI9TsJspgH2+OOPH3TQQTXq1rtp8Cstdmmf6HGSVZ0tG9zwzL932aPbRRdddNZZZ5WUlCR6IgCAildcXNy/f/9LL720fbce1w96sXa9+omeKFm1atfx5iGvVq1Vp1evXgMHDkz0OIlR6brrrkv0DKHdfffdZ511Vuv2u17zxJDa9bZM9DjJLb1y5T16Hbp4wfzBAx+fMWPGIYcckpq6mVY9ALBJKioqOuGEEwYOHNjz2JPOvuXe9IyMRE+U3KrWqLnnQYdP+ezjJx5+sFatWpvh2QQ2uwC79dZbL7744nZd9778waeyqlZN9DibgtTU1A7d942iaPDjD0+cOPGII45wchsAYNOwcuXKvn37Dhs27PBTzzz58gEpNjRXhIzMrC69Dpvx5aSBjzyUn5/fo0ePRE8U1OYVYFddddW1117bad8DLv7XY7ZeVKwdd+1cqVKlFwc9OWHChN69e2swACDZFRQUHHbYYa+88kq/Cy4/+uyLEj3OJiUtLb1zz4PnfDNt6KCnSkpKunfvnuiJwtmMAuymm2667rrruvQ69Pw7/y8tLT3R42yCtu+4W3aVqi8MfOzLL7/s3bu3YxEBgORVWFjYp0+fkSNHnnTZdYf9/R+JHmcTVKlSpd337/XT7BnPPP5oZmZmly5dEj1RIJtLgN13330XX3xxpx49z7/z/yqprw2mZdsOaWlpwwY+PnXq1COPPFKDAQDJqKSk5IQTThg+fHi/Cy5XXxtOampqpx4H/Djz24EP/1+1atU6d+6c6IlC2CwCbODAgf3792+7Z/eL73s8LV19bVjbd9itaOXK4YMGzp8/v1evXokeBwBgnZ1++ulPPfVU7/7nHXXmBYmeZROXkprace/9v5k84ZknHmvatOkuu+yS6Ik2uE0/wN5+++2+ffu2aNP+iocGed1XGDvvvueSnAWDn3wsOzt7jz28SwYAkExuuumm22+//cDj/nbCJVcnepbNQqVKlXbbv9eX/xn79OOPdunSpUmTJomeaMNKKS0tTfQMG9CUKVM677FHVrUaNw95tXrtOokeZzNSUlx8+zmnfPrum4MGDerXr1+ixwEAWCtDhw7t27dvu277XPbAk6mVKiV6nM3IssWLruh78LKFC8Z++OFOO+2U6HE2oE05wObNm9ehY8cly5bfPOTVLbfeNtHjbHbyc1dcc/wRP8z45r0xYzbDd3gAAJLOuHHj9t57761btB4waHhGZlaix9ns/DRrxhXHHFy7Zs3PPv20bt26iR5nQ9lkA6yoqGi//fb78MOx1w4c2rr9rokeZzO1cN4vl/Y+IKty2oTx4+vVq5focQAA/tTPP//crn37wpLo1hdeq1nXuiUxvvr0o+tP7rvXXt1ef/31SpvoHshN9iR1l1566ejRo0+6/Dr1lUC169W/+L5H5/0y7+i+fYuKihI9DgDAHysqKjr66KPnz5t//l0Pqq8E2qHj7sdffNXbb7999dWb7AvwNs2TcLzwwgsXXnjhXof16Xf+5YmeZXNXZ8uGVWrUePGpxwsKCvbdd99EjwMA8AcuvPDCIUOGnHbdLZ16HJDoWTZ3Ldq0/2nWjOeffLxNmzatWrVK9DgVbxM8BHHOnDk777JLrfoNbx7yauXMzESPQxRF0T0XnTn2tZfeeOONHj16JHoWAID/MWrUqF69eu112FFn3Xx3omchiqKoIC/30j4HrliUM3nSpEaNGiV6nAq2qQVYSUlJjx49xo4bd8vQ17Zp2TrR4/Cr/NwVFx+xf+nK/MmTJm3CL6kEAJLO/Pnzd9p559TKmbf/+82sKlUTPQ6/+v7b6Zcc2XP33XZ79913U1M3qZdNbVJfTBRFt9122+jRo0+45Br1tVHJzK5y1s33zJs379RTT030LAAAvyotLf3b3/6WsyDn3DseUF8blcbNWh57/uXvvffeXXfdlehZKtgmFWBTpky59rrr2nXdu+exJyV6FlbVsm2HI884d8SIEc8991yiZwEAiKIoevrpp1999dU+Z57ffOe2iZ6FVR104qm7dO561dVXT58+PdGzVKRN5xDEkpKSrl27Tpw0+e5XRtdt0DDR4/AHiouLLutz4JJ5P0+dMmWLLbZI9DgAwGZtwYIFrbffvlqdere+8FqltPREj8MfWDD3x/MP6t6hfbsxY8akpKQkepyKsensAbv//vvHjh173EVXqq+NVqVKaacPuG3RokUXXXRRomcBADZ3Z5111qJFi/r/8071tdGq26BR3/Muff/99x955JFEz1JhNpE9YD/99FPLVq22brn99U8PT9m0XqW36Rl4y3WvDHzk7bff3meffRI9CwCwmRo1atSBBx542Cn/OP6iqxI9C6tTWlJyZb/D5s785uvp0+vXr5/ocSrAJhJgJ5544rPPPXfniLcaN2uZ6FlYg/zcFecc0LVBvboTJ0xIS0tL9DgAwGansLBwp513Xrh02b2vvZ+RmZXocViD2dOmXHzk/n87+eRHH3000bNUgE1hZ9H48eOfeeaZ/fueoL6SQmZ2lX4XXP7lF19sSruSAYAk8sADD0yfNu34i65WX0lh21bb9+h97BNPPPHZZ58lepYKkPR7wEpLS/fYY48vp067/42xVWvUTPQ4rJXS0tIr+h6c8+Ocb77+ulatWokeBwDYjOTk5DRr3nzLJs1ufHbEJnNeh03e0oU5Z/fs0q7NLu+9916iZ/mrkn4P2EsvvfTRRx/1OfMC9ZVEUlJSTrp8QM6CBXfccUeiZwEANi+33nrrksWLT758gPpKItVr1zmy/7nvv//+yJEjEz3LX5Xce8BKS0vbtG07d/6C+14fm165cqLHYd3cfMaJUz4dN2vmzHr16iV6FgBgs/Dzzz833W67XfbY6+L7Hkv0LKybwoKCs/bv3Lhhg/GffZbU8Zzce8CGDRs2edKkI884T30lo77nXJyXm3v77bcnehAAYHNx8803F+Tn9znzgkQPwjpLz8g47NSzJk6Y8NJLLyV6lr8kifeAlZaW7rjTTguXLv/XqPe9e0OSuv3sUyaNHTN71iw7wQCADW3u3LlNmjbtsPd+F9z1UKJnYX0Urlx5ds89GmxR9/OJE5N3J1gS7wF77bXXpnz11WGnnqm+klfvf5yfl5t7//33J3oQAGDTd999960sKOjd/7xED8J6Sq9c+dC//2PypElvvvlmomdZf0m8B6x79+6ff/Hlg+98UjkzM9GzsP4G/O3o76d99f2cOVWqVEn0LLDRKSoqWrlyZdmHK1euLCoqKvswPz+/uLi47MO8vLyyH+mlpaV5eXllNxUXFxcUFBK1v+AAACAASURBVJR9WFhYWFhYWP4TlZaW5ubmrn6Y3z/q9yrwSbKysoJt3UxNTc1cl18llSpVysjIWOXK9PT09PRVNwhmZGT8/g0P//BLy87OXo/PkpqampX160m009LSKv92QH5GRkalSpXW6ouBzUZubm7jrbfedoddrnzkmUTPwvoryM87o3vHTh3aJ2+DJevb4I4fP37MmDF9z75IfSW7Q//W/4ZTjn3qqaf+8Y9/JHoWNl9lVVD+Qlw+ZQn0h/f5szuv5kIURXl5eSUlJWWfvXy0lJSU5OfnB/mi2VyUpV35oqtcuXJZyGVmZqampq5y5z/LuaysrPjOKSkpZe1XloVlF+LnSU9Pj5+k7MPfNyoE89hjjy3MyTnn5DMSPQh/SUZm1v7HnDjs/+6eOHFi27ZtEz3O+kjWPWAnnXTS4CFDHnr30+q16yR6Fv6S0tLSCw/tkZFSMm3q1OQ9lpcNpKCgoLi4ON7tE0dOvCcn/m/cKmW7enJzc+PLpaWl+fn5JSUl8T3Xpqk2bavs3im/sI6iqFKlSmvc+bPG3SlrswepQp4k/n+6+vtUoNXv0Pv9rX/Yz0VFReV3P8ZW2ZkZi//drtekSSbuscqVK6elpaWkpKySZ6vcGmdeXIzlPyx/a/yvq2x/YPxh+bCE0tLSFi1bFleqfMeItxI9C3/V4pz5/ffetd+xxz7xxBOJnmV9JOUesCVLlgwdNmz3ngerr01ASkrKfn2Pf/T6Kz744IOuXbsmehzWU25ublw1eXl5RUVF+fn58fqyLJbijiosLIzv9ocFtWLFiui34+g25pVo2S6CsgtlB9D+/qbfX8jMzCzfIeWPRiu/SyH63RFoq+w9WOXYtlXWmr8/no0ktcbMK9uyEP1voJY9sPwBqOXDr2xPbPkDVsvvqv2zZyv77OXvvE7fs/GzrfGA1QqRnZ0dt31aWlpGRkb8fRQXWrw3LysrK661eNtEnHbxN1T82PgOZY8NMDMbwujRo7/95pvTB9ya6EGoADXrbNFp3wOfHzz4rrvuqlkz+d4KOCkD7Omnn87Lze3Rp1+iB6FidD34iKdvv+HRRx8VYOHFq7Hc3Nx4DRfnU0FBQUFBQWFhYdxRhYWFZX2Vn59fWFhYUFCQn59fVFSUl5eXwJ1I8WIoXjPF66c4YMoyJo6QssJZp0xazZ0hpD/8h1e1atXwk6ylOKviny1lry0sC79Vbo3DL/45U/7DoqKiss6MO7CkpCS+tezDtTxYN/6My5cvr6gvsCzeUlJSqlSpUlZ3v4+3OPmysrIyfpOVlRXfzc+T8B599NHM7OwuvQ5L9CBUjH2P6vfBq/8ePHjwGWck3zGlSXkIYpu2bRcsWXbva+87Ym2Tcd9l5330+ss//fhj7dq1Ez1LkikoKMjLy4uLKDc3Ny8vLz8/P/4wLy+vfF8VFhbGvVS+rzbobL8PodTU1HjtEi9TyhdUvFKJlzKrPPDPHr5BhweSQtxjZXv54jPTxB/GP/fiO8S7+3Jzc+Nyi7coxT8h43138U15eXmrnLFmw4mTLI6x+EJmZmZmZuYqV2ZkZGRnZ8fZlpWVlZmZGV8OMOGmJCcnp1GjRl0OPuIfN96Z6FmoGKWlpecesGedGtUmff55omdZZ8m3gvn8888nff75CZdcrb42JT16HzNmxNBhw4adfvrpiZ4lYeJ2KpObmxtHVBxUeXl58TVl8vLyyp/1rgLF/RPXUXwhXiikpaXFm2/T0tKys7Pjl9fHm37jRUN8fRxUIU9hB2y2yg7TrVatWgU+7drHW9kdyuKt7LHxZq8/Ozgz3ha2fuPFP6XLsi3+yZyRkVGWcPHetlXEt/61v5gEKy0tLS4uXo8NcIMHDy4oKNin97EbYioSIiUlpfuRxzxz5z+//PLLHXfcMdHjrJvkC7AhQ4akpKTsccAhiR6EitSq/a71Gm01dOjQTSPAiouLc3Nzc3NzV6xYEf/2jfdNxR1Vvq/K11RFffZ4u2m8lbQshzIzM+OOinuprK/K36F8X1XUMADJqOwnZIU8W9xsubm5BQUF8bHc8REK8YHf8cHeBQUFubm58YX4l0V8hz98pVx8bOd6vIguLrfs7OyyJPt9p8V3qFKlSnZ2dnZ29kb1fgbLly8fMGBAt27d9tlnn3X6vzNkyJD6W23dYpd2G242wtvzoMOfveumoUOHJl2AJd8hiM2aN69co/aNz45I9CBUsIG3Dhj51KPff/99w4YNEz3LH4gP5FuxYkXuH1nl+go5fCX+NVm2zbL8r8l402Z8ZXZ2dmY55U/hAMAmIM628oUWb7mLC23FihXxhbKui/stTru/ftbQ+BjIMmVh9ocfbujtdz/88MMNN9wQRVFmZma3bt323nvvtTkBw9y5c7faaqtD/97/uAuv3KDjEd7lRx9Umrf86+nTEz3Iukmy7dzjx4+f8e23f7vyhkQPQsXbo+fBrzz58IgRIwK/IVhhYeEq+bRkyZLFixevUlZLly79K1sr4i2psfhkyuU/TEtLK/87LL6mevXqTqAMQHxI4fodYxkfDxnvSVtlo2F80+83I65yXqV4j9yiRYvW5tOV/+1WpUqVGjVq1KhR4/edVqNGjfU7Rn3JkiXxhfz8/DfeeOOdd97p1KnTfvvtt+WWW67mUS+88EJJScnu+x+0Hp+RjVznngcPvHXA559/3qZNm0TPsg6SLMBefvnllJSU3fY9MNGDUPGa7dx2i4aNXnrppQoMsNzc3GW/Wbp06bJly5YvXx5fXrFixYoVK5YvX/77t+JZG+np6av8OvmzzYFxUFXUVwQAa6/sWMq1P1X377dLrubDVWqtsLBwyZIlZZm0mqmqVKlStWrVKlWqVKtWrVq1alWrVq1evXr16tWrVq0aX/OHRxiu8sxFRUVjx44dN27cLrvssv/++zdt2vQPP91LL71Ur1Hj7XbcZS3/Bkgiu/c8aOCtA15++eXkCrAkOwRx1113XbAs1zvobaoeuuaS918alpOTU3YG8NUoKSlZunTpkiVL4rKKs6qsr+LWWte4ivdElf1WqPqbKr8paypvBQMAca3Fp4lavnx52cbN+HL5/67rwZBpaWlxjFWvXr2s0GbPnj1hwoQ/e8h2223Xs2fPnXbaqfzutRUrVtSpU6f7kceces1N6/91shE7/+DujerWHjduXKIHWQfJtAdswYIF48ePP/SUoMenEVLbPbu/NfSZ995778ADD4yiqKioaOnSpYsXL166dOmiRYuWLVsWX168ePGSJUuWLVu29psPUlJS4pSKf5SXz6qyLXBVqlRJ9tNDAUBI6enpNWvWXJvda/n5+auEWXyhbPtpfLns/kVFRYsXL168ePHaDzNjxowHHnigYcOG+++/f8eOHePTh7zzzjsFBQVt9+y+Hl8dSaHtnnu/+tQjOTk5derUSfQsayuZAuz1118vKSnxLbQJ27nznunplV999dVPP/10yZIlK1asWMsHZmRkxFvI4o1kNWrUKL/ZLL7S66kAIFHiM0XVrVt3NfcpKSmJD2BZunRpWZXFm1zjKxcuXPiH5/Qv76effnryySdHjBjRo0ePPffcc9SoUemVK+/YqXOFfjVsRNp27f7SEw+++eabxxxzTKJnWVvJFGCjR4/OzM5u1bZDogdhQ8mqUrV5m3YzZsxY5UCFlJSUuKNq1apVvXr1mjVrVq9evUY5DggEgGSXmpoa/1pv1KjRH97htttumzFjxto81aJFi0aPHr1w4cL33n+/ZduOmdlrfmkDSap1+04ZmZmjR48WYBvEh2PHNt+5XaU0S+1NWau2Hce+NPSUU06pX79+HFo1a9asVq3aRvU+JABAeGs8vceWW27ZvHnz5s2bt2jRolatWgsWLOjbt2/v/ueFGY+ESEtP326nNh+OHZvoQdZB0gTYggULvvn66979nf9wE9eqXccXH7kvOzu7a9euiZ4FANiI/D7AUlJSGjZs2KJFi7i7qlevXv7WcePGlZaWtmrXMeCMJECrth3//ej9CxcurF27dqJnWStJE2C+hTYTLdt1TE1NHTt2bK9evRI9CwCwsSg7631qamrjxo3j3VzNmjVbzZmTx44dm5qa2mKXdgHHJAFatetYWlr60UcfJcvqMWkC7LPPPktJSWm2c9tED8KGVbV6jYbbNv3ss88SPQgAsBEpKirq2bNn8+bNmzVrtpZnLR4/fnyjps2yq1Vf811JZi3atI+i6NNPPxVgFWzy5MlbNGxUtXqNRA/CBrd1y+0nTfhPoqcAADYi1atXP/zww9fpIZMmT27dqcsGmoeNR7WaterUb/DFF18kepC1lTQn5p40efLWLVonegpC2KZFq3m//DJv3rxEDwIAJKuffvppwfz527TcPtGDEMI2LVtPFmAVa9myZd/Nnr1tqx0SPQghxD8rJ0+enOhBAIBkFS8ktmlp8/1mYesWrWbOmLF8+fJED7JWkiPApk2bVlpa2rhZi0QPQgjx/+hp06YlehAAIFlNnz49+m1RwSavcbOWJSUlX3/9daIHWSvJEWCzZs2KoqjeVo0TPQghbNGwUWqlSvH/dACA9TBr1qy0tPQ69RskehBCqL/V1lEUzZ49O9GDrJXkCLD4b7NeIwG2WaiUll6n/pbJ8i0EAGyEZs2aFW/STfQghFBvq62j3/bZbPySJsAyMjNr1Nki0YMQSL1GW89Mkm8hAGAjNGv27LqNtkr0FARSu1799MqVk2XzfXIE2Jw5c+o2aJSSkpLoQQhki0aN58yZk+gpAIBk9f3332/RoFGipyCQlNTUug0afffdd4keZK0kx/uAzZ8/v3rtOhX7nCuWLl04b26tLepXrVFzlZsWzP0xb8V/T6JSOSOzao1aVaqv+V38Fs77ZcXSxX9261ZNm6ekJkfxJlyN2nUWLVxYVFSUlpYc/0QBgI1HYWHhksWLa9Spm+hBCKd6rdoLFixI9BRrJTlWtwtycuo2aV6xz/nUbQPeeeH5PQ485IK7HlrlpsdvvOqTd95Y5cqWbTscf9FVrdvvuprnHHr/nW8NfebPbn1u4rcZWdmreXjOz3NfGfjwSZddt4bRNwPVatYqLS1dtGjRFls47hQAWDc5OTmlpaXVatZK9CAb3Cqrx/49dtuh4+5n3Xx3QodKjGq1ai/40R6wirNgwYImbVdXPuuqIC933KhXdui4+8dvjlqcM7/m715dllW12qX3Pf7rnQvyfpnz3ZD777il/4l3vvRO3QYN/+xpDz7ptD0OOCS+/OpTj3425q2rH3uuUqVf/5LTK2esfqph/3fXxA/GCLAoiqrVqh1FUU5OjgADANZVTk5OFEXValXw8VMboVVWj/se1a/+VtskdKKEqVaz9oxJ4xM9xVpJggArLi5etnRp1eqrHij4V4x7/ZX83BWnD7j1/EP2eeeF5488/ZxV7pCWlrbT7l3KX1O7/pZ3nHva+DFv7X/MiX/2tI2aNmvUtFl8+aM3Xo2iaKfdu5QFGGuvas2a0W8/PQEA1snChQujKKpavUaiBwntiNPOTvQICVOtZq0lixeXlJSkbvQv+dnY54uiKC8vr7S0NCN7dQfvrat3hg/ebsddGjVt1rbLXm8Neaa0pGSND9mmResoiubOmR1FUWlp6ZgRwy48rEffXZr036fTIwMuz1u+7C+O9PiNV330xshF8+ddcOg+n7z9enzlZ6Pfuuzog45ts13/fTo9dsOVBXm58fU3ntrv3ReH/PuR+885sOuxbZtdffwRs6Z+Fd8055tpN5xy7HEdWp6wa6srjz30i48+LPsUqxl7wN+OfvfFIXece9qJu7YeeOuA8oPdeGq/NwY//dSt15/ard3p3Ts+ct1lS3IWRFH070cfuOTInmUjRVE09bP/XHDoPj/M+OYv/lVEUZSRmRVFUV5e3l9/KgBgc5ObmxtFUUZWVkI++8hBj1929EHHtW9xwynHzvhy0gWH7jNrypdRFF17Yp8XH7mv7G7fTJ5YdlNJcfG/H33goiP2O7Zts5N22+Ga44+cPvGzsnv+2cLv96vHf5523OB/3T5p7HsXHLrPKn/+edpx8bP92fJyNavBKEELwnVSOTOzpKSkoKAg8OddD0kQYCtXroyiKC09vaKe8KfZM6d+9p+9DusTRdFeh/eZ/9MPE95/d42P+mDkiCiKtmraPIqikU8/dt9l57Zs0+GyB5487NQzP3r9lcv7HlJUWPhXpurc8+AmrXesUq3aEaeds22r7aMoevfFITf3P7FajZpn3XJPnzMv+M9br117Yp+4Fb//9uvn77nlvZeH79un3/EXXfnjzG9vOOWYosLC4qLCG/5+TO6yZadde/M//nlXRmbWgL8d/dOsGfGnWM3YP3z79fP33PLTrBm77nvAKqcM+v7brwfd8c/pn3927m33nXL1Pyd+OOaO804rLi7avkOnGV9N/s9vrRhF0dsvPF+Ql7fVdhXwar30ypWj3/7XAwCsk19Xj5Urh//Uo5598qlbBnTce79rnni+Sesdbjjl2O+mT83Py42i6Ptvpy/85eeye+bnrii76bEbrnz+3ts67dPzonsfOfjk03/5Yc4/Tz8uP3dFfM8/W/j9fvX4w8xvF8z9qcE2TQ7o97f4z0EnnLp9h92+mz61fuNtotUuL1ezGowStCBcJ0m0ekyCo+MqPMDefXFwWnp6l16HRVHUce/9q9ao+cbgp9vv1aP8fQpXrnx3+OD4cl7uijlfT33vpRfqbbX1ngcfvnTRwmfuuqlHn2NPu+6W+A41ate5/ZxTRz375MEnnbbeU7Xu0GnLrbeZ+92sLr0OjaKoID9v0B03tmzT/spHfj2rR/2tGl9zQu8PXv1310OOjKKopLjklqGvZmZXiaIoIyv7gSvOnzllcnbV6gvn/XLyFdd37nlwFEXbt+80+F+3r1i2NIqiNY5dVFh447P/zq72Byd7rFSp0tWPPZdVpWoURXW2bHDxEfu///Lw7ocf3bDJdu+/PLzrwUfEA3/85sjDTz1zvf8GyotfL5cU2zAAgI3Nb6vH0AFWWFDw5M3X9ex3Uvzylha7tF+yMKdsSflniosKf5j57WF/79/nzAuiKGrXde+q1Ws8MuDy77+Z3nyXdvF9/nDht8rqsUy9rbbe96h+8eWf58wedMeNbbrsdfIVA9a4vFzNajBKxIJwncQBlhSrxyTaA1Yx30IlxcVj/j2sQ/f94hPjpKWn73nQ4RPef3f+Tz+Uv1t+7ooHrrwg/vPULQMmj/ug6yFH3jz45YzMrO+mTyksKNjr0D5ld27TZa+09PRp4z+pkAlj338zfenCnBZt2n/5n7Hxn5Likoys7Km/fZZmO7eJvwmjKGq4bdMoivKWL2+wbZOades9ePXFj9941YT3383MrnLadbc037ltFEVrHLvJ9jv92ffbrvvsH3+zRVHUdPud6jVqPOPLyVEU7X340ZPGvb84Z34URf95a1RBXm68X/GvS0uebyEAYGNT4Zvv19J3X08tLirs1KNn2TXdDjlyjY+qlJZ+/dMvHHv+ZSXFxT/Pmf3ZmLe+mfx5FEX55Y7r+8OF3xqfedniRTee2q9m3XoX3fNwpUppa1xermY1GCViQbhO0pJn830S7AGrWBM/GL1o/i8fvznyyFb/czLDNwcP6nfB5WUfVq1R86F3f/23mJGZlVqpUtlNP8/5LoqiOls2KLsmM7tKs53a5Mz77z7lv27eD3OiKHrtmSdHPftk+etzfpkbXyj/xmjxz5fi4uJKldL++dyIx/959RuDB732zBMZmVldDzny5CsGZGRmrXHsLRr+6ZsV1vnf3dA169b7afbMKIq6HdbnuXtvHTvypV4nnDJmxLAdd9ujrnc8BAA2V/HrPmqUO732Wi6NZnw1+Zk7/zn1s/8UrlxZvVbthk22W+UOf7jwW/1zFhYU3Nz/xLzly68dNiSrarVoLZaXq1kNRhaEFScJAqxy5cpRFBUVVswBne8Mf75qjZpn/vOu8lc+e88t7w4ffPTZF5VtKUlJSSlL/FXU2qJeFEVLFubU22rrsitzly1rusPOFTJhLH7rwLNuuqvrWmw4KW/Lrbe98uFBeSuWf/Hx2I/fHPnW0GcqpaWdes1Naxw7JeVPd4euWPI/7y69ZOGC7XbcOYqi2vXqt9mj2wcjR3Tpddjkjz4455Z712nU1ShauTKKooyMNZy4HwDg935bPf6l1+evh1r16kdRtHRhTvTbK6BWLF1SdmtKlFK48r/7Z5YuXPjbhZzrTz66bsNG593xQItd2teuv+Un77wxbcLJUen6T1JaWnrvJWfPmvrl9U8P36LhVvGVa1xermY1GCViQbhOilYWREmyekyCQxAr8FtoSc6Cz0a/vccBh+zao2f5P/sdffzinPn/eWvU2jzJ1i1apaSmjh/zdtk1P8+Z/ePMb5u03uEvD5hSUvLrxoyttmtRKS199IihZbfN/+mHK/oe/OHIEat5/LdffH7ZUb1mTf0qq0rVXffZ/5xb/7V181azp331F8f+4uOxpaW//gz4cea38378vizbuh9x9LeTJ745ZFBmVnan/Q5cx6/3TxUmz7cQALCxqdjN92tvmxat0zMyxr/33+XW5HLno86sUmXx/PllH86cMjm+MP3z8cuXLjnmvEt3269X7fpbRlH09aTxURQVFxetxef87+qxvEG33/jxmyPPufVf8UtRYuu3vCwTfkG4TgqTZ/P95hVg7788vLiosNuhvVe5vuvBR6RXrvzG80+tzZPUa9R43z79Rjz+f28NfWZJzoJvJk2449xTt2i01R4HHvIXx8uuVn3JggXvv/LivB/m1KhT96ATTvni47GPDLj8u6+nTh3/yT0XnTnvxx/add17Nc/QZPsdVyxb+uj1l3/x0Yc5P899e9hz38/4us0e3dZp7P+8NermM06c8820smu+/3b6YzdcmfPz3JlTvrj7wv5Nt9+py4G/vtaz4977V6leY/jD/9q950HxueMrRPwtVDkRJy8CAJLdr6vH4CfEq167ziEnnT5y0OPvvPD8kpwF415/ZfjD/yq7tVW7juPff+etoc/8MOObkU8/9tbQX8+E0br9rhmZWaOHD1kw98dF838Z+fRjLz/+UPS/rwH7M+VXj2VXvjX02ZeeeHDPgw6vWr3mhPffLfuTWaXK2i8vN4YF4TpJotVjEhyCmJWVlZKSUpC75n+Ca/TO8MH1G2/Tsm2HVa6vVrNWx316jhv18g8zvlmbk2b+7YrrM7OrPH7jVQ9dc0l6xv+3d9/hVdZ348c/Iey9QVQE68IBRQUUEMVRtz4u3NZH66JWtA7aXx0oaktRi3uBiriR2rr3woEguFCGioLsDWGT8fsjeUAxiYDwPSS8XheXVzjn3DmfIAn3+55VWu3R/i93DazXqMmvHG/fo49799kht15+4XHn9zjl4p6n/vkvlatVe3bA3a88PrBy1aqt99rntH/9v1LOjIyI7OyK51/3zzv+ekmv/+0WEVWqVT/y9+ced36PdRp7+g/ff/z2a0edff6qR3bf94CJ48ecu98eFStV2qXd3n/qc2vlqlULn6pUufI+Rxzz0qMP7n/Mib/yy/+x5cuWRkS1DN2+AwAo06pXrx4RyzNxQ9GTLro8vyD/vmv/cteVl9au3+CQk8945v47C5869ZK/zpg86Z6rr4iIrbbb4YrbB1zz+xMiomadumf+tdfzA+8/r2u7rKysnffc659DXr7y1P8ZO3L4Xgf9wt6kNdYeCx/8/IN3I+Ld5/797nP//vGL73rtw7VfvdwUVgjXyfJlSytUqFAm9oBlrdqTuCmrW6/eHgccssaJWxmXl5c7a8rkBk2bVdqgqZ0zf16NWrVXXfajID9/5pQf6jVqsuqv+C8qKCiYN2vm8qVLmm69TdbP7gW+rmOf17Vd6477/PGGW+bPnlmlWvWfnxr3wI1Xj3z79TteeT8rK2stJ/xFrz31yD1XXzF27Ngdd9xxQ31OAGAz8dVXX+2yyy7dr7/5gONPzsgAuStXzp42pclWzUcP/6DXmd2uf/Q/rfZoX/hUzvx5K1esqN+4mA33s6ZOrlW33qqrHa69NdYef9F6rF5mZIVwndz+l4s/H/rGnNmzM/Lu66QM7AGLiIYNG+bMm5vpKdaUnV2xafMWG/zTFl4ff5WsChUKb5y39rKysor9ri603mPXbdj45w/Omjr57f88ddz5PTbsN1vO/HkR0aBBg198JQDAGgpXIQpXJzKiYqVKJa1urbGm92Orrpaxrkr5nMVaj9XLVVKuEK6TnPlzGzZsmKl3XydlJMAaNFiQuW+hDWXiuDGP/esfJT27c/u9jj7rgpTz/EpLFy+64IAOi3MWNt9+x0NO/v2G/eQ58+ZVqFChXr11+2kCABARDRo0yMrKypm/yW2+L3826grhOsmZN69hGdl2XzYCrFGjRpO/HJPpKX6tOg0a7HVwiQfyNtlqPbdDbGy/73l1/cZNf/54tRo1jz67e8VKlboceWyVatU37JsunDe3br162Wu9Jx0AYJWKFSvWqVt34dw5mR4ktvrN9hf+/V+Ft04u0zKyQrhOcubP3Wmb3TI4wNorGwG29dZbv/raawUFBRncrfnr1W3YuGvmTkxcbx0PObKkp445548b6U1nTfmhefPmv/w6AIDibL311rOmTsn0FFGvUZOyuPr3cxlZIVx7Bfn5s6dNaX7k4ZkeZK2UgcvQR0SLFi1WLF8+f/bMTA9CIjOnTNq2ZctMTwEAlFUtW7SYNeWHTE9BInNnzli5YkXLMrL2WGYCLCJmTpmc6UFIIS935ZwZ08vKtxAAsAlq2bLl7GlT8/OKuUkx5U/hbdDKytpj2Qiwwj/NGT9MzPQgpDBr6pT8vLzC6gYAWA8tWrTIzV05e/rUTA9CCjMmT4z/22ez6SsbAbbTTjtlZWX98PW4TA9CCpPGj42InXfeOdODAABlVatWrSJi0tdjhq5FeAAAIABJREFUMz0IKUwaPy47O7us3D+2bARYrVq1WrRsOXF8mb8QImtj4rivImK33crGdWwAgE1Q69atI2LiOGuPm4WJ48ds+5vfVK+eycswrr2yEWAR0aZ160njvsr0FKQwcfzYplts0ahRo0wPAgCUVVtssUWjxo0n2Xy/eZg0fkyb1q0zPcXaKjMB1rp161nTpi5aMD/Tg7DRTRo/Zrddd13bVy9cGC+9FH/9a0yfvjGHAgDKmNa77WYP2OZg4by5c2fO2HXt1x4zrcwEWLt27SJi/GejMj0IG9eihQumTfyuffv2pb1o7tx49tn485+jXbuoXz8OOyz+8Y+oWjXVjABAGdCuXbvJ335t8325N/6zkRHxC2uPm5KycSPmiOjUqVOFChXGjhqxe5f9Mz0LG9HYkcPz8/M7deq05hPTp8fQofHuu/HOO/Hll5Gf/5Nnq1WLunWTDQkAbPo6depUUFAw/rNR1h7Lt7GjRmRlZXXo0CHTg6ytMhNg9erV22HHHceNGpHpQdi4xo4avvpb6Icf4p134t13Y+jQGFvqVYy22CLNeADApmvlypgxI6ZOLfzvAd99t7fN95uBsSOH77zLLvXr18/0IGurzARYRHTu1GnQo4/mrlxZsVKlTM/CxjJ21Ig9WrWq37t3/Pe/8d13a7uYAIONJycnBg2K3Ny46KKk7/vBBzFkSNx8c9I3Bcqis8+OESNixoyYOfPHD1eLOLZx44dGDs/UXCSwcsWKb0d/9r9nnpnpQdZBWQqwrl279u/ff+yo4bt2+NnxaZQLSxblfP3ZJxdccH707h3Nm8e//hU//LBWS370UWy7bTRpEo0aRaNG0bRp0Qdbbx1dumzkqaG8+/LLuPvuSH9ox7JlMW9e6jcFMmjFipg1K2bNiunTiz4obKpZs2LZsnj99RIX/Prr+OKLNR9s2DCaNt2qfv1xHw5btmRx1eo1NursZMqYjz9asXx5165dMz3IOihLAfa73/2uQoUKnwx9S4CVV59/ODQ3d+Whhx4aNWvGJZfEhRfG449H374xevQvLJmbG999V8weszZt4tNPS1zq/vujSpVo0KDoV8OGUa/er/0aoPzZa6/IyLV9998/9nfUEJQXc+fGnDkxZ040axbNmxf/mtdeiyOOKP6prKxYuTJKOgbqtNNi//2jSZNo1iyaNIktt4wmTaJy5Yio8dxzuUcd9cWw99vt/7sN8nWwqRk19M3s7OwDDzww04Osg7IUYA0bNtxzzz0/Hfr26ZddmelZ2Cg+HfpWlapV991336LfV6oUZ5wRZ5wR770XffrE88+XuOQJJ0S7djFjxpobzEq/mdjFF8eSJT95JDu7KMZuuy1K+k5etixyc6NmzXX60qCsWrQoatSI7Oy1enFOTtSqFUuXRtWqkZW15rMLF0bt2sW8fsmSqFKl6C1ycyM3d/VFTX++SOE8P//kwCbl2mtj1Kii4ir8terqWdddF1ddVfxSP/5Xu1q1nxzS0rhx5OaWGGDnnlvSIPvvv3+VKlU+GfqWACuvPh36VocOHRo0aJDpQdZBWQqwiDj00EOvu+662dOmNtyiWaZnYQMrKCj4ZOhb++27bzF3Me/cOTp3jg8/jH/+M559ds1LIEbEYYdFscf+LltW4vutWBENG8acObF48eoH8/Ji5syYObO01bt77olLLolKlaJevTV/bbddXHxx6V8mlBlz5sSFF8Yuu8SSJfHhh1G4ZaRv37jppthnn7jzzmjSJEaNipNPjnvvjWnT4rrrolu3WLEiHnkksrLio49Wn5x5220xZ05kZcWTT8YTT0SbNjFkSPTqFYceGnXqxIABsXhxvPRSfP553HRTTJgQjz0W220X114bn34aX39d9Em++SauvTZ23DHefTeOPDL+9KfM/LHAZmXq1HjllZg3r5hfS5bEpEklLjh0aLzxRvFPzZlT4lK77BIffBCNG0eTJhtqQ2eNGjX22WefT959o6CgIMu2m3Jn1tTJP3wz/pwzTsv0IOumjAXY0Ucffe211w579YUjfn9OpmdhA/v681Gzp009+qqSd2/uvXc880yMHRs33RSPPBLLl69+qqSLcJRyc7DKlWPixIiIZctWb5+bPTtmz445c2LHHUtcsPCklJUri1Ltx9q3Ly3A9tgj8vOjdu2oU2f1r9q1o169OPjg2GabEheEjDjmmDj55LjggigoiOeeK3rw8svjnXciIpo0iYho1CgOOij22y8iok+fGDYsHn44rrkmdtstHngg/va3iIg5c+Lyy2PatKhfP955Jx54IG69NY47Lvr2jU8/jUGD4i9/iQMPjPPOiwEDYvTo6NEjbrghRoyIPfeMkSOL3nfFijjiiHjiifjtb+Pf/46TToozz4xatRL/kUAZNmxY/PBDLFwYOTmr/ztvXuTkxJlnxoknFr/UmDFx1lklfs6lS6NateKfOuig2HLLooNK6tePRo1WH/Bfyp6KGjVi773X5ataK0cfffTrr7/+7ejPttvttxv8k5NZH77yfEQcffTRmR5k3ZSxAGvbtu1222//wcvPCbDy5/0Xn83Ozj7uuON+4XU77RT9+8d118Wtt8Y998TChRG/7iqIVavGllvGlluu7evPOis6doz584vZHNiqVWkLfv555OYW/9R//lNigA0eHLfcEjVrRp06UaNGVK8edepEzZpRo0ZssUWcdNLajg3raujQePTRiIisrGjbdvXj11wTHTvGd99Fy5bRv3+cf37R43XrRseORWHWpk1Mnlz0eP368cYbUb9+fPBBLFmyeuN3vXrRunXR69u3j1Gjis40a98+Bg8uesEqr74ay5bFb38bEXHssTF5svpiMzVjRnzySeTkxLx5a9bUihXxn/+UuOAll8SwYcU/1a5diUvVr1+0obBevahff83jPkrZodSz51p/SRvd8ccff/HFF3/w0nMCrPx5/8Vnd9hxx9YZOVH5VyhjARYRJ3brduONN86aOrlRs60yPQsbTEF+/ocvP9+1a9fGjRuv1QLNmkWfPnHllfHAA3HTTeuQT7/eNtusz96q/Pzo0ycWLIgFC2LhwqIP5s+P+fNjwYIo5c4V339f4j+Zu+5aWoC1bRsLF/4k22rVKvr4lFNKvKZCQYGzayhSrVo0bVrM4+3axX77RZ8+cccdMXZs7Lpr0eM//ptTtWrk5a1+vGrVOOusOP30aNNm9UG/FSqsfn3lyqs/rlSpaNmKP/oXasKEWLp09d/PtfxBAZuywYNj1qzIyYnFi2P58pg/P5YujWXLYv786N49/ud/il9qxIg48sjin8rOLu1neO3aUaFC0cEXtWpF7dpRq1bUqhX16sUee5Q4ZNu2sWDBOn5hm5ymTZvus88+77/039Mvv9JRiOXJzMmTvh392dVXX53pQdZZ2Quwbt263XDDDR+89OzRZ3fP9CxsMGNGDp8zY1q33teu22K1akWPHnH++T9Ze9s0VagQf/7z+izYrl307Bnz58fixbFkSSxcGAsXxpIlsWTJL+z3mzixxEt4t2lTYoA98kiccUbUrRvVq0fVqlG7dmRnR716kZ0d22wT995b4tu9/Xbk5ka1alG1atSsGZUqRd26kZ0ddeqs9ZfKJmbp0njvvVh1Yd+CgtVP/b//F4ceGrvuGkcd9cuf58sv48gjY/z4qFUrnnhiPYfZYouYOTM++SR23z0iYubMWLw4WrZcz88Ga2Plyli0KBYtiuXLo379EreUffhhDBhQ9JN5+fKYNy+WLy/6cV2/fowbV+Lnv/76+Pzz4p864IASlyrc91upUtSqFXXrrllTeXk/2XLxY88+G1WqlPhpy7tu3bq93b37uE8+3mn3knf3Uda89+J/CwoKunXrlulB1lnZC7DWrVv/tm3bNwY/ftRZF9iMUW68/vRjVatVO/7449dn4fL9L8p++xWdYLOu+vaNOXNiyZJYvHh1ti1eHPPnl7bDcNGiiCjaNbeG0ld2zz+/xPWMW28t8Qa+n38ed94ZVapE9epRvXpUqbI6+SpVKnEDMGlUqxaDBkXXrpGXF3Pm/OSE+K5do23buOGG+P771Q8uX776INuCgli5sujjTz+NRYsiKytmzYqxY6NBg5g+PZo2jZUrV78+P/8nHxcu++MXHHBA1KsXl18ejzwSCxbEkCFFJ5jBz02aFKNHx+LFkZsbOTmRnx8LFkRBQcyfH02axCWXlLhgp04xadLqBX/swQeLv9RT4dsNGFD8UytWlDZn06Yxc2ZUrx61axdtuqpZs2jL16ody8UOuWRJiWdelaJ8/1v5S7p163bJn//8xtOPCbByo6Cg4K1/P7nHnnvuvPPOmZ5lnZW9AIuIP5x99oUXXjjm4492brdXpmdhA1iSs3DYqy+ceMIJ9dyGawM6++z1Werww+Opp4r2sC1cWHQ8zKJFsXLlL1yQaunSEp8qZUXhm2/ivvuKf6p69Z9coHINnTvH++9HpUpFUxVmW+Fvzzknzjuv+KUmTYq77oo6daJChahcOWrUiIjVvz388BK3HOfmlvhUOTZgQJx9dowZE02bxoIF8c038cYbqzfMX3JJfPzx6lW6F16I0aOjoCCOOSZycmLYsMjOjuHDo337OOywaNYsdtwxjjgiunSJ22+PYcOiTp349NOYMydGjIiIeO21+P77eOGFaNUqBg+OefPi6qvj449j2rR44ok46aSoXz8efTROOSWaNYsOHeKuuzLzZ8L6+fbbovs05uQURfWqD+rWjVK2Xp9wQsyf/5OOiv+7EtKgQXH44cUv9eyzJV4kc/vtSwuw6dNXn7u4hlJ+HG2zTRx2WNSoEbVrR5UqRQd7V6lSdChBKV55pbRnS1Kx4ub44+hXa9CgwXHHHjvk3/8+8y/X1ljj5haUTaM/en/q9xOu/ssVmR5kfWQV/PiokjJiwYIFWzRr1u7AQ3v88/ZMz8IG8NKjD/bv/bd33313n332yfQsrK/CdaPCI3aWLYulS2Px4lixIhYujD32KPGsuffei+uui7y8WLAgVqyIxYtXJ1+dOjFrVolv165dfPxx8U9df32J+0aGDo0uXUr8nKVsVD722HjmmYgo2llXqEaNqFw5Tjstri3h0Nnp01fv+ivMvIjIyoq6dSMirriixCOaRo2Kb7+NiNWFuert6taN3/ym+KUKN/CvUhilv9KSJTF5cmy3XUyZEltu+ZOztq65Js44o8Rhip2tcAvL4sVF6bseVqyIqVOjRYv1XLzMWbgw8vJ+8rduDcuXF92nvvCYt1UKj4UrrIJivfJK0U3qV1XNqqV2373ETRiLF8eeexbt1Sn8Bo8o2kATER9+GHuVsFW0V68Sv006doz33y/+qYioXXvNPVGrDB4cJR000b9/nHNORBTtV69aNapVK9rm0qxZPPtsiW/Xv38sXx6VKhUtWHhMdd26UaVKNG/ugOqy7u233+7ateu5vf5x8ElnZHoWNoB/Xdp91NuvTZs6tXYZLOoyuRGlTp06J3br9tjjj5/Z85o6DRpmehx+lYKCglefeHjHnXbq3LlzpmfhV6hQoWj1ep2ujtC5c7z66vq83c03x4wZERELFkR+/uq1zwULopS/SFWqxB57FPVhRMyfHwUFq5ct5UzCVfc8WL589ceFm+F/fqzmKvPnF13Nr1jdu5cYYPfcE/ffX/xTxx9f4ufMySntai6lrBz36xe3/3RjVnZ20e2Pf/vb6N8/ImLrrYueWrEipkyJSpVi5szo0SOysoqv1iuuiD33XP3brKzVlzT8+ON47LHiJ2ncOHr3LvFL+NvfYvbs4p869dQS03r06HjkkaJNA2uoWjVuvbXEt7vyyhg/fvVvCzcQFPr97+O0Eu4589lnpe18Hjq0xMg//fR44YWiBFrDBReUuMdvypSf/Dmv4euvY7vtin/q2WdL/JxHH11igFWoEGPHlvh2pRxut8Y316otC5Uq/eTGuz/3v/8by5YV01EVK0b79iUudcYZ8fvfl3jH3lL84Q/rvAhlx7777rv9Dju8+vjDvzvxdOewlHXzZ8/86LUXTz/ttLJYX1FGAywiLrnkkoEDB778+MATL7w007Pwq3zy7puTvh539913+2nIOihlR1Yp2rcvcb9Z6Xr3Xn36x6rt/RExb15pl2+uXTu6dSu6dkVeXtEtE+L/dlaUcmRmKd8LpRx6tOqqg8UqZW/Y7NkxYULxT/18/8mdd8af/xzbbx/DhsWWW5Z4r/OS+iQiRo8u8bjT7bcvLcAef7zoMLaf2333Ev9KjB8fffoU/1TNmqUF2FtvxQcfFP9Up04lLrV48ep7l/1cSTeiiIhly0q8ak4pS5W+k7OUvxJNmsS2267eHxtRdH28iNhllxKXqlIl/vGPovctXOmpWLHomhAVK5Z22tKf/xwXXPCTPbprqZT/QaXY9C/LRCZkZWX1uOiiCy+88PMP3m3Tad9Mj8Ov8uKgB1auWPGnkg423uSVyUMQCx144IHDR468962Pq1Qr9RhrNm3X/P6E6RPGT5o4sdp6nFIM5d6qA70iYv78qFGjxH2MK1cW3SJ5lcLjOQsdeGCUdI7l8OExdGgxa/kLFkSLFnHuuWt+zo8/jr33jooVo3v3yMv7yTFsq/TsWeKFrV9+OR544Cdjr9o3tdVW8eCDxS8VEaefHtOnF//UxReXeDrQ++9Hr17FP1W16uobTP/c1VcX7e0pPA7tx444osTrgBeeZ/hzdetGVlZcfHGJF0J4/fWYOvUnWV54NdGIaNYsSjrFPDc3Jk1aM2x+PjAQERFLlixpvs02W++0y1X9H8/0LKy/5cuWnr/fnnt3aP/yyy9nepb1VIYD7KWXXjrssMPOvebvB5/8+0zPwnr69svPrzjukF69el1zzTWZngUAKOeuuuqqG2644eb/vL7Njq0yPQvr6cVHHhhw/ZWvvvrqQQcdlOlZ1lMZDrCCgoLWbdrMmjv/tpffq7geh3qzCejzx/8dPey977/7rlHppwEAAPxq06dPb7nttm27HHDZrSUcC82mbeXy5Rce3HHrZluMKuV4701ehV9+yaYqKyur1zXXzJjywxtD7Ecuk7798vMRb776pwsvVF8AQAJNmza94Pzzh736wndjvsz0LKyPV596ZPb0adeWdGx5GVGG94BFREFBQfsOHSZM/OHOVz+o7JD3suaGc08bN2r4dxMmCDAAII3Zs2e33Hbbndt37HlnySedsklauXz5H3/XcZutmn08YkSZvnhbGd4DFhFZWVlXX3XV3JnTX3ni4UzPwroZM3L4qHffvOTii9UXAJBMw4YN/9i9+4g3X/36s1GZnoV18/zD/efMmHbD9deX6fqKsr4HLCIKCgq6dOny6Rejb3/5vdr1Sr4HDpuSgvz8v3Q7fP6MqV+PH1931UWQAQA2vrlz5263/faNt9n2hsf+W9ZX5Tcf8+fM+tPBndvtucfbb72V6Vl+rbK9BywisrKybrvttiU5C5+8/aZMz8Laeus/g78Z/dkN11+vvgCAxOrXr3/dtdeO++Tjoc8/k+lZWFuP/esfy5cuubVfv0wPsgGU+T1ghc4666yHBw266ZlXm2+/U6Zn4RcsXbzookP32WqLpqNGjswu/S6iAAAbQW5ubus2bWbNnXfby+9VqepOpJu6774afcXxh5xzzjn33HNPpmfZAMr8HrBCN954Y/Xq1e+9pmdBfn6mZ+EXPN6vz7xZM2/t1099AQAZUbFixVv79Zs9fdqTtzmEalOXn5d3b6+etevU6d27d6Zn2TDKSYA1bdr07zfeOHbUiJcfH5jpWSjN159/8tJjD5155pn77bdfpmcBADZfBx100CmnnPLcwPu+Hf1ZpmehNC8MGvD155/0/ec/y82V28rJIYgRkZ+fv++++4765NN/Pf92wy2aZXocipGXl9vz+EMXzpoxdsyYhg0bZnocAGCzNnv27FY771yzfqN/Dnkpu2KlTI9DMWZNnXzJEV3bt9vzrbfeKjdXTCkne8AiokKFCvfdd19e7sq7r7qs3FRlOTP4zn99N+bLO26/XX0BABnXsGHDW26++ftxX/373tszPQvFKMjPv+vKS/Pz8+67775yU19RngIsIlq1anXdddd9+t7bLw4akOlZWNOYkcOH3Hvbsccee9JJJ2V6FgCAiIjTTz/9qKOOGnx3v/Gfjcz0LKzpuYH3ff7B0BtvuGGHHXbI9CwbUvk5BLFQfn7+QQcdNPS99/oMfmmbHVtlehyKLMlZeOn/HFQx8j//7LMGDRpkehwAgCKzZ8/erXXrqFi57zOvVq9ZK9PjUGTS12N7Hn/ovl26vPzyyxUqlKudRuXqi4mIChUqDBw4sGbNmrdefuHyZUszPQ5F7u3Vc/a0KYMeflh9AQCblIYNGz704IMzJk/q3/tvmZ6FIsuWLL7l4vNq1ao1cODAclZfUf4CLCK22mqrAf37T/p67D1XXZ7pWYiIeOHh/u+98N+ePXvuv//+mZ4FAGBNBx988KWXXvrOf59++bGHMj0LUVBQcOffLp084ZuHHnxwiy22yPQ4G152r169Mj3DhteqVaslS5Y89mD/mnXq7tBm90yPs1kb98nHt15+4X777fvggw+Wvw0YAED5sP/++w8dOvTZRx/etX3HRs22yvQ4m7VnH7zn+YH3X3XVVeedd16mZ9koyts5YKvk5eUdfPDB77zz7jUPPrlzu70yPc5mau6M6Vccf0jNalVHjRzpyocAwKZsxowZe+y557KVeX2efrFeoyaZHmcz9cWw93r/4ZQDDzjgxRdfLK/b7sttgEXErFmz2rVvP2/+ghueeK5Zi20zPc5mZ+niRVeddsy07ye8+8477dq1y/Q4AAC/YNiwYft17brVdjtc9/CQqtVrZHqczc7kb7/+2ylHN2pQf8Tw4eX4wgHlMysLNWrU6KUXX6yQFdf/4ZQFc2ZnepzNS35e3q2XXzhx3JhHBg1SXwBAmbDXXnsNevjh774affMl5+fl5WZ6nM3Lwnlz/9H9zErZFV584YVyXF9RvgMsIlq1avXvIUPmzZze58KzXBQxmYKCgvuu/euIN1/t27fvcccdl+lxAADW1gknnPD3v/991DtvPHDD1ZmeZTOyfOmSG887fc70qf955pmddtop0+NsXOXzIhw/1rJlyxYtWgy4565vR3/a8ZCjsrOzMz1R+ffIzTe8OGjAhRde2Lt370zPAgCwbjp16jRjxownHuyfu2JF6733yfQ45d/K5cv/fsHvx33y8cCBA4844ohMj7PRlf8Ai4g2bdo0bNjwgXvunjjuq70PPrxCBQ22EQ2+619P333raaeddu+992ZlZWV6HACAdXbYYYd9++23Tz3Uv2KlSjvv2SHT45Rnebkr+/Y455Ohb998883nnntupsdJYbMIsIho37591apVH+5/39TvJ7Q/8JDyek2VjHv2wXseveXvxx577COPPGJnIwBQRmVlZR111FFffPHF4If6V69Rc8e2e2Z6ovIpL3dlv8v/9NFrL/Xp0+eyyy7L9DiJbC4BFhGdO3fOz89/ZMD9E8d91eGgw+TBBjf4zlseveXvhx122ODBgytVqpTpcQAA1l+FChWOOeaYkSNHPv1Q/+zsbLc12uBWrlhxU49zP3rtxauvvvrKK6/M9DjpbEYBFhFdu3atVq3awPvvHTty+N4HH16xUuVMT1ROFBQUDOp7/ZB7bzvqqKMGDx5cpUqVTE8EAPBrVaxY8YQTThgzZsxTD/ZfsWxpm45dMj1R+bF82dI+3f931Ltv9urVa7PqkdjcAiwiOnfuXL9+/UEP9P9y+IftDji4SrVqmZ6ozMvLXXnPNVe89OiDZ5xxxmOPPVa5sqwFAMqJ7OzsY489dsKECYMHPjBv5vS2XfZ3Jsuvt3DunBvOPe2rEcPuuOOOyy+/PNPjpFaeb8Rcioceeujcc89ttOXW/+/eQVts0zLT45RhSxbl3Nzj3E/ff+fiiy+++eab/UgCAMqf/Pz8iy666M4772y7T9dL+91brUbNTE9Uhk39fsKN5542Z/rUAQMGnHbaaZkeJwM20wCLiNdee+34E07IqpB9xZ0P7rS7OwWvj9nTptx43hmTvx1/88039+jRI9PjAABsRLfccsvll1++zQ6t/nrPww2abpHpccqkr0YM++efzqoQ8cy//921a9dMj5MZm2+ARcSXX3552OGHT5ky5eQePY8554+ZHqeM+WrEsFsuOW/JopyHBw7s1q1bpscBANjonnnmmVNPO61SlaqX3Hx3645uEbZuXnvqkQG9r2zUuNGLL7zQpk2bTI+TMZt1gEXE7NmzTz755Ndff73Lkcee37tvlapOCftlBQUFLw4a8PA/e2/RbIshTz/drp39hwDA5uLTTz899rjjJk6ceMrFf/mfP3R319O1sXL58vuu/cub/36yS5cuTz75ZNOmTTM9USZt7gEWEbm5uT179rzllltattrl4pvu2uo322d6ok1azvx5d1156fDXXz700EMfeeSR+vXrZ3oiAICk5syZc+qpp77yyit7/e7wC3r3rVmnbqYn2qT98M24fpf+ceL4MZdddtmNN95YsWLFTE+UYQKsyODBg/9wzjnLV6z4fc9rDj7pjEyPs4n64sP3bv9Lj/mzZxbersElNwCAzVNeXt511113ww031GvU5E99bt21Q6dMT7QpKigoePmxhwb17V21atUHBgw49thjMz3RJkGArTZx4sTTTjvtvffea9f1oPN7963bsHGmJ9qErFi27Inb+j730L1bb9380Ucf6dTJTxkAYHM3dOjQ004/ffIPPxx11vkn/enySm6F+iPzZs24+6rLR779epcuXQYNGtS8efNMT7SpEGA/kZeXd+ONN/bu3btK9RpnXH7V/sed5LjeiBj90fv3XtNz6vcTTj311DvvvLNOnTqZnggAYJMwf/787t27P/7441u2+M15vf+5S7u9Mz1R5hX/cmNSAAATnklEQVQUFLw++NFHbrph+dIlvXr16tmzZ3Z2dqaH2oQIsGJ89tlnfzjnnI9HjNitQ6dzr+3TrMW2mZ4oYxYtmP9w395vDnmi2ZZb3n3XXUceeWSmJwIA2OT85z//6f7HP06fNu3AE0497bK/1ay9+W6tnjLhm3t79fxy+IftO3Tof//9u+22W6Yn2uQIsOLl5+f379//z5deunzZ8oNPPuPEP11eo3btTA+VVF5e7ptDnni8X5+F8+aec845ffv2rb2Z/QkAAKy9BQsWXH311XfccUf1WrW7/fHPh5x6Znb25nW1icULFz5z/+3PD7y/YsWK11x99WWXXWbHV7EEWGkmTZp0xRVXPPXUU7Xr1T+pxxUHHH/yZvKNNOrdNx/+53U/fDN+744db+3Xz4XmAQDWxrBhw3r06DF8+PBtdtjpjCuu/m3n/TI9UQp5uStfH/zYE7f1zZk/7+STT+7Tp89WW22V6aE2XQLslw0fPvyiHj0+Gjas8ZZbHXveRfsfd1I5zrAxI4c/eVvfLz56v9mWW/79xhtPP/10Z8EBAKy9goKCp59++tLLLvth0qSd2u550kVX7LZ350wPtbEU5Od/+OoLj/frM/X7Cbvvscet/fp17lxuv9gNRYCtlfz8/CeffLLXtdeOHzduq223O+78Hp0OOyq7YqVMz7UhffHhe0PuufWLj95v2KhRzyuu6N69e/Xq1TM9FABAmbR48eI77rjjn337zp0zp3XHfY4/v8cu7TtmeqgNKS935dDn/zPknlunfj9hp1atru3V6/jjj3ePorUhwNZBXl7eo48+eu1110349tuGWzQ7/Iw/HHjCqdVr1sr0XL9KXl7uhy8//+wDd3/75Rf16te/7NJLL7roopo1a2Z6LgCAMi8nJ6dfv34333LLgvnzt9u1zVFnXbDXwYeV9WOplizKee2pR158uP/s6dO22377a66++pRTTpFea0+ArbO8vLwhQ4b0vemmj0eMqFGrdpejjjvwhFNb7LRzpudaZ3OmT3vz30+88fRjs6ZO2aZFi0suvvjss8+WXgAAG1ZOTk7//v3/1a/fD5MmNd5yqwOOP2X/Y0+q36RppudaZ9+N+fKNpx97579PL1mU06FDh8suu+yYY45xpY11JcDW3zvvvNOvX7/nn38+Nzd3+9ZtDzj+5L0PPqJmnbqZnusXrFy+fNS7b7455IlRQ9/Mz8vba++9e1x00fHHH1+xYtneGAMAsCnLzc196qmnbr/99mHDhlXIzt69y/4HHH9K2326VqpcOdOj/YJFC+Z/8PJzbwx+7JvRn1WsWPHII4+85JJL9tlnn0zPVVYJsF9r+vTpAwcOvO/++yd8+22F7Owd2uze8ZAj9zny2Nr16md6tJ/Iz8sb/dEHb/938Mdvvro4Z2GdunVP7Nate/fubdq0yfRoAACbkbFjxz700EP9BwyYM3t2jVq199z/dx0POfK3nferWGnTur7A4oULR7z5yocvP//Z+++sXLliq623PvWUU7p37968efNMj1a2CbANIz8/f+jQoU899dTTQ4bMnDGjYsVKO+3erm2X/dvu03WbHVtlcLBZUyd/MvStT4a+NfrD95YsXlS9Ro0jjzjixBNPPPTQQ6tWrZrBwQAANmfLli174YUXnnrqqeeef37pkiXVa9babe/ObffZv+0+XRtu0SxTUxUUFHw/9qtPh771ydC3xn3ycW7uyiZNmx5/3HEnnnhi586dXRx7gxBgG1heXt4777zzzDPPvPTyy99+801E1G/cZMe27Vrt0X7Htnu23HnXBKddTpnwzbhPPh4z8qNxoz6e8v23EdGoceNDDj74yCOPPPzww13bEABg07F48eIXXnjh2WeffeXVV2fPmhURW2273Q5t92y1R4ed2u7ZrOVvNvYAeXm5E778YtwnH48ZOXzcJyPmzZoZEdttv/2hhxxyzDHHdOnSxVleG5YA24i++eabl1566Y033nj/gw8Kv50qV6my9XY7Nt+h1TY77NR8x1ZNtmreqNmWv+Zy9gX5+XNnzpjxw8TJE77+fuxXP3w9dtL4sYsWLoiIGjVr7tWhw3777XfIIYfsvvvuLk0DALApy8/PHzly5EsvvfT2229/NHz4ksWLI6Jm7TrNd2zVfPudttmx1da/2aHJ1tvUa9zk1+yJyl25cva0KTN+mDhx/JhJ48dNHP/V5G/Gr1i+PCIaNW7cqWPHAw444NBDD/3NbzZ6+G22BFgi48aN++CDD4YPH/75559/MXp0zsKFhY9XyM5u0KRpw2Zb1anfsE79BjXr1qtVt17V6tWzsytWrVFj1eIrli1buWL5yhUrcubPy5k3N2f+vAVzZ8+ZNnXmlMm5K1cUvqZKlSqtdt659W677bHHHp06dWrTpo3ragAAlEW5ubmffvrp+++/P3LkyM+/+GLMV1+tWFG0ylepcuXGW25dv+kWdeo3rFW3Xq169WvVrVepcuVKlatU/tEJJssWL87Ly122ZEnO/HmL5s9bMHfOgrmzZ0/5Yc6M6fn5+YWvqVW7duvddtttt906dOjQsWPHHXbYIQNf6uZHgGXGd999N2bMmAkTJnz//ffffffdxEmTZs6cOWfOnMJNHaWrUqVK/foNGjRssE3z5i1btmzZsmWLFi122mmnHXbYQXEBAJQ/ubm548aNGzt2bOGq4/fffz9x0qQ5s+fMnTtn+fLlv7h49Ro1GjRo0LRJk+bNm7do0aJwBXLnnXdu0aLFxp+dNQmwTcuyZcvmzJmzfPnynJyc3P9TeLWMevXqZWdnN2jQwK26AAAotGjRojlz5uTl5c2bNy8ili1bVvH/1KpVq0qVKg0aNHDptU2KAAMAAEjEhRkAAAASEWAAAACJCDAAAIBEBBgAAEAiAgwAACARAQYAAJCIAAMAAEhEgAEAACQiwAAAABIRYAAAAIkIMAAAgEQEGAAAQCICDAAAIBEBBgAAkIgAAwAASESAAQAAJCLAAAAAEhFgAAAAiQgwAACARAQYAABAIgIMAAAgEQEGAACQiAADAABIRIABAAAkIsAAAAASEWAAAACJCDAAAIBEBBgAAEAiAgwAACARAQYAAJCIAAMAAEhEgAEAACQiwAAAABIRYAAAAIkIMAAAgEQEGAAAQCICDAAAIBEBBgAAkIgAAwAASESAAQAAJCLAAAAAEhFgAAAAiQgwAACARAQYAABAIgIMAAAgEQEGAACQiAADAABIRIABAAAkIsAAAAASEWAAAACJCDAAAIBEBBgAAEAiAgwAACARAQYAAJCIAAMAAEhEgAEAACQiwAAAABIRYAAAAIkIMAAAgEQEGAAAQCICDAAAIBEBBgAAkIgAAwAASESAAQAAJCLAAAAAEhFgAAAAiQgwAACARAQYAABAIgIMAAAgEQEGAACQiAADAABIRIABAAAkIsAAAAASEWAAAACJCDAAAIBEBBgAAEAiAgwAACARAQYAAJCIAAMAAEhEgAEAACQiwAAAABIRYAAAAIkIMAAAgEQEGAAAQCICDAAAIBEBBgAAkIgAAwAASESAAQAAJCLAAAAAEhFgAAAAiQgwAACARAQYAABAIgIMAAAgEQEGAACQiAADAABIRIABAAAkIsAAAAASEWAAAACJCDAAAIBEBBgAAEAiAgwAACARAQYAAJCIAAMAAEhEgAEAACQiwAAAABIRYAAAAIkIMAAAgEQEGAAAQCICDAAAIBEBBgAAkIgAAwAASESAAQAAJCLAAAAAEhFgAAAAiQgwAACARAQYAABAIgIMAAAgEQEGAACQiAADAABIRIABAAAkIsAAAAASEWAAAACJCDAAAIBEBBgAAEAiAgwAACARAQYAAJCIAAMAAEhEgAEAACQiwAAAABIRYAAAAIkIMAAAgEQEGAAAQCICDAAAIBEBBgAAkIgAAwAASESAAQAAJCLAAAAAEhFgAAAAiQgwAACARAQYAABAIgIMAAAgEQEGAACQiAADAABIRIABAAAkIsAAAAASEWAAAACJCDAAAIBEBBgAAEAiAgwAACARAQYAAJCIAAMAAEhEgAEAACQiwAAAABIRYAAAAIkIMAAAgEQEGAAAQCICDAAAIBEBBgAAkIgAAwAASESAAQAAJCLAAAAAEhFgAAAAiQgwAACARAQYAABAIgIMAAAgEQEGAACQiAADAABIRIABAAAkIsAAAAASEWAAAACJCDAAAIBEBBgAAEAiAgwAACARAQYAAJCIAAMAAEhEgAEAACQiwAAAABIRYAAAAIkIMAAAgEQEGAAAQCICDAAAIBEBBgAAkIgAAwAASESAAQAAJCLAAAAAEhFgAAAAiQgwAACARAQYAABAIgIMAAAgEQEGAACQiAADAABIRIABAAAkIsAAAAASEWAAAACJCDAAAIBEBBgAAEAiAgwAACARAQYAAJCIAAMAAEhEgAEAACQiwAAAABIRYAAAAIkIMAAAgEQEGAAAQCICDAAAIBEBBgAAkIgAAwAASESAAQAAJCLAAAAAEhFgAAAAiQgwAACARAQYAABAIgIMAAAgEQEGAACQiAADAABIRIABAAAkIsAAAAASEWAAAACJCDAAAIBEBBgAAEAiAgwAACARAQYAAJCIAAMAAEhEgAEAACQiwAAAABIRYAAAAIkIMAAAgEQEGAAAQCICDAAAIBEBBgAAkIgAAwAASESAAQAAJCLAAAAAEhFgAAAAiQgwAACARAQYAABAIgIMAAAgEQEGAACQiAADAABIRIABAAAkIsAAAAASEWAAAACJCDAAAIBEBBgAAEAiAgwAACARAQYAAJCIAAMAAEhEgAEAACQiwAAAABIRYAAAAIkIMAAAgEQEGAAAQCICDAAAIBEBBgAAkIgAAwAASESAAQAAJCLAAAAAEhFgAAAAiQgwAACARAQYAABAIgIMAAAgEQEGAACQiAADAABIRIABAAAkIsAAAAASEWAAAACJCDAAAIBEBBgAAEAiAgwAACARAQYAAJCIAAMAAEhEgAEAACQiwAAAABIRYAAAAIkIMAAAgEQEGAAAQCICDAAAIBEBBgAAkIgAAwAASESAAQAAJCLAAAAAEhFgAAAAiQgwAACARAQYAABAIgIMAAAgEQEGAACQiAADAABIRIABAAAkIsAAAAASEWAAAACJCDAAAIBEBBgAAEAiAgwAACARAQYAAJCIAAMAAEhEgAEAACQiwAAAABIRYAAAAIkIMAAAgEQEGAAAQCICDAAAIBEBBgAAkIgAAwAASESAAQAAJCLAAAAAEhFgAAAAiQgwAACARAQYAABAIgIMAAAgEQEGAACQiAADAABIRIABAAAkIsAAAAASEWAAAACJCDAAAIBEBBgAAEAiAgwAACARAQYAAJCIAAMAAEhEgAEAACQiwAAAABIRYAAAAIkIMAAAgEQEGAAAQCICDAAAIBEBBgAAkIgAAwAASESAAQAAJCLAAAAAEhFgAAAAiQgwAACARAQYAABAIgIMAAAgEQEGAACQiAADAABIRIABAAAkIsAAAAASEWAAAACJCDAAAIBEBBgAAEAiAgwAACARAQYAAJCIAAMAAEhEgAEAACQiwAAAABIRYAAAAIkIMAAAgEQEGAAAQCICDAAAIBEBBgAAkIgAAwAASESAAQAAJCLAAAAAEhFgAAAAiQgwAACARAQYAABAIgIMAAAgEQEGAACQiAADAABIRIABAAAkIsAAAAASEWAAAACJCDAAAIBEBBgAAEAiAgwAACARAQYAAJCIAAMAAEhEgAEAACQiwAAAABIRYAAAAIkIMAAAgEQEGAAAQCICDAAAIBEBBgAAkIgAAwAASESAAQAAJCLAAAAAEhFgAAAAiQgwAACARAQYAABAIgIMAAAgEQEGAACQiAADAABIRIABAAAkIsAAAAASEWAAAACJCDAAAIBEBBgAAEAiAgwAACARAQYAAJCIAAMAAEhEgAEAACQiwAAAABIRYAAAAIkIMAAAgEQEGAAAQCICDAAAIBEBBgAAkIgAAwAASESAAQAAJCLAAAAAEhFgAAAAiQgwAACARAQYAABAIgIMAAAgEQEGAACQiAADAABIRIABAAAkIsAAAAASEWAAAACJCDAAAIBEBBgAAEAiAgwAACARAQYAAJCIAAMAAEhEgAEAACQiwAAAABIRYAAAAIkIMAAAgEQEGAAAQCICDAAAIBEBBgAAkIgAAwAASESAAQAAJCLAAAAAEhFgAAAAiQgwAACARAQYAABAIgIMAAAgEQEGAACQiAADAABIRIABAAAkIsAAAAASEWAAAACJCDAAAIBEBBgAAEAiAgwAACARAQYAAJCIAAMAAEhEgAEAACQiwAAAABIRYAAAAIkIMAAAgEQEGAAAQCICDAAAIBEBBgAAkIgAAwAASESAAQAAJCLAAAAAEhFgAAAAiQgwAACARAQYAABAIgIMAAAgEQEGAACQiAADAABIRIABAAAkIsAAAAASEWAAAACJCDAAAIBEBBgAAEAiAgwAACARAQYAAJCIAAMAAEhEgAEAACQiwAAAABIRYAAAAIkIMAAAgEQEGAAAQCICDAAAIBEBBgAAkIgAAwAASESAAQAAJCLAAAAAEhFgAAAAiQgwAACARAQYAABAIgIMAAAgEQEGAACQiAADAABIRIABAAAkIsAAAAASEWAAAACJCDAAAIBEBBgAAEAiAgwAACARAQYAAJCIAAMAAEhEgAEAACQiwAAAABIRYAAAAIn8f3crD+TbMlPqAAAAAElFTkSuQmCC", - "text/plain": [ - "" - ] - }, - "execution_count": 21, - "metadata": {}, - "output_type": "execute_result" - } - ], - "source": [ - "cycle_graph = create_single_loop_graph(cycles[9])\n", - "visualize_graph(cycle_graph)" - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "## Finding Problematic Import Cycles\n", - "\n", - "The most concerning cycles are those where a single file has both static and dynamic imports from the same module. These are prone to runtime errors and should be refactored." - ] - }, - { - "cell_type": "code", - "execution_count": 22, - "metadata": {}, - "outputs": [ - { - "name": "stdout", - "output_type": "stream", - "text": [ - "Found 1 cycles with mixed imports:\n", - "\n", - "⚠️ Problematic Cycle #1:\n", - "\n", - "⚠️ Index #11:\n", - "Size: 2 files\n", - "\n", - "📁 Mixed imports detected:\n", - " From: torch/_inductor/kernel/flex_decoding.py\n", - " To: torch/_inductor/kernel/flex_attention.py\n", - " Dynamic imports: 1\n", - " Static imports: 1\n" - ] - } - ], - "source": [ - "def find_problematic_import_loops(G, sccs):\n", - " \"\"\"Find cycles where files have both static and dynamic imports between them.\"\"\"\n", - " problematic_cycles = []\n", - "\n", - " for i, scc in enumerate(sccs):\n", - " if i == 2: # skipping the second import loop as it's incredibly long (it's also invalid)\n", - " continue\n", - " mixed_import_files = {} # (from_file, to_file) -> {dynamic: count, static: count}\n", - "\n", - " # Check all file pairs in the cycle\n", - " for from_file in scc:\n", - " for to_file in scc:\n", - " if G.has_edge(from_file, to_file):\n", - " # Get all edges between these files\n", - " edges = G.get_edge_data(from_file, to_file)\n", - "\n", - " # Count imports by type\n", - " dynamic_count = sum(1 for e in edges.values() if e[\"color\"] == \"red\")\n", - " static_count = sum(1 for e in edges.values() if e[\"color\"] == \"black\")\n", - "\n", - " # If we have both types between same files, this is problematic\n", - " if dynamic_count > 0 and static_count > 0:\n", - " mixed_import_files[(from_file, to_file)] = {\"dynamic\": dynamic_count, \"static\": static_count, \"edges\": edges}\n", - "\n", - " if mixed_import_files:\n", - " problematic_cycles.append({\"files\": scc, \"mixed_imports\": mixed_import_files, \"index\": i})\n", - "\n", - " # Print findings\n", - " print(f\"Found {len(problematic_cycles)} cycles with mixed imports:\")\n", - " for i, cycle in enumerate(problematic_cycles):\n", - " print(f\"\\n⚠️ Problematic Cycle #{i + 1}:\")\n", - " print(f\"\\n⚠️ Index #{cycle['index']}:\")\n", - " print(f\"Size: {len(cycle['files'])} files\")\n", - "\n", - " for (from_file, to_file), data in cycle[\"mixed_imports\"].items():\n", - " print(\"\\n📁 Mixed imports detected:\")\n", - " print(f\" From: {from_file}\")\n", - " print(f\" To: {to_file}\")\n", - " print(f\" Dynamic imports: {data['dynamic']}\")\n", - " print(f\" Static imports: {data['static']}\")\n", - "\n", - " return problematic_cycles\n", - "\n", - "\n", - "problematic_loops = find_problematic_import_loops(G, cycles)" - ] - }, - { - "cell_type": "code", - "execution_count": 23, - "metadata": {}, - "outputs": [ - { - "data": { - "image/png": "iVBORw0KGgoAAAANSUhEUgAABIAAAASACAIAAAAIyqENAAAABmJLR0QA/wD/AP+gvaeTAAAgAElEQVR4nOzdd3xV9f348U+ATFYg7KlVGVVRllq1KiJ14aiigqO1bmvdW2zVWutqFcWtbXGigHVUhbrAn4p+RRCoIrgYImElBAIZZP3+uBojAqLA55LwfP6Rx83Nzb1vRnLP63zOPTelqqoqAAAAsPnVS/YAAAAAWwsBBgAAEIkAAwAAiESAAQAARCLAAAAAIhFgAAAAkQgwAACASAQYAABAJAIMAAAgEgEGAAAQiQADAACIRIABAABEIsAAAAAiEWAAAACRCDAAAIBIBBgAAEAkAgwAACASAQYAABCJAAMAAIhEgAEAAEQiwAAAACIRYAAAAJEIMAAAgEgEGAAAQCQCDAAAIBIBBgAAEIkAAwAAiESAAQAARCLAAAAAIhFgAAAAkQgwAACASAQYAABAJAIMAAAgEgEGAAAQiQADAACIRIABAABEIsAAAAAiEWAAAACRCDAAAIBIBBgAAEAkAgwAACASAQYAABCJAAMAAIhEgAEAAEQiwAAAACIRYAAAAJEIMAAAgEgEGAAAQCQCDAAAIBIBBgAAEIkAAwAAiESAAQAARCLAAAAAIhFgAAAAkQgwAACASAQYAABAJAIMAAAgEgEGAAAQiQADAACIRIABAABEIsAAAAAiEWAAAACRCDAAAIBIBBgAAEAkAgwAACASAQYAABCJAAMAAIhEgAEAAEQiwAAAACIRYAAAAJEIMAAAgEgEGAAAQCQCDAAAIBIBBgAAEIkAAwAAiESAAQAARCLAAAAAIhFgAAAAkQgwAACASAQYAABAJAIMAAAgEgEGAAAQiQADAACIRIABAABEIsAAAAAiEWAAAACRCDAAAIBIBBgAAEAkAgwAACASAQYAABCJAAMAAIhEgAEAAEQiwAAAACIRYAAAAJEIMAAAgEgEGAAAQCQCDAAAIBIBBgAAEIkAAwAAiESAAQAARCLAAAAAIhFgAAAAkQgwAACASAQYAABAJAIMAAAgEgEGAAAQiQADAACIRIABAABEIsAAAAAiEWAAAACRCDAAAIBIBBgAAEAkAgwAACASAQYAABCJAAMAAIhEgAEAAEQiwAAAACIRYAAAAJEIMAAAgEgEGAAAQCQCDAAAIBIBBgAAEIkAAwAAiESAAQAARCLAAAAAIhFgAAAAkQgwAACASAQYAABAJAIMAAAgEgEGAAAQiQADAACIRIABAABEIsAAAAAiEWAAAACRCDAAAIBIBBgAAEAkAgwAACASAQYAABCJAAMAAIhEgAEAAEQiwAAAACIRYAAAAJEIMAAAgEgEGAAAQCQCDAAAIBIBBgAAEIkAAwAAiESAAQAARCLAAAAAIhFgAAAAkQgwAACASAQYAABAJAIMAAAgEgEGAAAQiQADAACIRIABAABEIsAAAAAiEWAAAACRCDAAAIBIBBgAAEAkAgwAACASAQYAABCJAAMAAIhEgAEAAEQiwAAAACIRYAAAAJEIMAAAgEgEGAAAQCQCDAAAIBIBBgAAEIkAAwAAiESAAQAARCLAAAAAIhFgAAAAkQgwAACASAQYAABAJAIMAAAgEgEGAAAQiQADAACIRIABAABEIsAAAAAiEWAAAACRCDAAAIBIBBgAAEAkAgwAACASAQYAABCJAAMAAIhEgAEAAEQiwAAAACIRYAAAAJEIMAAAgEgEGAAAQCQCDAAAIBIBBgAAEIkAAwAAiESAAQAARCLAAAAAIhFgAAAAkQgwAACASAQYAABAJAIMAAAgEgEGAAAQiQADAACIRIABAABEIsAAAAAiEWAAAACRCDAAAIBIBBgAAEAkAgwAACASAQYAABCJAAMAAIhEgAEAAEQiwAAAACIRYAAAAJEIMAAAgEgEGAAAQCQCDAAAIBIBBgAAEIkAAwAAiESAAQAARCLAAAAAIhFgAAAAkQgwAACASAQYAABAJAIMAAAgEgEGAAAQiQADAACIRIABAABEIsAAAAAiEWAAAACRCDAAAIBIBBgAAEAkAgwAACASAQYAABCJAAMAAIhEgAEAAEQiwAAAACIRYAAAAJEIMAAAgEgEGAAAQCQCDAAAIBIBBgAAEIkAAwAAiESAAQAARCLAAAAAIhFgAAAAkQgwAACASAQYAABAJAIMAAAgEgEGAAAQiQADAACIRIABAABEIsAAAAAiEWAAAACRCDAAAIBIBBgAAEAkAgwAACASAQYAABCJAAMAAIhEgAEAAEQiwAAAACIRYAAAAJEIMAAAgEgEGAAAQCQCDAAAIBIBBgAAEIkAAwAAiESAAQAARCLAAAAAIhFgAAAAkQgwAACASAQYAABAJAIMAAAgEgEGAAAQiQADAACIRIABAABEIsAAAAAiEWAAAACRCDAAAIBIBBgAAEAkAgwAACASAQYAABCJAAMAAIhEgAEAAEQiwAAAACIRYAAAAJEIMAAAgEgEGAAAQCQCDAAAIBIBBgAAEIkAAwAAiESAAQAARCLAAAAAIhFgAAAAkQgwAACASAQYAABAJAIMAAAgEgEGAAAQiQADAACIRIABAABEIsAAAAAiEWAAAACRCDAAAIBIBBgAAEAkAgwAACASAQYAABCJAAMAAIhEgAEAAEQiwAAAACIRYAAAAJEIMAAAgEgEGAAAQCQCDAAAIBIBBgAAEIkAAwAAiESAAQAARCLAAAAAIhFgAAAAkQgwAACASAQYAABAJAIMAAAgEgEGAAAQiQADAACIRIABAABEIsAAAAAiEWAAAACRCDAAAIBIBBgAAEAkAgwAACASAQYAABCJAAMAAIhEgAEAAEQiwAAAACIRYAAAAJEIMAAAgEgEGAAAQCQCDAAAIBIBBgAAEIkAAwAAiESAAQAARCLAAAAAIhFgAAAAkQgwAACASAQYAABAJAIMAAAgEgEGAAAQiQADAACIRIABAABEIsAAAAAiEWAAAACRCDAAAIBIBBgAAEAkAgwAACASAQYAABCJAAMAAIhEgAEAAEQiwAAAACIRYAAAAJEIMAAAgEgEGAAAQCQCDAAAIBIBBgAAEIkAAwAAiESAAQAARCLAAAAAIhFgAAAAkQgwAACASAQYAABAJAIMAAAgEgEGAAAQiQADAACIRIABAABEIsAAAAAiEWAAAACRCDAAAIBIBBgAAEAkAgwAACASAQYAABCJAAMAAIhEgAEAAEQiwAAAACIRYAAAAJEIMAAAgEgEGAAAQCQCDAAAIBIBBgAAEIkAAwAAiESAAQAARCLAAAAAIhFgAAAAkQgwAACASAQYAABAJAIMAAAgEgEGAAAQiQADAACIRIABAABEIsAAAAAiEWAAAACRCDAAAIBIBBgAAEAkAgwAACASAQYAABCJAAMAAIhEgAEAAEQiwAAAACIRYAAAAJEIMAAAgEgEGAAAQCQCDAAAIBIBBgAAEIkAAwAAiESAAQAARCLAAAAAIhFgAAAAkQgwAACASAQYAABAJAIMAAAgEgEGAAAQiQADAACIRIABAABEIsAAAAAiEWAAAACRCDAAAIBIBBgAAEAkAgwAACASAQYAABCJAAMAAIhEgAEAAEQiwAAAACIRYAAAAJEIMAAAgEgEGAAAQCQCDAAAIBIBBgAAEIkAAwAAiESAAQAARCLAAAAAIhFgAAAAkQgwAACASAQYAABAJAIMAAAgEgEGAAAQiQADAACIRIABAABEIsAAAAAiEWAAAACRCDAAAIBIBBgAAEAkAgwAACASAQYAABCJAAMAAIhEgAEAAEQiwAAAACIRYAAAAJEIMAAAgEgEGAAAQCQCDAAAIBIBBgAAEIkAAwAAiESAAQAARCLAAAAAIhFgAAAAkQgwAACASAQYAABAJAIMAAAgEgEGAAAQiQADAACIRIABAABEIsAAAAAiEWAAAACRCDAAAIBIBBgAAEAkAgwAACASAQYAABCJAAMAAIhEgAEAAEQiwAAAACIRYAAAAJEIMAAAgEgEGAAAQCQCDAAAIBIBBgAAEIkAAwAAiESAAQAARCLAAAAAIhFgAAAAkQgwAACASAQYAABAJAIMAAAgEgEGAAAQSYNkD8B3FBUV5eXllZWVLVu2LIRQXl5eXl6ekZERQmjcuHFqampOTk6TJk2SPSYAAFuEFStWJLYeCwsLQwglJSUNGjRo0KBBCKFZs2aJrcesrKxkj8m3BFgSVFZWfvHFFzNmzJg9e/bs2bPnzJkzd968JUuW5OXllRQX/+C3p6amNs/JycnJ6dyp0zbf6NatW/fu3VNTUyPMDwBATKtXr/74449nzZo15xtz583Ly8vLz8srKyv7wW/PyMzMyclp1apV9dbjtttuu+OOO/7sZz9LSUmJMD81pVRVVSV7hrqvqqpq5syZEydOfO+996ZNm/bhRx+tWrky8aX6DRq0aNM2p237Zi1bNc5u3ji7WePsZmkZGalpaWkZmdX3UL56dWlJcXlZ2cqCZYUFywoLli3Pz8vL/WrxV1+uLi1N3CY1NbVb9+49dt65T58+e+65Z8+ePfUYAEBtVFZWNmXKlIkTJ06ePHna9OmzZs6sDq209PRW7TvmtG3ftHlOYtOxUXazBqmp6ZlZDWps+5UWF5WXla0uKUlsOq5Yll+wdHFe7ldLF+ZWlJcnbtOwUaOdd9qpR48eu++++5577tm1a1c9FoEA24xmzZo1duzY1157beI77+Tn5YUQ0jMzO27fdZtuP+/UpXunHbq27tg5p03b+vU3ah1y2ZJFi+d/Oe/TWfM++XjeJzPnzJqxcnlBCCEzK2u3vn379et30EEH9e3bt149r/cDANhyVVRUTJo0aezYsRMmTJj0/vvFRUUhhMbZzTp36d65a/dOXbp33KFrq/YdmrVsvXGPUp63MHfRl3PnfTJz7icfz50548vPPyktLg4h5LRosecvftG/f/+DDz64S5cum+ZPxfcIsE2svLz89ddff/bZZ8eOGzdn9uwQQk7rtt377Na1Z99uvfp27tp9I3NrQyyY88WsDyZ9PPm9WR+8P//zT0MIOS1a/GrAgMMPP3zgwIGNGjXa3AMAALCBCgsLX3jhheeff/7lV15J7LLvuH2Xbr36duvVt2vPvm07b7u5B6ioKJ8zc8bMKZNmTpk0c/J7+YsXhhC2/dnPDj7ooCOPPHL//fevX7/+5p5hqyLANo3KysoJEyaMGjVqzNNP5y1dmpqW1r33brv+sl+vffbvuH3XJA6WtzD3gzfHf/Dm+P+98+aqwhUZmZkDDz302GOPHThwYGZm5g9/PwAAm0FRUdF//vOfUaNGvTR2bElxcaMmTXf+xS97/rJfz1/2a966TRIHm/vJx1PfHP/BmxM+nvxeednqFi1bDjr66GOPPXbfffd1RNUmIcA2Vm5u7iOPPHLf/ffPmT07NS1tlz33/cVBA3c74KCsRo2TPdp3VFZUzJo6+Z1x/3nrxWeX5+c1adp08HHHnXXWWT179kz2aAAAW5EZM2Y88sgjDz70UH5eXqMmTXv3G7DnQYftuvd+DbawV++XlhT/75233nhuzKTX/1u2enW79u1POvHEs88+u3PnzskerXYTYD/d66+/fscdd7z44osVFRVde/Y54JgT9hhwcFbjLf0c8eVlZVPfmvDamCcmv/FaRXn5brvvfv555x1zzDHO2AEAsPmUlZU99dRTd95556RJk+o3aNCn34D+Rw/ZZa99t7Tu+r5VK1a8+/KLr4554pOpkxs0aHDooYdecMEF++23X7Lnqq0E2I9WVlY2atSov9922wdTpjRq0nTfIwYdcOwJnXboluy5frT8xYvG//vJV0c/sfirLzt07HjB+eeffvrp3mQMAGDTWr58+f3333/n8OFfzZ/fukOn/sccv/9Rx23kuTSSYu4nH7866vE3nhuzqnBFr969L73kkkGDBiXec4wNJ8B+hPLy8ocffvj6v/xl7pw5rdp3PPQ3p/UfNCSzYe0+p0VlRcW7L7/4/D/v+/R/U5s0bXrRhRdeeOGFMgwAYOMVFBTcfvvttw8bVrhiRZddeh32uzP3GHBIvVp+ToviVStfHf3ES48+tPir+dtsu+01f/rTiSeeKMM2nADbIBUVFY8//vh1f/7zF59/3rlLt6PPumCPAw+JcD7DmGZMevfp++6Y+vYbzZo3v/SSS84991znSwQA+GkKCwvvuOOOv992W8GyZb322f+oM8/r3nu3ZA+1KVVUlL8z7oUx9w778rNPtt9hh2uvuWbIkCHO0rEhBNgPmzBhwvkXXDB92rQOP9v+12ecu89hR9X2/RbrMWvq5CfvuHn6O2+1adv2umuvPfXUU514FABgw1VVVT366KOXXX75ooULu/Xqe/wFl++4257JHmpzqaqsfOflF5+845avZn++a8+ew26/fd999032UFs6AbY+X3zxxaWXXvrvf/+7eavWQy64Yr8jBtXh9Kpp+sQ3H775ujmzZvTu0+eOYcP22muvZE8EAFALvPnmm+dfcMEHU6Zs233Hk6+4dqfdt4qNqIqK8vH/HjXyjpsLli455phjbrnllm222SbZQ225BNjalZeX33333VcNHbp6ddmBg08afP5lW9pp5Te3qsrKN55/+rG//aUgb+mJJ554++235+TkJHsoAIAtVEFBweWXX/7ggw82bpo96PcXHnzC77aSHffVSouLnv3Hvc8+eFe9evUuv+yyoUOHOsn2WgmwtZgyZcqpp5029YMPdt17vzOuubF1x633vQ5WrVjx+O03vvzkI63btLn7rruOOuqoZE8EALDFGTNmzB/OPXfJ4sUHDvnt8RdesbXtuK9p4bw5919z2fR33urVu/dDDz7oLWe/T4B9R3l5+fXXX//Xv/41q1Hj315x7X5HHpPsibYIH7//f/f96dL5X3x23HHH3Xvvvc2aNUv2RAAAW4T8/Pyzzjpr9OjRHbfvcvb1f+vas0+yJ0q+qqqq8c+MeuSWPxevLLz66quHDh3qHIk1CbBvffHFFyeccMK77767x4BDzrj2pqY5LZI90RakrLT0qbv//tw/7m3Xrt1jjz7q5ZWwFSovL1+9enXicmVlZUlJSfWXVq1atf7br6GkpKSysvL711dVVRUXF2+KYdeUmZmZkpLy/evT09PXeqqh1NTUtR45k5mZWX2Or5rfm5aWZvMCtkLjx48/6Te/yc3N/fVp5xxzzkWpaWnJnmgLUpC35P5rLn/v1XF77rnnY489tu222yZ7oi2FAPva448/ftbZZ1dUVJ585XUHHHN8ssfZQn006Z3hl5+XtzD3yiuvvO6665wgEeIoLS2tqKhIfFy9enVZWVmo0TBFRUWhRu2sXr26vLw8hFBcXFzzBol7CCGUlZWtcQ81b1zzHmremA1XM97q16+fnp6euFyvXr3MzMzqm2VlZdW8QXXOVV+fkZFR894yMjLq1auXkpKSuJMGDRqkpaUlrq9fv37i0+orgc2toqLi6quvvuWWW1q0bXfezcO799k92RNtoV4Z9diIm65NbdDggfvvHzx4cLLH2SIIsFBWVnbxxRcPHz58+512ueDv97TtrM7XZ9WKFfddc9nEsc8PGDDgiSeeaNHCOiF8K7EulAiYoqKi8vLy0tLSRDglKqj6Y2Kpp/pjooWqL1fnVuJjsv9YkaxrMWpTqU7QOi+RYYm0S4RcvXr1qj8mEq76Y6L3Eh8T63uZmZmJlsvKymrQoEF6enrie5P9x4ItyJIlSwYPHvz666/vfeiRZ157U1bjJsmeaIu2YPbnwy75/ecf/e+CCy649dZbHS+wtQfYkiVLjjvuuPHjx+97xKCzrrslLSMj2RPVDq+MeuyhPw9t3ab102PG7L67XT7UEUVFRaWlpYmCKioqKikpKSsrSxRUWVlZcXFxYpWpuLi4oqKipKQkUUerVq1KXL+uw+riWGN55AfXT2quzKSlpVWv2NRcQql5m+pvTEhsryfUPCpvrTeuaQtcolnPcY+JJF7jxomK/v4Nav4HqFnOa6woVh+WWb26mLiT6qM6ay5RJu5kjTXMpEjEWyLMGjZsmPh3zMjIaNCgQUZGRnp6enWwpaWlZWZmJsotKysr/Rs1/89ArTZlypSjjj56/vz5Q86//Nenn5PscWqHstWrH7r+qldHP7H33nuPGjWqbdu2yZ4ombbqAPvwww8POfTQhQsXnnr1XwYce2Kyx6llPp783m0XnrlqecGIESMsKLPlSJRSSUlJcXFxoqYSHxOfrnG5tLQ0EV0Jm2+q9a9I1FyXqD5Krea6xBofU1JSqtPIS4+2QtV1Vx1mJSUl1Rm5xlpr+O6Ka6IS1/iYOLQ1sR+huhU3h0TCZWRkZGZmJrItsbyWmZmZuPD9Zktc70zWbDmefvrpE086KT0z66Lb79tK3uNrE5rw7OgHrr28efPmL77wwtZ8dsStN8D++9//DjrmmAZp6Zff868uu/RO9ji1Ut7C3BvP/s3cWR/fcsstF198cbLHoW4qKytbtWpV0TcSiwM1rykqKlrjBpt2gNTU1KysrMQ6UlZWVmKxqPrTxIXqZYG1Xt+oUSONRC2S+CmrTrLqn7vEhQ28fpMvCCd+shIaNmyYVUPNH72EJk2aOGaSzeGWW2654oorfvbzna6495HmrVone5xaaeaUSTef87tQWTFm9OgBAwYke5zk2EoD7B//+MdZZ53VumPnoQ88tjW/zdfGK1618u8XnPnBm+PPOeecO++80xMePyhxBNeqGmp+WlRUVFxcnPiYWMja+EdMhFBmZmZiL3vNPe5rXE7scU/shk9LS3PEFGyMmsvLiWN6S0tLEwfx1lyRLioqWr16dfXlTfW6x6ysrMzMzMTHhIY1JLKt+vLGPxx1XkVFxR/+8If77ruvz34DLrztnoyshsmeqBZbOG/ODWecuOSrLx944IGTTz452eMkwdYYYLfffvvFF1/88z67X3bXPxs1zU72OLVeRUX5g9dd9cqox0444YQRI0bY0791qqqqqhlRK1euXKOsan66MQ+U6KXva9iwYc1Pq49lcvIAqHUSZ69J7IJJXKjeL7PGPppqG3MIcUpKylrDbK2frvXNDKjzysvLf/Ob34wcOfKg408+dej19ZwFeqMVFiy76fcnz/rg/WHDhp133nnJHie2rS7Abr755iuuuKLXPvtfeudDTrmxCT11199H3fX3gQMHjh49OsNfbN1SXl6+cuXKlStXFhYWFhYWrvzGihUrVtbw036ZpKamrrGVU7OjqvdeV+/MtvUDfF9FRcW68qz6ypq7hH7aS91SUlIa1dCkSZPEhcaNGzdu3Lj6svdoqWNWr149ZMiQf//7378+/ZwTLx6a7HHqjtKS4lv+cOrUtyZcfvnlN910U7LHiWrrCrCrr776hhtu2H3AwRfddl8Dr+jd1MbcO2zkHbccfPDBzzzzTPWZ09jCVVRUFBYWLl++vLqsalZWYWHhihUrfsJxgGlpaWvdf/z9/cpb2gnxgK1B4qjImkv0K1euXOui/U94WWlWVlZ1j1V3WuKaxo0bN2nSRKTVIqWlpUceeeS4ceNOuOjKo844N9nj1DVlq1ffdtFZ77067o9//OOf//znZI8Tz1YUYH/961+HDh2696FHnHfL8Pr1HSa3WfznX/ePuPm6I488cvTo0Y5F3EKsWrVqxYoVy5cvT1RWQUFBorgSnxYWFv6oe0ucUmKNPb6JLYyafeWUZUDdsHr16po9tsYuqurLP3ZJLfErtGnTpk2bNm3SpEnTpk0bN26cnZ3dpEmTxK/TzfTH4UcpKysbNGjQ888/f/IV1x528hnJHqduqqgov+PSP7z90vM33njjFVdckexxItlaAmz48OHnnXfe7gccdPGw++s3sGm4GT193x1PDLt50KBBTz75pD18EZSXly9fvjyRVWvEVeLTDd8sSEtLW2tZ1by8rjd3AtiaFRUVff8I7cQ11Z224YtpDRo0aNy4cbNmzRKRlqiy7Ozs6kizizOCysrKE088ceTIkda+NrfKiorbL/79xHH/+dvf/raVnFV7qwiwESNGnHLKKbvuvd8V94xw5GEEj992478fGH722Wffc889yZ6ljigtLc3Pz0+EVuJCfn5+QUFBIrE28Ke45jN6zR2u1R8dDQiw+ZSWllYf8r0x+8tSUlISv8yzs7NrfszOzm7evLnf5JvKGWec8eCDDw46+4Ih51+W7FnqvrLVq288+zfTJ7758MMPn3TSSckeZ7Or+wH26quvHnLIIdv36PmnfzzprBvRPHDdlf8d+fDNN9982WV+bW2ooqKigoKC5d9YsmRJ4kLiyg25h9TU1MQBLdnZ2dUfs7Kymn7DGSwAtlhlZWXVv/MLCgqKioqqnxEShbYhb62WeCJo2bJl9W/+7OzsFi1aeBb4URKvWznkxFNOvfovyZ5la1FaUnzd746b/dH0cePG9evXL9njbF51PMBmzJix5157ZTZueuNTLzRpnpPscbYilRUVt5532qTXX3700UdPOOGEZI+zBamsrCwoKMj7rvz8/Pz8/A3Z95mWlvb9/Z2J51dvPApQhyXOmZTIs+qDIKqPidiQ4xsTzyDNmzdv0aJF8+bNc77RtGlTTx81jRo1avDgwb327X/F3f9yxvmYCguWXTX4sML8pW+/9dbOO++c7HE2o7ocYIsXL+7Tt+/ywpU3PvVCm07bJHucrU5J0ao/nXTU/M8/fWPChN133z3Z48RWfXbBpUuXLl26dMmSJYmP+fn5P7gL0/5LAH6UxOpZ9aETP+oYivr16zdq1CjxRNOiRYuWLVsmnnFatmy5FZ5RaeLEifvvv3+nLt2ve/Tp9Awve45twezPrxpyWPPs7PcnTWrRokWyx9lc6myAlZeX/+pXv3rrrbevGTGqe+/dkj3OVip/8aLLBx2cmdZgyuTJrVq1SvY4m0VVVVVBQcGSJUsSiVW9qFVQULD+H67U1NSauyGbN29evbS1FT7hAbCZVL+KeNmyZYkDLqoPvlj/kRf16tVr2rRpTk5O4qkq0WYtW7bMzs6uq7sCFy5c2MlW1csAACAASURBVKt377LKcPOYl7Jb1M3tli3fR5Pe+fPvBu+3377jxo2rq6dzq7MBdvHFF992222n/+mvBx1/crJn2ap9Mm3yn048eq+993rl5ZfrwFmbCgoKcnNzq1e0li5dunDhwtLS0vV8S4MGDbKzs6t3KCZ2MbZs2TInJ6euPoEBUCsUFRUlns4SC2WJ57VFixat/+0faz6vJT62bdu2TZs2tf04xvLy8v79+0+c+M51j4zp1qtvssfZqr3w8IP/uvGaK6+88q9//WuyZ9ks6maAjRkz5thjj933iEHn3nRHsmchjH38Xw9dP/Syyy67+eabkz3LhiovL1+6dOnixYsTS1uJC3l5eRUVFev6lvT09ERWVUssbTVq1Cjm5ACwkQoLC6sXyqqXy5YuXbqeMGvQoEFOTk5iiax169aJCzk5ObVo3+uFF144bNiws/58y4BjT0z2LITbL/792y8998wzzxxxxBHJnmXTq4MBNm/evB677NKsdbsbn3rBaQ+3EMMuOeftl57773//e8ABByR7lrVYsWJFbm7uokWLcnNzc3NzFy9enJ+fv54fjYYNG7b8RqtWrVq1atWyZcsmTZrEnBkAIissLFy8eHFip2T1PspVq1at6/b16tVr3rx5q1at2rRpk1gla9u2bePGjWPOvIHGjh176KGH7nfksX+48fZkz0IIIZQWF11+zCGrluVNnzatffv2yR5nE6trAVZZWXnAAQe8PXHiTaNe6ty1e7LH4WslRasuPerAqtUl06dNS/pLKhOHES5YsCBxMOFXX321YsWKdd04KysrcXxFzQMtsrOzYw4MAFus6uMYa55xKi8vb11bmIkn1rZt27Zr124THr747rvvNm3atHv3n7Ltt2TJkp179KiXlnHrMy9nNnTcypbiy89mXXb0Qb/YY4/XX3+9th/guoa6FmA33XTTlVdeedofbzj4hN8lexa+Y9YH7//xpKMOGzjwmWeeifag5eXlC7+Rm5u7cOHCRYsWretcvZmZmdW76KpXt9LT06NNCwB1Q0lJSfVC2eLFixcsWLBo0aLi4uK13jg1NbVNmzaJp+DEs3CrVq1+7LGLd9999/Tp03v06DF48OCcnB/xzkNVVVWHH374uHH//csTz+7Qo+ePelA2t/+MeGDETdfeeuutl1xySbJn2ZTqVIDNmDGjZ69eO+2+11X3P+r0Blugp+76+6i7/v74448ff/zxm+kh8vLyvvrqq/nfWLJkybrO+Z6dnV396z5xwboWAGw+BQUFNXeJ5ubmrusU+fXq1WvZsmWHDh06duzYvn37Dh06NG/efP13fumllyaOZ0lPTx84cGD//v038AR6Dz/88Mknnzzk/MsGnX3Bj/0TsblVVVVdf+qQmVPemzZ1ateuXZM9ziZTdwKssrJyn332+WDa9Nv/M75F23bJHoe1qKgov+KYQ5YvXvjxjBktW7bcFHdYsWjRonnz5iWOJ5w9e3ZhYeH3b5Y4Br3mAQ8dOnTYMo9BB4CtR3Fx8eLFi5cuXZp4Hk8slK11z2lmZma7du3atWvXtm3bzp07d+rUKS0trfqry5Ytu+KKK2revm3btscff3yXLl3WP8DSpUu7//znjXNa3TzmpfoNvAfMlmhp7lcXDuzXp3evCRMm1Jn1lboTYHfeeef5559/xrU3HTj4N8mehXX67H9Trxx82IknnPDwww//hG9ftmzZ/BoWL1681l/TOTk5HTp0SOwza9u27U84kgEAiK/6tQNfffVV4pCWvLy879+sXr16bdq0ad++fceOHTt06JCfn//YY499/2Y9evQ4/vjjmzVrtq6HGzx48Jinn77xqRe227HHpvxjsEm9+Og//nnDH++7774zzzwz2bNsGnUkwBYsWNC1W7dOXX/+50eeTqlbr9Kre0bcdO1/Rjzw6quv9u/f/wdvXFBQMHfu3Dlz5syePXvu3LlFRUXfv01aWlq7du2qj1Jo3759VlbWZhgcAIitqKio+sUFX3755YIFC9b1Wu61Sk9PHzBgwMEHH/z9XbFjx4495JBDjjzt9yddcvUmHZlNrKqycugJR+Z+8ekns2a1bt062eNsAnUkwH77298+/sQTf3/2lY7b153DQ+uqkqJV5x28T9tWLT6YMuX7vw1LSkrmz58/d+7cefPmzZ07Nzc39/v30LRp05oHIdSBN38EADZQQUFB9UbCggULFi5c+INbs61btx4yZEjNcySWlZXt3KNH/orCO176f+kZmZt5ZDbWnJkzLj36wFN+97sHH3ww2bNsAnUhwCZPnrzbbrsddPzJp179l2TPwgZ547kxd15+3t133/373/++vLz8yy+/nPONRYsWrfF/MiUlpVWrVttss80222yTWOaywAUAJKxcufLKK69cvXr1+m+WkpKyxx57HH300YkXgQ8bNuzCCy+86Lb79jrk8ChjsrHuv+byV0c//n//9399+vRJ9iwbq9YHWFVV1V577fXhxzPv+u/bjZo6i13tUFVVddXgw6qKV5504om5ubkVFRVr3CA7O3ubb3Tu3FlxAQBrlZube+21127gjbOyso444ogdd9yxS9eubbbd/i+PP1tnzutQ563Izzv3oL177brLG2+8kexZNlatPzPBc889984775wy9Hr1VYukpKScfOV1N5954vz58xPXZGRktG/fvnPnzomjCtu1cx5LAOCHzZkzZwNvmZaWlp2d/dFHHz377LPLCwquvPI69VWLNGmec/TZ5z98859ffPHFQw89NNnjbJTavQJWVVW1a8+euUuWDh/3dmqNs5FSK9x41m8zK0quvvrqHj16tG7d2i9BAODHGjly5IQJE2peU69evWbNmuXk5LRs2bJFixbVF5o0aRJCWLhw4c+2226Xvfa7dPhDyZmYn6qstPQPB+7ZsV3bye+/X6u3G2v3Ctjo0aOnT5t21p9vVV+10eDzLr306ANfeeWVX/3qV8meBQColSoqKnr37t2iRYsWLVq0bNkyJycnJydnPe/CfOONN5aWlBxzzkUxh2STSE1PP/L0Pzx0/dDnnnvuyCOPTPY4P10tXgGrqqraaeed81esvHPs//PeebXUreeeNu3tCXNmz27VqlWyZwEA6rjc3Nxtf/azPvv/6qLb7kv2LPwUZatXn3vQXm1btpj6wQe1dxGsFp+8+6WXXprx0UdHnn6O+qq9Bv3+wuKiorvuuivZgwAAdd/w4cNXl5YOOvuCZA/CT5SalnbEqb+fPm3ayy+/nOxZfrpavALWr1+/qf/78N7X3kvLyEj2LPx0151y3JczP/py3ryGDRsmexYAoM4qKirq2KnTNjvuMvSBx5I9Cz9daUnxWf367t6nd+1tsNq6AjZ58uQJEyYcdPzJ6qu2O+KUs5fl5z/88MPJHgQAqMseeuih/Ly8w393VrIHYaOkZ2QeOOS3r7zyygcffJDsWX6i2hpgw4cPT8/IOHDIb5M9CBtrl7327dyl+x133ll7F2MBgC1cVVXV8Lvu2rbbjjv/Yu9kz8LGOuiEk9PS04cPH57sQX6iWhlgy5cvHzV69C8OOqxJ85xkz8LGSklJ+dXgkz6ZNevNN99M9iwAQN00fvz4zz799FdDfpPsQdgEsnNa7j7gkJFPPllQUJDsWX6KWhlgjzzySHFR0QHHnJDsQdg09jnsqPTMzAcffDDZgwAAddODDz6YkZW196G1+Nzl1DTg2BNKiouffPLJZA/yU9TKAPvHP//ZftvtuvXqm+xB2DSyGjf5xYGHjR4zJj8/P9mzAAB1TV5e3jPPPLPXIUdkNWqc7FnYNH7e9xftt/nZvffVyrcTqH0BNnXq1GlTp/Y/5vjae+5/vu+AQUNKS0pGjx6d7EEAgLrmySefLC0t7T/o+GQPwiaTkpLS7+gh06dN+/DDD5M9y49W+wLsqaeeSklJ2evgw5M9CJtSt967tWrfYdSoUckeBACoa5566qnWHTp12aVXsgdhU/rlwF+npKTUxq3H2hdgo8eM6darb4u27ZM9CJtSSkrK7r86dMKECQsWLEj2LABA3ZGbm/v222/vefBhDp6qY1q0bbdDj55PPvVUsgf50WpZgE2ePPnzzz77xUGHJXsQNr29DjqssrLy2WefTfYgAEDdMWbMmMrKyl8cODDZg7Dp7XnQYZ9+8snUqVOTPciPU8sC7Pnnn09JSdljwCHJHoRNb/sePVu2a//cc88lexAAoO547rnnWrXvuN1OuyR7EDa9Xxw0MITw/PPPJ3uQH6eWBdjYsWO36frznDZtkz0Im15KSsque/d74403Vq1alexZAIC6YNWqVW+99VavffsnexA2ixZt23faoeu4ceOSPciPU5sCbOnSpZMnT951n37JHoTNpecv+5WWlr7xxhvJHgQAqAtee+210tLSnr+09Vhn9fzl/u+9915eXl6yB/kRalOAjRs3rrKy0o9QHdZjz1+mpqa99NJLyR4EAKgLxo4dm5qWttPueyZ7EDaXnvv0q6ioePnll5M9yI9QmwJs/PjxGVlZ3Xr2SfYgbC6ZDRvtsGuv8RMmJHsQAKAuGD9hQteefTOyGiZ7EDaX7r13T8/IGD9+fLIH+RFqU4C99fbbO/ToVb9BarIHYTPq1rPvxzNm5OfnJ3sQAKB2W7p06SezZnXvvVuyB2EzapCaut3Ou7719tvJHuRHqDUBtnTp0k8/+aRbr77JHoTNq1uvvlVVVe+8806yBwEAareJEydWVVXZeqzzuvXsO/Pjj2vR7vtaE2B+hLYSXXv1rVev3tu1ajcGALAFevvtt+vVq9dll17JHoTNq9btvq81Afb++++npKRs36Nnsgdh82rUpGm7bX72/vvvJ3sQAKB2mzx5cvufbZ/VuEmyB2Hz6rJr7xDCpEmTkj3Ihqo1ATZ9+vSW7do3atI02YOw2XXq+vNp06cnewoAoHabNn36Nt12TPYUbHaNs5vltG77v//9L9mDbKhaE2DTpk/v1KV7sqcghs5dui1etGjx4sXJHgQAqK0WLFiwdMmSzl1/nuxBiKFz1+7TBdimVVhYOHfOHPswthKJ35XTLYLBFqKwMNxzT7jzztiPO3FiuPji2A8K1BWJDYnOXe2+3yp06tLti88/X7lyZbIH2SC1I8BmzpxZVVXVcfsuyR6EGBL/0DNnzkz2IEAIIYSPPgr33hvi7xMpKQnLlsV+UKCumDVrVvhmo4I6r+P2XSsrKz/55JNkD7JBakeAzZ49O4TQqkPHZA9CDC3bta9Xv37iHx1Ivj32CD16JOFx998//POfSXhcoE6YPXt2gwapOa3bJnsQYmjdoVMIYc6cOckeZIPUjgBL/G22ai/Atgr1G6TmtG5TW36EoI5buTJUVYX69TfoxoWFIYRQXByqqtb80ooVa79xUVGoqPj6mvLyUFLyA9+VmAfgh8yePTuxSzfZgxBDqw6dwjdrNlu+WhNg6RkZTXNaJnsQImnVvtMXteRHCOqsvLwwZEgYNiwMHRqq31zl1ltD69Zh0KCwaFEIIUyZErp2DRMmhJEjQ/fu4W9/C1deGbp0CZ07h9zcr7/lzjvDNdeE224L3buHadNCCOHpp8POO4frrw833BB22im0axemTAkjRoRddw3Nm4dnnw0hhA8/DMccE3r3/naezz4LJ50Uhg0LBx4Yhg+P9/cA1E6z58xp0b5DsqcgkuatWqempdWW3fe1I8DmzZvXom37lJSUZA9CJC3bd5w3b16yp4Ct269/HfbZJ1x9dbjhhpCR8fWVl14a+vYNIYTWrUMIoWXLMGBA2G+/MGRISE8P774bLrggfPppSE//+ujBvLxw6aXh/PPDtdeGNm2+vvLoo0PDhmHq1HDaaeHTT8PPfx7OPDP06hU+/DCcfnq44YYQQthpp9Cnz7eLY6tXh4EDw8UXh6uvDmedFS6++OsFNIB1+PLLL1u2bZ/sKYgkpV69Fm3bz507N9mDbJDaEWBLlixp0jwn2VMQT9PmOcvy88vLy5M9CGyt3norvPlmGDgwhBBSUkLPnt9+6ZprwnPPhcQa9UMPhbPO+vr67Oyw556hdeuQkRF22SXMnx9CCM2bh9deC82bh4kTQ1FRyMv7+sbNmoWePUPr1qF+/bDbbiE7++uXme22W/jqq29vU+3ll0NJSdh11xBCOOqoMH9+aNx4s/3hgVqvrKxseUFB05wWG3k/xatWTn1rwv+9Mnbl8oKvvvhs2ZJFm2S89SstLvrys1mr1zgke/M/1oI5X+QvWhjhQTeTJs2aL126NNlTbJDaEWBL8/IaN2u+8feTtzD3lL16HN2t3dHd2s3++KNT9urx0PVDN/5uf8IYI2669vuXN8kdhhDOPmCPu668cCPvM7kaZzerqqpa5gRokCwffBAyM0ObNmv5Ut++Yb/9ws03h/LyMHNm2Gmnr6+veZBCRsbXi1cpKSEjI5xySigtDbvs8u3Lt+rVePZJS/v2cmrqt6teDRp8e/0XX3znpWWtWm3Enw2o+/Ly8qqqqhpnN/vhm67nThbmnvOrPa8/7fhbzj11yYKv/njSUU/fF+MNOT6ZNuWCgf1mf/xh5Me6/rTjnxh2c4QH3UwaN2u+tHo335atlgTY0qUb+SOU8O4rLy3PW3rFPSOenD5nm25Je2O+0ffc9s5/X/z+5U1yhyGEAcee0POX/TbyPpMr0dt5G/5TtHJlePzxMHBgmDRpM44FW49GjUJxcXjrrW+vqXnqi6uuCiNGhPvuC4cf/gP389FH4bDDwh13hH79wsYcRt62bVi8OHzwwdefLl4cvEwUWLfEJkTjZht1/NQWst0YTW3fgGycXWtWwBr88E2SraKionDFikZNsjf+rpbnLW2Qmtqn34C6/XKyo844N9kjbKxG2dlhQwJs9eowblwYOTI8/3woKgohhKuu2vzTwVagf/+QmRkefTT06xcqKkJeXmjU6Nuv9usXevYMN9wQar7cubQ0VB82XFUVyspCCGHq1LByZUhJCUuWhJkzQ05OWLgwtGkTysq+vXFl5XcuJ74xhO/cpn//0KxZuPTS8NhjYfny8PTTYWgSjl8Aaov8/PwQQqMmTTfmTraS7cZqtX0DsnF2s+UFBZWVlfXqbekrTLUgwIqLi6uqqtKzsjb+rl4d/XhFefnFRx7Q4xe/PPmKa9f46vvjXxlz3x3zZn3cNKdF7/0OOOmSoemZWR+8Of7Rv/3lwCG/PXDwb0IIZaWlN57928xGjS++/b71nNi0sqLiuX/e9/bY5xbM/iItPb3TDt1OuOjKrj37hBD+8Zer3/nvi8WrVl10RP9VK5aXFBUlLg8+99LdDjhoXWOEEP5y+gl7Hnz48qVLxj87amnugu126nHKVddv233HmneYuJMbzjhxu512GXzepVVVVW88N+Y/I+7/avbnzVq06rnP/iddfFVmo69fOLGuO/z+H+cvp5/Qt/+BC+fOeeulZ+vVq9973/7HnXtJ05wWzzx49zvj/nP9Y/9OTBhC+Pj9/3vw+qsuuu2+DtvtsDH/UukZmSGE4uLidfz9VoY33ghPPBGeftr7tMJm0alT+Mc/wqmnho8/Dm3ahOXLw2efhddeC/37f32DCy8M778f0tO//vTFF8OHH4aqqvDrX4fCwvDuu6F+/fDee+GQQ0K7dqFr1zBwYNhnnzB8eHj33dC0aZg6NeTlfb1k/corYc6c8OKLoXv3MHp0WLYsjBgR9tknPPdcyM0NTz4ZBg8OzZuHxx8Pxx8f2rULu+8e7rknOX8tQC1RVFQUQkjPzPzJ93DzOb+bNXVynO3GEMKLjzz01ovPffn5J9179d3rkDUPLljXxmEI4Z3/vvDamJGzpk7u3KVb3/4HHnLCKanp6evfAlzXY1VvQIYf2kp88dF/TBz7/JyZM7bbscdJlwy990+X/u7K63beY+81xo68AZmWkVFZWVlaWpq5Ef/ucdSCAFu9enUIoUFq6sbfVdeefaa88dpRZ5yX02bNd+V7/d9P3X3Vhb322f8PNw0rKSoaOeymz/439cYn/9Pzl/3GPv6vh2+6bpc992nTaZuHb/nzR5Pe+euT/1n/T9FD1w99dczIY84+f7udd5398YcvP/noDWee+MCEyRlZDfc86LAvP/tk7qwZR51xXnnZ6gnPjk5cTixtr2uMlHr1vvzsk5HDbmrYJHvAMSc0SEsbfc/t15825IEJk2veYeJO5n/xWeKU/S8+8tC/brzmwMG/OemSqxfNn/fkHbfMmPTu3555OfGXua47/P5f9ZeffTLzg/c77dD1/FuGF69a9c+//unLzz+5dsSon/fZ/bG/3/B/r47b57CjErd8dczI0uLijayvEEJqWlr45p/+OyZNCiNHhqeeCgsWbORDAD9gyJBwxBFh/vyw/fbhq69C+/bfeeHWRx+FM8/89tNDD/3Oe3Z9/vm3l2fODAUFX59R44orQsOGIYSwePG3N3jvvW8vP/30t5dfeuk78xx8cFi0KCxYELbZ5qf/oYCtw9dbjzVfYvojDTj2xJCSEme7cdwTI0bcfN2vT//DcedePOWN1+7946Ub8lgp9eq99+q42y46u//RQwb+9vTPP5r+5J23lq9effRZ569nC3A9j1W9ARnWu5U49vF/jbjp2l+fds6x51w0beKb15x8bGlxUdHazkwbeQOyeutRgG0CmzDAOm7XZepbE/Y+9Ig1ri8tKX70b3/pumvvoQ88lrimdYeOf/rNoDdfeGafw4/+/Q1/v/Cw/e/702WH/+7MsY//6+Qrrt1uxx7reZSK8rL5X3x25KlnH3PORSGEXvvs36hJ0weuu/LLT2ftsEuv7n12b9Opc+7c2YkxZk55r/ry+scIIVRWVN406oWMrIYhhPTMrLuvuvCLGdPXuMNqK5blP3bbXw845vgzrr0pcU3T5jm3nnf62Mf/ddjJZySuWesddtmld/ie+vXr//GhJzIbNgoh5LRpe+lRB/6/55/u9+vj2m273f97/unEz09pSfG7L7/469PP2fB/kXVJTUsPIZSWln79+cyZYeTIMHJk+PTTH/jOBQvCF1+EFi1CkyZrv8GqVV+/f9H31au3vg27BQvWfIvYas2afed0bTWVlKyvFbfZJqxrlXzRorBq1dq/1KRJaLGO0zqVl4f1nL6/Y8ewrp+jpUvX8o63CVlZaz8TQwihqmp9r8Np1+7bc5evoaAg5Oev/Uvp6aH9us8aPGdOqKxc+5datfrOMXI1FRaGJUvW/qX/z959x1dZ3X8APxBmIAkQQJaAC9EquBAriqJVoa6quFCxddU96kD7q7taFVe1Wq17K0gddS9cKKLgliEieyZAGIGQ9fvjaoyQewUM55Lwfv+R18N97n2eb0Ju7vmcc57z1KsXOnZMerrp08OqvQAJubkhJ8nMlsLCMDv5KlKbbpp016xZIdmob7NmoUWShYhWrPhhvcEqdeqU9B7Kc+eGJUuq3tW06Q+rXGRmhi5dQghh441/2LVsWRg1KtSvHyZODHXqhEmTfvbCDh3Cqs2dOnVC8+Zh/vywcGHVp2vcOLRduXHzk5VOUfmRNm1CsskRBQUh2RzmBg1Ch+S3Bpoy5adVQFbSqlXSpReXLPlZpKwsIyN06pT0dDNmhIo/dCtp0SI0SzL3ftmyn26ztqpNNkl6ud3s2T/M1l5Vij8sxcVh2rSkp+vY8WfLpVQ2b17SuwU0afLDnQxWVVYWUtzJp337n8ZdV7JgQdI5EY0ahXbtkh7z+++T3t17o41+6DJY1aJFIdnVJvXr//SWWdW0aT/Ns13J2n141akTNtkk6enW7sOrqOin9UhXtXYfXllZoVWSG7qu9YdXfn4oKKhyT925c0MI9eqvfQDbYY+9x435OEK7sWj5svuvvbzfMX8acO6gEMJ2u+1ZuGTJ8GeeWp1z3fF/f9ll3/1PveqGxAuLli1794Vn9vjD4clagPsedVyKc62kylbixpt1eeDay3v1O2jAeReHELr32iNv1vQRLz2f7LuL2YBMBLCiZH9U1yc1KICt/VvoF037dvyi+fl7HHTYVx+NSDxSXlbesHHm2NGjeh90WLPcVmdcc/M/Tjt+/Gef7Ljn7w44/uTUR8uoV/+qh58OIZSVls6dMW36pG+//eKzEMLyZUk+9lavjBDC5t22S7wNQgjtOm8aQliWrP0UwpTx3xQXFe158OEVj2y325716tcfN3pURQBb/QPuvPd+iTdPCGHTrbdt3X7j7776os8hR+51yJGP//P6hfnzmuW2+uj1l4uWFe75h8OrPMIaSXRZZcycGW68MTz++E9X3v+iww8PIYS77vpZ33xlr7wS+veveldWVtIQkjjyBx9Uvevyy8MVV1S9a8yY0KtX0mMuXpw0M5xxxs+GAir785/DXXdVvWvatLDZZklPN2FC2CJJ39KVV4Z//avqXQcdFJ57rupdRUWpTvfOO6F376p33XFH+Nvfqt7Vo8fPxkNWssMOSRtYTz4Zjjyy6l1Dh4YTT6x6V4cOqVqW++0Xvvmm6l233BLOPbfqXe+8E37/+6p3ZWSEFDdXOO648OabVe8aNChcd13Vu7755mdrxK9kzpykCwaef3549NGqdw0cGB56qOpdgweHyy//Yfvxx1fe+9lnoXv3ql943XVh8OCqd+2zT3jttap3hRA23zxp4/jll0PfvlXvuu++cP75Ve/aZpvw5ZdJT7frrkk7Te6/P/zpT1Xv+t//woABVe/KzU3aTA8hHHxwGD266l3XXJP0otaPPgp9kl8oX1RURQxOOPnk8MILVe8666xwW5Ll3SZNCl27Jj3d5MlJE+b//V+4556qd/XvH4YOrXrXkiWp/rB8+GHYZZeqd916a7jqqqp39er1sxVlVrLttkkzw3//Gw45pOpdjz0WTj+96l2bbvqzQeCV7LVXmDix6l133JH0mK+/nrSSxo2T5uoQwlFHhffeq3rXpZcm/Yl99lnSn3MIqZMaVgAAIABJREFUYcGCpL0DZ58dhgypetdJJyX9fZg5M9V/+jffhK22qnrX1VeHf/6zyj3bb799qKbu+1VVb7tx6vixpSXFv913/4pHdj/gDxWhKMW5ttqp55KChb36HVjxwgHnDhpw7qAvR76frAXYdfudUpxrJVW2EieN/aq0tGTHPX9X8bQd9/hdigAWswFZb6Xu+/VYDQhgEcydPjWE8NKjD7z82AOVH8+f80MX40599umweZfpEyfsd9TA1bkQ87uvv3j0pmvGfvJR8YoV2c1btNsk+Z+VNSmj8s3QEn9TSpP11IYwe+qUEELlQfNGmU0233a7/Lk/9c2v/gFzf34rw2YtW8+cPCmEsMcfDn/8n9ePePG5/Qee9PazQ7fZpVfL6rvpYXmdOqF+/aQ93EB8Awf+FMAANkjV226c8f13IYRmrX7qLMvd6KfGW4pzTZs4IYTQvNXKg8kpWoCpz7WSKluJs7/7NoSw5XY/zZbaaqeeKb67tDQg1381IIA1aNAghFBSnGQiUHVI3KfvzGtvTgw0reqVxx+cPnFC206b3HfNpVv32KUiyldp0fz8q/50ZMt27c+98Y4u3XdssVGbUW++Om7Mn0KSPtzVL2ONNG/VOoRQMD+/dYefZlgVLl68acpx8GSWFvxs7lDB/LzNtukWQmjReqPteu3x3ovP7rb/H7748L2zr6u6I2pNlaxYEUIoa9s2HHJIOOecNZiCOHRo2GGHpBNpQgh9+ybtmEy9Zs7QoalmcSSzww6p+kFTZMs77gg33FD1rmQTVEIIG2+c6nQppsRcfnk4L8m941IU2bBhqtOlmPBzxhnh6KOTHjOFMWNSTUFM5vDDw557Vr0r2dSphFdfTTUFMZk99kj1Y0nhkUdSTUFMZuutU50uRZ033RSuvLLqXckGZsMv/Y6lmNp38cU/3bJ5Jakn6ycbKwgh6eTYEMKJJ4Y//KHqXamvCfngg1RTEJM58MCkP5aUF36E555LNQUxmZ49U/0vpOjyv+eeVFMQk0k9npNizvA114SLL656V7J5fSGEpk3X8nTnnhuOP77qXcmmQyd8+WWqKYjJHHNM2G+/qnelHnV5661UUxCT2WefpD+W1O37J59cmw+v7bZL9b+Q4rflttvCP/5R9a4UN09v124tP7wuvTScfXaVez4dPjycdFJJsh/1r1O97caNNu4UQli0YH7bTj9MJV26+Kf5OCnO9e0Xn4YQFi/8aWJI0fJl+bNn5bRoEZK0AFOfa3Uk8t7ihQsqDr6kIMn08sTxIzYgS1YUhRAapm5IrB9qUABbJ2+hhA6bdcmoV3/4s0MqfrnnzZx+y19O+/1xJ+62/x9mTJr40A1X7XPEsQefeNpfDt77/msuPePaW1Icbfxno5csKjjrhtt22nOfxCMTPh8dQigtrZh6VKesrHTV7dRlpPwOKh/wBx27dK1Tt+7ot9/YotsP05NmT508Y9LEvfsnafim9OXIEeXl5YlenBmTJs6dMa0iyPU59Mibzzv1taceadQ4s+e+SWZeraHild5CXbuGK68MV175y4twtGuX6hqbEEKTJr/whGRSxIkUGjVay9Ol+NRPoV69tTxdy5apPviTqVNnLU/XrFmqRJHC2q2+kJWV6oM/hRRxIoXMzLX8saS4DiqFBg3W8nStW6/N7YwzMtbydC1apEoUKazd6XJykl6kl1qK67VSaNo0VWpNIUWcSKFx47X8saSIrCnUr7+Wp2vVKlVqTaZu3bU8XYormlJLcQFVCtnZqXJICiniRAqRP7waNqwZH165ucm6mcq+/jqss+776m03brr1NnXq1v303bcqhpUqZhumPtcOvfeq36DBlyPf36nPDw3OVx5/8MnbBl/1yLBkLcDU51odXbpvX79hwxEv/2+zbX6YcP7By0nnH4a4DcjiFStCDQlg6/sy+SFKAMvJbXnAwJO+HDniP1deMmXC2LGjR916wRlzZ0zfofdepSXF/7zwzOzmuccPuqxtp00GnDPorf8+NfL1l1Icbasdd27YqPHwYU/lzZqxYN6cFx++9/n77gqVrgHLzMouyMt793//nTt9auXtFGWkrr/yQSoebN1+430OP+bZ++58fcijBfl5334+5sZzTm7VvsOqa5uu6qPXX/7HqcdP/XZcxSPTJo6/9+r/y589a9I3X95y/mmbbr3tbr//4ZrUHnvt1yQ7Z9jdt/227wGJ5eN/vcRbqMGqHdU9eoSbbw7TpoW33gonnbSWn7UAQK32Q+sx2SyGX6d6240NG2f2P+3c5+7/99vPDinIzxvx0vPP3Hvn6pwrMyv7gONPfvXJh998+omFeXM/ePn5/z3wn34D/rTFttsnawGmPtfqaNay9UF/OvX5+//9j9OOf++FZ/5x2vHPP/Cfyk9YqQ0ZswGZtPW4/qkBAaxx48Z16tQpSnGBaXU45i8X9z/t3LefGfKXg/a+6sSjmmY3O/+WuzKzsp+87cbvvv7i9GtuSgwfH3D8yV2673jXpRcumJdkMaIQmuY0++MlV0z7bsKf+/Q4ufcOH73+8g3DXmncpOm40T8sLbDHwYdlt8j954VnvvH0E5W3U5SRuviVDlLhhL9e1W/An+77+99O6NXt0oGHZTVvceVDT686V3hVs6dN/uTt1ysPau+wx95TJow9Zc8dLznygOzmuZf8+8EGP87oqN+gwe4HHFJcVLTXIUmWQFhzRcuXhRCSriJat27o0yfcc0+YPTs891w46ijXiQEAFTIzM0MIRcnmdf9q1dhuDCEceeb5+x19/IPXXXlCr273Xv3X4y742Y3mUzQOjz7nogOPP+Weqy45cbftbjrv1M226Xbon88KKVuAqc+1OgacO2jgRZfOnT7t7isuLi4qOvMft4RKt1xbqQ0ZswFZtHxZ3bp1a8QIWJ3yZPOe1yfNmjffce++Z1xz87o+UXlZ2dwZ05q32qhB6vniq2fezOlZzZpXLCCzksULFzTJyk7cF6Ly9lqXsdJBKpSWlsybMT23Tbv6a9sl8Oc+PbrtuvsZ19y8MG9uw8aZq05lvv/ay0a//ca/Xh1RXbeKf33Io3dddtG4ceO23HLL1XrBkiXhuefCE0+Eyy8PPXpUSw0AQA31zTff/OY3vzn97zet3ZUXq6l6241lpaXzZk5v3aFjla2pFOcqLS2ZM21qdovcptk5Kz2erAWY+lwpFBcVzZr6fbvOm1WsMDnmnTev+fNxg//76qZbb7vSkyM3IG+/+Nwv3nszP8XCs+uNGnANWAihZcuWixckuWtQtapTt27i8sRq0apdqgtIspo1r3J7rctY6SAVMjLqtenYeU2PVqVmLau4YmTezOlvPzvksFPPqa70FX68ojQ3xfoBK2naNBxzTDjmmOoqAACouRJNiMpzedaF6m031s3ISHG0FOfKyKiXWCZ+1ceTtQBTnyu18/+wzz6HH5O4yVhpSfHQO2/NbpHbacsktwoIIcRqQC5eOL/lWlzQng41JIDl5has47fQGpkyfuzjtyS5J08IW++8y8EnnBaznnRZtnTJaXv3XLp4Uccttux7dJK1p9bK4gUL6tat29wlXgDAmsvNza1Tp87ihTG6739RbWo31m/Y8PDTzh1y5y2j33mj3Sabffv5p3Uz6l7+wJCMjDXIFOuoAbl4wYKWq993n1Y1I4C1atVq+tdj013FT3Jyc3fZL+lqLRt1qLa+kPXE8YMua9G6irWzGjdpevCJp9erX7/3gYc2bFydV2EtWjC/WfPmGamXbwYAqEq9evVymjVbND8/3YWEUOvajUeceX6/Y0/4fMS70yaO73v0H7facefKdwyrLHIDcvHC+V07rTwNcv1UM64BO/300++7//7HP5tUjZPcWJ9ddtxh9UuWfzpmTLoLAQBqpG7du4fM7CseHJLuQoihvKzs6O02/fMpp9x+++3pruWX1YBVEEMInTt3XlFUtDBvbroLIZK5M6ZuunY3ZgEACGGTzp3nzZiW7iqIZP7cOcUrVmxSQ1qPNSaAhRDmzpie7kKIobSkOH/O7JryFgIA1kObbLJJ3qyZZaWl6S6EGBL3wq0prceaEcASP80506akuxBimDdzRllpaSJ1AwCshc6dO5eUFOfNnpnuQohhzvQp4ccxm/VfzQhgXbt2rVOnzrRvx6e7EGKYOmFcCGHrrbdOdyEAQE211VZbhRCmfjsu3YUQw9QJ4zMyMlb3/rHpVjMCWFZWVudNNpkyYT1aCJF1Z8r4b0II225bM9axAQDWQ926dQshTBmv9bhBmDJh7KabbZaZWZ2Lcq87NSOAhRC6d+s2dfw36a6CGKZMGNembdtWrVqluxAAoKZq27Ztq9atp+q+3zBMnTC2e7du6a5iddWYANatW7d5s2YuKViY7kJY56ZOGLvtNtukuwoAoGbrtu22RsA2BIsWzJ8/d842Naf1WGMCWI8ePUIIEz53Y6habsmigllTvt95553TXQgAULP16NFj+nff6r6v9SZ8PjqEUINajzUmgPXq1atu3brjxnyc7kJYt8aNHlVWVtarV690FwIA1Gy9evUqLy/XfV/rjRvzcZ06dXr27JnuQlZXjQlgzZs377LlluMFsNpu3JhRNestBACsn3TfbyDGjR619W9+06JFi3QXsrpqTAALIezWq9e3X35aUlyc7kJYh8aN+bhmvYUAgPVTovt+3OhR6S6Edah4xYrvvvp8txo1eaomBbA+ffoULVs2box3Ua1VuGTxt59/ulefPukuBACoDfbq02f8Z6OXFy5NdyGsK2M/+WhFUVGfGtV6rEkBbN99961bt+6n7w1PdyGsK198+F5JSXG/fv3SXQgAUBv07du3pHjFlyNHpLsQ1pUx772VkZHxu9/9Lt2FrIGaFMBatmy50047ffbe2+kuhHXls/eGN2zUaI899kh3IQBAbbDXXns1bNhQ930t9tl7w3v27Jmbm5vuQtZATQpgIYR+/fpNmTA2b9bMdBdC9SsvL//0veF77rFHTbmLOQCwnmvSpMnuu+/+6btvlpeXp7sWqt+8mdOnTZzQt2/fdBeyZmpYADv44IPLy8tHvvZiuguh+n37xZi8WTMPPvjgdBcCANQeBx988NwZ07/76vN0F0L1+/DVF0IINa71WMMC2Pbbb7/5Flt88Mr/0l0I1W/ES89nZGQcdthh6S4EAKg9+vfvn5GR8cHLWo+10IiXnu+y5ZbdunVLdyFrpoYFsBDCkUccMeGz0fNmTk93IVSn8rKyD195oU+fPq1bt053LQBA7dGmTZvdd999xMvPmYVYy8ydPvW7rz4/+qij0l3IGqt5AeyII44oLy//4OXn010I1Wns6FH5c2YdccQR6S4EAKhtjjjiiLxZM8d/+km6C6E6vf/Sc+Xl5TWx9VjzAli3bt222377N4c+oRujNnnj6ccbNW7cv3//dBcCANQ2RxxxRMNGjd58+vF0F0K1KS8vH/7fp3bcaaett9463bWssZoXwEIIJ5144ozJ34395KN0F0L1KFy8aORrLx5x+OHNmzdPdy0AQG2Tm5t72KGHjnjpuaWLFqW7FqrHVx+NmDl50sknnZTuQtZGjQxgxx57bOPMzNeHPpbuQqge7zw/rGjZspNq5lsIAFj/nXzyyUXLl7//0rPpLoTq8cbQxzObNDn66KPTXcjaqJEBLCcn58gjjhj56gsF+XnproVfq7y8/LUnH96ya9fddtst3bUAALXTHnvssUWXLq898bBrWGqBhXlzP3r9paOOPDI7OzvdtayNGhnAQgjnnXde8YoVrzzxULoL4df69N23pn47/txzzqlTp066awEAaqc6deqcc/bZk8d/88UH76a7Fn6tlx65v3jFirPOOivdhaylOjW3G+B3v/vdqNGj7x7+ScPGmemuhbV3+fGHz540YeqUKY0bN053LQBArVVYWNixU6eNu/7m0nufSHctrL2i5ctO3XOn3/bc+ZVXXkl3LWuppo6AhRDOP//8xQsXvv3s0HQXwtr77usvvvpoxJlnnCF9AQDrVGZm5mmnnvr5iHenjB+b7lpYe28+/cSihQvOP//8dBey9mrwCFh5eXm37t3nzV942yvv16tfP93lsDauP+NPX418f/L337dq1SrdtQAAtdzs2bM32XTT7XvvfcE//5PuWlgbxUVFZ+6368bt2o4ZPTrdtay9GjwCVqdOnSsuv3zOjGlvDjOOXCN99/UXH7/12llnnpkifZWWls6dO3fs2LHvvvvuf//73//85z+PPvpozCIBgFqjTZs2p5166sjXXvx+7NfproW18dqQR/Nmz7ryiivSXcivUoNHwEII5eXlO/fsOWnKtDte+6BBo0bpLoc1c80px44fM+r7SZMSAWzRokV5eXnz5s3Lz8+v2FiwYEFZWVnlV+255541dMlRACCNysvL58yZ8+WXX179978X1W886I4H0l0Ra6a4qOiMfXft1KHdJx9/XKMXb6uX7gJ+lTp16lx26aUHHXTQq08+fOAfT0l3OayBsaNHjXn3rQsuuGDIkCF5eXl5eXkrVqxYnRd27tx5HZcGANQSCxcunDp16pQpU6ZOnfrdd98tXbo0hLBV165Dhgz59vMxW3TfId0FsgZeePje/DmzHn3w/hqdvkJNHwELIZSXl/fu3fuzL7+6/ZX3s5u3SHc5rJbysrKLj9h/4ZyZ48eN++KLL5577rnCwsLVfO0VV1zRtm3bdVoeAFBDLV26dPLkyVOmTJk8efL333+/aNGilZ6QkZHRpk2bhx95pF5Ws2sef66mN+U3HAvz55213249dtrx7eHD013Lr1WzR8BCCHXq1Lntttt22mmnp26/8eTLrk13OayW4c8OnfjV53fffXeLFi323HPPHXfccdiwYSNHjvzF7oAGDRpkZWXFKRIAWP8tXbp02rRp06dPT+SuuXPnrvSEOnXqtGnTplOnTp07d+7cufPGG29cr169Fi1anHXWWe+98EzvAw9NS9msqcdvua5oWeE/b7013YVUgxo/ApZwwgknPPzIIzc+81rHLbqmuxZ+wbKlS87ut3uHtm3GjB6dkZFR8fjEiROfeOKJ6dOn/+IRMjMz27Zt26lTp06dOrVt27Z9+/b16tX4rgQA4BeVlZXNnz9/5syZiVmFM2fOzM/PX7U1m5OT06lTp44dO3bq1GmzzTZr0qTJSk8oKSnp1r37vPkLbnvl/YaN3Atnfff9N19d1L/vySeffNddd6W7lmpQSwLY7Nmzu2y5ZfvNt/z7o8/UqVuDl3bcENx/zaUvPXr/W2+9teeee660q6ysbPjw4c8///zy5ctX/4D169dv165dhw4d2rdvv/HGG3fo0CEz0725AaA2WLp06fTp06dPnz5jxozp06fPnDmzuLh41adlZWUlxrgSX7Ozs3/xyK+//vq+++578AmnDbzo0nVQONWmrLT0r0cfNG/a5Anjx9eOGxfVkgAWQrjjjjvOPPPMky69pt8xf0p3LST17Ref/vXog44fOPD+++9P9pxFixYNGzbso48+WvWXc+DAgc2aNZv+o9mzZ6+0RmJC8+bNO3TokIhkbdq0adOmTX13igOA9V5xcfHs2bNnz55dEboWLFiw6tPq1q3bpk2bDj9q3759s2bN1uJ0xxxzzJNPPXXdUy9stk33X10768r/HvzPg9ddcc8995x00knprqV61J4AVlZWtscee4z59LNbXni7Zdt26S6HKpSWlgzq32/RvDnjxo5t2bJl6idPmDDh8ccfnzVrVuUHr7vuuubNm1c6YOmcOXMSMxBmzZo1efLkVa+1TcjJyWnXrl3Lli3btm3brl279u3br07fGACw7hQWFs6bN2/WrFkzZ87My8ubOXPmnDlzquxarbj6oF27domNaulazcvL22rrrZu2aHXDsJcz6umrXR/Nmzn9vAP67Nxjp+HDh9eaFVNqTwALIYwdO3b77bffqsdv/3bPY7Xmf6g2efK2wUPvvOWJJ5446qijVuf5paWlb7755gsvvFBUVBRCyM7OHjx4cOqXLFiwIDFFYdq0aTNmzJg7d25paWmVz8zKymrbtm2bNm3atm3btm3bjTbaqEULq2gCwDpRXl4+f/78OXPmzJo1KzHGNWvWrMWLF1f55MQAV+LKgvbt23fo0GHtBrhWxyOPPDJw4MCjzrrg8DP+so5OwVorLyu76qSjx4/5+IvPP+/SpUu6y6k2tSqAhRBuuOGGQYMGnfDXq/YfWEvGKGuNsaNHXTbwsD8cfPCwYcPW6IULFy585plnRo4c2b1799NPP32NXltaWjp37tyKP/SJjUScW1WjRo022mijRBhr1apV69atW7Vq5XIyAFhTiaGtefPmVXwKp/j8bdiwYZtK2rZt26pVq5jLax188MEvvvTS3x97pkv3HaOdlNXx/AN3PXT9VTfddNNf/lKr4nFtC2BlZWX77LPPe++/f/3QlzttuVW6y+EHhYsXnf+HfeqFsi8+/zw3N3ctjjB27NiCgoJddtmlGoopLExMWUx8nTdvXl5eXrInZ2ZmtmrVqmXLli1btkxstGrVKjc31xArAIQfs1ZeXl5eXl5iY3U+WBNXBCS+pv1TNS8vb9tu3UK9BoOfeS2zqbvdrC+mfjtuUP9+e/Tu/corr9StXWvs1bYAFkKYPn16t+7ds1tu9I8hL1hXdD1xy/mnffDy/15//fW99tor3bVUYcmSJZVnRMybNy8/Pz/Z3MUQQuPGjSuGyCo21t3sCABYHyxcuHDu3LkVQ1uJrykWLq5bt25ubm5idknF6NaqK8KvD1599dV+/fr1Puiws6+/Ld21EEIIywuXXnz47wsLFnz5xRdt27ZNdznVrBYGsBDCM888c9hhh+1+wCHnDP5XumshvPjwvfdfe9kll1xy7bU15k7ZZWVl+fn5K33MzJs3r6SkJNlLGjRo0LJly9zc3Nzc3BYtWlR8zcnJiVk5APxKBQUF8+fPz8/Pr/iaGNeqcv33hHr16lXulEzIzc2tfMPP9dyFF1544403nnzZtX0H/DHdtWzoysvLb/7LaR++8r/nn3/+gAMOSHc51a92BrAQwqBBg2644YYT/u/q/Y87Md21bNDGf/rJ5QP77777bq+99loN+iuczErrNeXl5c2ZMyf1Xcvq1avXrFmzVq1a5eTk5OTkVMxjbNGiRS0bTwegZqk8e3DhwoUFBQV5eXkpLtZKqPhcS0wgrDUfaiUlJfvss8/774+44sEhW+3UM93lbNCeu//fD99w9aWXXnrVVVelu5Z1otYGsNLS0v322++dd969/IGntu5RDRcOsRbmz5l9Uf++TRs3GjN69C+uO19zFRQUJIbI8n80f/78BQsWpJjEGH78AGvZsmXFcFlOTk7z5s2bN2/euLGpswBUj2XLli1YsGDBggUFBQVr9DmVkZHRrFmzxCdU4lroxOhWLb6Py5w5c3bcaaflxaXXP/1S81YbpbucDdSXI9+/+qQBv9t775deeqmmp/pkam0ACyHMmzevx847L1hYcM2T/2vXedN0l7PBWbZ0yaXHHjJr8qR333mnR48e6S4nDVa6LrmgoKCgoOAXexZDCPXr108MlzVr1izxtWXLlomNWtDFCEC1KywsTAxhJVR86MybN6+wsDD1axMdghUfNxv4TI2RI0fu2adPh827XPXwsEaZ6+PlarXb9O++/b8BB7fKbfHxqFFrt2xbjVCbA1gIYezYsbv26tWwSdY/nnohJ7fWjsCsh8pKS28468TRb78xZMiQww47LN3lrEfKy8sTfZCJifUVPZHz58//xWAWQqhXr17FQFlOTk6LFi2aNWuW+ODMycmplrtSArAeKi4uXrRo0cIfzZ8/v6CgoGJoK8UlyhUaNmyYmHNR+XLl3Nzc7OxsS/tWNnTo0KOOOmq73ftcfOcDGRnxVsNn0YL5fz3qwOWLCz4YMaJr167pLmcdquUBLIQwfPjwvn37bvKbbpc/8JRFEeMoLy+/+/JBrw95tPbdt2GdKi4uLigoqJiFn9hIfM3Pz1+dt2rF0FmTJk0qj6FlZmYaPQNYzyVGsQoLCyv++BcUFFT8c9GiRavzQZCZmVnxxz9x4XHOj6zWu/oS95XtO+CPJ19WY9YPq+mKlhVefvzhU8Z/8/prr/Xu3Tvd5axbtT+AhRAeeeSR448/vnuv3hff+VD9Bg3SXU7t98iNf3/23jvPPPPM22+/Pd211BIlJSULFy5M9HQm+j4TG/Pnz1+0aFFZWdnqHKRu3bpZWVnZ2dnNmjXLyspq1qxZdnZ2dnZ2Tk5OVlZWVlaWu04DrDuFhYWLFy9etGhRQUHBokWLKjYSXxcvXrz6f8yzs7MTMyCaN2+emAeRmBnRrFmzmPcvrt1OO+20u+6669BTzjrmL5eku5bar7io6NpTj/vqow8eeeSRAQMGpLucdW6DCGAhhDvuuOPMM8/ssde+F952T0Y907TWoaF33vLkbYOPPfbYhx56yHhLBGVlZRUf5IsXL070klZ8ui9cuHDFihWreaiMjIysrKymTZs2bdo0EckS29nZ2U0rMVMFoLLy8vIllSxatGjV7cWLF6de8aKyBg0a5OTkJPrIKrrMsrKyEgNZ2dnZPl4jKCsrGzhw4GOPPTbgvIsP+/PZ6S6nNistKb7hrJM+Gf76zTfffN5556W7nBg2lAAWQrjuuusuueSSXr8/6JzB/zKjdx15/oG7Hrr+qkMPPfSpp57SCbeeKCoqWimVrV2fa0LdunUrkljlkJbYaNKkSWZmZpMmTRo1arTuviOAaIqKipb+KJGjKgJVxfaSJUvW9A9pdnZ2RayqCFcViathw4br7jti9ZWUlBx++OHPPvvsHwddfuCf/pzucmqn0pLiWy8864OXn7/++usvuuiidJcTyQYUwEIIl1122dVXX73z3vv95Za7zUWsdkPvuPnJ22/8/e9//8wzzzTw460hysvLE1NiVmouF5+tAAAbIUlEQVRPVO7BXbJkyZr+ocjIyGjyc4lgtipRDYhv2bJlS3+usLCw4mvlB1dncYvK6tSpU3nKQOUZBInQlWAqQU1RVFR0yCGHvPzyy0efc1H/085Ndzm1TfGKFTede8rHb7122WWXXXnllekuJ54NK4CFEK6//vqLL754m513veSuh6wuWl3Ky8sfGfz35+7/90EHHfTUU09pUtcyiZC2aqdvRXJbiw7gChVRLZHQMjMzG1eSmZm50iNWegRWVVxcvGzZsmXLlhUWFlZsVGwn/lk5aK3d36vKUwBycnKSTQcQrmqZFStWDBgwYNiwYX846fTjLvhbusupPYqWL7vhjBM+G/HOFVdccfnll6e7nKg2uAAWQrjtttvOPffcLbfbadCdD2Q3b5Hucmq80pLiu6+4+M2nnxg4cOD999+fkZGR7opIj2Q9ykuWLFmpU3ntmj4J9evXT53QEho2bJiZmdnwR9X4bQLrWtGPCgsLi4qKVkpWFduVH1nTcarKVu0GSjZ6b6WiDVZJSckf//jHxx57bJ8jjjn58n+4kuXXWzQ//7oz/jThs9G33377GWecke5yYtsQA1gI4cEHHzzllFNatd/4r3c/0rbTJukupwYrXLL4pnNO+WzEO+eee+5NN93ksmBWx/Lly5dWpXKjqqJp9WvSWoVEGGvUqFHDhg0bN26c2Eg8kvhngwYNGjVqVDmzJbZ1KMDaKS4uLioqWr58+bJlyxJpKtl2RdCq2P71Z69bt26iL6ZJkyYVnTXJwpVZG6yOsrKys88++4477th+9z7n33p34yZN011RDTZz8qRrTzk2f/bM++6779hjj013OWmwgQawEMLrr7/e//DD69TNuOiOB7ru0CPd5dRIebNmXPvngdO/m3DTTTedc8456S6H2qm4uHjp0qUlJSUrVqwo/FEirVX+Z8UTVvNWOauv/o8yMzMbNGhQr169Bg0aJP6Z+vHKexs3bmxWEjVF5TddcXFxcXFxYWFhYiPZ48XFxYk3YOWnVWNJibdSxXstkZ0qVPyz4k2Xk5PjHce6cPPNN1944YWdumx1yV0P57Zpm+5yaqRvPh55w1kn1A3hmf/+t0+fPukuJz023AAWQvj6669/v//+M2bMOPqcQYecvMGNfv5K33w88ubz/ly4ZPHDDz10xBFHpLsc+EFZWdny5ctX6lBfvnz5ihUrEp3uy5cvX6kPPvHIsmXL1unfw8R4WsXXRGCr+Jp4vHKQq7w30axMbGdkZCQ67BMPhhAaNWpk8HnDkfgNDyEkok4IYfny5aWlpStWrEhEo5W+JqLRqrtKS0uLiopKS0uXL1+eOGbFkdeRunXrJsacK48/rzTmXOW2/gvWK88888wxxx5bv2Gj8276d7ddd093OTXM60Meve/qv7Vq3eqlF1/s3r17ustJmw06gIUQ8vLyjj766DfeeKP3gYeeevXgho0ap7uiGqC8vPylR+57+Iar27ZrO+zpp3v0MH5ILbHShKgVK1Yk4llJSUkiwiUu9C8pKUnxeLqKr1OnTuPGjUMIidgWQkgEuRBCov1a5RMqbheRCHiJ7URETGwnGs2rblccLaFJkyrWNFrpOZWtP9fSJJvwlggnKz1YVla2bNmyKl9bOcBXfm0i8CS2K/+GJFJQ5SckjlY5XyWeUHG0dd1HkFqi16Bx48aJ36vGjRsnOg6SPV4x0bdi0q8VdKg1Pvvss0MPO2zKlCkDzr34DyedroNgdRQXFf3nyovf+u9TvXv3fuqpp9q0aZPuitJpQw9gIYSSkpJBgwbdfPPNm2z1m3NvvLPDZluku6L12uKFC+782/mj3nilX79+jz76aIsWVjGBn0kWzFYagki0qpN9jTYosb5ZR6N5FWlnA5GI3BVf69atu9IAbMXXRGqqrCJQJTJ5RaBK9/cE65f8/Pxjjjnm1Vdf3WXf/U+7enDTnGbprmi9Nm3i+FvPP2PKhLEXXHDBtdde61axAtgPhg4detLJJxetWHH8oMv3O2pgustZT3354fu3X3zOwry5l1122d/+9jezniCORAxLxLMQQmJtkvLy8sRoTMXjFWMpiaGSiuGaZIMtIYRExktsJ1JiYrvyuE3FVDdWR8XU0LDKWGLl8cDEGOCqw5IVS79kZmZWHresOGzlJyROkRiWTPzTbD2IprS09Kqrrrrmmmuat9rorOv/uU3PXumuaH1UXl7+yuMPPjL46kaNGt1/332HHnpouitaLwhgP5kyZcqxxx77/vvv9+izz6lXD27WsnW6K1qPrFi+/MnbBv/vwbs33rjjY4892quXvzKwIao8lFQR/BKSLVlZOcslO1Rl1T7ol2y6Y7JVLiunppVUnmlZebCu8mROYIPy3nvvHXvccdOnTTvohFOPOuvC+oaLK1kwb86/L71w9Ntv9O7d+5FHHunYsWO6K1pfCGA/U1paeu2111599dUNM5sMvPDSvQ47SldiCOGrj0bcffmgmZMnHXPMMXfccUdOTk66KwIAWC8sXLjw9NNPf+KJJ9p33uzPV9/wmx6/TXdF6VdeXv7G0McevfGaomWFV1xxxaBBg9zWpTIBrAqff/75SSef/MnHH2/bs9cpV17frvOm6a4obZYULHx48NVvDXuyXfv2/77zzgMPPDDdFQEArHeeffbZ0884Y/asWb87/JhjL/i/ptkbbm/1jEkT775i0NejPty5Z89777ln2223TXdF6x0BrGplZWX33nvvX84/v2h50X5HDzzyrAubZGenu6ioSktL3hr25BO3Xr9owfyTTz558ODB2RvYTwAAYPUVFBRcdtll//rXvzKzso844y99j/ljRsaGNTl56aJFz9xz+wsP3VOvXr3LL7vsggsuMPBVJQEslalTp1500UVDhgzJbt7iqHMu2rv/0RvIG2nMu289fMNV0yZO+O2uu/7z1lstNA8AsDpGjhx5zjnnjBo1qlOXrgMvumy73fZMd0UxlJYUvzH08SdvG7x44YKjjz76+uuv79ChQ7qLWn8JYL9s1KhRZ59zzkcjR7Zu3+HQP5+912FH1eIYNnb0qKduG/zlRyPatW//j2uvPe6441wFBwCw+srLy59++unzL7hg2tSpXbff6aizL9r2t7ulu6h1pbys7MPXXnzi1utnTp60w447/vPWW3fbrdZ+s9VFAFstZWVlTz311BVXXjlh/PgOm25+2Knn9Pr9QRn1atU9Jb/88P1hd/3zy49GtGzVatBFF51++unrz51SAQBqlqVLl/7rX/+6YfDg+fn53Xbdvf+p5/xm513TXVR1Ki0pfu+FZ4fd9c+Zkyd13WqrK6+4on///u5RtDoEsDVQWlr62GOPXXnVVZO++65l23b7Dzzpd4cfk9k0K911/SqlpSUfvvLC8/f/+7uvv2zeosUF559/9tlnN23aNN11AQDUeIsXL7711ltvuvnmgoULN9+m+0EnnLbLfr+v6XOpCpcsfn3Ioy89fG/e7Fmbb7HF5ZddNmDAANFr9Qlga6y0tHTYsGGDb7zxk48/bpKV3fugw353+DGdu26d7rrWWP7sWW/998k3n3583swZnTp3Pu/cc0888UTRCwCgei1evPjee++95dZbp02d2rp9h737D9jr0KNabNQm3XWtse/Hfv3m04+/89zThUsW9+zZ84ILLjjkkEOstLGmBLC1984779x6660vvPBCSUnJFt2237v/0b/d74CmOc3SXdcvKC4qGvPuW28Ne3LMe2+VlZbu8tvfnnP22f3793cXUQCAdaekpGTIkCG33377yJEj62Zk7NB7r737D9h+9z71GzRId2m/YEnBwg9e+d+bQx+f+NXn9erVO/DAA88777zdd9893XXVVALYrzV79uyHHnroP/fcM+m77+pmZHTpvsOufQ/c/cBDs5u3SHdpP1NWWvrVRx+8/dzQT956beniRTnNmh15xBGnn3569+7d010aAMAGZNy4cQ8++OC9992Xn5fXJCt7p7323bXvgdvttme9+uvX+gJLFy36+K1XP3zlhc9HvFNcvKLDxhsfM2DA6aef3rFjx3SXVrMJYNWjrKzsvffeGzJkyNPDhs2dM6devfpdd+ixfe+9tt+9T6ctt0pjYfNmTv/0veGfvjf8qw/fL1y6JLNJkwMPOODII4/s169fo0aN0lgYAMCGbPny5S+++OKQIUP+98ILywoLM5tmbfvb3bbffa/td+/Tsm27dFVVXl4+edw3n703/NP3ho//9JOSkuKN2rTpf9hhRx555G677WZx7GohgFWz0tLSd95555lnnnn5lVe+mzgxhNCi9UZbbt9jqx133nL7nTbZepsIl13OmDRx/KefjB390fgxn8yY/F0IoVXr1n332+/AAw/cf//9rW0IALD+WLp06Ysvvvj888+/+tprefPmhRA6bLp5l+132mrHnl2336ndJput6wJKS0smff3l+E8/GTt61PhPP14wb24IYfMttujXt+8hhxzSu3dvV3lVLwFsHZo4ceLLL7/85ptvjvjgg8TbqUHDhhtvvmXHLlt16tK145ZbbdShY6t27X/NcvblZWXz586ZM23K9EnfTh73zbRvx02dMG7JooIQQpOmTXfp2XPPPffs27fvDjvsYGkaAID1WVlZ2ejRo19++eW33377o1GjCpcuDSE0zc7puOVWHbfo2mnLrTberMtGG3dq3nqjXzMSVVJcnDdrxpxpU6ZMGDt1wvgpE76ZPnHCiqKiEEKr1q177brr3nvv3a9fv802W+fBb4MlgEUyfvz4Dz74YNSoUV988cWXX321eNGixON1MzJyN2rTsl2HnBYtc1rkNm3WPKtZ80aZmRkZ9Ro1aVLx8hXLlxevKCpesWLxwgWLF8xfvHBBwfy8/Fkz586YXlK8IvGchg0bbrX11t223XbHHXfs1atX9+7drasBAFATlZSUfPbZZyNGjBg9evQXX3459ptvVqz4oclXv0GD1u03btGmbU6LllnNmmc1b5HVrHn9Bg3qN2jYoNIFJsuXLi0tLVleWLh44YIlCxcUzM8vmJ+XN2Na/pzZZWVliedkZWd323bbbbfdtmfPnrvuumuXLl3S8K1ueASw9Pj+++/Hjh07adKkyZMnf//991OmTp07d25+fn6iqyO1hg0btmiRm9syt1PHjptssskmm2zSuXPnrl27dunSReICAKh9SkpKxo8fP27cuETTcfLkyVOmTs3Py58/P7+oqOgXX57ZpElubm6bjTbq2LFj586dEw3IrbfeunPnzuu+dlYmgK1fli9fnp+fX1RUtHjx4pIfJVbLaN68eUZGRm5urlt1AQCQsGTJkvz8/NLS0gULFoQQli9fXu9HWVlZDRs2zM3NtfTaekUAAwAAiMTCDAAAAJEIYAAAAJEIYAAAAJEIYAAAAJEIYAAAAJEIYAAAAJEIYAAAAJEIYAAAAJEIYAAAAJEIYAAAAJEIYAAAAJEIYAAAAJEIYAAAAJEIYAAAAJEIYAAAAJEIYAAAAJEIYAAAAJEIYAAAAJEIYAAAAJEIYAAAAJEIYAAAAJEIYAAAAJEIYAAAAJEIYAAAAJEIYAAAAJEIYAAAAJEIYAAAAJEIYAAAAJEIYAAAAJEIYAAAAJEIYAAAAJEIYAAAAJEIYAAAAJEIYAAAAJEIYAAAAJEIYAAAAJEIYAAAAJEIYAAAAJEIYAAAAJEIYAAAAJEIYAAAAJEIYAAAAJEIYAAAAJEIYAAAAJEIYAAAAJEIYAAAAJEIYAAAAJEIYAAAAJEIYAAAAJEIYAAAAJEIYAAAAJEIYAAAAJEIYAAAAJEIYAAAAJEIYAAAAJEIYAAAAJEIYAAAAJEIYAAAAJEIYAAAAJEIYAAAAJEIYAAAAJEIYAAAAJEIYAAAAJEIYAAAAJEIYAAAAJEIYAAAAJEIYAAAAJEIYAAAAJEIYAAAAJEIYAAAAJEIYAAAAJEIYAAAAJEIYAAAAJEIYAAAAJEIYAAAAJEIYAAAAJEIYAAAAJEIYAAAAJEIYAAAAJEIYAAAAJEIYAAAAJEIYAAAAJEIYAAAAJEIYAAAAJEIYAAAAJEIYAAAAJEIYAAAAJEIYAAAAJEIYAAAAJEIYAAAAJEIYAAAAJEIYAAAAJEIYAAAAJEIYAAAAJEIYAAAAJEIYAAAAJEIYAAAAJEIYAAAAJEIYAAAAJEIYAAAAJEIYAAAAJEIYAAAAJEIYAAAAJEIYAAAAJEIYAAAAJEIYAAAAJEIYAAAAJEIYAAAAJEIYAAAAJEIYAAAAJEIYAAAAJEIYAAAAJEIYAAAAJEIYAAAAJEIYAAAAJEIYAAAAJEIYAAAAJEIYAAAAJEIYAAAAJEIYAAAAJEIYAAAAJEIYAAAAJEIYAAAAJEIYAAAAJEIYAAAAJEIYAAAAJEIYAAAAJEIYAAAAJEIYAAAAJEIYAAAAJEIYAAAAJEIYAAAAJEIYAAAAJEIYAAAAJEIYAAAAJEIYAAAAJEIYAAAAJEIYAAAAJEIYAAAAJEIYAAAAJEIYAAAAJEIYAAAAJEIYAAAAJEIYAAAAJEIYAAAAJEIYAAAAJEIYAAAAJEIYAAAAJEIYAAAAJEIYAAAAJEIYAAAAJEIYAAAAJEIYAAAAJEIYAAAAJEIYAAAAJEIYAAAAJEIYAAAAJEIYAAAAJEIYAAAAJEIYAAAAJEIYAAAAJEIYAAAAJEIYAAAAJEIYAAAAJEIYAAAAJEIYAAAAJEIYAAAAJEIYAAAAJEIYAAAAJEIYAAAAJEIYAAAAJEIYAAAAJEIYAAAAJEIYAAAAJEIYAAAAJEIYAAAAJEIYAAAAJEIYAAAAJEIYAAAAJEIYAAAAJEIYAAAAJEIYAAAAJEIYAAAAJEIYAAAAJEIYAAAAJEIYAAAAJEIYAAAAJEIYAAAAJEIYAAAAJEIYAAAAJEIYAAAAJEIYAAAAJEIYAAAAJEIYAAAAJEIYAAAAJEIYAAAAJEIYAAAAJEIYAAAAJEIYAAAAJEIYAAAAJEIYAAAAJEIYAAAAJEIYAAAAJEIYAAAAJEIYAAAAJEIYAAAAJEIYAAAAJEIYAAAAJEIYAAAAJEIYAAAAJEIYAAAAJEIYAAAAJEIYAAAAJEIYAAAAJEIYAAAAJEIYAAAAJEIYAAAAJEIYAAAAJEIYAAAAJEIYAAAAJEIYAAAAJEIYAAAAJEIYAAAAJEIYAAAAJEIYAAAAJEIYAAAAJEIYAAAAJEIYAAAAJEIYAAAAJEIYAAAAJEIYAAAAJEIYAAAAJEIYAAAAJEIYAAAAJEIYAAAAJEIYAAAAJEIYAAAAJEIYAAAAJEIYAAAAJEIYAAAAJEIYAAAAJEIYAAAAJEIYAAAAJEIYAAAAJEIYAAAAJEIYAAAAJEIYAAAAJEIYAAAAJEIYAAAAJEIYAAAAJEIYAAAAJEIYAAAAJEIYAAAAJEIYAAAAJEIYAAAAJEIYAAAAJEIYAAAAJEIYAAAAJEIYAAAAJEIYAAAAJEIYAAAAJEIYAAAAJEIYAAAAJEIYAAAAJEIYAAAAJEIYAAAAJEIYAAAAJEIYAAAAJEIYAAAAJEIYAAAAJEIYAAAAJEIYAAAAJEIYAAAAJEIYAAAAJEIYAAAAJEIYAAAAJEIYAAAAJEIYAAAAJEIYAAAAJEIYAAAAJEIYAAAAJEIYAAAAJEIYAAAAJEIYAAAAJEIYAAAAJEIYAAAAJEIYAAAAJEIYAAAAJEIYAAAAJEIYAAAAJEIYAAAAJEIYAAAAJEIYAAAAJEIYAAAAJEIYAAAAJEIYAAAAJEIYAAAAJEIYAAAAJEIYAAAAJEIYAAAAJEIYAAAAJEIYAAAAJEIYAAAAJEIYAAAAJEIYAAAAJEIYAAAAJEIYAAAAJEIYAAAAJEIYAAAAJEIYAAAAJEIYAAAAJEIYAAAAJEIYAAAAJEIYAAAAJEIYAAAAJEIYAAAAJEIYAAAAJEIYAAAAJEIYAAAAJEIYAAAAJEIYAAAAJEIYAAAAJEIYAAAAJEIYAAAAJEIYAAAAJEIYAAAAJEIYAAAAJEIYAAAAJEIYAAAAJEIYAAAAJEIYAAAAJEIYAAAAJEIYAAAAJEIYAAAAJEIYAAAAJEIYAAAAJEIYAAAAJEIYAAAAJEIYAAAAJEIYAAAAJEIYAAAAJEIYAAAAJEIYAAAAJEIYAAAAJEIYAAAAJEIYAAAAJEIYAAAAJEIYAAAAJEIYAAAAJEIYAAAAJEIYAAAAJEIYAAAAJEIYAAAAJEIYAAAAJEIYAAAAJEIYAAAAJEIYAAAAJEIYAAAAJEIYAAAAJEIYAAAAJEIYAAAAJEIYAAAAJEIYAAAAJEIYAAAAJEIYAAAAJEIYAAAAJEIYAAAAJEIYAAAAJEIYAAAAJEIYAAAAJEIYAAAAJEIYAAAAJEIYAAAAJEIYAAAAJEIYAAAAJEIYAAAAJEIYAAAAJEIYAAAAJEIYAAAAJEIYAAAAJEIYAAAAJEIYAAAAJEIYAAAAJEIYAAAAJEIYAAAAJEIYAAAAJEIYAAAAJEIYAAAAJEIYAAAAJEIYAAAAJEIYAAAAJEIYAAAAJEIYAAAAJEIYAAAAJEIYAAAAJEIYAAAAJEIYAAAAJEIYAAAAJEIYAAAAJEIYAAAAJEIYAAAAJEIYAAAAJEIYAAAAJEIYAAAAJEIYAAAAJEIYAAAAJEIYAAAAJEIYAAAAJEIYAAAAJEIYAAAAJEIYAAAAJEIYAAAAJEIYAAAAJEIYAAAAJEIYAAAAJEIYAAAAJEIYAAAAJEIYAAAAJEIYAAAAJEIYAAAAJEIYAAAAJEIYAAAAJEIYAAAAJEIYAAAAJEIYAAAAJEIYAAAAJEIYAAAAJEIYAAAAJEIYAAAAJEIYAAAAJEIYAAAAJEIYAAAAJEIYAAAAJEIYAAAAJEIYAAAAJEIYAAAAJEIYAAAAJEIYAAAAJEIYAAAAJEIYAAAAJEIYMD/t1/HAgAAAACD/K1nsassAgBgImAAAAATAQMAAJgIGAAAwETAAAAAJgIGAAAwETAAAICJgAEAAEwEDAAAYCJgAAAAEwEDAACYCBgAAMBEwAAAACYCBgAAMBEwAACAiYABAABMBAwAAGAiYAAAABMBAwAAmAgYAADARMAAAAAmAgYAADARMAAAgImAAQAATAQMAABgImAAAAATAQMAAJgIGAAAwETAAAAAJgIGAAAwETAAAICJgAEAAEwEDAAAYCJgAAAAEwEDAACYCBgAAMBEwAAAACYCBgAAMBEwAACAiYABAABMBAwAAGAiYAAAABMBAwAAmAgYAADARMAAAAAmAgYAADARMAAAgImAAQAATAQMAABgImAAAACTACF5gENFu8DgAAAAAElFTkSuQmCC", - "text/plain": [ - "" - ] - }, - "execution_count": 23, - "metadata": {}, - "output_type": "execute_result" - } - ], - "source": [ - "# analyze the import loop\n", - "cycle_graph = create_single_loop_graph(cycles[11])\n", - "visualize_graph(cycle_graph)" - ] - }, - { - "attachments": { - "image-2.png": { - "image/png": "iVBORw0KGgoAAAANSUhEUgAAAjcAAACYCAYAAAAY/ci8AAABWmlDQ1BJQ0MgUHJvZmlsZQAAKJF1kE9LAlEUxY9mCSnYoqWLgRAMLMR00dKGEMHFYEr/FjHOTBro9JoZqWjRF2jTJjctatMnCNwU1K59URH0AQraFMymZLrPqUaLLhzej8PhvsMF/AGZsXoAQEO3jGJuRlhYXBKCT/AhihAiGJMVk2UlqUARfL/9Y99SmuZ6gu+Kx44PX5/3W62h85vZxrL/b75vhlXNVOj9ICUUZliAL04sbVqM8xbxqEGliPc4V10+4lxx+bSbKRVF4iviEaUmq8T3fGelx6/2cKPeVL468PZhTS/PcZ8URQEi0phGjpRB6Z9supsVsQ6GbRhYQxU1WBCQJYehDo04Dx0KJpEgTiFJyvAb/76d5+280OoN+irveeUwcLZC9VTPiz0CkSRwuctkQ/65qM8OmKtTKZdDbWDwwHHe5oHgONC5c5z3tuN0ToCBB+DC/gTm/mIG6OCHqAAAAFZlWElmTU0AKgAAAAgAAYdpAAQAAAABAAAAGgAAAAAAA5KGAAcAAAASAAAARKACAAQAAAABAAACN6ADAAQAAAABAAAAmAAAAABBU0NJSQAAAFNjcmVlbnNob3RRCWvhAAAB1mlUWHRYTUw6Y29tLmFkb2JlLnhtcAAAAAAAPHg6eG1wbWV0YSB4bWxuczp4PSJhZG9iZTpuczptZXRhLyIgeDp4bXB0az0iWE1QIENvcmUgNi4wLjAiPgogICA8cmRmOlJERiB4bWxuczpyZGY9Imh0dHA6Ly93d3cudzMub3JnLzE5OTkvMDIvMjItcmRmLXN5bnRheC1ucyMiPgogICAgICA8cmRmOkRlc2NyaXB0aW9uIHJkZjphYm91dD0iIgogICAgICAgICAgICB4bWxuczpleGlmPSJodHRwOi8vbnMuYWRvYmUuY29tL2V4aWYvMS4wLyI+CiAgICAgICAgIDxleGlmOlBpeGVsWURpbWVuc2lvbj4xNTI8L2V4aWY6UGl4ZWxZRGltZW5zaW9uPgogICAgICAgICA8ZXhpZjpQaXhlbFhEaW1lbnNpb24+NTY3PC9leGlmOlBpeGVsWERpbWVuc2lvbj4KICAgICAgICAgPGV4aWY6VXNlckNvbW1lbnQ+U2NyZWVuc2hvdDwvZXhpZjpVc2VyQ29tbWVudD4KICAgICAgPC9yZGY6RGVzY3JpcHRpb24+CiAgIDwvcmRmOlJERj4KPC94OnhtcG1ldGE+Cj3Ps30AAEAASURBVHgB7Z0HfBTVE8cHQhJCKpCEEkIJnSC9C4oovVlAUFSKgiKowB8L1QIoiqKiAioqqAgKAoKCiID03nsJvYSQQEgvJPm/3xzvcne5JHdHlEuY9/nc7e7r7/v2dudm5u0WCg4OziArISgoiCIiIig1NdVKqkQJASEgBISAEBACQsA5CRTJrlsXL17MLknihYAQEAJCQAgIASHgtAQKO23PpGNCQAgIASEgBISAEHCAgAg3DkCTIkJACAgBISAEhIDzEhDhxnnnRnomBISAEBACQkAIOEBAhBsHoEkRISAEhIAQEAJCwHkJiHDjvHMjPRMCQkAICAEhIAQcICDCjQPQpIgQEAJCQAgIASHgvAREuHHeuZGeCQEhIASEgBAQAg4QEOHGAWhSRAgIASEgBISAEHBeAiLcOO/cSM+EgBAQAkJACAgBBwiIcOMANCkiBISAEBACQkAIOC8BEW6cd26kZ0JACAgBISAEhIADBES4cQCaFBECQkAICAEhIAScl4AIN847N9IzISAEhIAQEAJCwAECItw4AE2KCAEhIASEgBAQAs5LQIQb550b6ZkQEAJCQAgIASHgAAERbhyAJkWEgBAQAkJACAgB5yUgwo3zzo30TAgIASEgBISAEHCAgAg3DkCTIkJACAgBISAEhIDzEhDhxnnnRnomBISAEBACQkAIOEBAhBsHoEkRISAEhIAQEAJCwHkJiHDjvHMjPRMCQkAICAEhIAQcICDCjQPQpIgQEAJCQAgIASHgvAREuHHeuZGeCQEhIASEgBAQAg4QEOHGAWhSRAgIASEgBISAEHBeAiLcOO/cSM+EgBAQAkJACAgBBwiIcOMANCkiBISAEBACQkAIOC8BEW6cd26kZ0JACAgBISAEhIADBES4cQCaFBECQkAICAEhIAScl4AIN847N9IzISAEhIAQEAJCwAECItw4AE2KCAEhIASEgBAQAs5LQIQb550b6ZkQEAJCQAgIASHgAAERbhyAJkWEgBAQAkJACAgB5yUgwo3zzo30TAgIASEgBISAEHCAgAg3DkCTIkJACAgBISAEhIDzEhDhxnnnRnomBISAEBACQkAIOEBAhBsHoEkRISAEhIAQEAJCwHkJiHDjvHMjPRMCQkAICAEhIAQcICDCjQPQpIgQEAJCQAgIASHgvAREuHHeuZGeCQEhIASEgBAQAg4QEOHGAWhSRAgIASEgBISAEHBeAiLcOO/cSM+EgBAQAkJACAgBBwiIcOMANCkiBISAEBACQkAIOC8BEW6cd26kZ0JACAgBISAEhIADBES4cQCaFBECQkAICAEhIAScl4AIN847N9IzISAEhIAQEAJCwAECdgs3RX0CycWtmANNGYoUKlSYivqVJjfP4g7XcTcWLFy4MFWsWIpKl87kVqKEN9WuXdH4cXMr4jRo0Bf019X1zvfJ19eTKlQItMoGaT4+jp/PViu1I9Lf34fKli1pR4k7l9Xe8232JF9a9Gnm+Xrnel4wWvYuEUge3n4FYzBqFN6ehWj3Qn/q97BHgRmTDMR5CNh15yniXowaP/sVnd++kM5s+tHuUVTvOIICqt1LhQq70M2kONoy4ym763CWAm3a1KOYmATaufP4v96lyZMHUP36VahQoUKUlJRC3bq9yW326dOGunZtZmx/2LAZdPjwOePxndzp3r0FDRzYkV57bRbt3Rt2J7tCb775FIWGVqD27Udn6cdPP71BFy9G0aBBn2RJ+y8iPv74BSpe3Ju6dBn3XzR3W23Yc75Vq1iEWjZwoy8XJNxWm1I4k0CH58fR9cvn6O/ZUzIj8/FebHwGRUWn0/BnPGn2ksR8PBLpujMSsFNzU8jhMbh7laTAGvdR5MmttGfuCNo771WH63KGgsOGPUJDhnT917uCf/UNGlSl/ftP04gRXxIEGB0+/3wpde/+Js2f/4+Ocppt4cKOnyt5PQgIhdmFCxciKSzsUnbJEm9CwJ7z7d1XvCgtjWjajyLcmCCUXQsCU+fEk6dHIerbXbQ3Fmjk8DYJ2CDcFCKvwMrk4Vc2x6bcfQLIt1woubgWNctXyKWIMmN5UIASbBAu7FxMidGXKTkuyiyfrQcwc9StG0KNG1cjDw83s2JFiriQl5cHazhwQ0OeypXLmOXBAUwRLVrUolKlrKvM/f19OR0mH5iDTIOnZ1FjGy4uhvbQpru7q2k23s+tnSwFTCJg1kG9nTs35di5c9fQmTNX6PLla8ZcGRkZlJiYQikpN41x2e0EBwfwmNB/01CsmDtZxmHMaNtekxIYNG1ag2C+yC5gXmrVKq8EtiqE+couVKlSllq2DLVal66jYcOq2faxeHEvatasptV5QZsYI9ofMuRzmjJlYZZuYPyYA+RDO5bnmi6Asep20K+cxqTL5LZF25bt6TFnx02fL6gbcwp2gYGZJgxbx5NTO7aeb75ehaheDVfavDeFklMysh3u2LFjlRaym9X0op7eVLlBK6rauDW5eVg3G7oX8zKm+ZUqRzWatSXEmQaYcqo3fZBc3XFdKEwuRbIqq5FW8972FFyzAecxLZ/X+zNnzqRKlSplW22vXr1o5MiR2aabJmA8bkWLUWF1jcUYXFzNr4c6r07Xxx7exSmoah3yD66c7Xh1vShTomwFKlWxBl9XdR3Y+gaUocCK1TgefcHHMsCMVq5GPfIpWcoyiY9XbEimhMQMev5x63OMTEWLFlW/BzU+db2VIARsJZD1l25SsliJclTviSksnCA68fpFk1TDLvLc02OCmQ/N+W0L6MzmuZwh5P4BVLZuJ2O5+k9+yPupSbG0dcbTxnhbdkaO7EFt2+ICZPgnjovthAlzaePGQ1y8W7fm9MILnenPP3cqE0RDY77ffttCX3yxlG/YH300SF1cShubO306nF566QujgDBnzqtUpkwJYzra+PbblfTzz+s4btGi8cZ64f+CY4STJy/Riy9+xvu4keTWDmfM4ev113tRq1a1jTk++OA53ocwA22NraFatXI0efKzauyZQs2KFTvo448XcRWjRvVmgWTKlAW0atVujvvkkxeoRo1gGjt2Nm3ffsymprp3b67G39XI5vr1uCzlOnVqolh3Vxcpw0UwLS1dcVpIf/+9x5i3U6fGNHRodzMhYfny7fTJJ4s5DwSJ8eP7GNMxP19/vYIWLtxgrGPcuD5GdkiPj082pumd339/x1gHhEZLsxTm9dKlKD4XcL6hHpxXmhvqsWwHZkr471gzf+l2c9u++25/atSoGv3++zaaNm0JZ7eF26RJ/alOnUq0du0+gslUB20WtGU8trSj681p26yu4Sa742Bqlmy+vr5048YNjq9WrZoSzhONeXTaY69+THUe6G6Mx87x7Wvpp7cHqnlIN8b/74ctlBR3g9JSU/kGjIS0mzfpnW7VOE+v0V9QrZYdeR/zlxgbrXxWfOmtzlU4rogSBoZ+uYqKlw7mY3zdTEmmCQ/XNB7nxY4eF+oqU0YJBIGBdPr0aSV4u/PvBVvNpEqVKhQSEmJs1rSsMVLtQJjpqMxU7koI3LL4G2rUoTelp6fT0mlZTa8P9HlF8alICya/RJ0Hv02efpk+XhmUQQfWLqWjW1cZq0fdDw//gK6cPsICkEsRw3zGRIXTn19NVG0XpXbPjiZPX8N1Mu1mihpHYcX3Bv0xw3BtgkB0X68hLHzpiq9dPmvVpHYuPI1gxswufPnll8zq0KFD6no/IbtsEi8EzAhkFbVNkmt2fYM1MfCxOf7XNHL39jdJJT6h6/R6j1w9fNgHZ/8vYyg2/DgFN+1JfuXrct5zm+fRru9fpou7l/HxoSUT+Nhes1Tv3q2pXbuGFB0dTzNn/k4vvzyd/V08PbOqMzt0aMRajg8/XMgmm2vXYrntiRP7smCzefNhGjXqW9q06RAfv/pqT+O4IiKiWZjBze699+ZTbGwiPftsB4I2BwH/9F96aToLQ5GRMbyP4/Hj5xjrsKUdY+ZsdiCMod41a/Zyjvff/4WPX3llejYlskZD6zBlykClmXGnJUs2qz5+TxcuXKWOHRvTfffdwwXefPMHxTROmbwe43/6vXrdz4LNypU7bRZsoPmBYHPzZhp99dVyWrlyF/n5eZp1CA69MOUlJ6fS9OnL6LPPflMMUwnsoeFCgAPyK688woLEsmVbafDgabRgwQb1z81wccV4xo59koWjxYs30Tff/EmpqWns2wPHXARoLCAUYs4nT/6Zjhw5ZybYcSb1NXz4l6rtr7nPuPFZCzAJQnBGPRCQwE33FZo/tAMhDnMDs6FOs1aXLXEffjiIBRvMlRZsbOGm64YQ9sADdWnXrhM0ceJPtG7dfh6fTs9pPPa0o+vLbtugpkGLeeCEuUbRz8+P5syZo3hOVqwMvyfUUatWLY7/9NNPucrkxDjasXwuzfpfD5r9Rh+6dPIgVWvyADXr3o/TTb98A8qSj39p2rlinrp5v0znD+/k5BrN27FgExcdSYs+HEFnDmylYj7mmtoOg8axYLNt6Rz6ZEBr+mFcfzq1d5Np9be93759ex7biy++aKYF7tq1K82dO1ed76+o38N0+u677wjCng4lS5akDz/8kMsWK2au1XBT2qlOg99SWipv2rzwa7pwdC9dv3KBBR39x0/Xgy34JMZc56j4G1G0/5+ltHLWJNq6dDalJCawIAltjmUoVakmpSYn0YF1y2j3X79QdPh5ztKwwxMs2Fy7dIa2LPmOUpISWHtkWr5pt77kWtSDwPaP6eN5PuEvZC2cuZhGsGKXK5WzZkY0N9boSVx2BLIVl4u4exK0MrHhJ4zOw+7eAVSh+RPGukpWbqpOYG+6enwTRSlfGoSwf76her3fp6D6XSn63D6ChgaflPhrnJ4QdZ6SYiJ4356vHj1acXYIHTduxPP+mDGzrVYBP4rnnzdcKHUGmExq1arATsA//bSWo+fPX8fmEZhSdMANDwEq/StXrtOWLUdYCwSHVNwsoKFBwL+k5OQUOnbM8IPnSPVlazs6f3Zb3JzxiYoyCGYnT16ks2ft49ahQ0M2b+zbd8qoHZk+/XeCduCxx1rS+vUHeBzw5fnmmxH0+edD+AYdHn5daVR+za5rWeLxjx8XVWg2tAYlNLQ8lSsXYMw7aFBn3v/xx9VGp2doJ3r2vE+Z3poQ5gQOyKgHmhjc4BHCwi7zFl/NmtVgU9Hu3SdpxozfOR6CFQTfRx9tyYIVtgjQ6B06dJaFwxUrJqkbi7p6mgQ9bxBsrN0QkDUuLonrwT7mH87bVasGsVCtz0e0c/DgGVq9eg8tXz7RqJVCGXvCZ5+9SNWrBysOa2j27Mx/0bZwM20HTCE4ImB+TUNO47G3HdN6LferVzLcpPYfSzVLio6OJggwAwcO5Js2fkPNmjVTgvZ96tw+S1OnTuX8v38+jrcQRoqXKU+bFn5FPd+YRuVDG6mb6bdmdeJgzuin6NzhXRx/cL3hvLj3UYOm85d3h9DZgzto35olNH7pcXUTzvw/pzUYx7avoevh5/hzcte6LPXfTsSqVavU76CcOsc78zhR14gRI1gTsWPHDqVR/kKtgCzNcVOmTFHXlGSlUSyifo/fqPMvjgWchIRMvyVoVTq/8CYVcStK6+d/QVfOHOXuXVYCIExHARWqsrDRuvdQ2rt6MZ0/spu1PJfDDnO+f36axttiPiUoPjqKLp04QJXqNCP/ciEqr4EhZ1Bf0JKZaoJO7lrPSWWr1uY/IH/PMWjh465HUNv+r+tivHVV/ctQ8xt+6jAlJ8bT6X1b+GOW6dbByXNpvNegVhG6cMWwb5oPWq4SJUqoa+9J02jZFwI5EshWuPFQgg1CzKUjxgqun91rJtx4BYZwGlZA4WMasNw7L4O3twdrGLRgk1PdGzcezJIMMwsCzAa4iZsG03/uuMHixmV5w4MPhy3B1nZsqet28+BmiQAfJcsxBwRk+mNAGJw58w+lKeminEDT1b9J27VDqF8vs96x4zgOOWDVlqlwExRUkuMHDco0Ud7Kyhob7Osl0dAaWQshIWU4eteuzHagWYFwA58ihIAAX77wQrDRITLyhpn/iY7PbWvqaHzihMEkq5eNgx/OGwg2OkCTV6pUJlcdn9sW/jJ6rvbuPWWW3RZupgWWLt1iemi2n9N47G3HrGKLg8jrBtNR2UAXuhFnrr1Zu3at+pOwjrUVMNHg3/iyZcto1qxZxlqgdXns1almJg0kenhlant05pupKUbBRsdh66P8QTA/EGx0iIm8TH6lgvQhbfh5OtVs0Y6emTiHb8AXlQZk6WdjWMgxZrrNHQhwEFSWLl2qBPIZXBvMUDCv7NplECZw04ZmBx9oehAuXLigzLNDeQwccesLPkQIaTdTCWYeHc4d3k31HurBvjTwsXHz8KLK9VuyyQ55Lh7fz1nrtnlYacEezHJ9g4+TZbgRYfgjZxkP357EGwZNENKuK42O6TUUcRCEat/XhboNm0zJ8bF0+eQh2r1qgepPCpLNQmAJg8B5Ptxw3pglqoO33nrLMkqOhUCuBLIVbpTYnaWwpcMY7LUIBxaOp7gIc6k6Pc38opalMjsj0tOz/4dtWZXpDUen6R8fzDz6X79Oww0dAc7H0CRERcWwaQrLvLt0aUZPP531YqDLWm5taceyzL91rPvyzjs/0oEDZ8yawZJy0wAzCwL8YbA6C5oIW4NuxzQ/TEiWAfkef3ySZbQy+SRxnErmYClY6gI4BxBM69Z5dR9M69BxyoCqq7BrC7OZDrpefZyGpUAqwIEY5jgE7UvEB3Z+ff/934Sl1hMm9KVevSZRQkKmn1Bu3HRTyJeTdi+n8aAOW9vR7WW33XPkJj38IFF9ZZ46csr8OtCpUyfq21eZLFxdlSCdpkyTKUoj1lWZ4xqx5ibs1CkWbFyKuNJf37xHhzetVFoKdxo6c6XVaYy7ftVqN9KV7w0CHIjhh4OAm75pgLlr8uP1qc3TIwgCVUj9e+mVb9bQpEfvUeaYRNOsDu9jnNBUtWvXTp3n8TxubMePH0/79u3jMZctW1aZSYcrwTzAqLmB4Ddv3jwWjKD90QHX1WPbViuhrD3Bl+avbydzUlJ8DEHQCwiuwkJhQux1NrmVqRLK6ZdO7FeCXTnlXP0QJSo/pQPKNBV+6ohy2m5JoS07KWFHt5C5jb5qXbjBZb+wiXMv/wYtyh/e9Kcyl+1hAad0SE2qVLc5la5ck5Z9NjazgVt7lctb1/RlySgRQsAOAlnvQLcKa+dh3yDDTQ/RxSvUNas67koYH3sGVqKbyQlmn3TlZJaXIS4ukU0mtmpQLNs+etRgPoJfB7Q/ph/UjQBnZQRoMeBcC3+K5s2tOxfiRlCsWKaTLhdUX7a0o/Pm1fb8ecMFvnLlsmZVHjliGDO0AqbjxT58X3To2bMVa3dgdouNTVCrNXpku5JMlzHdnj59hQ+bNq1ujNYaLB2BPuIiWLKkd5a+aOHg4sVIzt6hQ2NdzGx75kw4H2P1kg7wsUE4f95QFqZEtAMzkg7aH0cf58U2PPwatwPnXx0cbQer3WCugy8SzJrvv/+crlKNK3duxsy3sWNPO9mdb7r5bQcMv/3aVcyFCfjcDBo0SP1GjtJTTz3FZheYZmCmgSlm9OjRFFihOt+cj239mzb9+jVrUeq07qartnl7/cp5np8qDe83lvHxL2Xc1ztJSquwfObbNLXvvbR50SxVRgn37XrqZN6Ghoay1gWaFzgD2xNat4avYDv67bfflPDah4tOmzZN+VRNU75tNZjHqFGjWLAcNmwYCzzXr19nATAsLExpUwer60wxY5PRERfZBwaCCYSV0FaZmtCYq5fJu6R60J9vcdr++w9USAkgMCGlKB8maHoq1m7K9ez9e5HyQdpGEIiwasreAMHP3cuH+aJsQPmq6u+DhXSj4mOirtBm5ey86KORdEMJSh5efmwis2wvWPnaJCZl0K3/mJbJ7KMFp+J+/fplSZMIIZAdAfOrj0kuCCvxkWd5GXjI/c9S0o1wKtfoEZMcRFFh2yk1MYYqtXyGihUPosv7V6pVU35URq2OilR+OFcOrzHLfzsHWK0Ek8asWcOVX8dGdhSF8+uGDQeVr8P2XKvGDQROn1hRMm3ai8pRdT3f4Nu3b8T/uN966wfCKiL4bDz55AOsTYCPBZYkWwvwhSlXzl85+Xbnh9RhiTb8cWxpx1p9txMH34rRo3urH39b5Xzryk7XEM7++muXUnV3UdqS+9hss2jRRvXv0E+ttmrO/hjwj8H4nnuuI2urJk2ax9qr6dNfUr4Rg+mJJ97Lom621s8VK7YrH6dOSqXeiP2EYCLSZg6dH47GTZpUV6ueBrNvDjRoWGqPvmBFD/jpPM8910E5epfifPffX4dNiXDqhf8ThDKY2eCcDOHz0Ufv5T7++usGbgrzinSsqII2BP5A0KhAGNUB/lTlyxtuUhCEPDzc2ZEX6fBPSk011zbocqbb775bxRquceOe5H5iFRfqMm3HNL8t+3CihqM3+o9zEH5ImklO3GypO7c89rST3fmm24APRXRsBrVr4UajTVzf4HPz5JNPKq1Ugs7KW9zEn3vuOb6JIw0rlrAMHMuzK9ZuQo07P2WW35aD1d9/xGaZx9WKqd0rf+Hl4BBcTFdbPTJiCs/X3r9/5WXUMFEhnFcaB9MAoax48eIc5ePjQxEREabJOe5D67Jp06YsY169ejX9888/rIWEdseSSWxsLI0ZM8bIxLKRjQtmUndl8sFqMPjNwDQE/xusUoJ2J+LMcTYdFVMrmrRfzql9m9gxu5bimqqu71Ua3McCkmXduR3DfwbL67u+NEmZBHcrzi2yFGnzzAi12uooXVQaI1//suRVPIAFLMytaShX2oUCSxamPzeax5vmgRYLpryKFSuaRsu+EMiRQLaaG5Q6vOw9pY2Jp6AGXanyAwPVUnCDmjLzApFB++a/zg7Cpe9pR/X7fEShD48jv2Cl1k28YbVhbcqymphDJG7EuPhjmXX//u0IS6PxzA+s9LEM2nxhGY8VTfAFgVYBy3gnTuzHq2ugrUCASn/btqPqR1SKnW7hwLp79wlOg+3cNEyd+ivfXCEAoa7hwx81JufWjjGjHTvZjQlV4Ib65Zd/qC0pFXgn1rzo+OHDZ3I/YXbCapzXX3+cBRoIBrgZf/DBQO4F8iHAgXfOnFX8fBkITLYELE+fOnURCxFPP/0QtW5dl+B/Yhrwbx/LzSFoPPxwCxYwIazCh0VrkXQejAeCEp7ei7yZZqsMevvtH9kMBKEFZhyYhWBm1CvisHQdJjU/Py+1ou5hFtawRNs0QHCAUzU+KA8/GX2Mc0oHa8y1CRMOyVitBYY4ByAgQWtkrYyuz9oWc2YqEI0Z8x0/u6hv37YskGomOXGzVq+1OGt90+Oxp53szjfTNj/9MZ78fApT68ZuptFmN3GYZY4fP25M1zf4dfM/Z1NU7zEz1Aqp/rwaCG1m3DJLGgtgBwCthIvH9tGq7z5Q81OYmnR5Sq0s8qRotaLItA48y6V+2x7U//157HfjXaIU7fhjLgsLplWaamsiIw0aQtP03Pb1uJDvtHKOvXrVoGmFWS5VLWM3TT9w4IDy48r0GTRNYy+AW+NNT08jcEJo/eTLvD13a6XYNeUcjXAp7BBv4WyMEBMZTpfDDrI/EpZpl1FaHS34WF7fuEA2bPetWcyOwliGXq1xa4pX/jcQqNIzDOZZlIUzOMxd7fq/QU27PqMEmxRe0ZZ57+AWaMwgT57C8Z9nvY4bcsi3EHCMQKHg4GDrVweT+rBqKi0lMccH72F1lUfxspSacMOh1VAmzeW4i5sJtA1wwjx+/KJN/7ItK4TqH6tesIz41KnLWepA3Ug/duyC0Z/Csg5bjnNrx5Y68ioPlinDpwj+RDn5ZdxOexAUYA7Cs4MsBQrTeuE4DO0JlqVbCkE6H7RiJUv6ZFtXSEhpXiIO05upcKDLYxUV5hD+V9rspdPyeovzBRq7pUvfVm2lK23S23ndBNdnC7e8aDiv2tn7qz9djEhTz1bJdD61p38Vajfmf/8wHd1OgM8ONAZjFh3km/B7PTOfA4QHBJapHKpMNLHclrV2Jk6cqK45VdTqu4LxnBX4M+HZPtcunVXCeKZAYm3sOcXhWlxIvUqnqKcPdRnyDkWcPU56NRbKFVUO4H6BZSlaOSbjeUSWwc21EB1Y7E/rd6XQwDezplvml2MhYA8Bm4QbeyqUvDkTgCYCZqCcAla8wExwpwN8SGbPfjXHbkA4xDOH7sYA35h9+8L4mUp4kjSeiA2/JWjRhJty0A92odL+LrRpj8EH578+R/q++yOd3r+FTTSNOz9J8L/BUnE8D8eegGfzuLm5KRP0S0oYt19zY09b+SEvnomDpfZhezfycu9a93Zgs9PmxbNYy2brGJSbldLsudMO5aN1Iy7X/9i2Viv5hAATyNbnRvj8OwSg/seD5XIKEBicISQlpebaV71E2hn6+1/3ARqO+vUrc7PQHsHkiQdH4rUVuc3x3cAt7Hwa4XOnAvxPQuoZ/EEwP3jmy5KPX7e7O8uXL6fw8HARbIzkMnhJfeNOBgdpsD2hng+EhwnaE7CI7e8t2fva2FOX5BUClgREc2NJRI6FgB0EIMhgBR+ebC3B+QjgFQuefv68Wsf5epe/e4TXMLi4uls1OeXvkUnvCwIBEW4KwizKGISAEBACQkAICAEjgRxXSxlzyY4QEAJCQAgIASEgBPIJARFu8slESTeFgBAQAkJACAgB2whkK9wEBQXxo8Jtq0ZyCQEhIASEgBAQAkLAOQhkK9w4R/ekF0JACAgBISAEhIAQsI+ACDf28ZLcQkAICAEhIASEgJMTyLfPufFUT0Qu5l6MouOjKTUt8yWQTs472+65ehWjIsU8KPn6DUq/9W4jz6BSVBhPulIhNS6BkqIce9Jrto1KAjPH899vJhreTH4nkfh4+FCiehJ4QTif7yRHW9vGU7uxjP/MGcOLX20tlxf5SpUqzk/Wvp1HCKD/fn6eVp84jid0e3i4ZfsE8LwYw+3Wgdfg4KnmCHiZL54BJkEI5BWBfCfcVC5VmZ5T77kq7ml4kd0PG76nTeolnfk1+FWtSLVf6ENFS/jxEA5/t4AurTe8CLTpW8OVcHPrx3/qHO2Y8JlTD9O9uC8Vr1GZru4+RGnJ1h/O5V0hiMd6dY/hvTf/1oBsbafV1DEUe/YS7Xzvzj5luYRXSXq317u0eMciWqleQOuswUU9br9hpUZ0KiKMImPv7NN68RDFpk1r8Ati9fvH7OGGd4+1alVbvbV7lD3F8iTvV18N4/fi9e07xeH63nzzKX7dSfv2o7PUMWXKQMI78jp1GpslzVki8O44vDMNAa9iGTBgqrN0TfpRAAjkO7NUx3qdyKuoF01fNZ3eWfQ27Tq9K19PQ6UuD5Kbtxftmzabtoz9kK5s32cczz+Dx9Ca50dTWpJ1QcGY0Ul2/OvUoNqDnqBipf2z7VHIw+2oztBnsk3PqwRb24k5c5FiTp/Pq2Ydric1LYWFhYgY29847XBjt1GwqGtRGtB6ADWv2vw2asmbonhj/ODBXdQb5EvnTYX5rBa82ym7AG2Us2tCund/k/DBe9kkCIG8JpBvNDe4qCJULVWVLl67SMcvH+Pj5NTMG3/hwoXJzcWNdFxIqRCKTYwlyxsG/iX7e5ekc5HnKCk10xzh6uLKb3n2LupN7urJm5fUW9BL+ZaihJQErocbzKMvl6LuXJNf9UoUd/4yXTtyko/TkjPfw5N+E4+uT7P6YkjTbsCc5V2+LCWEX6Xk6My3cUPrU0iZtbhOZXrRAW1nqDcSa/OXjs9p6+LuTl7KTFZI/dOKOXuR0lMyTYGFXFyosHpSb2E3V66iiKpfj08LZkgrpOansMqLoNPxpmNLLU9249HlMtRz2/F2Z5+K5Sj2wmWzvtjaDvqCsPuDL3lr9UvdPLyCSpOL6jvGDGY68FhUPDiAs1dwWboRdlYn27XFeRufHE/jF44ze2s1KnEr4sbzX8avDN1IvEExCTFU3r88Xbh2gdJuvfRQ58FxpcBKdC3uGl2Pz2rCVK85pLLq5bbIfy7qnLG8aWfxO4NZDHXpvGevGsaF34T+HboVydxPUYKZ1bdKm1ZsZR8vwPX391UvqD3Pb663zIIXz9atG8JvfD958pIxGU+FRpq7u+HyhTfLe3l5cHpcXKIxnz07eJFriRLedPSodUE3ODiA39K+b98p41vqTeuHlqR8+UBlIrpi1UyEvBUqBPLLYPfsCTMtatc+zGjVqwfTnj2G64VlYQg80IZMnfqrZRIzQ1pAgK966aw7c8ccREfHK/OVbS+uRP0weSUnp5q9cBjncLFi7sxGv8gWc1utWhC/RBevJrE8R7RQo/NbdhgmK1dXF0pMzLwmYu4h0+myukxu84N8uZ1vui7ZFgwC+Ua4+eSZT43EKwZUJH38/YY5tPn4Zk5rHNKE+t/fn1bsW0Ht72lP+MEhLN31Gy3fu5x8i/nSq11eU4JNpmZh47GN9OPGHzjf8w++QKHlQlnAQQSEG1zg8eP7Xpm/tpwwtMOZb/PrgRkTjTX4hASTPj78zS90aeMOY1pOOxAQ6g0bQMWrhxizXT92ivZ8+BVBMPKvW4u1JBf/2UpH5hguduXatKAaTz9Cp5f+TWGLVxrL5bRT7YmuVL7dfWZZLm3cSYe//YUUHAp5uC1BA6VDwzcG613aMGIi+xE1Hj2EYCrSQY8Xws/awQbVeW7jQVmUizlzgYU5CBgZ6el05o+1FLboT67alnaQsbWqB0ILQvTx01nMUmBab8Rzxjw4BzA3lzft5DIlalWh+v8bSNcOn6AStapyHPx2Dn09n+wxuQX4BNCEnpnngqVZ6v0nPmCBQv9Lv6o0OwE+gSzAv7f0PQqPvkxv93iHPNw8CCYjCOgIxy8fp0/+/Nh4Q6lauiq91P5lFmyQbjin56hzegsOOUB4we9q28ltVKd8Ha4TCWFXwuiXrT/TqO6Z5o+297QlfBCQtubQGt635Uu/PBZvU9dh/vx/6NtvM8/H1157nB56qL5Opri4JBo+fAYLDi+91J06dGhkTHvrraeN+zDzXL58zXhsy860aS8S/D8Qrl2Lpddfn2UUUKpVK0eTJz+rhCfDnyvkWbFiB3388SLsEvxe5s0bZfQdQRxu/GPGfEf795/GId/0v/zyFYKfDQJuzNocwxE2fo0b14fNaMiO+YuPz/xjp6uYMeNlCgkxaLJuqmuAqVkKpqrq1csZr2/w94FQh7pmzVpBCxZs0NVku4Vgs2jReBYCTV+YO3RoN+rSpSmNHPkVj3vOnFepTJkSxnrQBub355/XGeNy2xk1qncWs+Hcua/jkkO9ek3i4rnNDzLZcr7l1hdJz38EMq8uTt73t359iworkR0X2PDocPpu3bfcY/xLtQwd63akE+EnaNWBVepGEGDU5PRTgg8Em60nt9LOsB3Uo2lPalm9JR26cIj2nNnN1eAm8vnKz2hA62dZsPnir8/pmVZ96aF7HspT4WbLGGVrV201fXMYxV+OoINf/cTtJ0XZ/o4imIBwE764bhv76ZRt1ZiCWjejqr260rG5Syhi1wG+GSMuQvm4JEZEUfWnHqbYc5dsFmzQqZuJyXTqt1UUsfMAaykqP9aRyrZsRNfVjf3ylt10dsU6Ct+6h0o1rksh3dvSgek/UNwlg5Nmyo1YHtfeT79TzrtFqeYzj5FvlQq0dfxUjk9LyvxXltt4uID6gsbmwtotdHXvYQod8DhV6vqg6sM/7BRsSzuoZ/s7n6r34rhSIyV04cJrGiA0QWiERubkwhWUEhtH1Z/oRrWefZyi9h9Rx/HG7PAxOj5/GTt81xrQk2o886hdwk1UXBS999u77EP2wkODocjKEuKS42j2uu9YOPF096LPVk6joe1eohbVWtCi7QahFRqV81Hn2WcHpttqZapRm1pt6O+Df6vfTWEa0m4oFSlchJbsXKK0kDHUs9njfF4fPH+QYpMMc6QbblqlKUGI+lXVnZSaSJUCKrG2FGZgCFH4g7Dx2AajQHM1xj5H0H792vENfuzY2awxgBBz7Vqcbp56927Ngg38MGbN+lP5lVSkHj1aspDxxBPv0Tff/El//LFdCTgNCW9jnzZtCZ04YdDsXL16w1iPrTvlygXQJ58sppo1y1P79g2VqasrvfHGN/znCAJB0aKutGTJZtq9+yQNGtSROnZsTLt2naD16w/wuXP2rGL16walCbnAPkADB3akd97pq26qb3EXhg9/lAWbQ4fO0rJlW1UdnVhLZGv/kK9ly1C+0UP4+uqr5dStWzOqVatClnN34sS5rB0aObIHby3bwPVt8uSfadiwR1iw+eCDX2jo0O6qvhY2CTfQjF24EMlCEv48am0MfJeS1G9ZC3QQnCAEbt16hM2GQ4Z0o2ef7UCrV++1WUtk2Xcco//694r2c5sflMntfEMeCQWPQL7xucE/VGhScGInKBU+9vExNSvp6Tlz9Qx99MeHtP/cPlqtLu64ECPUKFODbiRE843i4IWDfJNAfJvQNthwSEhOIKSdjTrLdR84f4DORp4lmKryMsRfiqD4i1d4PKnxCbyPY23Gya0tmIEC6odS0rVoOvfXerqZlETn/t7IN97SzRsYix/+dgElRl6nukP7UqNRL7IpKkdTjLFk5s6pJX8RPlitlZaaSudWGv59+VatyJluJiRy/7HSCyFBCVEYC49PaVYQkIbjVJUXQafrFWC2jgdlITAd/X6REjSOspCDOM+ypbDJtR3OpL7QPjRAGcr8orUiOs2vWiU2m13ZsU9phdaw4Bi2+C/OV0YJkKYBAt+5letZiIxV/jtuvvadJ7g54Pw6pwQTBKVxzxLORJxmARzm1jORZ3gf532JW071usAnKz6mwxcPE7YILau34m2V0lVY+wP/tD+VVhMO+Mt2L+PxNFcCkmW4mX6Txi0Yx7+bnad20oJtCwhx+L3hjwXCjYQbxt+gPau7YFbAKp6YmHi+EeJGOXv2Klq6NFOD1KNHK/5dTJ26iFf7rFu3n44fv8A3a39/H15ZA1NWRIThfIN/CY7xgbbC3vD996to+fLt9NFHCyktLZ2CgkpyFRCe0FfcsP/+ew9rdaZP/53THnusJW9jYhKUMDSN1qzZp4ShQurN8Gf55g8TjQ5NmtTgeocPn6ny7VWCz486yebto48a2pswYS7XMWzYTK7TsgLwhOksNta6eQ4CCPqAfNAgYVznzkWwqcmyruyOf/99G587nToZfgswt0GDtW3bUWORV1/9mqCNS0hIpitXrtOWLUc4LTS0gjHP7e7YMj+2nG+32w8p75wE8o3mxh58O05lNetgmS1uYqfUjUIH/GvGhbmkV6b6VPsxpN5UNuVbS8xTbqbwv15dzhm28AVBwCqr5pNeNeuS/meDSJhtdk2eQfdOGUVuPl7sYwJhyp4A7UQdJRy5ehr8GnRZV89ieve2t7aOBw1Fn8icw1jlr4RQxKJvHOngl2eZQC557eBxYw1RB3Hh7kqepQ1pOiFyn+GijeP4y1cIJsa8DvBpQcC5qf3JIGzA70UHxMNvBwH5YpR2BmZYBPjrIEDw0QHayp5Kc1la+ZRZhrBw6/4clvkcOU5VjzmA/wVucitWTOS3qS9evFmZOjYaq/P29uDf6tSpzxvj9A7MEJGRmePQ8bezXbXKoLVFHVh1hRsiAnxbEOD38/nnQ3hffwUEGFY34hj9rF27ok4ybuEXBBMVND+RkZm+cBi/6W/UWCCHHfjJoAy0PzrATwZmJXtCuvJVQ4Bgk3bLhwx9LFLE9v+50D49/3wnNkNB0HniiQe4zrlzM02T0F5BSLX84wCfobwKtsyPLedbXvVH6nEuAgVSuDlzNfPmp3Fn3FL4Q0VvGQw/d0OszqfEAmO2DDJoH4wRNu7oH7a9FzJbqtd1QmtzaskqsyI6TUeWqFnZeJEJaFjb6Lys03PawkQDwQaalcPf/ExRh06wuebeD0blVMzuNN1nW8Zj6nStrvh2t5VbAd0X9Vc8M6sSjDlYtHfTZCWbRVJm2dvcM6/31njVxpqWx1pT6bcqgFlXB71vjZ7WIum8eb2FBuPBB+uzeadWrfL0wgudlc9LOXr33fnGpq5ciVbmks+Nx3oHz0PJ62C6jBxzb/m7hablwIEzZs1CA4Lw9NMPsmADbckvv6yjI0fOq3H0Zx8eaHLyKuhzAH0znp82nwGZvdDCjen1LTPVtj0IDNCkQdCE31Tz5jVZm6afF1S5chnq2fM+ioqKYT+bnTuPK0GoGbPSbG1pSZu8TPOivaQkw2IGzSGn+UFZW8430zZkv2AQMLl6F4wBZTcKrJrCjwGrSXSAPw4cMK357eg8jm579eqlHA3n8adLly6OVsPlUmLijM/B0RXFXzSYB7yDg9jXBM6s+mNq2ipWyp9qKr8UmGGwzDz4wXsJS7ZtDR6BJVljc2nDDuXovJPNPgH1Qq0W16uv3HMwzWClE680Uv4spsHW8ZiWyWk/u3ZyKqPTEpQPFELJ0Go6ikrWrs778WpFmjMGOAN7exhMYnAshqYSpiOEK7dMSTWDahm7XuvWvk4zJuSyozWbWiuUS/Zsk1ev3sPOp126jGdTUqNGBr4oAFNPiRJebFqBMGP6Ma0QGgcE7ahrmpYX+xBUEKAhMO0D9nXbrVrdw9eVUaO+pR07jivH50TCzd00QBCCOU0HaHnsucmjHEw7KGNq1jGtU9f9X20XLdrE/Rk27FFlunNn/yPddtu2BrP4zJl/ELRi16/HsQCk0y23EC79/LJqdPQqqTp1DNdsmL7Qlg62zI/Om9P5pvPItmARuGuEG0wb1PK46A9sM1A9iKwhvdJhGM8m/HLyOuiVWnlRb8TO/eTu50PVnuxGgY3uIQgcWA0Ff4/iSitTb/izVKJmFcIDAeHQWrPvY9wsHGLhZ5Oh/Ah2qSXPB7+ax/4qdV7qx/XZ0jcsL4ewVKpxHW6jYuc2VLlHR6tF49SybISqvbtyfpiz1BXQLG+cErIQQgc+QSWVkOUbUp6PbRkPZ7TxK7t2UNzNx5t8K1fgTyElCMDR2XislqpfV6unICiCdeVH2lPwQ/eqbTu+iV3asN3GHtiWLVCtfKoUGEIV1PJuBAjcOA4uab95a0Sn/1HdCnXpf51Hcl0bjq7nLZzr8eTjBhUbUNcG3eiBWg/wFsK+vQ/AhK8PTGKNQhpTqxr3UfWyNYxCFTeWyxeWB3/99XC1iqcJr+p5/PH7eKURbt46YEUNTEM//PAawdcEwgCeZzNr1nCdhbfQHiDAURUrdVq0qGW30MAVZPP111+71DLkZEIfsSILN1lonLC6CiYXhM2bD3Gbr7zyCLc/ffpLRrOWrnbjRkOezz4bQl27NiM8fM/esGCBYS7Hj+/DY0U7liuu4B/UqFE1/mBVE4QhfYxl7nkZ1q7dx0KpXtE2b95aY/VwJEZ48skHuP23336Gl2EbM1js7NhxjJfyjx7dm88LLKtHgP8SApyf27VrqFaovcDH+suW+bHlfNP1ybZgEciXZql0E5ORtenQanjLtNnrv6P/dRrJT1jFU1YR/jm8lvae3WvMmpFhMEGxGtiazt6YM+cdrTLNOdetVK1zziYzHFaLlVLP2XioJZVv24pOL1vNS58PfT1PPcfGhQLq1TJqY9Du2eWGCw0ECDi44gGBKTGGFTG73p9JzSaNpAavPU9bRk/JpkXz6OM//07V1GohlEHAKqyABrWxHtUsI1ZhXVy/Ta2kakz3vPg0p20cOUk5Ikcb86FvEHoClbBUqkldFpz0UvDcxqMrwTNusoRbjss6Pqd2gh9sQZW6PaSzkle5MtR47FA+3vnudPbp2fPRLGrw6kBjPvguHVLCIV6DgQCB0bBjpS+GFJu+B7YZZCbIwAkYH8zj4G8NF3N9LsFkmq7PT7WfaUIldn4vqZ7fNPihF7ld+NSsVec2AvJNUyushilhvnP9zhwHlT9WHGo/HY689aXbMI0z3f9p01zq1aw39bm3D0f/vGW+sS3TfNb3M9hhFzcsBIwNK5xMnWwXLtzAy4ghsMBkpQNWJZmGgwfPsKNqs2Y1CE8bRhgw4CN2ljXNl92+NbOHaV70DSaNd98dwIILhCcEOC3/9tsW3p837x8WeLDKCh+k4Zk8eKaKNgFhNRdWYmEZNj7QSCCfnleuKJev7duPqZVGe7gtjBVloeGCf5IOVasGsUlMH2MLExkCyhqC4XxVxVUdt6Ic3MAU17BhVaVVijbzKcI8wbm4SZPq3D76unv3CWrQoKpxdZVpk3PmrFLzXZLwUMbWresal9r/+edOtSKusWIXrLR8PfiJznBQ1sGW+cHZDwfxnM43XZ9sCxaBQsHBwVZP8aCgIOXsF6Ee1GRQ/RakYUN9jxsBHgaonYbz8/jgD4PVQunK5JMQHmn2sLm8HBeeU4P6LR+6l5dtoK7/ajy29LtYoD8/nDAOZsDbvRvY0qADed7rPZluKuf38QvGU7mS5fh9a5bLu3W1eEaOmzLF8spDdeG/U6FcOX8WYHCDtHwgm+4TNA8QEqCRCAu7bPXheTrvv72FSQTmJviRWApZaBuaETjLop/ZBZjPkCe7BwVmV840HhoZCDEQ7BxZGWZa17+9D/8Y9BVL5G+nr2CPBzXm9MTl3ObHlvPt3+Yh9f+3BO5K4ea/Rey8rdXs34NKN6mXYweh6cGSaQnOS0ALN1i+LYEIZhBoFHIKeMgeBKs7HfQD5nLqB5bJ49k2/3bIT9z+bRZSf/4nkC/NUvkfu3OM4EbYOSpStGiOnUmNy/vVKTk2KIl2E9BOvnYXLKAF4Kth+pwZa8OMjo6zFv2fx0EbceTIuRzbPXUqe21QjgXtTMxP3OwcmmS/CwmI5uYunHQZshAQAkJACAiBgkzgrlotVZAnUsYmBISAEBACQkAIGAiIcCNnghAQAkJACAgBIVCgCIhwU6CmUwYjBISAEBACQkAIiHAj54AQEAJCQAgIASFQoAiIcFOgplMGIwSEgBAQAkJACIhwI+eAEBACQkAICAEhUKAIiHBToKZTBiMEhIAQEAJCQAiIcCPngBAQAkJACAgBIVCgCIhwU6CmUwYjBISAEBACQkAIiHAj54AQEAJCQAgIASFQoAiIcFOgplMGIwSEgBAQAkJACIhwI+eAEBACQkAICAEhUKAIiHBToKZTBiMEhIAQEAJCQAiIcCPngBAQAkJACAgBIVCgCIhwU6CmUwYjBISAEBACQkAIiHAj54AQEAJCQAgIASFQoAiIcFOgplMGIwSEgBAQAkJACIhwI+eAEBACQkAICAEhUKAIiHBToKZTBiMEhIAQEAJCQAiIcCPngBAQAkJACAgBIVCgCIhwU6CmUwYjBISAEBACQkAIiHAj54AQEAJCQAgIASFQoAiIcFOgplMGIwSEgBAQAkJACIhwI+eAEBACQkAICAEhUKAIFMkPo+nXr1+O3Zw9e3aO6ZIoBISAEBACQkAI3D0E8oVwg+mY/dN3Vmel35P9rcZLpBAQAkJACAgBIXB3EhCz1N057zJqISAEhIAQEAIFlkC+FG5mv+VHiz4sXmAnRQYmBISAEBACQkAIOE4g3wk31SoUoZb13WjL/lTHRy0lhYAQEAJCQAgIgQJLIN8JN+8O8aa0NKJp8+ML7KTIwISAEBACQkAICAHHCeQr4cbXqxDVq+5Km/enUHJKhuOjlpJCQAgIASEgBIRAgSWQr4SbZve48UTsOCQmqQJ7RsrAhIAQEAJCQAjcJoF8Jdw0qOHKwz1wUoSb25x3KS4EhIAQEAJCoMASyFfCTfWKhsfy7D8hwk2BPSNlYEJACAgBISAEbpNAvhJuIq+n83DLBrjc5rCluBAQAkJACAgBIVBQCeQr4WbPMYPGpr5yKpYgBISAEBACQkAICAFrBPKVcLPtoEG4qV0l37w1whpziRMCQkAICAEhIAT+RQL5Srg5ef4mRcelU7tm7v8iEqlaCAgBISAEhIAQyM8E8pVwA9Cf/hRPft6FqXVDw7Lw/Axf+i4EhIAQEAJCQAjkPYF8J9z88EcixSVk0Kt9vfKehtQoBISAEBACQkAI5HsC+dJ55bFXr1HpkrJiKt+ffTIAISAEhIAQEAL/AoF8KdyEXUgjfCQIASEgBISAEBACQsCSQL4zS1kOQI6FgBAQAkJACAgBIWBKQIQbUxqyLwSEgBAQAkJACOR7AvnGLNXvyf75HrYMQAgIASEgBISAEPj3CeQL4SY8PJw2b95MMTEx/z4RaUEICAEhIASEgBDI1wTELJWvp086LwSEgBAQAkJACFgSEOHGkogcCwEhIASEgBAQAvmagAg3+Xr6pPNCQAgIASEgBISAJQERbiyJyLEQEAJCQAgIASGQrwmIcJOvp086LwSEgBAQAkJACFgSEOHGkoiNx94lAql8aCPOXbiwC+GjQxE3d8LHNLi6e5BLkayL0/yDK1ONZm2pqKe3aXbeR34PL18qVKgwf6o0vJ9Kh9QySzNtFwm6DGeSLyEgBISAEBACdyGBrHfbuxCCPUOGMPHsRwuoXPV6XOxmagplpKdRanISvd+7IccN+3adEjJcjceIHLv4EB3d8hfNm/AC5ylb9R7q++4PSqjx4WN87Vr5My39dJTxuEnXZ6jDwLG0e+UvVL9dDxZwkLht2fd0ev8W6j1mBu34Yy79/sU4Y5l+7/3EQteHTzWj2GsRxnjZEQJCQAgIASFwtxAQzY2dM926z8ss2ERdOkO/ffI6xUdHErQy9gQISP0nzyP3Yl609bfZ9NPbAynywilq2L4XhbbqlKWqBu0fp4izJ2jJx6/Rhl9mUpwSWo5sWkkpSQl0T+uuxvxFXN0ouFYDunbprAg2RiqyIwSEgBAQAncbAdHc2Dnj9R7qwSVmDOmstDWJdGLnOhr541a7aqnfrie5eRRj7cu+NYu57Iov36GnJ8ymFo88S4c2LDerL+riaZr+YkezOBwgX/22PahC7cZ09uAOatq9H2t3tiz5NkteiRACQkAICAEhcLcQEOHGzpku5uNHyYnxLNigKEw/ME3ZE4Kq1+Xsleo0p+c//c2sqE9AGbNjHBxWWhprYc33U1m4eeCpYTT7jT7UuFMfSrt5k01V1vJLnBAQAkJACAiBu4GACDcOzHIhKmReKiMjx2M4BZuGjPR0Ppw/aTCdPbDdNIl9d8wi1MHZQ+Z5dHpMVDhFng+jCqFNqHjp8uoTTMe3r6WMDEP9Op9shYAQEAJCQAjcTQTE58bO2U6Mu8EmJe1n4+Xnn2Vl1M3UZPLwzhRo6j74qFkrF4/t5eNy1epSQsx1sw9MXfaEjQu/pMIuLjRgynwutvr7j7IUDw0NpRkzZvAnMDAwS7pECAEhIASEgBAoSAREuLFzNvevWcIlnv90CdW+rws9N3VhlhrgHIzl2z1HfUbNHx5AbZ4ZYZZnz6pf2bR1b49B9MS4mVTxnqZUt83DNPDjRdTi0efM8uZ2sGfVQjaL+ZQsTXHKuTn81OEsRfz8/Kh48eL88fHJXJ2VJaNECAEhIASEgBAoAAREuLFzEtf8MFUJEEcooHxV6vnGNPLxL0s3U5LNalnx5QS6cfUS1W7VmToMGkuXTxwwS4fZ6JuRPdVKqyiq0bwd9X9/Hj06ciqVqVybV1+ZZVYH2oxlGa+PT+78h3f3/LVAR5ltTbU1kZGRZmlyIASEgBAQAkKgoBEQnxs7ZxQOuzOGdqYSZStQiTIV6NSeTfS/HzYr01AmSqxumtq3JeEBfYnK7BR/41qWVq6cPkpT+jQlT98SVCqkJsVGRdDVcyfM8m1Z/C3hk1vwL1dZ+dlk0Pqfv7CatWFDw/N3Dh06RNHR0VbzSKQQEAJCQAgIgYJCIPOOXFBG9B+NA8+SwSenAGff3AIEHwhIjoSa97ane+6ax5DSAAAA0klEQVTrykLUmf1bKSUxwWo1wcHBLPzA70aCEBACQkAICIGCTkCEmzyYYWhN7kR4ZMSH5O7hyULWT+8MyrYLy5cvp/BwtbJKTFLZMpIEISAEhIAQKDgECql/9VbvzEFBQRQREUGpqal3fLQdOnSgzZs3U0xMzB3vi7UO4H1OcCC293k31uqSOCEgBISAEBACQuD2CIjm5vb4cWn44UgQAkJACAgBISAEnIOArJZyjnmQXggBISAEhIAQEAJ5RECEmzwCKdUIASEgBISAEBACzkHg/yurQJWTmLWyAAAAAElFTkSuQmCC" - }, - "image.png": { - "image/png": "iVBORw0KGgoAAAANSUhEUgAAAn8AAAD9CAYAAADNqREBAAABWmlDQ1BJQ0MgUHJvZmlsZQAAKJF1kE9LAlEUxY9mCSnYoqWLgRAMLMR00dKGEMHFYEr/FjHOTBro9JoZqWjRF2jTJjctatMnCNwU1K59URH0AQraFMymZLrPqUaLLhzej8PhvsMF/AGZsXoAQEO3jGJuRlhYXBKCT/AhihAiGJMVk2UlqUARfL/9Y99SmuZ6gu+Kx44PX5/3W62h85vZxrL/b75vhlXNVOj9ICUUZliAL04sbVqM8xbxqEGliPc4V10+4lxx+bSbKRVF4iviEaUmq8T3fGelx6/2cKPeVL468PZhTS/PcZ8URQEi0phGjpRB6Z9supsVsQ6GbRhYQxU1WBCQJYehDo04Dx0KJpEgTiFJyvAb/76d5+280OoN+irveeUwcLZC9VTPiz0CkSRwuctkQ/65qM8OmKtTKZdDbWDwwHHe5oHgONC5c5z3tuN0ToCBB+DC/gTm/mIG6OCHqAAAAFZlWElmTU0AKgAAAAgAAYdpAAQAAAABAAAAGgAAAAAAA5KGAAcAAAASAAAARKACAAQAAAABAAACf6ADAAQAAAABAAAA/QAAAABBU0NJSQAAAFNjcmVlbnNob3Tj1INmAAAB1mlUWHRYTUw6Y29tLmFkb2JlLnhtcAAAAAAAPHg6eG1wbWV0YSB4bWxuczp4PSJhZG9iZTpuczptZXRhLyIgeDp4bXB0az0iWE1QIENvcmUgNi4wLjAiPgogICA8cmRmOlJERiB4bWxuczpyZGY9Imh0dHA6Ly93d3cudzMub3JnLzE5OTkvMDIvMjItcmRmLXN5bnRheC1ucyMiPgogICAgICA8cmRmOkRlc2NyaXB0aW9uIHJkZjphYm91dD0iIgogICAgICAgICAgICB4bWxuczpleGlmPSJodHRwOi8vbnMuYWRvYmUuY29tL2V4aWYvMS4wLyI+CiAgICAgICAgIDxleGlmOlBpeGVsWURpbWVuc2lvbj4yNTM8L2V4aWY6UGl4ZWxZRGltZW5zaW9uPgogICAgICAgICA8ZXhpZjpQaXhlbFhEaW1lbnNpb24+NjM5PC9leGlmOlBpeGVsWERpbWVuc2lvbj4KICAgICAgICAgPGV4aWY6VXNlckNvbW1lbnQ+U2NyZWVuc2hvdDwvZXhpZjpVc2VyQ29tbWVudD4KICAgICAgPC9yZGY6RGVzY3JpcHRpb24+CiAgIDwvcmRmOlJERj4KPC94OnhtcG1ldGE+CnJ6/IEAAEAASURBVHgB7F0HfE3nG34lhBgRK0bE3ntvqtRsbYqqqtpK0aL1V9Ss0lKtWqVGrRpVrU3V3nvvHYLYhCSS/L/nvfmOe2/uTW6GyOV9/e493/n295wT57nv+E4iHx+fMBIRBOISgUSJyC1VSgp+EkBhISFx2bP0JQgIAoKATQQSqf93MmRITffuPabg4Oc260imICAImBBIJORPbgVBQBAQBAQBQUAQEATeHARc3pylykoFAUFAEBAEBAFBQBAQBIT8yT0gCAgCgoAgIAgIAoLAG4SAkL836GLLUgUBQUAQEAQEAUFAEBDyJ/eAICAICAKCgCAgCAgCbxACiWOy1qRJkpKHuwc9efaEAoICYtJFgmrjmjQpuaVW0amPA+h5wFOeW7J0aShJyuScDn3+nJ743kxQc34dJpPI1ZWSpEiucH9CYaGhr3RJyd2SU2hYKD0LfvZK5xGfg88amZo8UrpQ01734nNYGUsQEAQEAUHgFSMQLfKXLEky+uLdvuSTzoenfeTKYZq0ftIrXkLMh0/snoxKf9WNUmXLwp3cPnicDv80i9NFu39IqXNl43To8xDa2OkrTifULxCpjOWK04Nzl+jp7bs2p5k0TWpKUyA33T5wnEICA23WiYtMR8fxqVmJ8rVuSDsGjKEAv9txMXSM+/i21Wi6eucKfb/y+xj3ER8Ns6XLRmlSpqHDlw/Harh8ORJTlVJuNHWx8/94ixUQ0lgQEAQEgTcQgWiZfcvnqcDE74+dC2nYn0Np3vZ5Tg1ZpoqlmPidnvcX7fz6ezo1509jPftG/kIbu/yP7h4/Y+Ql5ERi96RUpHNryly5jN1ppi9WgOskz5Tebp24KHB0nKf+9xRRvaO0ra9e23ZFEb9L/pfjYvkvtY/3SjWgLjW6xnqMUb1SErZg/GmukL9YgykdCAKCgCDgZAg4pPlL4pqEXF1cqVSOkhQcEkw7z+7kZSJtLm6J3SgsLIzrpE6emjJ6ZFQP1EsU9DzIqAbzWtZ0Wenmg5v0IOCBke/i4kJurm7kksiFMnpmoku3LlLKZCkpRbIU5Hffz6gXFwkXtySUSI3nVaYoharNQK9v28fdIq0FZsiwoFAKDYncHOmSJDF55MhKQY+UCdxMe4X+MU5oULCFSZPHVmuMrubN3SsduadPy2TJQrOnNjZ1TepGiZMl5akj7Rqe1mNDK4h5YmwI6uo6Ic+sNICqv5TemVTdxPTokm/Euav2IWpNKbJ4MWkLvP+Q+8RXdMYBPv6HTvDHnskXpnf3DGnp4aVrZD1PzD9MmePDQsMY/0fXbjDWxmQcTOB+o0RE41ePI7La7hz3PTaOTZUsFcHV4fq965QxdUZ2dXj09BGPgPa473GPp3JPRelTpadLty9RSGjEza3TpkynytPRFf8rNs3Lkf396L9B/B1CoIWHhKl/gcFW15BL7H+lTpmIShRIQlv3B1FgkNWi7TeTEkFAEBAEBIHXBAGHNnke1mI4eXl4RVjyocsHacqGKUb+2DbfEx6KzxUpzJY+O+eDIPac1YNJXeeanalE9pJG/at3rtK4VT/Q06CnVLVANWpTuQ2FKtIFInjn8R1KmyItP3x3nt1Bs7fMNtrFNlFp9JeUPGNE7det/cfoyETLcUr06UBpC+W1afbN2/I9yl73LWM6QQ8e0d6RE9nsCtNnle//R0/979KOr8aop3QYpfDOSBWGf0GPLvvSnqETjHaRJWCarvrjYHINJ26o+/zpM9r/3RTuB8Sz3JBeNrs4PX85XV2/jXI3q0s536tps87Wz0dQ4D0TCQcZLtKlDbkkNhEMmLuBh//hk9wWuCVO7s5v7Ujq6cF5d0+cpQPf/8rrc3QcYAbstFibfdF3mf91V8Qvna5Cvlt208mZS4zzd2aOZVIIkz2IJAjkpZX/0fk/1xh1HEn81O5nJm+oe87vrIXZt0ftnlQ4a2G+B1EO8pclTRb+gTNn6xz1I2iHup9LUNd3utGth7eMvxHcwxPX/UwnfE+gGeGHUL/3+jMx5Az1te30Npq77Xd9ysfI/n4GNv7acLcwbwQfxd5zbF9/83rm6TqVk9IvX3vQuNlPaNJC0fyZYyNpQUAQEATeBARcU6dO/U1UCz2sfPu2n9lOubxysyZuxLLhtPnkZtp/cT8FPn+hdahdrDY/4JIqrcTaI2tpzeHVrKFAvbcL16CaRd5RWo/LTOTcEiel/FnyU5oUnnTo8iHKrshisWzF6O/9y5kowq9w1aFVrEUsmaMUrTy4IqppOlwO3z7fLXvIM3d2FdSRgnYNHkfXNu6gW3uPKI3cCy0lOoRpGCTk4j8bLPrPUq0c5W1Rnx5cuELHpy2gJ9dvUoaShSh9sYJ09d/trKlCXta3K3LgyN3jZ6nCsM+ZqOwZ8qPSOFpqTS06NzuBxs4zbw6CafrcktX06IrSPpUtRl6li9LlNZs5WMJvzyG6uesgZalajnw376bj0xfyeu6eOKeIWiiTxBs791Ow0k7C5+/opN/pwvL1XOeZMr2CmELDVnZgDw56OTlrCd1UfYL0Zqlalq5u2M4aUp93qlCytJ70RGnZTs5cTNDMpS2Yh9eOgBiQ2qjGwdKeXL9Ft/YdYa1q6lw+qv9t/Co4veziPduxNu/G9v10bulqTqcrkp8e+/pxW9TL1bg2gST6btpF5/9aR+kK51PYF6Ar67YSAnQcFdzbO87soAp5K9D9gPtM6HTbcrnLs6Zv4tqfqYhPUUqbMi39sm4iFfQuRN7pvGmL+hvIpLTUZXKVJfck7rRc3bsHLx1U5QWpdM7StPawiYiCHOL+3nVuF/21dxn/MCqUtRD5KjLpd/+GHo4i+/s5dvWomud28k7jTZ7J09DwZcP4b/Df4xv5x5PRiQOJ9+u4U6lCSWjakqd05UZEDaUDXUgVQUAQEAQEASdGwCGz793HpgACaBlClKMQNCCRydgVY8n37jWuorUf1ZRmD/KD0vTBTIX8CR/9RCB2MzfP5DJ8QSMCE1q+zPlo66kt/ECG9iWxS2J6Hur4Q93o0Ebi2Z37nPtcmTzDQmIWyZurUS3WAMFPEETO//AJSquIVTpFQNxSpWAz8K19R+nG9n3kU7Mypcmfi9w8UrLGDu+8dVSg5TswZiqTxmRpUzPBenjhKqXOY9KsQjsH4qUjk2GGtY5MRgQzPoF5TBq+gFt3ItTJ1ag2T+nsopWKYPpy+vKq/1hDh0ASkCwtB8fNYO1joNJ0gtCmyu6tyOJhHiOqcdAH6sCU65kvp6lLZVo1lzSKUGIdILGQQ4pEVx77PwL5BKZaoGnVfprX/tvJhDBFloz04PxlXSXKo76Xoa2znIWpaUBgAB27dowu37lMOTPkpKOKhF1WP2CypTcFA+kBjl07yj92cO6j3Bqq5K9K+dSPm9PXT1GBzAWUi8N9mhV+n99QhG9ky1FUQ/0gOnjpgO7CONr6+7n35B7hE6C05BA9b6NRNBL5c5o0u0dOO/YDJBpdS1VBQBAQBAQBJ0DAIfIXnXWA2GniZ94Opq9Hzx5Z+CddUwQxd8bcrOnTdUEwA8N9BJHW/oLwuXoeGDfkT48VmyO0TvAHK/9N7wjdpFA+c0GnznP+id8WE7RWKbNmZhPsvfD8CI0iySjWo53S9BWJUANaQXM/xQgVopEBkzSkcMeWEVrBv08LfBtBSCGPr5q0VjBNx5W4eaRiXM0JHAJDsE739Gkshrl/9qJx/kjPJYW7kRcXCe27F/w8mLXQ6BP3JH6MmMup66eN0zM3zjD5y6T8A2+oH0q4Ty4oH1YtcGmAO0Q6pUm0Fnt/P9b1YnPuf8/kx5rFy5UePE44f1OxWZO0FQQEAUFAEHAcAcsnmOPt7Nb0f+xvt4yd6+2WvigIU/utvZAwTjraVrfDA1cLglBehjxW5s99oyZF6FqTIxTAnJpEafwg6YrmV8EFal7RmE/WGpWY+EGzdkX572HMot0+ZBMn98U9x80X/OY29xgSoTNzU7gtc7U51hEaRzvDdK3gx2ct1rCZzys6mFr3G9k5AipMoo/q8pH5/WkqtcRA33uJOCADNWzdvy96NPWB78j+fl7Uil3q4Mnn1Fi5gJYsmIROXhDyFzs0pbUgIAgIAs6HQMQn7EtaA/ypUiRNYUQpYhj49UGLgs1141IyZ85MCxYs4M+QIUNi1TUiaxEAgY2gzQVBEiB2ICAge+YfXQ/Rr2UGdFdRqSF0Zv7flDxTBsrfprEuduiYqXwJNi8fmzqf9/BD1Gua/DkjtIX5F6IDMSJUUBlaS5g0daoIxY+v+bFp2S1VSou1YF32onEjdBKeEdk49tro/KCHj3m9eo9F5CPSGVrOZ3cS7mbE+TMrYh8ucFmA+D3w4wAo/PjI6fXimmXwyECI3tXuFOHNHDo8V24KCIiy1jw61Di80u6jJr/WInni/LdfdKYhdQUBQUAQEAReEQLxRv42n9zES+zXoD9HSPao05OjLBEMEtfiqkhXXMmNHfu4qxK923OghSYl55etY0JYYfjnlLlSad4vMMe7NVTQxKfG0EW7tVFvDklFh1XE7JX1W9lfDRsbpy9e0KgTVeKmCoyAVil307ocrFGqX+cIRBR9gBSCAIIselevwIEY8DE0F2gNIXlbNeC1IPhDaw8vqKAJkJSygz+jnA1qcmQy9gyETx8il6MjkY2DfhChnFoF24DUQeAzyOeKTEPuHjvDuEHDieCWUn07cT6COeJS8JaanF65+ANC5Z40uXGut1RxdLyiKiCkQamGVKtobQ4egcvCmXBTMPxbMVanGp04EKRXXZOrwL/HNjjavVHv+n2Tv2376u2pSNYi7IdoFDqYOHclhO4/CqPaldwcbCHVBAFBQBAQBF4nBOL+p7+1bS4crc0nNlOejHlVZGQZ3hoD2dgPDRtGQ7RpVh85D0azcNtYdLSDcN6PK0FwBaJqs75dgYp2b8uBCtimBYEc8EHLqQI/CndqZQx3/+wlToMQIiIX0bd3jpzivGNT5ylfsEEEH76tfYZxZK3R0E4CgRbeKoo3x7tv8wdaNWyvgkhcA5zwtqdmL6X8Hzaigu2acQ4ihBGpqwWRwtgyJUuVsrwW5G/rO1Jp1O6zVu3whJnKpNyGiSbIJgQ+foapFxdDXxAutf0V2ThoUXZQT9Yy6tZFu7bhJAJVsNk2Aj3w5hUEmuADQQT17QPHOK2/sMdfBInGtX+rYHV6t+S7RheIpP2ywZd8/r0KWoJoFwReto3huJL6gpZP94XApEnrfzFMvrO2zKQv6vdVxK8Mf9Bm04n/OMpdtzeOUeC7TkXRQ8tYKkdp7gskM7pbvWCsCXOf0JBuKal6WTfatNcywt2YiyQEAUFAEBAEXksEHNrnLy5Xjo1s8ZDFvmhPAp/EZdevpi+llUuhzLnYQDnAzz/amzc7OmlE8+I9uAE3/R1tEuN60PTBNAwzK8jfqxJoLpMpgo3AEm1KflVzsTeu3ufv57U/8Y8ZbAfje9fXpisDNoFOpzZ6Rrn1Bun2+n+Z+YeWpiffWyH0breEa05/meuXvgUBQUAQeFMRiHvNXxRIwsfv4u2LUdRyomKlqXly41a0J5ypQklDQ2ev8QW1t+DlVZu4OPhxgEOaQnt9RScf/ox64+fotIvruvD/w8dZBD9mIvtBgw3Q9ZtBEsKamvW+R5nSx52LREJYk8xBEBAEBAFBIGoE4p38RT2lN6PGU7XXnn+4Odjeiq3367NXT/JfHQJ6K5hXN4OYj3z+agjhIyIICAKCgCDwZiEQ72bfNwteWa0gIAgIAoKAICAICAIJC4F4i/ZNWMuW2QgCgoAgIAgIAoKAIPBmIiDk78287rJqQUAQEAQEAUFAEHhDERDy94ZeeFm2ICAICAKCgCAgCLyZCERJ/ry9vSlJkiRvJjqyakFAEBAEBAFBQBAQBF4zBKIkf6/ZemU5goAgIAgIAoKAICAIvNEICPl7oy+/LF4QEAQEAUFAEBAE3jQEZJ+/1/CKJ0uRijzSZ6Yn9/3pyYO7r8UKM2TLy+sJeOjY2yiSJHWnNJl86J7fVQoOfGoTg1RpvShtluxGme+ZI/Q8KNA4j6uEvh7+V89TaKjsqxdXuEo/goAgIAgIAjFDQDR/McPN4VaJk7hRhUbtCeTlZUtyjzTU+7fNNGDxYfp08hpqPXjayx4yXvrHunpMWUu12pveu+vIoIUq12EMCletb7d6tVY96JMxfxifzLkL260bm4K6nQfxXFJ7ZYlNN9JWEBAEBAFBQBCIEwSE/MUJjPY7cU/lSfW6DKIKDdvZrxRHJeUafMTars0LfqZf+zSlJWN6x1HPr7abROr9yS9DVk3+hkY2K0JbF01+Gd1Ln4KAICAICAKCQIJEwGnJHzRqOYtVpDyl3yI39+QRwE2ROi0VqFibyZB5oWvixOSeMjWhPE/papQokQt5pMtEWfIUMa/GdRK7JSWY7ApUqEXQPpkL+rEeF3NCGwj6xTjJ1AeSJJk7nyMPba0lvU9uHgfjRVcwD/RbsGItCnn+nHYu+43u+F6kx3ct3zmMOfkULEW5S1UlzNWWoB9d5p2/OOUqWdlYi863bofxYWbV4pE+E68lW+Ey5OJi+92x9sbRfWCuOYqWp0y5CumsGB9TZ8hCectWN66N7igsLJSCngZEaep1BDf0iTXhXsG60SYyAWbRudZJk6dkjIGJZ8as3H/O4hWNa4Wx0CfqQbLkLRrh3ucC+RIEBAFBQBB44xGIyEKcAJLGfcZQiXeaqQegSSMUFhZGf4zqTie3r2Wy0f67BfwA1kuB39e03o0J/mJVWnSlGm0/Jzz48YB+cv8OJVdEEH2d2fMfzfumAzf7atFBrm9O+vasmEsrJw3m8ub9J1ChKvVoSP1cehj6fPZ2ClP/xn5QjnIUK08ffzvPKCteownhA9m8YCJt/H0cp/GQbjfqd0UEPPgcX/vX/kF/TxhgnEeV+OzXjQT/NS2YO+TK8X00o9/7nM5fvia1HDhJEU/Ttj3AbN2Mb2nHn9O5HF8gI2h7/sBWxk8TOv9r5yl91tx0atd6WjCsi1FfJ/rN26OI5m2a0PFtZXbepEhHNl2kcA6jDbPG0rbFU4w8e+PcvnqOJnapzcSlw9hFBll7dOem0Ta6iVrt+1PKNBm4Ga75sh/60eGNyxzuxhHcQPrafTuXzM3Gz4OD6LtWpZhcWg9WqWlHqtPxf+R/7QL93Pkd62Kb5/3m7VZ4JDPu+cf3bvO6MM6Mvi3o+tmjhPvAzT0FhYY8ZyKKjm6cP05TP2vE97vNjiVTEBAEBAFB4I1DIHL1RAKEo+r7XalkreYqkOEOrZk2gs2b5/ZvJvdw8vT2h72ZuNy9fpkWj/6MLh/byxqQZv3GW6xm999z6ObFU5TCMx3tX7OQ4OwP7ZC5gPiBCP01vj89ffyAyr33ocUD3rwu0olcXsB59eQBmtanCc0d8glXA3HCOT7blpiIELRi7UcvYG3NruWzaP7QTkwIStdpSZH5qlmPO/PL1tzvPb8r6sEfYoyjzb4Y5/0BE8nF1ZV2LZ9J62eOoRBFGmp3GMBaT+v+oBkMDHhM/87+XpHdIYpYHOP1g6haC4iPW7LkdPXUAS66f8tXkb0x9Eu3usrs3IuePrqvfPX6qwCUTNZNWQNpPs6Nc8e5TuvBU8lVaSYPrF3EBBXkPKaC67v779lMtkNDQqlR7+8stGWR9esobm2GzuD7wu/CCb6GuOYPbl8nV9eI+2O+1boHEz+/Cyfpl651Ihs+QlnQswDGFAUgecAXZL68MvdrSaryQQxx79+8dJrnVfbdNrpYjoKAICAICAKCADmd5q9S00582fDg1JGfcwebCBYKStRqxuVTezWkZ08e0bEtK2jQ8lMEE5m5bF8yjaNAM+YsoLRSU6nY2w3JO18x1jbpiE88bOd8bfLVgzalad9xSnPYhR+s5n3ZSqMP39OHDY0cNGM4N5eStVuwqe7ikZ2GNmr11GHUdvgsqtSkAx3fusq8ut00TLyQoGdPOZrUepx8SusHc/SFg9tp9dThXBeaRhDpik0+obXTR3Ge/gKBHNumvD6lPSt+p49Hz2MzLDLRDtdhYpdalK9cDa53QmldIbO+MhENmFrv3/Sl07v/ZbKerVAZvhZcKfzL1jgwx8MMjzUtn/AV1/TM6MPE27yto2mQ+lVThnL1jDkKMKkuXPVdA+/I+nEEN+AKU/qzJw9pco/3jO7O7t1kpHWi+gefscb62qmDNP2LFtHWxt2+fIaObvqHGvcZyz8SkG7UazRHdusxcPytX0v+23jof4M6fL+YNanm5ZIWBAQBQUAQeLMRcDry554qNZtqNfGzvnzQRAU+fcLET5dBI5bBJ4+F/9mzgIfKJPeEqwQGPFLEKYDTaP8o3FdOkyoUgMRA4G8VVwKfOgh8F7tMWG7RrUeGzBbnsTnJpAgu5NyBLUY3J7avZhKXPmsuI08nbl0+rZPGEWQG84T2r2Tt99kHsnTdVuyTB9Pu2b0buW7tT76iSs06KvOki9EWiZRp0luc48TWOJnDfS9B2rSc3r0hxuTv8tE9uhu6cGg7k7+MOfIbeZElHMENPxgg0DBHJXBVgFw9eTDaxA/tgoOe4cBm3WBF9DkdGqp8AZNxGl+49/XfxpUT+zlf+wEalSQhCAgCgoAg8EYj4HTkLyw0zMK8auvqJaKoo0PRD3zAIGHqAapc9VjMSYv2KUSBztd9h4a3NbUyfcNUGWpnTznzejrN46qThSO7kTlJQXlwoOlBr+vG5qjXmcgs+EKbqEHcrAXmQms5uvkfNhMXqlyP0mbOpsyaN9jnEWQZJngEmiA4o3LzzgQfvQ3KZHxu32aCybF6m16qu4jXxNY4tvbB03O1npND5zYihUNxvR0QR3DT+On7I7JuT2xbzS4JFRq3pxM71rBPZmT1I5SZXSo9N3UTq3vzBbYw51uLi5k7gnWZnAsCgoAgIAi8eQhYqmecYP0wr8EXL6VnRE0Sph/w8D6bUkFKtKTNnF2Rk+Bob7CbNksO3YVh3rx38yrnBQWYtIaIvoRgTvC3shZtQk6Z1hR0YF7ue/oQn2bNV5y1NdDY6I+9jYnN2zuavnnRRObyKF8+LYUqmfzNEHTgiDz092MzeZn6rRVZVkEcM78jr+z52eR4/cxR7qJEzaZ8XPPrSDq0YSk9VptM56/gWECDnoPf+ROc1FpRnCDoIqaSo0g5oyl8GSE3L5008pDQGGTKVdAi3xHcrodrKLMXfTGORSdmJ+t+G02/9W+lcsKo7bBZFhHSZtVeerJw4cI0efJk/nh5eb308WQAQUAQEAQEgYSFgNORP70nW4+p66hay+7sy/fRiNlUpl5rRvbgukV87DpxBZWq8z51Hr+MneJh8ouuIJCh/ej5yuTYlt7tbvIb27poCnejAxwa9BzJPm0df1his3sEisC3LU+pagRn/4Jq82Ed/HBw/VI200Fb1nrQFPapK16jMXUa/6fyqetos7+YZMJkDTKJCGTMt0bbPlSh8SdKaRSmtoWZ4XCXIEkg1TDXHtuykgNIEERyJtzkiyhlSLVWn/I2Oh+oTabNI2AdGQjkF0EjIOzN+v/Icy2lzMwxlSzKLAu/OJijsQ0LfgQc37LKojv4VkKTVvOjL6hys07sl4cKjuCGaNtLR3cz8cc9WbR6AypUuS71mv6fza1c4EqwbsZo/oGCKO9XIZ6enpQmTRr+eHi8iDJ/FXORMQUBQUAQEATiHwGnI3/YmmTvynm8f17Ndn15OxXsRff4nj+jt2n+z3Tx8E7y9PLmhz40SHjgLh3Th8u1qRUPe23xNKVNNjUEdmjBNjDZlWYPxA9+U9g/DxGdEESiIqI3nXdO5YA/hrdqQeSqLdkweyzsxrzFTKuBkw2iinGxTQfGwZ6E2KIGQSWZcxfhV5nZ6ismeRhn4YhubJoFSX6rdU/ea3DNtOGGf6N5vyCrtgQBIxAE0cA8q30idWDK7Stnebscr+z5OGgFARPnD27jNmE2Xmtmb5x5QzowWS1WvSHPFVpHiC2TMBfY+NJ10RY/AkCwIUu+6xWhH+Cz9tdRTIYRAd24z3dc11HcEKWNIA74lWILIGypkyqdF+PNHYV/6fXiHr6mtL4IFMHbXxwVfe/CRQFzg+CoTc8q4VBX5to+f3/T341DDaWSICAICAKCwGuBQCIfH59Inxje3t5069YtCg4OTlALho9V5tyFOIoVe5xBA2MuIGtZC5Skm2pLDZgfoytDV12gkzvW8lsysGkvHu7YENhaEJ3qrky+eG9rbAT9ZFRmx0d3bhFI1MsSRDdDo3nt1CGDQMT1WIiAxabZvmcORyBA0RkLwSUw82PbntgIsMXr9bDvoSaF0e3PEdywL2KWvEXUNjlPjB8J0R0nPuqPGDGC8uTJQ8ePH6fhw03R3/ExrowhCAgCgoAgkDAQcFry97Lh0+QPGrNXJdg0GsTFnsCEOaq5KdrUXp3XLb9Co4+jfMcvtqax3r4moeLwKtYze/ZscnNzo549e5Jo/hLqnSHzEgQEAUHg5SHgdNG+Lw+KiD0b5rSIRfGSA18yj/QZ7Y6lg0nsVngNC24rDav2t7S3PGyg7CzyKtazatUq8vPzE+LnLDeJzFMQEAQEgThGQDR/cQyodCcICAKCgCAgCAgCgkBCRsDpAj4SMpgyN0FAEBAEBAFBQBAQBBI6AkL+EvoVkvkJAoKAICAICAKCgCAQhwgI+YtDMKUrQUAQEAQEAUFAEBAEEjoCQv4S+hWS+QkCgoAgIAgIAoKAIBCHCAj5i0MwpStBQBAQBAQBQUAQEAQSOgJC/hL6FZL5CQKCgCAgCAgCgoAgEIcICPmLQzATSlfJUqQivGItsg2iE8pcHZ0H3tCRXL1JJSaSOIkbpc6QhVxcXGPSXNoIAoKAICAICAKvFQJC/l7y5QTxwPtbQV5etoAc9f5tMw1YfJg+nbyGWg+e9rKHjJf+sa4eU9ZG+WYPe5Op3qYXfT57G+EVbSKCgCAgCAgCgsCbjoC84eMl3wHuqTypXpdBtG/VfPpn4tcvdbRyDT6iNJl8aPOCn+nMnv9i9E7jlzrBGHaeKFGiGLY0Nbt74zJjEfDwXqz6kcaCgCAgCAgCgsDrgIDTav6gUctZrCLlKf0Wubknj3AtYPIsULE2kyHzQtfEick9ZWo2ieYpXY0SJXIhj3SZKEueIubVuE5it6QEE2qBCrUimBzRj/W4mBPaQNAvxkmmPpAkydz5HHloay3pfXLzOBgvuoJ5oN+CFWtRyPPntHPZb3TH9yI9vnvLoivMyadgKcpdqiphrrYE/egy7/zFKVfJysZadL51O4yfJKm7ke2RPhOvJVvhMnZNrfbG0Z1grjmKlqdMuQrprBgdgfXhf/+kcR9Voge3r1v0gXknTZ6S87LkLRrhXkEBz1NdU5iMgZv1NdcdamyBl63ri/sCfUEwZsHKddgUrdvLURAQBAQBQUAQiC8EIrKQ+Bo5FuM07jOGSrzTTJESk0YI7+D9Y1R3Orl9LT+k23+3gEA8tNzzu0rTejcmaH6qtOhKNdp+TmFhoUxqnty/Q8kVUURf0JbN+6YDN/tq0UGub+5ntmfFXFo5aTCXN+8/gQpVqUdD6ufSwyjT4nYKU//GflCOchQrTx9/O88oK16jCeED2bxgIm38fRynQTrajfpdkUwPPsfX/rV/0N8TBhjnUSU++3UjpUrrZVTD3CFXju+jGf3e53T+8jWp5cBJipgk4XNgtm7Gt7Tjz+l8ji8QT7Q9f2Ar46cJnf+185Q+a246tWs9LRjWxaivE/3m7VFE8zZN6Pi2MjtvUiQqmy5SOIfRhlljadviKUaevXFuXz1HE7vUJmDSYewig0g/unPTaBudRO1PvqLKzTsbTab0bEA3zh83zoGbm3sKCg15bhAzlE/9rBHfH6gIPO5ev0xpMvvw/YL75sC6xRbXp0y91vRu92Hk4mryKQwNCaG/xvenwxuXGWO1HTaTsisye3TT31Ts7UZG/qwBbeji4Z3GuSQEAUFAEBAEBIGXjYDTaf6qvt+VStZqTk8e3KE100bQr32a0rn9m8k9nDy9/WFvJi54YC8e/RldPraXNTrN+o23wHL333Po5sVTlMIzHe1fs5B8zxyhvGWrW9QB8QMRwoP86eMHVO69Dylz7sIWdcxPErm8gPPqyQM0rU8TmjvkE64C4oRzfLYtMREhaJPaj17AmqBdy2fR/KGdyP/aBSpdpyUVrlrfvOtI0zO/bM393vO7oohMiDHOkjG9uR3GeX/ARCYnu5bPpPUzx1BIcBDV7jCAtZ7WnUPDFRjwmP6d/b0iu0Po+tljvH6QMmuBNsstWXK6euoAF92/5avI3hj6pVtdWjKmFz19dF/56vUnaAOtxXqcG+dMxKz14KnkqjSTB9YuYoIKch4T2b50Gs36qg2d2Laam4OIWktSRf4e37vN98rNS6f5+pZ9t41FtbRZstPJHetoqcITuOD66B8F8OVs0HMkBQc+pdVTh9GKXwZRcNAzavLF2AgBN/iBUbR6A76nFn3bg45tXak0tcEWY8mJICAICAKCgCDwshFwOs1fpaadGJNfutZhzRxO5g42ESykS9RqhgNN7dWQnj15RMe2rKBBy09RzuIVOV9/bV8yjR/YCALYtniq0sY0JO98xVjb9DwokKsFPQugOV+34zS0Q037jlOawy5MFHQ/9o7ow/f0YUMjB80Yzs2lZO0WbEa8eGSnoSUCgWg7fBZVatKBjm9dZV7dbhomXkjQs6cUGhoSYZx8SusHs+OFg9sVQRnOdaFpBJGu2OQTWjt9FOfpLxDIsW3K61Pas+J3+nj0PDbDIhPtcB0mdqlF+crV4HonlNYVArIFQXTt/Zu+dHr3v0zWsxUqw9eCC8O/bI0Dcz3M8FjT8glfcU3PjD5MvM3bOpJ+8uAuAdvcpapwda0ptm77W7+WfC899L9BHb5fzJpH8zrPnjykP0Z256xshcsSyCGI8Ln9W6hup/9x/qb5P9GVE/s5vW/lPNY4llYawS0LfzHvSvl+LmCCiExHr69FB3IiCAgCgoAgIAjEEgGnI3/uqVITTLX2nPehiQp8+oSJn8YGGrEMPnks/M+eBTykIFUPEhjwSBGnAE6j/aNwXzlNqlAAEgPxzJiVj3HxBZ86CHwXu0xYbtGlR4bMFuexOckUHuV67sAWo5sT21cziUufNZeRpxO3Lp/WSeN4du8mnidIT8na77Pmq3TdVuyTB43a2b0buS5MrZWadWQTqdFYJVKmSW9+ymlb42QO972EJlbL6d0bYkT+dPvIjrhX9L2kyZv2A9Tt/M6f0Em6fu4op5OrQB5I2sw5+Fino4kE8kn4F7bbsZbd/8yxzpJzQUAQEAQEAUEgXhFwOvIXFhpG5uZVW2gloqijQ9EP/LcgYaHqGG4RhOO+FnNNkc7XfYeGt9V1cYSpMlSZ/xwVHldVXjiyG10+useiWXDgM4vz2JzodSYy2+dOY2jLFArzp7Uc3fwPm4kLVa6nCE82FTxxg30eQZZhgkegCYIz4GMHH70NymR8bt9m1pJhqxUVAmPdJdkaB5pLa9Fztc6Pi3OYv63Fxcx8jzKYcQ2xYToGvmNalzWq6AR+VJgLsL595ax5lqQFAUFAEBAEBIF4R+AF04n3oWM2IExw8LdK6RlRk4QeAx7eZ1MqSImWtJmzs2+VLWKh69g6ps2Sw8jW5s17N69yXlCASWuIiFQI5gT/MWvRJuSUaTNYFynz7CHOy5qvOGufoIHSH/iQxZXcvGgic3mUL5+WQpXqcBI+ho7IQ38/NpOXqd9akWUVxDHzO7WRdH7ly5eZrp8xacNK1GzKXa35dSQd2rCUt1fJX+EdR7o36mgtm9aKogDBKglVgB9+GKRKl9G4dvoaghBHRwoXLkyTJ0/mj5eXV3SaSl1BQBAQBAQBQcBhBJyO/G1dNJkX12PqOqrWsjv78n00YjYh4hJycN0iPnaduIJK1XmfOo9fxhGuFw5t5/zofCGQof3o+crk2FZFcw7lplsXTeGjDnCAsz8CUDr+sMRm1wgUgW9bnlLV6K3WPXiLDx38cHD9UjZRQ1vWetAU9qkrXqMxdRr/p/Kp62izv5hkwmQNMokIZMy3Rts+VKHxJxyJu3PZDIe7BNEBqYa59tiWlRxAggjXM+EmX0QpQ6q1+lRtwVONPlCbTEcWIGNrYBAnBI2AsDfr/yPPtZQyM8dETFsBVeO+0D5bodI8r7jccHvtjFGMI65//a5DKGv+Enzt+szcYhH17Mj8PT09KU2aNPzx8HgR/e1IW6kjCAgCgoAgIAg4ioDTmX2xNQmIQZn6H1DNdn15nTC7YRsWyKb5P1P2IuWYFDbqNZrz4Lu3dEwfTmtTK9poC54pbbL7IrBDC3wLsT1HjmIVOAv75/ldMPl/IRIVpCRrgZKErWdQF5GgtmTD7LG8vQy2mIFgE+aNv49ns/OMvi0I5BV7EuIDgcZoTxz6hmF9C0d04zd+aJKMvDXThhv+jTxw+BfIqi1BwAjIHIJooEUFrvAZ1IELMGliuxxETSNoBWbO8we3Ue6SVZS2MGKf9saZN6QDE+Bi1RvyNLBVDzavjq7mtt23v1v4Htbv9g33h/3+xrVTQSD6BrC1WLM8fc+YZam5mFwG/K+ep2U/9KWGvb6l8g3b8Qf14Ev43NxcbN7YTtpc2+fv72+nlmQLAoKAICAICAKxQyCRj49PuLeb7Y68vb3p1q1bFBycsLakgKktc+5CHMV6/exRem7luwWnfRCzmxdOxuhNF0NXXVDbe6xV25WYto65duqgChAJiAASolPdlckXJCA2gn4y5iqo/OVuvVS/MEQ3Q6N57dQhJp+xmbO9togsxqbZvmcOM5G1Vy+qfASXwMyPbXucQbAlDKKc71y7SA/v+EV7yiNGjKA8efLQ8ePHafhwU1R2tDuRBoKAICAICAKCQBQIOJ3mT68Hmqvr547p0whHaOGwR19sBT570HjZE2wngk9sBX1Yj4NNo0EK7Qn2iBvVvJi9Ypv52NvwZQsw05GzsRkLpN5aKjT6OMp3/GJrGuvta6z7eRnnIKmxIarqhxhrS+H3JyIICAKCgCAgCLwsBJyW/L0sQMz7tRUJa17+stOXju5WARUZ7Q6jg0nsVngNC24rDav2t7S3PD+l7XVGWbVqFfn5+ZGYfJ3x6smcBQFBQBBwHgSc1uzrPBDLTAUBQUAQEAQEAUFAEEg4CDhdtG/CgU5mIggIAoKAICAICAKCgPMhIOTP+a6ZzFgQEAQEAUFAEBAEBIEYIyDkL8bQSUNBQBAQBAQBQUAQEAScDwEhf853zWTGgoAgIAgIAoKAICAIxBgBIX8xhk4aCgKCgCAgCAgCgoAg4HwICPlzvmv2xs04WYpU6j3C+SLd8zBVWi+ukySpe4LHx5H1JPhFyAQFAUFAEBAEnBYB2efvJV+6xEnc1Kvo2vBrzvD6M2eX+FxPcvXmlM4//sWvdgNuV08eoOlfNLeAEK+Sa/rFD4S6kA2zxpB+/7JFxVic4M0d+crWoEMblqg3jjyKcU+OrCfGnUtDQUAQEAQEAUHAQQSE/DkIVEyruafypHpdBtG+VfPpn4lfx7SbBNMuPtdTrsFHTPzwLmS8M/jx/Yjvu337g16UNHkq+mt8f/VavHP8vuG4BqtI1Xf5PdI3zh+jy8f2xrh7R9YT486loSAgCAgCgoAg4CACTmv2hQYqZ7GKlKf0W+TmnjzCcvFatAIVaxtaI13BNXFick+Zmk2IeUpXI7wj2CNdJn4Xra6DI+rgHbUw0RWoUMvQLOk66Md6XMwJbSDoF30kUx9IkmTufI48tLWW9D65eRyMF13BPPAuYwjeh5smk4/dLuyNg/bWY7u4uJpwUOuK7nrsTiC8AOZZaO0wX2vBeoBTwYq1+N3AO5f9xqTu8d1bRlWU44P3Id+/eZVO7VzPdWxp5jLnLkz5y9eklJ7pjfbmCX2veGbMap5NuJ4YI7FbMs53T+nJ58iLjjiyHuBhfV+gHXCH6GuBI64V7t3IBGsuWLkOwRwuIggIAoKAICAImCPglG/4aNxnDJV4p5l6MCbiteA1bH+M6k4nt6/lh2T77xZQtsJljHXe87tK03o3poCH9+it1j2oRtvP1TtUQ/nB+uT+HUquiCL6gnZp3jcduN3QVRe4vjYnInPPirm0ctJgLm/5v1+oUJV6NKR+Lj7HV//5eylM/Rv7QTnKWbwiffztPKPMPLF5wUTa+Ps4zgL5aTfqd0W8PIwq+9f+QX9PGGCcR5XoO3eXIqIpKDTkOZMT1L9x/jhN/awRrxPnUY3T5pvplK9cDVo2rp8yby5FE+o0/k/Kmr8EzR3yCeFVco6shxtG8fXOx/2pSosuxvULDnxKc75uR1eO7+OWWI8t0oLyGf3e5zq4PrZk3W+jafuSaVyk3wOsCTkyty6arEzDY7kcJK79mIWUMUd+PsfXzUun+V7Behv1Gk2l6pjGMyqEJ378pDrd87tinW3z3NH1nN23ieYO/oT7wP3d5POxtHRMbzqy6W8qUu09avHVT3xdQewgwG3V5G/owLrFfI6v0nVb0bvdh1kQyX2rF9A/Pw806khCEBAEBAFB4M1GIKIKKoHjUfX9rlSyVnM2AW5bNIX9wKq3+Yzcw8nT2x/2ZuJ39/pl+nfOD1TuvbaUvUhZatZvPP0+6GNjdbv/nqM0hxUoY84ChIcjHqjQRJkLiN/5A1vp6OZ/qE6ngaqvD+mAImYgVrYkkYsLhYWGcBH806b1acIaww+H/kandq2nLX9M4jLt+wctTvvRC5RWMBntWj6LLhzaTrU7DKDSdVryuMe3rrI1jM28pIr83b56jlZMHETVWn3K6yn7bhtFWH83EeIoxlkwrAuBpIDwXDy8k4pWb8jED8Ti7N5NrNGMaj02J2aVmSlXIcI1DHz6hDbMHEOZ8xTh6/nB4Gk0umUprj3zy9ZKY+pBLb6cQKkzeNP0viY/v8d3bxu9Te3ViIB3h7GL6aH/DVr83Wdcdtf3klEHJP95cCCT14f+flS8RhN6fO9FH22GzmDih2sDYl+2/gdUsFIdavLF97T4257sP7hvzQIqVauF8tv8gLG9rky/kIf+141xoko4sh7rPlzU2mxJJqXp3LZ4Cj15cFfdK19R7Y7/M8gfgmIa9ByptKXBvJ79axZSsbcbUap0GW11JXmCgCAgCAgCbygCTkf+KjXtxJfql651WDOHE60tQbpErWY40NReDdk5/9iWFTRo+SnWxHFB+Be0Q9CcgPxtWzxVPSQbkne+YkxyoPWBBD0LYI0U0tCqNe07jjVWi0ebiAby7Qn68D192NBggbjg3FxK1m7BpuOLR3bS4Y3LuGj11GHUdvgsqtSkA0WH/KHxb/1aMiYgQx2+X2yYVB0ZJ1SRVmjVek5bT10mLGdtKDSmy3/8kuflyHq4YhRf0PhBQPxATCFZ8hQmkEJ8/C6cMPz2gp49JczLGje0uX72KA5Kwigw4FGEOjDZQht678YVunx0D/ejta1oBTOrT8FSjBc0sZCtilTlKllFBXe8zecgWPjkLlGZz29dORNhHC6I4uuO70WuEdl6oujCKL50ZDetV9hBytRrTWmz5OA0vkAGocFer7Sf+DEBAZ4igoAgIAgIAoKAOQJOR/7cU6UmmGphwrUlMOVBq2Tu+wXzXAafPKwB022eBTykIFUPAvIAogdB+0fhvmX6oY3807v/xYGs/cI4M4Zf3vmLc0v4LoJwmYtHhszmp1GmsWaNyZUT+7m+9gN0dBysd820kRygEhoSQtM/NxHpKAePRgXtj3hi22qj1SVFzkD8Muc2kT+jIBaJ58FBrBXOVqg0Df7nND24dZ12/T2L4D8IgTkbAu2uNfZwI0iocnqP6T7E/O7euEzpvHMaU9VE8MC6RUaeJAQBQUAQEAQEAWsEnI78hYWGsbnPeiHm54nI5AtonmedRj/w+4OEhapj+PNeO9gjX/sUmtImM5zuOzS8Lcq0uCptU6jSJjoqPK6qvHBkN9ZOmbcLDnxmfhplOkSRHWvRpsPojIMgC4iLqyvlLlVFaST/su42Ts5hstWicY5r0jWjbwtl6m2s/PZaKi1faarb6Wul3S1OS77rZVz7I/8tJ2hbzUXjZZ4XH2mNA8ZKaifwJzDgsTEV3MMWEk5aze9hi3I5EQQEAUFAEBAEFAIvnsBOAsezJw9ZW2MvcjPg4X02pZpHZKbNnJ39oGBCjI5oTQraIBgCck9FlkKCAkxawxxFy/M5NEjwu7MWbUJOmTaDdZEyIR7ivKyKkEBrZ/6BSTquxNFxKjfrRDmUHyRM5U8f3afGfcZG0HRGth5H5ntXmWEhhavWN6pnL1KO0/Z8KY2KMUiAvMLnbkTjgnwP5C3zFvdyLRx7+MmZ447008cPLEYKDjIRcU8vb4v8uDzBD5G0mXMYXSI6ObqiNdX2glR0f4ULF6bJkyfzx8vLS2fLURAQBAQBQeANQcDpyB+iNSE9pq6jai27sy/fRyNms/8T8g+Gm7y6TlzBkZqdxy9TkY9JOJgC5dERt2TJVUDGfA4aebf7UG6qNxC+euoAn8PBHgEoHX9YYrNrEAmYUPOUqsaRxth+wyN9Jq57cP1SNlFXbt6ZWg+aQiCS0FQhyrZS0442+4tJpiPjIOCl1idf0aM7Nwk+jbMGfMgaVqzLXJMU2XocmdvW8KCXmu36Kv/JrtRcBXXA7xKk6+bFU4504VAdYNxjylq+L9B/5ead+D64f/MatweJvXR0tzI3F2S8C1WuywE/LQdO4mthPojvmSN8+k77/ioopA1vIWSOiXndmKafPnpAaTJno+offKbM7oP5XohuX2tnfKs0mmFUq/2X1Kj3dwSTN/pq1v9Hi648PT0pTZo0/PHweBFlblFJTgQBQUAQEAReWwScjvzt+HM67V05j/fPA4HA9iO5SlZWUZymDYA3zf+Zo1WhpUHkKvzdoBFZOqYPX0Rt0oOmRbt2mdImExoCO7TAtzC7ImQgfvCfg7+YdqA/sHYR+5TB5wpbz2CrFnOTnO4Dxw2zx8KGzFvMtBo42SCqGBemSYyDPQmxRQ2CSjLnLqLyTOsx78duWi/EToWoxgGR+Xg0tqUJM7ZSwToRIIEtV5p/aUke7K3HzvAW2bcun6FN8yZwwEUtRaaKvtWAglVgx7whpi12LCo7eGLTXKwuZ9osOTn6tfsvq9Qmzf3owe0btHBEd6PX+UM78TWE/x9IH6KyEe0boIiYuWCLmdO7NjAW7/UYzuQQb/2IS1k15Rv2O0W0OraouXbKpBUOhUuCEn1f6vvX1tj+V8/Tsh/6MgEspYKJEPSDvp49fmhR3Vzb5+8fjfvMohc5EQQEAUFAEHBWBJxynz+ADcKCAAHs4YbITzj4mwvIWtYCJenmhZM23wxhXtdWGvvIndyxlpaofdawZ+C1UwdVgIgpKMS8PjYIdlcmXzx4YyPoBxsWP7pzS72p4mxsuoq0bXyNE+kkVCE2NMb1QTRtbLGLbCyQ8zSZsikt3y7eq9BWXUT+ZslbhO8h3C/W95KtNi8rDz9WoAHV5vWYjoN1Y/Pym5dOsVbVvJ8RI0ZQnjx56Pjx4zR8+HDzIkkLAoKAICAIvAEIOC35e9nXRpO/hSO6veyh7Pb/+ezt/CYSexWwn9uo5sXsFcdrvt5QObJBsbXL2umjIqviVGXYmzB3qaqRzhnbEGErn4Qks2fPJjc3N+rZsyeJ5i8hXRmZiyAgCAgC8YOA00X7xg8splFsmhPjcQLwSfNIn9HuiLHVDtntOAYFt5XmU/tB2mvup7Rqr5NcURt5uyWPGORjvkZb7yM2L38V6VWrVpGfn58Qv1cBvowpCAgCgkACQEA0fwngIsgUBAFBQBAQBAQBQUAQiC8EnC7gI76AkXEEAUFAEBAEBAFBQBB4HREQ8vc6XlVZkyAgCAgCgoAgIAgIAnYQEPJnBxjJFgQEAUFAEBAEBAFB4HVEQMjf63hVZU2CgCAgCAgCgoAgIAjYQUDInx1gJFsQEAQEAUFAEBAEBIHXEQEhf6/jVZU1CQKCgCAgCAgCgoAgYAcBIX92gEmI2SlSJKP06ePmXaxubokpR46MlCRJxK0ekefl5UkuLs5ze6RNm4rXkzRpEocvHfAEBs60TocXJxUFAUFAEBAEBAE7CDjP093OAl51do0aJahMmXzxMo2xYzvRnDn942SsRo0q0bRpvalw4YjvqG3btibNnfsl5cqVKU7GepmdlCuXn5YsGUQLF/6P19OkSWWHh+vW7T1u4+WV2uE2UlEQEAQEAUFAEHB2BCKqfZx9RfE8/969m9CdOw+pffsfXvrIly7dJFfXuOHrLi6J7M73+vU7dO/eY3r4MOK7jO02ekUFIKrJkyel779fQleu3KJr1/xf0UxkWEFAEBAEBAFBwDkQcFryB9NkoULZ1DtKE9OxY5fo6dMgA/HEiV0pWTI3evLkGeeVKZOX7t59ROfP3zDqIJE6dQrWfCH/5s17FmU4SZ8+NeXL580k6MSJKxQaGmrUgckwUaJE/HF1daWUKd25LDj4OQUGBhv1kIhqHIvKNk4wDkjfuHFLbZQSubu78TwCAgLVfLOq+T5Rr++KuB6YREuUyE1nz/ra7AeZwG7DhoP8ef48xG69PHmyUKZMaQi4AFtr8fHJQPgcPnzBuA7WddAHMD59+iqTTevyyM413rlyZea17thxgqvra67bwqybLZsXXb58U31u6Wy7R2AJM7B1P46sx26nUiAICAKCgCAgCCQgBJyS/PXt25xq1SrFhAdY4h28w4fPo23bjjO0DRtWpK5d36U1a/ZRnTqljXrLl++kX375m4naDz90ppw5X5g1L170Uy+6/4WCgp5zH7Nn96PMmdNyGl8Y47ff1tIff2zmvD//HGz0CxKEc8i5c9epe/efOQ2CEtU4XDGKr8mTPzNMsCBk9et/bdFi5sy+TABDQkINEop5fPrpRJ43KjdqVFHNq4ExZ2j2rKVTp3rUokU1IxvrQD/mUr9+WerRoxGTRJ2/atUe+vHHZXwK8jl6dAc1j2S6mFav3kvjx/9pnDduXIk6dqzHxF1nLly4ifHV51EdNd6olzVregP/X39dTYsXb2HCvWDBAIt5gpQPHDiTjhy5aLP75s2rUufO9ZX28DZ98sk4ruPIemx2JpmCgCAgCAgCgkACRcA1derU30Q2Nw8PD6UFeWKh9Yqs/ssua9WqOuEhff/+E5o9e53ygdtAGTKkphs37inNnomoFCyYjf3woFmCqXTGjDVsEnz06ClrCceM6cgaMmiLJk36h4lTsWK5yNs7PW3deoyXULlyYQKpmTx5BbcpXjw3VaxYUBGZfQQN265dJxW53E/vvFOStVZffjmDSc6qVbu5HJ04Mo4jeB06dJ6JbfHiudjEOW/eRotmwMPDIzlrwCZO/Js1brlzZ6YHD54ordo1gpby++87E4gjsPD3f8gaT2gU168/YGgJoQHdu/e0wiMpZc/uRStW7LbQyEGLNmLEx3wvmAjfn6xxxdgg3tCYzZjxuZqjG4Foz5//H+XNm4VKl87LWjeteQM5fP48lL7+ehYtWPAfa9nu3HnEc7VYWCQnu3ef5mtRu3YpunXrAQ0YMJPxP3DgHBN4aDnLls1P06evZlIJzS78A6tWLar8Azdxz5UqFaLcubPQsmXbqWHDStShQ126cOEGdenyE5NmR9cTyTSlSBAQBAQBQUAQSHAIOJ3mD0QH0rnzj0xukB44cBYOEQT+X126TLDIBykoVCg7m3JBTiALF26mUqXyUPnyBYy6/fr9ymlEvYI47Nx5krWICJDYvPmIoRGDKTgwMIhNl0ZjlXB0HPM29tJYBz4gr+nSedirRl98MY0x8fd/oDRtXdlkjcr165djjR80oUu0emt+AABAAElEQVSWbOX2hQtnUxqzDBZ9gSzCTAuyBgE5NBdoBpEH7dpff+3gInNTet26pZlIow+YjiGTJq2gUaPaU7NmVWjLlqMcXQzT6o0bd1kDB/xmzVrPdaPzdebMNaM6TLQwHZsL/BW7dfuJCamPT3plnr7MGMJ8ay1t277DmuSTJ69Q795TDG2pI+ux7kvOBQFBQBAQBASBhI6A05G/VKncldbvsUH8IgN42zaTFs+8ToECPnwKbdXEiZ+aFxkPfWSC6IBoWhOgNGlSWrSxd+LoOPbaRzf/6dNAA5Pjxy9zc2jwINDiQfbuPcNHfMFXz5r8GYV2ElmypOOStWv32ayRP78JW2gorbHNkMGT28AnEmODRK9ePUJp7e4rzdsOZbbdZrPP2GSOG9eFihTJEaELEHNzv0y4EEBA/mDe1+LIenRdOQoCgoAgIAgIAs6CgNORv9DQsAiEzB7YCASxFv1w37jxEJt0zcvhMweByRS+b4jihZ/fvn1n6L33KhAiS63JoHl787Qj45jXj206ODhicIaODNZzMR8jJnvbaV5kDwM9zrBhc+no0Uvmw9GzZy8Ccvr0mUI1a5akevXKctAO/DMLFMiqNIQLLdrE5gTXCsQPWshFizYrYneVNZAg5daRzjD1g4ximxiYr/V94+h6YjNPaSsICAKCgCAgCMQ3AnGzb0g8zvrx46fszO+oBs56aqdOmcyD8F+DmdP8g74hWhM0ZcpK9olDcAT8/WwJCELy5C+CG3QdR8bRdV/28eLFmzxE+fL5jaG0ZtLIcCDh62vaRqVu3bI2a4NgQaAxM8cVaXNNG+r8++9B6tt3miLVg9kXsUyZF3NDeWwFvn24NgMG/MYaT1xbkHpb8uuvq3guKBs5sj2b7JGOznref/999WNisvLzHIOmIoKAICAICAKCQIJFwOkCPvBAh09a3bpl1PYnrhzN2atXE35g6y1MdMAHtHu+vncswId2D8EbID8ICAApQLTuJ5/UJWzYvGnTEbp9+4EKAKjIgRPYMqVLl3dVm1zcD7SAmtgho3bt0pQxoyd5eqbkOWDrGWx94sg4FhOzcwL/OGzPApNrlSpFOJoXQRw4hzYNW9zAPA1N3qJFW4xe4Md29eptXs+lS36EQBlsiwKt13vvlaeiRXOyFtM84ANrhE9cyZJ5lKk4IwfLpEqVXPnpuTKZQ+Rvw4YVVHluxgx+ddCQQosHjRmCJZo3r8JYIdgGOBQpkpP69GnKQScw92JrlwkTujM+ISEhjB+uJ+a6cuVuY/6OJtq0qcFzs26bLl0qQhAPxoPr4oABrTgwCP0i4APBL+YBH9ev32U8K1QowHjDP9KR9eh51q1bV5HL3Or6pFQm7D91thwFAUFAEBAEBIEEh4DTmX0RsIAtWEBg2revzYCCEP7zz64I4MJEbEsGD56tTICfsMlx0KA2Rh/r1u3nNKJSd+8+xdGhCFZA/wcOnFVBIXkjRD1j7z300aBBBf6AgGKLFUhU43ClKL7y5vVmc6V5NcwJAu3Zd98t4vlhjvYEBHHcuD/p88+bKtP1O1wNBBdR0uaC6GRzk+6nnzbkYvjlffjhd0zQxo5dzGSuTp0yKgCmDJdr7DEHmHSBLYgVPhAQLUT/miRMRVWnU4EVTfgUbTAXmIpjKrbWvmDBJial2OoHH8wB5BWkVN8XGjJ9jnurWrWifF/ABIwo4KjXY5q1p6fJp/HZM9PekjFdi7QTBAQBQUAQEAReNgKJfHx87LMGNbq3t7dyyr9FwcGWGxe/7IlF1T9ICh7k0LSdOeOr5mfany+qdublcPwHuYK/HLQ81n2gb5RD0wbyEFOJapyY9hvddtjAGb5t2NMwtm/vwN56iDy21xc2toaZFX6TeosX8/miPUg8fPL03orm5XGVxjt/4SJgHpUck76jWs/s2bOV5jep2n5otgpkWR2TIaSNICAICAKCgCAQLwg4LfmLF3Re4iB6o+PIhvj7753q3bOrIqvyWpWlT++htn3pF+maQNI/+2xSpHXiu9DLy4t++ukn3g+zQ4cO8T28jCcICAKCgCAgCEQLAacz+0ZrdQm4MnzcsLVIZAKi8ybJs2fBUWKi/ToTEi7Yq3DFihUqKtz2FjgJaa4yF0FAEBAEBAFBQDR/cg8IAoKAICAICAKCgCDwBiHgdFu9vEHXRpYqCAgCgoAgIAgIAoJAnCMg5C/OIZUOBQFBQBAQBAQBQUAQSLgICPlLuNdGZiYICAKCgCAgCAgCgkCcIyDkL84hlQ4FAUFAEBAEBAFBQBBIuAgI+Uu410ZmJggIAoKAICAICAKCQJwjIFu9xDmkr2+HeA0eBK+8syd4PRw2RIZgY2zzV+HZaxOTfOwJ6OaWhK5ft3x9X0z6ik4bbBrt4ZGcbty4G+F9xfb6SZEiGb9N5cqV2xHeEGOvjeQLAoKAICAICAIvCwEhf7FEFu8Dxtsy8M7f113wTl68J/f990faXerQoW0pa9YMXI73G9erN9Bu3dgUjB/fVb25I5V6zd+g2HTjcNty5fJT//7vM/FDo99+W8vvCHakg27d3uN3GH/00ZhIibMjfb1pdZIkScyvcsTrFW29KeZNw0PWKwgIAoJAXCAgZt9Yooh31H76aYNY9vL6NO/ceQI1ajSE36P7+qyK1DuRa1Ly5Enp+++X8BtGVqzY/TotL8GuJVUqdwJ5xhtxRAQBQUAQEATiBgGnJX/QCBQvnovKls1H7u5uFmjgHbYpU7orLVUi/qAO3jNrLTBPVqpUiDJmNJkzrcvTp0/N5UWK5CAXF0uoYMrTY7i6msbDOd7jay1RjWNd3/wc7xdGvxAvL08qUMDHvJjTqIOPuWAewAGCNIhL9uxelD+/qT3ei4z1xUSARZky+ZSGL32E5jD1Pn0aFOW7kDEnaNPy5csaoQ/zDMyzSpXCBHNrVAKcrO8FtEEfFSoU5Hf8RtWHdTn6xCdXrsystdux4wRdu+avXuX2zKJqjhwZqVq1ooyxRYGdE8wT95C1wGyOe9JWmXVdW+e45/F3gflAcA8gz1rsjYNri/XiiHsG19meRHVfo72+Hvgbw7qQZy72cMOcMQ+QP0jSpG58jjx9X+t+ULdQoWxUunRewv8LtgTtdBn+BkqVymMTF1ttJU8QEAQEgdcNAdv/UybwVfbt25xq1Spl/OcdFhZGw4fPo23bjvPMGzasSF27vktr1uyjOnVKG/WWL99Jv/zyNz9EfvihM+XMmclY6cWLftSz5y8UFPSc82bP7keZM6c1yjEGTH1//LGZ8/78c7DRL3zhcA45d+46de/+M6fxwIlqHK4YydeXX7akqlWLsO+cJn537z6iL7+cbpjB5szpzw/E5s2HGz39888wAlH55pvfaezYTor0ZTXme+vWfSaSWNP06atp8eKtRruoEiAlK1YMMx7AV67c4vVq3KJqj/JPPqlDLVu+ZcwnMDCYBgz4jY4du2Q0r1+/LPXo0cgYBwWrVu2hH39cZtQxT4wa1Z6JCjRyP/30Fxfp9yebE+OFCzfxdTRvG1laX1fUAdnV57/+Cty2sH/jggUDLOaJ9QwcOJOOHLlos+vmzatS5871FYm8rbAYx3VAgkeP7qDuzReEcPXqvTR+/J82+7CVmTevt6rf1fghcPPmffXDxpP/DsaNW+rQOLjXBg5szfcxSDME65k48W9au9b0+jpH72vg8ujRU/4hkCVLOu4LPw7q1/86StxAYMeM6cht8PXOOyX5g/T8+RvVO6DXI8mkfvDgNgb+uKdxbZYseXFP457Fddu//yzhh5z+gYZ7t2PH8dyPfAkCgoAg8CYhYKnOcoKVt2pVnf2n7t9/QlOmrGATHPztUqQwaQjMl1C3bhm6dOkmm+rw0AdpgowY0Y6JH8gRSMf27cf5vF+/FkZzECSQvc6df6Rvv13ID7EOHeoa2rJPP52oyOIkJov+/g85jfPBg2cbfTgyjlE5igT86EB81q7dz1qwbt0aRNHCshjakdGj/6Bnz4KY+I0Zs4g1dA0bRs+cBu3JnTuPaOTIBXT+/A3Kls2LunR513KwSM6ggcU1xDw0oQA5g6+gFmiDevVqQniQ//PPLmX2+4kJarJklhpeXf/77zsz8fvrrx0G8UPZxx/X5uvTv/90RbJ+YNKAaxUd6dHjF762IC0IdME1xgfEDII5whcNeHboMI6mTVvF5GvYsHY2h/nggxpM/PDe5o4df+Q60LKBoKdIkZSwhsGD5zAxrFevLGsTbXZkI3Po0I+UdsuV1q8/QJMm/aPuk5QWtaIzDq4Tfujo9XTpUt/oKzr3NbTV0DCDuOOeOX78MvcTFW4nTlxmnL/+ehbXx9+qxl7/AMN6vv76A3J1daFly7bTjBlrKDg4hDp1qqfG9DDmqxPQDEJjO3PmOr738ENNRBAQBASBNxEBp9P8QWsCASl78OAJpwcOnMVH6y+Y57p0mWCRjV/9hQpl5yCN+fP/47KFCzezGah8+QJG3X79fuU0Hl43b96jnTtPshaxcOHstHnzEcOnLTQ0VGlGguj06atGWyQcHceiUSQnc+as5wcoHqLQgnh7mzQpkTSxKALZ2rjxEAE/ELYNGw4SNKQ6OMOichQnX3wxlUCOt249pkjQCNZM/vzz8ihamYqh8YPMmLGW/v57J6fz5PFmszwIBwglHt4gq9DggAxBkG9Lfv65O5uyzbVBqAeSCpMjonKhgcN10toiW/3Yyztz5ppRBOJgfZ0R7ANyCiLi45OeQFpw38Gsai1t277DGuuTJ69Q795TmDiiTt26pXmuhw9f4OuCvEmTVhC0mc2aVaEtW44iK1KBCRaEx9fXXxHJxVwXmusmTSob7aIzDuYCMgWpX7+ccb/F5L6GllqTPvztQKLCDZpkYK3N/ffuPYqAfYUKBZhoHzhwjiZPXsH9QsuHHxdNm1Zh4sqZ4V8IQGrVapSRpe8/I0MSgoAgIAi8IQg4HfmDD9D9+48N4hfZddq27ViEYm06xXYdEyd+alEObYQWEBAQJZAQc0mTxlKbYl5mnnZ0HPM2kaWhzdECEqL9l3ReVMfQUNPa8FANCQnh6jDnJU4cPeUvNGAgfhAQqsePn7IZnTMc+MqUyWRK37r1BaE5evRiOPnLwiRPmwi1mdFet9AYah/GQ4cuWFQLDn6uiNgVAlkHQcWcly3bocx/2yzqxcXJuHFd2Jxo3ReIEjDWAlcFCMif+b2m1wBTp/U9mSGDp24e6TFfPm8ux5q17N59yoL8RWecXbtO6W4Ugb5j+HdG977GddDEz+gwPOEobtbt9Dn8MCH795/RWez6AfJni3zDCiAiCAgCgoAgoPzBnQ0EkBhrQmZvDeY+ZLqOfuhCC6a1BboMmgEINFAtWlRT5s2HbPqFWfm99ypwxKejYzsyjh7XkaN5gAH6Np+HHkv3A58sa9HkTxkqrYtifW49viMdms9f19f9aA5uq46uq49z5mygNm1qKJ/PdsqPcCQFBATqIurTZwrVrFlSbTdTlgMC4AdaoEBWpVFbaNSJbQJRwPAjg6Zs0aLNithdZY0dSJKLi+UPB2hKQUahjYN/qr4/9bqHDZtLR49espgSNLaOiPa5NDeNm6fRR3TGCQh4EdDy4t550Udkfz/m871797H5qZGODm5GI6uEnhe0rlr0PaPXqvNxhF+viCAgCAgCggDRi/81nQQNaJpg4nJUA2e9LL3pMPzKYDY2/6BviNbQTJmykv2n7t17TBUrFrTuis/xkEme/IWTvq7kyDi6bmyPePDrqEj0pecf235ttUekpd7sGelUqZKzP6R13du3H7AvlnXUqt6UGZGxWooVy8nJ8+dNPlgwXULq1i3LR3tfWPfcuf+yfxu0bN991zFC1X//PUh9+05T5H0wBx6UKZM/Qp3YZFStWpRJFXxH9+49w5pQ/HiwJb/+uorngrKRI9sbgQcgjBBo5szvR6TNNYdcyc6X9l/TmjlUM3djwHlcjBNX97WjuGlSiz0dreXSJROZgy+fFkSGQ65eNd1DOt+R48CBA9UPwslq6yZLi4AjbaWOICAICALOhIDTkT/t7D19eh9q3fptKlEitwrI+IT9khwBHg8T+IDBZPTTT93ZXw1bjgwa1EZFxpqCDrQz/wcfvM2BBHCk15GP1mMg+AFEtGfPRtyXrufIONZ9xfQcUaPQeCBKs2nTyirQoVZMu3Ko3bhxXRnvKVM+4/r//nsoQruVK3dz3g8/dKEGDSrwNhzIQOANREf8/u9/rTjYBj5gFy6YHuYIMgCp7tixLn3xRTPWlnXv3oC++qolt7X+QlAING+IaMY1gyDI4Ndf+/A8c+XKpDamrsYRofDfjEvZseM4Y48AFWxlMmlSz0hN8vAHhC8j/BE1WV23br8KvgnkOeIeBBmGxhL3p/ZxjWrO0AxDs5UhQ2qeAzakRsCTucTFOHF1XzuKG36QQSOPLWcQLANyp7cogh8uyDHM5dhvs127Wnz/495ZuvRFtK85BpGls2XLpv6W0yjNf+7IqkmZICAICAJOj4DTkT9s4YCHPUyb7dvX5u0gsGcX/ACtRZuFrPMRkQvfKGhJQPpGjPiYHyqPHgVwVURvwl8K2kE43cOxHG8YgMDPzVywhQY0gyA46KtPn6ZGcVTjGBUjSViPZ6sqzNfwaXvrrWJqi5v36MwZXxvVTOZemFTxiYngoYqHf+rUyflhi8ARaJxmzlwboTs44SOoBEEQIMb4QOB39fvv/7LWC9HT1asXV5G/wSpqcxaX4+vq1dsctIDx6tQpw9uXYNsWS9P3CxMk2mBrFewvCAJg8vcK4yAFkIIpU3rxvQJtJEyrMRXMx1oWLNjEAUHYUgjEDfeM1sLp+0830+e4h6FBw950MAGjX5iocR+BQCJ6+csv3+cfHMhzVBDVjAAX/ACpWbMEaT9I+N1BHBlH3296rrbGjt59HREz9OkIbnpsRN3D9RY/agYP/pDefbccF2E9Q4fOZY0uglJg/oc2Gn8POrJf94GjXpt5nnk6WTKTBv/OnTvm2ZIWBAQBQeC1QyCRj4+P7f+dw5fq7e2tiMUttYXCC8f1hIACNF14yMHpH2RHP+CiMzeYCrE3GraHwNYb1n2gb5SfPn0tyk2LIxs3qnEiaxudMpAeaNBgLnzZAj83P7+7FN2tU/S88JAG+cZcQfbsCfbWS5fOg7VaWFt0Be0R9QrNIIjryxJEpUIDbC8q2dFx4dIAszH8TWP6OjMEAyEwB4EP+IGEbV901LSeR1yMExf3dVzhBu0ufBxh2rZF0vW67R0zZMhAP//8M7ft1asX/59nr67kCwKCgCDg7Ag4LflzduD1BsSRrQNbUcAE+rIFZm1zvylb40GzBgL1Ogi2RJk1q1+kS8GPgc8+mxRpnfgqdPT6gORWrFhI+anu5+18sK0OCFGLFiP4R0F8zdcZx2nWrJnCqYUKuDmq/DFHOuMSZM6CgCAgCDiMgNNF+zq8sgReEdoubPkRmYCAxIdgbzrr125Zj2vLrG5dx1nOYWaOCvuzZ22Zzl/NCh29Pt7e6dlFQQcnwR8OG3vHRGP6alb66kY9deqUcif5h1auXPnqJiEjCwKCgCAQTwiI5i+egJZhBIH4QgAmXZh9zX0k42tsGUcQEAQEAUEg4SMgmr+Ef41khoJAtBCID5/PaE1IKgsCgoAgIAgkKAScLto3QaEnkxEEBAFBQBAQBAQBQcDJEBDy52QXTKYrCAgCgoAgIAgIAoJAbBAQ8hcb9KStICAICAKCgCAgCAgCToaAkD8nu2AyXUFAEBAEBAFBQBAQBGKDgJC/2KAnbQUBQUAQEAQEAUFAEHAyBIT8xfCCpUidlryy54th65ffLEO2vJTcI02sBkJ79BNTSZ0hCyVJ6h7T5hbtIltPXI5jMehLOkmWIhXfO7iHRAQBQUAQEAQEgfhG4I0lf4mTuFGFRu1jTG4a9vqWPp28Jr6vl0PjgbT1mLKWarX/0qH69iq1HjRVrXG1veJI89P75KbPZ2+jmh99EWk9RwojW09cjuPIXGJTB+vo/dtmGrD4MN87rQdPi0130lYQEAQEAUFAEIgRAm/sPn/uqTypXpdBtG/VfPpn4tcxAi+hNsJ7j+NEYtFP0NMn9Pi+P92+ei7WU4lsPXE5TqwnGkUH5Rp8RGky+dDmBT/TmT3/MT5RNJFiQUAQEAQEAUEgzhFwSs0fTIn5y9ekVGm9GBDXxBE5LOrkLVudMucubAFaokQu5J4yNSVTH0iSZO58jjxb/Vg0tnOSJW9Ryla4jJ1SIminClSszeNYV8I8rcd1c09OmCcksVtSox3Mm1nzl7Dugs9RP0fR8pQpVyGb5TqT51KhFsH0aEtSeqZnbGNjrsV6nijiN+6jSnRg7SKLYVxcXHk9OCZNnpLylK5mUa5PHFlPZOPofnDEtS2g1oxrpHE1L4f5FdfHM2NW82yLtEe6TFSocl2+lhYFDpzgemIOBSvWopDnz2nnst/oju9Fenz3ltE6qvvAUdx0h7jvC1auY/yN6Hw5CgKCgCAgCAgCEVlTAsek3HttqX63b9RD3KTdenD7BqXOkJlmDWhDFw/v5Nk37fsDFa/RxFjJsycPafoXLej2lbOUo1h5+vjbeUYZ6um6mxdMpI2/jzPKHEl88fsOAjGABD0NoGl9mvA4OAeZ6DT+TwKh0nJ61waaP6yzPqWvlx2ns/s20dzBn3BeiXeaUZPPx9LSMb3pyKa/qVnfcVSoSj26dvqQQfwe37ut1vuhMQ7IZ4exi5goopNHd24a/esE6rQb9bsifR46i/av/YP+njDAOG85cBITHGSEhYVRYMAjo8zRBPwgzc3hIDprfh1hNMdaWnz1E904f9wg5sGBT2nV5G/owLrFXM+R9UQ1DjoC4Wr37VxjHOQ9Dw6i71qV4muF8vZjFlLGHPlRxHLz0mma1rsxPQ8K5HPv/MWp7fBZ3Fd4FfI9c4Tr6POojp/9utGChH216CA3uXJ8H83o9z6no7oPHMENHZWu24re7T7M4gfFvtUL6J+fB/I48iUICAKCgCAgCDiV5g/aqvrdhlBoyHPaMGsM7V05jzzSm4iXvpRV3+/KZM7/2gVaMLwrbV/6K2uY2o2cw1WunjzABG3uEBPZOrVrPZ+DtG1bMkV34/ARZGrlpCF0bMsKgoan1deTjbZIg/id27+ZydzDO36Uv8I7VKZea6OOdcLFxfYlSZ81Fz/AD65fQinTZKD6XQYbTVsPnkquyocRWrZ1M76l5FaBBNAatR+9gHHYtXwWzR/aiYBP6TotqXDV+twPtETQbIFYgnheO3XQgigag0WRuON7gWZ91YaWT/iKa4aFhdpskSlXQdq2eAqtnT6KSWvtjv8z6kW1HlR0ZJw2Q2cw8fO7cILXjGv+4PZ1cnVNwmOhHMQP98Ccr9vRyR1r+bzJF98bcwH5xjUGJuPbV+N1XT971Ch3JDHzy9Z8j93zu6Lu3RDjflui+rQn9u6DyHADIW7Qc6Qi7qG0Z8VcmtzjPb7/3dxT2BtG8gUBQUAQEATeQAScSvNXWpEmmO0OrltIWxeZiFqOouUsgjYqNe3EWqu/fxpAwYHPmJTlKFKOoMGBhg4EzPf0YUMT8/jubT6P6bUHgdmz4nf+ZFfjgKSBbIWGhrAJ9unjB/T7oPbc/Y0LJzkQA75f0MZER/6b+yO3QTtoKtNmyc7NYbLEumBG1ITLM6MPlXvvQ6P7krVbMDG9eGQnHd64jPNXTx3GGq1KTTrQ8a2rqFLjDpz/x8judOXEftY6DvnnLCVyiZ7/IMyaGOfRPZNJ05aZFQNdOrKb1s8cw2OCDKfNkoPTjqwHFaMaB+Zyn4KlCFpfkCAtZ/du4iTMrCgPeHhP+eBN5Lyt6lrmKlmF8pV9W1dnwgzCdu7AVq4Lgm1tyjYq20ng2kCCnj3l+wL3X0zFHm7or3aHr1gjvv630QSSDwHxFREEBAFBQBAQBMwRcCry5xW+7cjJneuNNVxTD1Lz7UjcU6XmB+AnY/4w6uhElnzF6OFOP30aJ8eTO9YZ/dy8eIpJJfzqAgMe8zxuXTpjlMPsDNKifRWNAgcShzYsNWqB0IDcQDLnKcJHmCK1nN69wYL8gfhCcharSF0mLNfV+OihTOYQaFBh6gXx0/LQX5nUvbLo0zg9nt7zr9Hf3RuXKZ13Tj53ZD1Gw0gS3upaQy4f22uzlvadRASuNSbAQQuIfY22n1P/BfvoyYM7dGb3Rlo1Zaj6YfFUV4nXoz3cMAlNoA+sWxSvc5LBBAFBQBAQBJwLAacifyHK3AsxD1aAudNa7t/ypamfNbTOZs1NhMxYZiSyYaYFedDmTpvloZamUO2/iKkktROI8eyJlf9duM8jNIzWYj1mWPh4C0d2o8tH91hUh3YUogkPNHV67oq9WtSNyxOQYy1hoS/IliPr0e0iO5qvx1Y9vcYj/y0naEHNReOFPGgFj29bTTUVAcytglNK1Xmf8pSpRj+0rWTeJE7SjtwH9nDjCYSTVnva1jiZpHQiCAgCgoAg4PQI2HYwS6DLunHuGM8Mkb5asuYzabX0+dNHD9gn7tnjh0z2YNbTH10HR+3QnzJtBvPsaKcLVqpjtIE/FsT/6nl66O/HhMor+4tNkuGThQhVbIGiBSQkbeYc+pQjbY0TBxJ+501mPa3dQxNzfHDuq4JFIMBKY6GPWoP1QBFmkI9shUtzXXzpQBYjIx4SjqzHkWlcD9eEZlduAbYEATQQXBONhT7CVG8uuJ5/jPqURjUrSggIAS7mP0DM68Y0Hdv7AONq8zIIamRSuHBhmjx5Mn+8vLwiqyplgoAgIAgIAq8hAk6l+du/eiHV7TyIilZvyGZPBFNo3zd9bbYumkx1VPBA75lbaOdfMzgys7CKMM1dqipN7FJbVyM84OHLladUNXqrdQ+6pUyy8MUCaYuOVG3RlUKCAylrgZJMOkEOtFYJgQEwP348eh4d37KKqn/Yi7vetXymMQTIaprM2aj6B58R9h7Edi3RERAWaDrTZs5Ozfr/SPeUCbVUbcuH/8H1S6muChCp3Lwz+yTu/GsmR0jD9xD+fjv+nE7blk5TkdAVqOX/JhH8C0vXbUkurq7GWhydE7aaSZkmverfZC5Ok9mHt3MJehZAiG6NShxZD/qIahxE9V46upvx7DF1He+tFxIczBtfT+3VUPkCPjLKEZG9fck0Cg56xtgh2ALBQpCOPyyh88rf75SK0gaRT6d8E/HDAZHdcSmxvQ8wl7Uq2Cev8lfE5t5e2fMr39hFKqDnXQ4AQsCKFk9PT0qTJg2fenh40K1bJv9MXS5HQUAQEAQEgdcbAacifzAJzhnYltoM/Y0jU0OeBzO5A8EKUQ97CIgMiFCZ+h9Q3U5fG1cP/nbWsmH2WPbngk8XBJvvbvx9vHU1m+faNIjo2Hc+7s91QCgXmG3jsnBEV97qBb52+EBAtswDBlZN+UZFaI76f3vnAR5VtbXhFQKhh9BCCaE3CUVBBMUCFopSpQg/cBERLhdBQAVBLkUpIohI0YCCEkFQVIpiEPQqqAhIFQhF6TWEUAwtlIT/fCs5h5nJJDNDEswM377P5Oxzdj3v8Xn47lp77S2NuiT944xoZAQiJCa7ahNTiZbVzpL/fDqyh45T0xDFSGejj+hmwqYLFWJ09ivt5V9jInQ/O+xph4T1h79/84nmEQjxx49LjGCS1tK872i1WkKIYQ2lJ6njf983xi5tNcH+evjBDTvqqQoaqY1Ck59V0Sbj6n1Q1dU4qIOoZrwzhHm7wVPwSNfq4b2RUI5tXMAb29wgYZ6IqDZTYJES0rBzf/3h2eXz59RNbLI166X36vK/g+QlD2lxg4Vy8aRXBKfP1DaCfPBDQuSvbbK19sXG3rRC29ZhngRIgARIwHcJ+IWGht5ccOXkPUNCQtQycM2wmmSlhIAHWGBgmcE/3uPa1dQgC3OOWPdUokI1I8o1r0Y8plgzZ1bMgCsCTvyz50g1shLBFAgCObJzc6qBAnDbImDEdEffyrSwPx6CQc4cP5Rqc0TTFjPc0+dPx1j7BNpWhjsTQReHozaoOLQtu915d97HnTkhsrdkperGfx8XnX4jsxzWwpNGRDautgkBOsXKVdXvc95mY2bbOhmVz4j/DjAXBNDAPX3y4G51a9vOb8yYMVKxYkWJioqS0aNH2xYxTwIkQAIkcAcQ8Drxhw1ssTYNUY9YbwfrBv5BzqgF+PVbPevyTFxEgGJ/ujslQUT0n/1Tmq8bfWCXfDjw6TTr+Frh/xln82I5QVoJm3dj65uslCIiIiQgIED69esntPxlpS/DuZAACZDA7SHgVW5fIIHlChsT132qsxLCaRafDOuWYbROGa6zI7s3p9lftGEdupMSgkJcMTmxN+pOQqLvethw0QfkSXsDZdvgnqwCKDIyUqKjoyn8ssoH4TxIgARI4DYT8DrLH/jApQtXKs6PdXTR3WZ+HI4ESIAESIAESIAEvIqA11n+QBcBDDimi4kESIAESIAESIAESMAzAl61z59nr8baJEACJEACJEACJEACjgQo/hyJ8J4ESIAESIAESIAEfJgAxZ8Pf1y+GgmQAAmQAAmQAAk4EqD4cyTCexIgARIgARIgARLwYQIUfz78cflqJEACJEACJEACJOBIwOvEH07KKFO9rv5KVbnb8X0y7R4nigSXqSzZcwRk6Bg4HQR7F2Z2wkbNjucgZ8SYmH+ewKRzYjOiv9T6uF3jpDY+n5MACZAACZCArxDwuq1eOg2fKUVKlVf+iQkJ8nqLSrflW9Rr2U0aPzdE5gztLAf+yLgTG/rOWCF/bVwlOAkiM1OPtxdKvoJFZXTruzJsGIg+zB9nFS+dMsStfiHimjw/VEIq15KAXHkE5yFvWr5Afvo06exdZ53cyjjO+uEzEiABEiABEiABEa+z/L3fp6mMbVtdTuzdcVu/HzaWZrIngGP2PE0Pdegtle5taGzOfUVij+4zrJ6FpWHn/tJqwFupdnUr46TaGQtIgARIgARI4A4n4HWKJuH6dbl6+ZIkJFxP89PBlVr1/sZSsHio03q58ubXc1kr1W0oAbnzOK2TI2duqXxfI8lfKNhpuScPS1QIk7saNEm1r2zZ/HU+ac0Fc0U/aSVX49i2zZ2vQIp3h8gNvau2lL+ngfhnT2kYRnnZGvWkePlqtl25nd/201J57z9N9Szm8L7NZWLn+4xNu29IzYYt7fpI7zh2nfGGBEiABEiABEjAIpDyX3eryDszEFHd31ogpcPutV7gbPQR+WBAa7kUd1aftR00WWo2amWVI/Pn7z/J/Nd76ukhuK/X4l/SrPdI4yi5JOvWrZ7RWqdpR3mqzxt2Qmqj4eb8ZtowDKOpcMlyMuKbPXpsHU4v2bzyC/l6ylCzWJ5+ZZLUerSNdR9/MU5mvdxeTh3+y3rmzjhWZSPTdfQcqVjnYdkQ+aksmz5ci+5t1knnms3fX+/hVl8yebD88eNivS9ZqYb0mLhQsP4RCecqe5r2bvrZrgm+Sbzh+s2VL9B6nhHjWJ0xQwIkQAIkQAIkYEfA6yx/drN3ctOoywAVfmeOH5Ivxr8oh3ZsUOsfBJ+Zrly+oKJn1svtZM6QznLccCHDwle/1bNaBVbBZr1HSML1a7Ji1jjZ8v2X6p4027t7RYBIi35jVVD+vmyewNK15qsPDWtbXrsuEIix67eV8tWEAXLl0gWp0+QZK4gCblIIv9ij+2XB6N7aPmeefNJt7CdWH+6OYzaAOIbwW7d0jiX8sBYPc7125bIsn/mGLHtvuFy7Gi9tXp5oBaR0GjFT/I2AF6zxWzn7TcmTAYEqmHvu/EGC72WmzBjH7JtXEiABEiABErjTCfic5e/uJ9rqN53Zv6XEXzwvO35eJsOX7pZyte63vrVp6UIgQcESpWXNlx9I+yFTVTSuXfKR1DEsYHA7bjEscL8tmqXt4Ao1A02sjlxkGvcYopbD7z8ar0IL1aP370zRCpa8z8f20eelw+pK3ac6C6xfsJI98DSskTfk66lDDWEWr+9Ttvp9ElKlliCCN+50tLg7DgboNXmxtl29YLr8OPcday5Ne76m+VXzp8rhnZs0v/HbT6VBu17KA0EZGO/0sQNWcEdQsVC5r3kXqw9PM7DSdntznr7fwjf7aXO46zN6HE/nxfokQAIkQAIk4MsEfE78YR3blcsXVfiZH+5s9GEpGlpRIDYSExN0LWDbQe9otKlZB1e0RUJdJEThmunIrs0ei79CJctq880rF5rdOL1G77spCI/v3a518hjWMKTc+QuogHxuwud6b/unZOWaErc22tjCpaw+djUO3LUQjUgHttlHLBcqUVafN3k+SQTqTfIfWOdKVKyud8f+3GYV7Vn/Q7rEX693F0u+oCLy/ccTLFGcGeNYE2aGBEiABEiABEhAfE784Zv6Gf9LLSGIAcLPP3sOdV3uXLNC17BhyxKzGSxtjslcB+f4PM375H5gRUwrwb1qJSdjn4s5JjNftA+IQH1zDaNhOtPmrsZBpZ/mvSuPdOonnUfNMoIt6qmbWRsbf7DecEKnuuatdb1y6byUMYI8HJNftrTfy7G+7T3WHELorf86Qn79YoZVBHHumNIzjmNfvCcBEiABEiCBO53Arf/r/Q+Tizt1QiDIsD7PNl2KO6cRrKYVD2WFSpTR9XsQFsFlqqjFb8+6H3T9HKyCjpGmMYf2aJeV6zayur6VDaXhIkWq3aSD1Y+nmcvn/9b9+eIvxKnYg+Azf2Zf7o5z/eoVgVs3csYoQSRzt3HzzC50TSHEY/7Cxaz+zXEQYW1aJ03LIRpWqfeY1d6TTLtXp+iaw22rvjbm8rpdU0/GCQsLk/DwcP0FB6c/IttuIrwhARIgARIgAR8l4LXib8Py+fpJ4A7FGrkKtR/S+y3JLtbe05ep6MIaN1j59m9do+Un9kUJRBDqY+uVZv8eruvabL/vpu8+UyvYPY3b6x50ECuma9W2nqv8CiMoAlbEJ7q/qvvYla5WxxhvhLQd/K6rplb5LwvD9VSRAR//LPe3eU7XJWLOfWeutOp4Os4GYy3fwW3rjI2Wa8rDHV/QflbMHqdzfX7Sl/KkEeUMsfvA08/LQGPcgsVLqyCEBRJCGvN/tOtAqd3Yc1GLPf1qPNJCrsZf0mjhxj2GGmsWk35wy0NwujtOUFCQFCxorNs0foGBN6OFLTDMkAAJkAAJkAAJpCDgteJv/5Y1ugVJYeO0j+YvjJbmxnYqSKvmT9MTOIKCQ6RV//G6xg2Wsa8mDLRefvVn09XV23FYuBHh212O7t6qwudGYpL7FPsIYqsVWBYbJYuVuNhoq727mdgj+2TxpFe079qGkOzx9hcaUQwrnm26kZhoe6v5xORnCDiBWAssUlya9vyvbrWCORudWm3cGQciFG5dM80d0V33S3y060uCI/PMPrL5ZxecZtJz8iLjJI7XJLcRFHM92S396cgeGg0MSylcxyYTZ65acxzHa2kjcAYJp3s0aNvT7odIYiR3x7G19sXGxmpb/iEBEiABEiABEkibgF9oaOhNFeGkbkhIiMTExMi1a9eclGbdR9gOpVTVe+Tk/l2S2h59OCP45IHddsEhtm+E9YGlqxl1Du5Wi5Rtmaf5wiHlNIr1VvuCS7ZEhWq6TQwihhHJ7Cyldxz0ia1nChQtKaePHtBoYsdxEImMCGXb7Vkc62TEvatxxowZIxUrVpSoqCgZPXp0RgzJPkiABEiABEjA5wn4rPjLzC/3UsQaa+87Z+Ngf8Bx7Wo6K/LZZ9gjEe7ttNLvy+bqvolp1fGkLCIiQgICAqRfv35Cy58n5FiXBEiABEjgTibgk9G+mf1BD25fb7hhi6U6DNYU3mnplOHiPrJ7c5qvHW1YYTMyRUZGSnR0NIVfRkJlXyRAAiRAAj5PgJY/n//EfEESIAESIAESIAESuEnAawM+br4CcyRAAiRAAiRAAiRAAu4SoPhzlxTrkQAJkAAJkAAJkIAPEKD484GPyFcgARIgARIgARIgAXcJUPy5S4r1SIAESIAESIAESMAHCFD8+cBH5CuQAAmQAAmQAAmQgLsEvG6rF5xGkbdAIX2/BGPj6aN7trr7rumqlz0gpx5tdub4Qbl+7Wq6+rJtXLR0Jbn092m5+PcZ28cZng8sXFyy58yZ4RszY/4Xz8W6vQk2zhQuWDxUzkYf0dNCnL1o/kLButG0WXbsz216JJ95n1FXnAsdWKSEnm7iySklGTU++yEBEiABEiCBf4KA11n+Og2fKTjPFz8cl3a7Eo48eyH8Owk1zufNyNR3xgpp8/LbGdml0756vL1QXnj/O6dlt/owj3H0G+bvanNn2/6rGecpg2PYQ0/aPrbLP9yxr/WN8Z1LVAizK8+om6a9hutcCgSXzKgu2Q8JkAAJkAAJZHkCXif+3u/TVMa2rS4n9u64rXBxvBqTPQE/Pz/7Bxl0Fxk+Sr/xLwvDM6hHdkMCJEACJEACJGAS8DpFk3D9uly9fEkSEq6b7+D0Ctdw1fsbq4vRWQW4/CrUfkgq1W1onJebx1kVgYuy8n2NBG7I9CZYr+4yrF6p9ZUtm7/OJ625YK6urGCuxrF9j9z5CqR4d4jc0LtqS/l7GgjONnZMKC9bo54UL1/Nscjje5wfjHeCS9023biRqN/Y1Ukp5lzxHbPnCLDtwi6P96xa/wkpHXavuBLx4I//NphIgARIgARIwFcJpPzX3cvfFCKq+1sL9B9681WwvuyDAa2tdWltB02Wmo1amcV6/fP3n2T+6z0FwgOpXot/SbPeIw2xkGTdumCsa7uVVKdpR3mqzxt2Qmrj8gXyzbRhVneFS5aTEd/sUWGC8Tev/EK+njLUKn/6lUlS69E21n38xTiZ9XJ7OXX4L+uZO+NYlY1M19FzpGKdh2VD5KeybPpwLbq3WSedazZ/f71PTEiQJZMHyx8/Ltb7kpVqSI+JCy2xdv70SX1+K3+e6D5Y8hUsqk3xzosnDbLGcae/KvUek2eGvW9wzZHcxw1ZOftN+W3RLKs5RF+3N+fZCWas13yrY20Vl1bF5MwDTz8vTZ5/TWKP7pdpvR53LOY9CZAACZAACfgEAa+z/Lmi3qjLABV+Z44fki/GvyiHdmxQ6x8En5muXL6gomfWy+1kzpDOctxwIcPCV7/Vs1oFlp9mvUdIwvVrsmLWONny/ZdGkElhs7nb1+AylaVFv7EqKH9fNk/C+zaXNV99aFjb8tr1UahkGdn120r5asIAuXLpgtRp8oxgPR3SQx16q/CDIFkwure2z5knn3Qb+4nVh7vjmA0gjiH81i2dYwk/BG5grteuXJblM9+QZe8Nl2tX4431iBOtAJtOI2aKv2Fh27xioQqtPMmBN2a/nlzzBhWW9V9HyI9z35HEhERpNeCtNK13tn1D4HcYOl0gUtct/Vi+/3iCJBiirnGPoYLAFjN1fn22Cr/o/TtV2M8b+Zz8feq4+PsnCUazHq6PdOqrwg/nD7/Xu4ltEfMkQAIkQAIk4FMEfM7yd/cTbfUDzezfUuIvnpcdPy+T4Ut3S7la91sfzrR0QWAVLFFa1nz5gbQfMlVF49olH0kdwwIG9+AWwwJnWpLgCi1SqrzVhzuZxj2GqOXw+4/Gq9BCGwgRxwRL3udj++jj0mF1pe5TnQVWtr2bfpYHnoY18oZ8PXWoIczi9X3KVr9PQqrUUqETdzraED3ujYMBek1erG1XL5iuwsucS9Oer2l21fypcnjnJs1v/PZTadCul/LYZFgrIaxOHzsgS6cM0fKgYqFyX/MuZhceXRHBGznjdW1TrGxVDQAJe+gpt6x/lQ2rH1zF+7esMYTqaO0jV95AFcr3t3lOBTvK8c3AFqLbTH9tWGVmrWvD/3tR7n68rRzdvUUtqqb116rADAmQAAmQAAn4EAGfE39w9V25fFGFn/mdzkYflqKhFQUWI2zpgbWAbQe9IwG57Nf6oS0S6iL9tXGVXvHnyK7NHou/QiXLavvNKxfqNbU/0ftuCsLje7drtTz5g/SaO38BFZCIenVMJSvXlLi10ca2KGW1yNU4EEQQjUgHtq3Vq/mnUImymoXb0zHBsliiYnV9DNFmpj3rf7hl8Xdo++9mN7J/6xoVf8XKVrGepZUpXq6qFu/d/LNVbeea5Sr+TIEeYrBBguXXVYLwQzqya4vl9nfVhuUkQAIkQAIk4K0EfE784UP4Gf9LLSGIAcIPa8WwRmznmhVqRcKWJWYzWNock7kOzvF5mvfJ/bgKMoB71UpOxj4Xc0xmvtjSqmJmLsWdTcq6OQ4q/zTvXcPF2U86j5olEzvXUzez2R8sXhM61TVvreuVS+eljBHk4Zj8sqVj1YCTSOHExKT1lo7jON6bljk/Q8ybyZyL+e3Mqyv2aL/z1+Vq9a3furvs/O07ORy10eyWVxIgARIgARLwOQLp+Nf7n2URd+qErvlyjMy8FHdOI1hNKx5mWahEGV2/B6tfcJkqavHbs+4HXT8Hq2DNhvbCKubQHn25ynUbWS9ZqsrdVt7dDFykSLWbdHC3SYp6l8//rYER8RfiNGAFgs/8mZXdHQfRs3DrRs4YpZHM3cbNM7vQIAcIpfyFi1n9m+Mgwtq0TpqWQzRE0MWtJriuzYRoXaSTB3eZj/SKdY5IxcvfpVfzz8kDSd+nYnI7PK/2QNI6PbPN8WQLZZkaN8cx2zteVxpu+Y8GdzQe35Cub8xRNrZ1wsLCJDw8XH/BwcG2RcyTAAmQAAmQgNcR8Frxt2H5fIUNdyjWyJkCYkuyi7X39GUqurDGDVY+uBaRTuyL0tMiUB9brzT793Bd16aFyX82ffeZuv/uadxeGnbuL+1enWK5Vm3rucqvMCyLsEBhE2QENJQ2Nohu9u8R0nbwu66aWuXY6w7bmAz4+GfBejZsV4I595250qrj6TgbjLV8B7etE7hGH+74gvazYvY4nevzk76UJ40oZ4hdRL8ONMYtWLy0CkJYICGkMf9Huw6U2o1vXdTCZd2q/3hp/NwQ3YYFwTVRP0da74RM1C+R+h0e+9fL0qBtT12Xh+d71v9PA1PK1qynQSqYS/3Wz+n81y6ejSp6CsvB7eslpxFcA1Y1GraQag2aSv9ZPzndygUCeuXs8fp/HLqNm6t9mH+CgoKkYEFjfajxCwwMNB/zSgIkQAIkQAJeScBrxR8W+2MLksJGEEbzF0ZLc2M7FaRV86fJgT/WSlBwiIoLWKrwD/tXEwZaH2j1Z9PV1dtxWLgR4dvdWOi/VYXDjcQkdy/2EcRWK3D1NjLEX41HWkhcbLTV3t1M7JF9xhYmr2jftQ0hiRNJEFEMK55tuuHE3Wm6QBFwArEWWKS4NO35X91qBXM2OrW6cGcciFDTXYqGc0d01+1OHu36kuDIPLOPbP7ZBaeZ9Jy8SKNfcxtBMdeT3dKfjuyhoguWUriOTSaeHI1m1kVbWEQRUIL05Vv9dT2m3iT/wXxXfJgkShHJ23rgW1qC55+N+Y9hzb0u2J4Gc4E7/7sPRsv5MzFWF9i6B0EcWMPZbvAU3Romf+FgbWdVMjLY0gYJrHFcIAJFlLE+FbG19sXGxiY/5YUESIAESIAEvJOAX2ho6E0V4eQdQkJCJCYmRq4Z5+h6U8J2KKWq3iMnja07Utujr0z1unLywG674BDbd4SgKF3NqHNwt1q+bMs8zRcOKafRsrfaF1yyJSpU021iEDGMSGZnKb3joE9sPYMNmE8fPSCIJnZMiERGFC2200lPwkbc2GIGa+xMUehpf8WM4A8E7iQJeOdrBrFZd8lK1Y31jRedRlu7GnPMmDFSsWJFiYqKktGjk6KLXbVhOQmQAAmQAAlkVQI+K/4yE/hLEWusve+cjQMX5rh2SdGmzsp98Rksmq7O+P192VzdhsXb3j8iIkICAgKkX79+Qsuft309zpcESIAESMCRgE9G+zq+ZEbfYy1ZYJFiqXbr6liyVBt6ccEpw8V9ZPfmNN8AGyh7Y4qMjJTo6GgKP2/8eJwzCZAACZBACgK0/KVAwgckQAIkQAIkQAIk4LsEvDbgw3c/Cd+MBEiABEiABEiABDKPAMVf5rFlzyRAAiRAAiRAAiSQ5QhQ/GW5T8IJkQAJkAAJkAAJkEDmEaD4yzy27JkESIAESIAESIAEshwBir8s90k4IRIgARIgARIgARLIPAIUf5nHlj2TAAmQAAmQAAmQQJYjwH3+UvkkpUoVkfPnL8vff19MpYZ3PQ4NLSoFCuTVSV+/niC7dx9J9QVy5MhunGObz9jXLs44ecP5qRmpNmYBCZAACZAACZBAliZA8ZfK5/noo5dl3bpdMmLEJ6nU8K7Hr7/eVUqVKqqTTkhIlGbNhqX6Al27PiYdOzaUPn2myd69x1OtxwISIAESIAESIAHvI0C3r/d9s1uaca9eU6RVq5Fuibnjx0/L2bMXJC7u0i2NxUYkQAIkQAIkQAJZl4BXWf5y5swh/v7ZpGjRApIrV07Zs+eIVKxYUs6du2i4KP+2KGfLlk3uuitUChXKL1FRh+TMmfNWWfbs/kbbALl06YqdS9N8fuHCZasuMnny5JS7766g/ThzAWNOtWqV1zFu1UqGMW7cuCGXL1+VYsUKSoUKJWTr1n06R3MyrsbJmzeXVK0aqny2bz+gfZltcYWr1/zZPnfMg8MPP2zRH+rbpty5A5Sd7TPkL16Ml6tXr9s9hpsZvz/+2K/ldoW8IQESIAESIAES+McIeJX4mzixp1SpUkr8/PwUWEzMOQkODlLhNGvWcvnii1/kiSdqyyuvtLPqoOLJk+fkxRffU2tW/fpVDVduF/nmm3UybdpSC/yECc9L9eplDXfnOEssVqtWRpYsGWXVWbFio0ya9JV1P3hwB3n88Xus+wsX4mXgwHA5dCjGeuZOZsGCobq+EGKrZMnC2gT5J5/8r+ZdjTNkyDPy6KN32w21fv1udVlDVLqbevZsJu3bP2xVd3T7Dh3aUerXv8sqNzPLlq2XqVOX6G3lyqVk/Pgeki9fLrNYli/fIJMnL7LumSEBEiABEiABEvjnCHid2xfCb/z4zyU+/qoKvwkTFqqVq2XLB5QixM7GjX/JsGEfS+/eU+Tbb9cb1rQgee21Tlr+669R2rZRo5tiCQEOYWFlBO5OWythYGAe2bx5r0yc+IUhzi5Jkyb3qkBER1gTB+F39OgpGTVqrgrPvHlzqvDRgTz8AxFbpEgBiYz8XcaOXaCWRnfHgRUTAmzAgHAZNOhD+euvY1KvXlVp0yaJibtTWbjwZ23/yy87tImjcJw+/WtD3M6wfhDVSLDuIcHiCoEODkuW/KbiE3yaNasrDz9cQ+vwDwmQAAmQAAmQwD9LwOvEH0Tfjz9uNURXrLoa4aI8fDjGEBxJlibcQ/ht23ZAxcj332+Wa9euqwvSRL169Xa1TMHSh9S69QNqKVy0aI3em3+uXLkmQ4bMFvQxZUqSZcu0jLVr95BaHN95Z5FGxa5evU3+/POoFC4caIi4QLMLj66vvjpL3n13saAviDgkd8aB1Q0/MImPvyYQcUhhYWX16u4fuLUh5I4di9UmpoXVbA9LK9zo+MECCFEN3pgvUtOmdQSuYbDHcwjp999fpmVt2z6oV/4hARIgARIgARL4Zwl4ldsXqBITk9yYWGOWkJC0Jg0iLXv2JB0L69nUqX1SCLCAgBwW6YiIlYYVr4506/aEiqwWLerreji4gm3TsWOnrVu4UZGwJg8pf/7cKhjfeeffem/7B67P2Nidto9c5iFQIaockzvjPPBANUOkPpNiPR7aZkaC8HvmmUdUdMPyaqYqVUI1izWQ06e/YD7Wa9GiQXb3vCEBEiABEiABEvhnCHit+BNxvpZt5MjOKvwWLfpV/ve/rXLixBmZP3+IYQVMWicIzNi/7siRU+rCLVGikBQvXlAg7hzdnMlLC/XLmO1t68Dt2bfvZYwLiAAAB1xJREFU9BRfzllgSIpKDg/OnLng8OTmbVrjIEADwg/XDz+MFLi1AwKyG/mBduseb/aWvhzE74gRndXV/uKL79t1ZrJ54415sn37QbsyWGyZSIAESIAESIAE/nkCXuf2dYWsQoWS6m6cMeNbXftWuHD+FBYx9PH556s1MnbSpCTL3Zw5K1N0bQZfoOC++6pqeXT0Gb1iG5RChfJZG0FD8Jk/rZBBf1yNU7ZsMX2/tWt36bpDiF3b9YyO0zh16m99b9NN7lie1j0E5rRpfbT9Sy/NsItGRrtdu5I2joYF0GRhXmGdtU0dOnSQ8PBwmTBhgu1j5kmABEiABEiABDKZgM+Jv4MHT+rpFK1a3S8tW94vb7/dyynClSs36VpArM/Dnnb79p1IUQ/bq8Cti77692+j5QsWrNIrxCMCRebOHSxPP/2gWhH/85/mMmvWwBT9pOeBq3GwvQxc4HXqVJIHHwwTzKFDh5sRu45jIwAGCaIX7m60MxPctffeW9mKOEYQDO7LlAnWKiNHdpGgoHzy2287pXTpYENk1tKfKZLB9PLlKzr+qFFdpWbNcvLYY/eoGx5rF21TaGio8Z0KSkhIiO1j5kmABEiABEiABDKZgNe5fU13L3YwcbaLyYwZy4zo267ywgstFd25cxeMfQAvGG7RlK+6YcOfgvVy2MLFWYIohAAyA0MQwYqgDqQvv/xF4DJu3ryeEVX8lNXc021erIapuLHdGWf+/B+lS5fHdAsb9Ldjx0Gdt7k+8uYYotHLCMZ45JEa0q9fK41wfvbZt7UKtruxDfIwGSLQo0uXt4wTQopovQYNwgQ/M5nb5sDti2jgceOeU65gi4Rta5YuXWtW12tQUNIawPj4eLvnvCEBEiABEiABEshcAn6GBcb54rnkcWGZiYmJMaxk9m67zJ1W+nsvX764sbnwFWOPv7OpdjZ79ksqaFq3HpViU2SzEdbPYb8/bCiNTZgdE8QSNppGlCush9jwODOSO+NApB44EJ1pc/DkvXCOMDarPn06zum+hxEREZIzZ07Bdfny5Z50zbokQAIkQAIkQALpIJDSHJaOzrJS0/37o1OdDtyjDRvWsk6gcCbqzMZwqeK0jdQSrF3YV882wZU8Z84g20cp8vv3nzA2nrYPmEhRyeaBs3FsijULi19WSVjrhz0SnaXg4GAVfhcvXqTwcwaIz0iABEiABEggEwn4rPhLi9mgQe0NS11OdXmOHPlJWlVvqQx77e3adTjNto6CMc3KPlaYmJhobEq9zNiM27m73cdel69DAiRAAiRAAlmKgM+6fbMUZU6GBEiABEiABEiABLIIAZ+L9s0iXDkNEiABEiABEiABEsiSBCj+suRn4aRIgARIgARIgARIIHMIuFzzd+yYfTBD5kyDvZIACZAACZAACZAACdwOArT83Q7KHIMESIAESIAESIAEsggBir8s8iE4DRIgARIgARIgARK4HQTcFn9vDswvq+YUuh1z4hgkQAIkQAIkQAIkQAKZRMBt8bfo+3gpVcxfurfJnUlTYbckQAIkQAIkQAIkQAKZTcBt8bdhxzWJOZMo/Trnzew5sX8SIAESIAESIAESIIFMIuC2+MP4Hy++LIF5/eSph3Nm0nTYLQmQAAmQAAmQAAmQQGYS8Ej8rd54VefyYO2AzJwT+yYBEiABEiABEiABEsgkAh6Jv72Hrus0Kpd1uT1gJk2X3ZIACZAACZAACZAACaSHgEfiL/GGyJWrNyQk2KNm6Zkf25IACZAACZAACZAACWQgAY9VXI4cfhJ30VCBTCRAAiRAAiRAAiRAAl5HwCPxV6RgNsnmJ7LvSJL71+velhMmARIgARIgARIggTucgEfi796wHIpr258Uf3f4fzd8fRIgARIgARIgAS8l4JH469Yqt2Dd34LIeC99XU6bBEiABEiABEiABO5sAm6Lv6DAbALL30/rr8q5uMQ7mxrfngRIgARIgARIgAS8lIDb4m9w96STPYZNPe+lr8ppkwAJkAAJkAAJkAAJ+IWGhroVulu1XHbJnctPtuy6RmokQAIkQAIkQAIkQAJeSsDt3Zp3H2CQh5d+Y06bBEiABEiABEiABCwCbrt9rRbMkAAJkAAJkAAJkAAJeC0Bij+v/XScOAmQAAmQAAmQAAl4ToDiz3NmbEECJEACJEACJEACXkuA4s9rPx0nTgIkQAIkQAIkQAKeE6D485wZW5AACZAACZAACZCA1xKg+PPaT8eJkwAJkAAJkAAJkIDnBCj+PGfGFiRAAiRAAiRAAiTgtQQo/rz203HiJEACJEACJEACJOA5AYo/z5mxBQmQAAmQAAmQAAl4LQGKP6/9dJw4CZAACZAACZAACXhOgOLPc2ZsQQIkQAIkQAIkQAJeS4Diz2s/HSdOAiRAAiRAAiRAAp4ToPjznBlbkAAJkAAJkAAJkIDXEqD489pPx4mTAAmQAAmQAAmQgOcEKP48Z8YWJEACJEACJEACJOC1BCj+vPbTceIkQAIkQAIkQAIk4DmB/weyeRZQ5Akm0gAAAABJRU5ErkJggg==" - } - }, - "cell_type": "markdown", - "metadata": {}, - "source": [ - "In `flex_decoding.py` there are two import statments from `flex_attention.py`\n", - "\n", - "Having mixed import types (dynamic and static) that are also a part of a closed import loop are problematic and may cause errors.\n", - "\n", - "#### Static\n", - "![image.png](attachment:image.png)\n", - "\n", - "#### Dynamic\n", - "![image-2.png](attachment:image-2.png)" - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "## Fixing Problematic Cycles\n", - "\n", - "When we find a problematic cycle, a common fix is to move the shared code to a new utility module. We can use codegen to perform this refactor." - ] - }, - { - "cell_type": "code", - "execution_count": null, - "metadata": {}, - "outputs": [], - "source": [ - "# Create new utils file\n", - "utils_file = codebase.create_file(\"torch/_inductor/kernel/flex_utils.py\")\n", - "\n", - "# Get the two files involved in the import cycle\n", - "decoding_file = codebase.get_file(\"torch/_inductor/kernel/flex_decoding.py\")\n", - "attention_file = codebase.get_file(\"torch/_inductor/kernel/flex_attention.py\")\n", - "attention_file_path = \"torch/_inductor/kernel/flex_attention.py\"\n", - "decoding_file_path = \"torch/_inductor/kernel/flex_decoding.py\"\n", - "\n", - "# Track symbols to move\n", - "symbols_to_move = set()\n", - "\n", - "# Find imports from flex_attention in flex_decoding\n", - "for imp in decoding_file.imports:\n", - " if imp.from_file and imp.from_file.filepath == attention_file_path:\n", - " # Get the actual symbol from flex_attention\n", - " if imp.imported_symbol:\n", - " symbols_to_move.add(imp.imported_symbol)\n", - "\n", - "# Move identified symbols to utils file\n", - "for symbol in symbols_to_move:\n", - " symbol.move_to_file(utils_file)\n", - "\n", - "print(f\"🔄 Moved {len(symbols_to_move)} symbols to flex_utils.py\")\n", - "for symbol in symbols_to_move:\n", - " print(symbol.name)" - ] - }, - { - "cell_type": "code", - "execution_count": null, - "metadata": {}, - "outputs": [], - "source": [ - "# run this command to have the changes take effect in the codebase\n", - "codebase.commit()" - ] - }, - { - "attachments": { - "image-2.png": { - "image/png": "iVBORw0KGgoAAAANSUhEUgAAByQAAAM4CAYAAACNx1VmAAABWmlDQ1BJQ0MgUHJvZmlsZQAAKJF1kE9LAlEUxY9mCSnYoqWLgRAMLMR00dKGEMHFYEr/FjHOTBro9JoZqWjRF2jTJjctatMnCNwU1K59URH0AQraFMymZLrPqUaLLhzej8PhvsMF/AGZsXoAQEO3jGJuRlhYXBKCT/AhihAiGJMVk2UlqUARfL/9Y99SmuZ6gu+Kx44PX5/3W62h85vZxrL/b75vhlXNVOj9ICUUZliAL04sbVqM8xbxqEGliPc4V10+4lxx+bSbKRVF4iviEaUmq8T3fGelx6/2cKPeVL468PZhTS/PcZ8URQEi0phGjpRB6Z9supsVsQ6GbRhYQxU1WBCQJYehDo04Dx0KJpEgTiFJyvAb/76d5+280OoN+irveeUwcLZC9VTPiz0CkSRwuctkQ/65qM8OmKtTKZdDbWDwwHHe5oHgONC5c5z3tuN0ToCBB+DC/gTm/mIG6OCHqAAAAFZlWElmTU0AKgAAAAgAAYdpAAQAAAABAAAAGgAAAAAAA5KGAAcAAAASAAAARKACAAQAAAABAAAHJKADAAQAAAABAAADOAAAAABBU0NJSQAAAFNjcmVlbnNob3RpbwphAAAB12lUWHRYTUw6Y29tLmFkb2JlLnhtcAAAAAAAPHg6eG1wbWV0YSB4bWxuczp4PSJhZG9iZTpuczptZXRhLyIgeDp4bXB0az0iWE1QIENvcmUgNi4wLjAiPgogICA8cmRmOlJERiB4bWxuczpyZGY9Imh0dHA6Ly93d3cudzMub3JnLzE5OTkvMDIvMjItcmRmLXN5bnRheC1ucyMiPgogICAgICA8cmRmOkRlc2NyaXB0aW9uIHJkZjphYm91dD0iIgogICAgICAgICAgICB4bWxuczpleGlmPSJodHRwOi8vbnMuYWRvYmUuY29tL2V4aWYvMS4wLyI+CiAgICAgICAgIDxleGlmOlBpeGVsWURpbWVuc2lvbj44MjQ8L2V4aWY6UGl4ZWxZRGltZW5zaW9uPgogICAgICAgICA8ZXhpZjpQaXhlbFhEaW1lbnNpb24+MTgyODwvZXhpZjpQaXhlbFhEaW1lbnNpb24+CiAgICAgICAgIDxleGlmOlVzZXJDb21tZW50PlNjcmVlbnNob3Q8L2V4aWY6VXNlckNvbW1lbnQ+CiAgICAgIDwvcmRmOkRlc2NyaXB0aW9uPgogICA8L3JkZjpSREY+CjwveDp4bXBtZXRhPgr/VBitAABAAElEQVR4AeydB5hUtdfGQ5eOgPTei4iFJl0UUAQFFTsCigUs2OtfBcXekU/sHbtYEaUoYlcsVAVEOgiCgHQE/PLL7hnuXqbcmZ1ZZpdznmf3ttzk5E1uJsmbc5KvYsWK/xkVRUARSAoCpUuXNhs2bEhKXBqJIqAIKAK5BQFt+3JLSame+xsC+m3ubyWu+c1JBPi+Ch7zck4mqWkpAoqAIpD2COycdLbOiaR9Ke1fCmp/eP8qb82tIqAIpD8CBdNfRdVQEVAEFAFFQBFQBBQBRUARUAQUAUVAEUgvBDZ+cHJ6KaTaKAKKgCKwjxEoWrToPtZAk1cEFAFFQBFQBBSBdEYgfzorp7opAoqAIqAIKAKKgCKgCCgCioAioAgoAoqAIqAIKAKKgCKgCCgCioAioAgoAopA7kZACcncXX6qvSKgCCgCioAioAgoAoqAIqAIKAKKgCKgCCgCioAioAgoAoqAIqAIKAKKgCKQ1ggoIZnWxaPKKQKKgCKgCCgCioAioAgoAoqAIqAIKAKKgCKgCCgCioAioAgoAoqAIqAIKAK5GwElJHN3+an2ioAioAgoAoqAIqAIKAKKgCKgCCgCioAioAgoAoqAIqAIKAKKgCKgCCgCikBaI6CEZFoXjyqnCCgCioAioAgoAoqAIqAIKAKKgCKgCCgCioAioAgoAoqAIqAIKAKKgCKgCORuBJSQzN3lp9orAoqAIqAIKAKKgCKgCCgCioAioAgoAoqAIqAIKAKKgCKgCCgCioAioAgoAmmNgBKSaV08qpwioAgoAoqAIqAIKAKKgCKgCCgCioAioAgoAoqAIqAIKAKKgCKgCCgCioAikLsRKJi71VftFQFFQBFQBBQBRUARUAQUAUVAEVAEFAFFQBFQBBQBRUARUAQUAUVAEcgZBC666CIze/ZsM2fOHHPrrbeaypUrZ0n4zz//NCNHjjTz58/Pcl8vEkPgoIMOMn369DHNmjUzlSpVChvJl19+aR555JGwz3Lbzfr165ubb77ZFC1aNC7VN2zY4Orj8uXL43ovJwMnhZCs2ONop3OFY7uEdF/98adm1UeTQ9d6oggoAvEhoN9VfHhpaEVAEcgbCGjblzfKUXOR9xDQbzPvlanmKH0QKN+ts1OmXLdOIaXWTvjcrJkwJXStJ4qAIqAI7G8IaN9jfyvx9M+v1sn0L6Oc1HDmzJnmsssuM6NGjTLXX3+9KVeunEu+WLFi5q677jKLFi1yxNDtt99u5s6dmzLVzjzzTNOkSRPz4IMPmr///jtl6YSLGJLwf//7n7nhhhvMli1bwgVJyj3SAUfI3WeeecasXbvWeNPu37+/I4bHjx+flPQiRVK6dGmzceNGs3v37khBTL58+Uz+/PnNrl27IoYJ8uDCCy80b731lvn555/3Ck5+0WPs2LF7PevQoYM577zzzG233bbXs3S5kRSXrRCRkI+bf18Yyhf3itevHbrWE0VAEYgPAf2u4sNLQysCikDeQEDbvrxRjpqLvIeAfpt5r0w1R+mDAEQk5OOWBYtCSnGvWN1aoWs9UQQUAUVgf0NA+x77W4mnf361TqZ/GaVSw9q1a5uzzjrLXHzxxe7v0EMPdcTY0KFDTd26dc3SpUvd37Jly5war776qpkwYYK55ZZbTOPGjVOi2jnnnGNOOeUUR0hC2JUtWzYl6USKtFChQqZ69eqOhIsUJhn3Bw0a5KxRH3jgAfPLL784nLFARcB769atZv369a48kpGeP44DDjjADBw40JGh99xzjytvfxiuqSP33nuvueOOO8I9jutegQIFzJo1a0L1SuoXx82bNztC0ntPztetW+cI0bgSCxAYor1WrVoBQsYOkm1CUkjHOpcNMsXrZSUgS9SvE1uDGCEGn97ejLnvHPPi3f1cyIEntTEv33tOjLf238fHdWhi3h11vjmsSbVcDUKhgvlNyeJFTPFiRcLmo6D9KHleIsLzsC/lopup/K74kezXr5/BtUCpUqWShkqvXr1Mjx49khZfXo6IH5Vzzz3XHHbYYSnPZosWLcyAAQNSnk6kBE477TTTsWPHSI9z/H6DBg3MkCFD9nKlkeOKaIJhEUhl2xc2wX18098eV6lSxbUNFStW3MeapWfy/Gbx23XEEUekp4J5WKtUf5vp3N9/fNhp5uqBXdKmdL36VK1YxowdOcgM6NM6bfRLVJEDihR0fXuO4aRI4YznRYsUCvc4V98T0rH64P57EZDyLLsZrFC2hBl0chvzyA19TIum1U3xooXNC3eeac45oUV2o074/dIli5oX7jrTnH5c6vvDQZT063Pm8YebNx8aYGpWOTDI62kd5vhOTRzW3ds1MpXKlzQtDq6+l74Hlirq7hcuVCDLM745wpc/sHiW+/FeSJ07q2f43/BCBQuYMfeeba4flOF9K9744wl/uJ0rIU+R/lJd5nyHfI9B5YDM9u+ACO1f4cIZcyNFD4ivfWRyHIueaILVzbHHHhstSMqepbrvkaji/v57ovHoe7kPgVTWyXSsVxBdvXv3zn0FlSKNW7Zs6YimQw45xFm+Yf3G33///edSlKM/+RdffNFMmjTJud5s2rSp/3G2rikj2ujPP//crFixwpFX+4KUzFYmArzMHCpuWt9///0AoZMfhLLH9S5lv2PHDlfud999t4EkhaRDICyZe4WMpF5UqFAh+YrswxjJJ26JsbxMhoQf8QWMWRpj3LMiWEiyWiRZckq3Q80Zxx9htu3YaWbNX+GiPbRhVVOjcvoNClo1q2lOt4OWh1+cYpasWBeC4KxeLczB9SqbGx76IHQvWSfh0mxzaC1TtnQxc2ijaubnORkrMpKVXk7G06NjU9OlTQOX5IjHPzF//b0pS/KDTjnSNK6bMWE79M63szzL7Rep/K6KFy9uTj/9dGdazsqJSD+YiWBIB+rff/8NvcpKoapVq5px48aF7uW1kyJFipjjjjvO4KZhwYIFgbOH+T6+5VnNE870PnBEAQLWqFHDlUOAoCkJwuqgwoULpyTuRCJFnwMPPNBhsnLlyphRJFrGMSPWAHshkMq2j7aITuRnn31m8KefLMlO/QjXHrOakbahRIkSZtWqVclSM9vxRMpnqnBF4XBp4gKHP/ZS+PHHH7OdL40gGAKp/DbRIN37+w1rVTBMBqeLePVpUPMgRxK0PbS2ef6d79JFxYT0uLxfZ1O5QmmzY+cuc8297+4Vx7CLjzPFLIm27p8tZtio1Lpi2ivxFN4QwhH3rMjWBYuN121rMpKGzH3pnrNMAes6auPm7WaXdTF1pB0zVq1Y2tjl7MlIIqE4Oh5Rx1S1Zb57d8ZEXkKRJPElvz6tD6lpIOn4zhZ7xvdJTDJHooJcu7xfR1f2k7+dZ4ba8+M6NDa9hjxttm7fM3a7/5oTHfl6/UMfmmmzloZ0u6J/J9OldX1z99OTzaRv5oXux3sSqnMRXixXpripWK6kKdI0te1t5YNKmXuv6hVBi4zbvy9ZYy4a/mbUMNl5SF5P6HKwefrtbwNFc/XAo8yBdo5ny9Yd5uZHs7Z/LOQebttHiOSt23aY/43M+jxaAvQ3cfnG3lRMMvqFhaVYeNx4443+Rym/TnXfI9EMhOu/JxqXvpe7EEhlnUyHenXMMcc4a6vvvsvoTxYsWNBUq1Ytyxxf7iqx5GsL+ffuu++aMWPGhCLHNebRRx9tHn30UTNr1qzQfTlhvMx8GPMQWBFecMEFBmvKZIiQkRCQxF2zZk1z5513mptuusm5NmXvwZx235qMfIWLg2+E+QGsAnNSmDs8/3xr9GWNSd544w1HiD711FPm7bffNv/8849bLA1Rybw3xDAua3Ffy0LqwYMH56SqKU2LfgJWvhDDWIcmQxLu7TUbGcz0lEa74nFHO7Iy3j0lj7SDa2TADS+bFauTN4GYDOD8cRzSsIpdbVrD1KtxUBZC8qhW9U0DO5GRCgmX5nA7QH+l1jQzd+HqVCS5T+Ls1flg8+zYPZ31/Hbg3LB2JqaZK1H2iWIpSDTV3xXkFILLgFRP5uK/HPInrxOSrHDCNUA8hGQKqo5GGRCBTz75xEybNi2wGwc6PVrGAcHNRrBUt31YHlKOM2bMSDohmWj9yMn2OBtF416N9B2kClcSDZfmwoULzejRo50rluzmSd8PhkCqv020yE39/WCo5Vyoz76fb5b97xWzcNnanEs0xSkVtlZShzeubn76dQ8hUrtaOUdGpjjpHI++4f17EwDhlIC0hKSErExkT8lLzmzvyMhbRn1svv55oUvixguOcUe5Dpduqu8dYS01kS9++iPVSQWK36/PVfe+Z2pWLWsWWHIqN8vD1/dx6g+9+x2zc9dus2HTNneNRagQko3s2FqsAiuULRnKLiRXp5Z1zT/2neyQkUTYqlnGOPTLCOX955p/zIAbX3WLDkIKpOCE/N//3GehmC/v18kS88YuLM9YFMCDeYv+Cj1Pxckfts1uaxcFYBX6r12EEUtKlzzABcECkoWt3kXFZ9sF8GLVumpt1kXcseL94YcfzNlnn21eeuklt2B5+PDhoVdw/8f+Z1hQvv7666H7OXGSE32PRPORm/rvieZR39sbgVTXyXSoVxAumzZtMkJI7ty50zzyyCNR98nbG6m8e4e2t1KlSm4+wZtLLM0Zn2Kh6BcMNq6++urQbeIA12SIl4z89ddfHSFJvNu3b3ekJKQYRGVeISUh/xbZ/TgxfMHaNKcEz3YsGr/88sv3WjDOnqCU78knn+y8EL722muOqMQ6ksXweUUgI6lHLFIYNmyYayeSkbeECEnZxDeoArhy5W/T/D/M5vkZg6BY7w45o4OpV7O8C3Z6j8PNqjUbzZgPp4V9LX/+fKazJf6OthZ1y1dtMB9+PitECvJuFbvy8onXvzKb7YoypKm1WOzevpH55MvfzOzfY1vI8A6dvDN7tjCN61S0neStZoqdAPh2+iIemeM7NQ1NppzYpZm1TqxqHn5hihnU90jrEiXDJeaVA44yK//6x7w6LmNFfzSdiRMLQPKyeMXfdvVcM/cj8Nw734UsBSOlCfnZw7pkAa/1G7cSlSlYIL/p2LKe6Wz/6IBP/Oo3M2NehsUpzwWPF9793nSzblwgOj/7br6ZYMNFE9Fx+tzlZkDv1m6i4JMvfzVf2UHGbksUYuEIFk+88bXZvGV7KKpj7YrMhrUqmkdemhK6F+2kuY3DKx1a1LW+kO2oIY9Jqr8rfiibN2/uUGP1DI3K119/7eoWqxxo2JlcphPCJsHi85wXjjzySGfNx2SwSJ06dZwlz1dffSW3QsdWrVqFNnNmxRA/HlhkMnH/22+/mb/+2jPIYxPiRo0amenTp7twoUginMTSlddYPUNauD1EZ8hCXJfyQ43/bYTOAIQpabNqiGdeyylce7JZ8Zw5c5xrgDJlypiffvrJrF6dQfbTGcFlAFKrVi1DPrGUxGd5PIKOlAsbIrOiSnygSxwlS5Z06ZQvX97pjp74A/cKYShf4lq+fLnTedu2jMkGbzg5R2/yAzEHmZpdLCRefqDADWtZcGaQG6+weqx169Zuw28soerVq+fqxpIlS2LqSVr4r8d6yqsD7h3Rh3oAjmCFboIRq56oL3Q0sErDHz0duWhlTAeD+sIKrYMPPtjFTxlSP8HVK4QlLeqHV3Dh0LBhQ/P999+7fPJNkf7s2bNDK78YGMQTpzf+3HKe6rYPjKmXiFhuf/HFFyF4KAfKn03H+d79lrOJ1I9Q5BFOIrXH4YJH+z5xGUI79e2334ZWr0q9ooMs7VW4eP33wIm2jPT43sACifQd0N5EwjWazsSZaPvK7xNlxW+Ut61ER/SHxOTZ4sWLQ4Nnb5uCJQDh+M4gp6MNCEVHrNj5hmk7aEPmzZvn3qO9QJfs/qaBR7pKqr9N8h1Pfx83/j06NjFHNKlufvltmflo6hw3SU48yervYwnZw/br2zSvZRYv/9s88/Y3RL+XMLboddTBzmsLpOAU229mot8rhzSoYujzlix+gPlx9lLz/qczXf9YwsTqnxMulj5MTqPHp9bq6Zfflgfu07O4r/0RdU3Xtg2dJxqsK3FhiNVOJEtLGS88/dY3plvbRqaVtR6bt2i1ec/mSzyZnHNiK/ubld8851lISD7OO/lIa521zbzx8c9cxpRu7RpmISR72jLJa1K+W+e4sgQpyR97THr3mYwWCYTTgBNb2nFyPUtgGNPSEoCl7JYXH9sxMIs7ITWwBBMh3JG27jPOmvDVXPPDrCXuUekS1gVV71Zmuh0/Tvn+dwnu3L2Wss/+79WvshAkoQCeEzz49Ozc1I6lK9iFs3+ZF9//wdS3Y32+G8bIIpF0kOccqavH2rE876Indd8r9WqUt2PahgZLuF9+XW7G2/xiWeaVIPpccOqRZua8lY6QhDgacno789kPvxvc32JNucwumH59/C9mQ+aYW+JHN9qQNes2mXcmzbQTOPlNbzuef93W/z/tGN0vEIEZz39x8TZvVMUtLn7301mhNm7waW3NXEuSfWrbGhFcqV5g5xtmL/gzIll4orXCY5uTdyfPNEtXZoxRRN9SJYpYfTJiu+KcTq6O2KbB5U/SGGjdQWNZ++J7e/r0sfAd2KeVWfrnekP7BOn26x+r3fvUOaxzxdoU/Qee1Mr1vx5/7StzWONqdk6lpnnM1icEl7nrN24zS1auMz3t/AbvjrV4+gniwxpXdfNAWAJ/MGW2K7NLz2pvvv5lURZLT8kTdYFvAKFcsT5EX7nH/SbWE9PQszuacfZ35gTbxuLm9sEXPrd4/eOeHXNkA3OQrQffz1hi557m7FX/eT9aGOZ4wAaPTzPm7pmXIW2/VLRp00dF6F/VsiS5LELh/OD6lUOvLFi653sO3YxxwiJlISXpF2ER2adPH+dy7pprrnGTqzGiSOrjnOh7ePuG8Yw3I/XfGQPG6vuGGzvKAnHG8izmRhf678xfECci/XrGl/RNsVgjzO+/72mLpQDom6MjbgPpCzNv4JVYOnrDci5p61j1aD80Ua/jnf+OVK/wmsP8APNtUh9oC9q1a+fqCPN1UkbZqR/UF+onczmMlZjXYu4O8oe5MuY7GO+IYPnFfdL+448/XF3EhaWI1HXmrJgnoa/B3Ivfso05ScZlfI+k558rkfg4Sj73ZV0kH+SXbar4/phHA69nnnnGuef06ss5+cXK3CuM3WO5yfaGj3TuJyP94Zh7GjFihLNoy0uk5HvvvedcpDJ/y9xsTgjz5sxVR/JeBfkIQYonQo5c5yWhfYDc5jtNJhkJRgkRkjSwsQT3rVhEejsUWEr+Mf/pWK+6572PbmaKFC7kzrGQg0gLR0gyYHrjwYGmgnXvwUCLTjSTEnc+OcF8/MWvrgPd++hDTPVKB5or7h7rBlj3X9vbDfAh4IIIg7k3Hxpo8NkP0cYgngkRBtWjxkx1gyssIxHIs2Z2AgLXrX2OaW6KHZDhqpA80IGFkIylM/HgqnbX7v9MkUIZRUS+eto4GOBDTDKgC5cmrlDIL6tdIUzpZL9u8WHPB8EH0nTi17+Z20d/QlKmoyX4eKdL6waGQSXh2h1Wx1w1oIvpfv5jLky4f+jIir6iRTLyiI7EBck7ePgbzgUP8f69YUuWyY2rBx7t3gtCSDLQZMKGQZ0QwJ1b1nfq7Lb45CVeMtXfFcQGJvwIHV46NXSCOV5yySWu48o5nZy2bduaTz/91HzzTcZE3FFHHeUmYr2E5OGHH+46EOEISd4XP9p0mJgUZyKXvQQhPb2rLHFvAHkkHXKnYIR/TDbH0pWO28CBA92ggPzwo09nCFKBFUoQU3TGcZXABDMdC67RAxN8JrMRSFVWqqEz6RIGYovJ6DfffNOtQJJ9zBg8kE/IwHgISfJNuYgOEHFTp041QpaQPhtmUyZSNp06dTIvv/yy67ShJwOTvn37curiIb/k5bnnnnN5dQ88/yhLygfSS8jI7GJB9HRgKRvIYMkPRDa4xSO8D+YQyNQh4qLM6KTG0pMfSXSg0yA6tGnTxl3zPnWQb4D4qct04iE8Tz31VKci9QOyluescqOTHKmMwZE0SBNh0EdHHDKUOgIJj9Bh79atmxsQ+jvZDDBIizSpn1JfcZeCGwiIe+KLJ06XaC77l+q2D8Jf2j4GPeD55ZdfuvKjbBg0iVBfGNBhSYskWj8kvkjHSO2xP3ystoq2gTpEW/bOO++47429fug4+olxf9zeayaiwEi+G+o9bTxtTaTvIBKuxBvrW020fWWijPzSJgshidtsdEXQn/LkN+fpp59219KmgDkTPpJHXKo88cQTEa2lRUfadmnXaF8ZXI4aNcp97+iSnd80p3Qa/0v1t0nWg/b32SvxpXv6uT4hffG2h9U2F5zazvS77iW7gG99Uvr7TJ6zHyP7nNkkXN+TRYH5fJ1NSMYbL+jmSo5wHSyxxx6YfS9/1rbj9oaV4Zf2MHhJQQjTyS4KxIql3/UvWZd6/wbqnwfRp3SJoq4PX9SONyBlgvbpn7r9DEsGZYxd0A+Ccev2HU6vSISkxN2xRT23PQTlQP+83wmtrGvD182vlhRhHAJxyaJGygVhDNbfkllsJRGEkKTvD5FEObCYlH3j69pxlowJXKR54F/RujVj5gLiEYtIL3mJpeSW0YtivkuAVnaPvB6dGrvvg3LmvFyZYo54qWit4Nas2+zigRgaeWMfgyUq4ei6HWXJyTc/me4WljIOP6ZtA+fmc+q0Ba6eQ+JAvE3+dr5rV6MpxPd6y+Bu7vsl/pYH17AkaV03PhWCLpYOxE8Y9hiU8Sp6drOk+thJM0Ik1pAz2pmTjjkkpA4E69l2n8z+N7wSIveC6ANJSDwl7EKIL378w7S01n29jmpqSfwGbk5AEuhh24O+V7zgxra4FB598ynOFa7gCCH4o6377Nv59sQZ8lqWI+mwxyMYk0fexV1sn66HmHOuG2M22oW9LDxou35zFkLyqgGdHdk830MqZ4nYXrA/J/E9+86eeY/1dnE1QvuB1LHlXteSuJTl0W3quzriHth/J9g8b7FtFuQoEgtf9GePSPmtJW2+YcRb58D30ZtOdvl9xs5v8H0POqWN02Xky1+4/gxkKHMNLAwXPCnvS+8Ya37L9Ab1vwu7OgyInzDU24nWrWxXSxjintjrepYwfqFckV//WJXl0TkntHT7Sx7XsbGrtzzcYt2hSr3nmjxSvyBLL7rtLXfN/SBh1m3IKAPI7VjSLJNwlLFgo9oHhQhJFgoggves+StjRRf2ORO79B/HWDeEjE86d+5srrrqKte3DPtCCm/mRN9D+obxjjcj9d+Z/I/V9w03dmT+g3GJjEUpR9JYu3at66NyLeNFFlUyruQe54zjH3zwwVBJdO/e3Y2fuUEY+vKMoSFL6D/HGlOEIvKcSNo6Vq3tQSX8aXbmvyPVK4hK5of4PoXMY/E14w/mSZjLkDLKTv0gLsY7jCuZ2+CcceQiS0hSb1mELYQkY2mspxHaJMaDzKEwd7JxY8aCG97hmcyTUPeI8+OPPw7N+RGGOSnIG6n3jMOZAwknks99XRcZO0LO8F1hDce8D20nrixzSpjrAgeIRv+iA68OtEuEwX0r8455wXUrc6V8A1glMvdGnrhWSQ0CQkYy95JsMhKNEyIk/Vn949Gnw1o+4q410T0luw16zDx2y6luUHvUgEf9SYau7xja05GRb034xYx6eao7f/Hus80N53czX9gBEyTmMbbjigsWOvZY7THAffD5z8xa26kPIn27H+pW+45+7UtHKLK3wSv393cTABCSkG9YC7Iq+LbHPnarlIn3uAtGm6ftgB+rRW8eYukslpysimYV8ovvfW+tFquakbbT3uuoZo6QjJSmPz93XdnLDfbGfT7b3PfsZDeoenL46XYw1ch8N2PxXlaQvYY8aXb8u9PceXkvhxkTKJ/blaCRBMKVVd/XPfCebQgKmsdvzSizvsceZleM/mTOs7h0t1aXMrlxuF3VzqACQjSI/GYHB6z6w/oVQpKV22XtQHqlXZF6kC0HyOG8Ksn+rl555RXXeT3++OPdYAMCBWHSlc7Hhx9+6FZ+0EEfMmSIad++fYiQjBfjhx9+2P0w17YWiGz0K0KnmHt0Suh4cOSaiWV8bccSOjyxdIXAQ3A9g5UPE/X+TXdZ1cT9KVOmuBVnrGy68MILHbF33333hSyN0I+O2NixY92ENHtsMGjAYo1VXqxOvPTSS13HSgiMWHnwPmdQIcQvuLMhMh1MsWyiA4qlHnmBnGJFJDqwao3ypPNIh5AfYzpvkKF0XE866SS3covNs73S2Q4u6fhhASiudJOBBR3JE044wWGE1S248uOFewM6TIkI77/66qtuFRrvU29jlRmreUmP9CHKiQO8wCmSgAl1Eb/vdPTprIEfOMYqYzrZlB9uTeh0QyBTPxhUiMsOIUqE3A+nBxZulB8kCp3tM844wxHRfEdYviUSZ7h0csu9ZLd9LDSApIJ8ZDEEKxsRyHzu843LIgmwZ3KChQmEy079iIZ3pPbY/06s75NvmZWnLDKhvpIn2hLaLCYqgghW6izkgDBnk3gWFwhBSRsV6TsAn3C4BvlW0SuR9pW22it8p3xjLAYBUyZcWJDB7xqE4/jx40PBwQWSktWNEIu9etl+jp2swYV5JEFH4mTCh0EdC0IYUNPegXF2f9MipZuu95P9bZLPoP39x27p60iVG+2e7Lj7a394HXOH7as+etMp5qTLnk5Kf//uK+zvmB0jYHl57zOT7N5xxcyzI850Vj5SJvRDrz+/qyMV+9stJVav3Wgus+7+Tura3Nw65Dhz66iPHHEAGQkhd+Gw1+1v9E5z00XdHSmJpSBjhyD98yD6iF7hjpH69APsJD9k5PzFf5nL7njL9vt3OQIVTIO4DixTqqi5+PY3rRXSCjeuYm/HB6/r48Y9L78/zeWNRYv323EHcqYlJ5AX7HgmiBAvllLHdWhiGN91bl3PthfGpcf9vCpLR78Q1vJR3LUmkm+IGazRHrvlFEs2zXN7ABIPHnyw2hMi67pBRzsyEkKKfQIZg75yXz+7v2tzayWcQRa99tHPBsu3U4891LaH/zoyEvLjrqcmRVWNb+rWId1sX8uYmx4ZZ8efSxyJeM25XVy5yjYjQXR4fFhfR0ay7x76VK9cxjxhx5597ALY59/9wbr6reZIRMb41z7wgfNqdPNFXV19unpAZ4PL2qD68D0g389c4o6tM4kryNkzrrbuLW2GHsskHztYa0ksF288/xhHRuLa9N5nPzVVDipt7r6ypyMjIdyWZZL0LkLPv6b1KrkrFvFedqd1q2pJuGEXd3d6n3tSa/PIy1PdAl/2sxSByGKcvsq2QbRZ4QSiESu+6dYCz2shircnBMtJhD0iXV/YpgNRjPUocrItf6wOnx37nbsGE8jTaPi2bl7Thd26fae52rq8nWfbGX5Lpc7hCpX9KG84/2i3+PqGh/fsV1m1QqmQu9ZmDSq7+sG3P+T2t2x7tcZce14XRzSeYS0nb7VlyRwDFrV4lbpkxNuuTK7LDIMSX2W6J3YKRfgn5SrlLMHqVC/nTvGo9Zi13qSdhOyEhF9u5yGGWAISova+q3s5j1BYzH5u557IW6wwRLzdzrcgUgbuIsI/WTyCpSl1pVbVDN1Y8M77fOM17LdAnVySaQUbIaqot7EAYZL9iiuuMBMnTtwnZGQ4BVPR95B04h1vRuq/B+37+seOjFsZy9Nnf/LJJ52nKuZg6G927do1Sx+V7+j+++93BA59WPr+tWrVcuMYrNUYv+DlBVKZsTkLXOnn0ldnHBprTAGpFEl0rJoVmWTXyUj1Kmuq0a+yWz+Ys8MiGm80kIvhhLEUrimZe4KYYwG2LI7v16+feeyxx0KvQWB89NFHBk8zeLLBYIC6CAmPrpCPkEnEwzwK9ZU5FBb6Q8hHkn1dFxn/XnbZZc5LDkYPzE0yHs1Job249tpr3e92rHQJi6tNfuOTJYzHmTcLEifzChCGQeclgug4efJkN99Hu8f+nNQJ5nBUko8Ae53yW4NnqYsuuihwAsxRBXGrmz9wjBECrv74U0dG1rlskMGvtvevzqWDIryVvNsQdexpMPKlz10nDCtE9hu0bZxpbVesIZffNdYNsG+/7HjbQWxi5tgVvO9ODr9C0b3g+wcpePTAUSF3q7glwlUIxBrWjvFKEJ2Jk1V4kJHIDOsWddGytY5cxOoxqDSpW8lssqsq73l6km3o/3NYXTriLfc6FpFeIS1cuLBy+7FXM9zZYQkaTRhcXXXPO66TjlvWIbe94YJ3spaSdNwhFKtUKGNws4WcZldpIkJQuoso/yBn11i8sYBlNSxWosgkO6jOy5KT3xVuDyDhGIQg/LhgTUaHmc5CMoWJbcg8CBaEIz/i3A8isXTlx5HODw0mZCTChDGkkVcgnehAiXUnHS8GXuQXayCvQNTyY0sYVqcRhveTIXTChKgCdyycEIkfS0wmwsXF7YoVK1wHEGIOEXKXSXexzGSVFKu1/JhCdDKRDoZCRhJHsrDAuoo8sFk3eNHpEJKHdOIV3EUKccS7QfSk7FjBJ+UKgUAHP5pQnvxhCUddxIqS78GPX7g4WAVI+dGJRqhzEMisWBOBLIJs97sBleccsYgV15rkmbzT4acuJxqnN/7cdJ6TbR+dK4R6CunEH98cIm1UduqHiyib/4LUe3RmEgGXMAzucCETbbWkXyXaF+o8ZCQCDvJ7gPVfvBJEZ4kzu+0rAxGE75zBMd8ibTnfPnp4hYUe4mqF3wgwYxAdS6gftGe0a1PsYgd+C8TiNru/abHSTqfnOflt+vMNgQA5+P3MxY6M5Dmk5Mx5y12/WPri2e3vN7SuJOl33v3URNdnZtL9ugcyvgvRCetAFsONemWq83zCBDBeUeizs+UBwiI65CK7YJExyjZLSN766EfWreUXbhEfz4L0z4PoQ1zhJFqfHose5GLbZye/kJAQvfTbg8i71hoN0hDBVSwLEykjPMp89fMfLr+MA0QgMcDnpzlL5VbUIwsmGbO0sFZ0SEdrgWo/QEeoRX0xFz9cO+FzR0ZWH9zfsK+k94972ZE21moVmWbLSaTDEbXdKWXHeLadtWDEam7UmC9MCVuWeKfBFbGt6s6akcCvjPvJbLd1uZ+19L34zA6OBLrinvckyojHof06usUE7M8HGYlM+HquJXUyLGh/sIRfEB1wgVnVukrGCxBkJIILUohHSFNGLLjppK2+ZMRYR9Lw/Y14IoMwbWS3XUGC6EM4th1Bvpu+2B2FNLzi7nedxSLfDu48ETwRkQcWP6+241ZIXeowBCTkKSJujd2F7x8uoHfutBaCN7/uxuLE/cDzU1yog+tnkJXEhbcm+iXITRd2deUz4vGJ7jrcP9mzcaLF2ysQnwj7EkLqsiXN1Gl2ax2bLu0AY27kLEv8UeavZuIdBF9Jk/KGjEQoE6lztauVtRbmxzjrRfaLFAvGknaugPyJy9F2mfX26be/c/s5EgduXRFcCCPnndzaxQ1hiRUp+t/x5CSaC3c/yD6QUq5Szi5i+4/fHHB6yOYDDEj/Ius2l7ive+BD9zvAtwIRjmB1iwQJQ7galcpwMCssuRlLKluXrQjuktGDxfEHWtK4Y8s6rt/D4nHqxSbrFjs7woJMPM0w9mRRLFZA+1pS3fdIZLwZDpOgfV//2JGxPONPiBv6lwheXBg7+vuxjLEZZ9JPl4WvMuYUQgQyUsJgjfbBBx+EtuEJqmO4/OlYdQ8qqa6Te1KK7yy79SNIaox/aGuor+INCgtB/vD2xDyfCHUYMhLB+ABrTshG6jvtGPEw3wGhhEBeMB6NRkYSLh3qIt8qC9LJ974SMAwq8YQNEueVV17pfiukPxLpHchISG6sx5MtLLrA4xsLi2XuL9lpaHwm9LvEPC/z6kH/5PcsFoYJWUiuGj/ZCNnIvpC4ZQ3qWiGWQvE8Z0JAVpVNfWnoXq+yipaBMiQbkwXXnGtX4kGg3fvuXmGj3YAAvM26XsK6L2MgEC109GdBdSaWv9dnDBYkxmV29V+d6uUtUVQw0Apm0sLNDCugvfKX3c8CIpG4vCKuT7gn75DfaLLuny2OCJYwuEZhIIN7JuSVD380I4Yeb7AyhYQ8zGKIax5WcwYVBsRYXEJGsh8PA7Zps5Y4t7ZB48gN4fbVd0WnAJd3uF9glWCsH5bsYMkkMFYrrH7iBxzLFiaQ2TsxiMTSFSsfRCadJU6sZ7yC2z4E9wV+wQpRiDB0o1MvIqQRRFEyRFwOSlwQjgg6IBCsWOJwzQ+6lI0cZfNzCGSvQKr5BatKxO8aN1lYYIW4cOHCLMnyg5VoByjcPplEHq3MKBd/WTPwE8Iwi3KZFwzWsKrt2bOns8KkE4xVohAy4d6Re+F+aKnjrP4DV8qJFVvEF0385UeHHbKMcqcsE4kzWnrp9mxftX1MAiDXXXfdXpAIEZed+rFXpAncCPJ90kZBJrJilc65LGyIJzlWUONimfRoZ0WkrZHrIMcgOhNPMtpX2nyISP68QtsjA1y5zz2v8P3Gastpv2RBiLzLtdSd7P6mSZzpetxX36YfD1lgyGR/uP7+wdZFKHujZ6e/T58Zrx/S/xUdflu4yk1AyzV7lSGMKfjzimzTgPUKJJ/s00YYiMvXP/rJBQ/SPw+qjzd973m0Pn0l6w6VvjpEqVcgYCFWYgkkllfYqgFPNLg+nGSJj68tWYxHGkgW9ztoiUq20QgqtA3zFq82jWpXtPtc1nFE51JLxmzb/m/QKHJFOEjIYoNrOV23LFjk3LJiDRlLti7IIMhihZPnzTOJ8m9+WSS33D6sXOCKFHLcVn+D5es7j54bCiMnJYoVdqe0h1hQ9rAuLCF/Lhj2RqA+HkQi407v/nxEiLvYatYVM/v8BdEBizlEyDF3Yf9hpSluKrHsI17GuiJ8h6Qvv2dB9OFdLOSwgNuaWe+oz1gWQjiK1KicMd5lD0DJA4SpV4Rg87sElTAQ+ZCZ4OC1UJZ00AGhbcLta227ZyDhIdJw0xwpXt7BBS/ibQ+4XptJSEICXtU/w1MIVpgIC5MhJLE85Pja+J9D5RwUX+qKd69L4mXvX4QyR6601pMsJBcRQu8n694WkX0R37N7X4qIpaDse4rFKHs/QkSKQB7utH0hcUsr9yMdKVdvORMObPkmvN8M90mP+y/fcxaXWQQX20iQMISrYV3WIlg9RhP3W2CJTzBduPxvu9B8h53fKWzOt+5tecb+lVLOy1btwTNanOGeYaV37733Ojd4eICA3GCxFwTD8OHDw72Ssns52fdIZLwZLuNB+77+saMshKYP7xe/hx9vf1RcL4qrQukPe+ctiI9+qkhQHSW896hj1fSY//aWif88u/XDH1+4a5l7Yq7CK8xhsciTeijPWCTuFcZhvM+cFuM22hjctrIXIuNX3mPhp7zvfdd7vr/XRS8W++qcraFuu+02R0qyjQm/T34RMhISGwtNldyJwOOPP+68zbGg5YUXXggZUSQrNwkRkpvnLzSsDAlCQnoVZU/JZAqDewSS8f9e+SIUdQHrgqagnVBjla4IeyIiBeyKT1aBsrdJUGHPScjNRbYTSJyrLKGGe9Ygg3Z/GvHo7H833mvSAptimR1k7/tsTr9l6x6ixfssnnPZ49L7TgFrNcpKaGTqtN/dpAcuVaZbK09cAH3w2Z6Bhfe9SOe4W8EVVqtmrMgx5udfs/4ARnovt93fV99V7969nZsBfvzxDc9qJ9yEsILJK94VT9z3X3vDRjpnRR9kn6wG5AjhEo0w8sYVS1chInFB6BXcRPiFjg+rBkXIDxPxi6z7xpwSCGCvyOS4uK89//zznQtSLHsg+1iZwoBFBhsyqGF1mb/T542Xc6ymsAIcMGCAefTRR0NuaXmWDCwoQ39+wFQmgEgnuxJLTzq3ZcuWzZIM2HgJliwP7QWdWgbgEPJYW3GEnMSFTiwi0R8X16yWg5CEbJe8cy+a+N3ayrXUg0TijJZeuj3bV20f3w+D/XffzbpIie9Q2pJk149EsI9V74mTbxvhm2Owx/ceVLDiZaEIbT8ulyHlmSARd8NB4/GGC6KzN3yi51guQvr7hTLk9ya7wjfMgMobF3HLb1Z2f9Oyq1+q399X36Y/X7LP3dI/15l3PHuwsV8bbghlwp/3Eu3v02fmz99nZuKfvqcIFlcInlaWWDd5IugiFlB4JoHciSRB+udB9YmURrT76HlgrWJuv0gvAYLFTRDxuo0kPIQKAqGJPPvOt46QPLNnCzth7m7Z7SaiL8zJCLXn/0d2qwkIyVO6HeZuTrRuE/OaQEJCSgbZS9Kb9zUTpngvY57XsgQWZK6XtIFso+yxAMMNJfKJHRt//fMid+79B+mFsK8n+/chjCMhfoJIGVs/wlnfQqKIXnXFPWYUHbpbV5lIJIsyrOZos9dbAtIrkGhYfAr5FUQfrK5LFT/AWuZlkEVCGs6Yl3VhC+QmE3EQfuwVifxrF856pYPP9av3GeftD6/tbrEdiVda23EvwvwDMmv+n+4IWXZK9+Yu3dujWEcSuFrFjN9HXHp6RdqxmlXKOuLvy58WhvbX3GwJLxZ8Dzq5jVsE/Hzm3pNB8a1UrlRob1JvmtQ5C5XzcsT+juz9OOiW10NBWtr9TpEvflzojtUt2ctCZ8hkkTaZ7mC/tVarGW1zPjfXIc85Uk9ZTO5fXOINI+dSrgutFyqvsBcuQjoitPHUL7AUF7byjOMfNo4gYeQdiFDqjpSF3Pcf69Us79LdaH97CM+i7pLFyzsrSRavf2atJq+0LncRqa/+OGJd42Hjrrvuci4AISMRFmbigpG9xBlH3XrrrbGiSdrzfd33SLQPm8h74saQfdGEZARI+poyzg8CLGPGcP1h/7uJ6EgcMjaV+ORax6qCSPhjsua/GYuIeM/lXqxj0PoRJB7CUP7euSepD8xVBRW8TOF9DCtf5l8grthqB7fR/kX73jglLbkn1/tLXZR878sj8yOQjF5S0quPkJHMSWBp718U7A2b285pm/nNpL3t27evW7i8KMz8ca1atdzzWBa/6Z5/fjPwmsCenSNGjHDlLvNkydB9T8sWZ2zexrVE/QyyT6KArBTBghKhY5EKYQUkA4vxX/5qcBmK0ME7yvrvF+lgXf2w6u6bXxY6YvG6Qce4czq5QaRh7Qpu0HbO9S+FgrPJejiRzeH9z3BlJAPBIDr73492HSlN3mFygD0bmGRYl7kaspslB5lcwXVtPMLKP1ZNeqWkHawxoJSOPG6ZIH0XLN3Tsf/akridWtY3/S2JywQLe0vGI3S+Wf0pKyU/+CyYNV08aaRL2H3xXfHjj+s6VjyIdOnSRU7dkUlXsT6UBxUrVpTTqEdW7nn3JMBlKCssmABngBMP6RNLVybUIaXY1BsXEbjJ5MeCPcW8wg8De6OxT5xY1rBqEL2ob/GKdITifQ8LOFzjig7sa4bwI8+PHWQJe32+/fbb7r6sghQd+fHDFSv5FetKAvLjCOZeogW3g7jfwT8/G29LeScLC1zGVqhQwXVQZXAlbmSc8tn8F0RPMODHH0IQV4p0hk4//fSoKdMBZsCHi0v+wJ0fXMhJb90MWsZ0zhlQSt7pgHkHlP7vAeUod9konmtxuyOd8Vhx8k5ul5xq+7ykOd8PdZa6JVjTJlEeQiYnu37EW05B6j3tIvvrsgqa1am43GL/UWlXYqVJHhH2qhXXz7IC1v9upO/Ai2sQnf3xRruOlCbvsJAGa1YwkH2RWYTAgpp4O8uUOeVPx9srfMvicghd+O3zDsKz85vmTSddz3Pq24yW/1nW+pGfZqxB2FNQBM8ljS0hIKRadvv79JP9fea+3TMIMUkTd6IndGnm6opXl2M7NHaT4IRjuwIsp+hvywJIJslZ4IhrvSffsMR/gP55EH1Er3iOuMhkf/uRdv9N9pBk8eKNF3ZziwYFS4nPO36Re8fZ7Rze9/TFxQXs9EziCqKW/InbVvbZXPlXfJY7TPpD7OLphb3tWdTIXnh5Tbzkot86ErJSBPISkaO7CPBPiLWFy/eMy3gNd5QQ/MjMeSvdkfG07LlHe9izUxNH7jF+xZLuiVv7Gvyi4m4VYrJX56bmgymz3bvR/jHepuz4toQUPN7GDcEllm5BdICYw41qx5Z17eLWjHRxNcoei7hOxZ3lLrs4rnbm/nqi061DurvTD6dkuFcNog9WpRYCa3mdgY2QhmK9J3HzXYv70x9nL3O3cU36hP3GkYMOLGHOytxDFQtIRBZSuAv7r2Wma2Lnovj1jPfA/xLnftY4C0XCzrSWoAjEJ65r3/10VhYrbPfQ94/9H8FExg3ymGva1I4t6rgjbklFNmzaaqpVKm3KWB3AWQhB9s6MhS/5dXuT+rwzETd1bvGKv+02MpNNLWsdiLUjVpiUG8J8C16QqCNFrYcmFoeI5asLYP8xF4DeP9nFybjEheiGcIdwRk/q+x1De7jgP/gsuSUO71HK1Z+OWBV73Ryz+IU0WGwi3wlxsdD9IGtZLveChGFRO2W4ZGVWotirm5xjeYusyGxDmXOpV6O8K9On3vrGPZO20Z8P9zDGPxZhsnfc9ddfb956660soSELhJRkbEe4nJJ91fdItA+b6Hv0XfFiRP8T94MibB0Rz+Jv+sN4BmGBoixKxNMScwLES181qI46VpVSyHrcF3VS5hBYxM+ebEikMVpWbbNeBakf8obMN8m198jYmfrK2EjGzjxnLMliTb/Fsfdd7znjqTp16jjPVtOmTTP84R2qT58+btsUiVvrohe19DqnTnlJSVnMQpmxxyaLm3mel8hIFmtfeOGFbo6FRTzs24thA1vQyH6JzIlg9cs+v2wbxvxKbhfmRti/GPe7t99+u7nllluyfP/ZyV/ChGS0RCsc28Vs/n2hs6CEkEwVGYkOr1qXoJf162Reu7+/ee/Tma4jeoqdPMByjw4uJNqtFx/n3BLdPHKcdf1T124Sf5y5/5re5sJhe1blRcvP6rWbXGd3+KU9XMf4eDsQ968i/tK6vMFqckCfVm4j+Gfezugg4kKKQf/DN5xsxk6cbsZ/MSemztF08T6LlKY3zBiLzxX9O5uX7u5nBxWzXCf62PaNXYf6VbsXSFCpa927PnvHWdZNzUbT9/JnQ68xWHti2GkGdyoHWKyP79TUDRRefj9jPwUCsqdn51b1nctbSNBwq2RDEfpOxArhwymz3CCElYCyAtsXNM9fpuq7gjyBGOvevbvrFOBOtUyZDHc6AiouIJj0PfXUUx1xgkWNuP2QMP4jHWw6T7iAwU2o+FjHQpKJctLB0k/2evS/H+46iK4Qb2effbY599xznVULpBREJcSfCL7nsbbEnznWZwz8IfYIg9uBoEK8kLWQAG3btjUzZ840uAgNKqSHFSQ64HcfIg1ssIgEG+LmxxxXilyzyT26itARABOwZNACAdu0aVNXnuGs8rhHJxZ9ISb54UwWFlhWMaiV/FA/yE+yJIiedITY+6Rbt24ufwzuwFPakXC6QIwzYGMvDsGPcOJ+NpEypr537drVJYfLTxEGhWD/6quvhtwC84xBJyQSaVJ+7BFKHfBOIEWKU+LOy8dktH1Sniy2gLCCsGbwg6tSVmOyShOSCdIeC2tcoPJ9paJ+xFNWseo97RvtMu0D+3kw6cCm7tQn9pINItR7CPgTTzzRYQK5R5vilUjfQThcY+nsjTfaebg0vd8E70oZsvCABQTgQBny7bMHTzxyxRVXuN8AVgF6yVxcmkNwUj/Yo5O2lvZOJDu/aRJHbj0m49sMkncWs/0wa7HzlPHMiDPNpG/mun45+8Jv3b7DjPlgWlL6+298/LMZfHr7UJ+5vCVRumZahIme305f5EiAE4462Lnmw3qsvfXCcliTas6DB33tF9//3lkI3nB+V7cQcpMlZHrY/jFWR7MzrZyC9M+D6CN6xXN84o2vTAe7xyOWVpOevcRYasLyTPncokPIBJH/u7mvaWa3Shj2f+PdFhhyv6l1kfuIHddMm73E5ZN93hnv7LYEgcg4a+HIuAhhHBCPSDwsJO3atpH5OdOFYyiOPcmEbuXFk3LdOjkCEqJyy+hFcZORYMJWF3Qb5yxYFYJI3FHKPfb5w1IRl8g3D+7mLMC6tW3gCMTx1tUubiufHH6q/cYKmxsfHufqeRe78Lf/iS0DEZLfWhIf8pI4IOjLW9LKTwTF0gHXsrh8PdEuBrjkzPYGyz488hxrrSaxhhuV6SmJPQMhKV+7/xwz9ccFprnNf11L3rD/IhagSBB92h5a24X9xn7vCK5Ska+sJaEIpBJpC6lKGlgfQ7y+P+o850qUtCHLcPsKoQUBh2Ug2F92Z4YlWn1rAQfJVtOSdI/edJJzw8o+tBVs+8NchpD5jhCzhB0EHPE99mrs3zhckebPt+ebFt05Qi6iG3n0upeGYGWswfPHM4lVeS8Wvicdk7Gw8kffNyt1bvbvGYuhhz/2iW1nz7aWfZ2tNyU85fznSGvZ0qV1piXkL7+tkKTdEYvPf+w+idJGUC+OblPffDj6fFcOLAQRK3fmSWJJqFwzyWIJXxPrTLsgwr9Ag/xjFQs5/7nVGw9auPGmjCCIkSBhLuh7pAv7XKb1qbuI8A8XvYhYP/Kbw37FP/+63LkPLly4gLUWtcSzJUtxKRyv0J+59NJL3YRquHcZfzC5KsRIuDA5fS+VfY9E+7CJvsciZPqXjPEZnzAvwliRxakslPUuWI2GM+MaxjTMu0h/mHE44/HJkye7V4PoqGPVaChHfpaqOgkBiDBvQ/2AGMCTWbwSpH4QJ9sTMS9IeowpGSN6hbEx9bVVq1ZuzMRzyEnmDmkrggq/MczFMd5iPgrLSr4BBIMBROuigyGt/7FVkpCS4qGO/SUZN2MZyTxlXhHmF6mzGIqwPQ7GH8xDTJkyxQwePNi5Hyavd9xxh5t7hrSjDc8r4iUlxVLS3z4kktfwPdQ4YxIrSHkNMvKPkU+7y1SSkSTA6uQxH06zVi2F3MD37F52Atz26u944hOz3A4M7rqil3Ppcf+zkx0Rxp6Sv1pSrLFdbXZchyaictTjLY+Ocy5DjrKk2qVndbQd5pJmrnXN4hX2mME1CKv/+vdu5YhRnkOY4oqDVX8Xn9nBvRJLZ2+83nOZVJdjuDR3eSYDePedSdPNi+99b38wCpqzerVwhCErXa+6953QylhvGv5zmfxjMgjJPISC0QHn77Qeh7tB4k7r/uf+5yZb1zV7Br6saGWvSeTVccF+qCCXh975tnktc78d0uB6+GPjQ2lfdc87ZuhdGYO50M08dJKK70rKU47AhRUdJBorPJiQhhiTPRQFTlZM0lGAOGG1B1ZFdEi88UhYOWJRQrysfmJS3yuyAtC7r4H3eaTzILrSkR89erTB9QkdGgghsTCUeEmfzg8rWPhxgTwiL2+88Yb7AZFw/qPkV75BnjOQgxTABz4duHhEBhmQwXTsGOxhucikOoLepAWJwqQ4KxvBVPTg+Oyzz7rOIp1B4mF1JPmTwYdfH+IU4oVVlMnCAtc+YMGKNzqxkAIQoH5rI78+Qa+D6MnqXdzRjh8/3hF6bHA9cuTILEkIdnITchBM6dxDakC2kxaDNpF4y1isqXjfuxelt95I3BxJi2+rR48ejjCGzJdVZhIuUpzyPC8dU9H2sTpvoSV8sZjmm2cgxCrOMWPGGOoNqz0h1OlAQ06zuABJRf2QspK6KEe57z3Gqve0xyxsoG3kW6Ptxg021t5MaAQRVk3TbtJ+0dGmLWFVPOLVLdx3EA7XWDpH0knS8n4n/jQljMRBGeJOjDJkIIs1PO0x7b4sgpGw/iNxedPyx014ntOO0T5Tb7Bah7yWVcoSJ3lG4v1Nk/dzyzEV32bQvF9t93+HmKpjvXJAGtKHX7N+k7koc3FhMvr79FE/spZWWDDRZ2a7SHw7+gAAQABJREFUgU+sBxYmekWYoB5w4xhnxdP+8LpuXAAZyT6K6IhgIXjtfe85zygs1KOPzCQ5xJxsJxGkfx5EH0iDoOKt4wNtHu55epLbk52J+0E3v2ItvTZnicob3vvgfdtHb2YnxM/v29aWR3lHBFxu++he8fb3XwvY97/b6kNfX1wtfmit77h+JfN9yB6uIUjzomzJtIKUvHG9dPQL7tL/TMLEOray+3oi31urWBG5h7WvyIXD3jRYwGHVes4JLZw7SFxBYjn30PW9HVmENdYPs5a4Ra3sD4ilmOz7J/GEOz7y0lRHsmH11vvoZqaNJT7FItLrEjOaDsQL8Xffs5/a7/E/09taCUJyYo12++gJjkQlzJX3vGcW2HDlyhQ3kGO4CcWqcdDNexYhB9EHy2vGvKInpCFpLfe4VRXLYK/VJC5I2U8SSz32amXBLvGIe2dpS7zfFsTmir822IUW8xyZeoZtL8qVKWbG2b0BRzwxkWyFBDIOGTXmyxApF3oY5gSvTBDSWDr7hTE7uj30wudZHonF52ff/b6XW95Y+B7aqIqLC6LQK6E6l1kP/7Tb30AQ0y4OPq2dJXFLOnL0t8z9FIUo9O7HibXnAbYOiVcm4r/rqUl2sfevbjEFZOQcS3iiP4ufg5BzQgZLORMnJC2/AVJm3BO58p53XT2sYxdqY5kLGYmrViGXCRcrDN9BR7tAHoLZj5Ok4z3yDV5l99uc8sMCdxvs7n3mUzPRWiojO3bscs+vfWDPNiTuQcB/TBhj3RFNIDP25cRqTvY9gvRh5fuVI9gFeS8cxvQzcVEJEYTHI+ZiICOZw/B6Ogr3LvdEB8b2WOIwX9OuXTs3d0Cflf6wLP4OoqO3X+xNU8eqXjSMSUWdlLKUIyliKci4g7Fe586d3Tgn3Bgtq3Z7riSuIPWDt5g/Y16EeRzGPn6hfjz99NPOCw3eeZifYmskxj/eRdj+97iWusUR96rvvfeeG48z/wH5yLY7n3zyScjySsL749K66Edk317joQxSEuMVhHLkOqfISObQcKGKsMhcjDn8Hv9cgAT/Me5nfuXyyy9388Ve73/M50LC8jvKvMS4cePcdTJ/M2nDmV/FmMb/x3wuczf++1zzWyDtf4JZz/IaxjL33Xefm1MbOnRolmeJXuSzrqcymKZEY8h8r2KPow0rQ0TEbavXtF2epero3FXY3Hg3so+WFqt+mSiIJrgofeSlKS4IrmzoCIu7mXDvsUdiAbtaUtzHSpji1tXNLtvx37Zjp9xyx3h1zvJy5kWkNP1hSYvOr7iO9T+Pdc0qUO9KwcnPXeL20zzzmhfcqm/ct4bb1wMXW+OfHGzy2cFZt/P+L1Yyufo5k9384CdLcvK7gpxjIjfaCkjcWWKGHy2MP+90oOhQ0ICJyIonrBHBCzcP8iMmYfxHOuoy6RtNV8hPOl90aETo3EM00VH3N8qsNiO8+J2Xd+I5Yo0DLpQ/Fm7RhJVgEGVekRVv27ZlTDR4n3HO6kbeE6LS/5xrdCBcdupfMrBAF3CgM+vtSEJiJ4IN8fklkp6sBIVUmTBhghuQ8R6DOqzFIBXElYI/Pq4pPwZukfCTMo5WBhIv+cdSE5c5WOx6BesqIWmxtoJAkb0SWF2IVZgXN3k3WpwSZl8e0S8Sdonolaq2jzaOsvRawKEf7RTtCviHk6D1g7aEzl8soT7G2+ZEqveR0iJP8egCNqQRrRwjfQeRcI1X53B5iZSmPyz55fuCnExExPpcBu9Y2jOowSULOlDHI7ki8v+mJZJ+qt7JLd9mPPnHQghyKmh/Nt7+PrrUsNZKK1f/k6Xf69eRietqlcqYZX+ud2SF/znXWEUWs5ZlYvkTLkyQ/nkQfcLFHe5exxb1zMl2b3YWSH5hrcgQCJyxIwdZXDeaUzyeUNinTTybQASfcfwR5pIRbxnc6KLT8lUbwmLEs5fvOcdtDyGkcThdcvs9vq9E25xweS/frbPBMlJE3LZ6XbvKs1Qccc3KmDXaWNebLlaVuFENJ7j+fO2jn0OPqEtlSxePGXcQHSCwsP6LtP8e32bFciWzEIghRTJPgurjfy/S9aBT2rjvXNzJEm7IGe0cMTraumJ9e8J096r3m6Ite/q208zkb+c7co1nfIssxPULbjpH39LXpvGPOfu6Mf7HYa9P7X6oueDUI80ND41zZHLYQAncDIJvAtHG9QqENGX8zNjvQqRMswaVzUPX9bYunlc4ki6uCOMITP6rWmvNJSvXh9L2vx4pzOPWupKyxEo0CCHpjze3XLNANVp/Mt58pGpcEE2PRPuwib5HX5MtZSKNBaPp6n1Gf5hxS7T9/KLpqGNVL5qRz3O6TmI0QN2QeYTImkV/EqR+MK4jHRkThYuRcRNzT5HGzuHeCXeP+RfiCldfc0NdZO7pgQceMC+++GK47O11D+MByNyLL754r2fZvYHHI+a+sODLaYGYhlwm7Ujj5VToBCEXzmoYAnGKtV7MC0J7jvU730o8wm8wxijRvuN44pOw6MNvFcYy2ZWkuWyFeMxJ8jFcxpmciEda2c3ie1j3q9GElYNCSK7faCe5+IsijnD0kY4E9xOUEkW8Ost73mOkNL1hOM9uWl4y0h83+3GE25OTiQvcWuE69+UP9rhx9b+v1+ERyMnvKhIZ5tUMMiYIIeN9xzvxj7tQSCMsd7BWkoEK/rixpIwmWOIIIRlNVwZA+KAnDVbssPclE0Z0cvxkJOmF6/xE0yPcMwgkcMHVIa5bowk/CH5CMpYOkHuxBB0Ez1hhIz2PpUek9/z3w+mRKDb+uLmOpCcED2VPxwQrQ34oIULBxm/R5I+XlU7h9JZwUsZyHenI6iVWKSETJ2Zd2c69aIMI2b+PcF6JFac3bF45T1Xb510Y4cWKdsrbVnmfcR60flDnYrUBxEcnOVx7xLNIEqneRwoPwRqPLmAT7RsgnUjfQSRc49U5XF4ipekPG638/GHDXUfrrKNDuMFVpN+0cPHnlXup+jbjwQfPG/FIvP194g5nHeNPE4upWLpE6h974wrSPw+ijzfOaOe4/jvUuhpsbq17FlnrHpyr4BYQS6p3Js/I8qqQkVlu2gs8p0TK+82Du5t2dk955IHnPnVH/RcMAYjHnCIfw2mEm0r+gkrPzk1M84bhCUn2C/QSktSlIERnEB2wEosmfmvGcGGD6hPu3XD32FezbOli5nD7beFWE6tA2p7Vdn5CyEje835T7D+IiLUqz/xkZINaB5ljjmxgeth9aq09lLnBus0NKp9+P98Rku0Or51UQjIIvkF1TDTc4dYyvcMRdayr4RrWSvI3Zw17lHWJi9X4bZbsS6WQf/a5jSbhwkBaQ0ZiHZqXychouCT6bF/0PRLtwyb6Hn3NSGPBeHCLNaYhrmg66lg1GNo5XSfDjUOCaZo1VJD6EWlc542JcVN2yUjii7ZANzfURbzGPfTQQ87LkBefSOfgf9ttt0V6nK37WOuJB7ZsRZTAy1jz4rktpwUDANk3N6fTzqn0mIfCa1e6CPokg4wkP0kjJNMFnHj0YJ9H2esxnvc0bAYCrBxf+mf0znhPu3qR1bCTrFuRJ337UCiO+x8CEEUQj5CRuIEVSWYDK6tysMbDbSGdHIhMzOdTLbi04U9lbwRyAhvKmY4rq6QgQOlMQ0ziwjWn3EZArkOYUw9jpQn5w18skj+eOPdGXu/kJAIMzNg7IB0knXRJBzzi1QGrfEjdaBLpNy3aO/os5xHQ/n5WzCGFLhr+urnxgq6mSoXSBiYSEoQtMNj7MZIQhr3mIi2ylPfYNx4PMw+/OCXkflWe6TFvIXDzyPF5K0PZyM3Qu94xD1x7oiPJIMp22v0e51ry/55nMvZvCxd16ZIHmPV23z/26YwkPa03px4dG7t9I0c8PtEstVZ5QWXNus1m9GtfuT00g76TW8Ld+eQkuzXP8Y4QxxKVReTLV683z7/7g3M/nI75wFL+WWvR+cq4DLf46aij6qQIeBHQsaoXDT3flwikc11k31b+VBQBRSA+BJLmsjW+ZDW0IpA3EUi2a7S8iZLmShFQBPIaAtr25bUS1fzkFQT028wrJan5SEcE+L6S6bI1HfOoOsWHAFucVKlQKqYFXXyxauhoCOD6dsnKddaLg2UlVdICgWS7bE2LTKkSuRoB7Q/n6uJT5RUBRSAPIrBfW0jmwfLULCkCioAioAgoAoqAIqAIKAKKgCKgCCgCikAOI8AWJ7HceeawSnk+uUjuo/N8xjWDioAioAgoAoqAIqAI5FIE8udSvVVtRUARUAQUAUVAEVAEFAFFQBFQBBQBRUARUAQUAUVAEVAEFAFFQBFQBBQBRUARyAUIKCGZCwpJVVQEFAFFQBFQBBQBRUARUAQUAUVAEVAEFAFFQBFQBBQBRUARUAQUAUVAEVAEcisCSkjm1pJTvRUBRUARUAQUAUVAEVAEFAFFQBFQBBQBRUARUAQUAUVAEVAEFAFFQBFQBBSBXICAEpK5oJBURUVAEVAEFAFFQBFQBBQBRUARUAQUAUVAEVAEFAFFQBFQBBQBRUARUAQUAUUgtyKghGRuLTnVWxFQBBQBRUARUAQUAUVAEVAEFAFFQBFQBBQBRUARUAQUAUVAEVAEFAFFQBHIBQgoIZkLCklVVAQUAUVAEVAEFAFFQBFQBBQBRUARUAQUAUVAEVAEFAFFQBFQBBQBRUARUARyKwL5GjRo8F9uVV71VgQUAUVAEVAEFAFFQBFQBBQBRUARUAT2BQJbt27dF8lqmoqAIqAIpC0CRYsWTVvdVDFFQBFQBBQBRUAR2PcIFNRB1L4vBNVAEVAEFAFFQBFQBBQBRUARUAQUAUVAEVAEFAFFQBHIzQjoHGNuLj3VXRFQBBQBRUARSD0C6rI19RhrCoqAIqAIKAKKgCKgCCgCioAioAgoAoqAIqAIKAKKgCKgCCgCioAioAgoAorAfouAEpL7bdFrxhUBRUARUAQUAUVAEVAEFAFFQBFQBBQBRUARUAQUAUVAEVAEFAFFQBFQBBSB1COghGTqMdYUFAFFQBFQBBQBRUARUAQUAUVAEVAEFAFFQBFQBBQBRUARUAQUAUVAEVAEFIH9FgElJPfboteMKwKKgCKgCCgCioAioAgoAoqAIqAIKAKKgCKgCCgCioAioAgoAoqAIqAIKAKpR0AJydRjrCkoAoqAIqAIKAKKgCKgCCgCioAioAgoAoqAIqAIKAKKgCKgCCgCioAioAgoAvstAgX325xrxhWBXIRA+W6dnbblunUKab12wudmzYQpoWs9UQQUAUVAEVAEFAFFQBFQBBQBRUARUAQUAUVAEVAEFAFFQBFQBBQBRSAdEShQunTpYemoWFCd6tWrZ84991yzYsUKs379+qCvuXAlS5Y0FSpUMP/8809c78UKXK5cOXP55ZebIkWKmIULF8YKHvV5nz59zFFHHWWmTZsWNVy6PqxevbrZvXu32bFjR2AVs1OmgRPJZsD+/fubQw45xMyYMSNqTA0bNjTr1q0z//33X9RwsR5WH9zfLB39gilWt5YpVLaMC8751gWLzb/r4qv33rQKFixozj77bNO9e3dTrVo1M3v2bBM0b954UnF+4IEHmosvvths377drFy5MhVJxB3nkCFDTNWqVc1vv/1mjjjiCDNw4ECzfPlyV8ZxR5ZGLySrnqZRllQVRUARUAQUAUVAEVAEFAFFQBFQBBQBRUARUAQUAUVAEVAEFIE0QiDpLltPPfVUc+yxx+ZYFitWrGggAMuUySBp4km4Zs2ajsyENEumVKlSxZQqVco0atQo29HWqVPHESDZjsgXQadOncw555zju5v8y0MPPdQMGjTIFC9ePHDk2SnTwIlkM2CtWrVMjRo1osZSoEABc8wxx5i+ffuafPnyRQ0b7SHEIwIpKefuhv3nv5b7QY8DBgwwjRs3NoUKFTIbN250rwXJW9D4sxOOb6h8+fKG+pAuAhlJu4FA4rGogW80N0uy6mluxkB1VwQUAUVAEVAEFAFFQBFQBBQBRUARUAQUAUVAEVAEFAFFQBFILQJJJySbNWtmDj/88NRqnaTYZ82aZT744AMDKQPRkCyZOXOmGTlypHn88ceTFWXS46GcIKJSLR9++KFZtGiROe+880yxYsVSnVxaxb9r1y7zzDPPOMI8UVJSCEfcs2INyTGZUrlyZfPvv/+aO+64w3z00UfJjDrPx/Xqq6+aUaNGmUmTJuXqvCajnuZqAFR5RUARUAQUAUVAEVAEFAFFQBFQBBQBRUARUAQUAUVAEVAEFIGUI5BUl60nnniiwdoQixusm3AH+ddff7lMQEa1atXKdOnSxblJxb3q1q1bQxns2rWrwUVjiRIlnIUlrlTF3WnZsmVNhw4dTPv27R25s3r1akei8DJWag0aNDBz5swxdevWdfFDLq5Zs8Zs27YtFH+kkz///NO5bD3ttNPMggULQlZikcIHuV+4cGHTuXNnlz75REeucSvbpk0bg3Vi/vz5DWl7BSu6Jk2aOPeZWF+tWrXKYGFYtGhR8+mnn7qgPXr0MAcccIABAxFch4LtvHnz5JZ7R/DGFSfWb5s2bXLPcc+JW1Ss4sAbC7TFixe7Z5QdZOXRRx/t8ARDrytc3FQefPDBLr5u3bo58hkCNprMnTvXVKpUybmehQSGAIsmUqa4DxWMIE/btWvn3sUFKoKlGvWmadOmDmu5z7NIesr9tWvXurrSunVrs2HDBvfHeyKUDziQR+oTYbZs2SKPXXniivaLL74I3Qt3snPnTgM+bdu2dfr++uuv4YKFvdfw/ltN6ZaHuj+ISfnzBoakRCqdfqIpXPZAs2XBIncd5B/fKxjiTpbvlfpAveps66o/b9Q5sOL7JSzfF+UITr169XLuXuV7JW0WJVD/lixZYsAgiFj30e7b4FvHohZXyi1atHB18/fffw9FEa3cCeStw3xH5AV9vRKrPSIseJBnrFyxeoZYB5vNmzeb7777ztUL9Fu2bJnDIp7vnDpL3aJeU8f5pjj3YujVV+rt0qVLXfvIt0C7QBtB/mhrKQfyJd8M71Nuxx9/vCsnPwbe+LNTT73x6LkioAgoAoqAIqAIKAKKgCKgCCgCioAioAgoAoqAIqAIKAKKgCIQDoGC4W4meg8CAlKNyXHO2UMRUumggw4yQ4cOdUQB5AeuTCE2Xn/9dfPLL7+45CDpeMa7CK4aJ0+e7IilU045xd2Td9lTEetD9m4T6dmzp5uMlzAQQA8++KD5+++/JUjEIzowqc9+cM8++6wjDiMGDvAAMgXiUfaQhHzgGuIQwgAdIR8ghIYNGxaK8cILLwy5gyTMYYcdttfei5CyECBeEvDII480uNnE2hMBO/awhJgRPCAwsFb8+uuvQ7oRlnKCyJs6darD/pprrnGEE+9RlhAy4ENZIcQDudixY0cXPgjZRFzvvfeeOeGEE5yLXKwGvWS0izjKv+bNmxsIY4igCRMmuJBnnHGGw1NegwADk1deecXdiqSn3AdHCCfyCBkEISsWrZBs4IAbYMGB/L755pvmp59+kiQDHyF1qVfUr5NOOsmMHTvWxRstgvLdOkd7vNczISshJIOSkpQ9eeWPcxYEQBj7BZfIV1xxRZb6BKn90EMPGYhdrCypfxC233zzjVtwwDcLiUu5BxEWMgwePNiVB5hDJIoLWe/7scqdOn/ttddmqcOQeSxYeOmll1xUQdojFhXccMMNjtATfcCI+iJCO8Z3zX6SkO5Bv/NLLrnEEZzEQ9wsOmCPVdo+2rxwIvWWdg2SUXSC1Lzrrrvc+3wD5PXnn38ORUE9R8doZKQETqSeyrt6VAQUAUVAEVAEFAFFQBFQBBQBRUARUAQUAUVAEVAEFAFFQBFQBKIhkD/aw3if3XTTTc4aCiKB8zfeeMNFcdFFFzkyAxeHN954oyMycBPIfpMQdCJMyH/55Zfm5ptvdi5PscQ6+eSTXZyQH7z77rvvuol7XGB6hXfvuecec8stt5gZM2a49LBmCiq8A3kCaQTBkioZMWKEGWZJSCy+ICwhwxAIByy/sCi97bbbXD6w2CRMvAKxAzEDgQZmuJWEcMW6EkJl+PDhIdKVcrr//vtdEv369XNEzg8//GD+97//mdtvv90RuhAmkKMixLFy5UpDXiiroPL++++bRdbK7Nxzz3WkSpD3IHEhI6lT9913nyMyIV24j8Up5c0fVmFYNHJfJJKe3IfUJY/33nuvsxzFuk3I8LPPPtuRkZC34EMYCCNItkTKA322b99unnvuOUcW9+7dOwuxJfp6j0XrZuxT6L3nP4d4XDNhSpZ9JMt16+QPFvGavJEvLBE5f/7558OG5fuFtITQoz5x5PqCCy5w4ckX1pJY4mG1N8C6QEaefvppdwzyjzpBubz22msuDchh/76jQcpd6jCkHHXzzjvvdIQ7lseyV2yQ9oj9VSH+fvzxR1dPiIc8omMQifSdY3mMtSV1l3aAuovVbJB6RdosAEAX6i7fKTrKXrCQrpDstWvXDqnIdwt5+e2334buRTuJt55Gi0ufKQKKgCKgCCgCioAioAgoAoqAIqAIKAKKgCKgCCgCioAioAgoAoJAUglJidR7ZMIc0hFyDdIPwS3kxIkT3eQ+loIiWFiNGzcu5OIRso5J+I8//jjkohRXiZAWWGJ5hQl3XIsyYS+Wgkz8xyNY2OEyMR4iM574P/vsM2flBwkk+/VBsiAQJghEDNaD5AOrOojbeARCSPAWaz4sSZ966imHOZZfkQTChrSx4IPApDyeeOIJF9xL9HED3bBYjFcoS9zEYvUYS3DFe/rpp7tyhYwENwSCFAErSCL+hPwSgtcFsP8i6TlmzBiXR6xDIa+oZxJvrUxrP+oRZA5h2CeQMFjuJSqQPRDqLVu2dMRkPPEsHf2CmXv18Cx/3MMyMh4SMp40CQtRRnnNnz/fWRlyD+ILi1IWDEBMUi4sNoAEv/rqq52lJXhhPRlEIB5pJ2gjpk+f7l4hfj+JJuUTrdwhlrH0YzEE3w5ENnWYekc9Cdoe4eaYeN566y1XT4gnEmHrz2O071zqD3mgPvCdQ/ByDCIvvviiyxPfJ98p3yu6IrKXJda8CHnF3TVYxtOOZKeeuoT1nyKgCCgCioAioAgoAoqAIqAIKAKKgCKgCCgCioAioAgoAoqAIuBDoKDvOumXkEoIe595RfaEY99HrJAQ7x59XNepU4dDlr0RuRbSgnMR775p7JXIhD0ESTzCXnHsF/jkk0/G81rgsFjliWBhiAhBiBtJSAkvBpBhECElS5aU12IeI+ENKcFfJIFsg8zEcssrWM9BZrDPpAh6QdbEK1ggYsFGWU2bNi3m62KVCQntJWzE0g1LUr94rVsj6cl9L87i+hcCR3AgXlxh+oU6KcS6/1msa1yi9u/f37mdlb1VY73D87UTPnduWKsP7p/FGjLIu9kNIwQa9SocHhCAWL1i5ccepoSDwJU9T4Okz36mSLg2AhelIrHKXcrOX4dxHfv555+7aIRYD5cWAWiPIPIhYv3xUE+oO7Ek2ndOHaAuQ456he+MPTSjCWn79cYlNW0WeYcAJh7ygGB1jUCQxiOJ1tN40tCwioAioAgoAoqAIqAIKAKKgCKgCCgCioAioAgoAoqAIqAIKAL7FwIpJySZIEe8rlm5FpINwi2SyDMm6mMROEGIgkjpcB8yEgIMS0IIjJwWrMywRPOLEJbe+36i1XsNGYSEi8sbh/8c/CBxw7mOxAoOq6nsiJCRpIN1YhCLLfQhPPsVQqZCfCGQiegplrDupv0HoegnbORZ0KPUI9LGWlcEjMEB4i0RgeQ5//zzHRE7ZcqUmFFAQhYbXMuFwzUre0piDRlLti6ITDrHejfcc/l+2YPQa5UM1pDSQqxDiIlFMt8rf0G/I0nD30b463Cscpc6jG6RJFJa3vaIePjzfwvUYfKZHQET8kVcXpJd0o8WN2njktVLZqKj6Mu7uHHFLSxuW2nPaFcgioNKvPWU9L1tQ6zroHpoOEVAEVAEFAFFQBFQBBQBRUARUAQUAUVAEVAEFAFFQBFQBBSBvIVA/lRkh8l2EYgkJswbNWokt9wRt5XI3Llz3THcP3l25JFHhh4zKc8ecOw5lyyBjDz88MMdGYnb130hWGORt6ZNm4aSxyoRq0WvQJSVL1/eeyvL9ZIlS0J4e8kT9i286qqrHKHhfdlLukDWQEh4iSBIDeLJDtEnZCTpvvzyy1mIGK8u/nPcZeJyFTnvvPNCewqSRwQyjH0e+cOKEpLTm2cXKIF/4ECdxVJO4p89e3YCMWW8IiQPlsBBLQchIcUyMp6E2VMymSLfL7gKFhy5DzkmxDJ7vVJvpk6d6ojbQYMGBVaDuBB/GyHujCWiIOUudbhMmTLymiPmrrnmGuduV/LjT8vfHmFl7f8WxOIwFHECJ7i+RSCnheBkL12w9Arkt7cdlWdeHcAbl6zoKgL+1F1IyXLlyoXc7MrzaMd46ynt8LBhw0L7tl566aXuWrC98sor3XWtWrWiJavPFAFFQBFQBBQBRUARUAQUAUVAEVAEFAFFQBFQBBQBRUARUAT2AwT2MIdJyiwuBCtUqGCYZIeAYV84LHRw/Th06FDDPo24XmTSGgtI9myMJLxHGPZXHDBggMEVYrNmzVz87PuXDIGMhPjATeu+IiPJB1Zz7H94xhlnOCs6rKcgSfwEGxaQEJKDBw82s2bNcnsx+klLrPjA7IorrnDuRbFcY69O8ifWVRAzuHqEGMHyjbKCzDjhhBPce99//70jAMEG0olniYiQkeSD/e+8VmGx4oNY+eOPP5yLU6wkL774YsNekmBFPYCkxPUrdQ7SGhIKq8Z4LMLC6YB7z169ern9ECE6IYcggsgLmMcjQvJQXydPnhzPq8ZLLvqtIyErRSAvETm6iyT9owwg0XDFCuGEu2S+bwh8rO/ACsKJegKpPn78eFcOuEaFFAuSZ0h2yhl3uNJGcF6zZs0suQhS7qQHOXrZZZc5a0G+DXSj/tHWkJ8g7dGXX35pjjvuuNC3gMWn7GGZRak4Lz755BO36ABXt16Xw1gZegnIW265xZGUI0aMcPtESjLdunVz+NMOtGnTxtXNr776Sh67MoGoF7etsq9kKECEk0TqKVh6Ra69Rzn3htNzRUARUAQUAUVAEVAEFAFFQBFQBBQBRUARUAQUAUVAEVAEFIH9D4GkE5JMgPfp08dZJWHBAyH5/PPPO/IIkqFr166OFMAF5OjRo915JNghKh555BFHvkGIQGoywQ1BgvVcLIk1GQ5R0aJFC0dGiqvTWHEGeY7eQUV0hMwZO3as6dmzp2ndurV7fdWqVY6UgAwRee655xwxBKHBH24zV69ebdiDUuSll14yAwcOdKQEpBBC/h5//HEJ4ogkCBZIyR49ejhCEmIS15Ht27c3nTt3dmFxk4mLVcorEaEuQOjFS0Z604KIwgUldQDC9pVXXjHksW/fviGswBH9IZLiFSkDKTcsAEuVKmXYv7BLly4uOsi3N9980+3TFzR+3LxCmv7yyy9m4sSJQV8LFK5ct06OgISo3DJ6UbbISMl3pISpc1g8UgbilhVLxGeeeca9cs4557jv8oUXXnDX4MSCA+oehHEQ161Ywg4ZMsSwB2ilSpUcCf7tt9860k30Yu/RWOVOenwvHTt2dH+8C9mHZS5liARpjyDgIV75RuRbgLSXfU2JR+oN57HEG3bkyJEuXkhbdIJEPeussxyR64/H+x7nENtitcxCAXSS/THlXb4BFoSwmIN9JWNJovX0iSeecCSqLDIYNWpUluuHHnooy3UsPfS5IqAIKAKKgCKgCCgCioAioAgoAoqAIqAIKAKKgCKgCCgCikDeRSCftVbMauaSpLyy9yET1X6yA+s+LNr892Mly6Q57glj7SUZKx7vc3QsXry4I+u896Odn3LKKdEeO/LDv7dh1BfCPMTSD6ICMjCSoDf6xyJSISoJI6SBPz7224PYEMtJeQ6pA9np3R9OnsVzpMwgRvzxxxNHtLBYwLH3YBDiJVo8kZ6BA0QQBFwigttdiOXsCsRj9cH9Q9FgDbl09Aum4f23mrlXDw/dT/UJJB0EY9B6AeGPBWU0gYyHBEb4znE1ynfuJeP87wcpd8qOehftOwrSHsX6hvy6RbvGJTPWvOR3zpw5LiiLAG644QaH6z333OPuQeIj0k5i8QlRe+ONNzqSD4wi1atOnTqZY4891rA4JIiFKukkq54Sl4oioAgoAoqAIqAIKAKKgCKgCCgCioAioAgoAoqAIqAIKAKKgCLgRyDpFpKSgFgjybUcE7W0gzRLJhmJPugYSU/R13/EqjKaQKJkl5AM4jp28+bNhr9YEgszSMdwEsSqLdx7/nuQz6mUrVu3ZnFpmey0sotDJNIoXj1lT0ksIxEIyvLdOrt9JuONKzvhscaNR3ArihVuNMG9qBCSfOdB0ghS7kHKLkh7FOsbipY3/zPIVyzF+aNu0F5ABuJSFotQESEi5dp7ZHFBuHoFSYm1M9aphPnss8+8r0U9Dxdf1Bf0oSKgCCgCioAioAgoAoqAIqAIKAKKgCKgCCgCioAioAgoAoqAIhAHAimzkIxDBw2qCCgCisB+gwB76GJpjSU0RCTEKW5XcTcbSXBVXK1aNbeHaqQw7EF7+umnO4tk3BovXbo0UlC9rwgoAoqAIqAIKAKKgCKgCCgCioAioAgoAoqAIqAIKAKKgCKgCOQoAkpI5ijcmpgioAgoAoqAIqAIKAKKgCKgCCgCioAioAgoAoqAIqAIKAKKgCKgCCgCioAisH8hkLFR2f6VZ82tIqAIKAKKgCKgCCgCioAioAgoAoqAIqAIKAKKgCKgCCgCioAioAgoAoqAIqAI5BACSkjmENCajCKgCCgCioAioAgoAoqAIqAIKAKKgCKgCCgCioAioAgoAoqAIqAIKAKKgCKwPyKghOT+WOqaZ0VAEVAEFAFFQBFQBBQBRUARUAQUAUVAEVAEFAFFQBFQBBQBRUARUAQUAUUghxAomEPpaDKKgCKgCCgCioAioAgoAoqAIqAI7BcIVK5c1VSsVMHkz18g4fz+OO0Hky9fvoTfz4kX//vvv7TXMSdw0DQUAUVAEVAEFAFFQBFQBBQBRUAR2F8R2Lhpa+CsKyEZGCoNqAgoAoqAIqAIKAKKgCKgCCgCikAwBOrWqWMKFykcLHCYUBCSEH5IuhGTolcYtfWWIqAIKAKKgCKgCCgCioAioAgoAorAfobAwIH9TPHixWLmWgnJmBBpAEVAEVAEFAFFQBFQBBQBRUARUATiQ+DHH3+M7wVfaCH9ICPTyRJR9JJjupGlPhj1UhFQBBQBRUARUAQUAUVAEVAEFAFFIE0QUEIyTQoiN6pRqEgBU6RYoZDqmzdsN//tzljFLTeLFC9kChXOcFW12z7bYsOopAaBAoXyO6y3bf434QTy5c/nynT7ln/3KsugkRYoaPU4oKDZuWOX+wv6noZTBBQBRUARUAQUAUVAEdiDgBB+3EkXUlJ04ijnezTWM0UgfgR0TBk/Zql8Q8eUqURX41YEFAFFQBFQBBQBRSDvIvDmG28G8uyTKwjJ8hUqm6rVa5sd27eZX2f9lLJSO7BycVO6QnGzaPpqU6F2aVOwUAGzYt7fKUsvt0dcpWFZ07RzjVA2prw4y2xZn5VwPPioGqZinTIuzK5/d5tPRv8cCp9bTyBhS1coZtYu22h27dydNtlo3L6aqdaknPn4/xLHmHp/xPF1zdQxc8ymtcF9PwMCg1feLV+jlMNkyaw1Ztani9MGH1VEEVAEFAFFQBFQBBSB3ITA7t27swzo9jUpKQSkkJFyLFAg8X0yc7I8dEyZk2gHT0vHlDqm9NYWHVN60dBzRUARUAQUAUVAEVAE8h4CaU1IlixVxhzaor0pVryEQz7VhGTdFpVNwcL5HSHZpEN189eSf5SQjFLnF8/4yyydvcZUblDWNO9aK2zIn8b9YfLlN6bZ0TVNpboHhg2T224eWKWEObxHHTP1pdlm07pt6aN+vuyrkp0oKtYu48jIXz5ZaNb/uVmtI7NfHBqDIqAIKAKKgCKgCOzHCAghmT+/7Uxnyr4iJcORkegn90W/dDzqmDIdS2WPTjqm1DHlntpgjI4pvWjouSKgCCgCioAioAgoAnkPgT2j2zTMW+ky5QwD8Bk/fWP+2ZB6S8Vy1Uqavxb9Y3AbU6xMEfPX4g2BUWElX/4C+Uypg4rZY8Z5iXJFQ+8zeUAYe8gicl9uujDWbSZuL7HC49or8tx7j/OMuLNGnqFH1vf970W7RtfiZQ4wZSoWd5iEC7t7139m967IVoJMUhDG78rVH1dB69aV/BYumpUjj5Rf3gdv/oIIOPvD4p6UP5GM+DLwKlaqyF66EBZ9JB7O5U/ioNzkudzjyH1JS+oH+JYqXzSL21vvO5zj8tbVA/t+OBHcwqUZLny4e7xLvaXeRxO+iZK2ToOlV3gfHLCuxE3rqj/WG1y+/rt9lzeYOycN6hP5UlEEFAFFQBFQBBQBRUARiIzArl27jJB+6UT8oYvr41tCEh3TXXRMqWNKxioyFvPXV8YyQcdSOqb0o7fnWseUe7DQM0VAEVAEFAFFQBFQBBSByAhkZX8ih9snT1YsW2SWLVng0q5Zp2FKdCh+4AGmU7+mobgbtqtq+ENa9Kpntm7cYT57bmboebgT9svrekFzR7ox0Nmxbaf5z5JwkC5Yin39xm+OVGp7WiMze8oSwypQkaadq5sazQ4yE5/4xRE43QcfZv75a4sjiCSMvEMnv9uFh1qi9B8z7YPf5bGpWLeMc5XJvdULM0hU0YlA3vuhl2KclK1a0rTqXc8OzvYQYWuXbjQ/jluQVMs3uC3cvoKByBprmUo6kJjg8fsPK828b1bI49Cx0zkHm01/bzU/vLcHi9BD30m9lpVM/TZVzEcjfww9aXtqI2NnU8xXr//m7rU+qaEpYglRCFYhk1fM/dtg8YfUOuQg07hjdXfOv3anNw6dT3pqutmxdadp2bu+IxkpTxu1E0jWY85v7ixv53y+1FAPSIeBMYQisnLeOpeOTDZBiLY4sZ4pYeunyJypS82iX1bLpanfurL9q+KuwYo9POOVg2qWtvW8bmiAvmHV5r2iKF+9lDmiZ12nLw9xvfvD+/PN38s3ubDghrtjEcoMWTLzLzPrsyXuvFhpmx8bh+DKzWW/rjUzJi5yz/WfIqAIKAKKgCKgCCgCikBWBMRCkiNuUaWf6F8clvWt1F0JEUkKQpRyTHfRMWVGCemYUseU1AQdU6Z7i6X6KQKKgCKgCCgCioAikLcRSGtCcvfu1K+43bZph/n+3fmmWuNypnL9Ay3R8rsjeoqWLGxmTFrsyJegVWDl/HVm3cpNjmD78/d1ZrW1tjzkmJqOoFpviR7IzZrNK4QISchL9vzDEtNrTYa12sKfVtn3N5imnaq7+CAaeX/ZnLWm+sHlHZGFNRpS0xJlkERYd4aTxCYt/rME2l9mxW9r7d6du0wluw9kE6tLgyOrGEi1ZAl7hkBGgsHv3680VRqWc/mBaPvty2VuH0PIUb9A5lFGXnLXHybWNWSokIYSFivAPxesNzPt3oe1Dq1o9SlrllsMIIGXWuxX2XKoUKu0w4J6syWTBPx3W0ZZQBjizrV8jdIuT8Rb1dYtBIJOBLIa4nX+dyttOhWs29sDXXhIOvRqdVJ9c4ANwx6MG1ZvMfVaVTZNLBkKwc0fVoZgxPmvFqeqjcqZGrZeRLNWlbTliNXmET3ruLo3c/JiA2nYKJOMlzAHlChkWvWpbzav32YHr8scSXywJZBbWeJ10lMzHDn9kyWPKQ+I5bLWne0Xr8xxr+/0WEiiO+T/N2/NNZutm1ssLUuU3UO2Snp6VAQUAUVAEVAEFAFFQBHIQEAISfrykIGJ9emTj6YQk+iXGwhJHVPqmHLT2q1Gx5Q6pkx+a6gxKgKKgCKgCCgCioAioAjEi8Ae87d438wj4SHyIIawVINM5LxI0ULW7eQGd869oIKrSsgshONqe40UKV7YHSGrsHgTqzdcXGKB6LV6IyDEIyTT2mUbQxZmEE7IoukZFnIQqEhha52JBduSWX+FVk1zH2KKvPAH6RqvYP3mCEFLHuGgc7UlDLEAhAhLplQ/OMMykr0m163c7CxISQeiFlljMShTsZg7r2QtQduf0diVleixduk/Dk8wiPTnXo7j3/QJC50uYpUpVn0QwBCQ2zb/62LbZsuJa/5kxTp1AOxrNt9j8QlhzCB4099Z95v8eTx53hSywKzWtLyLt6x1HYyF5JJZa2z5bTSQnfO+zbAQrZ4ZRvCZPmGRWbdikyMuqcsiRYoViogHOOE6tXzNUq7+zf9uhXOzuvD/2TsPODmKK/+XNimudrXSKkckJEASoAAiSOQocjTZOIFtHM5/n4/z+c7nsw9n39k44AAYE842mGjAZBBRIIEIAoEIyjlLu0ob9H/fmq2Z3p7qnp7d2dUKvbef2enprq56/avq6qr36/dqTooEd3nwDSmLvPv8MlMr+m/duMN8MHuFPa9azkcIzwoG4NNQ35jGBE9hJ3iJcgzvX+qXtt0aMtnlq9+KgCKgCCgCioAioAh8XBFwxB/X58aaHeFanS5B/TqCXrtTB51T+tHXOWVtOtKPzil1Tum/S3SvIqAIKAKKgCKgCCgCexcCHdpDsj2qAo84hPUjl723zpTLmn7s2/rWDksKbd2cPAwmE9FGIV0QtiFgELzHkKXvrDX7TxtshgpBhZfhMPEMhMTB+y4oEExO8I5DulWkSM0tEFtCEkJ4QU4677swuUP5ePC1VAj5SphOPN6CEiSZgvtbut2tZ5kluRxW5LNerh/yEU9BwsQOF69SCDoIO7xH+wztab3rCFO6ec02c/ApI6x3a5QOwTCtUWncfgg3sEPwCkRKmurP/sjxD50gEtEZ0q9LjzKr+9ynUqFL3emQcs4rlnOoU7BA8B5EyINPUPAyRGijNkxrk47s27CyJl1fkN3jjx/Gbq+8cu/71iOSg3hZOgH7fuIN66S8d6o82kJY3L0T3u/7Ddk54dR9bMhhSElC4S4Sj1HWF1VRBBQBRUARUAQUAUVAEchGIEj8cZTfu9tL0qdTtuZ73x43LtY5ZfO61zmlzilpETqnbH5f6C9FQBFQBBQBRUARUAT2ZgT2ekLyGFmH0MlQ8dbjg0AcjjlioHnk13Pc4ZzfUCvBEKBuG2INgYBaJZ6TQw7oY8OTQqx9+OrK1MGo/03nGuunmEqER+W4Y4daUg5SE4IHD7VCyv5TB1tyi1Cea8ULEQLtqMvGWpKwkOXYvGL8dCHIkKpBPcTjr1zWLdxiycqybiX2ujGKENaUtTDixNVFME1JabHUScaLj2P1TSRyMF2+hh+IYohEyOLulV0scQjZnViaOLoXZW3LLbJGZlAgIa14eLxOgTYC4UfI3yipE+9FyPew+K4Vj8/Hf/9GOKmQ7x4lslKldhDOeP3yN81QIZXx9mUtzn6jepmZEsJVRRFQBBQBRUARUAQUAUUgGwHGuY4AzD66+/d0dP3aEyGdU/rR1jllBhffPCtzNHtL55TZmOicMhsT3aMIKAKKgCKgCCgCisCehkAMFbSnXUrL9H3qpjfNh7NWWtLoqZvfNKz9iJcc20/fMrdlmcacxcQCj8mJp6U8zha/mVlX0J3WK+CVWNE3Fa40SDiypiHE1LjjhllPOfIMC2Uc+Yn97MeFNw2nifvdf1SlDVu65O21ZtvmnaZUQtqyZqNPCF2K4MUYJeSBTqxbGBSui/OcFynHIB/xxIREhDgj5Ow+E/vJNRvz3kvLDd5/vfr3sOFcSQ/Ru0PCqEZ9SNNQl1rj0a1bSHnuTWaO5yNunUbCkPqE9gNJzNqQQ8b2lja1Me116dJzLm8MI6wlShjfrYIRghcsgq7W0xZv26aP8yhkHUZ3nk0s/yr7Z8Lp4nEahQf7ycd5gPYakPGCDXvEbl67zYZnRVeng/vO10BGue/LOqHP3DrXMJmkrHB7cNei34qAIqAIKAKKgCKgCCgCKQTyHXO1B24dUaf2uO6oMnRO6UdG55R+XNirc8rUHDffvkTnlNFtSo8oAoqAIqAIKAKKgCKwJyDQnB3qgBoPGDTUDBwywnTp0lVCZ5babX7n+4Zh1KWxHmB5dVfxvKsR4qvO9BQCkPUS2WawW2hh7Ty8DSFjNq2qtetFhsuA+Bt79BDDGn0u7CYkpBMIIUfoQEyumL/BHUp/szZlhaz3yKdz99L0/qQbrIXI2o3VwyqsHpPPHBV5Kms/MqHCq5Rwn1WDyrPSurU1DzxhuA256sKSLn5rrU07+fRRNmwux1kXc6kQoU6oG9bcQKeNsuYiJBaEIuFckwrEGjLmiEG2nAmn7JP01Kx0tUI4IqMlL7xcHWkcTIgXK0SrXSP0zWzCmLSTTtvH6jJRQpkikL8IbQRSc9xxQ83owwZaYpL2cuAJw9LhVJe8k2oPB508wupw0EnDm5G6NqMc/1hflHobNWWAGTi6yow8pL+t6+BpXAdt7PDzx1jv4W4Vna0Oh56zr4kiZIPnu23Ic8qgbXMtfFLEaCo8rkun34qAIqAIKAKKgCKgCCgCikChEdA55TALqc4pdU6pc8pC9y6anyKgCCgCioAioAgoAopAPgj4XbzyyaGN046fcHgz8nH8wVNsiSuWLWoeH7UVevQWAu39l5ebEvEChERaG1rTMXHWgbigqTf9UiEt02E2mzJaLGvnjTp0gFno8Y4kCetGDpVQrMOa1g8kbOq2Ji9Epwvr7w0cU2WJyeD6i+54s9ix6Z3JNz6cvdJUyHqNh5yVIiLRiU/QkzGY22sPf2RGHz7IrjsJyRUOdYvX37svLLOejgNG95J1MzeZWfd/YJbPX28qB3S3IU57S0hWZPWCTdaTzuVPyFiuFe9VICYUKcTnBiEnkwok3xJZ23HwAb3tuVyL8xDM5CGZB+ows7/5Ft6JH8xaYa/l0LP3tQefvPFNs2NrhsDmuiCT8d4MrgnqcoKMg2Sdcu5ou2vpvHVmeYB0nnnvfANRSTvhg7De6NImIhIPzPcEzzFHDjLoQBuDdO3RK9pL1WYS+IeXJHVAHbMOJ0JI3CChjJ4vo8v0kZYgdadDmIbbtTvm+0avoeP6pA/RHt5+enESuNPn6IYioAgoAoqAIqAIKAKKgCLQEgR0TmmMzil1Tsm9o3PKlvQgeo4ioAgoAoqAIqAIKAKKQKEQ6DRkyJAUa1aoHDWfnAhMknCthB199IY5NnRm8ITpX5lkybgPJLQlYTwhzVyYzmA6CEvWkWSdwY3iadlW0kU82hol/CdenW0peBJ2r+xsiVcmSW0lkM6Qqm3h/RrUmbUjj75irJkvIWYhL4My9ZIDLKYv3vmu6S51vFOITIhLn6AvXoU2dK3HYxdv0a7itVi7fruQey27lfE27i6EIaQ33rdR0rlbqSmVULM7JIRulL5R57K/tHOxoT0R4rcl58flrccUAUVAEVAEFAFFQBHoSAgMGDDIdO6cf5SS4DXMmTPHlJSUmOLiYvtdVFRk+DB2K1S0mGB5cduMM/k0NjbaT319vWloaJD11+tNr1694k7VY22EgM4ps4HVOaXOKbNbhe5RBBQBRUARUAQUAUVAEWhrBLbUiKNU9y6J5qkd3kOyrcFqz/xZy7GPhGHtN7LSLJJ1H31Eo9MH7zO3lqDbxzfrHuLRuf/UwTasZ1uSkZTn1odkuy0Fr0rf9Ra6TMjOtiQ8CWNKOFJCrSKL52avERq8Jrwt4wRd43DBO7amac3JuHzijmFcqhFCM5fgARr0As2VPnwcErJuRyp0bviY/lYEFAFFQBFQBBQBRUARUAQUgdwI6JwyGiOdU/qx0TmlHxfdqwgoAoqAIqAIKAKKgCLQ/ggoIdmOmB8s6/1BKBKudN7zy6JLjvF0GyFhXAnliuck4TZVOhYClf27m4niAbtze7159cEPvZ6lu4R8VVEEFAFFQBFQBBQBRUARUAQUAUUgXwR0TpkvYnteep1T7nl1phorAoqAIqAIKAKKgCKgCCRDQEO2JsNJUykCioAioAgoAoqAIqAIKAKKgCKQCAEN2ZoIJk2kCCgCioAioAgoAoqAIqAIKAKKgCKwhyOQT8jWoj38WlV9RUARUAQUAUVAEVAEFAFFQBFQBBQBRUARUAQUAUVAEVAEFAFFQBFQBBQBRUAR6MAIKCHZgStHVVMEFAFFQBFQBBQBRUARUAQUAUVAEVAEFAFFQBFQBBQBRUARUAQUAUVAEVAE9nQElJDc02tQ9VcEFAFFQBFQBBQBRUARUAQUAUVAEVAEFAFFQBFQBBQBRUARUAQUAUVAEVAEOjACSkh24MpR1RQBRUARUAQUAUVAEVAEFAFFQBFQBBQBRUARUAQUAUVAEVAEFAFFQBFQBBSBPR0BJST39BpU/RUBRUARUAQUAUVAEVAEFAFFQBFQBBQBRUARUAQUAUVAEVAEFAFFQBFQBBSBDoyAEpIduHJUNUVAEVAEFAFFQBFQBBQBRUARUAQUAUVAEVAEFAFFQBFQBBQBRUARUAQUAUVgT0eguKKi4jt7+kW0Vv+ykmJTKp/6hkabVZeyElPUqZNpaNyVzjq4j2NdykrtscZdqTQlxUWmc2mJaWjKgzzLSkrSeaYzaueNbp1LTUlx5traufgOUxz1M6RPhans3sV+Ghobzc76hg6jX0dQpKJbZyOwGNemO4JOcTp0kfutqryr4Q6sa7rv4tInPUYb4X7fXlef9JSCpPNdT5/ybqa6orttsz26lpkt23YUpCzNJINAcVGR6SnY1tU32raUOaJbPgQG9e5pqnp0tW2yVPrVrTvrfMny2tejS5nNb6fUQUfrf7rJs76XXG/tjtZfZ16gaGKLQFu0t7aCttDPjv6VPcyPLj/RvL9ivVlfsy0vtfck3PK6sDwSUx+dS4vNjrrssV5bj40vOGKsuXTageaVhWtNicwHglJU1MmUyrh8l+lkdskcgmcQfSnTCTfrcPsaZR6yYuVKUyRp3KeTzEGCn2De7bWN3nwaZdDovrt27dpexXfocnRO2aGrpyDK6ZwyN4w6p0xhVOhxQW7kUyl0TpkUqcKm0zllfni2xVhV55T51cHelLot2ltb4VfoZ4fOKVtXUx1hTvnUWwuyLqJY5pRdSktTc0iZlzlOivmjm1O6fXE8VZK5S1bhMTt27qw3ZWJPZ76aS0pyJdidxydPnmzOPfdc069fP5nQl5gNGzaYO+64w8yaNaugav3kkyebXmK4uOL6e8Qw0Mn8/vNnmtWbas0//+lRWw4EZHDf5FEDzZdOnWKembvQ3PzUazbN506YZA4fM8T87IEXzRsLV5qfXHGSNWKSZ1L57kXHWSI0Kv2v/vGyWbmxJuqwd//PP32qWbRmo7nub89mHceovN+gPua1j1a0O/nilDls9GBz+qQx7mf6e9YHy8z9s95N/27txgAx7H3v4uPS2dwzc56575V56d8dcaMQ9cPAeMq+g6xBc83m2sjLhPj6n0+dYu58Ya558NX5kek6woGuQhB867yjzNDqCqsO7ffnD76Ul2rD+1ZaUoVzw/JvkneZGAv/6Y//CB9qk99x13PNqYeakf2rbLm8MPHpX9/XJjoUKtMk7a0Q7TqJvknLOeHAfcylRx1o/uXWx/LuX5PokSvN1888wmyo3W5ufjL1LCH9uKH9zEVHjjNvL1lt/vz8W7myaNfj35PnFAMb5MOV681/3fmM3W7Jv30H9DbXnHKofbGA828SDGa8vbAlWbXZOecLsUAbyedZ3hplDhzWz2wV8vMDwVbFmEK2t0LgGVc/hX52XHb0QfZluQ9WrGum+tT9h5lTDh7VbB8/anbsND+85zm7vz1wO//wsebg4f3tSwSMLxau3mgeff2DDvOy1/cvPZlf1WcAAEAASURBVMGs27LV/Mefn8rCKm5snJW4BTteeX+ZOWPyGDsP2Bp6uWlYdaU5duwI897yteaFdxebqfsNtc/5x9/80CxZu8mWNnV/2devyrAv82RogSJ6ShqBnpVVZtiI0aZCvotlTlmzeZN5/723zOaNhe1rdU6pc8p0o+tAG0nHxHEqJxnjc77OKTMoFnpckMnZv6VzSj8urd2b9P7ROWV+SBdyrKpzymzs4+Ys2ak//nsK2d4KgVZc/RT62aFzytbVWEeYUx4p80XmjUGZNLI5L/XZ4yeaIySd46RIm4SnyjV3CZZZ6O2UVbHQuRYovyuvvNKMGDHCbNmyxaxfv94Sk1//+tcNRGV7iiN2ISZzSTpFgrThvEpL5C3ppg9vcEC4uN98t0QWiYFowaoN3lMPHN7PfP7kQ0w/Iet2lzC54drKxTuP6+3ds5v9XVycRrIgqi1Zt9l89jf3m6/fkiKZC5JpG2dSiPrpKm8mUMfTDhgaqy3eopDw+RLesZm20cEj9hti28ptM94w37zjCXPL03PyLumcKfubL08/LO/z2uKEuOv577/NsO127uLVbVF0wfNM0t4K0a6TKJ60nLVisKbtbyuAp18SvcJpDhhSbQ4YXJ3ezYTqG2cdYfvCjvhywFW/fcC2ye3y5lNr5axD95O+v8y+UMC9/PL7S1ub5R5//heEoL38mIP2+Oso1AUUsr0VQqf2qp8+MhZiovr4Gx+m33B0+g+TsRLjpW5dSpuNEfGyc9IeuI0Z1Ds9Th07tK/BK/BXnz3NDJHxa0eXuLFxIXTnRUDGUwOryqOzc8Nc9x2dUo8UAIHR+x9kBgwaZrbW1pgtmzaa3tX9zeHTTjIQle0pbnqoc8rCo65zymhMk46Jo3MwJskYn/N1ThmHYtse0zll2+Cb9P7ROWV++BdyrKpzymzs22vOkl1yx9xTyPZWiCtsr/rROWUhais6j/aaU140dVy0Ek1zyTiPxPR0001EonNr1yMd2kPyrrvuMrNnzza1tSnPrmOPPdZcffXV5rzzzrP72xWpdijsm7c/kS6FMF3VPbuba297PL3PbeDFSYjZHU0G4VFiwCaUY5BMYqJLW/vhvc9ZF153Lt9uwoYXGMIEgxCVSNjITFgr3uZesWGL2ShePEHBtRdh4oHRBa+OcJpget82LD8fDG//fNaR5h+vzTcPzHovndRdK9czsFe59cjp0bWzIRwDOjlBfzzISoTgxPtt0ZpNWQQDeu6sz21Ej7pmQmyBaU8hTwnPu0xITtzfue7NoVCa3PCDxShHPWGYCob/zYVbPvXTV8J50k4gVIIekJTfOVCvneVtcFfHdYJDUB8wrhXPimtve0zCbznnbods6ptrB1fSLV+fwZ2jua6neU7xv3KVQ6izQ0YNkhCtDea5eYtsZoTaTCroSh5gjDhMsPj6QrTmate8BcxDHs8Q3/lxejld4q6HempopL7irzGqvbn7J1zntmxpzPnq3Jr2lk+7jroe8MzV3vIpB3xeX7DCfoL3RLDeovoD0rh+h/tmRL9e1ruFfqalwj3GG3E7JI9/E4IuHKI3V3tDH+4H2gsvtXSW9s4LKdzVeDXyoY8nlBb9KH2YT+LKcaHNWxPg1t13owf2Fsw2m3eWrrFquGea0ymuPyCNa9/uPN+z0OWV65u+vEIiJSwVTGq37/Qmj8PNtdkyeTbQH/ju2bj6IbyWRHC0z5jiTkXpvqmhYZft77wKRezkHhlU1dMsWbfJhpGnz3PtG8y4R4LtlN8821zdumzj2gFpoq6HYzx/XFvkNwJGqf3Nn0H2YMQ/p1Ou9ubaSngsRLa5+gxXNOMK7puPVm4QLBrss8Lhlm/95Hp2uDKjvs877AB76MHZ0RELfvHgTDu+8OXRWtzcvZXk2eHGrnhL/j/x+P68kOrfkv4rKHH1E0zHfYgnwmLxFKwJ3YcuD984xOXBeKhcQnBHvYgXNzbmWJmEeN0pIV7pK4dKmP8oT2Wehd07l8m9vkHuHVp2drj7B2e/Z7pXVpsBMnYNjledrvrdvgh8NP9tM2fjc9InpuYBVX36mkMOP856Tb41Z2b7KtMOpbn7kqJ0TpkC3PVrOqf0z/lbM8Z3TRqMdU6pc0rXHuK+W9Pe8pnr8YRuD5sMbV/nlNk1HjeXSDpWzc41s0fnlNlz/nznLBk0s7d0Ttk8OqHOKbPbiNvj5mnhubgbe+mc0h+RJemc8rMSkZMoanMXr3KQfyy+OzQhOWPGjGYgP//885aQ7NKlS7P9e9uPw0YPMVefNNkSd6dNGm2NsmBw90vvpMOc/v4LZ6aNcISFCoZsxTvszEMyYVIxgDv56s3/MBtkrSIma1+ePsXgBuxksZB837/72fSaYf99yfFikCk19WKMJ+QtQojBH9/7fNYb/S6PfL+POmC4+dRxE6wxlc5s7eatpresG4gBCELqD4+/arMkpC5vpTHocZJvWFYGNF8/4wgzRsLYOnlv2Vrzo/uet4bar5w2xRKnzviEMR/jJevn3PjEa2mCDILpC+KV6MIaMti6/qGZ5nUJ5Yvkwi1J/bCu2fWfnZ6uY/JlLTfCtWEMH963l/mvi45lt5VTJ+5r+CC3i2fhY+J1gdAB/lRCFjvxhWw9ZcIoc/HU8WmjG+XQDmgPSK7rcXnn+k5SDsZKJ9Q58uqHy80vBN8k8h8XHG0JdpfW5QFJw1tTTvDa/cVnpke2a4zN3zx3mhA7mb7oAQkx/De5B5MKuLX2eigrrr31FP3+58pT5L6ptSFJIaZos9+XsiHtv/2XpxKpW4j2lqRd57oejudqb0nLmS73w0XSrp2EQ7Ym6QNpP9xvrE9L/wR58dCr7+XVDlz5tKlvX3CMJbL+/f+etP1w8Fiu9sbkA31elBc8Dt5ngKHOkPcl3OP37pphLpH1zAglREjxg4Q4QFaJB8+P73sh/TJDIdq1zTjHP3ffkWwfIXLd7xufeNU8+84ie3au/oBESZ6FNrOYf4Ra/9SxE9IEIEnvePZNG3oyeBqhdaNw45nxDXmhxk1SeCb8QZ4Jzze9NEE+uernhqvPSD/L8X5zmOAd/WN5BiWV6RNHS7tOvUGHHmvkmUk/70LOXnrUQVkhaAkxz9qdLkx9knYQdz0/vOd58zu5ngVyb3znr0+nVZ92wDDDYPq3j8227TR9oJUbPJ/c842sNm3dbr5754x0u87VZ3DOFcccbHFhG9zWyTioV/eu5lO/upddJmn95Hp22MwS/OO+YN3StvTcjsOtJc8OxjiMmbgfGIsxJkPiynFQTJax5hdOOcSurej23f/Ku+bumalnaq7+gHvvPy88xvbFnM8z3Y3BXH58x42NDxjS1/zL2UfacexY2UYY7/xe2qsL7x4uh+O8CAfhGA4N+65gMUkIyX5y/ykhaeHcrf/Wr2seaWLD+rVWn9LSst2q1+4uPMlzNO6+STLmSjKeStJPtxYrnVMa+9Kbw9HN+QsxxidPnVOm5qU6p3QtzP9diPaWpN+h9Lg5Msdz9TtJy9E5pc4paU86pzR22TKdU+qcMjgX1zllYeaU9DEst/dxIySLKyoqvsPF7Qly1llnmXHjxpmZM2eaOXPyD9MYdY14W7FuyztLxEtDLPZ4tc3+YLl9Q9ue07TvtQXLrfEZAg7vglkfLrPr05Bmu7xRzTpgbyxaaT3myBP33XlNnh9RZUftP/Ggkfbta986iry1jfEGo8/7y9eZ2599w3wkXjC8kYhxHHlV1sZ7Tgy7rEOzoWZ7mizj2ELx2HvhvSXy9vkOadTVhrUp7xXDz5NvfWSvR2xx5iRZn+hkIaLI7/dC+uERuL+EFewlb65DACHo2FuMTkvFC+OmJ+dYAxRplothJsrzxp7o+UfYWOId4ynznlyTkxFCrE0YMcDcI0YpiEC8NfGgBP9DBIP7RG+EASOeTBjjMWCNkeuaKEb5l+x1ZrxdMKJisJ23dK3BWBQU1gUdL56arA36p2det0bJyUIuku+bi1aZI8Rw3V/edP/p/S+Yg0Qnrv1/ZM3QcXIOhMRTgh9v50N6sZbTzU/NsSEIMWxNE2KV0Gt1Qk7mwi1J/ZSIxyLeRbc984a568W3zSJpvwy6+Tz82vvWs2CmhD/k+o8eO9xe0+8en23rmHbuvD7wkJvz0Up7faznOVcIZQgMJxBmeDzgqXCjrO8GgTFW6niiXP8jcz6wyXJdj8sr7jtJORgEZ7yz0Ow7oMp6yH7rz0/a63lFrnOH3H9JBDJmhtwXQ/r0tMbmbwnxQ7t/TNa9wrCI5LoeDCs/FA9mvCNol9w7g4RMYhA6X9pu0FM1Tqd8roe2x0Q/3B/kam+8oYRH63Hj97GYvS11f92lx9sXDv5d1tXiTaUkUoj2lqRd57qeQt0/XPMywWWW9PPcCxj/uT+DHjlJ+kD6HRa5fnruAtsWxg/ra0mrR+XeQNckQogZDOfHSx3x7KFeVm7IvI2XtL2Rxxnyogl90fot28ydL841L8r9j1/aW/ImFWQa14lHPC9yrBGv6on7DLQe3zzvkpbjrul0WR+tZtvOFq35SGjWJ2Vh7qPHDpNnxRbzQyHcuA/xRuIFjiT9AXokeRY6faO+/1VeLKgXj9If3P2cfbZA3m+S+8Y9w5Lg9v1LTpA6LLYvBc2cv1RC8PY1h8ravVyj80TMVT8vy3lPSTtiPTn6kO/LyyVgQgQBl0fUNbj99BH019z3rMcpj3IzZmDqBZt7X06tmeyux/3mXJ71PPd5USVpO4i7HvpZPIYJRUyerp+56sTJtt+84dFXbHlO7yTfUe2N59uFst4q65n+Togj2hNjhoMkJP0Tb35ks87VpzNu+aQQkkQagCwtlntptESeABNIMSRJ/eQqx2aU8B8vS9AWfQvYE1FilKwtTLjnabKe5LHjRtgPBgAiMgSlpbhhUM317DhKCGaIx2BbGtCrh4xNZLIkYwnGC0nqh3b77+cfbftMxnd/lLHTOunD8HR8S8ZeSfqDi+WFC8Z8PFd5oYDxMdEsmBDTPzuJGxv3rehhWJ+Dsd1fnp9rXpJ7kjEV7eOROe/bLKgX+k3a+K0y/hoj4zCeAeFySEz0jFFDBpq+Mo5aIJ6UTuSRY/ucJfJS0BYZW+FNXSvjD+Yh7l6hH2RMwvh68ZJl4q1blP4wFg5+XL7t+Q1pz6dRdHffXbt2bU8VWl1W/wGDTf+BQ83ihfPNpgKuI6lzSp1T0jh1TqlzStpBrnFB0jEXecWJzimz+x2dU+qcUueUOqf09ZstnRuRV64+XeeU2XNxnVMWZk6J3ZEoain7XqplO17qNeFneAkdm9F64aTmSAQ4cEeS8FQ55y6p4hL/3ylll4nN0TlyxZ3YoT0kg4r37dvXXHjhhWbbtm3mlltuCR5q9faTTUYrMhI7gcFLLCjhfRhZwmlgqoNsdTDPYF6F3IaEvE481XzijKmWeCJWRUAwkvBZL8QOsmpjbdr46pIdN36E3cQTDtKKa+MNWYwzGP2C8rP7X7SGEwwy14nnFaQhxrtCytNCEkI60cljtD1YvBcwymEUZbCB4E2AMRHhuvFoOUFIUzwCcwku5hizMOQ/8nrK8IQhFeIXopT1ChHKgJwkTNfIflXW65HQYIRaROgoEIxZzjD40KvzrSfWlH0HNzOMReGWpH7wmsAbkolMlXiMLhJ90GNUU52CCW2AEHTIxq3bsuqY/eCEoQwDNhJqKuZ48ahCbpXrp075jMQQKvWAkTAYJjjqemwGOf4lKWddk7cFnSsEgmvjObJudni9tBthUWz750BcHlHXQzsBV0iV2U3kPAbQb4t3xslC5OMlnEQKcT1J2tusD5ZZTy0GUPtJvfWUUJ0/kLYTFZbSp3sh2luSdp3kepx+UfWTpBzyIB1tH2LfJ0n7QPq9Pz39us0C8oBrwMMsKtSfryznzcgx7q1gu8y3vXHvf+PWx9LFhPvi/3vuLSFil9nPKRP2NYMltCeSbznpAlqw4cI+Q/jw8kbweskuSX8QLDbuWRhMF94m5FO53Mt4C9NfQ+g47/Fw2ijcID7wrn9p/hLzdwnRiED64pEKYUP/H5So+nF9aYPowDM3jEkwj6ht7nEEQoe+CXKU0B5EMkgq+baDqOuBWIIYPPngkULWz7NhgiHLwcmOS5IqlCPdOYfubwmRW+QeZDD9+sIVlqhjfFAufZ17tpFNVJ9xUhNuv3z4ZdsOIJvAoUhC5zrJp36iynF55fpmXIMn3iohSOOEF8Ugg5zIcCCxJMGtJc8OF7YfkhFJUs7Z8lIGExbaLS9RIQ9L+H4nSfoDXtqhLf78wZfsaUSluO7SE1wW6W93X/nGxi7RbOkfHQGJV/mIpvEdxyEsOfdn8jIa8nMJm0s4TJ9QMxB2PHODslmeGZThhDDRfIKybP1meWmm+b7gcd1uHQJlnbuY8RMOs+tJLlmYermudTlmzg7O/8LzR1KF9+mcUueUOqfUOaXOKfOzYSSZ6+mcUueUPHOTjCFJ50TnlCkkdE6pc0p3T+T6TjLX0zmlsZGYWjOnxAaO/T0o4TkEPAWfoCThqXLNXYL5FXp7jyAky8vLzY9+9CN77dddd52s/5HMq6fQYHW0/GaKYa+thLW0MOQF15jj7e19xWsAEgzDLUIa51nGcQRjbKFlhxhodzSt/8jN6DxG8HisaUh5QDKhc0LYMIRQWUmEtQUQyL0fXtbcuBQ0+Ll1wSgf4yfCNt4xiMvnqhMn2d/Bf5AUTgqB21dPO6xZSF2XN+Sq083ta+m36/QIG+jkHSHcIE24Hmekbe31JC3H6dDW33HX48hnCGY+QelXmay9Bc9pzXbS9kZIYbx/h0g7h3Bpied2e7S3pNcTVz+twTN4btI+EK9YJ6x7huBVnY/Qx/xQQl1/7fTDLZHFm86OsM63vc0PeDj7dJgjeTvZvHVHOsxovuW4PNriO9/+oKXPQvrzOQtS5NNN15wtHmGbrYc5XolhicKNtY2RuYsyfSQDwUumGVk7rvmgkXS56oc0LRWHm1uTk3x4Lrrwk0nyzbcdRF0PHouQ9XhnQ0jysgYSXCM6iT650nCfQmZ97+LjspLSn7i+Lq7PwIONe9C9RERGK9bX2PDWWZnm2BFXTo5T04ch1tAHsjxOiNAQ1DkubfhYUtzyfXZ0k8gBCDggScohjDjiom/YH4F/rl3HjUMg3YnO4WSJEHzBsZvbn+TbhdcnLX0CnuVOKGdpYB1tQrHGEeyd5KWH7XWp6AsuD/3evQgUy5rqU45MkdWvvvxMi9vJ7r2Kwpfe0udoEk2SjqcK0X8m0UfnlNkotccYP0lfjmatbQdJy8lGoW32xF1PvmOuttEwlWvSOVi+4wKfzu3R3pJeT1z9+HRvyb6kfaDOKVuCbvw5+fYHLX0W6pwyux7y7d90Ttkcw0L0TTqnbI5pkv6go84piaRGm/i4SeGZowIjxHqRP/3pT437/uCDwr7JWmB12zW7D1dmCLi2KDiJi21dfXZYQgjLQgv8Jx9EAkXZN4zZDuoY3Haufs32cUKEuBwJQ3pfU2g7l1RMg24zbbhwunDAkbMuEcapa37/oPuZ/naEKjtaixtve7G+J29UPvb6h2aJhPW65pRDbVjGNoDfwdl0Lan6DWLQ2utxIDVvOdnluHRt/R13Pe663XqdQV2ShukMntPa7STtDW8V56UxfmhfW5+ZVp1bg/Zsb0muJ65+cl9N8hRJ+g8MW05aagAnxALECeGz/1nWIvzns44w37z9CZttvu2NUOFxEnzJhL7NXWO+5cSVUahjSfuD1jwL8agijCnejAeP6G/XZ2YChddzUKJwc/1/kawh6iSMqdvPd676CabNd9uVG3hkpZ+bLi9fG+0sA9xt8qIPkm87iLueJ974yJx3+AHiYdbLhu5kTUHnoeb0KcQ35NN1sk5qWNzLUuyP6zMahABE3Dqwdrs4U5/2YMJ/ceUkzMIm2ygvCzgvw3zOyydtEtzyfXY4Ej5MDsbVj2tzuXRvXiOpX+5cGXYVTIL3ejhbyikVD1YnaBG49d1u+91dCGWOs5yDSsdAgNC3hxx+nOnarbuZ+dxj1kOyY2i2+7VozXM0ifbp51NM4kL1nzFF2EP0G67v0DllyoNI55S5Wk3Lj8e1a9cOdU7ZNjYMnVPqnNLduXFjSJeG79Y8C3VOaYzOKXVOGbyfgnNxnVMGkYFDyG9OiZ3COT80z2nP/pWZVXfA6ygWTy/ISFnn0vzmN78xr776agfUcs9VyQ2QWf8mLBskrCVhKQlF54RQrHgDOgOs299RvtHPyX5N62Y5Dz63n5CrGGSd0cztd+GyhlVXWI9POk/3cfGXXdq4b4hBOotyWbvIne++GRTnI3H1w3qPXMdvH51l13xER0IHhoXQpkhlt5at7ePww7vOyVhZtwoJGhzdsZZ+t1c5Tj/eFqKeCI2Xr7i1oIZKe3N1674L5Zka1gnCCl3xCA5KkvZGWMpvnX+UDXMLyTJAPLoul/XS8pFCtre4dp3kepLqHVdOkjx2Rx+IZ93r4rE3SMKonjZptFWzvdpbvuXgXVkla621hbR3f0CITsJ1fu43D9hnHO09qeAhhYyTtYKdjJcwqciKwFqg7liub0I8sj5tS8Thtt/gzLPAvZ3q8nPEo9tPuGBCmzrJtx2483zfeGPznPr8yZNtGU/I75ZKVHvbULtN1m7uZqM5uH7YfSctizrEWD5KIkA46V+ZiWjg9vHdmvoJ5pNrG516dssem+U6L3y8Nbjl++zg+TR51MBmIYeT1A/rJCIsCeAT167jxiFbJfRzsM6GylguCQHiKy9u32Z5M5XIG86wNVzI9qhyhkmIYsR5u8flq8faHgHqaeKUo01FZZWZ9dJTZvOmtn2ps+2vqGOVEDfm2h3jqdaio3PKzDjCYalzSodE82+dU+qcsnmLyP61O/pAnVOm6iHJGDK7xlq+R+eUOqfUOWXGju7uJJ1TOiQy3y2ZUzo7TSaXPX8rf2t8O17zf/3Xf5k+ffqY5cuXm2HDhpnLLrvMfqZPn96OWux5RVUIGTZK1vnjA+lCCK3M70yVY/xHLpk23hy67yC7PqMzsrg4wv9xwTHWEw+vHdY0ekU88gopGEWnTxxtDhs9xGZLaDl+5xNizumDe/WXp08xU8SY/NmmkKlhAyiThiVrN1uj2fSJ+1oDGKQr+4ltzRqVrD1JSFLC037y2IPNp46b4IrI+X2vhKbDAPudTxxrzjxkPxvyber+w+zamr165EcKxtXPrPeXWSPYeYcdYHW+9pypWWQVykJUcm0Y2I8dN8Jel/OU4zhu67QNZ5zuW5H6jTEPebzJgHyFEFhHjx1uLj3qQLOfEJ+stUnM6kJJe5Xj9HUE9NUnTbZrkbIuZlIhdCPu8p84cpxtG2CHhxXthrpuC3l+3iKb7dfOONzeq07fJO3tmlMPlfXbuphfyFpXj77+gW3nrIt1sOicVArV3igvrl0nuZ6kOseVQx54bdH2nRcS9cjv6p6psLvt1QeGr+cGeckAYvvCI8Za3dqrveVbDv1lL3mZhT4BIsHhGL6elvxur/6AvvA/Ljja6t9P+sJp4iXJc25ZICRjLv0JDw4BNlkwoD9mzY1zD0uta/jsOwtznZ51nJcPwJK1b9xavVmJIna4NsszizUQrzpxcnodYXeKG8h+Uvp00vyLPDuCkm87CJ4b3mbt2XmCDy9B8FxkjdWWSlR7IxwsRNh1lx5v1/fj2XXG5DG2XpOW9UDT2p/04WfLmpQ/uOwEO3bynd+a+vHlF7WPumT8htdKa6Q1uCV9drAW7aePn2iu/+x08R4sNn+WdWrdC1hJ6ue+l9+17YN2e4H0e6w1euYhY2zfwrUn6Q+ek2ckeDFWZTz7TxL+OixJx8bh84K/H5UoGhgafvLJk207u/bc5vdPMC1rmPMa2qLVqbF28Jhutz8CYw88xPTu08+sXrnUdOtebgYN3cd+qvu17h5r/ytp3xKT3jdxYy73bNI5pc4pab06p8zcw4Ucc2Vyjd/SOeXxppA2GdDWOWXzNpdvu44aqzbPtWW/kowhW5Zz87N0TqlzSlqEzimHGt9cXOeUzfsLfuU7p2Ru/fL8ZdkZ7eF7mrvbdLCL6d8/ZTAfOHCg4eOktrbWPPzww+7nXvuNgc8nJxw40px16H7pQ6wb9+0Lj7G///tvM4yLT794zSbzzNsLzTQhUb506hR7/Gt/fMS+zc3kcYx4GULuEecfYZHnW2e8Ybf5R/nBcKbpA3lsHCpG3NPFeOgEQpAPbxe9LWsVulCq7tum47Kbrj3orblWDLmTxXjn3rK/84W56TUOXf583/Tka5ZovGjqeLv7P//ytMFI+7vHZlsvtAkjBliCiYNc44Ovzrfp+Bd0cvShT0i6//37S+aLQgKdL6Hq+CAQWHXiXYokxS2ufp6eu9AShGDHBwIDvCByw83ilqfnmMuOPihNrN4mdegGZzwcgm8BHzNuuOGDjp/85b1m9aZac+szr5vL5fzPiMERqdm+0/zkgRfsNv+SXk/6BM9GknI8p7V410NSpxj7aX+sAwlxe9VvH7D55boe6v27Eh7wn8V4DcnLB6EOnpD7pi2Ee+8fr71vjh0/wnxp8BRZF26j+fZfnjK52tuR+w2198Qz0l7cAscQXpDKX5H7+is3PWzrM5fOhWpvlBPXrnNdD+fnqh/SIHHlcJw+EQO2ky9KyGOEkJLfvOMJk6QPJH2wD+I3EuwnUnui/3O/ck1OIHF+//irNgQzBMm1tz2eV3trCOTl8uQ7WEZwv9vOt10T3poXGk4SozvrAz4w613zt5fecdkl/vbplW9/4MsjiQJcM0Q0L7Ig5LNM1ozjWeAkV97k8dP7XrDEnnvuMmD8reRBXxmWqPpx6W5+6jXzlemHWUKSfSxE/mPJP4ngVQcBBCHqCBnuqT4BT1bW6ZuzYIV9IYE0PDd5Q89Jvu0g1/U83NTXsq5lMBSmKy/pd1R7w7CGh+TZMubhBRMn7wfWUqUO48Yq3POMC6445iCLHWtfsiY2RGpY4uonVznhvOJ+Y5xBj3OF5I5aW9HX94TzbCluSZ4dLjQwL7Xx/FsnLyr96enX7VjE6ZGkfoL9PmQyH4S2jCTpD+5+aZ4816rtC0YHSkQH7j10CnaHucbGeL8icff8w6/Nl7XCyy35DXn6wYr1ZnCfnmkC1mYg/7qK5/EkIfxnPvOe1cPt1+/dh0BP8YxE+vYfbD9Ok9qazWbNquXu5177HdXuc903OqfUOaXOKXVOqXNKnVMGH575ziWixqrBPJNs+55jScaQwbx9eQSPR23rnFLnlLQNnVNmz8V1TunvNfKdU854Z5EssVPnz2wP3ttpyJAh9J8qioAXAbxFeFudcAe1HuOq96TdsPPWr5xrnp67wEC2DRV98YAjvGxLhDf8B1aV2xCXKyXkHotUt0SqxCMSzzSMbW21AC1hdfm4cBQt0TPJORA3g3tX2DbA9bSVtFc5hdK/m3jlQspg0Mewvzvl49TewLE9ridJfXWkPrC92lt7lZML//bqD3oLYUd748UUPMpbKnhZlkloZZ4/u3NgBRlC+HFeZLhYyKLjx+9jrrj+nmaXRR0TrjWuPy9EOzhLIgWwjiTrI0FKtpXwakF/IRA7lxYbntstJT8JjU0buOHqM+S7wXz5xofbSuWc+R4hL5R8XkjWf739cbM8D6/dnBkHEhQKt0CW3s2k5XAv8pY5Y5rwpCtJf8ASBKzd2BZrlQYvjOthPcIeXUrNLz97mryxutT8+pFX0kl4GQ1i9Vv3yotuMo5ujcyZM0fyKDEsY8E35fLBU5NPewqGOj6Qt3zq6+tNg9wnfPfq1as9VdGy9kAEOtJ4Kg4+nVPWxMHT6mNJ+vJWFyIZtFc5hdCVPAox5iqULu0xB2svGwaYtMf1JMG+I/WB7dXe2qucXPi3V3+gc0p/TRSiHeic0o9tkr06p2xO5CXpDzranPKLf3ioQ/MxwXa4heX/ZE6eZJ7aoT0kgxel27sHAUi9D1eu3z2Ft6BUDIkYYVsjvFW/aM3G1mRhz10vNyKfthS8AHxeOIUuE4+fQmCSS6/2KieXHkmPb5U1SVvb3pKWlStdS9rb4WOGmE8dOyE26/vF8w2PUqS92htlteR6OK/Q0pH6wPZqb+1VTq66aq/+gDXeCrHOWyHDWOfCJu44RM67Eio1TqhjPnHSmnZAZIYDJSw0XqO8kNOWZCTXAAHs1vOMu6aoY3hIzxPClDyOOmC4rONZah57Y3FU8nbZ/+K7iyU8+lZTsy3b07ZQCrQWt6R6JC0n7l5M0h9srN1u+LSVQJZeJSQxL8A1yriI0MoIv4Py3LzFlqRsKCtvNSEZzFe3FYE9GYGONJ5KgqPOKZOglH+aJH15/rlmn9Fe5WSX3LI9rRlztazE6LNaMgfTOWU0nu5IR+oD26u9tVc5DuOo7/bqD+LGsVG6+fbrnDKDis4pM1i0dEvnlM2RS9IfdLQ5ZUd2DmuObn6/lJDMDy9N3YERSBK+rAOrr6opAu2OAGFM3li0MrbctvY0iS1cDyoCikCrEAiGrGxVRnmefLYQNYRPx3v8B+Id2dFlkBCorLWM4AFGWNu/Pj93t6udi1je7QruZQpArBLynLCwCBNaQlWHCXdnSBowIDvsrz1R/ykCikCHRkDnlB26elS5DoiAzik7YKWoSopAARHQOWUyMHVOmQynvT1VvnPKjyteGrL141qzel2KgCKgCCgCioAisFcjQEDH4qYwpHs1EAkuvrgpBOemrZk1NROcpkn2QgQIu8YnV4SKAQMGmc7ibdsa0ZCtrUFPz1UEFAFFQBFQBBQBRUARaC0COqdMjqDOKZNjtbenTDqn3JNw0pCte1Jtqa6KgCKgCCgCioAioAi0AQK8fdeadTHbQKUOmyXrRSsZ2WGrp0MpRtg1PiqKgCKgCCgCioAioAgoAorAxx0BnVMmr2GdUybHam9PubfPKYv29gag168IKAKKgCKgCCgCioAioAgoAoqAIqAIKAKKgCKgCCgCioAioAgoAoqAIqAIKAJth4CuIRmBbbdu3Uz//v3tWkJbtmwxa9eu9aYkTdeuXe2xZcuWmZ07d2alKy4uNsOGDbN57dixwyxfvjwrDTt69eplKisr7bE1a9aYmpqarHSdOnUyQ4cONUUSWgxZsGBBVhp2dO/e3fTt29ce27x5s1m3bp033YABA0yXLl3ssaVLl5q6urqsdCUlJbZM1lXavn27WbFiRVYadlRVVZmKigp7bPXq1aa2tjYrHfoPHz7c7ie/hQsXZqVhR48ePUx1dbU9tmnTJrN+/XpvuoEDB0o4rM722JIlS0x9fX1WutLSUjNkyBCL/7Zt28zKlf418/r06WPKy1Pr/axatcps3bo1Ky/0HzFihM2rUbwpFi1alJWGHeRDfsjGjRvNhg0b7HbwH3mhf1lZmd29ePFi09CQ/cY9xwcPHmzLRCd08wl4gRvCNXKtYQnqT1mU6ZOePXua3r1720PozjWEhbwGDRpkwBehLqnTsNC+uE6O0SZoGz6hvdJuEdoYbS0sQf2pa+rcJ7RD2iNC2+ceCAt5gSvtG4m6l7i/uU/Qn3uSe9Mn/fr1M/QbCPc493pYuG+HS/snL/oK+gyf0A/QHyD0PfRBYUF/2jX9CxKlv/ZlGeS0L8tgEbyXtC/TvizTMozRviyDho7LMljouCyDRdJxWVlZZxmL9JIxeyc7DvHNEeiLGS8yLqAvjhrvZkrXrY6KwISpqXlLR9VP9VIEFAFFQBFQBBQBRUARUAQUAUWgrRCY/846M3J0L1Ncktv/UQlJTy0kMeBjQIBAIS0GBAgUn6HBkZEUw3EfGUlejoDAIAEB4SMjITMgUMiTMiGAfAKpg0GRvKLISMokDWQLeaFXHBlJORAsPjKSvJzRjjIhbHxkJPpDoJA+Sn+OOTKVvKLISNJBBkN2kRfETkvJSPKCvIKEo0wIMx8Zif6QwQhl+shI8nJGO/KKIyMhuSBTyQsyuKVkJGVCHkKCUiaEpY+MRH+IcSSKjCQvR6aSVxQZSV7oj1EO/SEGSR8Wri8XGUmZGOPAjbzQ30dGUubwJjI7iowkL0emog+GPR8ZSV7oBZlKmVHELO0rFxlJmZDBtFvyggyOIyPBiHvNR0aSlyNT0R8y1UdGoj9kMAQbZfraIuVoXwYKKXFkJL+0L9O+rKlZ2Jd7tC9LoaF9mWsVxo5TdFyWaRc6Lsu0jSRkJPcS47ISWWcSYRzimyPwLHcvT/Esby8y0o0Fo8YOmavVLUVAEVAEFAFFQBFQBBQBRUARUAQUAUWgsAgoIRnAEwMCBITzjIQU9HlGYkCAQMFAA7EDgeIjIMIG8DgCAkLPGSN8BAQkJAQKecaRSRCMjowkH59nJPpDoEBWkBcEis9Q4vSHGOH64shUDHfoT3k+MhX9IVD4hkzyEUDgj04QvZSJAcdnnEF/0nCt6A9J6iNTg56REFw+z0jyQndIIPSnvn1kKnpDBpM+Tn/aBNiiP2SqzzOSPKgj2hr6g6uPTA0avSAYfZ6R5EXbgYRDf8hgH5mK/o4MjtMfUpC2TV7o7/OMJC/0h2xEf9o132HhOHUOFujk84xEf4xxkKCUSRofmUqZjgymrULghoX2Qz4YAckL3bmGsJAX9zj4ojd5kT4s1E+QTPV5RqI/5YEbeaG/j0ylTGcAjNOfegQP9KHt+MhU8oJAoX1Tpo8M1r6seW1qX5bBg/ajfVkKD7DQviyFhfZlmXuE/pMxgY7LUsSsjssybSPfcRmvadXUbPGOsd34h/bGs9w33uWYyp6HQF19drSZPe8qVGNFQBFQBBQBRUARUAQUAUVAEVAEkiPQ2Nhg6oTzaTS557FKSDbh6gz4ubyhMGBCGOQiIBwZRvaQeT4yEmNEkICI8ubCmA6BQp7OswqSJyjoD0HnyFTISB+Ziv4QKBBnEFMQKD4y1elPMVFkJPo7o50zpvjIVPQHV77RP4pMwuiFcRgyJopMRX8IM9KiPySdj0wNGo0giHyenegPGckH/aPIVPSGmKJs9PeFCQV/50GA/lFkKnlAWFJX6A9J6iNTg2QeBF0UmYrBlDpw+vvIVPSHGOR64/SnTaMb+keRqegPGQxZh/7gyndYgvpHhZlFH+4l7gH0p736yFT0h0AB4zgyz3l2oj9kZC4yFb0hgyk7LGEyMheZSh4Qlj4ylXsJ/ZGovoBrAwdHpkJG+shUsOAeoX2jP/0K1xsU8kJ/7ctSqGhflmkd2pdlsNC+LIOF64vpQ7Uv03GZaxk8S3Rc5tAw9iUs95JV0nFZg0zIGouzJ2P0P4w9wZh7LoqMZCylsmcjUFpUZrqVlJvtDVvNjobspRT27KsrnPZF3VJLTjRuzV6upHClNM+pqKyL2cXfzuwlFpqnzP2rk4RnLuosL5puyX4RMvfZHT9Fp9IyU9RVXsTeIkt4hGwQHVH7kl7VppP0s0jjjm0FqZeiLl1NJ2kzjbVbzK6G1Ny3LcrpEHjKHL2os0TR2i7L1wTqu1NRsSmpyoSmbqjZJGnatl+jDy0pKjXb6rOXAuoQWKkSrUaAaBLlYpvcJPbLxsbmNs6WZN6vuo+pkWWCarc2b5uFLqcluuV7TpcunU0vsRFtkeupqc1eTsqXX3GxOG+IvXeDOHds397655uvDN2nCCgCikAhEFBCsglFZ8DHuA+p4/OGwoDgyEjIgCgCArLAGS3iyDxHRmKMgDzxeUNhTIcA4hsyBgLIR0A4MpJjUZ6d6O/ISIgpCCCfN1dQ/zgyz5GRYIH+PjISvSFQMISjPwSQj0xNYvQiD/QnLfqDv49MTUpGoj8f9IcA8nl2oj8kL9ihv49YxqDkyEjqEhx8xiX0h0ylrtAfkos8w+LIPOoS/H1kJPqgO20I/SkvSn+IKQzOcfo7MhL9aYc+z070h7DkXkF/yGC+w+LIPPTHaOfz7ER/jHEYwNEfMthHpoI/ZDAYo38Ume3ISKe/j4x0+oMveoMrZYeF+gEz9I/y7ER/yGCnfxSZSltEfySKjKRuyIe2jf4QkVFkJH0BeYIF+pM+LNqXZRDRviyDhfZlGSxcX6B9mbHPNu3LUm2DvljHZSkskpKR3Es6Lkth5huXlZdXmJLi1Drbrgdy6cCYMYhvvMIxxiqMDVQKg8CJJ55oTj31VDt2I8e3337b/OMf/7DfUSUw32Cs7XupMeoct7+sqIs5d8TVpk+X1BhwwZZ3zEOL/+QOd6jvzkNGmsad203dKv+65u2hbO8zL5cHUolZc8cv26M4W0b1ZV82dWtXmfUP3NrqMiuOOcN0GbavWfmHH7Q6r3AGpX36m6IePc2OhfPDh9rtd4+JU033gw83q2/7hWlP0rilF9j7/M8YyDOkbvUys+7eW+x2S/6V9R9sKo4/xxRLHSCbZjxktr37ut0uZDk2wzb+V9y9pykbONRsl7a0qy7bBuGK7z52sik/4kSz9i83mPpN691uU1zZ2/Q+7zPp3zWznzU1rz6X/t0WG9OHXmEGdhthbnjnW22RfcHyrO4yyPQorTD09R8HGTl8iOkja2C//NqbbX45Jx8z1Rx/1GHmZzfcYpatWNWq8rp362qu/fJnrN5/ve8fzfIqZDnNMm6DH1zH167+pKnqVWFzX7h4mbn+xtsTlbTviGHmqisuNI8+/YJ8nk90jiZSBBQBRWB3IKCEpKDOhNN5FkaRkRhdnNEOMgMCxecNhQEBMgNjAmSSL8ypz+jlIyAwIEMAkWccAZGEjHT6QzyhPwRKLv057puEO/3BA0IkikyFDEB/viFjIFAgeYKSj9ELMhjiD/0hI31kKlg5Agj9fWQe+mNgQH+MQZBvPjIVvR0ZjP5g4SNTHRnJtcWRkUGjXZRnqiPzKAf9o8g89IfQc/r7yEj0d2Qw+keRwY6MdPr7yEjaIvrT1miL4M93WJLqj+5cA/pDpvrISPR3ZHAUMU77CZORUfo7Mhi9wZ92FBZHRoJ/LjLSkcH0BT7PTtoi+tPe4vqCMBnpM066vgB80Z92AXZh0b4sg0iwL9a+TPsy1zK0L3NIZMhI7cuM7afDZKSOy+IjVjCu1HFZ6n5yJGN4XAYhGRQwo52Rnmc4z3vfuJLnF2OD8LFgXrqdHwJHHnmkba/MC6iHSZMmmcmTJ5tf/OIX5qWXXvJmRvseO3asdy7kPSGwc0zlBEtGPrviAbO09gPxjkzm2RDIot02K44/2zRs3mDW3XNzu5XZEQqqWytRatasKIgqzEfaSnpMPspAGrcF2dlWOu/ufFff9BN5sHcyfa/4WqtV6S5kbFHXbmbDo3eZhk0bDF6BTgpZjsuzLb87Dx1peh413dTffZOQ8Ssji8LTt2HzRnlRobl3Vf361WbVTT8SPCSq0iXXRJ5fyANrt68wxZ06vsny0L4nmmE9xpjfvPPNQl7+bsvrtBOPNsMGD2wXQnLterHF1dSKPaW5R2NLLj6uLy5kOS3RLZ9zpk6ZaMnIx5550cyb/6HFJ5/zNa0ioAgoAnsCAh3/6d7GKAYN+JA6EC1hYeLqvLkgMSBQfAQEZAEEEAREnAEcIwOTXEfm+YxekDEQKOQJmQSB4iMgIMMoE6MF+kM0hgX9k5CpSfV3RjtnTPF5dqK/I1PRHwLF580F/ujvyDDInbCgP3hBnEHGkMZHRqI/BBADEerHR0ZiBEJ/R0ZiDIoiIx2ZSlno7yNTk5CRGMCd0Q79qSMwCYsjltmP/knJSJ/+GLPQn7LRHyzChi1wCpKRUWFmnf7UFfpHeaZmyLx4/cNkpI9MRX/IYOo+Tv+kZKQjU8Ed/LmOsGT032UJUu65sNB+0J825PoCH5mK/rRr0scR40nISO4l9Hd9Afj7yFTtyzK1pX1ZBgvXF/OtfVmqL9a+LEVGal+Wuk8Ys+m4LNNn6Lgsg0Uhx2WMpRhzMS7gGc6YyzcuC5KRjB9UCoPAd7/73Wbj+AkTJphrr73WnHHGGZGEZEtKLulUKp5ZRWZkz/GmYVe9eXfjbJtNvWwHhRCESH1jnekuIV0rO1ebVduW2N8uXefirkJqDjAbd6wxtfVb3G7hWYqMLUe+e5VVm5VyXteSbqZLsZAmkjapEIYTsQZc0dn9FqDSISldXsVCrheXV1oCz+dZ1amE65Hwp0K0E361pKIqlTa0nqY91quPJUCjwpuWyPHGHdvbzhMP8lA+6x+8o1k4SnetFgd54XbXrkZTWj3Q1K9fZa/LHXffhLQkfGXd6uVuV/rbeeftkrDNTjqJByh5gm8zEexLe/cTAk1eVFgn87WmFw47yRxIGhNvzNjk6fqRX+E6KFT9NNMrxw+nn1eXHhWW8AofI0uuw4Y8FRxsyFPpGx2GNk9Zc2iXtJtc7cBec0Q5FndgDoQbzXE5WYcd3mX9h0i9SFSjZQttmuA1JS2Hui+t7m8at21t5nFo24k8E4J5Uogt23MfWgV8/7h/5ePajk3CPrCkDbItOuCFjJC/u75w2aTdvvh9+8lqq3IuZVA/uaSoSzdT0rtv7L0en0cn6es6mZdWNfdy4xwISvqtbsXS10hI1/U7VpnKsj5mR+N2Ce2aCvvcSe6dUumP63bVSbrupmdZlfSxS03jrsw96cqP6mvd8bj+mmMS4FZ0St2nZUWpUOuEg65rzLY3uDzjvgcN6Gd6i2fcwiXLzeYtzcNYd+2ailRVX99ghg4eYLqIzeH9jxY1G0+UyT01csRQe67P45AwoJCNjH8/WrjE7AjYRTrLfLFIQn5yDKE8hPFKOPxnrnLsiTn+EV509htz7aehoXnfiB2otLREbCnbTa+KnqZneQ+zaKmnv5W2sM+wwVa/TSG8XPFx5bg0fFdVVpjBA/ubVWvWySfbrtqjezczYugg8eRcbdZvzLycEMyD+qvsWW4WL1uRN5Ho8B+3/2ixnTaaGS/NslmHbT8D+labvtW9zcrVa716BvVh22FJHQbHnkmuJ5yX/lYEFAFFoFAI7PWEpPOMzEVG5iIgMIBXV/e1hoYoMskZvSAXcpGRjoDAgAyBEn4I0QCCZCSkVC4yEhImikzF6AKBhaEkisxD/yAZCZHqIyMxpqA/3+gPgeIjUzHMQDrFkZEYcDCaBslIn4EG/ckLHSGIfGSe0z9IRkbpDxls9ZcB0Oo1q71kapCMjCPzKI+04B9FpqI/BBaD6yj9qZuwZ2QUGYn+EBBgBbHmI1PzISPRHzIP/X1kqjNg0i5ra2tsmWwHxenPNdCe8WT0kZHcS+hP3cfpn4SMBAPIYPRzZGQu/eP6AnQP6u8jI1N9QbUd+HEvgX9w4Acm1HNSMhL9aR/ozb3kI1ODfUGc/kkICO3LMq1W+7IMFtyP2pel8NC+LNMutC/LYMFWsC/WcZmOy1zrcGQkBiGe4bQN37iMZw5jA8YMjH98YwyXp37nh0AYbzd+9o2p8su5eerzh3/JVJT1Tu+8av/v2u2PNs81Dy+5Lb3/k/t+02xrqBECst707TrI7ofAJCwhhvRTB19q9uk5Lp1+7fbl5p6FvzM7G7abAyoPMccMPFcM642WnNxct8GUl8qapPI3TwjQJ5fdlT4vbqPflV9Pk10QYv0+/Q2bfOfSBWb9Q/9ntyEQe5/1SVPcszKdFeEqCVsZlOpLvyRkS60lK0qrB9hDkE6rbvyR3YZc6jX94nTYS3bWrVpq1t2XCWMLGdX3sq+You6pUMU7l4keD6b0sJkU6B/XmSJQjdm5YklWyFaO4zmZIgnFKC/EUM3rL5maWc+kNeg57RTT7YBJqd9yv3LtQelz4VWW/AmGoO332WvN1nlzzOZnH04nLZ9ynOl+0GFMDNJ5gT3kV5XgTrhWJ65+IJBW3fwTu7tQ9ePKSPrddfSBpuLYM5qFQ6WOq06/1BLSLp+a115ohhskGNex7f25NsQta28iri30Of9zppOsxSkT78h2kKQcV35rvh3e5FHad2D6/tj0zINm23tvJM66/PATTPcDp6TTE/KWds96nJ0lzG/lSec1axfdxk4yPaeeYmpee16wm5E+L26jp4RX7SZhVlf+7rp0suqLvmgJ2TV//rUpFy/b7hOOTB+rIkRyk6y5/XrTIOtiIrTF8sOObzpiskK2pg/EbEAyV512cbr+SLpjyYdmw8N/iTkr+9A5w68yg7rvYw+4vtGlmj70cjNUvBHp8xAIyarO8oK+/D217G+2HxzRY39DuNeNO9daspJ09JkPLv6jWVwzn585+1qbSP7F9dfnjfiiqW4KzU161+fvbNxhfj/v2y6LRN+HTTrInHf6SWKPk36nSV6a/bq564FH7S+IxOu++VXz3gcLzAgh4CAEEcizH/3yRrt9yXmnm8kHjbXb/NsmBNT1f7g9TVpdev4ZZtKBB6SPs/GOeODddMfdduzxz9d8SsjQTH9PeQi2vH/57s/sNv9ylZNOGLNxxknHmGOnZu6NcMjWS+VaDho7xpKQEKgInpS/+eNf0tczZFB/8+XPXGrtLhwPE7jsy1UOacjnqssvNIRKdRLEFWL2S5++xAzoV+0OmxWr1pj//d2taTvntMMm2bIY6zl58tmZ5qEnkt3HnPPNr37OEq/ufIf/gkVLzS9vusPq951vXGNtti7NTrGr/eG2u8yHQi77BOy+JBixrvmPrr/RbNi02RLNua7Hl5fuUwQUAUWgkAhkestC5roH5cWkP85o5Az4TFghUHzGAcgCCBQWSuY4pIGPgAiTeT7PSIwREBCQAhgjIIB8k+UgmQcBUSgyEv19nmGOzEM3BiToHqW/IyOd/j4yNag/+HOdYXFkJMYZyBjwJ8+wQDZBpqJjFBnDMYikJGQk+jsyD1x9ZCo6USYGjlxkJNeK/pDBcfpj2EV/H/7OAE57BM8oz07ajdMfMgz9fZ6p6E+b5Rj6R4U5pb6DZCQEc1g4DhZInP7o7sg89CdtWNDfkZHoz70U1t8ZwHPp78hI7k/0Bn8fGYn+kNkIbZEyw+LwR3/uxyj9KQv8GYg6/cNGMPSnLyAd18Z9RH5hCesf1Rc4/bUv4y3OzIsV2pelXgzRvkwMSTJh174s1cNoX5bpaV1fnGRcQxodl6XuJZ7lOi5LeRkzJsg1LiuR/odxIPce4wfGPuFxAa2S9kU6jjFm8c03Mq1Xt1qCAM+CT3ziE2bQoEFm3LgU2Xfvvfe2JKvIcx5c+kfTqbHInDj4Imsg/+uHv7Bptzc0J6zYiQEdo/WsNU+aFVsXmgN6HWrTHlh1hCUjV29bZmaufsSM7TVFPC7HmaP7n2UeX/ZXm4Z/r6x53Azpvq812pNHv66DzX6VkxITkmvv/J31yut9zpWWkNj42N027yC5VnncmZaM3Db/LbP9g7ftunJd9zvYEgzbP3o3rQsbEBGQZRApdUL0dd3/4NRxGfdWnXmFKRKiadt7b5raN2ZK2t6m2/4Tm52PRxXEFIRP94lHmrJBI0yXkQeY7R++0yxda3+su0fqSMbpVWddIVnt8mYHqbr1nVdl3cb3TcUxp5seok/tGy+ZXRLCsmzQcEtGEr5z8wuPyvZE03n46GzPR2/OmZ3gyLqMhMasmT3DrmfZ/eDD0p5rGx+5y0DY9Zx2qinrN8is/VuKcNhVn/G6Kkj9ZFRKtMX1otPO5YtSXqac5epY9N3yyjOmbuUSIbaOs7iRDnI5KF33HWfDn9bOfNKGBYXwcxLbDvIsx+XZkm97fwjh1fu8T5v6jevMpifvt9kEQ7bmytfWsZCRrGO55eWnxUtygCk/9Fgh5y8ya//6W7N9wbtm2/w35V6YYHYseM96E/Y88mRTt25VYjIylw4cr319ppDAb8v9tL/pMWma2fj4PaZ+Q8r7qyFApm+b97qt165jDrQEp//uiC+R+wWiHAKS6yjrO8h6SsaflX30Cenrupb0MMcPPF9e8uiTlQAy8u+LbjYnDb7Y9qUQjccPvMAXHwySAABAAElEQVQc3HuaJSTdCT1Lq8TL8hHpa7ebqf1PN6cOudz8zhKFu0zSvpa8ovrrhxbfYlgz+JiB55j+XYeZv3z4c1t0vt6ReLxdcOYp1jbwwitzzEwhIicKsVghXoFhGTNqhCXmnpjxktkuNqZhQ1IvtRw/7TBLRq5eu9489PgzZvjQweaYIw4xX7jyE+Y7P/m1zQZbyIuz5pjZr79tbZdnnnysOWD0SAOZ9uxLs83v/nSnvMjdxXzi7FNN/+o+5hd/SL1Is317pt9JUk5YZ9/vp194xcx7/yNz5KETLfEoBlRfMtO3T29Lyg4bMtAcOmG8OWf68ea3f0o9Cz998bkyviqxoWVXCzE7/YSjsvLIVU6RhHf+4qcuFoK3zJKzjz/zohnYv685/JCmZ5jk+LlLz7dk5Nx33zfUzxFybLx4MV5y7mnm1jtTfcOpx08zdeK5+ofb/2Y2btpiJh88Nm8PyV/f/GexZ3Q2l19wpvUKdetGbtmSGUOslOucIdgtXrbSHDBmpCVBP3Ppeebfrku1vSAArAX6hSsvEvthvfnxr26yZCTHk1xPMB/dVgQUAUWgLRDY6wnJ1pKRkGEYqpjkYjyAAAobGjB6YbQgnSMgosg8CDOM6hBXECg+MtKRSTSIKDIPQoS8SEseEE4QJGFBf0egYCRB/zCZGiTzcumfxGjn9KecODIvbPSK0h9iCkMP+vvI4KD+kIuQP5QbFoxBTn/KggDykamOTMqlP/jnIiMhk8Af/aPaotMfPJz+pA2L0x9S2+nvI1Od/rTTKDISEgP90c+RqVFkJPijIzpFkXnoHiQjffrT7sGfsrmXwD9MRnLNjthPoj/t25GRPv2pH/DnHgUL2n9YqJuw/j4y1ZGRTn8fGRw0gLt7KY6MdPqDhY9MRX/wj9OfvgD9wc31BT5Dp/ZlmZpP+mKI9mUZzLQvy2ChfVkGC/pD+nXty1LhknRclmobblwDHm5c83EclxH2rLuMQ3gOOzLSN66hz6APZVypZGSm/yj0Fv3Q6aefns6WtSPfeOMN+5sxtCMpXQLGrbxwx1qTQSEKy5Ilfk+EmrqNYpCsk1B9O2xoQDx34uTuBTeYdbJGGuK8dsb1Eo85kXsX/taG/GP/1ft/z4aBDRKSb2942R7Hi2iubNfWbbJeQ8WdiiVcbHZYQptp4F/9pvX21y6ZD0Ak1m/IfiGvbOBw0yjeU5uefsCmrX94rawd9yXTbdwhJkxIkmDd/X+y4S3Z3rH0I77EE260KeoiLwcKsbjpmb/bfZTlO3+9kBiQfg3bagzecngIFpqQTF+nXLcwaVaf8D+82DY/94jdvfWd1wzrOOKZV7dqmSVqOLDh8b/Za8X7q9/n/lVy8ucVztv9hhhC1t59o71mtjc9ncKH7YZamauKDXrXztTLoGm9Odgkhagfl1eSbzz98KLbseh9s+GRO9OndBk+pqmO5wmJ+57dv/nFx03vs6803ccfkkVIEkZ0zV9+kz4/XMdR7SDfctIFtGDDEXaQJLu2b/PeH7mytXWMvUPaEh7DOxZ/YAlt1gSFeG3cvtUS8GUDhpnKk8+37YB0G/4u4YQLKI3ShuyndrDNlTVjfe3JphHvYMLUIvm1aHuKvHjQ1YaJ3SkvF3Avb6c9NLWJVIpk/7dIX8pnq3iSV3aqzjppR8M2s6jmPbN6+1J5GWOoWbjlXbtd3SVFzrkTFtW8a15d+7T92Uc8GcfKix+Dpc9cWvuhSdrXurx8/XWN9Lty58o6wan7NFef7/IKf59+8jHw+ubvjz1tnpv5qj28bGX28jEcwAbynz/+VTqL519+zW4fc+ShltO78/5/yHOo3rw+d54ZOWyIDe1aISFEN23eYv7298dsWjwBe1dVmqeef8VcceGZNuQphCTrLBp5NOzYkSIgFy9NPZ/ShclGknKC6aO2a2q3mg8WLDZjRo5IJQEAjzzy1HMGT1E+eH/26d3LpiLcKNe1Zt1689f7UqF9q8S788hDJzTLJVc5hxw83hAqldC3NwqZiBAalvIQPFGHS5jWWlnj8vEZL9p9Tz4304zeZ7glc9mBY0pneSFjndhcP1y4WOpol/nHk8/ZtPn841qQnTvrbB5h/NHhZ7/5o9jeOplqsWEtXLzMXj+kbViGSUjfk445QsaVO8wPxYMW71IkyfWE89LfioAioAi0BQJ7PSHpIyBaYsCHoPARKBAFkAEYXTBCQD5EkZEY7TBKODLSR0BgAIdAQciHMsPiIyOjCAhHRkIQQYBGkam5jEbOgI/+kGFRZKojw5z+pAuLw59rBYMoMhXjDZg5Mg8sfGQq+PPJx+iFXlFkJAQQ5VCXUZ6F4JUPGYkhLpf+uTwjwYJ6oK6j9Me4Qp1Tz7SfOP3BF8MYaXyenY7Mw7Do9A/XZZjMI68oMg/9HZkHFj4yNag/+EeReeDv9AeLODLS6e/rC9CfvByZR3lR+oMrLyZwnDJ9Rkf05zpz9QWUieEM3MEsri+gj4nrC/IlI7UvS3mpa1+W8obSvizVq2lf1rx3174sg4eOyzJY6LgsgwUEV6m8bc+b+zzDGZv5xgU8axhPMa7kme8br2dy1a3WIMBY6aKLLjL77LOPufjii83hhx9ucb/++uvtd3jcT30xXg7vD8+VWqoTHjSOjAzmwZqS2+prm60/tlZIywHdhonBOhPKj/Prm9Yoq2vYYddKI59SWcOsoSH7JdRgGUm2i7p2t55vO8W7ywnrPkKYFMvafWGxpOa6bAN6SZ9+NilhOuMEcgYCA2HNPqSTGIl3h+wUDz8nTpeistRaaiU9xRgu96vbT7qGDessYenOSfJdLF5kFs+ma05yTjBNoeonmGeubRteVhIF8eGckqbQsnjg8QlKsawnGhY8aKMkrh3kW05UGe21nzqGZep93meyimT9UbxHaUvr/36bqb74GtNJ7jnWNm3ckR0RKiuDDrqj9s2Z1oOWkNC07+0fvm1qXn0+a13a1qrv1oIk7HWDfJA6WZOX9SWDAvHoZJlsQ0iyZi/7c/W1ds3XppOj+muXd2u/+1SlSLZXXnsrZ1YrZN1An3STsKLS3Gx4zvDxoRKS9C0hJMfvv6+59LwzxOaSCvfq0nWVMUtSSVJO0rySpJv1eubZQQjaUnnJCxksazUieAo6eVs8GMOEpDsW9T100AB7aHagnGBa1upEIHG/dvUng4e4fa2wpufCJUtlfcnB5if/+Q3riQixPOPFWc3SF+IHIWoJ2RsWiEbCtzrZb99UyOPNYptyZCTHklyPy0O/FQFFQBFoSwSaP7HbsqQ9JG9HQGBgYgIKGeAzDjhvIgiUOALCkZFMXiEzmAyHJUjmxZGRzjMMAoW8ID3CkpSMxGiEoRkCxZGRPkMJabgGR6D43mAP6g8ZCWY+z06nPwQKafiEBf0hbDDOOG8u8gyLM3oF9Q8bCBwZ7PSnPJ9nnvMs5DuOTHUGWHQBf5/+6JPEgM/1cZ1cL5hSlz4ylbwo15GpPv0xZpEO/ePISNcWHZnKNYQF/dHLkXlcYxQZSTruF9p0lP6U6fQnrygyj7yCZKqPjCQv0sXpz/0IFk5/9PKRkdzfYf3DWLi+gHbryGCf/vQFlBnsC3z6k4ZPXF/g9A+SkXH6x/UFTn/ty1I1C/auL6Dta1+WMhBpX5bqi7UvM/YlCO3LUv1FcFyj4zIdl7nxAc9c7hE3rqH/jBuXFUv6OvE8Y2zpG2PzrOfDuIY0vvGuK1u/C4fARx99ZL7//e+b2267zUyYkPKkgDR23pKupMGDB9uxaXi/O97a7807s+dxLk/mMLmEdsNfSvhObSc5N1feweNBEjS4P7zNmnixkuOadolHT5YECFh3zF0f199Wsku8XJ1kME7tCf+2e0PVhW7BXaydGBZvPuFECX4Xqn4crhQZhe3Wt2ebzoNH2rCjO5d8ZENyplRM1QVkGutvNhMh9sNCKM8oiW8H+ZUTVYbbn+SaXdqWftevXy2ew7dmne7Idw6UDRxmiUu28QJlDdG8xHMvdJI5/S6JktXegkcxXsOQ14RcZu3KziP2syFqC6lL5v4J9AM+HAJ3ovNidt/oE2wDcfrF9ddx5yU/lrqOJPqwdmGUbNi42fzPb2/JOoxnHWtTQkby/fdHnzZvvjPf2qKu/fJnEuPgMo4rx6Up1Dcefj5p9NW3jLvyFdeWGOP5xPWHr775jrnv4SeaJQnq8Msb7zCTxIOTtUCHSxjds045zkB23nZXKsJAsxNb+OPkY4+0ZCSepU89/7L15Lzq8gsM60SG2w51tGL1GuvFedqJR0sY3xm21KTX00IV9TRFQBFQBBIj4O91E5/+8UqIQRKSwhnwITNykZGOzPMREOTlCAjyai0ZSV48KCF2fGRYUH/IvCj9HRkJ+YH+5OUzlKA/BnwIFPJKasD3eXM5Mi9O/zAZSZk+40yQjHRkXpz+HCMvn9EoKRkJDuDPg568fPgH9QcD0kWReeRFetoEefnIVNKAW5z+YTKSvMJvcnOXhvXPRUaiP3n59HdkXlB/N7BxPQI40X6c0Q4sfGQe+pMO468j9n36gwUfhLx8+tOeySsJGUle3C+OjAnrTzut6lVlPSO5t6P0d2Sk0x/MfH2B059yyMvXFzj9c5GRjtgP6u9wd9/BvgA8KVP7Mu3LaB/hvoA2GxbtyzKIaF+WwYIt7csyeNAXg0fcuCbYF+u4TNZgahpXxo1rPk7jsnoZf+YiI+ljeD77xru0H5W2QYBxG/jyvOtoUlO/yXQp7ibrknVOq1YtoQbrxfsn6LGTPtjajV2NNsxiOBu7lqSMW4Pr+xWLd2An8frNZx29urUp7xXWDWytfPaSb5lvffUG++naRTw4d4M0EOpW7lvCyToprmweLg9C03rHNSXowhqTIWmsrTHF5RVe7INJ8UiVB43pVNS8PyhU/biy/vVLv7S4fuML/+t2ZX3XvPaCePDdbr36ep1+qW0LJHIkZGnvfqmwo+L1CeFmP+hfIMm3HDAq7t7TW3pVr37ptnT5+V/3pkm6M6qcBgl3XFxeaUMip/FowsXljQdpxdGn2xCqhK7tNm6y6Tx0lDuc6BvvZMS1SdYeJSRsWGxbkp2s8dga2bVDwpNK31ASavcuTzwjNz//qFn9p/81O1cstul8pLxL35bfg7qPTGdPeGtkw46UB3Yh+9qGXfWmSF6gIGR2S2TN2tR8bMqkA1tyuj1n67btprxHd7ONdaiFgAx+SNBf1qnEM3Luux8Y1lVct2GjmXTgAd7y8PhjfOJ7RuYqx5thG+xctiL1YoPzcKSIsbKmYr6yqCksLWSiT9zxAX37NMMUfLcJ5kF59Y23za9v/j9z7fd+am14zksxmKY12weOHcOtZ35361/Nu7L+JuUP6p/yFA3n+8qct8zN/3e31fm4qYdZ0pI0+VxPOE/9rQgoAopAIRFQQrIJTUtAiKEEz7VcBnwMUEEyz0dAODIGAoLwkz4yjzzIC1Im7g18SB2MyEycMR5DooQJFI4RMhIyxunvM274yEif/uRFuU5/H5kX9CCgLHSLIiPRH4yjyCT0d2SSM9rF6Y8nH5hSpo+MJKwqxkKIPvD36Y/RC/z5pix0o+ywoDtYxOnPYA3MIJOSkJHoDylFXfr0Jy/05xj6+8i8oP4Ys8DCpz/XyDUwqCQvHxnmPCNz6Q8ZSV5cbxyZiv6kjdPfkalBMi+KjAR/9Cesapz+5IlHIXUZ5Vno9Ad7Pj4yGP17yCLy3BtgFkXmgW0u/Z0BlnZFXlF9Aemc/tSlT3/aBPrH9QXalzW/g6lL7ctSmNB2tC9LYaF9WeY+8b1Y4euLtS/LYMZ9lKsv1nFZBi+29sZxGfeRb4zHWJz7jnEN4zvfy1+0H9KpFAaBX/3qV+aaa64xRx99tDn//PPNT3/6U4v/ggULClNAAXN5a/1LNrfzRnzR7FM+1pwx7NOmpKjUfLD5zQKWksmqYfNGU9yz0rDeXdmg4aYkEGKTdSAhLypPONd02Wd/U3XaJfbErW++kskgx9aOhfMNhE0X8ZKqPOEcU1o9wHQZNTadV47Tmx2WW6ZVQpjT0n6D7AeSr0iI6eDvJJlvfSt17ZUnnZ/GJEwW4hVH/j2PPMlAxJYfcWJW1jWzn7X7el/wOdNt/wkWl4rjzpI892uW1q1lyDHWHiztm1kjrxD106ywBD8aajabTTMesmtGVp54rj3D1rGE3C2fcpzpedR0S4xBqvU69ROm6+iWEyxhdfIth3VKi7qXm56CP7hCqDuBPCqURJVDHUPE9bngKsFhvIGw7T7hCFlb85O2aNpN7zMvF3uLvPwt60ZufOp+w/qlrCeZD2lYtzrlldpz2imms5Df7j4NX58LM1x++Am27VrPzEAi7k3uB4dTSXX/1G8hVYPCGqB10sY7jxiT8oQUbB3h2OvkC0y3sZNtP0IbgCSFMA16HQfz8m3T3/WXdSH5dCnmOdgp8Lub75TIfcPL9zNT+p5kJvQ5yoypnGR2yvq+S2tT69sWsq91a0eeOOgiM6zHGLuuZaRSngMPiMciRNPp4sn2ibNPtaE/z5l+grns/DM8qf27WNeQtQz//WufN0cfcYj1pDv71OPNtV/+rD0BAg/bxphRw82BB4w2HDt26qHezFavTS0LhffdRCEtx4wakU6Xq5x0whwbo0YMNftJvn16p9rXCFmnkd/9qvvkODN1GEIQL0DC3YLTKcdNM1MmZvc3ucohVOt2eRl/5PCh5gtXXmT23WeYmXbYJPP/vnClLQjMPly4xAzs39d89arLBbsxZv/RI82VF51tPnVxqg+slLUs8TQ9fPLBZmC/anPskVOsvWb9xuzoeIkuLiLR3Hnvy9jFmAvOPMWG3/266EidRwlrWd7wxz/bw5//5CesDS/J9UTlp/sVAUVAESgkAh3vtdBCXl3CvDAIYCiBjHQEhI8Mw3iAQS4XGenIJIqHQPGRYeRBunzISEgWyIwwGQkBgf6OjIT08OkfJCPJBzKG6w2LMxpRzpo1a7xkGCQM+jsyLxcZiWEF/SGTwvpzzOkPoYb+PuMM+oO/IyOjyDynP0QT+PvIPEemOv3jyEiMjmAcRSYFjY6OTPXpT/uCwMpFRlZXV1syz+nvI8PQGyz4zkVGBsk8HxkWJlO5Th8Z5gz46A/21GWYzKMtgb8jI8Hfpz/tHv1zkXnglUt/9KEtcn/mIiPJj+tFfz5h/ekLwN/1Bejvu5fQPykZif4I95KvL3D6OzIS/H3EviMj0Z/7zYe/9mUW6vQ/1xdoX5byjNS+LNU0tC9L3yJ2DKJ9WQoPHZdl2oWOyzJYsNXScVnv3tVydnNDEWNZnvdIHBnJOIQ2qVIYBBgfTZs2zX5cjosXLzY/+MEP3M/d8C3WZ4+8tX6mGdhthNm34iAzfegVNsWqbUvMsyvut9suvJwL0cpOu68pu/A8y54U82/zsw8byLUek4+yqSC5NjyUMmBuevrvpkoIk+DagFvnzjbbF76XnaP/cmy6dff/yVSderEN4UgYR8Sun2e3cLaSEKdY43NIgiSxOeB91mPi1HSakqq+Qg5daX+vl7Ca6bURxYibJU2F71y51NS++bLpfuAUYwk52Q9JF/SIrJk1wxKM3cYdYrPZ/tE8SwAF89w2/03rIQkRDIlnReau2+bNCSYzta+/ZEN6QqhRD5A7q27+iU1TqPppVqD3R7px2aPoji6dh+1rCVfWB1133y22jiFX+SB45G19+1W73eyfXKdPkrSDfMqhnvBApB66jT/U4OFZM+sZW3TmPvJpEt7naQ+BJFHlBOu44tgz02fQhhBIZojHDY/eZUl79q3/++2mz4VXm6ozLksc5pT7ccei961nJYQgHorWg5YMA0Ko3G3vvm5JYkcmr7njl7b9kszeC2LzcFJ5/Dl2s37DGrP2zt+73fZ7s5DSPaeeYsoPO97+XnfPzdZTFrx7BjyC8RKlj7FsW7Mcon/0Kutrzt/nmmYJ3O/X1z1n9zevv+j6wRvykOqUjg27GsxDi2+R81Ppc/W1zRRoOqf5vsyv19Y+YwaLN+bIivFmVMWBlvj8/bxvZxLk2IIA/PM9D5oLzzrVkmqOWHvhleb9Adnsirh/nhGvxz69Ks3hh0yw4UJdkavWZNacfGzGi+bkY44UMi1Vtx8tSq17GH5uPPjYDEuKQtJB6GEz/Jfv/sxmmaQcV3bcN+Qfz2Yn556WenFjw6bN5ns/uyHLZujSBb9vvP1vliSENEXWb9gkUa4qmtl4kpTzKwm3erUQdpCRfJDlgdC4N91xt7nqigtsKFaISIRHwitzUi8K0aL6iG3rgjNPTh/bKNdxy5/vtb8L9e/JZ2fasLCHThhv+DQ0NBqI5kGynqarw1TrRr/UFtfx6NPPC2E71XzusvPNDbf8xeS6nkLpq/koAoqAIhCHQKchQ4a4Pisu3cf6WL9+8raaGAh4i3n16tVeMixfMpKHK3n5yDAMDBjKIZMgUKIIiOAb+I6M9BEoffv2tfozUID08JFh+ZCRGGvRf9WqVV4yKag/ZaG/zzPPeeNg2CJNFJmK/uDLm+QQQFH6h8lIH5nqjEY8gMHfR4aFydQ4MpI6iNOfY5SJ/mCA/j4yL18yMk5/2g0EHNeRhIyETEUvyDA3MHE3NPqDP8axOP19BnzfW//kxbXSTsHfR+aF9Qf/KG8cSDj0jyLzIOfAH/0h8WhnPvyDZJ4jU336B/sCyvTpT1ngz33A/Q056NOfNOCG/lF9AWQkfQF5xvUFQf2jyEjqNKg/ZfruJe3LXOuXNVsCfbH2ZdqXZVqGsf2i9mUpRLQvy7QMHZdlsPC9JKbjsubjsgEDBslYrTQNmiMjGWMzfuC5Hx6XMWZg7MDzCTyfeuop+yIV4zXGPBznQx58WiLDhg2zpy1atCiv09GVD2M8PujHWIpvXmzo6AKugwalvMuWLFninSMEr4GxGeMv5kNJZMJUCGgJXxlYfzDJeVFp8BLq3XmA2bRT5hYNW6OStct+PAsJL4qHlQv72JKCi8q6CEHUy0BS4Am2JwseYYSstOshRhAEYLZL5ieNO5uH9Qtftw19Kfe49YaMyCt8TvB3oeonmGdLt20dV1ZZQgxirK2kvcoplP7UcaeSUlMvIX9diNVC5e3yAZNOYh9oS9xdWXHfRV26WiKY8MaN27fFJW2zY3iX80LHA4tuNqvlhY7y0kqzdsdKeYZlk+Edqa8FkOreEsa3Zw/DWpF4AeYrjA0gqDpLeNZlK1fLWCN7DcZ9hg22hJvvWNLykpSTNK/WphsyqL/YPXaYtes3tCqrHt27mQHi4bhu/Ubj824sE9vN4IH9DCH5lwu2hLYNCnXXu6rSsMajb0wcTNua7Z4SyatcdKV+WyO5rqc1eeu5ioAisHci8OG7G8zwURLVryT3PHWvJyT79+9vyaRCkJHOM4yHcxSZBwEBgeLISIgiH5lnjV4VVGLKsxAyL0xG0ryD+lOmj4yBgMCgSNmQUhAavgdkEv0xkKA/ZFg+BnzKDesPTujPhB99IFB8+udj9MKATL4rV670kklB/SGbkpCRUWQeBiEIIPSHkILA8umflIxMEcvobyL1B3fqiW/0h4DzkWEYhmhD6Bilf5iMRH+fZx4GHPJznoV45sWReRirwN9HhrWUjMRwFzbaoT/4kyd6c5259Kftcy/F6U875V7y6U9dF4qMBE/qPJf+ScnIYF/QWjIySV+gfVlmgKF9WQYLtrQvy+DBizTcw/TF9LHal6VCfse9WKF9Wab9JOmLg+MaHZd1rHFZkJBsCRlJf/HKK68oIZm5JTr0VqEJyQ59sR1MuYqjT7Pel3Fq4Xnm1iCMS6fHFIGOgoC265bXRJCQXFzj8ehuedZ6ZgwCFRK69Fv/dFVMCmNJtF/8/rbYNB+3g9/++hcMZGeUQHD+23U/jzqs+xUBRUAR2GMQyIeQ3OtDtkIwOALCRyZx3HnmYRiII/McGRZFRjoCAuMRZcWRkdYzLwcZOWCArMEhZAzkSi4ykrJzkZFO/ygyzxEQTv84z0gMsBBGpPGRkdxNGB2D+vvIJEdGoj9EEt5tPjIVkpS0EAMrVqzwkknOaMe3M9r5yLygZyd15DMgOwICYtCRqT798yEjIY4hI6P0pyyuk3rIRUbmMoA7MpU8HZkapT94gH8uz0L0R9Dfdy9RFsZV9MezM84z0nkWRhnwg/pD6JPOR+yHydQoMtIR445M9elPW3XEPm0C/X1tkTTUOzpCDPq8dB2ZSlsE9yj9k5KRri/QviwVMlj7Mnsr2jXu7LNE+mLty2QNLO3LbMPQvix1f/Bfx2UZLNjScVkGD16sKNS4jPEp9x1jR8bEPPfDL1kxZuCZT5tkXM84wzdGzWioW4qAIuAQ2Llqmaxh19n99H43yhqHKorAnoSAtuuW11ajae651vKc9Mx8ENgpL+kvXLI89pSly1fGHv84HmQNSsjaKKkT5wwVRUARUAT2NgT2eg/JESNGmOXLl3s9qzAeOAIojoCAZHEEBMQgZFHY0AABAWngCAiICp+hwXpGitGU9BAeUZ6RAwcOtMYNCAgIIB+ZBJnqCKA4MpJrzGXAx0CCoQr9IWsgUHLpH0dGEjIJggqjC/r7yCQMQehP2eAAGezzbAvqH0XmQYLhTefISIzzPv19ZCQYhyWJ/higIKfQH69CCD2f/ilvohSZSlv0kWHoTTq+aV/o7yPDgp6RUWQeBjHaD/iTBwS0D3/aBGR8Lv3BNWW062SWLVvmbYuUhf6OTI3SP+hN5Mi88L2E0Y57iTypQ+45n/5hMjLKs9ORkeASpX+wL4BgpG378Ke+HZkapz/4U5fojf6+tohhkvqkL4jzJgIL7nVw0r5M+zLXV2lf5pAw9vmmfVkKD+3LMu1Cx2UZLNhKMq7RcVkGsyTjMjwkKyt7pl+YiyIjGX+4FyYYJzLmdWOMOXPm2HEY7ZXxGGMgPpzDpyWyt4ZsbQlW+ZyjHpL5oPX/2XsP+LqOMu//UW9WsWy5dyd2HDtOYju9F6eRXiAhhSwlvHRYtsCyf7aw/PdleWGX5YVQAoS2BAKBkEIghFTSm1Nsp7k7tmVZsmzJ6tI73zl67j06mnPvkXTlgmf0uTrn3jNn5neemTN37nzPM+Pjegt4C3gLeAt4C3gLeAt4C3gLeAv8JVnAe0gOoTQBEC6YEQzaTTA//gushxMAwgWTksBIBg4AEAwkKIDQgYawVPWGSgIjgTEEAIRLP4ACUEdaClPj9KtnYdw0mzpoh37AJ6DFpT8MU7PBSAZyFKC4YIzCVPJWmOrSzzWq/jgYiW6gE1uFqS79SQfwp02bZsEaoBL7u/QzaAecQj8DS5lgpMK8OBipMBX9eHbGwTzgFXWI+kYcyj0K86gzDDqSJvbEZi792JQBfPRngqk6ZW0mmKeDdujPBFPJT2EeMBXw59LPvYR+ypA669IPTFWYh+15ucCyeoOgf9OmTc57iXuNeob+bDBSH0yIg5Hko/rRHQcjsQP1kbLMBiNpqwi+LRufagt8W1Zjp2zm/tW2wFX/fVtmbx37z7dlaVu4vLyjbbFvy9L2Yo923ffLApv4flm6bmzYuNksvZBv+860xfRno/cSsWmLtZ8S169Mp+r3vAW8BbwFvAW8BbwFvAW8BbwFvAW8BbwFvAUOXAsc9FO2umAeg0oMTjKYC4BgEMEFw9QbioG5OM9IjjHQAMwAQDBQ7oJhgCSAjAUQZjHmbJ6RVLkNG9yLJQMo8EZDP1AqE0wFfKBRB/CjAyXoAWChH1sRz2UL9eYivnp2RtNCsz6Bn0k/MFL1M3iDftdgOoNe6tkJWHN5FmIDhcHAVMrJpV9hKvoVprr0U5YKUwFYrrIEMKKNvClH7OHSzzUqTI2DkdgdDzi2XB+gy6VfYSr6Mw16TZ8+PQVTAVgu/WgCtKMfGAkQc+lP4hkJOFQYDEwFNLr0h2FqnGcndUb1kwY2c+mnTigMzgYjqWvU/zgYSVlzndhfYapLfximxsFI1U9a6KbOuvRzTyoMRj9l4LI/9YJ7Hf0bN250glnflmH1IPi2TC0RbH1blraHb8vStvBtWdoWvl+WtoXvl6VtMZR+2e6WNinIDx4MiYOR2q/hez6uX5bO3e8dCBYoKiw6EGR6jd4C3gLeAt4C3gLeAt4C3gLeAt4C3gI5s0C++e1bZMa8eSg3WzjogWTUQAAIBvoZvAZAAEdcMADgwWAVMCAORpL2jBkzLNgBPABQXDBDAQR5An92Nu90PkEdPIEfeEPFwUgABACItBSmuvQDnLLBSK6NgRLAFDAV/a60woN2wDcAigvmhWHk+vXrnbYAsDA4jH6Fqa48ozAS2BUNpMGgO/qBqQAgV1rASIAY8YGRQESXfh3AJx/s7ypLHbQjLQafRgIj0Y3N2AJTgcEu/cBI9FNeSWAk1wbAculXmIp+7DASGMmgHXUW/cBU7hOXfrRzDejPBCO5l0iTNACILv0KU9GvMNVVltwj2WAkMJW2AP3UL0CjSz8D+NQh9GeCkUyRRlroZtDRpV9hKvqBkdjfpT8JjPRtWbpF8G1Z2hbs+bYsbY8kMNK3ZWl7sefbsrQ9fL8sbQvfL0vbQvtlLa3ttl/Z2uqesUJhZKZ+WTpVv+ct4C3gLeAt4C3gLeAt4C3gLeAt4C3gLeAtcOBbwAPJUBkCIABADF4DIAAoLhgAgAjDSMCfK8yaNctCLsADAMiVFgACOEie6s3lisegl07NGAcjARDEIy1gKnDElVYURhLXFRh0BIwAUwFArrSAmsBZ8gSejARGAlMBLaSFTYFTrjyTDHqRBgAL/cBUAJArLYWpxE8KI9etW+cEU5QPoIu0gKnAQVeeSTwj0c1AFVtgKjDYlZbCVPJMAiMpZ2CwC6wB6BicJy31THXlmWQAH/AG9EA/MBUY7EqLQbuhwEjSQL8rLWAqtkW/eqa64gUwstzEk1jPSAAE+kkLmAoMdqUFTA3DSMrdFXQAH7tz/7rSAqZSt8kzE0zlHqGsCHGekb4tG1gKvi1L2yMMI31bln39W9+WpesOe74tS9vD98vStvD9srQtwv0y+tfdXe6nQxVGcmamfhl9ax8ODAt0dXcdGEK9Sm8BbwFvAW8BbwFvAW8BbwFvAW8Bb4EcW6C3t0e6DEPqFTPgniV4INlvIAAEgwOAAgAEAMUV1BuKY+oN5Yo3y8BIwALpMdDgCgogOAaMxJvOFYIn8IM1I+NgJACCgWbyA6YCUFxBp5nlmHp2uuLNnj3bfgxMJU9XUJjKMQZM4gZNgLzAUgK2cHmGcZx46GcAB22uAEwlX2xLGbk8IzkP/aQFTAXauILCVI6pZ6crHnbFvoS4AXyFqcQBplI3XIFBO8od/UBG6porUH/QD0wFBrsCg17UR4LCVFc86jX1m7B27VqbbjSewlQ+B6oBg10B4KdrXgJ5gY3RwLUxaI1+YCrxXEE9CDimMNUVT72MOYZ+V1CYyjFgKum5AjA18IyMh5FAVPJEP9dHObmCenZyTD07XfEUhnGM+uMKClM5BoykPF1BPSM5FgcjfVs20HK+LUvbw7dlaVv4tixtC9+WpW3h+2VpW/h+WdoW7A2nX0YfoqgwmFo9nNpQ+mVxfZBwen7fW8BbwFvAW8BbwFvAW8BbwFvAW8BbwFvAW+BAsYD7sd0DRX2OdOIBAYAgxAEIIEt40A7g4fKGUhgD1CDEARQGvYAjBPXmsm9C/0grCiBca84pgODUOJhKWklgKvFmJYCpQEEGdAnqzWXfhP6RVhSmxsFIBsoJcTCVtHSaXOIBXF0wkngKINQbjfjRAIwEDhLUMzUah7SiMNXlWQiMVM/aOJhKWuqZSj7AVBeMJN6cOXOslEwwFc9O7EFQz1T7JvSPtKIAAsgWDcBIyknMEwxxMJW01AOC8xkgi4ORav84mEpaYZgKDOYeiAbiRQftonF4D2DkPiHEwVTSor5y3xGApMDSaOC+nWXqPyEOppJWGKYCD4Gg0UC8MExds2ZNNIp9D4zEa5Ognqn2Tegfaek0s3wMpMa+0eDbsrRFsNks35ZZg2AL35YFdQNb+LYsbQvflqXbDN8vS9sCGOn7Zen7ZF/2y9Kl4ve8BbwFvAW8BbwFvAW8BbwFvAW8BbwFvAW8BQ58Cxz0HpIM4OPBRMgEI3XQDiAVByCAGQzgkCbgzeUZyWCoenMBh+IABGkBUIhLngAgF4AARgbeXOh3e3aSJ/p5kRYw1TXNLHkCgNhm0q/eXOgHRro8O0kD4ArsIk8AkAumhj07AXQuz070K0wlLbzRXNPMkie2IH4m/eoBgX5dpy96K5MWAAjYSJ5xaxaGPQgApC7PTvQoTCUtvCddMJU8tS7GwUjSUs9U9AMjuYZoIC0gHfrIE286ttHA9QEjSQubujw7yVNhKmlwjS6YGr6XMsFI9UwlzzjPVPSji/pBnnHTnFK/uE7SygQjFUCQFnXMBVPD+jPBSJ3mlzzjPFPRDwDi/qQuxnkZc39Tz0grzrOTtNDPfYd+YLYLpob1+7Zs/23LdJpfytK3ZcGU5dR/35b5tky/n3xbppYQ2x/bX/tlvi0Lymm0+2Xp2uD3DkQLFOUXS3lhpbT37JGOnsHr3R+I1zQamvPLx9hke/e4lz4YlTyLS6WPv87Bs70MNb+84hLJLymVnt3NQz31gIifV1Qs+WUV5vrMb07TZ9vfQ+FYswSGGY8h9Ha05aRc8kvLJM/Umd7W3dLX023THo18bML7+p/57ZlfYsag2s2yPqHyzssvkMLa4IFuJPa0NJs4o9uu0YYW5hdJW7d7iaR9baq/tPwZu6irHSs7mnZKp+Ph59G83oryMhljHh7ftt0901XSvCfWjZcWM2NZ656BdbOwsEAqTfrN5kHy3t79sx2rqjS/jWtrUpe6YfNW5xhqKoLf8RbwFvAWOIAtcNADSQVADOC7ppZkoEHXg2EAGYDi8oZiAA2Awpd4Jpg0VAABzACguABEGkbGTy0JzAjrB6C4PDvRD0Bhi34XQMEWQBFAIwPIcZ6dpAFA4VrRD0BxwVRgEwNtpBXn2Yl+QCrXgP3jYKrqJ34m/cBIQC9pod81zSxpEQfYhX5gMGlGg3oQoD/OsxM9DNoBsUgL/S6YSlmql2Um/cBIbIt+YLALRqKfMgI2khb6yTsa1LMT/XGenegHBgMRSQOA4oKp6FdvCsraNU0u9Yd0gJvoRzvXEA3oB9JhX/RzXxI/GtSzE/265mg0DvqBwdgN/QBXF0xFP3WRwL3mmiYX/eqZih7qjsuzE/1AUuo3+kkLjeFAWlGYSt2IBvRjL+ot+oHBLpiqbQHn+7Zs/27Lsj0YQv2hLaDsM7UFvi1L3y2+LUvbwrdlaVtwL/l+WWAPbJHrfplvy8y8Eua7fG/3y9I13O8N1wLFBh4dcfTx5ju2S1Y893hsMvzm4fcHv2OGGorzS+Xy2R+U8aXMQGJmzNm9Uu7Z8MOhJrNX4pdMnyu9ne3Stc29xMLeEDHu4utFCgpl+0+/vjeys3nUXfcx6WrYJo2//dGI86w+/SIpnXmobP3uv484rWgCReMnSf6YKulY93r00F57P2bJyVJx1AlS/+Ovyd6ExsO9wHFXvk+AZ4Su+s2y49e32v3h/CueNE2qz7pMCkwZEJofvkfaVr9o93OZj01wlP8VVFRJ8ZQZ0m7qUl/X4JmCNPuKhcuk8sTl0nDbzdLdnF5SqKBmnIy74n0aTVqefURanns09X40di6YcYNMKZ8tN6/83Ggkn7M060qnypiiatvW5yzRYSa0ZPHhZmynTVa/uXbIKSw67FC54Z0Xy89/8zt56vmXhnz+SE547zWXy6wZU+XT//Qfw04GqPn3H3uf1c41hMO5p58sZ516vHzl5ltl8xb38lDh+Ptif/lpJ8pJxx6dyvq/v/sTWbdx3303p4T4HW8BbwFvgVGwwEEPJAEFcd5QDAirNxQwAIDiAhAMAAJQ2AJjAEAuAKEwEpgBFHQBCAaNACj8CGYwGoDiAhBhmMdx8owG9PNDmkEj9ANQXDAV3QAU8kZ/HJhVGIn+OM9O0gCgcK3oB6C4YGoY5iWBkegHBrtgKvoZdFT9cTBJB/BJC/0uz07SYNAOWIR+YLALpuoAOLZAv8uzE/tje+oQaZGfyzOVskQ/8TPBMB30Qn8cTMUW6EcfutFF3tEQ1h/n2YkeYCoQkTSA2S6YqvoZmMukX2Ek+uNgKvqBwdQP9DMIRPxoUBiJ/eM8OylL9GM39HO/uWAq+gFAhDiYhy3Qz72JnjiYin5gMGmin/sSjeEQhpEci4Op6AcGU2/RDwx2wVTyAgb7tkxsG+zbsqC2+bYsfdf5tmygLXxbFtiDttj3y9J1w/fL0rbQfk2u+mX0a3LRL0sr9HsjscDCI4+V8RMmm/7Z4P5lOF36YAsXLhwWkJxfc7SFkY9s+a1san3TeEcaT6P9NFSfdan07GqSHXd8fz9VODqyuhrMb7ztQ4fNLjV8n4xWGLPsVAEajwbsHC3N+zrd+u992UwxYJbruOFTI5ZSYWBsflm5NP3+dulpbrJegZpoLvPRNEdzWzJjrlSdeoF0/+p7BsZvjc0KT9+eXTvNgwoDvYe7G+tl2/e+ZOxhHpB+90diz8/lgYb2LVKQt/8PWR47YbnMHDNfvrnys7m8/GGl9c6LzzNegC3y71/7zrDO32cn5aAZzdQWNzSasdCWVgtr99k1Zsn4jnvul7v/8JCcfeoJFp5mie4Pewt4C3gLHNAW2P+/3UfZvJlgHoN2/BjNBCAYtFCAAowBAEUBStJBL2AG+QFQgBkAFBeAYFADgEXIBPMAYQAZ9MR5c6FfAQr6AUAugJIERqp+AAr6ASgumKowLJv+MEyN80xV/eSN/jgYrDCSa4uDkaShMBj9wGDSjAbVDwCKg5HAANUPTIqDqQwAYn/ix9VF6o/CSPRngpEKg9EPDGYbDQrz0B8HI9EDTOUaFEa6YCr6gfGqPw5mh2Ek+l2endhfYTC642AqA8g6TWs2GKkwmHvJBVPRT1oMOiaFkcBUl2cndVFhcFxbQFmEPSOzwUjslgmmop+2gDpCXYx7MMG3ZcFdgJ18W5ZuEXxblraFb8vStvBtWdoW2q/x/bJg+ljt19Cv9P2y9IwVcf0y+hb0K+m3jLRflq6Vfm8kFgBETpg0Vfa0tkipKZdcB6YWNJMdytyqI6Snr1tW73zWZtFt9sOBeITu3i6pMFO61pTUyba2jfa9xispKDNQc7Ls7Ngurd3ptcrz8/KlMK/I9P3Mg4PFdbLVnFdWWC6lBQaamLhJA9NwEugbmY6w6HvzQzA1JaWmVVBZLQWVNRbguTyr8gq5HjP9qfnNw/SrhdW1QVzjhRoO9tjY8RaAxk1vWmiO95plSEbNE4/rNa/Gu386YDpK1WntYNq4vr5eKaqbIt2N2+x16XHdMqUl01d21Q9+KFi98/pC0DvPeICSJvYdEIzti8ZNNGVgZinasTWVV575XWTc/GzZED9VPmY/Wga5Kp8BurK8UX1OLWOqLfCKHiNJrsNOeWrsYKc8Nb+f1IY2TckzNugyxzLXA3vNMflYu2PmyAw1WS5pwGG1d/Gk6aZczJjA5nX2ePiakuZD2RfVTZLetj0DPA5tPTG/ucNpkonN23EfWgGuf9y/5sX9lwp8hi2pg+wbDXghE0hfry+aN3HbN7xhX4PqqjmXPCifbCG/tFwKx03IeK9nTiPPMOU8eWLbQC83zgFQ2t90BaatMVO6NnZsk5ri8dLR226mdg2mfaZ9LDLtZFdfl5QXVEhVca1pYzdJb9/gB1Hi2lrVl6m91ja/gHvVhOL8ErtlOuiu3sHjSPZghn/F5n447NDZsmt3q6zf5HZymDltinl4u0jeWrfBjPOl25PS0pKgPTdNXIEpx7KyUptTT3fPsKZfLTVjjrOmT4n1tETr3NkzjNYWp8chetBKX2jNuo3S4RhXqxxTITOmTpY31qzPYJXMh6gLc2ZOM2MhHRbEumIXFOTLsytesa+wzYiLnXqNHefMmi5r15s6Yu69mea6h6KJayWN6DS3pE3/r9uUASHfPCgxc9pU4brxfMR24cD4HHbqCt/LoQhcK3YnH+ISSLPIfAdH7ZutfDg3W30jjg/eAt4C3gKjZYGDHkhmGsBnEAEYEAcgGMAEALEFZgCAiB8NSZ7AZ9ALeAg4A2bgjeby5mIAGYBC4LhrGiG+9NWzEz1xnp3oBqAw+Kj6XTB1qAP4qt8FU8MwBv0uz0LglsJU9Md5dqIfGKz6ScsFUxVGcm1JYCT6AVjYJBrCMA/ARZlHA/p10E71uzw70Q+MpOwVbGrHQtOk06EwUvVjj2jABjrohX5gMNtoSKpfYSQdKPJzwUjqIvbnetHvqovoj8LIOP3cS+hDNzCYvKNBYSTlnA1Gki9pMGjqgpHox/7cL9lgHrbF/nGendgf/aRJvUG/qy3gXgLgoj8ORlIfsL8OgMd5ppIXaWHjJPrR49uyYMpp7B/n5a0AItwWY99o8G1Z2iK+LUvbQtsC35YFHsu+LQvqhu+Xpe8RvrMOln5ZeXmB6deU2X7NSPplaev5vZFYoMAMxi82U7WueWOlVNfUjgqQvHruJ+3AuOq8acG/2t01u16Rezf+WD+W9xz6WWnraTEAslsmlE21nwMwmZaQgfTzp10rc6oWpeI3tL8td6z7tnT2tMvhNcfI6VMuNwPrvWbAPl92dTVJZVGNhQ+rDAB9YPPtqfMy7Uy88dMp2AUQm/jev7XROzetlcZ7/sfuAxDHXfIeKahKr2nFdJVMWxkOddd+1MCWVgsriuqC36lAp223fMlGAy6NveCa1LSXfNi1bZPs+M0PU8kAoyZc93HJr6i0n3VuNjruDnSkIuVgh+sMAKpZpmHLxkFTtnIcz8kAEhrIYPqMLS8+IS3PPJTKveqU86T88KXBezMozLWHw/h33jRoCtqJ7/972bPqBdn1yL2pqJXHnSkVRx5vCJEhCASTFrYHftUauzNdqwYtHwDStu8bD0ATclU+mkfSbdm8xVJ9xkUDpkOljGsvvNZq0nRanv/zALsBwbiOtjdesVPcsvYmQevC+Cs/IHlmLU7zoyu2HiTJR/MfyVbtTRpFE6ak7o/mh+6WttdWJE668oSzpWLxcan4gHbqPetxlphpfmvOuWJAvShfuFSqTj5PWp5/zNju4dR5mXaqzPSq5Waa1a3f/mIqWt3VH7b1afvPviGVxsu24uiTUsdqmSK5P2z/yX9Lj1kXk0BdrDz+rP4jMmjK1tSBDDtA5tp3XJMqP6J2bHxLmu69LcNZgw9dNusmmVoxxx7QtlFjXTDjeplhvBEBrgSAZG2JWVLI/P1p8y+FdnD2mAXCdK87OxtSbTJt5t0bfiAbWl6352Vra20k8y9Te33F7A9LXf/U3MTXNr+zt0O+s+rzmkTWLesbfuZjH5DasdWpuPx2/7t//Urq/QnLjpIrLlxuxy74kN+zt/36XgPZXrVxvvjZTwRA0rwjHd4TNpnpSb9qpikdSjj5uCXyrkvPt6cAv359zx8HTOH67isulGVHLkwl2WZgINOL6vqP1155kSw1U8eGw8rX35Lv/fRXKZB249WXyuLD59sosLV2x9hb+HzX/vSpk+Rj77vWjqdxPAr4+Oyic06XM05O34PhKVtrqirl83/zYfvsAs0w4z2MxzEegDflP3/5Gym9pBUXPvfJD5oxyUL5zBe+mooCJP2o0fbEsy/K7b/9vRxz1CK5+rILUmVExKadu+S/vvMjm1fqxAw7Ry48bNCUun9lprpdOP8Q+evPB9+3nJ6tfJLUtwwy/CFvAW8Bb4GcWOCgB5JRK4YHjRRAuLyhGIBVgMJgNQMNLgDBoAvQgy+2uGla+cLTqTGBMQAUF4xkgFMBCoDFBfPC+hVA8OR2NKh+oAb64wCKDholGcAHoKA/DqYCk9DPYFSc/iiMBKYCDqIB3QqDVT/lFQ7hQS/Vj22jgQFknRoT/XGeqQqWOR/9SWFknH6FwegnLTSGA/oVRibRD+wChsXB1LB+YBhlHg3YPwojXTAV+ysMpq6i3wVTk8JIhamqn3KIBoV55IP9Xfq5l4DBAG2FkS6Yyr2EfuLHgXHuJfRng5HcS2H9tAUumBrWnw1GhvVzrdGg+ikv9LtgcLgt8G2Z+ZFt2mLKXO8l2qlooD6ol7pvywY/WOHbMuPVYb5n4ryhwg+G+LYseLDCt2WM9w98SIw+pe+Xpdviv+R+2Y7GZtMfCPr1tAnRkKRfFj3Hvx++BeYdfqQ9+a3XX5Elx546/IQynHnnuu9KkfGQWT7tajtA/vO3vmZjt/cMBFZ8yAA6g9bPbH9AtuxZJ4ePPdbGXVx7ooWR9W2b5cn6+2Th2OOMx+UiOW3SJXL/5p/bOPx7evv9Mr3iUDtoTxoTy6bJYTVLEwPJhl982zRQZqmQy260QGLnH35l0w7DtZozL7Ywsu31l6X9zVftunJlhx1lAUP7mtUpLewAIoBlgJQuA/rKFhwVHDe/Z2ovvkHyDWhqe+0laV3xpIlrlidZsGTA+XhUAaYAPhVLTpLiqbOldO7h0v7WygHxRvpmxx0/MEDS9PcuucEkNXCNd00bqLpn5XNm3cY3pPr0C2WM0dO64gnpM1NYFk+dZWEk03fu+vPvzf4SKZk1b7DnoyYWs8WOrMvI1Jgtzz5s17OsOOr4lOfazvtuF4Bd1SnnS/HEqdLwy1tsSn3d6d9IOSmfGH1xH3O9aOp8e33gZUpELWOjd/fTD0nX1o0GbJ1p7UY84HI4lB26yE5/2vrkA3ZaUICfhoz1YIj5aJrD2dr7wwCvcVe8V7p37pDmB+60yfS0NCdOzpaxgZGsY7n7qQeNl+RkqTz2DAPnr5aGn39L2teulrbXXzL3wtHSsfY1601YddK50rVjW2IYmURM64tPGgj8qrmfFsiYpafIzvvvkO6mhuB6QjC9bdWLtlzL5i+2gNN9d2TOkfsFUA6A5DqKJ0y1npKZzxp89I+mrSsrHCNnTblSqo33YzQAI+9a/305Z9o1ti0FNJ415So5atwpFkhq/KqiWuNleZ9pa9vl5EkXyvnTr5dvW1DYJ0nbWtKKa6/v2XCr8YosNQ+JXCaTymbKbW/9l816qN6Rl553loWIjz75nDzyxLNSN75WTj423UZOrBsvV118roV2v3vgUekx40YXLT9drrn8HdaDsaV1j3z1Wz80D4rny0ff+25pNWtI/uC2X1stzbsGeuHZD7P8mzJpgvzp0SelxaQD0Lv43DNSQPKsU463MLK+oVHuuf8hs+7jNDn9xGPkQze+ywI8kqbP8/gzL8izL75qxlsK7PmHz5srpxy/1F7f4sPnWRgJ9Lvzvj/Za2X9yOh4UhaZwrqTPGzEepf123fIBWcP/m5/8M9Py6o31pi1GZfIkQsNAIV+RsLbW7cZj8W37fqNQNWVr6+RM046VuYfMltWm3OzhRWvrJYTzdqPh86ZmfKsPNPYifCAsSOBa3vNrOv5iCnjXbt2Wz0nHHOUXH/VxfLNH/zMxhnOP8YMwyFJ+WSrb+H0/L63gLeAt8BoWcADyZBlw4NGDDrGrROnAAIoAEwCALkARBhGMpBLvGhwwUgXgGDQAoAFgIiDSWH9CiNdMBWYBEBR/XEwFRjGAD5fnuh3DeAzAKseEAzgx8FU9JMWGtHvgnmqHziL/jjPToWRbIExmfRjMwAEg39xg17qmUrHiTiUaTQAk9DPF36cfsom6hkZN4CvMFX1u2BqGEZm0q8wFf2UkWvQC/0KgwGMLpin+rkG6jOejC4YSb1BP2WPftJywdQkMJJ7Cf3oQ3ccTFX9lAuaKPNoUBgZ1k9ZRQP6qRfEV7AZ7fxSzklhJPqp39Qb7O+CqeG2IJN+7qXwAL5Lv7YFqj/TvYQ235aJBfu+LQvuBN+WA1k/mgAAQABJREFUpVsE35albaFtsW/LAs/O6ENivl/m+2XRh8SS9Mu21TfKDtOv7DT9m2jQfg3pZuqXRc/z74dngarqsTJj1qHywjOPDuqzkiLfB4sWpT0S+Yz+JP3FZcuW8TYV6Hdt3Lgx9T68s7trp33bZUAjUwPiuZMp/GrtzbLDrJFGUK+dRWODQcxfr/uWnfKPzz+44At2GtgwkHy16Sl7HC+iV8x+a1ez9RoqyCsw08UOfEjTpaG7OXhIs8/8TgIkdjcN7lsXT5klvcZ7qvnB39okuu9tMGvHfVTKFx0jUSBJhB13/tBOb8l+x6ZgELd05jzJN57CgMXmh+7ikM3LdX6jgRhAv562FsFbDg/BXAPJ1HXaB0EHDuRaceYfXmy7Hr3Pvt2z8nlhHUc887q2bbaghgNN9//SXiveXxM/8BmDR9xp2UQc/wBDhIZf3WKvmf3mBwP7sN/TukvE/Izp6wx+l6Z0c7A/5KJ8NK0kWzz98KLrWP+GNN33i9QppbPm95fxKgNxX7Of73r8fhl36Y1SccQxg4Ak04huv+2bqfOjZRxXD4aaTyqDYewosANe9LW3Oe+PbMnaMjbnU5fwGO7Y8KYF2qwJCnjtbd9jAXzx5JlSc+6Vth4Qr+kuM51wDkOvqUP21TrNpsqasa76ZOMY72CmqSUMrUbbU8yDB2V2mthO83AB93I79aG/TgQxkv2nLeW1x3iS1+TVDTqpo6dN1re8JvXtm8zDGDNk3e7Vdr+uNPA41xPWt6yW5xoetG/HG0/GhebBj2mmzdzU+pYkbWs1LVd73WLaXXPnmnWCg/s0W5uvaUW3Y8aU24/wItzRtNO+wiDskvPOsMf/8NDjdqpP3gD88Pw7ftmR8seHn0hNm9rb22em9OyWDZuC7xZ74hD/vbl2g9x9/8P2rBNM+uPNmIKG0w2oM9VafnHn7+zUoi++skrmzpwuM6ZNlmrjcdhsYNsv7/qDjV5RXibjamvkT489bT378BoEuJ52wjH2+K23/UbWbtgkz7+0Uv7PPxvv9Qhc0zxd2zEV5Ta/7Tsa5ee/Cab2rR1bY6FiOD6wluuZP3d28LEjjxUrX5OXXn3dnrvCbJ96boUFkuON9iTh/keesEDyTFMeOtXrvDmzrMdmY1PwEAOerLyYJhXg/MyLr8gxRx8hE+vGJckicZwk5ZOtviXOzEf0FvAW8BYYgQU8kOw3Hl9+gIBsA/hAMAaqdNAOgOICEAqTFOaNBEYyaAFABEAAKIAxUYCiMM/qN3OUx03NiH7i8MMbmARAccHUsH4GXTLBSMCNwkjXoB36AVgArzgYg35++GeDkehGv8JI7OryTFUYhp0yDRqRH9eqMBKbRAP6GZBAY6ZBI/QDlNADzHPBSPRTlujHVtn0A/ooy7hpTrEFsEthpAumchz7U8fR5IJ5CiPRT30ABnOt0aD6GbxW/S6YqvZXGOzSTxrYH/uiGxjsgqnox/5J9IdhpEs/9y32B6ZyL2F/F0ylLSAe14b9sUc06AC+6o+DwXovcT72j2sLFEZyL2GvOBhJWWZqC3xbNrCk1P7aFvi2zLdl1BDflqXvE9+WpW1B28r3UpJ+je+XBXbz/bJ0/aFvEe6XtZn1wvp6g7Wu0rECj/2k/TJXnyGclt/PbgH6RUcuPUkad9RL/dbNzhPoI0R/D9EHpI8Y/Tzab3QmmOBDPGgURoajs6ZkW3frgPXHGgy0nFw+0/SFzRSi/YHzu/vXKOvq6bBrpXEID82ensGza+h5Sbf5ZRXW863TeHdpYN1HgEmBWbsvGizUNDaOhsLxE+1HTNOZKQBnABgE1uwj5JnfCvsidBoPPw2qJb84WI+tsGqs9bDRz4nX07TDAks9J8m2wHiRWXv2X3OSc8JxclU+4TSz7dvpZU2ksH04p7B/alk88HiFQ4FZTzQa8KCNC5nqwVDzictjb31OGZub1nhZvm9Qlqw/ivcoZKfxrh9L3TUfkTxzz7G2aW/H4PGIQQnspx+0vvSk9aBlSmjqd/tbr0rLc48NWpd2pPJ1LUimve4xL0KXWZOX9SXDAfCoYbPZB0iyZi+fZ2tr7Zqv/SfHtdea9ki3f3zkSTliwTz54A3vNOMhnXb9SKb5BE4Sxo8z7Y4JeCpGw+QJg4FtNM5Q3wNGNTQ07pS6cen7uNysi2iqtZ2OVOPodoaZQvVlAySPWHCoXHvFRXatSz3GtsyMhRGqqyst1ARGathpzhtbXaVvs26nTQ6+WzZs3pqK++rqNwYBydTBDDudnV2pKWMZj2rrf5CMdTSTBCAs068eYtbUJDCFKp6hQEcNTA/7iZuutxBVP2PLb49chiTlk62+5VKPT8tbwFvAWyDOArlt/eJy2c8/54cqIINBhEzeRArzgBqAKwCKC0YqjOGy42BedNALABEH83TQC8ASB1CSwDzVz+AReWXSDwDixzkwhnjRoJ6RXCtf2nH6gUnoB3gBY4ABpBsOgD5gjMK8OM/I8KAX+kkrOkhAusAkBnoUhsXpTwIjVT8a42CSwtQwzCNuNEQHwNHvgqlh/XEwUmEe+oB52N8FI4Ex2B+N1EXXwBZlg3aFedjfpZ96zz1C3sCyTPrJE/uTVhzMw/6qnzKK06+Ddkn0cz+SXxIYif4oTKXMwm1BEhipbYELpmJ/9BPi9NMWYH/KPROMBHxif+JzfeiPDor5tsyaOvWP9sm3ZYE5fFuWqhb2gSLflgX2CMNI35YNhJFx/RraYt8vC+qP75el2xVXv8z28UoG/tQaar8snYPfG64FSox3XnnFGLtm5GnLL7bJlBgvHvpMvH/lxadlx/atsmLFigFZTJs2zT5AGP18QKQRvNnVOfj3lSaHtmyB31P8BYFtsJ/k3Gxph4+HIWj48+g+a+JlDFmuqc880DkohACsHtPri/6e1OO52PZ1d6WSSds4+Cj63n4aKS60hT9i7cRocKYTjZTgfa7KR+1KlnG23fPqs1Iyba6ddrRz4xo7JWcgMah7wDTW3xwQDNiPBqbyjAuZ68HQ8onLQz9Pcs0ad7jb7sZ64zn8o0GnK3znQPGUmRZcso8XKGuIDilExlY4N888INPnWAJlSOkOIzIexXgNA6+Zcpm1K0tmH2anqB1GcrGnpO+foE7YiC47hO5E9WLWLeeE60BsZuZApvY603lJj216e6t87t+/JuefeYqFefPmzpJ/+ORN8tl/+0/j7Ri0R9yXn//S1wclOZy1FwclEvmg3awJqcHVHgDfvvqtWzVKastUsUwbC4xke9fvH5SXVr5uxy/+/mPvS9u7v9iwv6YfLpdUghl2el3lbca8hhPQoDqsNK1W4YY8S8JPv/CSnHvGyWYq2nly8nFLbew/PfZU6qwbr77MwsiHH39GnjMeocDmf/r0hy3cTUXKsqNjP+F6i8dlNGQqH+ImqW/RNP17bwFvAW+BXFtgeC12rlXs4/SAAQxOKkABQkSDwrwwjHQBCPWs4kuCdIAG0eCCkS5vKB30Av5lAhDoB+4oTAV8RINLvwumKgzjfPS7YF5YfzYYmQSgoJ9Xj/HsBCa59OugF1sdNHXBSGASA4WZ9GPPJDByjBm80EHHTDCVtNDPwBP6XTBP9VMOmWAq+gFYdIiad8Z7RoZhHoOm2CQaGPTC/mEYHI2jMJh8M3l2KoxU/dQLF0zFDtgM/diCVzREB+3iYCQwibQUprruJa4NW6Cf+kB+cTAyCYBAf7gtiNNPHO5P7I79XW2BPpig+jPB4KQwUmEwNnPB1Kh+35YFMNi3Zb4t03bIt2VqCTMAZh4u8W1ZYI9wvybbgyF8L/l+WeBlTP3x/TLjkdbfr9SHrHLZL0vfsX5vuBboNv3DtW+ukvVrXpctm9bbV2dHML0e79v3mHkx96PQ0t0spQXlZl2ytGdGnZlqsNt4/4Q9dnImua/XTrMYTc+uJWn68+H1/QqMd2CeWa9rKOvodTUE3iusGzjS8P53f04+94mb7aus1Hhw7oPQw1S35nc+08lqKKgJfnvqe4Cm9Y7r/6CUNSYjobe1RQoqq522D0fFI9X8GJI8s95nOOSqfDTNz3z069auf/uh/9SPBm1bnv+z8eD7ifXqG3vhtbYuEEkhZNG4idbLFdiWeqE/R2Go+WCjgooqZ+61Yyem6tL1V37aGSfph3H59Jjpjgsqa+yUyCl79NtG08aDtPq0C4NpjM20xuWLlknJjEP0cKIt3skErZOsPcqUsNFg65L5kDUeRxL6aD9N21AYqfeaJp6Rux77vdT/0MC0LRtsPBeU1/ijuZ1aMTeVPNNbE5o6Ag/sXLa1PX3dkm8eoGDK7OEGIOCv7/2j/OtXbpaHzLqHjCceu+QImxzrNfK+unKMXR8S8Kevnp7eAVkyDlNaMvghiAGRRvBmT1u7VI6pkDbzULxq0C3JTjIem8XFRfLK6jeF9RsBb0sXHz4gx0YzzmUuR2abdSM1VFcNrV5u3hI82DBj6mRNwngmpss79eFe2nn48We5Lex0tLPNupqUWZuxlYapxqNz1+4Wu2YmQLDKjNVhJ1fgXMKUyRMGHMbmhOnGE1XDtCmBp6i+z1Y+Gi9TfdM4fust4C3gLTCaFhj42O5o5rSfpg3M4AWMZJDfBcNcMM8FIIAKDM4AIAAZpBcN0UEv4rg8IxnUQBeDHACuOABBHCAE+hkAyaafvIjngpFAHdKjs0McXtGAfq4R2KWDdnH6iYd+NJGWPtGjaZIPccgXuNLY1JgR5jHoRV7YIk4/6ZEucVwwSQeN0E8ZEi8O5mELrhf9xHPpJ04SmEc89AOesYULplKOxCMQJ04/10j9UBgcp5946AfGkJ4+9aX2p54Sh3oLXOQaM8E87gP0Ey9OP+mRD3FcMGwoMJK0AI4Kk1z6sRf60cM1uvQDDomHfo6jzQVTicOLfEgrTj+6wjDS5dmJJtLStoD0ooFrIy3ApeqPezCBeNiOtoC0Mun3bVng5Yr9fVsWrJ+JLXxbZqYJ6vfy9m2ZG0b6tizz9PO+X5b+FtOHrHy/LICRfEePVr8sbXW/N1wLdBs49Pqqgd6PrClZZPpV0c+Hm0cuz3u58Qk5bfKlcsXsD8tT9X+QhbXHSWF+kaze+Vwus0ml1bNrp4WOrHfHVJy9LbtE15dkHUjWu6s5+3KzZuQqqTzuTHvenpeeTp2fbadj3esCsCk1XlI1Z18mrSueFCBM+fwjpfGe/8l2+oDjDGCPJDDNaUFVTZCE+R2Ub34bFE0MBsQt7DK/p7OFPS8/LaVzFkjNOVfK7icfkPIFRwewMHQuXnHAoaqTzpGu+rel8sTlg5JtefYRqT7jIhl31Qek9blHBXBbfsSxdg3G8PqaupZh9ZmXSNtrK8x0nu0mzWAa3VyUzyBhWT7oMfWj+eF7rPaa5ZfbtSRtGZspd6kfwNk24yUH9CpfuNRM2blK2l5/KUuqyQ4PNR/sWHH0iVJl7E/d7mrYJqyfSAAe5SrE5aNlPP6qm6T1xcftVMTFM+ZK6cxDZcdvfmjrzbiLrze/Pc04lFk3kqlaJ0yeYdeT3P7T/2vXMk2isas+8EqtOuU8aXnhcRljvBJdQacZrjzhbMkrLLJrWNppY/sjF9UZsGPuCx48IBTWTZI842Heax7aCHtAswZol6njJbPnW09IjnUYj1nA6NhzrzLrx66VTtN2cJ9zH/B52Ou4P7vYDe3d+JIAMpUW8OBBnkwy60QSdnY22G3Sf7MqD5PjJpwjnb3tMr9mqdl2mOla19jTc9nWBmtHHiHLp14tq3Y+K+1mjcttbRuSypRrLn+HHYN45oWX7W+2I4yXHWH9prft9rf3PSgLDp0rH//A9fLU8y/ZNRdnm/UYTz5uidz8g9tSU7sSeZcZ72CK1SsvPEdeX7PeHlN4ZxMb4b8HHn3STh37j5/6X/KwWQ9yw+YtcuTh82X+IbPlS1+/xa5lyVjF/ENmWW/BOWZ9yZOOPXpAroBKpjfFa/C+Pz1m18Fk3CQ63jPgpMgbICiegONrx8p1V14kTC173JLFkVhi8yk04y7jxwVtPxC00qw/2dS82/lQ+aAEEn6Ap+rW+u1CuRBY4zMctphjUydNtGXG53hTxoUVr642trhILjjrVCkx46msg8n0r5v6IeySIw43Xo7bZOFhhxj4nH54ifSylQ9xstU34vjgLeAt4C0w2hY46IEkEEgBShzMYzA3m2ckUIq0+CIFGLhgkgIIBi0AaoCROJhHnmEA4fKG4il9wAcAAu8xl2deGKYqjHTB1LB+dLn0K4zMph/Yhy3CMNKlnwEc9FsYafJ06WewC1tkG/QiP16ZYKTqByYlgZHoB0phCxeMxP7AJNXvgmFh/QojXTA1rJ+ydMEw9GCzbPrRRHphGOnST1rEzQYjsb/CPOq2C0YShzwJcTBSYTD1h4Fv4rkGwNFEetwv2J5XtHPKfYb9qWuqPw7mRfXHwTz0kw/2d7UFLm8il37qNGmpfmzm0o/90Y89sUUm/eG2wKWftLiHfVsWwEjsTx3xbdkYey/5tiyAkdG2wLdlaS9v35b5fhnf33yX+H4ZlhD7Pc53Cf3K/alfFqjz/0dqgWi/bKTpDe98nRNu4NkvNz4pU8pny6HVR8oFM26wB7e1bZRHttxp911TFdrP+pMb6rXteuReC9fGLDvVpg/karrnZ3a/+cG7pNYAk/DagHteMYPt616zxwf8c1+OjbLjzh9K7fnX2CkcmcaREAYhaM4zr2whQZSMSeB9NmZJehC4sHaCjLv0RntOo5lWM7U2Yq9DS3/mnVs3SetLT0nF4uMEIGc638ZjdNcAj8iWZx4W4E75omNs2sBcIGY4AOnwkAQEV516QXDI/KZvWzVwELv1xSfslJ6lcw6z5QDc2fb9L9v4uSqfsC73fqpy2cNop06UGLCG5yvrg+74za22jAG0vAh45O151QHSQ/DWRuz/l6QeDCUfysnCb1MOwF48PFueecjmlr6Pwgri9h31IRQ1Lp9wGVefcXHqDOoQAcgMuG36/e0W2vNZ410/kfHv/KDUXnRd4mlOuR871r9hPSsBgngoWg9aEgwFpsptW/2ilM1bHNRdc2z7T79u6y/R7L1gfj9pqDnrMrvb3bRdGn7xHf3YbncZKF118nlSefxZ9v2OO75vPWWxd1XIIxgvUdoY7pOkYWzxBLlyzkcGRNf3L+541H4+sPzi08Yb8pi6QGNPX4/cs+FWc34QP1tbO0BAanrsgZ/qu+cbHpJpxhtzbvURckj1Ygs+v7Pq83o465ZpN49cOF+OPTrwiOT3/uNPvyAb+9dHrG/YIT+742555yXnyynHL7UvEmW9yS4TNxxu+83v5MZ3XSonGgjIC2+8r37rh+Eosfs6ZuSaDlVPwntz/NgaOeGYo+WS84KHVDi2bXsaFv/h4cfl3NNPssCRY2vWbzLekNNSYyKrzBqVz614VZYeuVCuvOgcWz0AjKx/OJRwy09+addlXNLvgdnY1Cy1Y6sHjN196MarbV9O0738HcEDIk3Nu+Tr3/2J/Zi2R787sYHu97m+CzQhx/bPpsyC6+kbBCTv/N0D8t5rLhfNH8jIizGjaCD/O+/7kyw/7US5yKwbynuAJB6Xjz75nAW8V118rhmH7DWemDtkwvi0l36S8slW36J6/HtvAW8Bb4HRsEDe9OnT47/BRyPH/SzN2bNn23X1XDAMCAD0SAoj+TJpajQwstkNUJiKEwCRFEYCRYAxLgCBLgAEX5i5hJHAE2CYfglrcXFt6FcYSZ5xnnkM+jIAnkk/aSlMZSrLOJjH4BhQLynMi4NhwDlshv6hwkgXTFX9HMMWI9GPvShLhakuGIl+8lQYSZ6uAWSFecSn7pCWSz/r6imMJC0XDAt7E3F9SWAkablgHvUB+6Mf3dlgpOrnGrRjrHURO2GLbPrJKwmAUJhH+tTFJG0BtnDZX2Ek+vVeiuoHlKFfYSQ2cz2YgH60ZYOR2hZwzybVj/0zPZjg27K0Z6FvywZOzZipLfZtmbZSYtsn7OHbMrHtvm/LgroxnIfE9LvE98vSD4m5+jX7Y79sd0ubTJpYZ/o/wYwVw+mXUf60I3wvs6UPwYu+EK/hhJkzZ9rT1q9fP6TTqYO86Nfw4vcJZcGW9u4vLdAPpl+3bVv8enfha150fL/nXfjDEezjJTTOeAk1G4+g9p49I0hp5Kdaz0IDz/Cw0mkfh5NqfnGpAURmmREDKXr3tAwnif3mHKagZMpKux6iuR9cAeDYZ7xmejvT0/a54tmpL809br0hY9Jynaef5ap8NL2RbG0Z15ilcIxXLGBstMLeyidX+iljvBLxPtYpVnOVtqaDTfKMt9Ro2l3zyrTNN16VgEmmN+5tH7ysTKZzc3VsTuVC+0DHb9d/X+rNAx2VRTXS0LHVfIcNvlf3l7a2xIw9TjVTdDKV5tvbtseaAo/AsTVVdkrQ5l27Y+ON9gH6IExDWmKmHd28td7qjuY5x3gLci3hNSnDcUpLS2T6lEkGWG60cC18bCj7TGHa1tZhvCQHz0o1lHT2Rtwppl/YbkAy09YONxQWFshkk44Ca1c62conaX1zpe0/8xbwFvAWiLPAW6ubZNYhxkGnMPvv1IMeSAIFXDBJYSQwTAFK3AA+MIlBAgb5gTEuAAEAAjDwox1o4IJ5wDJ+0FsAYToXTTvdUzMqjOFLpr6+3qlfB72y6efpb35sq34XjGTgY6j6s8FIYBJh+/btsfoBLVwHtsK2cZ6F2J+BGoVhcYN22B+PGOK57E9dwP5hbyLXoBe2IC75oN8F87B7EphKftgf/dQLF8yjbChzBkawAfpdMAybUp7ozzToNWHCBAtmM+kPw0iuD/u7vIm4RvRTR7CFC+YNV78LRlJnVD/3GXm6YF5YfyaYmkQ/9sT+lCltAPZ3tQXYAftzvTqAHG0LuGepP9zr1C3K3KU/DFOxKenFPZhAuWP/uLbAt2XUmiD4tkwtEWx9W5a2R5K2wLdlaXv5tixtC/Z8vyxtD74Hfb8ssEdHZ6/MmT3d9mWH2y/zQDJdt/b3vVwDyf39evcnfdWnvcN6X2bShOeZrkGYKZ4/5i2wv1jA1+vhl0QYSG5ocXh0Dz/pA/LM6qpK+dwnb8qoHaj4te/8OGOcvXXw85/+kIwx06rGhW4zjvIPX/yvuMM5+/xAs1vOLtwn5C3gLeAtMEwLDAVIHvRTtrpgZBhAKAxzAQgGXGqqIb8FsTCSQTsASjYYqQACeJAE5pEuT+y6YFgYQKAfgJIE5gE+ojCPAXzVD5ACALlgGICFAV1sl0m/DoBn0g+EZHCPLbBmJDAyDCCwAQDIpT8pjMQWCiMBQC6YBLhSmJrEmwiN6HLBPEAlNssljEQ/oCyTfsoS++cCRqp+7iGu03UvAdWAswrzqENRmEd7OHHixBTMywQjsT/3QSYYSZxsME/bAuxPvRkJjES/wlRgJPpdYJy2APujPxuMBIJyL8XBSNVPnfRtmW/LqIMafFumlkhPU0lbzH3paotpm3xblraZb8vStgjDSN8vyw4jD6Z+WV5rh+nXZH9ILFu/LF3b/J63gLeAywKd2zZLXtHAdbSi8XrNGoc+eAscSBbw9Xr4pdUrPcM/+S/wzE4zjrduY7AeZdzlMbXr/hLeWrdRgIFxITpNbVy8kX5+oNltpNfrz/cW8BbwFtibFjjoPSSjxmYAn0FHBvABEAAUF8yzMNI8BQ4wivOMJO3JkydbmASAYKDKBcMAEMAR8s4EIMKDXlu3bnXCMNJgoFA9C4cCI6MACNAxadIkqx/vLKCHS/9wYGScfiAM9h+KfoV5UZga1g9MRb8Lhg0FRnKtpLtlyxYnTEJ3GKZif5dnYdQzknKP6mfQDvtTF7PpB2AxYJ7pCXyFeeSD/V0wjLzQTzkMBUYC/qL6uTfIkzS5hxjod9nfBSNdnqnYgnuFesq95NIPOBwOjORao/qxJ/cS+jPB1CSekbQFYf3Y33UvhfVnawuot9SRuAFw35Zh9SCE2wLflqXBuG/LBsNI35Zl9vLmjvJtWX/DYja+X5a2Rdgz0vfLxtgHi97eUm+e8C+1fXtXvyZJv8x7SKbr2P6+5z0k9/cS8vq8BbwFvAW8BbwFvAW8BbwFvAW8BUbLAt5DcpiWVQABVFIAMRIYOWXKFAszACgACBeMSQojgXQACAaQ42BeGEYqTHXBsPCgEcAM8BGFkZgQmAqMUZjq0h+FkQycuAZdwvrjYB4QDADEFtjEgFY2/cRxDSBjJ9WvACKTfsqe6WoBei796g1Cum+//bYTJilMZYvnZBIYCaSL0x+GkUAnV12kTiSFkdQ1AvZ3wTCFqegfKYxUmEqa6AYGu/SHYSS2xzPSZX8dAFeY6tKvMJX7QPUnmebUBSMVpqp+ysmlPymM1AcT0I/9XXURGMngNvqpE3HTtBInDCNdXrq+LbNVPfVP2wLflg2Ekb4tGzjltKst9m1Z6jayO74tS9sj3K/x/bK0Z6Tvl6X7ZfRVens6nX1sYGSSflm6xvk9bwFvAW8BbwFvAW8BbwFvAW8BbwFvAW8Bb4ED3wIH/ZStWoQACKAHMEABiguGASB0bZxMnpHASGAGAIJBXxfMUG8o4AFQkPRcMIZBL/XMY9DL5RlGGgxuoB/YAUBx6Ue76s8EI6dOnWrBIKASgOLSrzAV2wGSMsFI1R8HI9EN9GPLAA76XTApDFN10MsFU7E/YA17YjOXfjThTaf6M8FIrjUbjMT+lIPCVJf+sGdkHIykTqp+0sgGI9EPTOXlqj/ooq6hf/PmzU4Yhq2wP/oVprr0Az91mtM4/eSDfsqSOoh+V11UGIl+bM/LVZbcl+gncC+5YB73GvcJ+gGM1G2XfspbYR6Q1AUjARAMuqOfepNJP/WRPKn72N+lX2EY+rG/qy4qTCUtoAhtgUu/C0ZGPTuxp2/LsHYQfFumlghgpG/LAnv4tixdL2iLfVsW2MP3y9L1wvfL0rZgbzj9svb2DinIL7b9r3BqQ+mX0Yf1wVvAW8BbwFvAW8BbwFvAW8BbwFvAW8BbwFvgL8UCHkiakgRAKEABFvDj3wUDgJEAJQb8s8FIAANh48aNThjDcQUoCiBcMEkBBJBHYaQLQChAAdYAUFz6AZHo53qzwUiFqQAUF0xi0K5ufJ1dP1OnlnTpD3sQxMFIIIwCFPQDilz6GTDlhX5gJPlGbYHNp02bloKpACyXfgblsS1lCUylPF0wKYlnJIN26Oc6gJFxMBXbUwaq3+WNg/7p06dbGIY9sZlLfximAsIAYi79DHopgMgEI6P6XWXJAD73APrjYJ7aH5tQhuh3laV6diaFkdT/TZs2OWEeMFVhMDCVuuHSD4xUmBqnn3wAWOjH7nFtAelgD/QngZGkG9cWcK8pDFaYGqdfYSr3ONcarf+UjW/LqIVBoCx9WxbYwrdlWisGTtMa1xYQm+8S35YFdtMHK3xbFkzTSluMLXy/zPfLtGVx9cv6+nr1cGo71H5Z6kS/4y3gLeAt4C3gLeAt4C3gLeAt4C3gLeAt4C3wF2CBgx5IMqDEoCMwCQABQHHBAAUQDPgDIIBYLgAEDCgpCWDkhg0bnDCGAXIGJIAZAAgAiistgBn5Zhr0Qg+D7uhXmOrSrzCV+ApTozCD+qwD+OwDUFwwCZjK4Db6gWrATZf+KIx0TbNJGtgM/cBIBvdc+gF5CiMVprr0K4zkGADLpd/CVONNR97qmerSn2QAH90M1LLl+hjcdulHexhGxsFUhZHoASC69Edh6khgJIPt6McWmfSrZyf1B+Dq8iykzsyYMcPaAhug32ULBu2o26QFTM3mGUn9j4ORYf0Kg115hr2hMgEI7E9ZYndgtistBqKBm+hHezbPSPTHwUhgKjAY+wMYsa2rLpIf9zBpxcFIjvm2jFoYBN+WqSWSTdPq27K0vdjzbVnaHklgpG/L0vbiu8H3y9L28P2ytC2SwMhwv8bVb06n5ve8BbwFvAW8BbwFvAW8BbwFvAW8BbwFvAW8BQ48Cxz0QJJBR2CAAhQXDAAKKoAA/gAhXDAMsKaekZlgJIN7DFgBdeIARBIYSXUDoKBfAYpLPyAD/QALYCQAxaU/PIC/fv16J4wBpgJQ0A+MRL8rrSiMdE0zix70kxYwFRjs0g/IAygRHxgJDHblqYNe2AX9rrSAkQwIkSdQEBjsSisJjCQN8lT9wFRXnsBIgB76M3l2KoxEP/XHlRYwEm3kiR2wh0t/kkEv6g1lTloKg115op1rQD/lHefZqQP46AHAudICRlI3yJN6SH106aeOUVbkGQcjASiqn/oFqHPlSd2hDpFWJhg5c+ZMey+RBnm60gJGKkylHaA9cOlPOoBPm4EtgJFoc+WZBEZSZ3xbhhWC4NsytUQyGEkd9G1Z2ma+LUvbwrdlaVv4flnaFr5flrbFaPfL0jn5PW8BbwFvAW8BbwFvAW8BbwFvAW8BbwFvAW+BA98CBz2QZCAWCAAAcoEFBRAUNQAiE4wE1hHiYCRPPQMgCAogXHkCIMKekcR1hdmzZ9uPgakAIFdaClOJqDDVlRYD+Hg4EOJgJMdVv8JUV54M2ul0ZkBGF4wkn1mzZrGxMBVvOldawFSAEkFhqn0T+cdgOvYlrFu3zgl2gMWALgJQLQ5GAswAZwAsvORcT6hzDIBFwLM2Tj+DdgA9gsJU+ybyTz3z+Hjt2rVOWyhMJQ4wdSQwknrPoDsBGMl1uuwPiORFUJhq30T+KQzjY+zvSksH7Yij0+S64iWBkcBUbEagfIDBrrSwPWVAUJhq30T+UZbYhDSo/660FKZyKjB1JDBSYSppKUx15Und5x4gAFy571yBe4k66duywMvbt2VBLfFtWfpu8W1Z2ha+LUvbwvfL0rZgj+8SAg+5xfVrfL/Mmsj+2xf9snTufu9AsECRWUO0vLBS2nv2SEdP24EgeZ9ozC8fY/Pt3dOy1/LPLy6VPv46O0acZ15xieSbGZJ6djePOK39MYG8omLJL6sw17dTzI+k/VHiAE2FY+skz/xWJPR2tOWkXPJLzYOyps70tpolY3q6bdqjkY9NeF//M7+J80vKpLfdjEGFyjsvv0AKa+tS6npamk2c0W3XaEML84ukrdv9Gzglxu/kxAIFRaUyZuw0aWnaJD1d7TlJM5eJVNRMMVWyV/Y0D3997ZLyGimpqJVd29cMS1pJ+VirobNt5O19puvJZT7DutAhnpSXly9VdXOku7NNWnduHuLZPrq3gLfAwWiBgx5IUugAFFdg0A5vNIJ6c7niqQcBx+JgJABCAQoAAoDiCsBIBSg6NaMrHjBSAQQAxRWAggxIE4AnvFwByKjrrGWCkUA/AoAUba4AjFSAwjXGwcg5c+bY04Gp2MwVgKmkRwBGAoNdQWEq/WXK0uVlxvWFYSreaK6AvciXAEx1wUiOKQxm0A4Y7ArYgfIkAA+pQ66gMBX9cTASmEo9I6hnqist9ezkGJAR2BgN1BsddMQzlUFHV1APCI4BI4GIrpD2JhJZs8bdsWPQTmGweqa60lLPTo6hC33RADhUGKwwNRqH9wAIhcHASPJ1BfWMBAhif1cApqKNoJ6prngKUzkWN00rMFVhMPWLeuYK6pnKMfXsdMWjLBWm+rbMt2VaR3xbppYQ+52qD7b4tsy3ZVozfL9MLRFsfb8sbY9c9sv0wRBSH2m/LK3Q7w3VArXjJ8icQw4fdNqK5x43DxYO7msOijjED4rzS+Xy2R+U8aXBg6hrd6+Uezb8cIip7J3oJdPnSm9nu3Rtc/8e2Bsqxl18vUhBoWz/6df3RnY2j7rrPiZdDduk8bc/GnGe1adfJKUzD5Wt3/33EacVTaBovJmZaEyVdKx7PXpor70fs+RkqTjqBKn/8ddkb0Lj4V7guCvfJ8AzQlf9Ztnx61vt/nD+FU+aJtVnXSYFpgwIzQ/fI22rX7T7uczHJjjK/woqqqR4ygxpN3WpL0O7V7FwmVSeuFwabrtZupsbU6oKasbJuCvel3rf8uwj0vLco6n3o7FzwYwbZEr5bLl55edGI/mcpVlXOlXGFFULbf2+DjMWnS+dbTtl61tPDFnKtMPOlGMv+zd55s5/knUr7hry+aN9wjn/6xfS0dok9379omFndeI7vyrjpi+WX35h2bDSuPBTv5PdOzbIH771zmGdHz4p0/XkMp9wnqOxf+p135QJs48149P50t3VJr/+95NGIxufpreAt8BfmAUOeiAZByCAkQAI4JZ6o0XLHrBDHGAR8RhoAFBFA4NeAAiARxyAIC0ABBCLtBg0dXlDAR4UbBLPBSBIS2Eqeao3V1QX8QAowDrSYppK15p5eBAwOENacTCVtBjwBeaRFgDI5dmpMIm0iOeCqaSlnqnEQb8LRhIPSIc3lOpnGw1cH9CSPONgKmkBD8mXNABALpiK/lkGAJFWHEwlLfVMJS20u2Ak8YCk2Jd4cV66ClPJkzrhgqmkBbyl3EkLYOyCqWH9eHZS5tFAWuoBQVqAbBeMJB52BbARz1WWpA2MpJzQHwdTSYtBO8AfaQGzXTA1qt8FU0lLPVNJC5jtgpHEo16TJvFc9xL60cR9gv44mEpawGCulbSAjNg3GrAVAJS04mAqaak3F2kBs7FbNKB7+rTpqQcT4vT7tixtOd+WpW0Rvpd8W+bbMq0Zvi1TS4htW32/LLAH9cL3y9J1I2m/rLy8wvQhRt4vS+fs94ZrgfIKs/xG3SRp3tlo+mk96WRM3Y4L9P/oT8Y9OBZ3Hp/PrznawshHtvxWNrW+abwjjafRfhqqz7pUenY1yY47vr+fKhwdWV0NW6Vru/uhwKHmSBs5WmHMslMFaDwasHO0NO/rdOu/92WRfPPb7IZPjVhKhYGx+WXl0vT726WnuUnwCtSQy3w0zdHclsyYK1WnXiDdv/qegfHuh+PJH0/fnl07zYMKAx9s7m6sl23f+5Kxh3no/d0fGU2pqbQb2rdIQd7+P2R57ITlMnPMfPnmys+mtO+rnaUX/aO0794uv/u/l+4rCft3viNsroGRO7eN/gMieyufkRbWmNrpMnHO8VK/7hl59aFvSVfH4HGrkebhz/cW8Bb4y7TA/v/tvpftzg8KnYJJAQpAIBoYzFWAwmAuAMXlzRWGkQAI149a8kwCIIAZCoDI0wWASIsf0MAR9OvUmC79ClBIC10umMoAPgCUtABcLs9O8mTQjh/tAJQ4mIp+ABDxM+kHoGBb1e/y7MT+CoNJKw4GAysVRgIYXZ6dpBUedIyDqehXGBznGcm1JRm0I0+FwegHrGG7aIjCVBeMJK0wDI6DqehXzzz0x8HIJDCVPBUGo5+0KK9oUM9Ojuk0v9E4pBWGwXEwFf3qGTlSmEpa6Kd+o9/l5UpZ6jS/6Ndpfl36wzA4DqaG9WeCkUlgKmkBswsKg/VvXV7G6PdtWbq0fFuWtgX1x7dlgT18W5auF9jCt2WBPWg/fb8sbQvfL0vfJ0Ppl+1sbrF9o/r67c6H3GiLs/XL0jn7vVxY4PmnH5HOjmTT0NG3XrhwofO3W5wWphY0kx3K3KojpKevW1bvfNZG7Tb74UA8Qndvl1SYKV1rSupkW9tG+17jlRSUGag5WXZ2bJfW7vQsH/nGA6Ewr8h6IowtrpOt5ryywnIpLTDQxMRNGpiGk0B7Z57OE31vfpCkpqTUtAoqq6WgssYCPJdnVV4h12OmPzW/L5h+tbC6NojbPfDhPHts7HgLQOOmNy00x3tNGY2aJx7Xa16Nd/90wHSUeq3WDua3AdMCFtVNke7Gbfa69LhumdKS6Su76t/Wj1Jb9c7rC8HvPOMBSprYd0Awti8aZ2ZhMR593TvMEhT9DzfnmQeajZufLRvip8rH7EfLIFflM0BXljeqz6llTLUFXtFjJMl12ClPjR3slKfmt5ja0KYpecYGXeZY5npgrzkmH2t3zOz4bZrlslKH1d7Fk6abcqmXzs3r7LHwNSXNh7IvMg9E9LbtGeBxaOuJ+R4Ip0kmNm/HfWgFuP5x/5qX1h0bhc+wJXWQfaMBL2QC6ev1RfMmbvuGN+xrUF0155IH5ZMt5JeWS+G4CRnv9cxp5BmmnCdPbPvdoGgAStqt8gLT1pgpXRs7tklN8Xjp6G03U7sGMARPrSLTTnb1dZl4FVJVXGva2E3S2xd6IKU/5bi2VjPO1F5rm1/AvWpCcX6J3TIddFfv0Lzv0Vw3c6l07GmS5vo3TVEEbYZtN2yqpuxMnNqpi6SwuEy2r3vOFFH6u6WoZIw9TrlTt4pLA6/enp7OYU2/Wl49SaonHCL1a5+Wnu7B18KUouNnHCU7t74+aIrOgsLg+yV8HtPBcu+j2ZaP0Qu84lrGTVsc69HJNKBllXVGxzP9Vhi8SWt5zWgZ3CaXVowzdlso28y1DDegmdcfv/PuoC0PJZTL68mUTyhLW77jZy6x3rA7Nr40SBP2njBrmbTtbjBltDp8amqfOJMOOdEA7AZp3PzKoDRSER07lHFBYanMWXqFPbrq0VtkV/1bA+pkLusBmTDF7djJC2RXw9phT7nruBT/kbeAt8A+soAHkiHD6wB+Nm8oBhB00A6YAUBxeXOlB8DT6/SFsrO7DACGAQTw0+XNBdgEoLDNBMOAkdk8O9GvMJW00O+CqWn98Z6d6NdBO2wR582FbgtQTN7ApDgAxKAXoBQ4FwdT0a8wFf0AIJc3GjAym2cn+hWmoj8OpqIfsEn8TPqBkdgW/XGeqaof2IX+OBgcHfSKg6kMmODRiP44mIp+hcGZ9AMjqdvox7PT5ZmKfuoY+tAPDCbvaOD6KHOFkXEwFRhJvqrf5ZmKfgUo1NU4mKrT5KIfkO3yTEU/9zj1A/0uGExbEIapcZ6d1AfsRbmjn2t0eaaiXwcd42AkaYU9U/HsdHmmkhb6uT/R74LBvi0bWBt9W5a2B/XHt2WBPXxblq4Xvi0baAvfLwvswXeJ75el68ZQ+2WNTbttv6zdscYWbXGSflk6d7+XCwvQ7heZwfjRmKYVfVfP/aQdGFetNy34V7u7Ztcrcu/GH+vH8p5DPyttPS0GQHbLhLKp9nMAJtMSMhh5/rRrZU7VolT8hva35Y5135bOnnY5vOYYOX3K5WZgvdcM2OfLrq4mqSyqsfBhlQGgD2y+PXVepp2JN346BbsAYhPf+7c2euemtdJ4z//YfQDiuEveIwVVNamkmK6SaSvDoe7ajxrY0mphRVFdsMQEA8/bbvmSjQZcGnvBNalpL/mwa9sm2fGbH6aSAUZNuO7jkm+8WQmdm42OuwMdqUg52OE6A4Bq8tiycdCUrRzHczKAhAYymN8ULS8+IS3PPJTKveqU86T88KXBewO9uPZwGP/OmwZNQTvx/X8ve1a9ILseuTcVtfK4M6XiyOOhDKm0sD3wq9bYnelaNWj5AJC2ff/L9uNclY/mkXRbNm+xVJ9x0YDpUCnj2guvtUBa02l5/s8D7AYE4zra3njFTnHL2psErQvjr/yA5Jm1OM2Pqth6kCQfzX8kW7U3aRRNmJK6P5ofulvaXluROOnKE86WisXHpeID2qn3rMdZYqb5rTnnigH1onzhUqk6+Txpef4xY7uHU+dl2qky06uWm2lWt377i6lodVd/2ALZ7T/7hlQaL9uKo09KHatliuT+sP0n/y09Zl1MAnWx8viz+o+YJVsiU7amDmTYATLXvuOaVPkRtWPjW9J0720Zzhp86LJZN8nUijn2gLaNGuuCGdfLDOONCHgjACRrSybySIT8afMvhXZw9pgFwnSvOzsbUm0ybebdG34gG1oC77Zsba3ml6m9vmL2h6Wuf2pu4mub39nbId9Z9XlNIusWyHLGX/3AAJ5iG3dP8xYpr54sa1/4jTx7V/A9MmfJ5bLkgs+mpiMGNj/z23+W9S8F7fElf/eQ/f4ggYqaqcJ7QtOW1fLH777b7if9d8RZH5fSMeNsdIAoU7hqPtjt9PfcYmGkpseagQ/ccr2BqTvtRxd8/G7zjEWR3PnlMzSKXP7Zx2Xz6gfl8V98WqYdfrYcf8X/tqCsZtJhNg5rVr7wuy/J2hfvtO+LSipk+Qd/biEUHwA38/unYrYRzD+g6+k33mLBqX4GzH3glutSEPWEq74s0xZovTaguH14HnyX/8MT9prIhzzCU7bm6npIO1M+HOeaT7vhW6J247NeA53v/PKZZv3GYDaGYy/9gsxc/A4O2dDVvlv+9IO/SkG8/IJiOe8jv7L1RONg3zv+f/N9lDAce+m/2XLU6Kdd/227i4Zf/++T7X4u6gEJjZ1yuJx67TekuKzapss/oOTvv3lF6r3f8RbwFjjwLOCBZH+ZhQfwgRlx3lD8kAWgMEADDIgDEArDSL7DPOUJtIkGBRAAMWAGAMUFIxlMBwCxBcaQVtQbDf1JYSQAhbjoj4Opqp984qaZRT+DdgBJ9ANQXFNLohuAwuAL+uOm2Uwy6EUa6MfzC7AWB1PDg0Zx08yiH+1cA/qBqa5pctEPDKbsM8GwJDDSpd8FU8P646aZRQ/6gViUJfpd0+SiHzDI9WbSH4aRcdPkoh/gCqxDNzCYvKMhCYxEP3WffEkDGBynH4BCHQfmueoP10Y63JuUJfpdMBL9wGzsi35gMPGjIQmMRD8wmHJHPzDYBVO5l9BP4F7K1BaQHnoAwXEwkraANNFPWrRX4eDbsrA1TKc99GCCb8t8W6a1w7dlagkzZurbspQx+C7hO9X3yxgfTwYjXf0a+hrREO7XHCz9Mvo0PcU8Ud8PG/qNMpR+GX1rH3JngVPPCtad6jH9ttdXrZAN697IXeImpTvXfVeKjIfM8mlX2wHyn7/1NZt+e89AYMWHDKAzaP3M9gdky551cvjYY23cxbUnWhhZ37ZZnqy/TxaOPc54XC6S0yZdIvdv/rmNw7+nt98v0ysOtYP2pDGxbJocVrM0MZBs+IUZPDSDu+Muu9ECiZ1/+JVNOwzXas682MLIttdflvY3X7XrypUddpQFDO1rBnpcACKAZYCULgP6yhYcFWg19b/24hsk34CmttdektYVTxrvt3FSvmBJcLz/Px5VgCmAT8WSk6R46mwpnXu4tL+1ckC8kb7ZcccPDJAsNMDvBpPU4NldSB+oumflc2bdxjek+vQLZYzR07riCekzU1gWT51lYSTTd+768+/N/hIpmTVvsOdjFqHYkXUZmRqz5dmH7XqWFUcdn/Jc23nf7QKwqzrlfCmeOFUafnmLTbEv5KmUk/LJojN6mOtFU+fb6wMvUyJoGRu9u59+SLq2bjRg60xrN+IBl8Oh7NBFdvrT1icfsNOCAvw0ZKwHQ8xH0xzO1t4fBniNu+K90r1zhzQ/EECS8JSt2dK1ZWxgJOtY7n7qQVuvKo89w8D5q6Xh59+S9rWrpe31l8y9cLR0rH3NehNWnXSudO3YlhhGZtPA8dYXnzQQ+FVzPy2QMUtPkZ333yHdTQ321J4QTG9b9aIt17L5iy3gdN8dmXPkfgGUAyC5juIJU62nZOazBh/9o2nrygrHyFlTrpRq4/0YDcDIu9Z/X86Zdo1tSwGNZ025So4ad4oFkhq/qqjWeFneZ9radjl50oVy/vTr5dsWFPZJ0raWtOLa63s23Gq8IkvNQyKXyaSymXLbW/9lsx6qd+RJV/+ngZFFdt3GnQYgLl7+Cb0Eu8VLcOmF/2g8Clvl1Qe/aX7/d8visz8ux1zyL7L1zcetV+Ufv3udadILLSxkDcnHf/E39ty2XfUD0krypqRirLz59G3S3tooh592kyy7+J9k46v3W/C18PQPWRjZ0rhRXnnwG3LIMe8y7482a09+UR796UeSJJ+KUz1xnqz+861W/+KzPyGLz/lUCkguvfD/szCyYeOL8tYzt8uR5/x1CpJqAidf8zULI99+7SF589nbZe7SK2XqYWfIMQbIPfnLv5epC860MLK9ZYes+MNXjdZ3mvUjjxySJ6Dm9eCt75PCojI55bpv6EeDtiO9HhLMlg/XDIzcufU1M0XqzfZajjr3b6xHLecfdtJfWRi5e8c6efmBr9vrnXf8dXLqdTfL3f95LlHkqHM/bWEkZfz6Uz+VynEz5ZBl77LHkv574b7/kNee+JEcetw1wrqlT//6H2V344ZheeNmspsF4Dd8x3rSbnnjUVn5yHelxtSbOaasffAW8BY4sC3ggWR/+QG4gGaZYCSDLgADwBkwAIDi8oZi0EU9wzINgKs3FDAjDkAwaAFAYQuMAQC5AEQSGKn6iYt+AIrLszOsP9OgkXoQoD8OpgID0E/e5AUAcsFUhZHAGKCmawCGNABOlBWDXegf7qAXA7AKU9EfB1PRDwAiPvpdMImBJoWR6Acqu6aZRb/CVHQDs136FeZRztjf5RmJnjCMRL8LpqKfes0ga5x+jqEfbegHhLn0UweJgz7VTz2KBsoHgIt+BuNcnpHoVxhJGuh3wUj0kxY2Rn9SGOny7EQ/MJX6jX7sStlHQ1h/3DSz6FcYiX5gsAtGkhf6CZlgJDCV9NATB1O1LcAm6KctoLyiIWlbhv19W4ZzQNpL3bdlvi0L30/htsC3ZftvW+b7ZUGt9W1Z+u7dX/pleOGVFBtvn1AYar/MtTxDKDm/m9ACHcZLdd1bq80akjukumacTJ0+WxYcsdT0zdqkfuumhKlkj7a7K/AO6ertsFMD4rmTKfxq7c2yw6yRRlCvnUVjAw+FX68zazGZKf/4/IMLvmCngQ0DyVebnrLH8SJ6xey3djVbr6GCPDOdv2NawqiO7uYAdveZ/jogsbtpezSKFE+ZJb3Ge6r5wd/aY933Npi14z4q5YuOkSiQJMKOO39op7dkv2PTGjbGE26e5JeWWbDY/NBd9jPycp3faCAG0K+nrUXwlsNDMNdAMnWd9oG+gQ8LWHHmH15sux69z77ds/J5YR1HPPO6tm22oIYDTff/0l4r3l8TP/CZlLeWPSnBP8AQoeFXt9hrZr/5wcA+7Pe07jIkySDTznbejlr52MQT/sPTDy+6jvVvSNN9v0idVTprfn8ZrzIQ9zX7+a7H75dxl94oFUccMwhI4tm1/bZvps6PlnFcPRhqPqkMhrGjwM4MXEifaSdS9WYIadkyNudTl/AY7tjwpgXarAkKeO1t32MBfPHkmVJz7pW2HhCv6S4znXAOQ6+pQ/bVOs2mypqxruuxcYx3MNPUEtx3hz0U+4+pjCnfTvNwAfdyO/Whv07EnuQ4QFvKa4/xJK/JqxsUo6OnTda3vCb17ZvMwxgzZN3u1Xa/rjR4CFhPWN+yWp5reNC+HW88GReaBz+mmTZzU+tbkrSt1bRc7XWLaXfNnWvWCQ7u02xtvqYV3jLdaFnlBGkxMAdPRELF2KkG9KS9Go9c/tf285WPfEcaNq2w+289+0uZf+J7DJi5XFY9+r3UtJx9pv3H25ApOIcbmt5eKQAnQs3EQ40n3HKZvnC59ZKcdVTwYM8fv3utnXJ146t/kCs+96SdHnSo+THt7MsP/Lc9DQ/QynEzUklMPvRkW5ce/MF77Wd4YZ753ltTx5luFLjY2dYsK810oYTVf/6BWc/wWOFcwrzjrrPbJ27/WwFsbnjld3LlPz5jH6KwB4bwL2VPpt6OCSO5Hk0yUz540HLNeDze/51r9BTZ8sZjqf35J95g9vuMZ+0XjJdoh+wx5VM3Y4md6pd61ra7Xkoqam38tw3ga23abF+A7aGE9hYzFm5ebWa9UkKTmRZ21/bge38o6RA3k91mHXWxgZHldsrex34WgHpstOb5O4aajY/vLeAtsJ9ZwANJUyAMygOdAGVxnpHAJAbwATeZAASwBgDEYAiAAgAXDQwaKYzs6Y73hmLQQgEKMAaAEgUQ5DMUGIl+YAYAxQVTw/oZgAV6RAMwRj0IGMAH/rg8O9EPjGRLXuh3wVSFkRzD/miLBmCMDjqiHxiMTaIB/QqA0B8H88IwEvjm8uwEJgt21AIAAEAASURBVGF/8kY/tnDBVIWR6McOLphKGsBUygr9cTBVB8DJJxuM5BqwfxxMRb/CYPTHweCkMFJhMHZPoj/TAL7CVIWRLpiKfoXB7W1G/1b3vRT1jIyDkQpTVT95RwPlw/2L/eNgJG0B+slX2wKuNRqoi+jnfs/UFkT1uzw7uYfQj03QD+Sl7KNhKG1ZWL8Lpobbgkz6fVsWlAJtsW/L0jXSt2VpW/i2LG2L0WjLfL8s8HL1/bJ0W/yX1C9L3z1+byQW2L7tbeFF2Pr2Rnl70zo58bTzZOaceRZI0udZtCg9RSrx6GfzO2DZsmW8TQV+W7iWnkhFSLgDbFQYGT6FNSXbulsHrD/WYKDl5PKZ5vdlfioq53ebF6Grp8OulcY+Hpo9PYP7pRwbSsgvq7CDtp3Gu0sD6z4CTArM2n3RYKHmjsGeOIXjzfqIJjBNZ6YAnAFgEFizj5Bn+r/7InQaDz8NqiW//+GCwqqxdipM/Zx4PU07LLDUc5JsC4wXmbVn/zUnOSccJ1flE04z276dXtZECtuHcwr7p5bFA49XOBSY9USjAQ/auJCpHgw1n7g89tbnlDHeo+OueN+gLFl/FO9RgGfjXT+Wums+InnmnmNt096OtkHxD5QPWl960nrQMiU09bv9rVel5bnHgnVDc3gRuhYk0173mBehy6zJy/qS4QB41LDZ7AMkWbOXz7O1teG1G+Paa017JNuxU4J7pmFjABpJC0+wMJAcUxtA4iOXf2pQVqzzmOuwff1zqSS3rXnKAknNhylDuzvNd5RZ/1FDi4FaVeNn2++osN30eNx2yxuPpA61Nm2ynnr6AWtL7gl5d+7Y9JI5lPbbHTf1CBuVaTzPfv9P9LT+bRCvrGqCPQcYqWHPrm1mOtxJ+jan25FcTxIhY6cstNG2b3ghNnpRaaU5lidn3Pi9QXFYR3Pz6npZ/dj3rScp06BSljs2vSLP3fNvFkwOOmkvfJDJbrX917z+pbv3ghKfhbeAt8DetMDAb+y9mfN+kld4AB+YBOiKBoWRDOADk+K8uRiABQABIOJgXhhGAhSAD66pGRnABACxBSYBgOIABHkqDIuDeQpTFUa6AAT6FaBk00966Inz7EQ3AEVhJAAlClOxc3gAHzvEwTz15lL92CQaVD9gAJiUFEa6YCr6GYRAP7ZCvwumhge9MukHpgK7gEmUEdtoULDM5+iP8ywEhjFIAgyLg6kMrGB/QCj6sYULplKniZfJMxIbhPVzj1AO0RCGeQBe6mw0cC+hPaW/scnp2Yl+7E/8bPq5T9DPveSCkehPAlOT6o/C1DgYyX0JvOe4qy7SFoRhJNrjYCT6sYm2BS6Y6tuydG3TtiBJW+zbMsZK0p6RtHO+LUs/mODbslLbr/Ftmdj+mO+XBe0sfQvfLwtswb0xmv2y9Deb38ulBXabaTK7TT+6vMIAAxPoI0f7VvQt+U6Mfh79PTBcXbs646fj5Xs5W0Azf0FgG+wnOTdb2uHjYQga/jy6z5p4GUOWa+pzPGhnFksblKReX/R3zaCII/igrzv90GLaxkGC0ff200hxoS38EWsnRoMznWikBO9zVT5qV7KMs+2eV5+VkmlzhWlHOzeusVNyBhKDugdMY/3NAcExmwtTecaFzPVgaPnE5aGfJ7lmjTvcbXdjvfEc/tGg0xW+c6B4ykwLLtnHC5Q1RIcUTH2LhjzzPd3n+L0ejZfr93gU4zUMvGbKZdauLJl9mJ2iNpd5pe+f0LW77BC6E3XNSd2iJ1wHMunL1F5nOi/Jsd7+9obpQDUUhPb1M0DfXV85W9+mtsNdEzGVgGvH0V4PBI3hFm5wAtE2BIjpCkxBq2Fg+vHtUDT+hpfvlRd//3/0Y7vF8z8IQf2gndT0k5b5gAQTvhnJ9STLQq8ns/1ZgxQP1mjQNT6btqySO//jdFl0xodlipniduKc4+T8j95p137EuzZXISf1INW3GdwfyJVOn463gLfAvrHAQQ8kgQY0lLmAkQAUBibiYJILRroABDAMAASAAMYAgKI/hqkuwLCw/jgYyUAJcRWmkmY0AGMAU2iMg3kcAyQlGcDXQTvV74KpwBhslm0AnPzQD8QDWMbpJy00MoAcB/PQjz3QA8xzwUjsjn6FkYA1F0xVmId+yjFumlP17FQY6YKpwCT000HKpD886AXAIm40oF9hMDAM/dHBE/IJ6wdAuPRjA+xP/UB/nGeqgmW0JB7AxzO1dbB+YBL2Z8AT/XEwGG8Q4mWDkdifNLE794gLpqp+fsdkaguwP/mSBvbiXokG8sL+wFSOY/9oZyzcFqA/DkZqW6D6M7UF1B/flomtq74tC2qlb8vSd6dvy9K2oG3ybVlgj3BbTL+A73LfL/P9MmrH/tovS9/Jfm8kFigrrzBrQRWZPmuzTYY+7ooVae8UPpw2bZp9ECH6+UjyTXJuS3ezXa+s2Hg6ssYkoc5MNdhtvH90QDVJOonjmEFuplmMBruWpOkYh9f3KzDegXlmjbKhrKPX1RDMtsO6gR3rXo9mM6T373/352TShMBT6Cvf+rS0tQ/uhw8pwWFE7jFT3RaNm2ink9VrKzDTAIcDQNN6UvZ/WMoak5HQa34DFVRWW9tn8ojDI9X8wDVstsBOX6jJ5Kp8NL3PfPTrZhyj0PzGaZf/+OYn9eMB25bn/2zWI3zCevONvfBa2f6T/7aebwohscuQYdqAHDK/GWo+2Kigwg1CasdOlA+/519shhs2vyk/un0g0MisZODRuHx6zHTHBZU1dkpkc/MOPKn/HR6k1addaKdQ7W7cbqZDXmaBHtO7Jg14JxOY4pg6ydqjTAnbEwGSti6ZeKzxOJLQ12GAhbmewki91zTxjNz12O/tq/bi66V48gy7Nqrq1Hh7Yzu1Yq68uONRmxXTWxOaOgIP7Fy2tT193ZJvoFfSKbOtkP5/wCFC7bTA44/9KfNOYZMKrAeIl2RpZZ00b3sj9blzx7TphSXGw30EgSk+NUyce4Ld1Xw7zBSp5VUTBcjY2b7LHhszdppZXzL9HdVr1rotHZNuF2ceeaEml3jb09VmprJNT9c7fsZR5tw0iGvc/LJNq8p4iCpoiya+Z+cWu1Yi05w29HsVMm3pvgjZrieJpsbNK220upnp8ome19m2y9qebaY+Ax6uTMvLC8/beSdcL7OPukTefObn0SSH/T4X9aDReG+yNujMxe9IrS86bEH+RG8Bb4H9ygL+MQNTHMAYBvqjgUE7YAzgRgGEyxtKYR4wUmGMC0AAw4AjQxn0AqC4YCSaFEaiPxOMJK7CvCT6XTAvKYzUAXBACnnFARQ05QpG6qARGoFJmfQzCIs9k8BI9AOTXDAVKAX0SAojgWHA1DgYSVpAwjj90SfwAVgumBqFedjfBVNVv8K8TDAS+yrMox5FwxjzdDllSUATNosG9FP/eem95IKpYf0K81wwdbgw0qm/H+wH+uPbguEO4Mfp17YgG4zknlKw74Kp6qWLft+WBQ9WaFucqS3I9mCFb8vSdzEPB+iDFb4t822Z1gy+s2iLfVsWWMT3y7RmpGGe75cZb5fIQ1Yj6ZelLez3hmqBo5adJDNmz5OxtXVme6gsO/4Mm8TG9W8NNalRj/9y4xM2jytmf1jmVC6Ui2a+Vwrzi+TNXUxXl/vQY7xFC6rMw6tmTcPiqbOkMDTFJutAAi9qzr5cSucskNp3vNsK2PPS04mFACEBNqXGS6rm7MukqG6ylB6yMJVW4oRMRPO1M6LANKdFE6faF5Av3/xeDb9Pkviel4NrrznnypRNgIXhgFcc6VeddI4AYitPXB4+bPdbnn3Ebsdd9QEpX3C0tUv1mZeYNA8bEFfXMuQYaw8WTZiaOp6L8kkllnCnp2WXND98j10zsmb55fYsW8Zmyt3K486UqlMvsGCsZMYhMvb8d0nZvMUJU84ebaj5sE5pfkWlVBn7Y1eAugbgUa5CXD6UMd6x46+6ydjhCAuyK44+0ayt+R6bNfVmnAF2QINGs27kzj/dadcvZT3JoUDDrvrAK7XqlPOkxMBvvU+j16fTDFeecLatu9YzMxSJe5P7Qe1UWDcpeG+gajiwRmSXqeMls+cHnpDGtuoFPPbcq6R84TLbjlAHgKSAyLDXcTgt1z7t3SSzLiSv0gLAWl7ofbnrlNjPZlUeJsdNOEeOHn+qzK9Zah/y2NQarHOXy7ZW145cPvVqmTlmvl3XMlZU5ABgqLn+TQv5lt/0P3LspV+QWQYMhcOK+//TvO2zaygefd7f2fUAAUgXfPxuu95kOG7b7gYprRgnSy74rExbcJbUTBrYpoTjxu0zteeyiz4vi8/+hEydf7qFjawVSVj3wm/sdvkHfyazj75UznrfjyS/oMis8Zf+XgCg4pV4/JVfslPPLjrjQ/acofzbtOpPNo2z3v9jmbvsKjnxnV8dcHqPgZ5MLVszcZ7VwLWyduQJV33ZxP2KjfvaEz+y2xPNZ0Ctsz/wP/bhjgEJJXjDFK+TDJjlhed+kQG++j6/YLAHvCvJbNfDOdny6e0JrrmwuELO/fCvZMai82wZ491YVBI8aMA6mmi64BP3yLzjrxVA7lHn/o2Nr7qOueRf5JiL/1nqZi4VgPPUw860h3b0Q16NN9JtLuoBU7XieVo3a6mcdv23ZcLsY+TQY6+xZTlSff58bwFvgX1rgYPeQzIO5rlgpMsbChip3lwAFsCgC0CoZ556Q5FvNIS9oQAQcd5cCmM4nyf546Y5BaAwQKYAyAUjgU0MJnK9wCTydMFU0uIagHMAFJd+BvAZ5GdLXuhywVTVTz7/j733gLOjuPL9z+QcpVHOIgkJkUTO0QYTTDAGYzAGbHadvfv27fp5d/9vvcFv12/Xz/YutjHR2YCxiYbFmGiDyQiDBEgohxnNaBQmJ/3rW1fndk9Pdd+eICGhqvncuX1vV5/69anqunXre081duL0YytXZCT68T8AAv0usMyEGPp5qH4XzEM3vlCYii9cMBI/kA/9SZGR6EcfEAzg54rs5Pywhf64tsg+9b/C1DiYp/ppq7n0K0ylPqNJo4kURsbBVPTjf3yMfpf/o/opL0k/Zat+F0zF//g2l358wfWZBFO5PtDPxDp1ic+iKW00EWVRJvAmV1+AfoXBcdE45AHQ0m7wvwtGptWPrXBf4Psy35fRzn1fFlztvi8LfOH7ssAXflwW+EKXafXjssw9O9OMywoLzY85zOcv7UjHNUnjyqRxTVATfmskHig10ULzFgQRBYzh31m6WNavWTESc2N0jDti6vXNz8mU8tmyf82hcu6Mq21ZjZ1r5KkN99pt11KF9r2d5qLf43KJ3fbUQwJcq1x0ss0K5Gp98Gd2e+vj9wsRTuF7A3b86UXpWvnWULPu07H5Wu69Q+rPucIu4cgyjiR7/zy7lVmaL8/USa6UIkuiCaLPKo84MZunsH6CgUPX2NebzbKa2XsjDji07Cy8Z+NaaV/8R6lYeIxYIGfeB9LZ+wXutNz2wpMWMJYvOMq+0/XuEguAdu62T51vL7YRkoBgIJ5NZtWdziWD7w1GRCLgCKBGPQB3Gm/9hs0+VvWTKTzpf7Zx2UxoR0vJzP0tcOX+oC2/vt3WMXCVB4mIvI43XrLbg/5ll1Mc9K79bp2rHQynHOqJCETqofyQo4UIz7YXnrCFBtfRYA3uV472EMoYV064jmtOuyB7BG2IBGQGPLY+cpeF9ry3+f4fy/jLbpD68z+eeplTrsfuVe+IhcAGCBKhaCNoMRhKLJXbufRVC4kVJm/6yXds+yWbvRbMd3pNtWdcZDf7WjdJ85036dv2eZuB0tUnflCqjj3Dvm6551a7XC/+rg5FBBMlSh9jKnfQ8Ukv6oonyKVzPjsoi77WaMfB9Rdvm2jIoxoyGvt39MuDq283djP5c/W1gwTsPGbwe8Grl5ufkGkmGnNuzSGyX81CCz5vWvL3QYYcW0/+8NMGqv3IwsMaA9g2rXzRgJejLQjk0O3NK+X5X/+9gYR/J/sdfbl98D73/+vvHfyD8Rfv/wcL5YB4PIjAdC3fyfHRpBF13LsR2EgCQP/xnv9lqnDAvn7zqR8YyHWEBUNAS9L2llUmz1ftNv9YQvXkhrky/eCz7IPzaZi1KLsfm6RgadXsruzGyw99XcZNWyjcQ5BHX0+Hmf/py+og4+9//iU5ydwHkXyAyEzaYSLp7rObG955RlaZJV1nHnKuHPGh/2Xe2yE9JsIzc5/FndlTPM076XqZc0TmBxhkL6+ZbMtl+5mffTEbvT7a88lVDvcWzZzzjeacD5FjLv4XJJg20GV9w/bbz/5IiFidu+hSOfTsv+Qtm7Ztelc3zQoRZea+oGca8J3pl4C7y1+8S1rXZyIwsxmHsaHtI3zIWLQD7D5++7Vy8pU32jYHkCRpxG64PL/tPeA9sHd5IG/69Onxn+B717mMmdq0MDIM8wAQQIMoQAF0MGmhAAIw5YJ54UkvYB75XNFcCvM4WcCOK7IN/YARnTQiTy4YmQRQ0B6GeS79CvPCMNIFUHQCPEl/2kkvzo/zVBiJ/6MwGFCGfsplEghfuGAk4Id86GfSCFsumIodABZf9rHlgnnRaCLy5YKRSTBY9Q8HRsbppx7xGX5Cu0t/WhgJ4MKWwkjKjE6CUDfop92m0a8wEluuSbuwfvzqgnnYQBeT6vidfK7I1Kh+F4wM61ewHwfzKJO61/bj0o8veOgPE1z66QvIo/rxRVxfQJkKU8kXTb4vCzyCn/Cr78syPvF9WdA2on2B78t8X0br8OOy4Brx47LAF+FxZa5xTWdXn8ycMdWMQTI/LHKNK8PjGte4jDEMn+WMR3imfB58pvEYSZo5c6Y9bNWqVcM6nDEeD8aQPBjnMJ7hmc/XPT0Vl5Sa67rUaO6Tzo72IWPWqH6WbJ0/f7488sgj0V3O1wuOHRxF5Mw0jDeJEhpXMlm29jRLV3/HMI4c+6xEFrK8KBFWuuzjSErJLy41gMiMgw2kGOgYetuGkdh8r44hIowlK+39EGMAGz7bYX6YOmCWQU1KdulLc43baMgYW0nHj1X9JJWRdp+t41rzXdNExQLGdlXaXeWMlX7qOM/8SKXPLPm7q5YuxSd55nvkrvR7Gn/kl5ZZEMzyxgPm8++9SESX84OO+1bdKk3mBx1VRbXS3L3R9PsZqBbWtEf1tSaybYeBbged8ElZcPpn5dWHvyHvPJ/5gYhqZulWIum2N6+Szu1N+vaYP5eUmzmchjl2qVOX34gSrDcgcOvGt6WrfeiPuhFUNX6W9HRsNUuqto5YX0XtFCmpqJfN6/4Ua6OgyARGTJ5nAe4Wo4dIwnAierBuyjxpXvWKGb+YZbDfw5TmfNLI03MG1G7ZOPRHQkSo1k46UAqLy+1+InHDiffZbyN0cy0DHD5wBNtj0Q4oljZZM3E/aW9dJ+1b1o9AiT/Ee8B7YFd7YPnSVpm1X60UFOb+nuqBZKQ2+MLPJL9GEzExGQfz+PIN/AAmMWHgAhDYYrKBL+7YcsG8tJNeTCBTJhMRlMcjmsIwEoCSpF8BCpqwFYWp2Aa+US77sOWCecOFkUygYMsFw8L6gTDki4N5+IJJMvSTDx+HE+Vwjrn0R2EkvnDBVOqRMpP0h2FkLv1o43yBUpQZ1U89kweYR9viHJMiC2lH7MeWa9IL7TyYTMKWC4YNB0ZiS/VjLwojw/qTJu0Ab9gaK/34TGEevnDBSHxKmVzvtEPyRfWH+wL0c45JMHKs+wKNjIyDkaof7TyiKaw/V1+ArbHWn/TDCt+XBbXFDyvwv+/LxEYEc/2OVV+AX3NFefNZTz7fl2Xuv4r/x7ov8H1Z8COxXH0x/te+gH7dj8syPxLDF3vjuKyxqUVqayrteGuk4zLOnf6Jz3SeGVvxYCzKYyRpXwWSw/UV3w8YLzY2NqY6dKyBZKpCfSbrgZpTPmSjL5PcQeSZ3oMwKZ/f5z2wp3jAt+uR10QYSK5uGwprRm551xxJNOKUA06RlYvvl+rxsw2QvEYKTBTbff/3DBvRN9pSuW/iOZ/PRA3G2dra+LY8dsvVcbvfl+9/6Eu/sZAr7uS4L+av/3Xw/Tzj8r5f3j/ho9+0y7gmnc8zP/28NK18ISmL3+c94D2wj3pgOEByn1+yNdxG+LIPgGOCWAHEaGCkwjxAE9FXLpg3EhgJGHHBPAUQ6E+a9OKef3X1wQR4rkkv1e+CYWlhJDCPRxLMY6IFn+kyp5xnLhgJVMMXUZhHvWKLiQQm9PB/nH4mozUyMmnSS/VjywXz0sLI6AQ4ZUb14ycmJq3+vgwMdulnsiTtBD76Seh3gXHVD8xLuk9cWD++5xGFeUyW4X/yKkyNg3n4PxeA4ByBWEn6mUQnn+rHr7lgJHni9GML/doXxOknX9oJfPyUpi9ImsDHD9Ql17vqt44J/fN9WcgZZjPaF7uuJd+XBT7TviBXXxzuC+J+WOH7ssCvbPm+LPCH78sCX/hxWeAL+uL3y7iMsThjDNcPFjnHNOOywDN+a3d7gLGY63vI7tbhy8vtgZ7GdeYediWJGQfMPQ598h7Ymzzg2/XIa2tAMkuCjtzC7j2SaLbJB5wkUw48xRbMEpzP/+pvxwRGYhB7LWtfSzypLRuWJu5/P+7kHpRlVQ2xpzZgljLd1xLtpLCkPPG04yJiEw/yO70HvAe8ByIe8BGSOx0CQBk/fryFYUwcAA1ywUigTtxEA7aYrCVt2rTJCcMURjL5whde4IIrGooJCybugAxAOiZ+owCIfZQJjAGgoN/1JZpJr9q6WgtQ0uinHO4LONoJfNWvMCyqX2FkTv2haCKFka4IgoaGBguWKQf/u2BSGECwH/+7foHPpBFgEB/jCxfMQz/+BxBig/N0wTDaBPXJhD9th3NI0g+opEyXfgsj60w0UWlyZCQT4OinjcfpRw/QBpsa2enSjx3qUvVzDi6Yiv+BGQqDXfqp67QwUvVTly6wrzAyjX78T31R3/g/l3585uoLwvqToqQVjANmkvSTjzapMNjVF+B7HuiP6wt8X7azU9/5pH2x78vEXm++L8s0DN+XBdeJ78sCX/hxWeALPy4LfMGWjiuHMy5bsXKtlJcVDYlkHM64bMmSJT5CcnBV7LGvfITkHls1Xpj3gPeA98Be4QGWpCQqL7q85l4h3ov0HvAe8B7wHtjnPeAjJIfZBAAFClCAeQAIF8wDsABQgB9pYB4ympqanDAJGwoggB3ABRcMC8PIOJgHgEB/Lphn9e+MjATE8HD9ahtbgLMkmBeetBut/jBMxQf43wXDwksboh0YFgfz0M+kURKMxP+cRy4YCQBSmOeCYQoj8T8QabQwcsKECRamcm7od8EwCyMNaEQ/sBi4RtuNpvCkVxwMU/3DhXlcA1GYR/k6aYf+OJin+rkOkvSHYR7XkguMh2Eq7Qb/u2AeACINjMT/XCtcG3H6qWt8i/60MDJOPzaAZvrDBPoCl37aIfr1hwn4Pwr2fV82+ArwfVngDz67fF+W8Ue0L/B9me/LaBl+XBb0F35cFviCrZGOywYGiNAoGmRsuOOyQQf7F94D3gPeA94D3gPeA+9bD4zmXovvW6f4E/Me8B7wHvAeeF96wC/Zaqp14sSJFuYpgHDBSI0gUACRKzISMMA9R1yRYS4AkQZGAj5cAIKJEvShH+jkgnkAFiZBgDdMvibBSMAfCf0uGAYEA6DwPFoYCehDP4BKYbBLf1oYqZNG+AkAFKdfYaTqd8E81wR+1P9M2gE90D8WkZFh/XEwUiM7wzDVpT866eWCecBI1Q8EA8C5YJhGdpIf+EkbcsFgriXaGqAS/7uuJXyF/7kOcsFIyuVaioN5qh+foHs0MJI2r32BwmCX/rGEkVyPCiNp94kwsmYwjHTBYNXv+7IAjPu+LBMZGYWRvi/zfZnvy+gdMsmPy9QTYn+A5cdlgT/e63FZoMRveQ94D3gPeA94D3gPeA94D3gPeA94D3gPeA/s/R7Y54Hk5MmTLUwCQAA9XDCMSTsACvAgKRpKlwYEoGzcuNEJw7ABAAImURYAJS2MdAGISZMmWf0ACACiCyZFYWQcTEUX4A/9GzZscMIknbRDP7AG/S4YFo7sBHIBnqIT4JQDQAFQoR//u/QPB0ZyriT874JJ6OY8OQ9gZJx+YCRRNABTwKBLP/vQDwzDB+RL0g88w/fA4CSYl6Sfsmhn6Ad2A7Bc/nfByKj/galMtGFTI1Nd+oGC+EP1x8FI2iLXCuXgf9e1RFlhGIl+6j6ayEO5+Jh24QL7Yf3oxv+uaykaDYX/464l9LOPa8mln7aKb/G/wlSXfupIr6W4HybgT/yvfQHXiUu/KzLSpd/3ZUEr8n1Z4AvflwW+8H1Z4AvflwW+8OOywBd+XBb4gi3GeLnGlbt6XDZYkX/lPeA94D3gPeA94D3gPeA94D3gPeA94D3gPbB3e2CfB5JMJDC5D0BxwRiN5gIeJMFIJsCZtEiCkdhgcoPJL2AHAMUFkwAQQBSAC8CMcl0AYsqUKRZmALfiYKRGQFA2IInoNhcMC+uPg5HoBqDwDOwDoLj0u2CkSz8ABRjT39dv/e+CMfhUYVjSMq3o4lzx//r1650wCYjEear+XDAS/8fBSMpBPzYVBrv0A6UAWNhCfxKMpK2R4vTjK0AX+hWmumAY5SnMi9MP6AMgop86BPq59Ecn8OP0KxhX/a5rSSft0K8w1aUfGInfwjDSBVNVP7pHCyOpS/RRDu3fpZ/6wf9cS8DIOJiqMBL9XJeuKF3aA30B/leY6rqW6AfoD8hPeVzDrmtJ+wLfl2UiI7Uv9n1ZcP/buL7A92W2283+831Z1hW2v9O+2PdlflymLcOPy9QTYsewu3tcFpTut7wHvAe8B7wHvAe8B7wHvAe8B7wHvAe8B7wH9j4P7PNAkioDALlgDAACgKUwEiDggnkKIBRGuiLzAApAD2AMAAIA5IIx4WioJBg5depUOxECgGDS3aUfQKcARWGqSz/nqNFccRP4+ICJWvQrTHXpTwsjp02bZmEMetZvWO8Em0x6AacUpsbdMxIYqQAiDuahW2Ew9cPkvEs/8JM6ACbFTeDTZvC/wkh85oJJVn/9OCkozMDIOP3oUpi6bt06JwyjLIXBAC5gsEt/mshI2ikAS2EkMN6lPwxT0c7DBcN0Ah+7a9eudbZFjUxVGEnbdul3RUZGYSR1ozAY3UyUu/QrTOXaA8QDU136FUYm6QdWal8AjES/61rSviAMI5P0c93SF7j0AyNpj2lgpMJU35f5voz+ieT7sowf+O/7ssAXvi8LfOHHZYEv2PLjssAfYzkuoy/m8zxpXJl2XBYo9FveA94D3gPeA94D3gPeA94D3gPeA94D3gPeA3unB/Z5IAlAccEAnbRjwkqjoZIABJMJukyoC0AAsLAFgACguGCMwkgmLYCfcZGRCsMoB/0uWxrNRZnYAaC4YAyQRWFeHIzEBgCLZ2Aq+l2+CMNIhalRX3CZMOkFmGIfAM6lX2EqviAqDH+49KeJjARoAp3QD0wFALn0hyeN4paZRf/06dMtJEUPAMilH58Cp9APCAOIufQz6UVd0X7iYCS+AvqhX2FqLv1JMBX/4xNsUOcu/UzgAwfRnwtGcq0kwTzAJ+eJfoWpLv3hyE7qiChKV/uh/aMf3XH6gZHYQ39aGLlmzRpnXwBMpZ2hH01xMDIc2anRRFH9+En10+/QZ7j8rzAS/WkiI2mXvi/zfRntgOT7sowf+O/7ssAXvi8LfEHf6sdlgT/8uCzwxViOy0pLy8yKFckwkpLTjMsChX7Le8B7wHvAe8B7wHvAe8B7wHvAe8B7wHvAe2Dv9cA+DyRdMJJJOwUoAAjglAsmAZwAH0kwkn0ALGAGZQFQXDAmCiCAWFGYQTNjAg19pFWrVjltAYjQz4SbRnO59KeJjMQGEyXoB6YCUFz6wzAVYANEdOnHFoAqST+ADgBE2cDUJBipMDUuMhLdOukITEW/yxcKUymT+qZcl37qUmEqAMvlC2AqvsWWLpPrKpM6yhUZCXhTGAxMBXS5bAEgOAfaWxKMnDFjRhamArBc+qMwdTSRkfhKYTAwFdDo0g88pA2hPwlGzpw507ZFdANwXfpdAMJVl+HIyDgYSVtVGAxMxbcu/cBIrmH0x8FI2jz+p00CIWmzLv0umOrSr8u0Uubq1audYNP3Zbarsf98Xxb4gi3flwX+SBPl7fuywF9s+b4s8IcflwW+YOzmx2UZfzAu27a9044FRzsuCzzst/Y2DxTlF0t5YZV09XdId3/n3iZ/t+nNL6+0ZQ10tO2+MovNrRr46+kedZl5xSWSX1Iq/du3jtrWnmggr6hY8ssqzPltEfMFeU+UOEhTYV2D5JnvW6SB7s4xqZd88wOTPNNmBtrNHEF/n7W9K8qxht/rf2YOI7+kTAa6OgbVd15+gRTWN2TV9beZ1Ye6dm2/Rh9amG9uF9TXni33/bhRWjleKuunZ0+tdf0b5rZGPdnXu3KjumGOdLW1SE/n2PVfFbVTjOQ8ad+ybldKl6KSSimvmSTbNr1ruqaBMSsL/djr2LpxzGy6DO2uclxl+/e8B7wHvAfeaw/s80AyWgEACEAFk9cACOCICwZEYSR5XQmAgi0ABADFBTMAEAANwALwbTQwEgDB5CplAlOZBHHpTwMj0cOkI7aAqQAUl35ADECJ/Glh5MqVK522ojAVOOjSn2bSC91MuvMMTAUGu/QDwpg4Qn8aGEk9A4NdtoCpgEZsaWSqS38aGAm4AuCiH5iKfpctQORwYCQ2AFgu/QBSfIt+jUx1lZlmAh+YykQt+oGpwGCXreHCSHQDEF36mQilbaNfI1NdZWZgJJGpYm25fpgAgAD6oR+YCmh02UoLI2fNmmVtASGBwS79wFT6FvRrZKqrTHRxrZDiYKTvy6x77D/86fuywB8KI3nH92WTslHqXJd8VkST78sGe8T3ZYE/0sBIPy4L/MXn6b40LtvelrnfekeHe8UHPpfoX/icjxuXBd7zW6P1QJ5pf/sdsEDGTzD3UDfwqN38+PDN11+QjnY3BGNMzHcExt/DTcX5pXLx7BtkfCmTsiIrtr8pD66+Y7hmdkv+kulzZaCnS3obd+3EcdLJjLvgKjH3uJBNP/lOUrYx3dfw8c9Lb3OjbL7vh6O2W3Pq+VI6c3/Z+IOvj9pW1EDRePO9vrJaule+Hd21215XHnGiVBx2nDT96FuyO6HxSE9w3KXXCfCM1Nu0Tlp+dbvdHsm/4knTpOaMi6TA1AFp65MPSufSV+32WJZjDe7ifwUV1VI8ZYZ0mba0o3foeFeLr5i/SKqOP0uaf/5d6du6Wd+WgtpxMu6S67Kv2158Stpeejr7eldsnDvjaplSPlu+++ZXd4X5MbPZUDpVKotqbF8/EqMHn3y9zF10WfbQ3916jbSsXZx9vas2Sspr5QN/freseOXX8uL9XxuzYk6/9nbJLyiSe79x2pjZdBk67IP/Q2YdeoE89O3zxxR+nv1nd0p3e6s89J3zXcUOeQ+oe+hZX5a6KfOlsLhceru2ybsv/VLeePL7Q/KG3xhuOeFj/bb3gPeA98De7gEPJEM1CIBgconJawAEAMWVFECwT6OhXPlmz55tbQEgmGhwJQAEAIXE0pJACFdKM+kFgABUoB9AijZXUpjKPr5kc66uxKQjtoCpACBXAkZij6Qw1ZUvHBkZByOZtAMUUSYwFRjsSgpT2RcXGYkNYDDPwCYmml2JiQbqk6Qw1ZUvPIG/YsUKJ5gCEE2ahH6xMBIY7EoKU9kXt0wrk3ZMVKGfCXLyuRIgEqBHUpjqyqeTXuzD/y7IlYGpk6x+YCT2XElhKvviJvCBqfgM/cBU6smVNLKTfRpB4MqnkZHoBqC49IdhKjCS+nQlhansi4uMZIKQNot+YGrcZJTCVGxpZCfb0TTLXEvUKRAS/a4ETKVtkOgHuJ5cSSM72RcHI31fNthz+J+69H1ZEBmJh3xflolSxxe+L8tEqeML35f5cRntgOTHZRk/8H8k4zLG4r09efbzJ7CU2Uo7LuO7gU9j44FjTzxLqmvqZHNLk2wzUQ914xqkqro2Fkgyxps/f37sGDBJ1YG1h1sY+dSG+2Rt+zITHen+4WqSjd21r+aMD0v/tlZpuefW3VXkHlFOb/NG6d00fNjsEs8Yc1elykUnC9B4V8DOXaX5vbbbdMs3TKedJxOu/vKopVQYGJtfVi6tj9wl/VtbhahATWNZjtrclc8lM+ZK9cnnSt8vbzEw3j3PRflE+vZv22J+qDA4erhvc5M03vKvxh9mnPSxz+5KqVnbzV0bpCBvz5+yPHrCWTKz8kC58c2vZLUPZ+OV3/ybLP7tt2XeidfKQeax+9Ku67t23zm89yUddMInZdJ+J0jn9ibZbn7oUjNhPzn4lBukzERvvnjfP7z3Ar0C7wHvAe+BPdADe/6n+25yGgACgALoANAlAQggHPniJu34UgJAISUBCIWR2NJorujpYgsAAWwkHwDFtcwjAAKAQh4mQJJgKhGZ5ANYumAkZc4yE/ikJJiqkZ3Y0mgue1DoH7aApOgjX9wvwJn0ArqSBxjpgqnYAh7iN/JxjsCiaCIfMJg8uQAEkw3k0/sMumyhS3/BHgfDgJGcJ7ba2jKRqS5bwFTAE/loY8C6aEL/LON/8gAjk2AqQI98wCsgYjRhi3YBICRfEoyknZFn+/Y2J4zEFsAM8Ec+IKMrmohJO9o/eTi/JJgKUCUf8JCI0miiTI2mIB8AxZXQBGgkD35wwUhsAVMBr+RDlysyEl8xUUge2lcSTAVoky8OplKmgmXy4X9Xok2gjTwamRrNhy3OkbZGPtoF7TuafF8WeASfzfJ9mXUIvvB9WaZt4AvflwXXCZ8jvi/L+MOPy4J24cdlgS/0s4TP3uGMyxgDFRVmVjNQa9gazrgsbgyi9vxzOg9MnDzNwsg3F78oa1Ytyx5EfYxlYmlBs9ihzK0+RPp39MnSLS9a831mO5zIR+ob6JUKs6RrbUmDNHausa81X0lBmYGak2VL9yZp7wvGyPl5+VKYV2RAd77UFTfIRnNcWWG5lBYYaGLypk0sw0myPjBjd31tvrxml6RUWwVVNVJQVWsBniuyKq+Q8zHLn5pxKcuvFtbUZ/L29aoJ+2z31Y23ADRuedNCs3+gu2vXReJR5+ax+YGfDFqOUoVaP5gfE7NcX1HDFOnbbFZIcYy3WdKS5St7m4b+6FKj83YM9KtZs4Qo0dBmSUHj30HJ+L5o3EQD0MwtHVrMajI7y8ozcxMmzI9fQ9js2foxr6J1MFb1M0hXjheqz6mlssYCr+g+THIedslT4we75KmZI1AfWptmmccdpt3kagf2nGPKsX7HzabPHmlSfxdPmm7qpUl61q20psLnlLYc6r6oYZIMdHYMiji07YTv6JFoRVu24zqMPReuX/PQtmPz8R6+pA2ybTQQhUzCvp5ftGzydq1+xz6GtFVzLGVQP7lSfmm5FI6bkHitJ9vIM0w5T55t/M2QbABK+q3yAtPXmCVdN3c3Sm3xeOke6DJLu2Yi3ukfi0w/2buj1+SrkOrietPHmhWKdgTXpBqO62t1f1J/rX1+AdeqScX5JfbZ9IbSOxAfhWozhf7RN/T1dORcprWgqFQmzFokXe2bpXX9myELmU3Oe9y0hVJaOU6a17xmlmId+gNz8oyfcbj0drdJ5zZ3AMAQwzFvsORo3eR5sq15hV021ZWtbsrB0tOx1RnBiJb6qQtMVGGZbFr5kmlygz8r1V6acjQvEYrY5fw0pSmHKMeyqgZpWvGCHpb6efXrD8lbf7hDtjZlxhfFZTVy4V/9TmYsOGcIkBxNOakF+YzeA94D3gN7gQc8kDSVxAR+BkBIbDQUgx6N5mJCAgABOIsmYIwCFGCeKxoKWxoNhS1gpCsaCltACgAEYBOA4gIQwL4wTHXBSMrUaC5sod+1zGz4F+BJ+sOTdsBI1y+4sQVAYVKLMgEoLpgKbFUYGRfZiX6NTMUWMNgFUylTYXAcTMUWMJXITvwfF5mKLYXBlBm3TCjnpzAyLrKTMikPv2EL4OqCqZQ5aydAoa5dMBJbQHH8gf64yFRsKQymTGAw+aMJQKcwknuO0jaiiTIVpmKLNuaCqWH9wD4XjMQWk98Kg+MiU7GlAIUyXdcSOtGvMBKo6YrspEwFENgCBrtgKjBS2w/7XROB2AKkKgymPPwWTejXSUfKdMFIbGUiUwMY6YKp2EI/ebGFLhdM9X1ZUAv4TGGw78t8X6Ytg2vO92UZb/i+TFsFc9N+XBZ4w0yo+XFZ1h18lsx6D8dlWSF+Y1QemGYig/rMuBQYWWC+9zGW2sHDMS4eTUGXz/2SnRhXG5+e9zW7+e62P8lDa36kb8sn9v+KdPa3GQDZJxPKptr3AZgsS8jE6TnTrpQ51Quy+Zu71ss9K78vPf1dcnDtUXLqlIvNxPqAmbA396vvbZWqInMfefO3xADQx9bdlT0uaWPiNX+ZhV0AsYnX/pXN3rN2hWx+8Kd2G4A47sJPSIGJJNXEcpUsWxlODVd+zsAWszSx+e5S1DDZ7gI6Nd78r3YbuFR37hXZZS95s7dxrbT8+g67n3/AqAkf/4LkV1TZ93rWGR0PZHRkM43BBueZAagiPRvWDFmylf1ETmYgoYEMpp20vfqstL3wRLb06pM+KOUHH5l5bdoQ5x5O4y/79JAlaCde/9fSseQV2fbUQ9msVcecLhWHHsuHUNYWvgd+1Ru/s1yrJq0fAFLjrd+wb49V/WgZaZ/LDlgoNaedP2g5VOq4/rwrLZBWO20v/36Q34BgnEfnO3+yS9xy702StoXxl35K8sxyymbCILYdpClHyx/Ns/obG0UTpmSvj61PPCCdb72W2nTVcWdKxcJjsvlZ8pZ2z/04S8wyv7VnXzKoXZTPP1KqT/ygtL38jPHdk9njkjaqzfKq5WaZ1Y3f/+dstobLP2OB7Kaf/ZdUmSjbisNPyO6rZ4nknWnTj78t/ea+mCTaYtWxZ+zcY1ZfiizZmt2RsAFkrv/QFdn6I2v3muXS+tDPE44auuuiWZ+WqRVz7A7tGzXXuTOukhkmGpE+jwSQrC8x36XN3+/W3W37wdmV84TlXrf0NGf7ZPrMB1bfJqvbMssf5+prtbyk/vqS2Z+Rhp1Lc5Nf+/yegW65acnfq4kxeT7kjM/LQSdcY2xlzru/t0ue+slnpHl1ZgnhWYeeL4su+P/sZ4gW2LF1gzx289UGYGZWjgIOnnbNreZzsNhm6dw+dN5Hj016xs7JV/6XAN40ASUfufESfWl+Y1EoF/7PJ6S4NLPc8ZaNS+W3P/i4+dzN/ChjzhEXyxHnfiW7vDLw/IX7/resWhx8vqQpJ1ug2TjguKvs0qnbW1bKw/91sd2Vq5yikgo564ZfCNCTxL0783cu+WzfSPFv4/JnB+Xifpw9ndukqDTzecbOsShnUCH+hfeA94D3wF7ugX0eSAYT+JloLldkJJMRABQgBF9gAQYuAAHMAKDwDExyLdPKpJcuLcmX4LhoqDCAYDIdXS4AEYaRAC4XjMQW2jkH9ANQXDAV3QAU8ifpB6YyoYst9LtgJLYAKMBU9ANQXDCVSS/KxBcARldkJHqAP0A4yoyDqZQJmMXH+Mq1zCz7gILAQWwBg13L5GILGAxsRD9gjedoCkcQAFMBpdGEfuAbEBQb6HfBVI1s4/i4X+CjXyNT0Y92ziGa0A+kw7+UCdgkfzRRPwojaRMuGIl+jUzFFufogql6LVFGkn7qEX+gh7ZDG4om9KOL9q1gNjpphC/C+rkmXTAS/dQ37Rb9tDEXTA3rj4vspEyuI9oj+oHBrshO9AODsYn+uLYYhalxMJLrjX4D/VzjLpiq+vET+n1f5vsyrivflwW9i+/LAl/4vmywL/y4LPCHH5cFvuBzlXElKWlcsyvHZYEavzUaD5RVVJrvPtuFZVtr6sZZUy2bGuW1l35vvjOkj2LJpeHelT+QIhMhc9a0y+0E+S+Wf8se0tU/GFjxJhPoTFq/sOkx2dCxUg6uO9rmXVh/vIWRTZ3r5Lmmh2V+3TEm4nKBnDLpQnl03S9sHv49v+lRmV6xv520x8bEsmlyUO2RqYFk853ft1F54y66xgKJLf/9S2s7DNdqT7/AwsjOt1+XrmVv2PvKlR10mAUMXe8uzWphAxABLAOk9BrQVzbvsMx+M3auv+BqyTegqfOtxdL+2nMm7zgpn3fEoOOJqAJMAXwqjjhBiqfOltK5B0vX8qFRQIMOHOaLlntus/Cz/sKrzZFDf6iJOaBqx5svmfs2viM1p54nlUZP+2vPyg6zhGXx1FkWRrJ857bfP2K2j5CSWQcMjXzMoQs/cl9GlsZse/FJez/LisOOzUaubXn4LgHYVZ90jhRPnCrNd99sLe4wk+WaxqR+1FjKZ84XTT3rV2WiTDlO69jo3f78E9K7cY0BW6dbv5EPuBxOZfsvsMuftj/3mF0WFOCnKbEdDLMctTmSZ3t9GPAz7pJrpW9Li2x97F5rJrxkay67to4NjOQ+ltv/+LhtV1VHn2bg/OXS/IvvSdeKpdL59mJzLRwu3SvestGE1Sd8QHpbGlPDyFwa2N/+6nMGAr9hrqd5UnnkSbLl0XukrzUTOdcfgumdS1619Vp24EILON1XR3KJXC+AcgAk51E8waw0ZSIlh5t+a/q6ssJKOWPKpVJjoh+jCRh5/6pb5expV9i+FNB4xpSPyGHjTrJAUvNXF9WbKMuHTV/bJSdOOk/OmX6VfN+Cwh2Stq/FVlx//eDq201UZKn5kchFMqlspvx8+f+zRQ8nOlK1Jj3XTjrQwMhPmijKdnn9se9IrYlKnH3YBXLCR7+ZvU8joK9x+XPyzvM/NUuHbpL9Fl0mc468RI655F/kyR/eYM2f8NH/MDCyyN4zcnvzSllw+meTinXuA+SeevVNNqpxwztPy5tP/UBqJx5gyrp0UP7C4gobOfnyg/8i8066XmonHWTuk3mpLHvhTiFK8Mjz/tZEMbbLG4/faOZV+mThmV+Qoy78B9m47A/S3dFqwWqacrRQylhw2mdkS+Pb8tubPmbfTlPOkef9nYWRzWteleUv3CWHnv0XNsJU7Y7kmSVbgbXbW1ZlD98V5WSN+w3vAe8B74G90AP7PJAkgobEBL4rGooJTAUQwIA4AMGkBQCFZ2BYXGQbk16ALmAGIMMFIJhABqCQF5gBQHEBiPCkEYAoDkAAI3mgPw6mohuAQtlJME8jO9EfB1OxAUABtqAfgOKCqWH9ALo4mAr8oQ5Uvwumoh8YTH0l6dfITvTHLZOLfoWp6MevPEcTMEwjI+MiO9GjMBX9ADNXZCrgDVtMEuea9FKYGrdMLr5AP7AU3bRryo6msP64yE58gf5cMBX9+J8UB/PwRXjSDhjpgqno5xqhfVCX6Ke+wskFI10wFf3AT+odX5DHBVPRDxgnsT+uL1CYij/jYCr6gcHYRD8w2wVTozDSBVPRDwzmukM/MBj/RhNl6aRp2r4M/S6Yin7fl2U8jP99X5bxhe/LgqvO92WBL+iL3+u+zI/LMvcf9uMysT9Ser+Py4Krz28NxwMlxaVmLFVloeTrr/5R6urHC1GTBy9cZKDkH2zbWbAgiEjENt89GAMsWrRoUFF8L3P90IxM23u32Ly9BjSyNCCRO0nplyu+Ky3mHmkkjdpZUGci5kz61crv2SX/eP+Gef9ol4ENA8k3Wv9o9xNF9Cez3d671UYNFeQVmOVih477rdHQv76tmXuV20hRAxL7WodGyhRPmSUDBuRuffw+e2TfQ83m3nGfk/IFR0kUSJKh5d477PKWbHevfZcnEwl3gOSXllmwuPWJ++17lOU6frOBGEC//s42IVqOCMGxBpLZ87TfLTKRRlZU6B9RbNuefti+0/Hmy8J9HInM621cZ0ENO1ofvdueK9FfEz/1NwaPuG2FzA7aBAyRmn95sz1ntrc+nvEP2/3t5gebhmPv6Oni5S6rH2s85T8i/Yii6171jrQ+fGf2qNJZB+6s4yUG4r5l39/2h0dl3IevkYpDjhoCJImE2vTzG7PHR+s4rh0Mt5xsASPYUGBnvsTJjq5Op/9zmbV1zA/QTVsiYrh79TILtLknKOB1oKvDAvjiyTOl9gOX2nZAvtb7zXLCY5gGTBuyj/bMd13uGZu9DkLl2DwmOphlaknDa9EZQyxlTP32mB8XcC130R52tolMjnT/6Ut5dJhI8tq8hiEHdfd3yqq2t6Spa635McYMWbl9qd1uKM3MR+gBq9qWykvNj9uX400k43zzw49pps9c275c0va1asvVX7eZftdcueY+wZnrNFefr7aG+5yJjBQLIwF6pDoD+ACVPLZsfMtGFhJdyLKuVeNmycrX7pdZh50v1eMzkaYl5XVmSdIJFpK9eP/XrI2KuikGEl5mt9P+m2VAKMuisrTpMz/7oj1s87o/ybsv3zPExBO3X2fg4ha7NOxpn7xViHgkHXrWX9jnN5+6SZrXvma3l794txx4/CcM2LxYljx9i9GevpyDT/m0ECHasvZ1efy2T2ajMNOUM3n/E22bffy2a62O9i3r5PRrb7fbI/kHsD35qu+aQ3fIc7/8m6yJsS4na9hveA94D3gP7KUe2OeBpEYTJQEIgAwwAADkmsAHBgBQmMgHJmHLBSDSwEhsACDIC8wAoLgARBjmJcFIvkzzQD8AwhXZiX4ACpPvqj/anpl0VBgJjMEPTAJGE/oBZkxQoh+A4oKpGlnIBBr6XTASPWgHAqGf8uL0A1CYJKasuGVCFUaqfvwRTaofWId+Jh14jiaFeeiPi+xEPyBY9QODXTCVulT9cTAP/wPz8C36gcGuyE70M3mCf9GNX/FdNIX1x0V2ol9hJDbiYCr6FabG6Q9P4KMfEBkHI4Gp2KQu0U/+aEI/PsP/cZGd6FcYiS/wvysyVfVTRloYie9dkZ1cS+jnGf3AbDSGU3gCn31xkZ3oVxiJfvyPvmhCPzB4uH1ZnH7fl2U8rH2B78syUZa+L8u0C9+XBT3QntKX+XGZuUeTH5dlYeT7eVwWXH1+a7ge6DeT/IVmbPbK809Le9s2Wb9mhdSzTOnkzMQ7Y6joeJ/rivYUfT86rhuuFs1PBI3CSH2PZ+4p2dnXPuj+Y80GWk4un2kjRjQvx/ftvEdZb3+3vVca+4jQ7O/v0Gwjfs4vq7CRbz0muksT930EmBSYe/dFE9GR3GsvmgrHm/sjmsQynUkJOAPAIKmdPDPGfS9Sj4nw06Ra8g3UJhVW19mlMPV93utvbbHAku20qcBEkVl/7jzntMdpvrGqH7WX5tkuL2syhv3DcYU7l5YlAo9HOBWY+4lGExG0cSmpHQy3nLgydtf71DHRo+MuuW5Ikdx/lOhRgOfm+38kDVd8VvLMNce9TQe6O4fk31veaF/8nI2gZUlo2nfX8jek7aVnhtyXdrTno/eCZNnrfvMg9Zp78nJ/yXACPGpaZ7YBktyzl/dz9bW6tCjHx/XXantXP1fUZkDr2jcfyxa1afXLGSA5MQMky6onyhnX3WGhYzaT2dDlWesmH2Tfbl3/Rnb3+reeHDaQrJ8y3x6/avEDWTuuDaI5gZEkog9JRE2SKuszn72HnvVl+zr8j+hCUtpyyAuMJLWsXZyFkbxOUw73r+wI3UsTG8DEkaYzrv+xlFaMM/D42xYUq52xLkft+mfvAe8B74G91QODP7H31rMYhe4kmBeOhooDEMAAABDPwBgASvSLKpN2aWEkAAXwx5ffuGguYBMAiJQUWQjMywVT0a0AJUm/wkjODYASByMVpgJjACjYjCaFYXz5zwUjmQRPgqnoV4BCWQAgFwxWGIn+OJgKRArrx/+cRzSF9eeCkQqD8VccjFQYHNcWXTDSBVPRrzAY3cDg6CQK5wJgAeauaMwYAABAAElEQVThp1wwMgxTXZGdtEX8zyQ9+uPAvkZGKox0wVTVj3/RDwx2wVSuJXyG/jgYCUyi7VAuPgBGxunHVhr9XJvoR7sLpqJfYTBtEf3kjyaNJtJryRUZiX6uXdot+snjgqn4n7qkjbA/Lkra92WZWsBPvi8LWqTvywJf+L4s8IXvywJf0Bf7cVnGH/xIhjGNH5cxvzz0R2KucRn3IBqrcVnQKv3WSDzQY6BPkfnOAIzUtMUsWVheUWnvKcm47bXXMlEaup+VM/hsiL6v+0f7vK1n6A871SZtLFdiHMxfJvGc2U5zbC7b4f1Ee6RJ3BMvMeU4J+4/OSQ5ytbzi37fG3LsKN7Y0Rf8GDXwccZg9LV9N1JdaAu/xb0To8lpJ5opxeuxqh/1K0XG+bbjjRelZNpcYdnRnjXv2iU5MxIzbQ+Yxv03ByXHdyGW8oxLye1geOXElaHvpzlnzTvS577NTSZy+IdDDlf4zo7iKTMtuGSbKFDuITqsZNpbNOWZ76U7HPMY0Xxj/ZqIYqKGgdcsucy9K0tmH2SXqB3LsoLrJ3TuLj+ErkSNYtZn9ITbQJK+pP466bgx3xfqR4PzyPjg+I98w8LIt5/7iax+/SFpb10nH/ryb8xJZvrwMGBVXXnDvFcix6nvc/U9A+bHK9EUPgY99//7mdEs0tvVZt9LWw6Z1775Wxk/43A54NiPybqlj2Xvq8m+nOU42g3HjSSdZO6rCfhd9vzPZenvbx9kIq5fHZTJv/Ae8B7wHtiHPJDuG8b72CG5JvABImlgJDAmDkAMF0YqzMNmNDGBDIAgAViSIgvDMNIVDcWXbAAKk4+U5YpGY5CmE/jAFWAecCeasBGGeXHRXFEYlqSfSS9gDJM8rggI9ANTmTBU/S4YrDAS/fjBBVPRz6Qj+piUiItMZb8uBwYMo86jiUk7tDNxh/64yE6dACe/guXoQAX/RyMjXZNe6n/ah+p3wVT1P35CP9AymlQ/EEthngumRvXHXUtpYCRgmUk71R8HUxVGKsyjnqIpDCPxAf53wUjKUhiJ/3PBVO0LXDAS/WEYiX4XTOVaokzVnwtGoj8uslP100bSwEjV7+oLVD/Pvi/zfZleU9oX+L7M3GYrtOQ0nyX0A64fVvi+TFuP+RV06IcVvi/LwDw/LstM/u0r47Ly8jIDtEY/LguuKr81Ug9s27LZ9OMFUlaeic7ATnVNnQUv/S4QNtKCxuC4tr6tUlpQbu5LVpK11mCWGuwz0T+uCeVsppFumElhllmMJnsvSTNRG76/X4GJDswrKJTh3Eevt3mjNc19A0ebrv/YV+WrX/yufZSVBnU5WrvDOb6fpW7N2JvlZDUV1GbuS6qvAZo2Om7nG6XcYzKSBtrbpKCqxun7cFYiUk3jNUyhIPy2jFX9qNG/+dx3rF//6s+/qW8NeW57+fcmgu/HzPBL3XlX2rZAJoWQRSbqGNA26OGAEkMMp3xjuOXgo4KKaqf1+rqJ2bZ01aV/6cyT9s24cvrNcscFVbX23qqDfBKKiiWCtOaU8+wSqixdW75gkZTMyESIpS2f6GSStknuPcqSsNFk25J5k3s8jibt6DZzVKYNFEbavdokMnLbM49I0x3flJ4Nq20+F5TX/LvyeWrF3Kx5lrcmtXZn5j/Gsq/t39En+Qb8sWT2aNL2lpX2cJZhDae21jX25fSDz8q+PX7mEXa7deNS+1xrQFhXW7O89t//Lq0blkhp1XizMkDQt7OsK6l+atAXTz7gZPvecP5tXpuJdp+58EPDOWxQXs4TOFla1WCjKImk1Af3kyQNp5zFv/2WPHHH9fYz/aSP/addthYbacrp7+00IDdYFnj8jMPMkeGflGApdzr2kq/LpLnHyeo//UZeefjfhhwwVuUMMezf8B7wHvAe2Es9sM8DyWi9Memo0URM4DPp6AIQwBgACs8KgFwAgkkXIsgATUkwDxim0VBxAAKYpNFocTBS9aeZ9FL9AAgAiiuaC01APwBKkn7KA7YowMJmNCmYBaCgPw7mhX+Bz4RvHIzUyNQ4/ZSjk16qPwlGol8nTanTaFIYxvu5YJ5O4AMPXcvMApPCMBj/ozGc0sJIJsCjMHik+hXmhfW7YCT6FQYDw6jLOJiKtlwT+FEYTD1Ek8I8ykFTEozUyE7879LPtYT+MAyOlqfXUli/qy9Q/+MT7Qu4DqIJ/doXxC3TqhP4GtkZB1Oj+uNgsO/LglrwfVngC9+XBb7wfVngC9+XBb7QHyn5cVlmyWY/Lsu0jeGOy2hHvWaimB8fjXRcFrRKvzUaD6xetcwevvCI46R+/ASZe8ACqTQwqLkpEs01mkLG6NjXNz9rLV0y+zMyp2q+nD/zWinML5Jl21hGbuxT/7YtUlBdK9zvrnjqLCkMLbHJfSCBF7VnXiylc+ZJ/Yc+ZgV0LH4+tZDulW9beFZqoqRqz7xIihomS+l+87O2UhsyGc1Xu1ElljktmjjVPoB8+eZ7fPh1GuMdr2fOvfbsS7M+icJCouKwX33C2QKIrTo+gAhaRtuLT9nNcR/5lJTPO9z6peb0C43NzLKKmk/vZcg+7j1YNCGzdCP7x6J+tJy0z/0mynjrkw/ae0bWnnWxPczWsVlyt+qY06X65HMtGAOq1Z3zUSk7YGFa0znzDbcc7lOab+4dW238j18B6pqAR2OV4sqhjgFx4z/yaeOHQwRgW3H48ebemp+wRdNuxl1wlfkOPWCWbf2JbPndvcL9S7mf5HCgYe/Ofqz6pA9KiYHfep1Gz0+XGa467kzbdm1kZigT1ybXg/qpsGFS5rWBquHEPSJ7TRsvmX1gJhLS+FaBY90HPiLl8xfZfoQ2ACQFmIajjsO2XNv0d5PMfSF5lBbww4O80Oty1yGx782qOkiOmXC2HD7+ZDmw9kjpGeg2y7W+a/OPZV+r9448a+rlMrPyQHtfy1hRCTuI9KM9LDjtM3LgcVdnlyJd+sxt9qgFZ3xOuJ8k8Kt24v7S02nmKhvfsfu2Ni6T0spxst9RHzWPy+TUT9w8qCSAX8fWDXYZ02Mu/meZf+qfy+zDLhyUJ80Llmrt7W6XhllHyilXfV8mzD5K9j/6CjnzUz9Nc7jN89qj/PBhh71X4+Ef/J8Wkh5w3FVy7hcekIq6TB833HK2t6wSwCT3tzzlqu+lLmftkt9ZOHrG9T8yy9d+RI6/7D9Sn4dmPPiUG2T6/A9In4Gbnds3ycKzvpR9aFToWJSj5fln7wHvAe+B94MH9vklW8OVCIBg0kVhXhKMBFIwkQmMASC6AIROgANQiEqKiywkmo68QBgABDajiQnkhvENFqAAM1wwJqo/LrIT3QAgYCplMVHigqlAEaAZoCwpshB/oZ/JlkT9xhYa0Q+AiybgUHjSKy4yEv34n8lTwGaSfqAr+qnLuMhCfAEsQj915IKp7McXTEYl6Q9HRuJ/8kYT+tGl+qnLKAwOT3qp/136sYH/aR/oxv+uSS/0A+CwC+B1tR/1fxhGuvQDw/A/E234H1sumAoMC8O8uGgi/K/68b8LRtK+8D8J/XGRhfifcrGRBCPxP/BPwaYLpirMo27Q7oKRXEMKU/E/uuL043/KSdJPXXLdaV+Af6MJ/+ML1e+6lqJ9ge/LfF+m7cj3ZeqJzPLVvi/L+MP3ZUG74LPNj8sy/tBxAf5gnOjHZZl7eacdl/U1NkuLGZf1OH7klnZcFrRMvzUaDxAhueT1l2TeIUfKUcedbk1t29oqb7yWgUujsT3yY0NLDYaMvL75OZlSPlv2rzlUzp1xtd3T2LlGntpwr93WZeyYzNVk39v5Mjqm1Txxz9ueekiAa5WLMpEyQK7WB39ms299/H6pN8AkfG/Ajj+9KF0rM5E2g2wGcga9zYuWe++Q+nOusEs4sowjyd4/z24RbGWWODWPXClFlkQTRJ9VHnFiNk9h/QQDh66xrzebZTWz90YccGjZWXjPxrXSvviPUrHwGLFAzrwPpAtHRLa98KQFjOULjrK2u9410UoG6IZT59uLbYQkIBiIZ5P5ztq55JVwNml/9Vm7pCdAjXoA7jTe+g2bZ6zqZ1CBzhfZxmX3oh0tJTP3t8CV+4O2/Pp2W8fAVR4kIvI63njJbg/6F/kRru5L0w6GUw71RAQi9VB+yNFChGfbC0/Y4oLrSEtPena0h1D2uHLCdVxz2gXZI2hDJCAz4LH1kbsyEa/mvc33/1jGX3aD1J//8dTLnHI9dq96x0ZWAgSJULQRtLaU4B9L5XYufdVCYoXJm37yHdt+yWWvBTNXo6n2jIvsZl/rJmm+8yZ92z5vM1C6+sQPStWxZ9jXLffcaiNl8Xd1KCKYKFH6GHORDzo+6UVd8QS5dM5nB2XR16+2PG3fH1x/8baJhjyqIaOxf0e/PLj6dnN8Jn+uvnaQgFB/O/j9zKuXm5+QaSYac27NIbJfzUILPm9a8veurInvASNf++//kINP/pQFWrxe+dr9srVpmbz55Pfl4FM+LYec8QVro6+nQ57+6eez9oiMPP6j/y6Hn/PX9r3udjMvZB75BUXZPM/87ItyurnP5IwF59j32resE+5PSTlpE3kfv/1aOfnKGy2MBEiSFIyyzbWc9Fm0vXmlPP/rv5dF5/+d7Hf05fbBcdx3sr83ExiQphytlh2mbklvP/sjIYp03LSFsv8xH5N3/vjTnOW8/NDXbX7uWckDvxKlORyfjDflkYhIBSSH0xtPfM+cU5eMRTlhu37be8B7wHtgb/dA3vTp0+M/wff2sxuGfkANEy4AAQAEky6upQ3Dk3YKI10AAqgA9CABAwBF0aSTXuQFIlGmC0AwacGkKQACQAQAin7ARwFELhgJFKOsOJiqMCmX/jQwMqxfYYxLP/5PM+kFAEqrn3LiYKTCPPQlwVT2U5dMzCXBPLQrzMP/5I0mYBL6aUfAMPzvgsHYIR/6scUjmsL6FUa6YCowj/aDftq0C+axL6yftpgEIykb/dhywVSFebn0c45hGOmCqejH/7TxOP1cG+jPBSMpizLRz/nhf5d+/E/bZtIR38fBSPJgk74gDgZrX0Afgx3KjCb0Y0thJP53RXZSlgIU9ON/FwzGF9jzfZlZkm0nGMfnSX0x/sr1wwrflwUt1/dlgS/oT3xflvGH78uCduHHZYEv2NK+eF8aly1/d5WUlhTaH4OFvTGccdmyZcvs+J9xGtcX7YoHYwoeI0kzZ860h61atWpYh1N3PBh38GD8yjiDZz5D94aEz7hvJD8k7WHZwYTE5xzt1rWii+uwBccOjiJy5RnOe0QJjSuZLFt7mqWrf+gP1IZja7R5iSxkeVEirHTZx5HYzC8uNYDIjE8NpCASbG9ORISxZKW9H2IMYMNnO8x3/IGe5LZml74017iNhoyxleSrsaqfpDLS7rN1XFtvgRhgbFel3VXOWOmnjvMKi6TPLPmrS6yOlW21g0/yzBzDrvS7lpX0nF9aZkEwyxsPdA39oX3SsWO1j+hyftBx36pbpcn8oKOqqFaauzc6IdOe1NfmOv/8fHNv82mHmOVNzS2NDNRzpRoTOdlnIhjbt6x37bbv1U052Nyrcbu0bc4sBRubMceOkvI6qZm4n71fZVJ5SWYq66dLec0kcz6rTHRhkzPr7iinonaKlFTUy+Z1mSVpnULG4M3dVc4YSPUmvAe8B7wHhu2B5UtbZdZ+tVJQmPt7qgeSxr18OdUJfL5UAyBywUhgHgDCBSN10oWai5sAD0/a5YKRTHSSXwGKC0AwEcA5JOkH4mFLYV6SfgCQwiTgSDQBU4czga8wjzKj+plYQbvqpzwXzFP9wDz1vysyFZgEtKEc/B+nH18AGIB45HFFpuqkERrRBEzCL+HEPnyhMBJbcTCPMpm8Tqt/rGAkGmnTLhhG3aCfdos/k/QrDAOWUZe0t2iiHjlPJqnwfxxMJY/CPMp0wVQAHWVyjabRz/WIrTiYR5m0Xfa7YCTngi94oH8sYGQu/eG+IJd+bGlfgP/RGE6+Lwt7IzMB7vuyjE98Xxa0DSaZfV+W8Qefp/R32hfTr7h+GJKmL/Z9WdDG6Ivxq45r4saVOq7x4zJz7yvz2cxn9PtpXLapuVUqK8wEsWkPmsJ9cZpxzUsvveSBpDpvD38eayC5h5/uHiWv5pQP2ejLJFFEnuk9CJPy+X3eA3uKB3y7HnlNhIHk6jZHRPfITb9vjzzho9+UieYeiEnpGROR2bTyhaQs76t9ZVUT5JzP35d4Tlsb35bHbhkcFZl4gN/pPeA94D3wPvbAcICkX7LVNASdNFIAkQZGAj3iYCQTKkw+kIdHNDFpRx4mJRRAAKiiiUkZBShowlYU5oUnvdBPniSYl2vSSyPz0MIEmkt/WhjJ+eFbzhf9Lhip+ikXuBWnnwlkbKEfmEQ+F4xk8o98qt8Fw4Yz6YX/AXYKNpNgpOpPgpEaGYkv4vRTpsJgl36AJueok3bYioN5Yf3ki6a0MJLJasrUyEJsuWAkeXiofvwWTeFoIiAwdZmkH5iKH+L0c45MlitMTYKRYf1RmIdO1c91hq64voB8uSbwAbxoS9KfdgKfuqZM2i7XN76I08814PsyswzSzihj6nVP6svCAML3Zb4vo32S6It9X5bxBf/p73xflvGH78uCdsG4Mjyu4XP6/T4uC87eb3kPeA/EeaCncZ25h11J3G77/oC5x6FP3gN7kwd8ux55bQ3I4B/tjtzSvnNky9rXpLCkPPGEu9qHrvSUeMBevpOlVvFLUtqyYWnSbr/Pe8B7wHvAeyDGA/t8hCQTG0x6ASCImHLBPCAS+YBigEMmQFwRBEwaMYkGgCAPj2iKwkjAQloY6QIQRHlQLvuw5dIfngDXyDwXTMUPPNCPLRcMQz9lAkjwAfniIgsVoChMjeoHRuJX1Y//42AetsIwMk4/+bCLLRcMC8PIJP0ALmxxvgojXTAYXwCegHP4Ik4/50k7Yj/twgUjKQ//J+kPwzwgHmXGwTzVTz3yiOqnntHPuaIfn8XBPGyl0U8+Jgex5YJ5Yf1JMBKfYotJeoVJ0UnH6AQ+vojTj/8pm+sD/7tgKnnwf5L+cF+Afsp09QVh/ZTHObj043/9YQK24voCfJFWv+/LxNaj78synz6+Lws+hfWHFb4vE9uf0+cxrvF92eAfiSX1xfiMcUTcuIbWRr+u4xps+XHZvjsu297WmY2QDPfFwxmXrV271kdIBt34Hr3lIyT36Orx4rwHvAe8B7wHvAe8B7wHvAe8B7wHdqEHfITkMJzLpJECCNekURhA5IKR4QlwFwxTgALMA6jFTXoBKLCVa9KLpQiZ4FAA4YJhQDxgBs+5YCS+AFLFwTyFkUzqqv5cMBI/MPEShZFUkcIw9lFmLv0aTeSCkZwj+pNgnsJg9OeCkfhfYST6ozCPcvA/daX6XTBMIzvTTICrfu4L6IJ5ClOxOVoYiX6FYWMBI5mkRT8pF4xU/YA6F0wF5uF/rhfy0IaiMM/C1HoDxisrLNylTBfMUwCRC+bhC8qlHPzv6gsUpuaawMcPPFR/EoykLwBOx/UFGhlJ2bQJbLlgalg/vnDp932ZbZ72n+/LAl/4vizwBVu+Lwv84fuywBd+XBb4Ijyu9OOyzDKzOq7hs9w1rkkDI9OOy4Ka8FveA94D3gPeA94D3gPeA94D3gPeA94D3gPeA3ufB/ySrabONm3a5IRhTOAz0a8wDzjiioYCniiAYDLCBVCAEwAshZFAg1wwTwGEC+ZhC4ACKAOguGCeAgjVjzYXzAvrj4NJql9hZBr9STCyoaEhC1PR74J56GZymOc0k15AqjiYB4DAZwoj0R83aYQ/gH/AH84hzv9MMLEvTj8TVOjPBSPJQ10yGRWnHz20RfQnwUiFeZwv+nm4YCr+Z4IVuEWZLpiHfkBvGv20fxLXkguGqX6dtMP/rmsprF9hpEu/wmCFqS79+ArfpoWRqt91LWED/6M/KZoIPyhM5XrjGnbBVO0LgJH439UXpIWR2hdQju/Lgr7Y92VV2R+2+L7M92W2gzb/fF+mnsgsk6t9MWOjNOMaPy7z4zJtQTquyTUuq6rKrPgwFuMyLds/ew94D3gPeA94D3gPeA94D3gPeA94D3gPeA/srR7Y54FkU1OTE4bppB0wRgFEHMwDogDsdALcBSAAQMAMAETcpBcAQmGYTnq5oqEUJtHoABAumIduAArPaSIjk/SzT/XjAwCKC+YBuABYTNIkwcgJEyZYMIuf8L8LJgEh0U895IKR+F9hpAuGKUzF/zrp6NIPYFT/J03gq35AGf6P068wTPW7lmklD+WiPw7mKUzFJ0A82k8czAOIkR+YRxuKwjzaDPqZQFOY6tKPr9CWC0ZSR+gHplKXLphHe2DSF/34PUk//lf9tKFc+vGZC+YNB0am0c95ol/7Apf/8T0P2pvCyKh+/MS1hD6FwS79w4GRXHck35cNhZHRvtj3ZbapZP/5vizrCvt5k6Yv8H1Zxme+LwvaDlt+XBb4g3GgH5dl/MEYqqamOjuuGc24LPCw3/Ie8B7wHvAe8B7wHvAe8B7wHvAe8B7wHvAe2Hs9sM8DSRfMA4IxucREArAAgBIHIxVAkAcYFp0AZ9Ju4sSJFkYCIAAoLhgGgAAAAW/SwEjsbty40QnD0M+k6XBgJJDRpR9QxqS1wtSxgpHo37BhgxMmoVthKvUD3HHBPF2mNQwjo/4P66cO8b8LJjERjT39BXtcZCR1SV1RTmNjo1M/4Ar/K0yN009966QdulwwD4CC/xVG4v84/WGYRxtyRXaqfkAZAMsFw6hrhcFoAm66/K8wEh/HwUj8ybWk+kcLIydNmpSFqUn68S3+p02j3wX2qSMFENSlqy/gelT9ClNdfQH9AP5PgpF8TOB/hZHod/UFClNz9QVh/Ul9ge/LMh/Q4b6A9uz7Mt+X6dDN92XqCbE/qvB9WcYfflwWtAs/Lgt8MZxxWXtHtxlXFmV/JDbScVlQevJWaWm5GfuX2TKTcra1ddvd48ZNcmbr6+s1Y81OM0bpcO73b3oPeA94D3gPeA94D3gPeA94D3gPeA94D3gPjNQD+zyQjDpOAQSTL7kARBRGRqOhsD158mQLY5iEAHq4YNJIJr3iYB4QBoDFs8JUF0xiwlH1MzEPeIrCPKAhAAiYBNABoMTpH05kZBKMRDcAhWeN7HTpd/0CP0k/NuJgpEZ2poGRwCIS/nfBJNrNSGFkVD8ABYCF/xWmumBYFKbGwUiFeZQDwHLpp6wwjASmumBedALfBfOYtEM/PqHd4H+XfqBsGKbGRUZyLQFLuc64llz62Y//uY4Vprr0k4d6py3GwUjaA9eS6uc6celPCyOj+l3XEu0L36IfmEqkbpx+halxMNL3ZfZStf98Xxb4gi0F42z7viwT5a0/rPB9We4fVvi+jCsnkxiv6GeJH5cNjYyMjmvCffG+MC7r7GoyK4ZssZ/nLhiZZlymbS3Xc2VljRmvlOXKlmo/EFUfbW1bUx3jM3kPeA94D3gPeA94D3gPeA94D3gPeA94D3gPpPGAB5IhLwEgmKgFhilAccGwMIDQyEgXjJw6daqFGexjosoFMxRAUDYgiWgu16RFmkkvAITCSGANAMWl3wUjXfqnTJli9aMH6OHSD0wFoKh+AIpLP7rIy2TU+vXrnTAJv+N/zgOYin4XjAlHRmpkoWvSS/VjA+jk0s9EItF06AeEJUVGUlfoX7dunRPMAq44T/QDU2kbLv2uyEiXfiZ9sUkdAoNd+qMwMk4/k17AOhL+d8EwyqKdoV8jU136XTAyqp/JffRTp+hGv6stAiOpT+AlbT8XjKQcriWXfmBqGEbGwVSFkWikXbiWrEUPPtO+IEl/mmgi2iL60I//XXWpkan4P21kZxyM9H1ZqGM3m9oX+L4sgJG+LxP72UUfGoaRvi+LX3Kaq8r3ZUHf4sdlgS/8uCzwRXhcxlh8oL/Hufx82nFZYDl+SyMj43OMbA+Ak2hJHyk5Mv/5o7wHvAe8B7wHvAe8B7wHvAe8B7wHvAe8B4Z6wAPJnT4BQABQmMgHdgAqXDBmODASmMHkJgDLBWM0mouyFUC4YB6TXgrz4n6Bj24mN3hmAgSA4tIfhpEAM6LIXDBy2rRpFkyxD4Di0q8wFf1JMBVIpzAvDkYCYYCRVn9nl42mc+mPRka6IjupUmAwNvEnPnPp18hU9APCAGIuX6CLukqawKeuOU/0J8FUYKROgMfB1LB+fAB0cunXyE70A4J5uPTTLoBh6F+7dq0ThgEjOU9sAeiAwa62mAZGUg7+xxfoRr+rLnXSDhiQC0ain8S15IJ57Mf/6Aem0rbj9OO3MIx0AQgm3dFPWXF9gcJUbAE/uQZc/lcYhn7876pL9HOdo582jT2X/obxpi+ozIB9/Opachcbvi/D25nk+zL1RAZG+r4s4w/flwXtwvdlgS/8uCzwhR+XBb5gS8eVwxmXMR4vyC+x46+wteGMy/isz5XGKjLSVQ62PZB0eSbde0X5xVJeWCVd/R3S3d+Z7qB9MFd+eeZ+6AMdbbvt7POLzQ8F+evJLGE8moLzikskv6RU+re/PyOK84qKJb+swpzfFjGTG6Nx1W45trCuQfLM9yHSgFl+eizqJb/UzAWYNjPQbm7R099nbe+Kcqzh9/qf+W6bb/r+AZbtDtV3Xn6BFNY3ZNX1mwj6ga5d26/Rhxbmmx+r97Vny/Ub+6YH8vLypbphjvT1dEr7lnXvCydU1E4xl9iAdGzNPdaLnnB+QbGUVtZL57YmayO637/2HvAe8B7Y0z3ggaSpIYCCAhQABF/+XTDANWkXhRlUOLYAPKTVq1c7YQyTXgpQgJEAFBfMiP4Cn8mNaAJAKEBRmOrSrzCV86U8AIpLPxP4ClMBKC6YBGBUgIIdAIpLP+eoMDUORgJ+FKBwfo1NjU7/K0xFP8AMv7n0T58+PQtTAVgu/WgiUg7f5YKRClPjIiOZtJs8abIUFBZYQAQMdvk/DFOTYOSMGTMsDMMGPnPpB6oxoa76k2CkAog4GEldMzmGLWAk2lz6wzCVcwT8xfmfOkU3MDhJP3WZBkYCOdesWeOEeWGYiqYkmMo1jC2NjIzqZx/tX2Eq+l2+AKbiD9WfBCMVpsb1BexXGAyMRL/rWrKRnVWZZWYVRkb1o8f3ZUEP6fuywBe0Md+XZfzh+7KgXfi+LPCFH5cFvvDjssAXbI10XBb9jMYW463hjMs4JldiedXhpPr6OvMjNjORbH50mCsN13Yue+/V/vmHHm38nrntQlhDb2+PvPbSH8JvZbf5zOS7E2PB4abi/FK5ePYNMr50ij10xfY35cHVdwzXzG7JXzJ9rgz0dElv43s3wTvugqvEfJGSTT/5zm45Zwpp+Pjnpbe5UTbf98NRl1lz6vlSOnN/2fiDr4/aVtRA0fhJkl9ZLd0r347u2m2vK484USoOO06afvQt2Z3QeKQnOO7S6wR4RuptWictv7rdbo/kX/GkaVJzxkVSYOqAtPXJB6Vz6at2eyzLsQZ38b+CimopnjJDukxb2mH6vrhUMX+RVB1/ljT//LvSt3VzNltB7TgZd8l12ddtLz4lbS89nX29KzbOnXG1TCmfLd9986u7wvyY2WwonSqVRTVCX7+vpBkLzpGezi2ycfmzu/yUT/74jTJh9tFmHidf+no75VdfP2GXl7k7Cjj7z+6U7vZWeeg75w+7uPmnfFoOOvFaefSmj8mWjUuHfbw/wHvAe8B74L32wD4PJAEQACxgDJFLACDXF3RAhgII4BsQyzXREIaRq1atcsIMBRDAAwBEWhjpiobCBpPu6Aem8qXZpZ8v1OjnfNPASBomAMUFY3TSjrKBgqOBkejGZzwDUwEtLv3ASIAe+tPASOoGgOXSrzAV/QpTXXWZZgKfSTv0Y8vCVBNZ69KPds4B/WlgJDYAiC79ClMpk3aI/13600x6AVOB2diifQEaXfppO7Qh9CfByJkzZ9q6RDf6XbaAqcA1ytTITpd+IDXXCmXGwUhgKvmwpTDVVSbwNheMpM0z6UhbBKICoF22mMDHHmUCUzkHl/5wZGQcjASmUk/YUpjqKhN/US6+iIOR7PN9GbWYSQojeeX7stww0vdlOxvOzifflwX+8H1Z4Ivoj8T21HEZ4zzX51KaH4n5cVlQ32wpjOSz+b0Ylw1WM/pXjBX+7M+uNz/M2iS33fZD5zhn9KXseRZo1/nmEU51JtKnLSGijbHv/PnzRwQkD6w93MLIpzbcJ2vbl5noSBNptIemmjM+LP3bWqXlnlv3UIW7RlZvs1mBZtPwYbNLDdfVrkqVi04WoPGugJ27SvN7bbfplm+YX5znyYSrvzxqKRUGxuabHzO0PnKX9G81t9YJ3Vd3LMsZtdAUBkpmzJXqk8+Vvl/eYmB8fEQWEaX928zKS5Ho4b7NTdJ4y78af1RKw8c+m6LE0Wdp7togBXl7/pTl0RPOkpmVB8qNb35l9Ce9l1g48vy/la7tm+Q3//nhXaq4sn66TJxzrDStfEHeeOJ70tu9+yLpd+mJjdJ4W+ta6WpvsVB4lKb84d4D3gPeA++JB/b8T/dd7JZZs2bZSX4ABBMNrgkcBRB82dBoLle+NDASAAFAwRYAAjjlsmWjoQy4IR+Q0TXphWuYNCUPMBWA4rKlMJV8wKtckZHYXblypXOSAkAEQMGWRnO5ykwz6YUNJnp4BqYCg122AGEKIxWmojGaNDKS99HvsgVMBTRSpkamuvKlgZFMblAmtoCp1JPLFiAyDCMp15V00ot9wGyXLWAqvqXMJJhKHZGXRLvGv9EEgADaYAuYCuhylYnvwzCSenclncDHBgDIZQuYyoQuZWpkqisf1wh1RYqDkcBUrjlscX0Q9eiyxYRSGEZy3bnSLNMXAAaBqZTpsqUwlTKTYCoT+FwrpDgYCUwlH7aAqYBeV5m6tCT5qCPyuhL6yeP7MrHtGv+SfF+WG0b6vmzwFeX7ssAfvi8LfOHHZYEv/Lgs8MWuHpcFJY3NFuOMW265Q774xc/JddddI7feeofzx29jU9qeY2Xxy4MjOGrrxssxJ54pa1YuG1ORLC1oFjuUudWHSP+OPlm65UVrv89shxP5SH0DvVJhlnStLWmQxs419rXmKykoM1Bzsmzp3iTtfcF3h3wTIVKYV2TGfPlSV9wgG81xZYXlUlpgoInJmzaxDCeJsaMZAIu+Nl8As0tSqq2CqhopqKq1AM8VWZVno3TN8qfm+zTLrxbW1Gfy9vWqCfts9xnfA0DjltEsNPsHus39V3fV8q2cr3lsfuAng5ajVKHWD+a7AMvoFTVMkb7N5vuFOa9oYklLlq/sbVof3ZWNztsx0J/dl1dQaG3i30HJ+L5o3ERTB+YHkS3mu9jOsvLM9zRjyNYN+bP1Y7ajdTBW9TNIV44Xqs+ppbLGAq/oPkxyHnbJU+MHu+Sp+T6nPrQ2Jc/4oNfsS24H9pxjyrF+x82h5UZznM6Q3erv4knTTb00Sc+6lTZP+JzSlkPdFzVMkoHOjkERhzaK08wnhG1SiC3bcR1aAa5/XL/moW3HZuE9fEkbZNtoIAqZhH09v2jZ5O1a/Y59DGmr5ljKoH5ypfzScikcNyHxWk+2kWeYcp482/ibIdkAlPRb5QWmrzFLum7ubpTa4vHSPdBllnbNzFPQPxaZfrJ3R6/JVyHVxfWmjzU/lt4RXJNqOK6v1f1J/bX2+QVcqyYVm2XaSSwH3TswdP7F7szxr3bSQVJRN0Va1iyWrrbmQbkLisxtamYtMiBqs7SuHxyNWVxabaqsTxpmHiHNq18x2/0ybtoh0rTihayNopIKO9/Q39slE+ceK22b19iHZsBvlMF++kCSvtfXk5mDKCphjjLTvmjDlEvq7++xx9kXO/+VlNfJ+BmHmQi+t8wyq0P7ynDe6HZBYbFpsqUy58hL7K4lT98s25qW23OM5q0aP0uqx8+WTStfkp6ubdHdVmOfOSfu610/dYHgB/xSWFxu7XG+0cSSqGhQAMp51xt/5ptz3rTqZbN07NA5GXzhKkd9SRksO1tW1TCoXqJl53qdn18oq157wD6o83BSv+GH8hpz66bK8bJ53Z/CWex5cw31drdL3ZSDpadjq3MZXOoZfxUWl1nfRstCBz5UH9GmutpabH0PKtC/8B7wHvAecHhgnweS+IRfPQMNXEkBBPuAkTxcCTCiE+BxkZHsJx+TAUAFAIoruaKhXPnmzJmTGVDsBCiuPApT2QeMBKK4EmAKwEOKm8AHpjI5iX6gDgDFlQBOukwrkM61zCzHzZ4929oCpgLNXElhKvuAkUAsVwIMAthIK1assHaj+QBEgC70A9WAwa4E8GOCiQ/puGVa2cekNbaAfeRzJZ20Y59GdrryaWQe+959911XFgvoAI2UCdTEnisBUxXmxcFIwBtlYguYCgx2JY3sZJ9Gdrry4QtskvC/K+FTtFEmMJX6dCXOUWFeHIxUgIIt2hftzJU0spN9GtnpyjdrJ8zDHtevKylMZZ9Gprry0ca4VkhxMFJhMOUBUwGNrqSRnezTZWZd+biWSL4vy8BI35dlWonvyzJ+4L/vywJf+L4s8IUflwW+YMuPywJ/7KnjskDhyLcaG5vkW9/6zyyUvOWW2/cJKBn22IzZB9iX69e6x6zhvMPZvnzul+zEuB7z6Xlfs5vvbvuTPLTmR/q2fGL/r0hnf5sBkH0yoWyqfR+AybKETACeM+1KmVO9IJu/uWu93LPy+9LT3yUH1x4lp0652EysD5gJe7PaS2+rVBWZVVjM3xIDQB9bd1f2uKSNidf8ZRZ2AcQmXvtXNnuP8cnmB39qtwGI4y78hBRU12ZNsVwly1aGU8OVnzOwxdzKwcCKoobJdhfQqfHmf7XbwKW6c6/ILnvJm72Na6Xl13fY/fwDRk34+Bckv6LKvtezzuh4IKMjm2kMNjjPDEAV6dmwZsiSrewncjIDCc13GzNP0Pbqs9L2whPZ0qtP+qCUH3xk5rUZy3Pu4TT+sk8PWYJ24vV/LR1LXpFtTz2UzVp1zOlSceix5uTzsrbwPfCr3vid5Vo1af0AkBpv/YZ9e6zqR8tI+1x2wEKpOe38QcuhUsf1511pgbTaaXv594P8BgTjPDrf+ZNd4pZ7b5K0LYy/9FOSZ+7FaTqk2HaQphwtfzTP6m9sFE2Ykr0+tj7xgHS+9Vpq01XHnSkVC4/J5ge00+65H2eJWea39uxLBrWL8vlHSvWJH5S2l58xvnsye1zSRrVZXrXcLLO68fv/nM3WcPlnLJDd9LP/kioTZVtxeLDEZT1LJO9Mm378bek398Uk0Rarjj1j5x4zdxFZsjW7I2EDyFz/oSuy9UfW7jXLpfWhnyccNXTXRbM+LVMr5tgd2jdqrnNnXCUzTDQifR4JIFlfYuYYzN/v1t1t+8HZlfOE5V639DRn+2T6zAdW3yar2zLLH+fqa7W8pP76ktmfkYadS3OTX/v8noFuuWnJ36uJVM9zjrhYDj/3b8ycSjBF++7L98hLD/yTPf6QMz4vB51wjdnOnDcQ7amffMbAx1elrHqinPcl4C33eM0z4K3XzrkApwBED3zzA+b1gJz7hQcMcDT3QzXzNlrO1sZ35Lc/uNKCuWkHnynHXvJ/5MX7vyYrXvm1sSVy/Ef/Q6YccLLc9bUj7OsL/+cT9nOKFxW1U4XXpNYNS42dj9ltwNyp19wsNRP2s6/5t7VpmTx288elvy8dqD36w/8k6NF0ylXft5uAwF/9nxPtNvdgPP26O6S0Ypxmk/VvPSm//0UQHQ1IRGOjWVp2/IzDLXAl87bmFQIw3WEg9f3/flb2eN049RM3WRh39z8ukmMu+ieZcci5uss+b3jnafn9z79s/cobSeU8cuMlFoKedcMvjM+m2OPxA3BzuGnhmV+UA4//RPaw6JKt6jcgJDCRRBt48kc3yLZNmXnGcz73awsZgdYKlFn29bc/+Hj2fGiPR5z7lUE/sHnhvv8tqxYHn//7Hf1ROfTsv7RtZdZhF2TbxbIXfiGv/Cbz+Z8V6je8B7wHvAciHgg+7SI79pWXAAEAnCsBI5nQJY9Gc0XzAaYAKAAI8gEgXMtsMkEO9CPFAQhsaTQXtuIABPlmzZplbQEg4gAKMBI4iC2N5rIHhf5hC4DCpBz5sIXNaEozaYctjebCVlxkJ/lmz55ti9BotGh55EE/cBZbGpnqygfkxb/koy55jiYAVy6YSpkaAYENIB2wLprC+jUazZUHmIo/sKWRqa58tAsAFfniYB6AMRdMRZfCYGwBSV2RkYDDWTvbTxxMxZbCVGwBD12RneTTZUJpN3H6gZG5YCq2FKBQJjAVWB1NwEgAKCkOpmJLI1OxBbx1RXaSj0lHfIJ+2o8rMYGfC6ZiS2EwZQJTaR/RRF1TJikOpmJLI1OxBQx2RXaSD1/wnKTf92VBLfi+LPAF7Ub7Yt+X+b5MWwbtwvdlGW/gCz8uC3zhx2V6lYj94VeucRmTgmM1LgtKHputMJS8/vpPmqjJ28yYZWjkyNiUtmdZKTDjsElTpkvjxrXOcdpo1N678gdSZCJkzpp2uZ0g/8Xyb1lzXf2DgRVvMoHOpPULmx6TDR0r5eC6o23ehfXHWxjZ1LlOnmt6WObXHWMiLhfIKZMulEfX/cLm4d/zmx6V6RX720l7bEwsmyYH1R6ZGkg232kmd81k6LiLrrFAYst//9LaDsO12tMvsDCy8+3XpWvZG/a+cmUHHWYBQ9e7S7Na2ABEAMsAKb0G9JXNOyyzn370gqsl34CmzrcWS/trz5m846R8XmZyW40QUQWYAvhUHHGCFE+dLaVzD5au5W9qljF5brnnNgs/6y+82tgb+p2RQoCqHW++ZO7b+I7UnHqeVBo97a89KzvMEpbFU2dZGMnyndt+/4jZPkJKZhnA7fj+nCQYP3JfRpbGbHvxSXs/y4rDjs1Grm15+C4B2FWfdI4UT5wqzXffbM3tCE3mj0n9JIl07ON80dSzflUmypQ8WsdG7/bnn5DejWsM2Drd+o18wOVwKtt/gV3+tP25x+yyoAA/TYntYJjlqM2RPNvrw/Th4y65Vvq2mB9FP3avNRNesjWXXVvHBkZyH8vtf3zctquqo08zcP5yaf7F96RrxVLpfHuxuRYOl+4Vb9lowuoTPiC9LY2pYWQuDexvf/U5A4HfMNfTPKk88iTZ8ug90tea+WFzfwimdy551dZr2YELLeB0Xx3JJXK9AMoBkJxH8YSpNlIy+aihe39r+rqywko5Y8qlUmOiH6MJGHn/qlvl7GlX2L4U0HjGlI/IYeNOskBS81cX1Zsoy4dNX9slJ046T86ZfpV834LCHZK2r8VWXH/94OrbTVRkqfmRyEUyqWym/Hz5/7NFDzc6EnB35HlftSBx+Yt3yrsv/8oAsHNsJB0GaycdaGDkJ01UXru8/th3pHbyPJltANAJH/2m3PuN02yZ/CMSsWXtYpm76DILnzYse0YOPO5qGw25cdkfbD4gZfuWddbOvJOul5qJ+8v80z5jXn87aye8wVg4nIBW+Sba9tRP3GyXC/3Dnf/D7u7cFgQrnHjFtyyMXP/WE7Lsxbtk7pGXytSDTpOjPvyP8tzdfx02F7v9ysP/Jm89+0PZ/5grhPtVPv+rv5Xtm81cayia8fjL/q+FkZwboGzhWV+UKQeeIsA0YG44TZx7nAVzS542SxZ3bzfRowulpKLeLAd7jAVp4ShGjiPisnNbJoCk10DQ5S/dbSMSCwpLTDlfksn7nyT7HX25vPPHwT+ccZWDvSPP+zsLI5vXvCrLX7jLgLy/MNGLAUglT5r01h9+KJzv3EUf2Qls3Vdq1biZFmZznsDCwz7wV/LUj/88W0RhcYWFsi8/+C9COyAyd+6iS2XZC3faKM4jz/tbG0H5xuM3mo+3Pll45hfkqAv/wZbd3TE4SGf24R+2wPntZ38sVeNnSl93R7Ycv+E94D3gPRDngX0eSLoABB+6ugQTk/y6NGbUiUAMJu2AXYA1AJYLQADLgDaABV0aM2orPOlFmQAUF4DQyDCOp0wXjMSWRkCofldkp+oHpmILgMVzNDGBDzTDFvpdkZ2qn8kq8hGN5lpmFv0amUdZrshUbAFQgHnYioOp6GcyCP9iC4BF/mjSyE72ockV2YktyqNc8nGOnGs0KQyjLqlroFM0oR8/MImJrTiYSplAUgAV+uOWCdXITmzpfRKjZWILmEq9k4+IOxdMDevXZX6jttAPTAWIYSsOplImMBibcXWJbWAqMBJbtGlXZCe2mLTjusMW+l0wNayf/a7ITvQDUwGSlBkHUymTds0zZcZdS+jnOseWLvMb9Rk2gKnkxRYw3gVTFUZqX+CK7EQ/2jkHyoyDqZSpSwYn6fd9WVBbvi8LfBG+lnxf5vsybRm+L1NPML8awEjti/24zI/LaCFpx2UVFeVmXDP6cVnQKsd2KwwlP/Wpa+UHP7h1n4CSU6fNttf3mhXvZB1KnS5YEEQksoNxGGPTRYsWZfOxwXcE1/iffdt7t/BklurrtksDErmTlH654rvSYu6RRtKonQV1x9rXv1pp7pVllvzj/Rvm/aNdBjYMJN9o/aPdTxTRn8x2e+9WGzVUkGfG5Y5lCa3R0L++rZvtqx1mrAlI7GsdunJM8ZRZMmCip7Y+fp/N2/dQs7l33OekfMFREgWSZGi59w67vCXb3Wvf5clEwh0g+aVlFixufeJ++x5luY7fbCAG0K+/s02IliNCcKyBZPY8zXnzowFXIopt29MP210db74s3MeRyLzexnUW1LCj9dG77bkS/TXxU39jLLltuezzHmCI1PzLm+05s7318Yx/2O5v32ZIkkGmPZnvo1nd7NyZxqJ+1FaaZyL9iKLrXvWOtD58Z/aQ0lkH7qzjJQbivmXf3/aHR2Xch6+RikOOGgIkWUZ0089vzB4freO4djDccrIFjGBDgZ2ZwJEdXZ3O6yOXWVvH5njaEhHD3auXWaDNPUEBrwNdHRbAF0+eKbUfuNS2A/K13v+TXKaHtX/AtCH7aM/8OJ4lk13tyeYx0cEsU0saXovOSGIpY+q3x/y4gGu5i/aws01kcqT7T1/Ko8NEktfmNQw5qLu/U1a1vSVNXWvNjzFmyMrtS+12Q+nUQXlXtS2Vl5oft++NN5GM880PP6aZPnNt+3JJ29eqQVd/3Wb6XXPlmvsEZ67TXH2+2oo+E/WGxxc/+i155/mf2d3ARU2ZyEixEBFgRKozAAlQyaO7I/PZs3bJY8IDIMnzild+ZYFkZV2mTtXe7279pIFzzbJu6RNyyVefk5kLz40FknqMPhNJRyKyEDgYXQ6UJV/HTT/UwMqt8qZZZpW09Pe3GfB3tIF4J9rXaf6hj0enuU8lqdWUqxF+ejznztKkT//0c/atLY1vyQf+/G4LCqNAknZ5/38EkZD4cf9jPmbvT9kw60ijd7uc/PEbTR18U9a88YgUlVbJxuUZiAu0IxWX1Qj3tHzrD3fYSFIiLqNA0lUOx3Lu7Hv8tmt5aaHw6dfebreH8w8YyP00AamZ5L5Sud8mPuAxc+GHrO5oOU/cfp1tO8Dk0z55q12+lTyHnvUXNuubT90kzWtfs9vLX7zbRmbOOfJiAeqG0/aWVfLf37ss/Jbf9h7wHvAeyOmBfR5IRj3EBBQT+GEAAZCJJiZz+ZKaC0DoBHgSgGACUAEEYAGA4ormAmYAsMjPBHIczANKAUeYQIuDqejPAhTzi+j1G9wwNarftbQkejSaC/0AFNd97tAPwMLHwBrXl3n2AQXxLfqJTHUtM4t+6gjYiC8AU5QdTezXZXKBkS6Yin7gIRARG0SjuWAq+jXKFf2uZWbRrxEE6Ee7a5lZ9APp8C/6gcHkjyYmSDSyE5/mgqnoJ48LpqIfgEVKiozUyE70AFNpQ9GEfoXBqp82Hk74Qift2MdErmuZXPyvMBX91JELpqJfIwvj9GNLl/lFP9euK7IT/QqD0R9XlwpT0c816VpmFlvozwVTVT+2OD8XjES/RqaiP6kvwP+Ujf64a8n3ZUGL9H1Z4AvflwW+8H3ZYF/4vizjD/piPy7L+MKPy4JrhK3hjMtat2y3y2puajSTao4fuaUZlw0uPd2rhQsXyJw5s9NlNrlWrlwlhx56iFx99ZXmnpI/TH3c3ppxxpwDzD2eeqWlOYCFjM2iPyRjTMpYLPo+741FAjYqjAzb456SnX3tg+4/1myg5eRyVsTIz2bl+D7zIPX2d9t7pbFNhGZ//+ijE/LLKvhlhvSY6C5N3PcRYFJg7t0XTRZqtgQRMrq/cPxEu8kynUkJOAPAIHHPPlKe+Z70XqQeE+GnSbXkF2fuDV9YXcdMfFYj+fpbWyyw1GPSPBeYKDLrz53nnOaYcJ6xqp+wzVzbdnlZkynsH44p3Lm0LBF4PMKpwNxPNJqIoI1LSe1guOXElbG73qeOuYbGXXLdkCL/f/beA86O4szXfiePNJqsUY4IEBJCJJGTQQgDJizRYAx4HfAuDmuvvcF373q/9Xd3fXe9Xl/b1ybYxsYRg+01cY0xJtpgIzAiCBGVkUaaoDCjGU3Srad63nN6eqr79Jk5SqhqfmdOn+7qqn+/VV2nTj39VrH+KN6j1KW2e38gTVd/TIrMPcfapgM7u4bF3192dL7wtPWgZUpo6nf3my9Lx7NPDluXdrTXo2tBMu11v3kRes2avKwvGQ6ARw3rzTZAkjV72Z+rrQ17zMW115r2aN+BXISVzweeuNH0mBqVsG75w5lDm9c8FwDJiXOleeUf7P6+ni7p7e4Its36gLrNdKIaWEdR16Zku7d7e2baTo0zmvfGqUfY04F3Z3/4h5Gkho4XRQ7m9ZH1EYG4rCupAWCJNx/rJkYDU8ZGw9qXHjSeg581XpXvMuMq5WYK1zq7ZiXrQBLWrwhgNt6dx5tpW0vNdLfhoNOdhve58uE46zDuCHmR4slqGoDwqQXdXrUs+4ALazzi2RkOeNsqyMZrk4DXJEHr45FLPm0/h/+Fp+HV/etX/FY3/bu3gLeAt0BqCwz9xk592jszIoMu0QH8XAACGABAcXlzRQfA4wAEg168+OELQHHBSLwAAVgMXsTBGPSngZGkwaAjsAX9QMboj21KOArz4mBkdNDO5UGAfgUo6I8DQFEY6fLsRD/AkkEhdKOL64iGsP64NTsZjEY/EAv7x8FU9CsMTtIfhZEumIp+YDD60E+9IO9oCA96YVMXjEQ/MJh8sQH6XTAV/QqDgWGuNS8ZgCUdPEXREwdT0Q8Mpn7n0k+ZK8xzwUj0A4Mpd/QTxzVoh36FwRx3eUaGYaTqd8FU9HMvkSb6SSs6uMS9pDCSY9yT2DYa0I+9uO/QTxm5YKq2BZyP/ri2QGEk+qn7Lpga1U9ZYuNw8G1Z2Bq+LQtbw7dlWWv4tixrC9+WZW2hMHJ/7peFHxKjH+v7ZePt9zz9mj3ZL2tt2yotm4GRwweX0/bLsjUz/RZ9DvpVaUN5eZmNSr/0nR6qzVqIVWaNwpVvvDLkUum7LVsWeAHoAfqd2CS6X4+P9n1bz/AHXjVN+nG5An0//oLAe7Cd5txcaYePhyFoeH90mzXxEkOOa2L9yWEhBGD1mF5ftO+rxwvxvquvN5NM1sbBruhnuzdSXGgL72LtxGhwphONlOJzocpH7UqWcbbd8fJSqZg2R5h2tGftW3ZKzkBiUPeAaay/OSQ4fuMylWdcSK4H+eUTl4fuT3PNGnek731tm4zn8PAHPRS+k275lJkWXLKNFyhriOYVIr8DObfI/M7dZcZc9nTAoxivYeA1Uy6zdmXF7MPsFLWF1JK9f4I6YdN22SF0J6oXs75zTrgOJOlLaq+Tzkt7TO+5nHpC7Wj2OiI2GLRDYKPBY+EGKUEUHnyEcLsShXAJp9tDCnLXvPiAPP/gfwyJjkd+oYLaDOg/XO0s1wAAQABJREFULJj1MqPBBQq7O1vNA0pd0mQ8HQGoO8wUrfWTDzPejKfY05lylrU2gZG8v/DQ/5F1Kx62cA9PzFD1ymTnyoeDGb2ZmLt3AwipweYdMdOAebgoGsLlTjne++Wzo1EykDt8oGXNn8If/ba3gLeAt0AqC3ggOWgmvvzTwEgGMAEoAAhgBgDFBSAUhpF8LgBhB72Ml2Jbu9ubi4EFABaDF+QFzIh+oaE/LYwEoHCt6AeguGCq6icfAJcLRjKACUBBPzAmDqaiH4CF7dDvgknoD8NIQFIcjFSYin5gMO/REIZ5uWAk14D+uEE79AOwuF70u2Ae+hVGApPQ7xr0ogzRjz7sjn7yjgZgmMK8XDASmKr6XZ6p6CctBlnj9EdhJF6dLs9O9AODqR9p9QPzkmBkLpiKfmAwNs4HRsbp514iTfRTrymvcCCfNDCS+sygL/WWOgiwRF80YCv0E7iX4mAk5Uh6CiNdMBX7h/WTlgum+rYsWwq+LcvawrdlWVv4tixrC9+WZW3Bd6H2a/r3436Z9mt8vyxYi3xv9ct27OiS/vLiYQOe+fTLXA9GZmuse2vp0ueEV5pAH/7Tn/64vPHGWweEd+TM2Ydas6xd/UYa8+yVOB19W+16ZeXG05E1JglNZqrBPuP9owO9BRVmBh2ZZjEa7FqS5ndgeH2/EuMdWGTWDstnHb3elo02adYN3LnqtWg2eX3+8Pv+QSZNmG7P+fLNn5Gu7uFrc+aV4Agi95upbssaJ9rpZPXaSuoah6QE0LSelIN7K1ljMhIGOo3HSnWttX2SRxweqeZHnBSZ9T4VFpBUocpHZf39x79ufuvy4HO3/Ps3P6W7h7x3PPc7sx7hU9abr/6Ca2TzD79mPd8UQmKXvGHakBySP+SbDzYqqapxJtpQP1FuvP6f7bE169+Q7981FJw4T4rZGZdPv5nuuKS6zk6JbG5e59l4kNaecYGdQrWvbbOZDnmRBXpM75o24J1MYIpj6iRrjzIlbH8ESNq6ZOKxxuNowq6d5veuuZ7SSL3XNPGM3Pbkg/bVcNG1Uj55hl0bVXVqvD3xPrVqjjzf+oTNiumtCe07Aw/sQra1/bv6pNg8QJF2ymwrJPSvo3WNsOYfa/G99vSPQkeCzY72tdIwdYFMn78kM6Xr+JnH2INMZZpPKDaegGNqJtr1EdlmatKu7YFNmP6UUD9lvsjgGoysV+kM5rujtCLwqAsfb1v/ov1YY9bFVA+88PFCbQfrO+6S2qY5mSTx3gMcdnfGP/CTiTy4gYcl55WUVchjP/gLOePam2XKoWdY7f1mzV7WVgTKrlv+G7umJactOPNj0WRyfu434HNMdXb64fEzjjLnRChhzlT2TITtrausl2Sl0bu1+fU9k6nPxVvAW+CAs0B23pcD7tKzFwyAyHcAH5gRByCiMMwFIBTmASCASe1b3N5QDFqEYSQAxQUgFEYy6IJXFYNQ0cCgo8JI9MfB1Kj+NDASeOjy7ES/wkgFsy6YqjBSB41c+hXmAYvQHwdTo/qBftGA/RmEYdAOmER+Lg8CYAb6iR8Hw1ww0gVT0Y/90QcYRL8LpiqMpJyTYCT6gXmkEQdT0Q9MZZA1Tj/HsD/asD8gLwmmkib642Aw9xIAVD0LXTDSNQDugqnkRVoWRnbFe0ZiBx4U4F5CuwtGUheBqbyr/jgYjM1Uv8szMqof+7s8Uylr9BNywUjVT91xwUhtC1R/HEz1bVn2bo+2Bb4t820ZtUO/S3xbZqbmiTxY4duyWvtgiO+XZR8S8/2yYC1s7dfk0y/rHRwkzn4riX2gK59+WfjcQm8rjGxv3yLf+MbNtm9U6Dz2pfSKDdCZMn22bDNAqWvHngdZaW3xYttTNupls2+Ug6oPlwtnflBKi8vkjW1M71b40L9ti5QYz1HWuyufOktKQ1Nssg4k8KLu7Eul8qB50vCe91kBO174Y2ohQEiATaXxkqo7+xIpa5oslQcfnkkrdUImovnJPqrANKdlE6faF5Cv2PzOCH9Ok/iOF4Nrrzvn8oxNgIXhgFcc6decco4AYqtPXhI+bLc7lj5u3xuv+IiMnXe0tUvtWRebNA8bElfXMuQYaw+WTZiaOV6I8skklnKjv2ObbH3sfrtmZN2SS+1ZtozNlLvVJ5wlNaefb8FYxYyDpf6898qYQxemTDl3tHzzYZ3SYuMRXWPsj10B6hqAR4UKcflQxnjHjr/iBmOHIyzIrjr6ZLO25vU2a+pNowF2PGjQZtaN3PLbu4X1S1lPMh9o2Lsp8EqtOe1cqTDwW+/T6PXp9MPVJ51t6671zAxF4t7kflA7lTaZGYX4bKBqOADGe00dr5g9N/CENLZVL+D6d18hYw9fZNsR6gCQFBAZ9joOp+Xapr2bZNaF5FVZAvAqCn0e6zoldt+s6sPkhAnnyNHjT5e5dWadQPOQx7rOt2z8Qra1unbkkqlXycxxc+26lrGiHAeW/eYrZu8uOWLxJ2XRRf8k46cfJUed+zdywqX/YmOvePK79n3B4o8L60meeNkXpW7iIXadxpEAI9YunH3UxXLOR++w6a5edp9937IhWLdyxoJ3y0HHXCqnXv1VKXNARyJ3bW+RyqpGOeb8z8m0eYstuGM/EG/z6meNvkNl8Ye+b4+xfuJJV3xJTr7yy0QpWGh7e7kFqmdcd4vMOfZyOf3am2za0XUdkzJsfusPBkZWykC/cdZY+Yzs2LrRekvqWpm8c00T55wkU+edZad4nXvydUlJOo+te+W35jusWBZ/+Admjc8rjC3+0xkv184Js46TSUaLTqs63qzXyeeapgC45zo/zfFlZh1N6iP15Ohz/9bC8ENPulbO/+R9UlWf/Q5Kk5aP4y3gLeAtEGcB7yFpLKMwDwABzHM9jcygnU4tCQyLG7QDJgGwACgAlrgBcPWGUoDiAhAMluJNB4AAJgGwGBgKB/IJ6wcKuvQzAAv8JG4STA3rZ9AlDuapB4EdtIuZWhL9ACDy7jYwqXlTsxOmKoxU+8fBSOwPbAEmcY28RwP6Gegh5Bo0UhgZB1PRrzAYmIQtXDA16hmZBCNVP5CLcogGjqOffKg/lHk0UBfRntHf1u6EqcAY7E989FMXo/pdnpEuGEkdBFhiX+wOZHTB1LB+7B8HIxkE4x5QGOyCkejH/sBg1R+1hUt/HIwc3xh4pnIvxenn/uD+xU5x07TqAD7lThlSX+P0kxYa49oCjmEHhZFod7UF2J+2gDqp+l0wNdwW+LYs2xb7tsy3Zdp2+LZMLZGFkb4tE/s94/tlQd2gX+n7Zdn7JNyv2Rv9sqySwm4pjGwzfcibbvqWs09a2Bz3fmqTpky3v8/WrNxXnvZ3e0y92Pa0TBk7Ww6pPVLOnxEMejZ3rZXHNwRri7mmKrT7BpOL9vVzWX7b4w8IcG3cotNtVCBX+/0/sdtbH7lX8HAKrw2446Wl0r0qGLQekrb7cmyU1rtvl4bzrrZTODKNI8Gun2e3gqnsimI8yAaj2LcUUcLRh23jfTbumFMz+0sbJhg49AH7uc1Mq5lZG3HAcTGDmfdsXCedL/xBqhaeIBbImf1AOrte4GDKHc88ZgHj2AXH2T3db71iAdDgYfvW9doL1kMSEAzEs8GMRXS9MnTqOzwSAUcANcoBuNN825ds9EKVT5B50v9M5bKR0I6WipmHWODK+qCtv/yeLWPgKi8CHnk7Xn7Wbg/5Z67TFai7uepBPvlQTnggUg5jjzhe8PDseOZRm3X2PnIpie5z1IdQlLh8wmVce+ZFmTOoQwQgM+Cx/cG7Ao9Xs6/t3h/K+Cs/Kg0Xvj/1NKfcjztXvy4WAhsgiIei9aC1uWT/MVVu14rnLSRWmLz5R1+39ZdY9l4wv0011C2+xG72tW+Wljtv1d32fZuB0jWnnivVJy62n1t/cZudrhd714Q8gvESpY0xP66HnJ/0ob58glx+0FAPNP2s3o5Dyy8+bbwhj2sKNPbv6pf713zPZB3Ez9XWDtUYnwfxnmt5VKYZb8w5tUfIwbULLfi89ZXPD00i4dP2llXyx19+XhZd+I8WFAILCW8uvdO+Mw3o8sdukfln3GChJTv7enbIEz/+hD2u/3aZa1RPesCxfh+Ep0oFrlVWNVjwyXltb78sLz3yTZsEHpJv/PEOC8yOveB/mrG7PkFb9fhZ9nj439J7/9lCRuAar/YNr8hvvnWNjfK7Oz4lp13zDWmcttDGCc7bZdbIvCecRF7bel3hk35/52cN9LxdgHS8COuWPyQr//TLcDS7jW1cYe3LD8q80z4k7W8HU7lveP0Jcz1XyobXn8xEf+WJb8n802+Qk68IPKmZotR6ODrqdVw+zz3wRWuPhinmgRzzovywr+u6Mhk7NoCu4alVjz7v72wsQOr9Xz3f1O7kukpk6oXWDUcWtsy1Ph58/FXCi8C6k/29w8dgw977rvT8Pm8BbwFvAZcFiqZPn567xXKd+Q7Zx6AL0IMGGRAQB/PUGy0JQABrFKDEDYADIABJ6hkJ/HEBCIWRvANjACguAMFAItAJmEc6cTCP/LhWYBJxSDMaGHRBPxrj9KtnJ/ZIgpHAJABWkv7ooFeSfoANsEVhJFAmGsL6gUkumBfWDwyLg5HoVxjMABT2d8FghZHYH5jkgpEMgIdhKjDSBVMVJmEXYFIczBsCI2M8UxVGAoN1AA2N4UA+DMDm8owM68fucTA4CvPi9CuM5F7CXtS1aOBewv5J+sMwj7JJ8oxUmIr+OBgc1o/9kzwjcw3go19hMNdHXYx2+sL6uZeoPy6Yyj2EfsqU+xZdLhjs27JsLQq3Bb4t822Z1gzflqkl0sNI35Zlbeb7ZVlb8N3s+2WBPYY9JBbql23v6JJxVZUWgo20X7Zy5Ur7YBn9V/Ki78CLPhwvQmNj8CBeoCj3f4WRra1tcvPN384JI1tbgyk3dQCL/iQv+i70v3jnd8Y7LdD+0U92PZzputYFJw71InLFyWcfXkKNFZNla49ZEqB/Rz6nFjwunoVML4qHlU77OJJMissrDSAyyxMYSIEn2P4c8Ahjykq7HmLkN5ZeFzbbZX57D5hpUJOCnfrS3OPWGzImraTzC1U+SXmkPWbLuK7BAjHA2O4KeyqfQumnjItKy6TPeGjvrqlLsUmR+d24O+2exh7FlWMsCGZ64wHHGspp0hhtHLzLeaDjntW3ySbzQEd1WZ207OTh7KHjIeSzL7W16GHq1jHVE2RL82vWA5J9GpiOtGHaEWY6UTO7mgGF+YaL/+YR4wnYJ/d95d3SOH2hdLa/nZmuNZwWU7nWTjzYQLrl4d15b+N5WG+mfMX7cMtG4y3fP/yB/LwTdZzAFLQ1Bpq2rF1mgFlye+s4PfWu8WatSTxSw+szpj55MGJV3RSpMEC4bf1L+Z66V+LjiTm2dpKpb6uddWWviPKZegt4C+yzFnhzRbvMOrjOrLWbe1qTA95DEmhQCBjJADgAhQEDYJgLxjCAkAZGMmjBQI/CPAAEP/ajQWGY6h8NjATGoB+NaWAeeoBJgJtoQL/CSGBYkn7i5YJ56tmZBCPD+uNgHmXDIIx6FgKwuNZoUP0MXqv+KIzkHIV5afRTP4BhlFEcjKQuJsFIhamqPw6mMoCCXRkwBMZgfzSGQ6FhpHpTkEcSzMsXRqKfeylOP/dJEozkHiIONgHmAVNdnqmqX+8l14MJUc9I7E/9iAbKGvsTn/qF/Uk3HMJtAeuUJcFI9FMnVb8LRkbbApd+6gP2zwVTfVuWLSltC6hH2hbEtcW+LQvsRlvs27LAFrQ7+mCFb8uCtti3ZcGUwWkeEgv3a3y/LOhX+n5Z9vtppFv0//7iLz5s+iatFka6+hQjTfuddh79Ll57K7BmZHPXmr2V/ZB88bZyeVwNiZTiA2BuYPOGFDHzi1J7xnus92XSWXie6RqESfHSHgMq5UovLRjq29KaNltnvEKVjzPxPHfaMt70dp5n5R99T+WTvzL3GSMp43zrtQXfOeC3W11h9wIhB7rXFzbRUaTGAx1JD3XsS20tl7m9dbV9uS4Zjzq880YbALMta56PTQZwOFoYSeLAwajeU977FTv9aWzm5sCTxvNz06pnkqIMOcZ6ksGakkN2F/xD9FpGkkHnlreFVzgAoM/7RLL36FYDqB/+znXh0/bIdkfbWuHlg7eAt4C3QKEtcMADSQwKDIiDeTqAD0SKAxAMGjEYDTACxgADXACCtHgxoB3nGclgncJIBsDR5RosAIYx0AmoSfIsTDvohX4gSRxMUoCCfvSgn7jRoPoZNGIAFv2uAfywfuyPbaOBNBRGAvOIw3s0AJNUP7YAAEWDC0a69DOAjP1VP2Xp0g8UVACBLXhFQ1Q/tojTT1kySJSkH1tgN4Aa+blgahRGot8FU9HPdXIM+8fpJw6AigEZ9LtgKoALWxBIywXDgHPUHdVPWVI/ooG8yFNhHmm5YGRYP9rJNxqiMBL9LhipMI/zsX+cfuyvMC9JP7ZQ/XEwGP2kl9QWhPVrW+DSj00bG8cb9bt8WzbYFvu2LFjzzLdlQatAW+zbssAWtE2+LQtsQTvh+2WBLfjv+2VZW9CvLFS/rDLykNho+mVZhSPf4vfJ7bf/0AJJ1++Lkafsz/QW2HsW6Gleb9awq0gUMGDWOPTBW2B/soCv1yMvrQFxT8858hTfGWcCNPd2aF23TEorxibK6O4c3UMaiYnvgwcBt9glKWzZsCLpsD/mLeAt4C2w31nggJ+ylUFKQEU0hAftcsFI0sD7SGGkC6AwAAiE4Bj5uWAYMI94QKUkAKEwBoAFGOEVDeghLQZV0E+erqd8OU484ivYjOpn0I44DFYBsMjPpR/dxOM6FEa6BjtUP5pJywXD0INdgb0KI+P0E4/yUpjkgsFh/dgiDual0c8AJvGS9KeFkQAu9ANMgWpoi+rnGPkRF4CFzVz6gXnEA2RxnLRcMFX1kw9puWBedACfeC6YGtXvgnmqn/pDfUBXEowk7yT9XCPXkKQfGxAvF0xFE/anjlMP0RYN4bYAIIgtXPqpq+SJfu4P0orCYO5ZHQDnPiMt6m005AMj89Hv2zLfloXrmrYF7KMuutpi35ZlLebbsqwtfFuWtQVb2q/x/TKx/U7fLwvqR/fOPpk9a7rt1yf1a7QtdvVraJvph9D+8E5/hRd1jRch3ylbA3Xp/x+oU7amt1AQs9BTtuabv4/vLeAt4C3gLeAt4C3gLeAt4C3gLeAtsLcs4KdszcPycQCCwRSFeQwGAAijAQARHnQhXhTmMVhAHAargBPk54J56lmoMI+0XN5QOuiFFtJyDSDnCyMV5pGeSz+QhXwVhrn0R2Ek+l0wUgdd0E+cOP3YLBeMBIahjUEaoBrpRWEegzakpTCMOC6Yh37iKcxL0k888sFecTAPXaqfeLEwrz6AYXEwEv2klUt/FEai3wUjSYuXwrA4/VyjwjzSculHE2mhkXIkXjRQNqRFWSXBPPIinsK8OP3EoQ6hH7vmgnlJnp0KI5MGkBVAqH7yjGsLsAX3XhyMxDbEQb+C/Vz6yQtbxLUFpJekn3sbm/m2TKydsJdvy4K7lHpI3fBtWeAZRt3wbZnY7y1s4dsysQ9XcY/4flkwzSy20H4N30uuh8R8vyzbC6JfI0W9pl8TPCQW16/hfuOV1C/Lpuq3vAW8BbwFvAW8BbwFvAW8BbwFvAW8BbwFvAX2bwv4KVsj5RcewFeAEgcgGJxh0A6owEBD1BuKpInDALgCFBfMC8PIJADBADIvAARgxAXzVD+DRmk9I4FSpIXGcCAfpp8E3ChMdcE89DOYkmvQDu3EI1086VwwDHvqoJd6cyUNenG9pIP9XfpJC/0KU136wzASzzfScsFUtHMNBOyfpJ+BKCAe8VwwLzNoV1pibY/9XTAV+xMX/aTl8swjL7TlgqnYAv0KIFwwDCBIPKu/K36aXIWRADuFkS79pIV+7Ild4/QTLy2MTNIf9ixMgpHck9gCAIEu173EtWF/YJ56dsa1Bdg/rN/VFpBWrrYgrF/bAu6DaCAd8kR/rrYA/b4t821ZuA75tixrDd+WZW1Bv8G3ZYE9fL8sWy98vyxrC75z8+mX9fS2mn5Ph+0vuvqVafpl2dz9lreAt4C3gLeAt4C3gLeAt4C3gLeAt4C3gLfA/m8BDyRDZagAgkE5BvCBZi4YxnEGERRGAjNcAIL1ZxjsBJSxlpwLhkUHvYALLm8o4IkClDiYB5xjoET1k5ZLP4CCQUf0K4x06Sct1U+eufQrzHPpJz8gShKMVP3AMCAMecbBPGxBfGzPNURhJMWK/YFhXBtpuWBYGEZyfblgJPopSxfMw57YLC2MVP1cQ1S/wmCFkUn6sW0aGIn9Ceh3gXGAGvqxiYWp7W6YSp3A/twv2Av7u2Ak9qeuAVPR74J52CoNjAzqYm79pIX+NDBS9WN/l37yVBgZpz88gE+dIC2XZyppYX/yIS2X/fOBkdoWcI+7wLhvy2xVz/wL6k/QFmN/35YFD7b4tsy3ZXqT+LZMLTHUM5LvLd8vC/o1vl8WPNiST7+M/nBcv4D+Spp+WbZm+i1vAW8BbwFvAW8BbwFvAW8BbwFvAW8BbwFvgf3fAh5IDpYhTz0DUAAkPMXMoLUL5umgXRhGugBEU1OThRkAiM2bNzthmAII3nMNejFogUZ0uWAYAAL9wJgkmJoWRqp+QFmcfoWp6M8FI4FY6I8bAAfOqf40g17Yn0EeYIwLpk6YMMGCWYXBuWCk6o97gh39QEJs4YJJClOxP/oZwHTBVNKhLJNgJFUS+1PXuDZs5oJ55MWAFvZPgqnEyaVfYSplim7qGdcRDaSjMFhhpAumUpbo596I08+9FvbGiRu0AyYxAGjML5s2bXLCJIWp6M8FI7E/9wtlxL3kgpHYH32qP6ktIO8kGIkt0E+g/rhgGGXIdfJOXtjWZX9sTxmgX9sCl37y9G1ZUHt9WxbYgf9p2gLflmXtRZvv27KsPXxblrUFbbHvlwX24PsNe/h+mdg+eLhf1mVmmiiSMtt/zNaedG2x9suam5vDp/ptbwFvAW8BbwFvAW8BbwFvAW8BbwFvAW8Bb4H92gIeSJriY9ARgKUD+EADF0wCsDDQwCBBEoDQAXDS3bhxoxMmAR4Y3OM9DYwEQAB2gGEuAIF+hZHEc+lPCyNJi7jkAwBywbAwQFGYl+QZqTDSBfO4Nmym+gEtLv35DHqhH1AWpz8KU4FTSTAS/XEwiQF81Q9Ewv4umKT6iQ9wog5FYR6tycSJEzMwEv0uGIatAFjAsCQYqTAP/XEwT/UXAkaiX2EwMBWbufRzr3EvoZ86gT1cYB/9ClMZlHOBZe5H7iXVT1m67M/gcV2t8ew00+QqjIzaP9wWoCdJv8LUpLZAB/BJN05/FKZS/133kg6AK4x0tQVh/dRn35b5tox7kqAw0rdlwZqR3E/aFsd52fu2LKg7/PdtWdYW4bbY98vSw8gDsV82MNBvKk5ZtvKYrXz7ZUNO9h+8BbwFvAW8BbwFvAW8BbwFvAW8BbwFvAW8BfZzC3ggaQpw0qRJFoYpgHDBsJHAyA0bNjhhDABCYSSwBgDhgmFpBr0AEAAsAJUCCBeMyQdGcq0EYKoLJgEjAXBch8JUl36ADTApDCNdMBX9wKQk/cA80mMAOckzUmEe+QCAXPrJC/ujH8CVD4yM6gcOMWhNmkCkJBip+hVGujw7qYvAOoXBLv0jhZEumIc9Vb/CVBcMS+MZSZ1R/YA+7O+6l9CfBkZSRtTbJJin+qmT5IX9XfotjDQAgvKKg5GqH32UDQDXpZ/yYUAREAoUjPPsDA/gxz2YQBrcS+jXtsClP9wW0F6QbxSmhvX7tiwLxrHLvtSWaVvs27LAm4h7ibY4nwcrfFvm2zLua98vwwpB2Bv9Mt+WqfV3b1uWzWX0W9dcc5Xt39xxx12jT8ynkMoCZcXlMra0Wrr7d8jO/q5U5xyIkYrHjrOXPbCjY49dfnF5pezir2f4jDD5iigqr5Diikrp374131P3i/hFZeVSPMbM3LN9i5gfqfu85tL6Jikyv/kIAzu7ClIuxZVjpMjUmYFO83B4f59Ne3fkYxPe2//Mg8zFFWNkoHvHkPIuKi6R0oamjLr+DrNsTvfubddoQ0uLy6SrrzOT7ztxo3KcGfdomJ65tPa3X5b+vp7M5925UdN0kHR3mAeiuwrXflXVTTGSi6Rzy/rdKV3KKsbJ2NpJsm3zW6ZpGihYXugnvR1bN6ZKs6SsUsbVT5OO9nXS39vtPKektFzqpxyeOdbRttbYvSXzuVAbxcWlUj1+ltXeu3PPfacWSr9Px1vAW+DAscABDySnTJliYRIAAoDignnqzaWekQAlF0wCLChAiYORpAEAYgAWAAFAccG8MIAgDoO1URhGNZ08ebLVD4BAvwtm6KAdA+B4ggBQXPrVGwQA9PbbbzthDLrDMDIOpgLfdDoz9SyM6icf9DOQhg3i9Ocz6EVZEbC/CyaRl8JIYCr6sV00hL2JAFMMgEf1A1oBcKqfeC77R2EqHnUu+yvMS9KvMJV6pDDVpT/6BL5LP3AOgIt+dFNOLv3AyPq6eutZSN2P8yaiLIF52An7u+4ljmN/9CuAcOlXGImNqRcuL13qs+onL/S77qW0MFLbAkAfAMulPwoj4zw7w21BEoxEP/eUwtQ4/VxD2DPSBSNVv2/LsjByX2zLaFvSwEjflgWtsm/Lst9Ovi3L2sL3y7K22Fv9Mt+WBWWwu/tl2ZIe/RbfibwO1FBX3yiTp86SpolTZEt7i2xYt1o2b3o71hy0M7S79GnzDeXFlXLp7I/K+EoGZUVWbl8u96+5Pd9k9kj8iulzZKCnW3qbd+/AcdLFNF50rZgfGrL5R19PilbQY03v/4T0tjRL2z3fH3W6te+6UCpnHiIbv/XFUacVTaBs/CQpHlcjO1e9Fj20xz6PO+ZUqTrqJNn0g6/KnoTGI73Axss/JMAzQu+m9dL6X9+z2yP5Vz5pmtQuvkRKTBkQtj52v3SteN5uFzIfm+Bu/ldSVSPlU2ZIt6lLu3p7YnOrOnyRVJ+8RFruuEn6trZl4pXUNUrjZR/KfO5Y+rh0PPtE5vPu2Dh/xnUyZexsuWn5P+yO5AuWZlPlVBlXVmvb+pEkOv/0D8ucRVdmTv3tbR+Q1nUvZD7vro2KsXXy7r/8maz80y9l6b1fKFg2Z33we1JcUiZ3f+nMgqXpSuiocz8rs468SB742oUFhZ/n/MWdsrOzXR74+oWubIftm3bYWXL8Jf9Lnrn7n2TVsnuHHWdH3aTD5MwPfCdz7M2ld8pzD/zvzOdCbUyYfZycds03ZPljt8jL5uWDt4C3gLfAvmqB4n1V2J7SBYxhcD8OoPBjFDjCALJOLemCSQAIwB8/9EnL5dmmAAUYA4CIAyguGOkCEFOnTrUwCT1ADxdMQhMDusAMnVrSpR8YybUmDeCjG4DCexJMjXpGxsFU9DOQBpCK0w+MZNAL/YAwXi796AJ2oX/9+vVOGEleXCf6AVyAXhcMIz8gok5t6IJ55AMAIk0gUpJ+7IF+QHAcDAZGjjFPXhLi9FNXqWfUIzTFwVTKG7uhPwmmAhBVfxwM1mlmmeY0F4xkUE71u2CeDtqhnzqBp6LL/i4YGYXB2BOboZ96z3W6YB4wVWFekmckZYl9yQcY79JP/cK2afRrW0C9yNUWpIWpSZ6R2hb4tiyAkb4ts7eibTt9WxbYwrdlgR3479uyrC18vyxrC7Z8vyxrj321X5ZV6LfysUBVVbWccOoSmTh5mmw24K2mtl6OOeF0mTXnsNhk+D2wcOHC2ONJB+bWHW1h5OMb7pEfv/Gf8ujbv0iKvleP1S7+M6k55d17VcPeyLy3ZaP0bo4H0vlo4nfh7grjFp0u9Usu213JvyPT3fSdL0nzd/4tEbqlvfAqA2OLx4yV9gfvkpY7b5XuN5dnTi1kPplEd+NGxYw5UnvWxVJa25CYC56+/du2mAcVhnoP97Vtsnbd/ONvJJ5fyIMt3RukuWttIZPcLWkdP2GJnDfdPFgxwvCn//53+a//faqsePK2EaYw0tN2X9s1UkXv1PMAzJTxgzdd/k69RH9d3gLeAt4CeVnggPeQxFoAIBfMYNAOAAT8AEYCNFwwLOwNFQcjSQPoweAXAAKA4oIxwEhewCQFEFEYg+Zp06ZZGAOAAKC49CtMJW9gJPpdYDONZyS6AVi8K0x16Q97RgL8sJtL//Tp0y0YxJ7od6UVhqmASICYSz8wUgEEZemCSUBIBpfQDyACBrvKksEHnWaWOHEwFfuTJropc5d+oKDCYIWRLv120GsQpq5bt84JlgFvXCf6FabG6VcAEQcj+dHMoCP6qTdx+klHYXAaGEm6a9euddZFYB/1DP0KU136wzBVPSOj9Yd7g3sJ/cBIoJ/L/tazcxAG54KRClPj9HNcYTB1gnvTpR+Yit2whcLIqH7uR+4l1c91uvQDUrmfwm2Bq/4ojCQf35ZNyDwYEuflTR30bRnfIkHwbZlaIjvjgG/Lhq4Z6dsy3y/Tu8T3y9QSYvvgafplfI8Xql+Wzd1v5WuBgw4Npkl75qnfSmfHdtu3Ovv8K2TKtFmy6s0V+SYXG5+pBc1khzKn5gjp39UnK7YstXH7zHY4EI/QN9ArVWZK17qKJjvozmcNFSVmVpHKybJl52bp7Nuuu6W4qFhKi8pMX7NY6subZKMZrB9TOlYqSww0MXHTBqbhJPCdZwwi+tn82MpMSalplVSbmTqq6wzA2+CEPEWlXI+Z/tT8LmL6VYCHjduXvR7SssfqxxvYYWYbipnetNQcH9jZvfs88bhe82q770dDpqPUa7V2ML9Pma6vrGmK9LU12+vS4/rOlJZMX9nr8LJV77xddh3Z4Iwi4wFqpxQ09h0SjO3LGica45RIX+vGTF5Fpr9q3Pxs2RA/Uz5mO+rdVqjyGaIrxwfV59QyrtZ4n5prcXjhcR12ylNjBzvlKb9HB21o0zTTPO4y9SZXPbDXHJOPtTtmHsX0smrv8knTTbmYWZDWr7IWCV9T2nwo+7KmSTLQtWOIx6GtJ+Z3YThNMrF5O+5DK8D1j/vXvLj/MoF92JI6yLbRgBcygfT1+qJ5E7d7zev2RVsQDeRB+eQKxZVjpbRxQuK9npxGkWnriuSp5v8eFq2kqNS2W2NLTFtjpnRt29ksdeXjZedAt5naNZiikvaxzLSTvbt6ZWxJldSUN5g2dp0M7DL2iIS4tlajJbXX2uaXcK+aUF5cYd+ZDrp3IN4L1UYK/aNt6OvZkXOaVqYGnTBrkXR3tkn721k4rklx3Y3TFkrluEZpWbvMOSUoccbPOFqYzrNr2yY9dUTvTG1aP3mebGtZaadNdSVSP2W+9OzY6vRgREvD1AVSWj5GNq961lS5UB0OJZYmH41eWo6TRbG9Pt2XJh+mrh1T3SSbVj6jp43onSlkayccbNL547DypIx55QpMuVozfra1SU/3Nmf08soaGT/zGDPV7hZpXftC8P3ijMmtX25eZoksU+b2eygmnt/tLeAt4C2wJy1wwANJAIQLBgAgACjAAAUQLhgApFBvKMCOa5pQ0gAaACIUoLhghk7Hxg9DgAcQMQozqBw6gEwfG4Dl0q8wlbwVprr0c40K8+IG8NGNftIC9gFQXPrVs5N4uWAkUIBrQ78rLYWppIUdkmAk14rN4mAkeQGwSIvyAdS58mTQKA2MnDFjhi1L0iBPV1o6aEeewFSApMv+wEjqGvrjYCTgCoBCWsBU9LvSCsPUOBhJ/QEGU6bopsxd+tUzlTzRzjW48kRXpVkzBf1xMA+YynWSFjAV0OtKCxipg3ZxMFLrP/qp99xzLv2kozBPYarrXlLPSNJds2aN814CpjLoiH5gKnXbpV89O7FF3AA+x7QtUBjs0q8wlfgKU136SQv7Enxb5tsyWxHMP9+WqSXEeovTNvq2TKwXuG/LgrpBfdC22PfLgn6B75cFdaOQ/TL6p9XVwVrqo+2XZVs1vzUSC/QYwEXQ30z0qRiU64l4AI0k7fA5V835lB0Y1303zPuC3Xxr20vywNof6G65/pDPSVd/hwGSfTJhzFS7H4DJtIQMnJ437Ro5qGZBJn5L99vyi1W3SE9/t8yvO07eNeVSM7A+YOHktt52qS6rs/DhFQNAH15/V+a8pI2JH/hMBnYBxCZ+8G9s9J51K6Xt/h/bbQBi48XXS0lNXSYppqtk2spwaLrm4wa2mOUtTN+8rGmyPQR0av72v9lt4FL9+Vdnpr1kZ2/zOmn95e32OP+AURPe/0kpNt6shJ71Rsd9gQ67o0D/uM4AoJo8NqwdNmUrx4GpASQ0kMFAmY7nn5KOZx7NKKg57VwZO//Y4LOpS1x7OIy/8oZhU9BO/PDfyY5X/iTbHn8gE7X6hLOk6sgTzcUPeimZtLA98KvB2J3pWjVo+QCQmm/7kt1dqPLRPNK+jzl0odSeeeGQ6VAp44YLrrHQWdPpeO53Q+wGBOM6ul5/yU5xy9qbBK0L4y//iBSZ35Xmx11sPUiTj+Y/mne1N2mUTZiSuT+2PnqfdL26LHXS1SedLVULT8jEZ8pb6j3rcVaYaX7rzrlsSL0Ye/ixUnPqudLx3JPGdo9lzkvaqDHTq44106xuvOVfMtGarrrRAtnNP/mGVBsv26qjT8kca2CK5MGw+Ydfk36zLiaBulh94uLBIzJsytbMgYQNIHPDe67OlB9Rd659U9ofuCPhrOGHLpl1g0ytOsge0LZRY50/41qZMW6ubfPYB5BsqJjIIxHy2/U/E9rB2ePmCdO9bulpybTJtJn3rfmurOkIpj/O1dZqfknt9WWzb5Smwam5ia9tfs/ATrn1lc9rEgV5P2LxJ+SwUz5g0graC9YqfPxHN0rLmmAK4VlHXiiLLvon+x2iGe7YukEe/vZ1BmC22l3AwTM/cJsFVOzo2p7+IRZNk3fSOd1MC1o+pjazGyj54Dcvy3wuNgD84r99VABnhC0bV8hvvvX+DBA76JhL5ZjzP5eZXhl4/sw9/5+sfiH7/ZImn0yGZuPQk66VI5d8Wra3rpJffeNSeyhXPmUVVbLkoz+VYN1L0/yYtTuLB6d8DqedZvuIxZ+0MJi49DGYwjV8PbnSQMNZH7pdKqsaM1HffvUx+d1PP535jD3PuO5mOwWs7hzo7zHT457lhJ0A3zP//Db7IMivvnlp6nUxNW3/7i3gLeAtsLsscMADSf1hGjYwAEIBCjASgOKCAWk8IwEKACwGvwAQACAXzABGMmhK/FwwUgHEqlWrnGkBuHTQERgJQHHpT+MZiW4AFu8M2gGAXPqBkQyCoz8XjASwEeL0M4CjMBgYiT1c+rlGhalxMBJwBcBFPzAVUOTSj3auAf1JnpGUpQ7aAYBcaaGJukGegDyAkks/dUxhahyMJC+FwcBUQJ0rT+oOdQj9SYNeM2fOtDCSNOL0A1PRT1rASICeS7+FkWaaWRMtFkZS1gqDganod6UFjATCkWcSjJw1a5a1KxAPm7lsAUwFDpIW2rkGV57o4l4hxMFI7jWFwcBIbOtKK+oZ6VrzknywP/WCdoc669KPHbAH+qk71CFXntQL2irC6tWrnWDWt2XWPPYfdvdtWdYevi3L2sK3ZVlb+LYsawvfL8vawvfLsrbIp1+2ddsO+50/2n5ZNne/NVILrFvzpsyYfYgcc/xpsn7NShk/gQf9SmT1W6+ONEnneXev+paUGQ+ZJdOusgPkP33zqzZed/9QYMVOBtAZtH5m88OyYccqmV9/vI27sOFkCyM3da2Xpzf9Sg6vP8F4XC6QMyZdLA+t/6mNw78/bn5IplcdYgftSWPimGlyWN2xqYFky51mbSljg8ZLPmCBxJZf/9ymHYZrdWddZGFk12svSvcbL9t15cYcdpQFDN1vrchoYQMQASwDpPQa0Ddm3lHBcdOfbbjoOik2oKnr1Rekc9nTJm6jjJ13zJDz8agCTAF8qo45RcqnzpbKOfOHTJE55IQRfmj9xXct/Gy4+DqTgnm61xGAqjuWP2vWbXxdat91gYwzejqXPSW7DMAunzrLwsj+re2y7XcPmu1jpGLWoRZcOpKK3YUdWZeRqTE7lj5m17OsOurEjOfall/dJQC7mtPOk/KJU6XlZ9+2ae0yg+UaClI+mljKd64XTT1vrw68TDlPy9jo3f7HR6V341oDts6ydiMecDkcxhyyQLBf59MP22lBAX4aEutBnvlomiN5t/eHAT+Nl31Q+ra0ytaH77bJ9HdsTZ2cLWMDI1nHcvsfHrGwvvr4Mw2cv0pafnqzdK9cIV2vvWDuhaNl58pXrTch0yf3tjanhpFpxHQ+/7SBwC+b+2mejDv2NNny0C+kz6yjS+gPwfSuV5635Tpm7kILON13R3KO3C+AcgAk11E+Yar1lEw+a/jR35i2bkzpOFk85XKpNd6P0YD3572rb5Nzpl1t21JA4+IpV8hRjadZIKnxa8oajJflr0xb2y2nTrrATqt6iwWFuyRtW0tace31/Wu+Z7wiK81DIpfIpDEz5Y43/4/NOh/vSNWa9F43aa6BkX9ugFOnvPjw16XOeCXOPuoiOeW9X8ms0wgAa37zaXn9jz+2oPHgRVfKQcdeJidc9q/y2Pc/apM/5b3/aWBkmV0zcnvLKllw1seSsnUeA+S+67pbrVfjhtefkOWPf0vqJh5q8ho6FWlpeZX1nHzu/n+Vead92AK0OYsulzeeuVPwRjz2gv9pPPY65eVHvmnGRPpk4dmflOMu/mfZ+MbvZeeOdtOspMtHRZLHgjNvlC3Nr8lvbn2f3Z0mn2Mv+EcLI1vWPi9vPnOXHHnOX2egoqad9r2iql7e+OMd1oN1/hk3WEC89uWHBGCYJpx85X9YGIkNAJkLl/yVTJl7hgBV33oumPr91Ku/am25ZeOr8vKjN5lxogE56t2fNX2a4UP7TTOPlTOuvdlA1m4zVewVHkamKQQfx1vAW2CPWWB4q7XHst43MwJAACqAAQCIOBipg3ZcBZDOtU4cx2YZgEJaAAgAigssACAURiqA4NxoAKzlgpEACAZXyVNhajQdPitMZTvOM5I0ACi8A1MBKC79DNopjFSYSrrRoNO0sn/lypXOtABEgDryVJgaTYfPClPZjoORAAgG3UkLmMp1uvQDIuvqgKnmScDBaWZJNxp0AJ/9wFRXWsBIQCl5KkyNpsNnhalsx8FIYCo2Iy1gKvXMlSe2VxipMJV0o0FhJGkAsFxpASOxLXkqTI2mw2fqGAOUhDjPSAbtqLOkxf0BDHblqTCVtHTQju1omDUII4F4AERXWsDIKEyNpsPnNDASmAr0Qz+AMQ5GKkwlXa4xDkbOnj3bpgVMxWYu/Xh2KoxUmEq60ZAGRvq2LGs1ytC3ZVl7+LYsawvflmVt4duyrC18vyxrC98vy9oi337Ztu3BeuWdncEUctmUgq00/bLoOf7zyCzANK2r3nxVDjpkvtQc0WATWb/mLWnZtMFuU88XLMh6JLKTvjV9ykWLFtk4+o8H5+jHucL23i12d68BjUwNiOdOUvj5ypuk1ayRRlCvnQX1xmPOhP9adbOd8o/9H533/9tpYMNA8uX2P9jjeBG9ZLY7e7dar6GSIjMLimNaQpto6F/f1jb7aZfpVwMS+9qHe8qUT5klA8Z7ausj99i4fQ+0SNP7Pi5jFxwnUSBJhNa7b7fTW7K9c91bvBlPuEOl2DzAyNp7Wx+91+4jL9f5bQZiAP36uzoEbzk8BMNr9tmTR/kvc53mutXTKJokXmzbnviV3b1j+XPCOo545vWa9UfxRCO0P/Qze614f038yN8bPGJ+SOYRAEOElp9/214z21sfCezDdn/nNhHDsXf1dPNxt5WPTTzlPzz98KLbufp1af/VnZmzKmfNHSzjVwzEDSD/tt8/JI1/9gGpOuK4YUAST6jNd3wzc360jOPqQb75ZDIYwYYCO/ODTXZ1dzntnytZW8bmfOoSHsM717xhgXbF9DnGXmNloHuHBfDlk2dK3bsvt/WAeO33mumECxgGTB2yr85pNlWmTM7cB6F8bBzjHcw0tYT8anSQEFMZU7495uEC7uVu6sNgnQhipPtPW8prh/EkrytqGnbSzv4uWd3xqmzqXmcexpghq7avsNtNlYHHuZ6wumOFPNvyiP043ngyHm4e/Jhm2sx1nW9K2rZW03K11x2m3TV3ruw03uuEXG2+jTSCf4FnpFgYCdAj1E86zICpufYFnAJg8WJa1+rGWbJq2b0y66gLzdSfgadpxdh6MyXpBOM9uFqW3vsFm0ZV/RSZY8BlPmGWAaFMi8rUpk/+5K/sqW3rX8oAs3Baj37vQwYubrFTw+Klh8cj4cglf23flz9+q7SsW2a331z6M5l78vUGbF4qrzzxHaM9fT7APzxEW9e9KI9898/NbUv7ni6fyYecauvsI9/9oD2nc8t6OeuD37Pb+f5jGt0//erf7Wl1Ew+RafOXyPTDl6T2kqQ8maL1iR9/3KaxpflVefdf/kwOPv4qa1+mXm2cfqT0dm+Xh269OiNvw+tPZrZ1o2HqETLv9I/YaVof/MZlGS9ZPe7fvQW8BbwF9rYFPJAMlQAD+AAUAlCBH5yuAIxksAqgQBwXjGQAHABBAEAAUFwBAEF6BGAk3lzRQFoAFPSRJzDJ5VkFjARUENSbK5oWn/lxTb6kBUBxTTMb1g+MjPvhrd5cpAuMBGJFA2mhC8BDnnEwj8EArpOQBFMBZoAn0gLSudaMJM9ZBmARgJFAP1dQDwjSamkJpsmNxiMt6oV6RgJTXQFAB0wlJMFUYCTgjzyBpOiLBmAqA1UErg/o6grqmWqSsvCcfKMB/YBNBtLIM06/wlTOT4Kp6tlJWuiifkQDeQE9CNQvyskV1DOVtOJgKvpJC5sQj/rjCgpTOZYLplLXSIt64fKSpq5iM4LCVPsh8o8BfOoQaQEsXTBS6yLv3Lfcv66gMJVj6pnqisc9wr1OntyXrilffVuWtRx217bYt2W+LcvWDLHtNe0295Jvy3xbpnXD98vUEgYk+H5Zxhgj6Zd1du6Q3h6DKcz3UDjwOW2/jIeT8gnXX/9+0+ee7DyFh+8Is2cH/ctopM2bW+Vb37otuvsd8Xn2wfMsjHzr9eXy9tqV0jB+osxfuMg4CJbIC88ZzzfzPRDtz9K/ot8W3e/6DTYSI+FBozAyfD5rSnb1dQ5Zf6zFQMvJY3lItDgTlfP7Btco6+3faddK4yAemv39OzLxRrpRPKbKEAnzUKfx7tLAuo8AkxKzdl80WKhp1tqLhlJjawLTdCYF4AwAg8CafYQi89t3b4Qe4+GnQbUUlwezqpTWmPvI1BfdT7z+9lYLLPWcNO8lxovM2nPwmtOcE45TqPIJp5lr204vayKF7cM5pYNTy+KBxyscSsx6otGAB21cSKoH+eYTl8ee2k8Zcw81XvahYVmy/ijeo9Sltnt/IE1Xf0yKzD3H2qYDO7uGxd9fdnS+8LT1oGVKaOp395svS8ezTwbrhhbwInQtSKa97jcvQq9Zg5f1JcMB8KhhvdkGSLJmL/tztbUKtTg/rr3WtHf3e1VdMMa3bvnDmaw2r3kuAJIT55rpUF+VMTUTZfGHbrfQMRPJbACxCPWTD7Pv7W+/bN/5x3Sg+QLJhimH2/NXv3BfJh3XBt6cwEgC3ocEvCYJ4xqCcRamV40G1l8kpM2HuMBIQuu6oWsppsmH9St3hNbSJA1zY9r08v23efWzmVOa3/qDBZJ6PZkDMRusPWkaDNm2KVtnt21+y3qPVo4LxovrB22/ec2fYlLJ7p508Mn2Q/f2Fg8js2bxW94C3gL7kAWGfmPvQ8L2tBQABNCJH6RxAIIBBLy5GKzixygAxQUg1DOPtOIABGnp1JLEAaDEwUg8OAAMxAOg8B4NHAf6kWccTCVPAAr5kgYAxQVTddCFtNSbK5ofaWEH0iMttMfBSAAK9iVenGcYgIV45BkHU8kTeAt4Ii1gsAumon+WgZGkpZ6pLv3qAUFaDPgA4aKBtNAFjCReHFhm0I5yIs84mIp+YDDgj7SAwS6YGtbPIIgLRpIWIAygR1rAbBeMJC3qBYCQeHEwTGEqcdCPp2g0kCcwmLjEAzK6YCp5AVOxhXqmutIKPFPrbFrAbPKNBvRzX/JOnkkwEtBLnnEwFf3EoaxICxgcHWQif8qagULSUs/UqC7SwvbUIdLCXtTbaEC3gs04/aSlMJU46Kc8o4F4wGDuFeJRL+Jgqm/LAuthf62Lvi3zbZneU9xLvi0LrOHbMq0VjBn6flnWGmK/a3y/LLAI3yWzBvuV+fTLWJ+w3HgqhANp5dMvc/UBw+lFt59/fpm8+eZb0d328wknHGf6D7vkmWeWOo+7ftM4I+6HOydPnSl9pk/9+goGGnlwc7tMmTZLJk4OZvKgv7ds2bIhV0Zfij5XdP+QSKP4sK1neF9Pk6M9yhXop/IXBN6D7TTn5ko7fDwMQcP7o9usiZcYclwT608OCyEAq8f0+rj+3RV29WUftszaOMgt+tnujRQX2sK7WDsxGpzpRCOl+Fyo8lG7kmWcbXe8vFQqps0Rph3tWfuWnZIzkBiUBTCN9TeHBAP2o4GpPONCcj3IL5+4PHR/mmvWuCN972vbZDyHvz/sdIXvHCifMtOCS7bxAmUN0byC414o4kFwx0PPeaU7gsh4FOM1DLxmymXWrqyYfZidonYEycWekr1/Qu2Ayw6hO9E8HmTT03c+hOtAbGbmQFJ7nXRewY+F2tHsdQQ2OPmKL1kY+drTP5I1Lz4gne3r5T2f/m9zkcGDLGHAqrqKRrBWoto+V9szYB5eiYbwOei598tnR6MY779gTChtPiSwbvlvZPyMo+XQE98n61c8nFlXk2M583HUG84bUQiVj57vsrseC79n2l1HGsaFczBqUNZp6i3rh27d9IZMPuQ0Yf1Rpvr1wVvAW8BbYF+ygAeSpjTUG4ovAQAXoCgaGEAAoACBkgAEMEYBCrDABbD4AgFAAKfIEwDhegKaPBWgMJgOQHEBCPWGIi0Ao8uzk7TCACUOpqIfgILGJP1pYCp5KkBBP4MqvEcDP/bDMBVQGg2kFYbBcTAV/eqZh36XZyfXlgamkhb6sS+642CwehBgf53m16U/DIPjYCp5qmckg14uz070p4GppAUkpX6j3wWDSSsMU9HvgpHYX2EwaaHfBVPD+oGRroE08kwDU0lLYTB5xt1LAFKFkUBZ4GY0oF9hMGlxj7tgKjCS+kNZcn3cc9GA/jQwFf066EieLhhMWgBq4Ah5ot8FI9GvAIW0gMEumOrbsmxpYX/flgX2wBa+LQts4duy7D3i27KhtvD9sqw9fL8sawvaz73ZL8sqSbe1bNmLsRFnzZpp+4NPPvn72Djv1AOVds3zMCJijLbYriOJl2S/C4btJWN09G2165WVG09H1pgkNJmpBvuM90/agc28pJuBTqZZjAa7lqTpm4bX9ysx3oFFJaWSzzp6vS3B72rWDdy56rVoNnl9/vD7/kEmTZhuz/nyzZ+Rru7hDwPmleAIIvebqW7LGifa6WT12krqGoekBNC0npSDeytnHTrkOB8GzFTOJdW11vZJHnF4pJqKauqrmenGTIWpoVDlo+n9/ce/bh5gLTW/j7rl37/5Kd095L3jud9J5/NPWW+++guukc0//Jr1fFMIiV3yhmlDckj+kG8+2KikqsaZaEP9RLnx+n+2x9asf0O+f9d/OOOl2RmXT7958KGkus5OiWxuXmdSeJDWnnGBnUK1r22zmQ55kQV6TO+aNuCdTGCKY+oka48yJWx/BEjaumTiscbjaMKunWZ6UnM9pZF6r2niGbntyQftq+Gia6V8sllCx0B51anx9sT71Ko58nzrEzYrprcmtO8MxpoK2db27+qTYgP+0huJKk4AAEAASURBVE6ZbYU4/m1vXWX3MnVn4KkXROpoXysNUxfIdDMF6Ot//IndOX7mMfa9feOK4BzjAdnd0SLLfv1l+5n1E0vLxth1GtmBFyWBdDRMPvR03Uz93rbuJZlj1oucufA9svL5u1OfF47IdeK9WFndJFubXw8fymznk88Lv/mqmfGgVN5948/ltPf9X7nHgM7+3m4zPW3ufPp7uwzIzU4LPH7GUUbD0P5CRlSOjaYZQZkQbeKck2zs6PXt7ORhpF3m+mfY4/qvaxsPauyS2qY5ukvwrmRtyG57jplRb/1ye6xpsOwzER0bq56/x67veeFnfmPWH/2AAbWPmPNfcsT0u7wFvAW8BfaOBYLHZfZO3vtErtEBfNfUkgxgKoAABgBsXN5cwAwFEMCCOIAS9oaKm1qSARAFEIC1OADBoFEubyj0AyOBQOgHRrq8udCvMDVJv04tCZhFvwumol9hKvrjYGp00CsOpgIjgXCq3/UUt3q2McgKbEqCkcA19OPZ6fJMVf3oQ38cTI3CyDiYCowEgqI/DqYqDOPGQH8SjFTPVGzv8kwlLQUQ6HfBVOwUhpFxnp3YAntR7qrf5ZnKvaSDdsA8F4ykLlIPKU/sD3xzeaaiX2Eq+uNgqnp2KsxzwVT0AyO570grDqaiP4CRwTS5LhipbQH3E7YAfro8U9GvMDXpXtJpcrFFnGen6icu+uNgqm/Lsl8p2N+3ZYE9fFuWrRe+LcvawrdlWVvwXej7ZVl7+H5Z1hZ8l+hDbnurX5ZV47dGY4GWzRvNtHWldprWWjOIzhSutXUNsmH96n0KRnKNL7Y9ZS/1stk3ykHVh8uFMz8opcVl8sa2wLtzNHZwndu/bYuU1NQJ692VT50lpaEpNlkHEnhRd/alUnnQPGl4z/tsEjte+KMrKec+ICTAptJ4SdWdfYmUNU2WyoMPz6TlPClmp2muRxWY5rRsollGxLyAfMXmd174c5rEd7wYXHvdOZdnbBL1MsIrjvRrTjlHALHVJy8ZlnTH0sftvsYrPiJj5x1t7VJ71sUmzWBaRT1B1zLkGGsPlk0Ipm7keCHKR/NJ+97fsU22Pna/XTOybsml9jRbxmbK3eoTzpKa08+3YKxixsFSf957ZcyhC9MmnTNevvmwTmlxVbXUGPtjV4C6BuBRoUJcPpQxIG78FTcYOxxhQXbV0SebtTWvt1lTbxoNsONBgzazbuSW394trF/KepL5QMPewbVwa047VyoM/Nb7NHp9Os1w9Uln27prPTNDkbg3uR/UTqVNk4LPBqqGA2C819TxitlzA09IY1v1Aq5/9xXCOqu0I9QBICkgMux1HE7LtU17N8msC8mrsoQpPs0sQZnPY12nxO6bVX2YnDDhHDl6/Okyt+5Y+5DHus5gFoFCtrW6duSSqVfJzHFz7bqWsaISDuDpR31YcOaNMvek6zJTka548rv2rAWLP27h0omXfVFYo7Cna2sG6G1tfkMqxzXKwce917yulHdd/+0hOTF9Kl5zgMATLv0XOfxdfymzj7p4SJw0H5iqtXdnpzTNOlbOuPYWmTD7ODnk+Kvl7I/8OM3pNs6yh75i3nfZtRqPPvdvLSQ99KRr5fxP3idV9UEbl28+rI0JmGR9yzOuvTl1Pute+a1xxiiWxR/+gZm+9go5+cr/TH0d0YgNUw+XRRd+Xhae/Vcyde67ZKDfLH318q+HROvv65HOLW8b+y2y8Q465lIprwwenGgza1CWVVbLGdfdYqHv6dfeZM99/Q+BbQf6e4RpYZn6Fvg6Y8G5Mm3eYjnv43dLWcXwBw2oS4/94KM2jTNMWjp97xBB/oO3gLeAt8BessAB7yGpUzPGrXOnAAUgCYAAoLhgJDAAAMTgBYMWLhgTHfSKm5qRNABOAAhgBgCLNKMhPGgUN82sDjoqjASguGAk+gFADNgmDbqkgZHoB2ABi9APAOI9GsIwL26aWfRge2AkMCZJPwCI603SDxRUGAnIc8FI9AOw0IduABB5R0NYPzZ1wUj0A6/IlzQAZi6Yihcm+qkjSTBPPTupi+iPg5HAbOoH+oHZxI+GtDASeEi5ox+Y7ZrmV/WTB/dSHMxTz070YHsXjKQuop80KUv0A+zCATspjOQY92QcjOReUhhJGblgKnnxMAGhu7vL5hnOj23bFtQE0+SiHxjsgpHoB8bzjn5sATANB/SHYWScZ6e2BWH9Ls9U9OuDCb4t822Z1jXflqklzPoppi32bVlgD9+WZeuF75dlbcFWuF/j+2X7Zr9saIn5T2kt8MqLz5qBwX6ZbKZGnD7zYHtapwErr70ydJrWtOkVJt7QvqGm+WLb0zJl7Gw5pPZIOX/GdXZ3c9daeXxD4Imi09gxmKvB7hv8GO1zapy4922PPyDAtXGLTrdRgFzt9wceOFsfuVfwcAqvDbjjpaXSvSrwtBmSZlbOkN18aL37dmk472o7hSPTOBLs+nl2y1yJ6ScXRfrKg4eGvKWIMiR+9APeZ+OOOTWzu7RhgoFDH7Cf28y0mpm1Ec3UxsPCYOY9G9dJ5wt/kKqFJ4gFcmY/kM6uFzh4Usczj1nAOHbBcXZP91uvWAAUTrPrtReshyQgGIhng/lN0/XK0LXB8EgEHAHUKAfgTvNtX7LRC1U+YV3u7UzlsofRjpaKmYdY4Mr6oK2//J4tY+AqLwIeeTtezq6pZnfyL/K7TvenqQf55EM54YFIOYw94njBw7PjmUdtdtn7SHNPenfUh1D0uHzCZVx75kWZM6hDBCAz4LH9wbsstGdf270/lPFXflQaLnx/6mlOuR93rn7dAkCAIB6K1oOWBEOBqXK7VjxvIbHC5M0/+rqtv0Sz94IZS9FQt/gSu9nXvlla7rxVd9v3bQZK15x6rlSfuNh+bv3FbXa6XuxdE/IIxkuUNsbc5EPOT/pQXz5BLj/oY0Oi6Gf1dhxafvFp4w15XFOgsX9Xv9y/5nsm3SB+rrZ2iIBQezt0f/DpuZZHZZrxxpxTe4QcXLvQgs9bX/m8K2riPgDSsl//p8w//SOycMmnLJxctexeO/Xm8sdukfln3GCm3/ykTaOvZ4c88eNPZNLDM/Lk935Zjj7v7+w+PPF4FZeUZeI8+ZO/krPMOpMzFpxn93VuWS+sT0m+aQNxH/neB+X0a75pYSRAkhD2BOReTvou2t6ySv74y88bePePcvDxV9kXabDuZH9vMDNAmny0WHaZsiW89tQPrBdp47SFcsgJ7xNAXq58nnvgi0J81qzkhV0HzLqk+dqE/FmLcvbRf8am9Wj/wy/+hzOdpfd+QY45/3/I3JOvt3E72tbKplXPyO/v/KxdB3TCrOOEF2Hd8odk5Z9+abf597s7PiWnGds3TjvCgOV/tfvxBkUzQe8GtT/l8vKjtxgA/Rdy6tVfzwBKG9n/8xbwFvAW2IsWKDJATtusvShj72U9e/bs2DUj7aDd4Dp9wJg4AAEMAKAogIgDKPoEPjAjbmpGBRAKIwFALgARHjSKg5EMwAIiAXq59ANQyDsJACmMzKU/DCNz6QcmxU0zG4WR2N8Fg7E/MJj4SQBIYST6AWGkFw2UIfqxLzAvDgYDwwC46GfQLg2MBGa7YDDgEP3UN8o6DuZFYaQLpqIfmKowMg4GU7/IE/1oopyigfoATFUYCQx2wVTywhYKU3Pppy7GwVT0h2Ek+okfDWH9cTAyqh9g6YKpYf1JME9hKnriYCp1EfvzTl0EZlPfwiEfGAlAURhJGblgKvqB2YS4tsC3ZdkSwP6+Lcvaw7dlWVuE24I0bbFvy9I/WOHbsqCe+X5Z9n6jLX6n98u2d3RJfV217dfQvtCvzLdfRl+V/gx1h3e+z3lhP16ExsZJWcMmbL3//VfbPslPfnJnQqzhh1pbgyk3dYCRviMv2kD6OLzTX9xfwrjqGttH62HawYTA9yN9P8osTVhw4lAvojTnJMXBS6ixYrJs7WmR7v4dSVF3+zE8C5leFA8rnfZxJJkWl1caQGRmGTGQAk+w/TngEcaUlXY9RHM/uAI222V+2w2YaVCTgp360tzj1hsyJq2k8wtVPkl5pD1my9h4HwPEAGO7K+ypfAqlnzIuKi2TPjPl7+6auhSbFJnvmt1p9zT2KDZTZAMmmd54wDzouzcC3uU80HHP6ttkk3mgo7qsTlp2bnTCoX2prc1lK6bvbDAgaucO82C0gXquUGs8J/uMByNeeHGhfsp8s1bjdgGEjSZUjDWzsE082K5XmZRfUh54bI6tnWSuZ7V0bd/kjLon8qmqmyIVVQ2jntYUrUyX27LmT8765rzAyM4xNROlZvwsaVm7zE49GzlsP5aYNcrrJ8+zAFWn43XF8/u8BbwFvAX2pAXeXNEusw6uMx7Zuac1OeA9JOMG8Pnhz49QfmArgHB5Q4UBBLCAH638SA8HBgwURnIsDkYCY3TQDpgBQHHBSPUMI4+kJ9jTwEgGSAAo5I1+AIpLvw7gp9EPLEJ/HIzUAXAGNnLBSK4B+8fBSPQDsBikUf36NJCWQT6DXnjToQ+7o5/riIaw/iQYqZ6dDEAlwUhgMPUtri4y8JQGRlIX0Q9MVf3kHQ0K87BTEoxEP/mSRhyMJC/sj0b0A+OjwaXf5dmJfmAwZYp+IC9lHw3cS9gM/blgZFg/+qIB/aSVS39aGBnWT1sQhZHkj/3JU+8lbBsN1Gf15qIOEscFI9EPWKaOUxe5f6PBt2VZi2An35Zl7eHbsqwtfFuWtUW0LfZtWfBgiO+XBTNW+H5ZMGNCmn4Z37+F6pdl71C/NVoLdGzflioJ+o2uvmOqkwsQiTUjm7vWFCCl0ScBXHJ5XOWbMmBuYPPw3wr5phONX3vGe6z3ZXR/+DOeZ7oGYXj/SLeBSrnSSwuG+rYM/y2Qj65ClU8+ecbFtWW8KR6ExJ2X7/49lU++uuLij6SM863XFnzngN9x+gq5Hwg50L2+kEmOKi0e6Eh6qGNfamtzXShecICupBD2VIyL126mBo2GU977lcy6h9Fj+vlJ45GJJ58GwOimldnPuj+fd6BoLjC6J/IBqEah6pjqCXLeJ+5JvJytza/Jw9+5LhMHrUyrOprAepLBmpLxqeAVmasuxJ/tj3gLeAt4C+x9CxzwQNI1gA+ciMJI19SSgBMABIN3/GAFYLkAhMJIjiXBSOAnsAIYA8ByAQgGkIEZBGCS66ldBkAURgKT8OZywdQwjEQ/ACgJRubSD0BR/QAUriMaFMYoDIvzLEQ/L/THwUgGkLE/8CZJP4NGxEN/nGckZYh+hZHAYBeMRD8ASGEYZR4N6Inqd3lGoh8YTHkp2CTdcFCYyoAW+gF5Ls9I9OugF/Uml37KOReM5B7ABtgffdGgA/iq31UXwzASuBjnGan6qZOq3wVTFUaiPw2MRD/3kks/Za0wNQ7maVtA3VD9cW0B9lf91AsXTAWGkWcSjOThAGAw14p+7iXXgJjqp47EtQWqP/xgRZx+35YFNVwfDPFtmdi21bdlQb3wbdnQbwDflmXt4ftlWVv4flnWFvRrdkmp6RdUZvo1Sf3KpH5ZNlW/5S3gLeCyQE/zerOGXYXrUGbfgFnj0Advgf3JAr5ej7y0BmToDEUjT+nAObN13TIprRibeMHdnaN7eCIx8X3wINAPuySFLRtWJB32x7wFvAW8BbwFYixwwE/ZGrULg44MwKYZwFcABCwAALkACjAM6MRAAyAAOBINDICTHwN8CiNdAIIBcgVYwJgkmJdrmlYGjRSgkFccQAFKASpy6QfYAFDQH+fNxXH0Y+Mk/WhXGBkHU3XQiwEfYJILBivMU/3AMOBaNJBGFKa6YDD6gUmkC+B1wUjgXFh/HExlABP759KP/YmXC0aqfnTHweCwfuoidTYagKnoD8NIF0xFP3al7irYpI6EA3aiHNGGfsrS5RkJxCMOaSqMdA3a6QA40Bb7x+nnXuK+ywUjqYtcL/q5l6IwWGEe2hRGxulP0xaE9WN/yikaFEbm0h9uC5JgpG/Lshb2bVnWFuG2wLdlvi3TmkFb7NuywBq+X6a1Ilh/Ndyv8f2y9P2yltYtMr6xzvY9XQ/phdviuH4Z/Uj6KvQveadvwos+Fi9CbW2jOZZdIypbekO3Fi06xvZ1nn022bsifFZfX6/puwX9FfpJvOjv8aJvRP+Od/peB3oo9JStB7o9/fV7C3gLeAt4C3gLeAt4C3gLeAt4C+w/FvBTto6wrPiBn2YAHxgGpOAdGAZYSIKR/HhnoGE0MJJBCwAQAxJxMEb1M3DE4ACDGMSNhjCMVP3Ej4bwAH4SzGMQAn0KU+NgHvrRmHYAPG7QC3CF/RXmAaYYEIkGhXkMmuTSD+BBd5xnKjAJ/RZGbjMwsmW4Z+RIYCQwyaWffFR/IWAk+gFwpBs36DVSGIn+QsBIwDj2d8FI9XKljNHvgnnoD8NI6j/1Oxooawbdia9eli4YqW2B2j8ORmpbgP60bYFLfxhGci8l6de2AP0uMK5tAfbg3uZewm7R4NuyrEVoT3xbFtjDt2XZekGbme+DFb4tC7y8abd9Wxb0K32/LLintF9zoPTL+ppbpNX0a3rNbAfRkLZfFj3P9Xnnzq5UQHLp0udcpyfuI20fvAW8BbwFvAW8BbwFvAW8BbwFvAW8BbwFvAUKZYEDfspWNSQD+PoEeK4BfAatFUYCUFwwUgddAB3AAOBCNKR9Ah/YB0AJw0gXQEF/mkEvAAqeEAojXfp1AJZ84mCe6kcfMI9rZCA2Ghh0IU/0x8GkfAbAVT8wD7Djgqmqn0Ev7M8rGsIAIheMxP7UkTiYl69+8lb9LpiqMEwH7eL0YwsAG3bH/q4n8BkUJh4D65SlC4alhZHkRVqUPTCMtKL6dQCf+4RjaI+DecQBMOsAfpx+7J9LP2mpZyG2wL7R4NIfB1O5l9BPWi6YF/bsRD+2cMFUbQvQgh1cDyao/XMN4HOvYX/iA/bJM64toA75tgzPkcBL17dlYr3wfVsWtAqutsC3ZUFb7Nuy3DNW+H5Z9ttVHxLjO1H7Nb5fFvTL6BvsGii1/ZesxcT2VdL2y1wPHYXTYrvbTEWJh2RFxZjooVF9BkaStg/eAt4C3gLeAt4C3gLeAt4C3gLeAt4C3gLeAoWygAeSxpKAjnxgXhhGugCEDoBTSMAYgEY0KMwD1gFhgBQMXERDFOYRzwUggDEKIMjP5RnJoBHx0M+gURxMJR0GrcmHtFwwDP0MpuQDIxXGuPRjf/IFjpInsCsaooNe6HcNepEW2goBIxXmASNVf1QXMBK7Ap6S9DMATjxgJNcXp7++rl7qG+qtfmzhgnmkwTWSJvWGeC7P1LB+ypE8o0FhKvqpz6SVC+ZRv4gXHcAnbezPdeYD89DlgpFo0kG7OP3AOfLLBSOpq8Sj7qKfPKP6aQuIwzWk1Q/YxxautiAMI4nDKxrQzzVqW0Acl2dnGEYCSInngqlo58W9QRxXWxD1jMQWLv2+LcuWVrgt1rbAt2W+LYs+mODbMt+W0WrQZ+C7xPfLgjaU76QDsV9m+6gVQ39q5dsvy34LJW91dGw13/u9Fkqmmb41KTXS8TAyyUL+mLeAt4C3gLeAt4C3gLeAt4C3gLeAt4C3wEgtMPRX8khT2c/PY5CEQSMFEKMdwGcQCrDBwKQL5imAADDkgpGkRXwABOm5AIQOeqGfOHEwj3gKIwEVLs9IBo2IRyCOS38YRqKfeC6YyqCL6mcAn3iuAXzsD7hRgBKnn3j6BD7X6dJPfnUG6ClMzQXzkjwjVT/ADjvE6SdP9KMHXXEwj3jo5/pIywVTicML/aTl8sxLCyPRRFph/dFblWPYlWtVmBqnn3jkrTDSpZ841CHqKdfo0p/PAD76GdglLV7RgH7ioB+ghs3iYB7xwvqjMJK0iZOPfoWRLphKm0J6tAVx+rUtAHYpDI7Tj2259xRGuvQTx7dlQS3xbVn2bvFtWdYW6hkZbgt8WzbGtpu0U74t8/0yvnP5LvH9sqDd4Huc197ql2Vbr9xbeDOm8WicOXOmTWz16tW5E/UxvAW8BbwFvAW8BbwFvAW8BbwFvAW8BbwFvAUKaIEDHkiyFhuDLgAUpilzwbC03kQMgPNiMIe0XDAMAIH3YVoYCYAgHYBYFEZSD0gL/cCJJP0MpoRhpMsbijjADABKnP4ojAQApYWRUf3kg34Gy1W/C4aFPSMV5sXDyDqjX8y6jK1OGKb6GZROAyMpL2zPKwpTw/oZ0M4HRrr0K0yiXLG/C+aFYST6GUB2eUZaGGnALMCOOC791FPsDwzLBVPRlnYAHzuh3wX208JI6iH3Ulg/dgkHjkX1x8E86jb6sSm2cAEI0iJfbQty6c8FI7UtoF642gL0Y1eFkXEwlePozwUjfVuWrR2+LcvaQmGkb8vEepT7tiyoG+G22Ldlvl+mLUa4X+P7ZWK/o+kXEPZWv0zLxr97C3gLeAt4C3gLeAt4C3gLeAt4C3gLeAt4C7wTLHDAA0kGawEoLS0tThipg3bAPAbtgAYumAd8YNBCYaQLJilAAYapN5cL5oUBhMJIlzdUU1OThRkAFPS7YF4YpnIcOOXSzwA+EAv9pOXSrzAVQIgXBYMzLhiGTbGHDoBzDVEYyc0DQOFaubY4/TrNLOWg+uNgHvoZTIvTD9ABOql+yjKNfgBWVD/5YH/Acq5BO2yL/iSYyiC56me9IBcMU5iKfnTH6ScdC/NKAxiJ/V0wFfujHzhHWbpgHnUV/blgJHYlXwL2d+lXmEqdpN6jP84bh3uJ+4U4Lv0KU9FPfYjTz3HVnwQjsUU+bQH6k7yJrP0T9HNt5Il9Vb+rLUA/aSmMpC662oJ89fu2LAAQ2hb4tsy3ZbbxMv98W6aWCNZf9W1ZYA/fL8vWC98vy9pib/TLsrn7LW8BbwFvAW8BbwFvAW8BbwFvAW8BbwFvAW+B/c8CBzyQpMg2bdrkhHlAJAYn08JIIAMD24CPKADiGABLYSTQxgXD8hn0AqAAygBYcTAS/WGYFwcjFabGwaQwQEkDIxmkAZ4Ak1wAZcKECRmYin4XDFOYmhbmAaniYB5wFGiTBkAAsIgPcKIsozCSOoN+YBHXFqefvACNufRTRpRlkn7sqfqpN9QzF8xTGKn6XTAYmKr6gZGUucv+1NU03kQ6gE+63EsuL2NgJPrTwMjwALjrXgrD4N7eQH8czMsHRpJuc3Oz815Cv7YF5IX9XfcS2hWmxrUFlLO2BcBI7B+nH/uHYaTLs5O0FKb6tizw8sbGvi3LTpnt2zLflvG9RfBtWWAH/vt+WdYWbPl+WdYeheyXVVcHD4kVol+WVei39hcLlBWXy9jSaunu3yE7+7v2F9l7XGfx2HE2z4EdHXss7+LyStnFX8/OUedZVF4hxRWV0r9966jT2hcTKCorl+Ix5nfv9i1iBjn2RYlDNJXWN0mRGXshDOzsKki5FFeOkSJTZwY6t8uu/j6b9u7Ixya8t/+Z31HFFWNkwEwDHi7vouISKW1oyqjrN2sXD3Tv3naNNrS0uEy6+joz+foNb4FCWmBc1VipNuN6GzZtjk22pnqcjG+oyxxfs36jc8atTIQRblRWVki9eci/2YwPDQzsubZW891uHFg6Os19nyKUlBTLBDOO2W7GS7u7R/89miJLH8VbwFvgHWaBAx5IAiBcMEYBCu9pvIkY2NIB8CiMZHCcgR5gjAKI0cBIhUnURQCES7/C1LB+8o4GgA0QKzyAH9XPtal+IAzX6YJhQBH15kqCkRMnTrRglnywvwvGYCsGhNCfyzMyDPNcMEwHHUkT3bn0M2iEfmCYC6aqfkAl9nfpVxiJ/iTPyPCgVxzMQw/QiTJVGOyyfxoYSfmjH30KU136FUYCw/B2BGi4YBiQEYieBPMUpqJfYaoL5gHyFObhGRkHg4fq3+QE++hXGIl+ynOk+ilDrhP92CoJRlIG1DfikG/0XsJO3EvYHz3AbFdboJ6daWAkcQm+LfNtma0I5p+2xb4ty07T6tuyAEb6tiy4S3y/TFuL4F37Nb5fFnhJa79ytP0y+g21dbWZh9xcD4lRAkP7NZud/cqhJeY/jcQCk6bMkFkHzZUK0wfbvnWLvPHaS7JtS1tsUvQl6Zdu2LAhNk7cgfLiSrl09kdlfOUUG2Xl9uVy/5rb46Lv1f0V0+fIQE+39Dav32s6Gi+61jwlUiqbf/T1Paah6f2fkN6WZmm75/ujzrP2XRdK5cxDZOO3vjjqtKIJlI2fJMXjamTnqteih/bY53HHnCpVR50km37wVdmT0HikF9h4+YcEeEbo3bReWv/re3Z7JP/KJ02T2sWXSIkpA8LWx+6XrhXP2+1C5mMT3M3/SqpqpNy0g92mLu3q7YnNrerwRVJ98hJpueMm6duabSNL6hql8bIPZc7rWPq4dDz7RObz7tg4f8Z1MmXsbLlp+T/sjuQLlmZT5VQZV1YrtPXvhDBn1nQD4OrlD8+98E64nMRruPLic2XBYYfIX3/+32LjLTnjZDnl+KMzx7/2rR/KqrWF/8685LzFctzRR8j/+srN0ta++x9wqRo7Rj790euloT5YnmDVmvXytW//MHOdSRuHzJ4pN1x3pTz4yO/M68mkqP6YwwLHLJxvxvG7ZMUbKx1H/S5vgQPDAgc8kHTBPACEAiAFEC6YF/aGAnIBnlwAYtKkSRZGAiAY3HDBpHFV2XXiGLAAoLhgmMJIwAY/kF0wiQEQ9HMdXB9wxKVfYSQABTDi0s+gHQMlClOJ59Q/uM6dDoDHeUbqoBf63377bSeMQT+DpugHRgKnXPp1mlM0xunn2lQ/EIx4LhjG4BP2QL96E7nsT1kyQEE5b9y40ak/DFOxKfpdMCwKI11erqofm2D3OP1pYeTkyZMtDAOmArBcMAxYhra0A/jYn7Rc+rEndRb95MV94rI/Az5Rz0iXZ6rqp2zi9FM+afVT7tRFytLVFmCDaFvg0h9uCxRGuvRTfxRGot91LwEY03pGKgyOawt8W5b9IvdtWdYWbPm2LGsPfbDCt2Vi22F9MMS3Zb5fpneJ75epJQLPWvqVafplHZ3dUmogC/3KOBip/Zqkflk2d781UgtMnjpDFh5zsvQab7jNzW/LJPN5/ITJ8vvHfiUdMV5t9MUOP/zwEQHJuXVHWxj5+IZ7ZF3nG8Y7Mp3HwUivbzTn1S7+M+nf1i6tv7htNMnsd+f2tmyU3s35w2bXhfJbYneFcYtOF6Dx7oCdu0vz3k5303e+JFJsHgK97tOjllJlYGzxmLHS/uBd0r+1XfAK1FDIfDTN3fleMWOO1Jx+vvT9/DsGxm+MzQpP3/5tZsmaiPdwX9smaf7Ovxl7jJOm930s9vxCHmjp3iAlRfv+kOXxE5bIzHFz5ZvLP1fIy99rab1nyRkyc9qUAwJIpjHyL+5/SO779aNy9uknyeLTT0xzyn4R59QTjrEw8teP/l5eee1N2d7hPZH3VMFdedG5snV7h3zxq7fuqSx9Pt4C+5wFivc5RXtZEAAiA1C6AoDigmFhAKEw0gUgpkyZYmEeAAXoEQsgGoOpGdPCSGCeC0YqgOCd42hz6Qe+6aBjHMzjxxUDJQA2gFocQAGK8KMd+IT+NDBy/fr1ThjGAA/2R38STE0DIxlcVhiMDYDBLpgUhpFJnpEBTBpra2gcTMVWCoMVpqaFkVGYrfqxCbrj9AMjwzA116AX+QCwXDAS/QzOcx+oZ6dLf3QA3wXzgKnYLNegXVoYyb0EzOM+i4PBaWEqZZQLRlKfddAxF0zVeylpAF/1J7UFYZiKh2icZyr6c8FI35Zlv0x8W5a1BVu+Lcvaw7dlWVvQjvm2LLCHfTDE98usMXy/LHuP5NsvI/6WLblhZFK/LJu73xqNBWYfPN+e/uhDd8uLz/9Bnnj4fvtAGh6ThQxMLVheXCFzao6Q/l19smLLUuno3SJdESBJPF6EKjOl69SqgzKfVU9FyRi7n+PhUFxUbPPg+KQxM8yhIhlTatZMr8hOpRiOH7fNNJz2BUwzdTXz2UD0aCiprjWeVTNtnOgxPheVlplXcB7Tr5ZPnmH3RePaY1NnCenFhdL68aJTuMbFGdX+wettu+9Hsv3ph4clZe2Ad52JVzZhaua6ohGZ0tJep8NeeOeph56eV0Q8Y+dhwewra5osZROnDckLe6JFz8mUD/sioVDlE0k28WNGXySW1UL5O3QSNXxNTHlaNmFKJgWbpqlLhFz1ICmfXQP9ssuMXYSnG81kknJD7V0+abr0tZoxhPWrLIwMexamzYeyx9OytLZhSO62njjsZPN21KshJ4c/cP8O3n+Z3ewb9BLV+xsvZIJemy2LzAmDG+a87jWvy+af3iQDXcPhBHbd1Td81q1hyVSOlfIc93r0nKGfiwxTLpanmv9bfrlq6IA9gJL2s6asXhoqJtrT6srN0jylwdTP7CgabCd5pw2dPHamSS/wmh2aj0hcW6vxktprjtHml5h8CGzzYqrZkYapkyfKwvmHCtOERsOYMZVmzC24jhnTJsuhc2bZ77JwvHIzjjPv0DlCOq7A9JxzD55t41SYMbdw4DN50H8hsM2Lc6IhVz7R+OHPxeaBgSCfIqk0Y12HGT3RwJSgUX1cO2M0BI6TBlOucj6/92trqmXalEnRpFJ/nj51ksyeOW1YfPppO814XC/tSkJQm5BOUmgws2csnD9XJjaNT4pmj2EDl/0p38PnHizV44LZsnImFIqg5bxg3qHGCWZAHnvqGdnUamYoM84U4TB5QpMcefhhqXRyHmVDmUQf0qGMjph3iHDdIw1oOeQg0w8x5Uz94RUNcfmkqW+alpZh3P2j10h86i73an1t4EGvaSTZjbLERqbrJiXmPmObF/lGw4TxjdZuNn70oPlM/nqPYFs8fdnng7fA/mKBoDXfX9TuZp00LgzUMpAPgNi0eZPTsw0YyYsv6iQYOW3aNAvWACgALBcYVABB3gCINJ6RcTAM3QAU3oGRgEYXTFIYif44GImpp06davUDUABYLv0M2uGNBnxKgqno4lr5AgFGusAsEBIYiX4AF7Z16Q/DSCAd4C8K88gHAESapAHAculXmIp+bM/LBZaDAXyzdoT54li3bp0TbOqgHWWJJuCUS7/LMzJJP7qBwS79ClPRn+sJfGAjAfu7wCzHsT/6gZHop+yjwTWAH9VP3cL+lCV5od9lC/XsRH/SNK2khT7yof679AMjAXWqn/SS9FNHqBcusI8eYDz6qavUM5f+MExNgpHcS9QP1e8qS+4PbIt+nSbXpT8NjCQN35Zla65vy7K28G1Z1ha+LcvawrdlWVv4flnWFr5flrVFuF+Ztl/WZR5s7O/bOayPSqr6wB/bSf0yjvswegtUjauWbWbqQe3jd5u10Xg1TczCkNHnInLVnE8JA+Mabpj3Bbv51raX5IG1P9Ddcv0hnzOQskP6Bvpkwpipdj8Ak2kJGUA/b9o1clDNgkz8lu635RerbpGe/m6ZX3ecvGvKpTKwa8AO2G/rbZfqsjoztlUkrxgA+vD6uzLnJW1M/MBnMrCrrHGiTPzg39joPetWStv9P7bbgMHGi6+Xkprs2llMV8m0leHQdM3HLbwAVgDXCKyz1/ztYAo84FL9+Vdnpr3keG/zOmn95e1s2gBQmfD+T0pxVQBge9YbHfcFOjROId65TgAqoWfD2mFTtnIcz0lsYn7sm0UIB6Tj+aek45lH7Tn8qzntXBk7/9jgs/ltEgU346+8wYw0Dp2CduKH/052vPIn2fb4A5l0qk84S6qONN42/MAkmLSwPfCrwdid6Vo1aPkAxJpvMx6AJhSqfDSPtO9jDl0otWdeOGQ6VMq44YJrhsDkjud+N8RuADCuo+v1l+wUt6y9SdC6MP7yj0iRWYvT/ICLrQdp8kl7HUnx1N7EAZrq562P3iddry5LOnXIseqTzpaqhSdk9jHlLfWe9TgrzDS/dedcNqRejD38WKk59VzpeO5JY7vHMuclbdSY6VXHmmlWN97yL5loTVfdaOvT5p98Q6qNl23V0adkjjUwRfJg2PzDr0m/WReTQF2sPnHx4BEZNmVr5kDCBpC54T1XZ8qPqDvXvintD9yRcNbwQ5fMusE+kMERbRs11vkzrpUZxhuRNo/QtrPZgknWhP3t+p/ZdnD2uHnCdK9beloybTJt5n1rvitrOl6z5+Vqa20k8y+pvb5s9o3SNDg1N/G1ze8Z2Cm3vvJ5TSLV+4nHHimXXXCOBW16wlNLn5e77nnQfgRk/Mvn/kpeNVM8As0UYDRvbpV/+/q3bZz3XXaBLDrycD1duszafkwv2ry5xe675vIL5VgzVWQ4LDeecd/50c9tX+WzH/tzaazPtvfkR2Ac5G+/8OXMabnyyUSM2Vg4/zC57sqLZP2G5gw47TFjXv91/28yXpnvv/wiA8PmDplK9fOfudHq/Kd//79y1qknynmLT7Of6aOx9mGVHW8U4Zq+/cP/x96ZwMdRXAn/WZIl2fIhWb5tfGKMsXEMmMvc9xHuI+EOIYFsSLLZ3Wy+TTb5steXb498m2xOAgmEhJAQjiQESCAEzI0BG4zBYDC+bXzJli3L1i199a/Wm+lpVff0SLKxcT39RtPTXV31+lV1Tc3796u6P6Z09+5/+vubLdDkKPDxf269K2M39xm5e4kqRSftzrmeW39xr6xYtTaTEFB507UfM3r2y+wL119mZ+fGyccdJRecdYpsqtkq//G9n9i9JxxzhJx/5snWZ6Tpn3hmnjzyl3T9Bed89Ys35gBvrWd0/f7td1v9/vnLn7M+Xi2D6/nJXffJspVrdFfOOxG1n//U1dJmHgj5z+/9VGq311nQ9vkbrpJRI7IPTK3fuFm+c+svnL61nAw7PwDYaJcKM9EDkLetbod88zu32lQAu6Ry0rQ3MkrTrm+69nKZPGGcvPrGWzn30i133iPvb9gk+eyGrWmvCFPlqu3Xmnvh27fcGew3cPGLN12bA5sXL3lPbv/VA/a4/qPN7jLcAp8hUywjAOYv/0swRtB0/t1bYG+1gAeSnTUDgAB68A6AAKC4YIBGRgJcFEBEYQxZAiOBGRwDYLlgBk4v4AJ5ASMBKPpDOdxggEQK8+JgJAAC5wb6W5hqAEqc/kAgylSY6tL/gAMOsF9y6IOjxKU/MBKHLnkBIwFiLv2BkcAiOt44GImtcJSjv8JUl/7AVNUfmOqCkWp/bEIe2MylPzASOIj++WAkMAz942AkTjuuE/0Vprr0B6YCESkzDqaG9UdvYLBLf/IhP9U/KTISGIb+a9ascYJNhanorzDVpT/2wm6UyT3CtUbbD+XQ/skLpx3Qz6W/RnaSF20nbs1I7kv0Q7C/C+ZRP9xLlJkGpqKjwsio/ugDwCKvJJiqDnzSc+8CEV3tX2EY+mN/ly24P7iXKJN86FtceXGN3HfoT7uIg6m+L8Pagfi+TC0RREb6viywh+/Lsu3C92VZW/hxWdYWflyWtQVbjGsYVxYyLmtqYsrWYPwVzo3xetpxGd/1XnpugTYzni4FdHQK46hSA0NwSPemPLjyJyYypkzOGHuFdZD/Ztl3bfaNbV0jjYjswWn9yuYnZP2ulXJI1VE27cwhcyyM3NSwTuZtelSmVx1tIi5nyEkjL5TH1/0mo+7Lmx+XAyqmWKc9eYzoN1YOrjwiNZCsudc48kwEVfXF11sgse3PgaMrDNcqT73AwsiGd9+QxvcW23Xl+h08ywKGxuVLMrqwAYgAlgFSWgzo6zdtVnDc2HrIBddJkbF/wzuLZOfr80zaauk/7fCc84tMRBVgCuBTcfhxJrpqopRPPkQal/XummxbfvszG0025MLrTPkdOTroB6DqrrcWmHUbl8rgk8+TAUafna+/KB1mCkuivoCRTN9Z9/xjZvtwKZtwkAWXen6ad+zIuoxMjVk//2m7nmXFLOPM7oyY2/bofQKwG3TCOVI6YozU3B8Ah47W5kz2vVI/mdzSbXC96NT8/ioDjO8OTtI6NvruePkpadmwxoCtU63dSAdcDku/KTOs/XaaCFWmBQ1HSSa2gwLLCZdZ6La9Pwzwqr70BmndtkW2P/GgzSI8ZWu+PG0dGxjJOpY7XpprYf3Ao04xcP4KqfnNj6VxxRJpeHeRuRcOk6YV79ipkwcdd5a0bNmYGkbm04HjOxfOMxB4sbmfpsmAI06QbY//VlprA0DVFoqCbHh7oa3XflNnWsDpvjuSS+R+AZQDILmOUhNlXFI9PPkkx9G/mL6OiMfTRl8mg0MPeWhSYORDq+6QM8deaftaQONpoy+XWdUnWCCp6Qb1HWKiLB81fW2jHD/yPDnngGvlVgsKOyRtX0tecf31I6vvNBGR5eYhkYtNxPp4uWfZ/9iiW9qz96nqkvRORNXlZgpH/C/Pv/yazDMg8nADFgc7oiSJbmRqzb88/aI0Gr/l+AOCh1pOO+EYCyOBV488/pRMGDdWTp5zpHz2+o/LP3/rh7Z4/JwvvPKazF+42Ixpii3sOsREUwK5nnlxvtz683uN37FcPn7ROTLSRO999yfBgzSNjdnrSVNO0rWGj40eOVyefHae1Ju19IBswLekdSv57o76bp576VWZPHGcjDbQC4BLZNu0KZPDxaTa7mf8SUzNOsnA3lkzpsknr7w4AwHzZTDGXAd2aWpqtmAQHY46bKZ86qpL5ev/HowDiNK7+ZNXGpBcaoHp40+9IFz/sUd2fldGCmHdSoArkOvbP74zc5R9La1t8hMDXLdt3yGzZ00veKrVH97xa+OfLZNrL7/ARvfpupE7dmTHKhsM6H76+Zdl9boNcsjUybZ+PnX1pfKP3wzaeEYhs8Gao5+9/grjp2uV//rB7RZGcvzGqy+zMPLNJUttu55jrvVQE5V51SUflV/cG/Sp4Xxc25dfcJaFkavWvi9PvzBfLjz7lAw41vRpy0lqb4W0a9MM5fBDp9mHA+YtWGTBeau5d5F8dvv2j39ufH5FFqDuNO3+Z/f8zp63vS4bnUrbI/J1ydLlMv/1xdb20w8+UI6dPcu2cXtC5z+iM/ltQttfuny1YGMv3gL7igU8kDQ1BVBQgAKA4Me/CwaEnXYAAwBK9AuRiicvABWyatUqJxgEQAAaKRsAkQQjFUDEwUgghgIUBhmAFpf+0chOynXpjwNfYSoAxQWmok67JBipMDUORuLgUYACTAV0ufQHRnINDESSIjvHjRuXgakALJf+LpjqskU2migeRmIrhcEAIkCjS3/gIW0I/ZNg5Pjx4y2YQm9s5tI/ClOxv0t/fQKfMuNgJG1VYTCAEdu69MeBD0QkrzgYSZvH/rRJvhhpsy79wzAV3QHCLv0DGAkMFlm9erUT5uHUQ3/uJWAqoN2lP8CPctE/DkZyjPaP/oBP+gKX/mGYyr0LDHbpz32pMDWuLwAQAbPRX2GqS/80kZG+L6MFZsX3ZVlb+L4sawvfl2Vt4fuyrC38uCxrCz8uy9qCrQ9yXJarif/UXQvUbq2R4SPH2IjImk3rZdzEg8y4q9hmx9iPsdqMGTNysmfMzthr9uzZOfsZAzOmdskOMz0r0mJAY3tHm43ccaXTfQ+suEW2mDXSEI3amVFlIuaM/G7lj00+zXb/Z6b9m50GNgwkF9e+ZI8z3eubZntny3YbNVRspiVsM2Xnk1YTMYp0mIdPAYmttZu7nFI6eoK0m+ip7XP/YI+1/rHGrB33eek/40iJAkkSbHnw53Z6S7ab1i7nzUTCGVuX97NgcftTD9l9lOU6f6uBGEC/toZ6IVqOCMHeBpKZ6zTXbedMsxrl/iOKre7ZR+3OXW+9KqzjSGRey8Z1FtRwoPbx++21Ev014savGDwSRDzk5hT/CTCE1DzwU3vNbG+fG9iH7baddYYkmfppbuTjbqsfm3nKf0T6EUXXtGqp1D56b+as8glTO+v4bQNx37H76154XKovul4qDj2yC5BkqtPN9/woc360juPaQaHlZAroxoYCO/MDTzoaG5z2z5etrWNzPm2JiOGm1e9ZoM2aoIDXdhOlDYAvHTVeKs+6zLYD0tU+1Al68xWQ8ni7aUP2tTOYipI1YzP3QSgPm8ZEBzNNLVJYiw4yYipj6rfZPFzAvdxIe+hsE0GKdP/pS3ntMpHklX2GdTmpqa1BVtW/I5sa15qHMcbJyh1L7Paw8gDO6Qmr6pfIgpq59uNQE8k43Tz4Mdb0mWt3LpO0fa3m5eqv602/a+5cs05wcJ8SrdkdOe+sk62/46E/z5Vn5y2wWawzIMol+AmIEFQByCFE05nmJvc++Cc7tejCN9+WyeMPEKZ2ZSrT7Sai7P6H/mzTEqFXPaRSnnzuZRupCIQDSNZsrTUhp6b/NmANWb2260NRacqxJ6f4996K1fLw40/blMfO/oiJ8hqS4qzcJE8+95J5iLzFAsknn31JDjcRoOPGjMo8RJabOv7TEwaMYktek4zdhg/lwf8+xq+UH82famAkQpSi1gdTxwIqeVGXR8461E6vuXT5qkz0JpANkBSVs0453qSfIavWvC/AQvUzAZHLzIMfW4z/bNnK1Va3Pz3xbPT0vJ83m+lZEezG9UXrGVD23z/6mb3+YcYHuHL1OuEcphCNynjTvs48eY4JimmS/zCRuroOJRG8E8aNEfJ6/OkX7GnY+KBJEwQInlaAoVz/d2+7y55CG/27v/pE5vRCyklqb4W26xdfWSj3PxzcT68vXpLRJ5/diApGsHuzAbhR23Ns9MgRJvCgUW4zEanIuvWb5B++8ClhzU9Xe7nlzt/IitVrbVruey/eAvuKBfZ7IMmPUAAKjnwABABIO/xwJeK0AyiRHgCRBkauXLnSdDT82MkVAATOYfICQABQXGUCLPPBSPTG6c47MBUA5MqLH9UAPcqkvHwwEo0BKC79cdoBUMhLo7lcZZImH4wE/ABw0R+YCgBy5aUwlTLTwEjyAGC59EcnbEteGpnqKjNw4DPNbPw0rTjtgE7oD0wFdLny0mlyKTMNjERvnB0u/WkTOEjISyNTXWUCI6krJA5GAlOBfugPTMXJ4sqLth+GkYA/l0yYMMHmBcSjTFdewFTgIPprZKorHXpxryBxMBKYSjryAqZiW1deURhJWpfgdMQWwFRgtisvoCZAgzKBqT2BkTjAqCfywqa0bVeZaWAkefi+LFurCiPZ4/uykaYv8H0ZbcH3ZVghEN+XqSWMw9yPyzLG8OOyjCnshsLID2pclquN/9RdC7zz1mtSPXSEHH7UiZksmLK1DOe5+c3AKzoDB2NZ6j263zU2z2RawAawUWFk+DTWO2to3Wlho+6vMdCSNdDCEZ2c39oZhdPS1iQtHS02ORGabZE1KzWfQt6L+lXYqUSbTXSXStsO8wCeASbFA7quA2Wh5pauDvQSY3eEaTqTBDgDwEBYsw/p0/mAr/2wB/81mwg/FdWlqDT4TVIyqMpOhan7SddWu8UCSz0nzXuxiSKz9uy85jTnhNP0Vv2E88y3baeXNYnC9uGcks6pZYnA4xWW4si6iRwjgjZOktpBoeXElbGn9lPH5qY1UZaf6lJkyZBhNhrRdD6y9aG7ZNiVn5M+5p4j6rS9qaFL+n1lx85F82wELVNC074bly2W+gXP2X6jN6+BBz4Qpr1uMy+kpd1M5WjWlwwL4FFlndkGSFaa9XbZn6+v7TBTvKrE9dd6vKfvOt3iy6++kTer9ZuC6NZowv5m2krT3Oy0mdFj48xUoW8YIMk6fldfer4Jnuibk4TowLSSppy0eTG1qkrN1m0yzKzfXqgAwphiFSFilCk9EfSs25GNOrM7E/69+fbSzNH3zbSirOE5wvis1m/q+rBOJmHnBlNvIq8vDh7IYHu5mdoUGDnaREsCJIGkyPyFyd+FpAFGIivX5PqmW01k5Mo1a2WiiX791j992UYiArCffuEVm743/33BTL/qWk8TAKg2pryDp0yyxbL+pMJIdgDCEeD3334mCxDZZ7q91EJE6TYz/avK2vdz/a2FlJPU3gpt1892Pgigeul7Wrtp+ug7EY/cx+H7nCmXmYrVta4sbUJhZDQv/9lbYG+3QO439t6u7W7Qb+LEiTZXAAQAxSWAGIAGAowEorgkHBkZByMBEAAUBAABQHGJAgiOxUVGcmyCAUAIP5YBKC4BRgJQEI3sdKULO/BXrFhhf5xH0+G0A6AgwFQAiksUpnIsLjISgIKjBwGmks4lwEicyIjCVFc6jYzkGPq7BEAHaER2mEEZ+blEYSrHsCv6RQWnHWUiwFTqySXASF6IwlRXOnV6cYz24xJgKrohgDDq0yUaDcWxOBgJTKXOEWBq3LRg2J46QBSm2g+Rf7RFYB5OHQCQS4CptA2E+4j7ySVpYCQwlXsOAaYCg12i0VAc08hOVzr6AtokDigAqEtw4HNvIsBIXi5JExkJTCUdAiBFN5coTOUYdeSappVjvi/DCoH4vkwtIba/oN9AfF/m+zJtGb4vU0uIjYzy47LAHn5clm0XbO2t47JcLf2nNBbYtbNenvrLH2TY8JHS14ClLZs3yNRDZkmfwX3s6YzjX3/99ZysGGPyuy26PydRDz7UNbvHwGTJvZhPLEjNTDmKdy/w8KU5N1/e4eNhCBreH91mTbxEyXNNrD/ZRRxT6ur1cf27SzpaA4c2+bMuXViin+2xSHWhW3iXTsOaN59wgpTbvVU/aleKjbPtrsXzpWzsZGHa0eY1y+2UnIGagY2Aaay/mSPmd1VUmMozTpLbQWHlxJWh+9Ncs6bt7nvr1k0mcvgXXU5X+M6B0tHjueltGqJAWUO0IHHcC33M7+QOh/+ioHy7kZiIYqKGgddMuczalWUTD7ZT1HYju9hTsvdh6P502SF0J2oUs76TebgNxBZmDiT110nnpT8WXEcafViDL05qt9XlTO+p6YhSY5pIYCTvDz02Vxa99a6NIiTyKk25mhfvSeWE0+XbBiaqRPud6GfSlRj/W3Mk4IN0mrY9tF3oNbm+osivEHGW2ZmHtln8ZfkEsEnU6onHHimL3n43Zx3K7//0bjnCTOfLmqMTzHS9F559qoWdd933h3zZpj5+1inHWRhJRCERqERysnYi60RGr5G2ALQl6pF1NB/pjHjVOlmw6C35/R//klN2YXbtsG1WMwjKz37DFlJOUnsj/7TtmirVdVlVL94LsVv4vPC2Xo+rPeqxcPowBA7v99veAvuCBfL3hvvCVfRAR27qfAACoEE6nVoyWhydImBBpzmNi8bhRy3pyAsY6QIQ5AWAIIqMdAAIYFFUSDdp0iSbBhiZBFMBSuSlU0u68uJHN4CKdMAw3qMCjMRpxzFgpAumohfABvBEOiAdP/KjQjoACmmAfUkwFZhHujiYSl4ACAAh6ZJgJDCVNER2bq7pOpgjL4WRpAOSumAkAwkcVaTh+lwwlbw0spN0cTCVdBrZRrrly5dHzWU/AxUAjaQhstMFI8lLYSTpsGv0yW4yU5hKGtqXC6aSl0Z2ko76pt6jQjpswTvp4uxPm8C2pAGmumAkeVBH3Cuko13zsEBUFKaSBkDngqnkpdFQpIuDqaSbMGGCLYKn3uNgqkZ2khcw1QUjyYt7BNhIOsAm/UtUOM49RxpgpAumkhd9D+CAdDrNbDQv0um95PuyYP1S35cFP7B9XxbcLdwjvi/L9hy+L8vawo/LsrYIf5f4cdneOS7L1pbf6o4FWs20pOvXrZbVK96VZrO+57ARo2VLTTwY6U4ZvXFOfet2KS/ub9YlK8tkN8xMNdhqon/CETuZgz3dMFFATLMYFbuWpBl/htf3KzbRgX2KS6SQdfRaaoIHBlk3sKfy6au+Jl/74i321a+8oqfZdev8Nqa6NeMKppNVKa7MncYOoGmj4zoTlE8wa0xGpN1A8uKBg522DyclItU88Sl9OqcY1mO9VT+a31c+/31r1y9/9ju6q8t7/avPmwi+X0Ispeq8q21bIJFCyL7V5nfvD9yRAABAAElEQVSeifjMeaF/L0mh5WCj4opBztKHVI3ItKVrL/uSM03anXHltJnpjosHVtopkXNsEoqKJYJ08Enn2SlUmbq2/4zZUjbuwLRF23REJyPaJll7lClho2LbktnJGo89kQ7Tf9IGSiLtXvMkMrLuucdk08+/I83rV9t0Liiv6Xfn+5iKyZnsmd4aqW0KAgJ6s69t62iVIvMABVNmd0c21wQPOR99xMzunG7P2WWmeGTduQbj2wFAhl8kGGnWqSQy8s0l78lcszbgltptcoSZ3tQlRF0xLuQ3dVTylRNN393PGvXI+oQIkXZlZcGyWN3NM+m8Qw/J9tNENiKbanIf/md9TmT0qOC4/WD+bTHRnchHpk+17/xTvXWKzlWd098CE/MJU/f+4PZfmWQdFgQSlRiWBWZdwR/e8Sv5h3/7f9bXpFGK4TQ92Z5prsPc4nLrL35j1zFk+tAxZhpRl7z82htyx68esO3t1OOPsdCSdHq9o4YPzWmLtEvySytAxIHGN057RLBr56b93Fvl9Ea7LsRu+PfKHe15mwmawfbcryqsMcuDBB4+qkX8+4fFAvs9kIwDEHR4OO00GioOQACmogAlDkAojIyLhqJMjeaigwJYuqKhKHNCJ0ChLBeMJK9wZGccTCWvKEBxTUUUhpFxkZ2UqdFcClBcMBUYBkBBdGrM6A1FXuHIzjiYiv4Kg7UuKTsqGtnJsbjITsoMw1Qglwumov+ETvsD++JgJPprZGccTEV/hcHoDwx2iUZ2oj8w1RXZSV5EHwIuSQdkdMFU9AcgIlxfHIwEpioMpjwXjKRMhcHo74KR2DUMI+NgKnkBULhW9MeuLpjKwBiAa5JIkxmgxMFIdOcayCsuMpUyFQbH2R/9B1QMyER2xsFU8gIG09YoExjsgqka2Uka7o84GEnboQ2RDpjqmmaWMhUGa/uPth+rv+/LMmbxfVnGFPbBBN+XBfbgXvJ9WdYWvi8LbEH/6cdlWVv4cVlgC/6nGZfRfhhX9sa4LFuy3+qOBcqNc/7Agw+VKjNN4ohRY2XOSWfbbJYvfas72e3Wc97Y+qLN/9KJN8ukgdPl/PE3SElRX3mvbtFuKbetbpsUD6oU1rsrHTNBSkJTbLIOJPCi8vRLpHzSNBny0ausDrsWvZxal6aV7wrAptxESVWefrH0HTZKyg+cnskrdUYmobmleiRMc9p3hHmI2LyAfEXmAcjw5zSZ73ojuPbKMy/L2CQKC4mKI/9Bx50pgNiBc87oknX9/GfsvurLb5T+0w6zdhl86oUmz4Nz0upahhxj7cG+w4PZVUjUG/WTU1iKD231dbL96UfsmpGVZ1xiz7B1bKbcHXj0qTLoxHMtGAOqVZ3zcel3UPcBS1SdQsthndKiioEyyNgfuwLUVYBHvSVx5VDHgLihl99k7HCoAGwrDptj1tb8hC2adlN9wbXmt167mbb1btn25IPC+qWsJ1kINGwx6+Iig044W8oM/Nb71O4M/dNphgcee7ptuzYyM3Sce5P7Qe1UMsxElPPZQNWwsEZki2njZROnBpGQxrYKHKvOutyus0o/QhsAkgJMw1HH4bxc2/R3I826kLzKi3nwwDxwnfnc33VK7L4JAw+Wo4efKYcNPVGmVh5houuazHStwcPfvdnX6tqRZ4y5QsYPmGrXtYxVynHgDyZi0fzkl/NMhNnHLzrHTsl58bmnyzWXne9I7d7F+nwlJcXy9b/9KzlpzpE2wu2ic04za8992p4AGMM3MfXACTLTwDeOnXL8Uc7MFMQRFceajFMPDHx3JM5XjjPDbuxk3ULk8gvOliMPO1T++sZrupFL+lNOM+tA8rrhqkss2CUSFT9MWFgrkH3nnnainGLW7NSpVZ94Zp5N9tHTTxLWk7z28gtk1IjhFsQx/SvCVK1MKTt5wjj57PVXyJRJ4+WEY46Qv/vs9fZ49B9rNj7056fsupN/df3H7eFKsxYoEa3Hzp5l18w85bij7e/5rdu2R0/v0Wemr+X7Ftszze+XjI60rThpN+sh3vKzX9vDf/WJj1uQTVtbZqatHW3g7hdvuta0uakyzURRXn/FRfLJK4Pvjrj8wvvnvbrI6vLPX/6cbbOfvuay8GHbpnujnN5o14XYjSlueYDgsvPOtLYZY6b2VVnz/nrpV14mN3/ySplz5GGi9c86r168BT5MFuj6yMuH6epSXIsrGgoHgk4tiZMfgOKKhgLsAIB4wh4wCNhxAQiNhiIvAIQrMhJnKACFaCjyAgC5AAQwBoCFUJZrakkFEMBBygSguKaZRX8AEPqRF/q7YCrXB7QkLwCpKzIS/QEoQFzyAAC5YCr64/Tli5wy42AqdsAJSJnozjVEBf1xmgJ4yAuARfqoKIDgGDZ1TTOL/pRHvaM/1+iCqVkYFqw144rsxP7AYOqz3cz1Xbut1rahqF7oD8wmT/Qnr+igh7wUpqI/MDgORlLfOL3Qnzbmgqlh/YGVcTASpyMwj7xo+0DQqKA/7YL3pLrEaUc7Q3+gpiuyE/vjtCMtZQLpXDA1rL+Fqevfj6plfv8XWZDHNZAXMNsFU9EbmE169I+7l7DpcDOgRH/s4IrsJA/6AuqKMoGkLphKW9X2T/tywVTywva0IfLCXtR7VNCfvoA2kqS/78uylvN9WdYW4XuJtur7Mt+X0Tp8X5a9R7CFH5cF9uB7xo/LsrZIOy5j/MD6vXyX92Rclm2Vfqu7FmDMNHnKdPsijzYz7nvlxbmy08CVD05yHZ2qxxtb58no/hNlyuCPyLnjrrO7NzaskWfWP2i3ddo3IidU7L7Oj9HfEpom7r3umT8KcG3A7BNtEiBX7SOBY3H73IdkiAEm4bUBd705XxpXvtM1u6w6XY5tefDnMuScK+0UjkzjiDS/vyqTDp37RBy/mYOhjRRJQqm7bhJ9NuDw4zMHSoYMN3Doevt5q5lWM7M2onGudpHOwps3rJWdi16SiplHiwVyZj+QLhwRWf/K0xYw9p9xpM2mcfnbFgCF82x4d5GNkAQEA/GsmN8aDW+/Fk4mOxe+aKf0BKhRD8CdjXd8y6bprfrJKdD5IdO47FF0R5ey8VMscGV90C2/v9PWMXCVF0JE3q7FC+x2zj9znS5J0w4KKYd6IgKReuh/6FFChGf9K0/ZorP3kUuT6D5HewgliSsnXMeDT7kgcwZtCAEyAx5rH7vPQnv2bX3olzL0Y5+RIedfk3qaU+7HplVLLQAECBKhaCNoyTAkTJXbsGShhcQKkzff/X3bfklm7wUz9lGpPO1iu9lau1lq7r1Nd9v3OgOlBx1/tgw85jT7ectv77CRsth7kIGiKkSJ0scYJ4fuyvteVTpcLpv0uZx0+nnhlmft/tz6i8+baMgjhwU6tpl1Jx9Zfac5P0ifr6/NUSDU3+buDz69WvOUjDXRmJMHHyoHDp5pwedtb3/DldS5DwD4698+LB+78Bw5+vCZ9kXC51/O7Q/Y1xFz/zxloh6HVlXKsQZgMI2nSnhqyT8//YKcdfJxBgoFdbt8VbAeYfR74+E/P22hKPDswInjrK/hf/3rf9ss05SjZce941dBkqbufMmAKCJGx48dI1defK7U79xlgZ7mqTrbaVo7d+o+m3eMnfR8fddz6up32ilH2U8E3+0m6i8qpH3w0SfljJPmyPlnnWJ9d68Y0MiUpY/NfV7ONLYFKiNEeP70l/dnsuDcH5jpVj9jgB0wkheiwJJtbckdnd9B2JqoS6ZmPfHY2XaNyqHG53r5BWeR3N5WrK94569/Zz/31j8AK5GcRxkQzIv1CwHaQDO1V0bXznub63hs7nNy9qnHy40GGt5y5z1y+90PyE3XXW71B0QiJH/5tfQPWDG98EgTZXnwgZOsDbhXhhhfmbYh8sxXjqZNam+90a7T2A19kXt+/ye5/uMXyZyjDrMv1sb89o9/bo9Rn0Bc7j1eCDCceyIquX1h9Kj/7C2wd1ugj3GOa1+yd2u6h7TD6RJ14LsABD9s9alnYEAcQAlPBwagc0VDqdNLAQoAwgVQgBkKsHAgx8E8jeyk4wXkuWAqzmgFQOgfB1DC+sdFdkb1B5i5AAr6KwCKmw5MnV4KU4GRLpiK/gqAsAX6cx1RURjJF2dcZCd1idNRARDA0gWDw/oDw1yRkdgi7LTD9i6Yiv5AOuyL/i4YjC3U6YX+tAkXTEV/YDDlYoM4GIz+CrCS9McO5IcDLQ4Goz8wGJiN/i4YjP4aQUBbRH8XTEV/YDDtFv3jYDD6A/MQYJ4LpmJ/7iPqE/2xPw8URAX9uZfIM0l/nIkKU4GRLpiK/rRX+g30j3M66oMJ1GU+GKkwmL7HBYPRHxjMO/rHwWzfl2Vr3vdlWVvsj31ZUl/g+7Kgbfi+LHuPRMc1flw20H7P8V3ux2XBWuppxmW123aYMcRQ2WrG9a6H9NKMy+i7+K7n/uSdtsmLMRav7ojOkuF6KDMpP66ZF+2AF2Mexlq8M+7a26XIRCP1628ePDT6NppornzCGJYxsetBUte5M47JjSJypSlkH1FC1WWjZHtzjTS25de3kLwLTUtkIdOLEmGl0z4Wmgfpi8z6ncWDzRjdQAoiwfZlISKMKSvteojmfnAJNuswvxnbm5Onp7NTX5p73EZDxuTlyl/39Vb9aH49ebd1XDnEAjHA2O6SPVVOb+lPHfcpMQ9Rmyl/dYrV3spb88EmfXhQfjfaXctKei8q72dBMNMbtzc2JCXdbceILueBjj+sukM2mQc6BvatlJqmDeY7rOu9ujf1tRhkWLWZJWnQACFCj+ktCxXGBoCjMjM967oNPGTfdfkk1icEILmOpS0vTTlp80pKN6Civ/Q338catZmUtqfHRgwbatapLLJ2605eTKvJOov1O00QR2S613B+XNOoEcPsVK/diW6kjVQPqRTWeGQMtrtk0MABMtDoSjvqiTDl7NjRI6TVjBnfN3kxJXChQnvDvgONz+1/f+mzsnT5Kgs9w/n0Vjn57p9wma7t3rIbEbHDh1UL0cLNxufnxVtgX7DAsiW1MuHASikuyf871QPJUI3SyaVx4OMQ0Gg6YAAAxRWNFnaAx8FIHAwajcaXSVw0FzADpyllA/MAQDgFwoL+aWGkRtOhPz+0XdFoYZgXByPRH3jCNaB/XDQX+o8aOco0ymJrKxfMQ3+gmsLINDAV/YG8vEclrH8aGJlXfwOwuN4kmKcwEgcN+rtgKg4oYDD6YXf0dw0kcIQAzdI4vRRGxkXWYn8AFk6sJJiXBkaiv0YGoz8wmOsNC3WZBkbSnjWyFhvEwVT0B2aTL/dSXGRhWP84AIH+GhmcpH8aGBntC9Af+0ZF+wL2J+kfhqlxMBL9NTIY/QGzOAbDgp18X5a1SLgv8H2Z6Yt9X2Ybh+/LsveI78uytvDjsqwt/Lgsawu2Ch2XrTSRB6V9i824oKtDMe24jHE19yftkncPJHPrZG/61NtAcm+6tr1dl8EnfdRGXybpSeSZrkGYlM4f8xbYWyzg23X3ayIMJFfXOyK6u5+1PzPBAoMNQPna39yUkEIs3PrubXclpumNg5+66lI7PW1SXrfddZ+Feklp9qVj3zCgDtgZJwDBf/zm/8Qd3qP709ZPzZZaG9H74vyF1ud1xslzZOiQKrnznt/Lorf8vb1HK80X5i2QwgKFAMn9fspWtWfUgR83NWPYaQcMAAC5YCQOcJy+SFoYCUBxRUbitACgUDawA4CVD0bGTTOLAxaYCmxBfwAK71HpjgMfgOKKjATGALCAkXGRYWGnF3Arn/44hdAbGOyCkWGnURKM1KkxySNJf+yPMygJ5qWFkQBXhZHAYBeMpH6ATkkwkvaA/pSL/jitXJGd2J+88sFI8skXGUlbRH/ypN2jfxRG0pbSwkieqAeioz/3EvdKVCiLe4k2kgTz0sBI9AcG8x6nP+WkhZHYC/CH/nEwMtwXUD+uKGnaFvpjD9oDINsVGYne3Evcx+hPXvlgpO/Lyi2M515KCyOT+gLflwV3KG3Q92WBLeiLfV8W2ML3ZdlvML5Lwg+J5RvX+HGZ2HHWh2lcxndOW2lxl0jGQsZljO28eAt4CyRboHnjOrOGXVliovYUUbGJGfiD3gJ72AK+XXff4O2S+7B093PyZxZiAaK4Vq7puqROOA+mptwTsmLNOuOzKk0sakf9Bzv7QKJy3TjIWopA4ThpMX6mvUXS1g8hOGNGDbdrq6I7Pp1n5y3wMHJvqUivh7dADyzgIySN8XAaaTQRcCXOgY8DFgCB00gBiisaSmEM9ZLkANfISPKKAxA4LQAolE1ZALgoAAo7vdLqD8zDyRGvPzA1eZpTjYxE/ziYiv448BWmArBcAAUYhnMb/fM57RRGxsHgMMzLByOpA/SPAxDAJAsgOmGkCwYD+hRGApPQ3xUZCUwCBiuMjIPBqj92Qn/SRUVhJBCLusT+Lhgc1T8usjCsP5Gdrmlm0T8MI9EL20WFe0mnOY2bpjXqwMf+3CtRQX/ywsZxYJ9jCiOxf1r9uZdcMBgHMnWO/ekLXM5A9A/DSNK4YCptFf25R+P0dznwaUNR4V7C/gpTXfr7vizXakFf7PsyrBLtC3xfln2wwvdl2QcrfF8WrJ/sx2XZGSv8uEzsuJ8Huwodl23YWGOeVDdT6JkxgEq0L843LluwYIGPkFTj7eXvPkJyL68gr563gLeAt4C3gLeAt8A+aYFy4wsrNdMQ1+3Yt6d73yeN75X2FijAAj5CsgBjkTT8BHsSjCQCAthCZBIAxQXzgEnADJwPACIAXFQAEAojk6KhcFoAsAAQwAycpkkwUgEKukVFYarqHwcj0T8AKGKiNXdaABrNC/3TwEj0B6BQNvoDUNAxLNgpDYzEBgqDsX8SjER/JG7NRWAS9lcYmQTzgMGkB5ahvysyVWGeOu2SYCSAhHaD/V2RqQrzNDKS64wK+oQjCOL0p6yw/q62GIZ56J8E8xSmoj96JcHIfPpzL2E3bBAHI1V/2lscWA7rnwQjgXlh/bmXkmAk+sfBSNoz9qffULAfByPpC9Axri9Q/cORkUkwkuvQviBOf+o8X1/g+7LgrvJ9WbZ30b6Y+8T3ZWK/6/ku8X1ZEPHu+7LgXvHjsmyf4cdlWVvsznFZthS/5S3gLeAt4C3gLeAt4C3gLeAtsP9ZoNH4gHl58RbwFvjwWGC/n7IVKIIDH6cjICAO5uHAB0AojHQBCGAeeQEZgGEArKhEYSQwCfARFXV6ASCAYQAgF4BQmAeAACaRX1TSwkhgGPrjmEYnoE1Uog584JtrmlmFkTisVH8XTA3rj/1d+pMH9se+wDDqiHqISlr9ozDSpT8wDMc8tgMmYX8XTCUyTx342D8ORgJTwzDSpb+Cca4L++eDkUmRkZQFDMZJhv7UJW08LNSzRhZSN+jONUSFNhjWH71cMBX9cVorzIvTn7rMByOp67D+LhisMA/d0sJI7ltgsAumhvWnLZIuKgojw/rH9QXoz/0SB8bRn7aIPdAf+8fBSNqYwkjsGtcX+L4sqLG0fUH4wQrfl/m+TO/3cF+Q1Bf7viywmO/LtOUE7+FxjR+XpRtX+nFZ0HZc47Lc1uU/eQt4C3gLeAt4C3gLeAt4C3gLeAt4C3gLeAvs2xbY74Ek0ACAgtOoJzASBzjQAAAR58BUpx1OcIBCEowEsiiMBIy4AITCsHwwEqcp+ilMdUV2chxboGMhMJK0UQGGoT8gERiWpD/p0B8YwCsqCiPRT2GkS38cyNgf/YE6LhgWhanYPw5GRvV3wVSFSWr/OP3JS2EqtoiDkdgfZ1Sc/uEn8JNgJGVRJvCM66NMF0xV/fPBSNoPdQp44x5xwUh1wFJ/cTAP/cMOfOzvmqYV/alL0qM/demCqWH9uX+TYCqAXGFkkv75+gLu3TCMdOlPW8X+SfprX4A9kmAkepMX75RFXbpgqvYF+fSnPO4V7QtcMBX9fV8W9ES+L8v2yPTFvi8L7OH7smy78H1Z1hZsaV+s4wLXQ1Z8N9MX09dqX+wa13Dcj8sC+7r64v11XJbb4vwnbwFvAW8BbwFvAW8BbwFvAW8BbwFvAW8Bb4F9ywL7PZCkugBJSU6jfA58juOoBXgBY4A2UYCC0w6YkRZGAiCAeeTlAhDAGKBBPqcXeuHUwtnFNboAhIV5Q7IwD+gRFdWfctGHvNLAPPR3wdSw/r0JI4FSLv2pGxyAOAvT6s/1JemPbdvb2qV2W60ThoUd+Ngdm7lgJICLugRGJulP20H/QmFk1GlH3ZIX9kgDIwGE6I8tkvQnX+qSdFFxOfBp31EJw0hgN3m5YGpYf+zKfReVcGQnMI+8XDBSHcicj/2T9Ne+gDLzwUj0j4PB6M+rEBiJXq6+INB/qNG+w/dlPJjg+zJ7K4Qd+L4vy0Z5+74seDDE92ViH2AK98X0666HrMIPhvhxWTBjhY4r+V5ywVQ7rux8SCxpXLM/jMv69ev6kFh3x2W2c/f/vAW8BbwFvAW8BbwFvAW8BbwFvAW8BbwFvAX2YQvs90CyN2AkDhWAi8JIF0BRpwsAIs7phQOZdAojSecCEApjaHdxMI8n8BVGApHIKw5GWphaUmxhDOlcMDWqfxyMJB0gKMlpp/pTDuXhrIpK2shIYB5lAhzjYBIwlTSkTYKRwDDVP8mBTxquwepfAIx0Oe3QCfujY1xb5NpIg4NP9Y+DeeiG7VR/l9NL9aedYv84mEe6fDASGEY61T8fzEuCqTg4yYu2qzAyTn+ANseS9Mdm3FOAQ9K5YCT5UCYwmDS8osK9rfZX/eNgpOqPTckrri8I6x/nACcvjYzErsn6iymv5w9WUKbvy4I187CF78vE9ie0f+0LaNf7Yl9GX5AEI31flu35wn2x78v8uExbhh+XqSXEjjl1XJA0LguiYSt7ZVyWLd1veQt4C3gLeAt4C3gLeAt4C3gLeAt4C3gLeAvsuxbY74FkEoDAKafTacXBPAUQwDCAkgtAEP2GsxMYCVhwwTzAgwIIYBN6uQCEwjyaHNFXLpgXhpFJkZFRmBcHUHC65NNfo3Fw4HN95OWCqVwj14BgiyT9cYCjP+niHODkB7BTMOuCqdhfYSR5JcG8sP6uyE7K40U52N8F81yRkS79ow5wbBbVX2FkGv2pJ8oGcJGXS3/SYH/aKbZw6Y8NSFeIA5/yqIOoqP7AVNozZSbBPPSvq9th8qq1wDGaH3UJzFP9XTAvrL/CSFdkZxhGopdL/zCMVLDv0p/ro11w76kD3wVTsavCSMp06R+NxsG2cX0BdQlMzae/78vE2gn7+74suKt8X5btXcJ9se/LfF+mLcOPy9QSYr/b6D/9uCwLI9OMy/oUtZhxWVmPx2XZmvBb+5oF+haVSv+SgdLYtkua2hr2NfX3mL5F/QfYstp31e+5MkvLzdwi5q+5qcdl9jH3eVFZubTt6PqQbY8z3wsy6NO3VIr6VZjrM7/1zG/gvV1KqoZJH+MfQNqbGnqlXorK+0kf02bad+6QjrZWm/fuKMdm/EH/Mw9KF5X1k/bGXTn13aeoWEqGDMto11a/3aTZvf0afWhJUV9paO06s1JGEb/hLbAPWqBPnyIZNGyStDY3yM5t65xX0LdsgPQfPFIa682yT7u6PjjvPOkD2pnmej4g1Xyx3gLeAnupBfZ7IBmtFwAE0AMHvgKUtDDSBSAURnIMaBAHI3H04PxKgpE4kIEZAIg4GKn64zRSgOLSH0cKMIP0STCV9YtIi/6U6YJ5hcJI9GddQBcMA+hgs7ROL/RXGBkHg9FfYbBLf8rCtmEY6YKpCpNoM0kwEv2xicLgOBiJ/QF2OMCpgyiMJOqQvIBd6E+ZLhiG/uiWD0aSF+1HYaoLhilMzQcjySesP3WQpD/2pP279NdonABG1tn6dMHUNPoXAiPRHxujlwuMUzeUWUhfQJvGFq6+gHsJ8EE7pS7z9QUKU5NgJPqTl0t/7QsK0V/7Apf+2AL9fV8mtr+g/fi+LFgzL9wX+L4siFLXvsD3ZcH6t/kerPB9mdixFveSH5eJHQN+GMZlGzbWmO/6HfY7urt9QfR3iv8cbwHg74TJB0v/AQNl5bIlsm1rTU7i8vL+MmXaTBlcVS31Bhwtf3ex1G3fPQ6+0qJyuWTiZ2Ro+Wirw4odb8kjq3+eo8/e8qHsgMnS3twoLRvdDtE9oWf1Bdca2l8im+/+/p4ozpYx7JovSEvNRtn6h1/0uMzBJ58v5eOnyIaf/HuP84pm0HfoSCkaMEiaVr4bPbTHPg84/HipmHWsbLrru7InoXF3L7D6sk8J8Axp2bROtvzuTrvdnX+lI8fK4NMulmJTB8j2px+RhiUL7XZvlmMz3M3/iisGSenocdJo2lJHS3NsaRXTZ8vAOWdIzT23SOv27FIsxZXVUn3ppzLn1c9/RuoXPJv5vDs2zh13nYzuP1FueetruyP7XstzWPkYGdB3sNDX7y8ybsY50tywTTYse/FDccl78npOvOZHMnziUcaXUCStLQ3yu38/LseGpf0Gy+k3/lIqKsfY/VvWvC5P/uyTOWl6+qGouFQmz75MNi6fJ3Wbl/cou3zX06PM/cneAt4CH1oLeCAZqloABNAAwAMEwNHvgnnhaKgkB/6wYcOsgwkAAYBzwTAgJI5+QEoaGInTLg7m4cRS/YGR6O+CYQojgX/AE67BBSDQn2vlWJz+aWEkwAyYgQN/8+bNzsiwMIxEf0CRS3/yUaddHIykWqP6u2AY+hfi9Eqjv8JI7M91RCWsv8JIF0ylLhVGYn+X/oXASMpFsL8LhgEEaYuFwEjqCMe7C0Zif2AYMBL9XfdSWhiJLWi3SfpzD6E/9xRloVsczAOocr9TR3H6U6bqH9cXqP4aGUl7dDkdyQv7Yyfs7+oLFKaiP3WdT3914KN/VHxflmuRaF/gsr/vy7I2077Y92XBOoO+L8u2Dd+XZW2hD4n5cVn2wYSkh8SwXLQvdo1r6Hc+LOOypqZmM85ucY6xGa+kGZdlW5zfSrLA1ENmWRipaTatX5sDJEtK+sqck84yzKtE1q9bLcNHjJbhJ5wpzz/1J9lZ33UcRT6MsRkvrl+/XrNN/T618jALI59Z/wdZu/M9Ex1pIo32Uhl82kXSVlcrW357x16q4e5Rq6Vmg7RsLrxuXdrw+3B3yYDZJwrQeHfAzt2l8wed76bbv2UGcH1k+HV/22NVKgyMLTJrAdc+dp+0mQcYiApU6c1yNM/d+V42brIMOvFcaX3gdgPjN8QWRaRvW52Z+SsSPdy6dZNsvP0/jT0GyLCrPhd7fm8eqGlcL8V99n6X5VHDz5DxA6bKj976am9e/l6d1xHnf10ad2yWP/3gor1az7TK7anrGTDkABkx6RjZtPIVWfzUj6WlqevMAAcedYWFkW898xNZv/RZadqZfTAg7fXkS1fab5DMOuvvZfmCB2TBI9/Mlzz2eJrriT3ZH/AW8BbYry1QtF9ffejicSjhKMERkgRQ0sLI4cOHW5gEgNi0aVMsgMAhAQjKByNxWqjTyxXZpgAC/RWmumBeWhiJ/sAWQFkcQAGcaGSe6h8XWUi56B8HIxWmoj8QD4AVpz/OAdLHwTyqdcSIETn6xzm9VP+kaWbVacSPTerSZX8c+DhqsQl69wRGor/aHxiMzVz6FwIjsb/q74KRUf2BYS6Yiu0V5imMdMFU7iX0A86lgZHYNAnmcd+h/8aNGxNhKlAPGIn942Ak95LCSMp1wVTsj/5JfUFaGIktFKbm6wvQPw2MVP3jYKrvy7iLAtF7yfdlYoE97V/7At+XBQ8m+L4su34vfUpcX+z7Mu1VgihpPy4L7MH3mx+XBbaIjssazVR2roeUGFemHZdlW53fSrLAqDHjZd3q5fLGa/OcyUYfMFH6mgjKV19+Vt5c+JK89cYC+1040URUxgm/EWbOnBl32LmfqQVLi8pk8qBDpa2jVZZsmy/1LdukIQIkSccLqTBTuo6pmJT5rBmXFfez+zkeliITUUEZHB/Zb5w51Ef6lZh+vCw7lWI4fdw203DaFzDN/EbLfDaRilEpHjjYRFaNt2mix/jcxwDfPua3GcL0q6Wjxtl9dkfonz02ZoKQX5yUVA21ecQd7/H+zuvd+vDdsmPeE12ys3Ygus6k6zt8TOa6ogmZ0tJep8NeROdphJ6e14d0xs5dxOzrO2yU9B0xNqcs7Ikuek6mftgXkd6qn0i2iR8z+kVSWV2of4eeJA1fE1Oe9h0eRBHbY1yzaUtIvnaQVE5He5t0mN+g5keezas7/9TepSMPkNYtm6R53UoLI8ORhWnLoe6JtCwZPCRHFdtOHHayZTvaVc7J4Q/cv533X2Y3+zqjRPX+JgoZ0WuzdZE5oXPDnNe4eqls/s0t0t7QdZpU7NrR2hI9q8vnIhORXprnXu9yUs6OPoYpF8mLG/8kv195W84RACX956C+VTKkbIQ9Vlk61PSDwdTP7CDyjH6Sd/rQUf3Hm/yCqNmczMyHuL5W0yX11xyjnGJTDsI2L6aa7a5UjjxYxkw7VcoHDO2SRXHfchk15XipGn1Il2Ol5YOkpLS/Pd63rEJIO3zikTnp2E8a7DLywDkCTAoL+/W47td9+plpRCmrD3+mjbHNi/KiUta/SsYcfIqBa9n7PJom7nNxSanNl+NMWzpkzIy4pBJXDteLvmHhetCXCEGkkOsJ5+PaTqofvZ5JR1xqT3372Z9K3aZlsrM2OzsBtke3MVNPNn7YVlk6726p37JaGnbkzvhABrST0QedKOUV1S5VbH3QVkgXFr1+gCSCzlqHRUVdv//D54a301wPaXiFhfK0HNWFd+pq5ORjw0m7bNOOxk47zU512+Wg3+Et4C2wz1kgfY+zz11aeoVxzgKwFEYCDVwwphAYCawgX56qdUWGAR4AWGEA4YJ5PCWuAAWwkwRQFEYCsJL01yfY4yIjFeYBagBALv0Bb+ivMBWHrkt/jYxUGOmCYcAVoAF5Kox06Y/zBnsojMRx6orsVP0BEHH6YyuFwflgJOWifxxMQh8ctap/T2HkyJEjLQzj2tDfBWbRX2EqbQI463J6UUe0W/QnL1dkGDBS9acs2pkL5uFw1KkZ4xz43HXYH6cc+mMzl/7qtKPsJAc4+qvTbsOGDU4wq/qngZEKU6kj7OaCqdoXYE/uJZf+3N/YP5/+2FVhapz+3EPRvsBlf2yv+sf1Bb4vy+33tS/wfVkAI31fFrQP35dl7xPfl2Vt4cdlWVv4cVnWFmx1d1wWHWOQV6HjMs7xkt8Cz859RNrMuK0qtL5Z+KyRow8wYz6z/MTmDcaBWiQHTz/MHh4+0kyH9no4Zc+2r5j8N4JjXOWmaf9qN5fXvSl/XHOX7pZPTPmqgZT10mocjsP7BVOyATCZlhDH3Dljr5ZJg7LO15rG9+W3K2+V5rZGOaTySDl59CXS3tFuHfZ1LbUysK+ZRt78vW0A6BPr7suUk7Qx4vovZWBX3+oRMuKGL9vkzWtXyNZHfmW3AYjVF35CigdVZrJiukqmrQzLsKs/b+EFsAK4hrDO3saf/qfdBi5VnXtlZtpLdrZsXCtbfp+dxhagMvyav5aiigDANq8zejwc6GEz6aV/XKdCr+b1a7pM2cpxIiexCSDHNBypX/ii1L/yVEaDQSecLf0POSL4bH4vR8HN0I/d1GUK2hGf/gfZ9fZrUvfMHzP5DDz6VKn4yDEWftqdJi9sD/waYuzOdK0qWj8AsY13mAhAI71VP1pG2vd+B5mpj085P2c6VOp4yHlX58Dk+lefz7EbAIzraFj6pp3ilrU3EW0LQy+7UfqYtTjNj8jYdpCmnLTXkZRO7U0aoKl+3v7Uw9LwTvpOY+Cxp0vFzKMzRTHlLe2e9TjLzDS/lWdemtMu+k8/QgYdf7bUv/qcsd3TmfOSNgaZ6VX7m2lWN9z6zUyyYVfcbIHs5l//UAaaKNuKw47LHBvCFMmdsvmX35M2sy4mQlsceMxpnUeky5StmQMJG0DmIR+9MlN/JG1as0xq/3hPwlldD1084Sb7QAZHtG/UVOeOu1bGmWhE+jxka9NGCyZZE/bJdffbfnDigGnCdK/bmmsyfTJ95sOrfyar69+15+Xra20i8y+pv7504s0yrHNqbtJrn9/c3iS3vf0NzSLV+6TDL5HDzv1KBtZw0vJXfysLHv4/9vxDT/uCHHzc9WY7uO62lkZ55u6bpWb1Quk3aISc9zd/MseA8H2kva3FPnQNDGL9wYe/c5b53C7n/vXDBkCZ9VBN36ZQaPvGpfKXn1xtAdjYQ06XYy79D5n/0L/Kitd+b/ISmfPxb1vwdd+/Hm4/X/i/nrLfU3xgSlE+I7Xrl5h8rrLbAK6Tr/+pDB5+oP3Mv+2b3pMnfnqN+a5uzuxL2jjqov8j6LN13ZsZGMm1PH3XZzJTjOYr5+iL/6+MOugEeeXBf5KVrz9kizv1hjttfs/9+q9N9OFzVn/aAhJ3PfZgnn9J9cOpej2azUnX3mo3W5t3ye/+43i7fc7nf58DotW21PHcO2+waaYcdaUcevoXc0DfkufukDee/IFmbcr6Nxk/86OZzy2NO+yUr0zNOmzCEaJlk4B0mhZI+ubcH2XOS9pIcz20t6LivvLgt07JZHXJV1+QdUvmygv3fsnWL+1t24YlGXBKu37tT/8pKxY+mDkHAH/i1T8UprJVqatZIY/96FL96N+9BbwF9kEL7PdAEgf+qFGjLEwCQMTBSHXaAZ+SpmnVaBzyff/9950wAwABqOCdaCjgiAvmhWEkYARwFo3mohwcJcAw8kB/F8wAigBQ0sBIYBECTHXBGHXadQdGRvUHlKE/eaI31+nSPwwjid6Ig5HqNKIcAJBLf2ylMBJAB1xzwTx9gj0MI6P647QDeuTTH6is08wmRXbSFoGNlJMEI3FoAcMUprr0T+P0oj3QZtFfYbDL/mkd+KNHj7ZtEScc9neBZdoXtkV/oGBSNE4+mEceqj91Dahz3UthmBcHI2nz2hcoDI7TPwwjqU8XGA/DyLgHE1R/7iWN7MynP9cY1xeo/r4vy4Jx35e5YaTvy4pt3893iQsa+L6MOycQ35epJbKRkXz3+3FZ9iExPy7rZ0Hj7hiXZVuf30qyADAySVg/sqEhmDZ18kHTTbRkqWwx6wdWDw2ia5LOLeTYgyt/YiJjyuSMsVdYB/lvln3Xnt7Y1jXSiMgenNavbH5C1u9aKYdUHWXTzhwyx8LITQ3rZN6mR2V61dEm4nKGnDTyQnl83W8y6ry8+XE5oGKKddqTx4h+Y+XgyiNSA8mae40z1ES3VF98vQUS2/78gM07DNcqT73AwsiGd9+QxvcW23Xl+h08ywKGxuVLMrqwAYgAlgFSWgzo6zdtVnDc/FYdcsF1UmRAU8M7i2Tn6/NM2mrpPy1wbmsmRFQBpgA+FYcfZ6KrJkr55EOkcdlbmqRX3rf89mc2mmzIhdeZ/NwRdEDVXW8tMOs2LpXBJ58nA4w+O19/UTrMFJZEfQEjmb6z7vnHzPbhUjbhIAsuC1EQO7IuI1Nj1s9/2q5nWTHrmExk4bZH7xOA3aATzpHSEWOk5v6f2uw7Qs78XqmfQpQ2abledGp+f5UBxncHZ2sdG313vPyUtGxYY8DWqdZupAMuh6XflBnWfjtNhCrTgoajJBPbQYHlhMssdNveHwbsVF96g7Ru2yLbnwic4+EpW/PlaevYwEjWsdzx0lwL6wcedYqB81dIzW9+LI0rlkjDu4vMvXCYNK14x06dPOi4s6Rli5kRKCWMzKcDx3cunGcg8GJzP02TAUecINse/6201gYRV22hKMiGtxfaeu03daYFnO67I7lE7hdAOQCS6yg1UcYl1cOTT3Ic/Yvp64h4PG30ZTI49JCHJgVGPrTqDjlz7JW2rwU0njb6cplVfYIFkppuUN8hJsryUdPXNsrxI8+Tcw64Vm61oLBD0va15BXXXz+y+k4TEVluHhK52ESsj5d7lv2PLbqlPR10Uz0Bd0ec9zULEpfNv9eAyN/JuEPPkX4Dh9kklSOnGhj5SWlt3ilvPPF9qRw1TSbOukCO+/h3cmDPtg3vyJa1i8zagB+z0G79e8/J1GOvkxGTj5EN771g8wJS7ty2zuYz7YRPy+ARU2T6KTebz99TdXLe8TeG5S8/ucZ8dZTIyZ/4qV1D8oV7/94ebqjblEl2/JXftTDy/Xeekvfm3yeTj7jMRkoeaUDZvPv/IZMuzcbA6vEWylaPnSkTzDXPOuvL8swvP2tPzVfO87/5Wzn/7/4ss8//hp0iddyMsy2MBHYBI5E012MTJvxLUz+vPfpf8s6Lv5ApR18prFf58u++Lju2rhYAnMpTP79R+pYPlGMu+XcbFarrRjbWZyMkqav21iZ57tdfEGwOTAwfp52wb8eWlbaOqw/4iBx0zDVy4jW3WDDNepRP3H6diSqtlOOv/J5QR28boIkUspZkmuvR68r3PnjEQbLk+TulaVetzDSwdeaZf5sBksDik6+7zUTu9rPT1zKNbaVJP8m0KS/eAt4C+7YF9nsgidMRGANQAKC4YAwwEoDSWzASgIXTAgABXHDBJGAkEAgYFuf0oump/uQBwHLpH4aRwNSkyEhgEYOOdevWOWES4AQAhP4KU136A2x0OrM4/SkH/ckTCIP+LhgDjBxSNcQ8BVRs4RWOL5cDGRgJzEOAwS6YRF3jXEV/YCRwyqV/GhhJ3QCA0B+7J+lPfeLATAMj0R/7u+oSmBqGkXEwNQojXVO+og82Q39sBcx22V9hKumTIiPVgQ/owP4u/akfdONeAkaSXz6YFxdZSB7cS6o/7cylP/cRL/RPgpFjxoyxfQFtC4Do0p/7I6N/XRCZmk//JBip+gNT0d/VFsMwVWGkq/1rX+D7siyM9H1ZOhjp+zJ63az4vixri7Qw0vdlWZtpX/xhH5fpjBWMyfy4LPuQWG+Py7Ity2/1xAJ9TWQWa0X2rxggk6dMl0WvvihV1cMskGRdyXxAM23ZO8z0rEiLAY3tHW02cifp3AdW3CJbzBppiEbtzKg6xn7+3UqztpRxarP/M9P+zU4DGwaSi2tfsseZ7vVNs72zZbuNGio20xK2mbLzSev2YE2qDjPuBSS21m7uckrp6AnSbqKnts/9gz3W+scas3bc56X/jCMlCiRJsOXBn9vpLdluWrucNxMJd5AUlfezYHH7U0GECmW5zt9qIAbQr62hXoiWI0Kwt4Fk5jrNdWukkVU09I8otrpnH7V7dr31qrCOI5F5LRvXWVDDgdrH77fXSvTXiBu/YvBIrtM+lJ1zEzCE1DzwU3vNbG+fG9iH7baddYYkGWTaHDirM3pzsFN6o340rzTvRPoRRde0aqnUPnpv5pTyCVM76/htA3HfsfvrXnhcqi+6XioOPbILkGSq0833/ChzfrSO49pBoeVkCujGhgI785SwdDD9tuP+yJetrWNzPm2JiOGm1e9ZoM2aoIDX9sZdFsCXjhovlWddZtsB6Wof6gS9+QpIebzdtCH72jnWnsGasa7rsWlMdDDT1CKFtWh7innwwDxYbeq32TxcwL3cSHvobBNBinT/6Ut57TKR5JV9AigXPrOprUFW1b8jmxrXmocxxsnKHUvs9rDyIOJc066qXyILaubaj0NNJON08+DHWNNnrt25TNL2tZqXq7+uN/2uuXPNOsHBfUq0ZncECIPFFz3+XVn68q9tFsBFlSAyUixgeu+V4N6rMlNxAsJ4Ne0KvnvWvv2E8AJI8r7itd9ZIDmgKqhTze/JOz5pIda6JU/JpV+bZwDWubFAUs/Rd6LZkA7zPQNMI4IxLEzJCQRrbtgub5mIO2TJ8z8z6yYeZaeTDadNs806i0SK8gK06TSzacohKnTunZ+Ss25+QE7/9C+lrKLKwtj5f/iXTNH5rieTMGEjX/1Ql0BDXg1m3U2k1tgxCgB3bFllj7W2NFj7Rm3LNLN9y/pL/da1snnlApOmvUtE49Q515k8OkyU67+ZsU2T7Fr8Zxk27nALYvsNHG7K32TrTKcEJuo0Wo5VIs+/NNeTJ4vMYa5FgTiRwgOrx2WOAaGZynbTilcMhOU+MVHRps3RHrx4C3gL7NsW2O+BJDAD5z4AxQUzNJoLmKFTS7oABJBOYV5cZCQQDKcdICUJQGhkJE5iBRDRaBaa3dixYy1YQx+gh0t/jexEf0AkQMwFM9ALWJTPgQ/AIi9gKgDFZQtgpE4NGAcjVX9sgdMO/V0wRmEqtsjn9ALWof/atWudMAkYyXWiP4AO27r0TwMjKQeAhf7YHWjm0t/CVGMP9M8HI9EfWbNmjbMu0Z92hv4KU136u2BktP2gD05T9FeY6tIfGEl7JH0+GIl+CPZ3tUWuD+c2+hPhFwcj0Z92i42xq2vKYPIABqM/MBUY7NI/HNmZD0bSF2AnYLBLf4WplG1ham08TFX942AkenMvqf7AYJf+URhJudG6xObaF/i+LICRvi+jVaSDkb4vC2yl/xUm8dn3ZcMyfbHvy4Lp8/ku9OOyYMYNbOHHZXt+XKZ9lX8vzAJtxskPeJx5+Byp3bpZ1q9bJUOHj7KZtJvfUYxRZ8zITpHKAcaQjFtnz56dUxhjTsbqPRVgo8LIcF6sd9bQutPCRt1fY6Ala6DptHLs5/zWziiclrYmaeloscmJ0GyLrFmp+RTyXtSvwvjH+0izie5Sadux3YKV4gHZadP0mIWaW7IRMrq/pDMKlWk6kwQ4A8BAWLMP6WPG5h+ENJsIPxXVpag0+J1WMqgKT3xGR9K11W6xwFLPSfNebKLIrD07rznNOeE0vVU/4TzzbdvpZU2isH04p6Rzalki8HiFpTiybiLHiKCNk6R2UGg5cWXsqf3UMfdQ9aWf6lJkiZlemuhR2tLWh+6SYVd+TvqYe46o0/amhi7p95UdOxfNsxG0TAlN+25ctljqFzxn+43evAYe+ECY9rrNvJCW9hazlmOuexPwqLLObAMkK816u+zP19cCe1Ti+ms93tN3hWzhaSrDeTKVKLL2rScyuzevfjUAkiOmysYVL9n9rc0N0tJYH2w3me+Rzu3wOortbc2ZiDq2mc6TqU97S6rHHGqzYnpNIGCuFB53q1Otkk9LU735Lg98TmnLAfK9/udvm8jKv7ew/Mnbr89VqRc+5aufMFzuSXHUV42JcBx6wCy59Osvy67tG+Q9A7DfNWtNqhBhCdw+5frbdVfmfciY6Wa61K7f05kEH9DG+qXPZEreWbvWAMnxmc9DRk+326sWPZzZ5ze8BbwFPhwWyP3G/nBcU8FXgdPRBQNwaitAAUYCUFwwD0ikACIORgIecHQCM4CR/Jh1wSQFEOr0igMQBxxwgIWR6ANAcemPTsAdykT/JBipMDUuMhKYCgAiLwARAMWlfximJsHIcePGWRhDHpTpykv1xxY6Ta7L/hoZmQQjgU0KU4GRaWAq1wj4cwEg7E+dYnfq3KU/MBW4qU47rsGlv06zif5JMFL1Ryf0d+WlMJW8aGNca1R/jgGw0B/whqPZpb8Lpkbz4mZTBz75rl692tkWcfQoDAZG4tB16U97pVzyUhgZLRN7KgwGppLOpb8LpkbzQn+NjGQ7Tn/6AoXB3JPATZf+aaKJuIcUBgNT4/RXmMr1Kkx16U9dKkz1fVmwfintx/dl2QdDfF9mouwjD4a47iXfl9ELBuL7MrWE2OnW6Y/pi/nu8uOyodYWflxWlhlXJo3L9CE9vpd6Oi7Ltkq/VagFmpoaZdDgKjsmfuaJIAqtzETysK4k3we8og+jMbZkrBfd7xr/FaoP6euagwhF17m0l3xi9c5MOYqTN3D0pjk3X97h42EIGt4f3WZNvETJc02sP9lFOtf1Cu/X63N9j4fT9WS7ozWAu+TBunRhiX62xyLVhW7hXaydGBVnPtFEKT73Vv2oXSkyzra7Fs+XsrGThWlHm9cst1NyBioGNgKmsf5mjpj7KCpM5Rknye2gsHLiytD9aa5Z03b3vXXrJhM5/Isupyt850Dp6PEWXLJNFChriBYkpr1FpY/x3XSY38l7WogoJmoYeM2Uy6xdWTbxYDtFbW/qkr1/QtfuskPoTtQoZn1Hn3AbSNIvqb9OOi/tMb3n8uoT6kez1xGxQacdAht1Hgt3SAlKEd2KhPuVErPmZCGiIHf1G3+UhY/9v5xTicgvVICQKtZOnddSSDljpp5ss+hjpikfMeloWWV02y2Sr356odC5P7tBxh96rkw8/GIbifqRM79kox/nPfDVTO67tq+364JmdnRuaCRtdP/u+qztWvOPA98tBp6raL1mPmfGNkW6y797C3gLfEgssN8DSQCEC2YAIAAoDAoUQEQ7VNpAmshIBSi8K4Bw/ZgFRvKizHxOL2ASYw30d+UFYMShSF7ASICGS/80kZEKU9FfYaqrTGAkTjvKzAcjgTLoA4Bz5QWMVP1xegGDXfpbGGmmAaJMYIxrmk3VnzQKU11lhqeZTXLgjx8/3jrjaDeU6coLGAlco0wiCIDBLv3TwEiFweSlMNVVZhoYSZsFBlOXwFSgjSsvoCD5USa6cw0u/dM48ImcpJ7IC6ddEozEbqSLg5HoDwxGfxxEwGCX/sBI6pO8aDu0IZf+wEhgHrJq1SpnX6AwlbyAqUkwUh9MiIsmIg8AIvrTVknn0p/7iPuJ9JTHPezSXyMj0d/3ZfmjvLUv8H0ZLcYsYu/7ssAQ5r/vyzKmsN+9vi8L7OHHZdl24cdlWVukHZf169dfBgwIHrKKg5HkmmZcli3db3XHAtvMemkAyffeMWshmrUkGV9VVQ+VOrMOIMLvs9dffz0na8ZYjGGj+3MS7YYP9a3b7XplpSbSkTUmkWFmqsFWE/0TddT1SvEmCohpFqNi15I0v9XC6/sVm+jAPsVmitt6pilMJy01G2xC1g1sWvluupNiUn36qq/JyOEH2KP//eMvSUNj1okZc0qv724zU932rTbLr5ioQL224srqnHIAmjaSsnNv+YSDco7zoX2nifQZaB52AYwnRMQxhaf54SA40hUW2PNZ+68X6kcV+8rnv28ePGbmnEb5rx/9je7Oea9/9XmzHuGLNpqv6ryrZfMvv2cj3xRCYpeCYVpOCckfCi2HNlxc4Y78GlI1Qm7+xL/YAleve09+cV8uOEnWJPdoXDltZrrj4oGVdkpk6solRJAOPuk8O4Vqq4ne7j9jtgV6TO+aVohORrRNsvYoU8K2RYCkbUsmHWs89kQ6zAMeXE9JpN1rnkRG1j33mH0NueBaKR01zq6Nqnpquj3xPqZisizc8qwtiumtkdqmIEKsN/vato5WKTIPUKSdMtsqEvpXv2W1jQqbeNhFOdFumqS+do2FTgccckZmSteh44N1eJn6sxBh2s9+g0aY9Qc3mrUgzRSgJqKOaTyR5kYzVbSRqtGHiHROicl6lU4x3x0lZSaSPiJb171h9wwy62LuTgCWthzW0Bw2YbasMVOXAiOPvPBfTJThQjN16/u5msdcT24i96ferB93Cbl7Aaq8AMeX/OOLMnLynEyC5oY6KR9QbabMxX8UD4DbO9cjJu3uEsoI5z/+I+cVXNTWtW/aNUiZrjcugrjgTP0J3gLeAnuFBfb7xwxcMBIAAUDBaa0AxQUDAGYVZi0S0sVFRvKDF6cvAC4JoCiAIC8AShyA0MhI8l25coUTZihMJS8FKC79NbKTdHHRRByjTPRPAijqtCN9UjSXRkYG+q906g9MRTfyAgYnwUgb2VkUDyPRWwFWEgxWmEqZSTBV65K7Nw4Gq9OOvDQy1WV/YCR1hS3iIiMBKAqwkmBwGKbi9KLdusqcMGGCrUuOxcFghanorxEQrrxw4HOvoD+2cEXp4rQjHXklwWCFqaQDRroiO7H5xIkTrf5AvDgYrDCVvACpSTASRxP6x8FIYCX1RF5JMBj4jN1IFwcj0V/tnwSDFaaSl07zAKq76wAAQABJREFU67I/7QL99F7yfVmFtb/vy9KtP+z7Mu7IQHxfppYQ+yCN78sCe/hxWbZd+HFZ1haFjMsYY/Bd3tNxWbZ0vxVngQoDfkcfMFFGjBprk1SbaUL5DIRE1qwMnPvDR46VyqpqmfGRo0zdFMvqFT0DZDbzXv73xtYXbY6XTrxZJg2cLuePv0FKivrKe3WLermkILu2um1SPKhSWO+udMwEKQlNsck6kMCLytMvkfJJ02TIR6+yJ+1a9HJqXYCQAJtyEyVVefrF0nfYKCk/cHomr9QZmYRmyN4jYZrTviPG2JdpAAYGluV8TpP5rjeCa68887KMTYCFYSEqjvwHHXemAGIHzjkjfNhu189/xr5XX36j9J92mLXL4FMvNHkenJNW1zLkGGsP9h2eXSOvN+onp7AUH9rMWqzbn37ErhlZecYl9gxbx2bK3YFHnyqDTjzXgrGycQdK1Tkfl34HzUyRa7okhZbDOqVFFQNlkLE/dgWoqwCPekviyqGOiY4devlNxg6HWpBdcdgcs7bmJ2zRtJtqA+yABlvNupHbnnxQWL+U9SQLgYYtm4Ko1EEnnC1lBn7rfRq9Pp1+eOCxp9u2ayMzQ4m4N7k/1E4lw0YGnw1UDQtgvMW08bKJU4NISGNbjQKuOuty6T99tu1HaANAUkBkOOo4nJdrm/5upFkXkld5McCrT+hzf9cpsfsmDDxYjh5+phw29ESZWnmEfchj7c7lNn1v9rW6duQZY66Q8QOm2nUtY5VyHHj9L98xezvk0NP+WmZf8E92Ss5ZZ39Zjr7kmzb1kud+Zt9nnPZ5Yb3CYy79d6kcMcWu07h941JHjsm7Tr3hTpk460I58zP32ISrXg+mw9y2/h37edyMs4S1/I6/8rtmzcKu0JFEDTtqpLyiWg4/96sydtppZvrYoO9qMxBq86oFRr+D5LRP/cIeGzXleDn28m/JnI/9t82/N/6lKQedZp7xRbtu47wHviJP3/VX5uGOIuH6w1GgSdeTRtferp+4MgHJZ332fls3g039T53zCQOV++bAVdbrBDSf+8VH5KBjrpah42bZ6WpZRzMswGfu5REGZk474dMyZtqpFlSH0/R0e8eWldbOx1z2nzLl6KtkximfLThLpmolgnLYhCPkpGtvleETj5QpR10pp9/4q4Lz8id4C3gL7F0W2O8jJKPVgfMA5yQC1CFSziXASMAHAoAAFrlkogEoCAACgOISAARABgHmAVBcojCSYytWrHACJwARAAUBRgLXXALww+mIAFOBdVEBdEwwAAsBRuLodwlOO4AYQvQbEM4lCiM5tnx5MBCMpgPQAYMRYCT5uYTIThxkCHq5IiNxAuF0R7g+rtMlVZVVNhqNY9iLcl0SduBjf5egE7oh2IH6dImN7DTXisTBSGAqNkNoX7Qzl2B7gDCikZ2udNQlNgFurVy50pXETj1M20CAecBgl2hkJ8fiYCROO9osAowENLqEtk8bQjSCwJWOe4k2CYwEILqENs29iQDzeLmEe5x7HUmCkUA/BBiJbi4BRnIPIxrZ6Uo3aVLwVCbgkDp3CX0K+SHYnjpwSTiyk7p0RVn6vixrOd+XZW3Blu/LsvbwfVnWFr4vy9rCj8uytvDjsqwtCh2X1e0IlgjYtcsdxZVmXJYt3W8lWQDQeNC0j2SSACN5rVr+jo2CrDcRO4tff1mmGxB59PEBHFq5bIlZS3J15pw9v9HhLPKNrfNkdP+JMmXwR+TccdfZNBsb1sgz6x+0266pCu2+zuxcD7E5C+rcWffMHwW4NmD2iXYPkKv2kV/b7e1zHxIinMJrA+56c740rgyc1jn5ui/HJtny4M9lyDlX2ikcmcYRsevn2a1gitA+5vdJPkmRJDELos8GHH58Jk3JkOEGDl1vP28102pm1kZsd+jSWXjzhrWyc9FLUjHzaLFAzuwH0tn1Ajtzrn/laQsY+8840u5pXP62BUCdh+1bw7uLbIQkIBiIZ8X8xml4+7VwMhuRCDgCqFEPwJ2Nd3zLpumt+skp0Pkh07jsUXRHl7LxUyxwZX3QLb+/09YxcJUXQkTersUL7HbOP3OdLqHt5msHhZRDPRGBSD30P/QoIcKz/pWnbNHZ+8ilSXSfoz2EksSVE67jwadckDmDNoQAmQGPtY/dZ6E9+7Y+9EsZ+rHPyJDzr0k9zSn3Y9OqpWIhsAGCRCjaCGcyDAlT5TYsWWghscLkzXd/37Zfktl7wfgKVCpPu9huttZulpp7b9Pd9r3OQOlBx58tA485zX7e8ts77HS92HtQKCKYKFH6GOOAyDk/6UNV6XC5bNLncpLoZ412zK2/+LyJhjxyWKBjm1l38pHVd5p8g/T5+tocBTrPyd2X/fRqzVMy1kRjTh58qBw4eKYFn7e9/Y1sgjxbO2pWysu//4bMPv9/W1AILESWzb/Xvm/f9J689fStcshJN1loyc7W5l3y7K++YI/rvw5zjRoVB2zS74PwVKmAvPKKIRZ8ct7W9xfLm3N/ZLMAUr338j0yefblcsR5Xzc+hlZBt4FDJ9jj4X/zH/oXCxlJy6t2/duZaUKfv+dv5ISrfyjVY2faNMF5HSbC7Q/hLBK3c+vYnTSpHIDjydfdam3ANKcIazlyrTNO+ZyBvf9XgJQqSdejaeLe09ZP+Hytp/C+vNvmPhpQPc7WTZC2Q3aZSNcX7vv7zKnvvniXDKgaa+rkMmE6V5W6zct1M/P+xpM/sJBwxik3231vPfMTWfzULZnjhWy4rocpe08cNlmI7OW1eeV8G62q+WrUf7h96jF9J9+5d94gJ179IwsjAZJId0C85unfvQW8BfYOC/QxwCD+G3zv0HGPaYEDH0c/X9xxAALHNgAFZxXp4gAK4AdHAwKMBNpEhbwUQJCXTo3pSqcABfAQF5kX1j8OplImTkfKpcw4gBLWH9jngqnkpU478gKguGAq6RSgKEwifVRweuEc5lgcTCUvgBPgiXRxMDit/gpTyUunxozqRZmAKaL90B8A5BJgJKCRvOJgKnlpZCrp4mAqTi+FqcBIF0wlL0Ak0Z3kBbx1wVTSATbJM0l/IjuBqeQVB1PJS2Fwkv7ASIWpwEgXTCUvdOcayEsjU6O2pS7Ji/ck/WkT2Ja8aIcumEqZCoPJi3YdF9kJTCWvOJhKXsBg2hDp4mAwelOXpAdGumAqxxSmkhcg0gVTSacABf0Bm67IyHBf4PuybF/s+zLfl2n/wr3k+7LAGtjC92VZW/hxmd4lYmdx8OOywB7dGZcteWeZlPY1qzyZeywsfE47LmOcwpiK8nlnTMGLPKL5hstI2tbxpWs8knQe4xNejD94MX5iDMI747l9QbBZxYBBsstMl8n6kUnC2H/69Ony2GOPJSXLHJtxTG4UUeZANzeIEqouGyXbm2uksW1XN3PpndOILGR6USKsdNrH7uRcVFpuAFGVACmIBNuXhYgwpqy06yGa+8El2KzDPBTbbqZBTRI79aW5x200ZExeSef3Vv0klZH2mK3jyiEWiAHGdpfsqXJ6S3/quE9JX2k1U/7urqlLsUkf48/anXZPY48is5wOYJLpjdsbG9Kc0utpiC7ngY4/rLpDNpkHOgb2rZSapg3mO6zrvbo39bUYYmD1eOk3cLhs2/iujYAMG6eoqESGjD3UTIVaa0Fh+Fia7Qu/PFfazYMCD3/nLLP+4EzZWft+ZrrW8PlE2A0ecaDUvv9WeHfB28V9y6XKTPna3tZiYKCJlm9rLjiPNCfsqXLy6dLT+smXvx6njVRUjbGAD8DsEoBs5cipUlLa34LY8FqcrvS7cx9Au3nXdttue1JOWX8zE5Rplztr1+VEhfYkT3+ut4C3QO9aYNmSWplwYKUUl+T+/nWV4iMkO63C1IdAM35gAyBc0VA4APjBjbOKdAAUnP1RwWmgMIMf6a5oKH4QAyCAg+S1fdt2ZzQUZQJQ0I8f/QAs0kdFAYTq74rsJC+cjpRLXujPtUYF/XGU4HRA/zgYiR3IjzJ1asxoXpSJMwuYR5nkRb5R0chO8sKm6BYV8gIGA87Ii2t0Raaq04hymCY3Tn9gKvVJmcArV2QnZQKDcQJRZlxd6jS/5AVMdUV2khf1DbgkL9qYK7IzrH9cZCftBxAGzFP9XTCSvNCfsikzDowDg3HOq/6uyE7yAAaTlryA2S79FUZif/SPg5HozjVQJuVht6igP/cl10uZLucZx7ApMJK8sIMLRqI/aagr8kIv2ndUaKv2/jVPRzeaNTJckZ2USduhDVEm9c1DAFFBf42yTNJfp/klL2CqC0aiP3XEvU5eQGreo+L7sqxFsL/vywJ70H58X5a1he/LAlv4vizbX2ALPy7L2sOPy7K24LsEiKfjmriHxKLjsubmJgMky7MZmS3yKmRc5hrD5mToPxRkAeqQaMk0wth04cKFaZLuljSsGbmxoesDrbulsDyZEm3lirjKc1qXw4C59s3ru+zv6Y7BJ33URl8m5UPkma5BmJQu7TGgUr780oKh1m3uGXXS6tJb9ZO2vKR0to43uWclSjqv0GN7qpxC9YpL3506LrRdW/CdB37H6deb+4GQ7Y3umbV6s5y0efFAR9JDHXtTX8s17diyyr5c10fEYs3q3ChqV7p8+wCzNavjv98Ahz2FkejQ1tLYRd/jPv4dM03osYkqPmciPzetfCUxTfigq5zw8e5uA4bP+UJyVOd2A46fuP06W0Rv1U8+fZPaiJ5LHRO1WqjsjvohyrY3BBC/aUX6dtEbZfo8vAW8BXafBTyQNLbFgQ804EcqgCsJRuJsAALEAQhgDAAF5y8wLA5gaTRUBkBsq+1SyzgtABA4hQAncQBFYST6J8FU4CEABf3jYCr6Ywscc0nRRBpBgP7ASNfUkqo/+qF/HEDh+nDOoD8wMg6mAiMpF/1J44Kp6A9MQvLBSPJDf+CPC0aiv8Jg9HfBYOykTjv0B0q5YCR5UZ7CYNqYC6YqzEP/OBhJ26IeFQbHwVTyQn8AG/q7YDD663Rs6B8HU9EfmKowGEiHflHJwDzDnJP05z4C6FGX6O+CqegPzOYd/ePuJZ0ml7okHxdMRX8ABGnJKw6m5vQFBka6YCr2B6byQv84mIretGvKTuoLsKnCVNqhC0aSB2moK9WfPKOSo7/vy3xf1tlAaD++LwuMgS18XxbYwvdl2R5UYSTfE35cJnZc48dlQfvgu5wHW5Ckcc3uGpcFWvj/H4QF+J3h+q3xQejiy0y2QPPGdWYNu7LERO1mjUMv3gL7kgV8u+5+bbVL14d2u5/bh+dMgNkHLVvWvi4lZf0T1Wjc2bOHNBIzL+AgoBN9k2Tb+iVJh/e5Y/tS/exzxvUKewt4C+RYYL+fsjXswOdHpysaKq3TDhijACUJ5nWBkY517nCAaAQH4CEumi4MI+OmZsQBq9Foba0Gpm5xR3OhvwKUJP3TwEj012g09MeuLoAShpFx08yiv0ajAWMAfq7IVPRXGIzTCIAYFeoS/YGDwCSi0VwwFf01Gg2942AwgCjfdGboDzykXPSPi0xFf4XBcdO0or86vdA/LjI1qr8LBodhJA7YJBipMBX94yJT9V7C5kn6h2FkHAzGFtifPLF/HAxOCyMVQKA/95ILpqr+gFn0j4ORYf3jYCr6KwzmXkJ/8g0L9o/CSFdkJ3WpkbVp9fd9me/LtK1F+wLflwUPhvi+rMhGqOd7MMT3ZXoniX04xo/LAnv4cVm2XSSNy3bUN8iACjOFnvm+j/bFacdlS5cutedic/KgPF7kyas7sj9P2dode6U9p7enbE1brk/nLeAt4C3gLeAt4C3gLeAt4C3gLeAt8EFbwE/ZWkANaGRknAMfBwAAAqCHAxNg4JpaEpgBQMFZEPcENY6DMIyMi4YiDwAEsAsYEwcjwzAvDYxU/V1TS6I/AIXrjYN56K8wEhiG/i6YhwMT/dEPGAPAcsHIMMxLCyOJRnPBSPQHDOKkidOfY2lgJPrjdAT2oj/2x3ZRCetPm3BNM4s9wzASmOp62pqy0B8bJ8E89Ce/JBgZ1R8YTPqwUA76U+dJMJK2iMOadksdoj/6RQX9gdkI1xcH84Cp6gBPgpHAbOoU+5MXOoYF/dPASPTHXoA/9KeOXDAyqn/cgwkZGGnA/tZad2QneqM/9UBZ6N8TGAkM5lrRn3spTn9gPOX4vsz3ZXqvRPsC35f5voy2wXeh78uCu4TvEj8u0x4jd81IPy7bO8dl2dryW94C3gLeAt4C3gLeAt4C3gLeAt4C3gLeAt4C+54F9vspW3HgJ8E8hZHAAOCbC0YCMwBYwA9gDTDDBSDU6QUcilvnDgcyAAJYBIwBoPAelTAMS9JfIyPRHwAUpz8ABXgWFxmG0y4KI11TS6r+wEjAST79AU3oD2iJCvoArygX/YHBLpiK/YHBOFnj9C8ERgJTyRP942AqgEhhHjq5YCTtAfsrzIuDqZRFXtg4CeYpTAWOEtnJKyrAsKj+Lpgahnm0Cdc0s2EYSRvE/i6YSl2jP5Kkv0Z2og/3kmuaXPTnXuId+wNQXDA1rH/cNK1hGIn+2N8FU9EfGIzQFl0wkraoMFX1d00zG4aRlIX+LpiqkZFcG/Z3RUZyLwFTuVb0p45cMFL1932Z2PvW92W2KVsgHu0L6Eej4vuyrEV8X5a1he/LsrbQcY0flwXrH/pxWdA2wuPKfOMyfchNx5XdHZdlW6Xf8hbwFvAW8BbwFvAW8BbwFvAW8BbwFvAW8BbYNy2w3wPJJJinMDIJQCiMxHkHjAFguQCEwkiOJcFIBRA4LQAoLgChMIYml/QEexoYiQMWpzUON/QHoLhgahoYiQ3C+gNQXDBVHeAKUFwwEpiE/YFAClNdMBL9FQbn0z/fNK2qP05H7A5kTHLgo38+GKn6A5xoa1FBfwUocW0x7PQCYCXBSK6RPIFhcfoDwwC46J8PRlLvCiNd+mMr9EdHjrtgHsfCMBL942CkAhTV3+W0U5in9xL3SVSiMJU0tI+oqP7A4Hz644TVvsClP30B+tOO0J92HYWplB/VPw5GUh5pFUaSZ1TQn7pEf9oi929UgKm+LwuskvbBCu0L6KvoC3xfVpnpi31fFqzfS1/g+7Ls+rdJ4xrflwX9D32xH5fl9sUf9nEZdc64uDfGZdHvdv/ZW8BbwFvAW8BbwFvAW8BbwFvAW8BbwFvAW2BftMB+DyTzOfABUkRzuaKhcDDgTAHmATNwWrsAhMJIjgEy4iILwzAvLpoLBzkACAEmuWBed5xe6A/AcsHUQmAkgARwEgdTFcYoDIuLLASg8ALGxEWmUhYACPiE/nEwGBhWiNNL9XfBVPRXmEeboM6jgj44HSmXPKhvF0xV/akvBZvYJSwumOeKjASGhZ1e6OWCqbRF2g/13BswEhiMjujvaouF6E8dcR2AwzT6Y38XjOR+xP60W2AS9nfBSO6lsP6uvgD9aYc41LFnHIAIw0jV3wVT0YkysT99QRKMpK7QnzQuGKl9AZAtqS9QGOn7snRR3gojfV8WrJnn+7KgR/Z9WfibSWz/6vuywCbaF/MpqS8uFEb6cVnwkFu4L97XxmUdUmLGNcFDYmnGNXHjsty7z3/yFvAW8BbwFvAW8BbwFvAW8BbwFvAW8BbwFth3LVC076q+ezQHDqkDX6OhkmBkGKC4AARQKuy0c8FIdYBrNFQcjOS4ApS0Tq8kmAcAomwFKC6Yiv5APwUocfoDbHDKKUDhPSoKZhWguGCk2p86UIDCtUYFB1UYBsfB1EJgpOofB1MV5qFLb8FIhdlJ+gMaqRtgWBKMVKcdTi+X007tn09/6lIjI6lvnKJRwVYKg5NgKvVo9TdrLubTXyMIsL8LpqITMBVomwZGKgxO0l9hcBxMRX/skRQNpQ8m0BcADuOcjgoj0b8QGOmCqWn7At+XZVuu78uyttgf+7K4yE7fl2Xbhe/Lsrbw47KsLfy4LGsLxq98l6Qdl/Xty7rywbigu+OybOl+y1vAW8BbwFvAW8BbwFvAW8BbwFvAW8BbwFtg37fAfh8hGa5CjYbiKXYABDAmDkbijABAADsAKC4YCQwAmgEggDEumAeQAngAGBTmuaKhcCCTF44hYAZlRoVj4Sfw4yI7AVeqPzApn/7ASPLiFRWcdqo/esdFc6n+2Bj9gTZRieqPvZJgJGWr/i6YqjAM/bF/nP7YAqe06u+CqcAk7I8zirxc9k8bGUlZlEndc33khY5hoRzVn2tDd8qNCm2QvKhTwBX2dzm90B+AmE//KIzEvlFBf4XB6E9dxulPfuhfu63W1ns0r6j+2MKlv4JlzscOXGdUwpGR5BEHILjX0J/6UrDpikzlXtK+APvTbqOCAx/7805fQJkumKowTPuCOP2xF/eK9gVxMFL7gjgw7vuy3JrSvtj3ZUFk2/7Yl8U9mOD7suBe8X1Zts/w47KsLfy4LGuL7ozLWlo2y1Yzlm0xY5KopB2XRc/zn70FvAW8BbwFvAW8BbwFvAW8BbwFvAW8BbwF9mULeCDZWXs48IEBgIMkGAn4IR3OO2BNHIBQmASAAKy5YBhOL2AGgAQYRjoXgABQkC4MI+MASlj/OJg3pCqAqaq/C6YCYrhOykF3l/5pYSROF/JC/ziYxDHSkBagkwQjsQVlc33YP0l/AAR5uWAeeZAXgA27k84Fg9GJdLQR8nHBSHXaYX/VPw7mRfV3wVSFYQpQXPoD87BZGEa6YCo6USbONOrRBcOAc2p/YB62cOlPWyUdbRcYRl4uGKn6Wxhp8nLBvDCMBBZQZhyMTKM/ZVJX+WDk/2fvPODjOO57/0cHAaIT7FWURFEsonrvXVaxmiNZxYqLFJdUxy/Fec57SZzEz8lzHL9IlovcY9kqtqxiybKsbvUukVSh2AtAEGABiA68+c7if7e3mN1bkIBISjP4HG5vd3bmt/+ZnZub7/5nSCsMI+P0cw8rDHbppw3AFmEY6dKvbQFNDfbnOqNBB8DzwUiOkyf60YT9XW0BccJtgevBCt+WZUvBt2VZW/i2LGsL2kzflmXt4duyrC18vyxrC75Lov0a3y8LHhKzffrBYtv/ylpMMl6WafplrtlEwmn57b3bAiWFpVJRXCVd/Tulu3/4WuZ7t/r3Tl1hxXib2cDO4bPijJWKwtJyGeSvZ/isPiPNs6C0TArN9Mz9O4Y/PDrStPbG+AUlpVI4rtJcn3k42YwN7O2huK5RCszYAmGgu3NUyqWwfJwUmDoz0LFDBvv7bNpjkY9NeE//M2MehWXjZKDLzJIUKu+CwiIprm/MqOtv32bijG27RhtaXFginX3DH5LOCPEbqS1QX1dj47a2vT/aquqq8TKhvjZz/WvWb3KODRKhuLhIqsxY1jYzhjUwsPe3Y5mL8hveAt4C3gLvUwt4IGkKlgEBBvAZbBsJjAQsuLyhGMAkPQJxXDBvV2AkUIr0XACCwSAFEECKWBhp4gGCOJ6kn/TIh7RcMGx3BvBd+hWgWJjXajwjO4b/IAUcEi+s3zXoRRxeowEjsSlpASPjYBID+NhLYRh2dcE89YzEdgAi4rn0kxZ1CP3Y3wXDwjCPAS/ixcFI9FPHyY9XNIRhcD6YR1ph/S6YShz0jxRGuvRzT+bTD5zDZgrzuEaXNxQwlXgK84jngpHEIV/0Y1cXzAt7E1HWpJUPRpKWqy1AD9eo+okX92AC8VQ/8Vz6iePbsqCWUw8pT9+WBQPg1A3flol9CAhb+LZM7AMV3CP6kJVvy0b2kJjvl/l+mfapXP2yfjtonftTS/uVaftlmr5/z2+BUgOFZs89SCrGV8mqFctla+vw2VgmTJwi02bMkR4zle6y119MTJR+O/2pjRs3JsZzHSwtLJdL5twgE8qn2sMrdyyVe9f8wBV1j+8rmzFXBnq6pLdp/R7T0nDhNSJFxbL5J994zzQ0Xv3H0tvSJK2/+uFu51lzygVSPusA2fTtf9nttKIJlEyYLIXjq6V71VvRQ+/Z5/GHnSCVS46V5h99Xd5LaLyrF9hw2ScEeEbobV4vW37xfbu9K/9KJ0+XmtMvliJTBoRtj94rnctfttujmY9NcIz/FVVWS+nUmdJl6tJg73DPfc2+csERUnXcmdJy603Sty07K1FRbYM0XPoJjSbtzz8m7S88nvk8FhvnzbxWplbMkZuWfnEskh+1NBvLp8n4khqhrd+bw59+6ho7LvSlr7x3be1Y2uPMk4+T4486NJPFf377x7Jqrfu77OxTTpDTTzpG/v2m78v6jU2Zc/yGt4C3gLeAt8CesUDur+Q9o2GP58qUbQwQKIBwwbywN1QSgFAYyUADnnQumBeGkUAYBgBdAALApQBCB71cAILBxNGCkeTHNRAAHkn6+aGu05zGeRaqfkAMLxeMxP5cK3COPONgHmmFYaQLBitM4mE+0nLBPAahiYd+7I79Xfp10AhgpzDSpZ+00J/WMzINjFSA4tLvGvSKg3mUJfq5RhcM4xj2B4ahH5vFwTzsHx7Ad8FU0mLwRmGqC+aF9atnZJx+8gSgoCtOP/ZHP0CQ63TpH19pPAvrA89ObEo8F0zV+pOkPwwjVb8LRmJ7XrQFcfqBi9gMWIoNiOdqC7g+bEHbwT2JLaJtAfcsafm2DEuItZdvywJb+LYssAP/1cvbt2W5MNK3ZdkZK3y/rNB+l/h+WdBu0C/gu2RP9cuyrZffSrLAvIOXWBipcZo3rssBklXVtbLkiBOkwvQHCWmAJGW/YMGCXQKS82oPtTDysY2/knUd7xjvyOHrsavWPf1ec/qHpX97m2y585Y9LeU9zb+3ZZP0bh45bHaJpK8/VmH8EScJ0HgsYOdYad7T6TZ/96sihQUy8do/320plQbGFo6rkLYHbpP+beb3o/EK1DCa+WiaY/leNnOuVJ90nvTd8V0D4zfFZoWnb/9281sz4j3c19osTd/9irHHeGn86Gdjzx/NAy1dG6WoYO8fsjxq4pkya/w8uXHp34zm5fu08ljgznsflHt+84iccdKxFjYmRW8xTg872jvMWNHYevUmafDHvAW8BbwFvAWyFtj7v92zWsdkq7Gx0cIkBvcBiHEwkh+l+TwIAAbAGH6UsK6eCyYpgACGMehFni4YxkAQAyDEBz4AIVwAgnUBiQtcIS0XzNPptPLBPPQrQInTDxABeuSDkQyAh/W7AAp2Qj+wBbgVp5+80JZPv8Ik0mWKKxcMYxAa/dgEuyfBSPQrzMP+LhgZ1e+CYehHW5oBcOxGwP5x+kkL/YArAFYczFP9xInTjy0URmJ/l/7wAD51mrJ0wUhsgX7shH7XvUQZNtQ3SPm4YM1F7O/Sj3buJYWR6I8GyoY80QcQRH8+mKf6XTBS9XOfxemPwkhsmwQj0Y+upLZA9Y8ERrr0+7YsW0N8W5a1hbbFvi3LhZHaFvi2LLv+rW/LfL/M98uybSdb+pAP23uqX0bePuS3wJRps2T9mneldUuzLDr0mGEn1BjPHvpkr774lAGX88xvuophcUZjB1MLmskOZW71Iukf7JPlW5+3yfaZ7XAgHqFvoFcqzZSutWWN0tS51n7WeGVF4wzUnCJbuzdLR98O3W04S6EUF5SY35tmuZHSRtlkzhtXXCHlRQaamLhpA9NwErjvjXFEP5sfnJkpKTWtoqoaKaqqtQDP5VlVUMz1mOlPze85pl8trqkP4vb1ahL23R6rm2ABaNz0psXm+IDxYB0zTzyu17xa7/lJznSUKtTawfyuHhwckJLGqdLX2mSvS4/rO1NaMn1lb/MG3ZV5V++8wYH+7D7jAUqa2DcnGNuXNEwyZVAkfVs2ZfIqMGMAxs3Plg3xM+VjtqNlMFrlk6MrzwfV59QyvsYCr+gxkuQ67JSnxg52ylMztqA2tGlKgbFBrzmWXA/sNcfkY+2OmUPTjea5nGGH1d6lk2eYcmmWnvWrbJzwNaXNp8CUfUnjZBno3JnjcWjrifk9G06TTGzejvvQCnD94/41L+6/TGAftqQOsm004IVMIH29vmjexO1a87Z9Daur5lzyoHzyhULTxhY3TEy815PTKDBtXYE81fTrYdEAlLRbFUWmrTFTurZ2N0lt6QTpHugyU7sGs2zRPpaYdrJ3sNfEq5Tq0nrTxq6TgcHsPakJx7W1ejypvdY2v4h71YTSwjL7znTQvQPxXqg20tC/oqJCO05UZGw/fcokeXPFKmEq0qrxlbJuQy44njKxUSY2Nsim5hZp2pydBQB7lJeX2QfM+/qy16j76eP392fbnkID7A/cb7ZsMVO3bt6S9YJVXZw3a/pUo6tEVqxak3Ouxsn3zjhmSUmxGZ/pknIzBnTg3Fmy1kyp2rZte+bUfPmgc9b0adYWeD5u35E7ixrjTt3m2nrDdT+TenYDGz//yuv2FbYDMThWYcbWooE0u7pyp/QeX1khc2ZOMx6WzdK6dfj4VDQN/9lbwFvAW8BbIN4CH3ggCYzhiwyA5YJ5CiAAKUmekQyAM/DLj924QQu+lIEewKQ0MBL4pzDSBSAmTpxoYQwABf0umJQWRgK50E+nIA7mqX5sgn4Aigumkg4wKR9MBaAAY7g2bBanPy2MzKdfYSr60Q0ocsEw0lGYCjBzwWDshH5gIwPacfoVpqaBkYBl0m1ubnbCPIWp6M8HI7E/AIIyYuA9ClNd+l0wbyQwEv0E6o8LRqp+7iXVHzcAThmgX2FeVD/3GfcS9sWzMw5Gop+ypOyTAARlma8tQDf3Ce/U1SQYqTA1Tr/CVO5PbED9cd1LaKL+o596SHvgagvS6PdtWfaL0LdlWVu42gJXW+zbsqzNfFuWtYVvy7K2YMv3y7L2SNOv9P2yrL1cbbGrX5Y9w2+FLfD4w/dKv+mP14XWNwsf37Bulaxbs8LumrXfvPChUd2+Yu6f2YFxTfT6+f9gN9/d/rrct/ZHuls+dsDfSGd/uwGQfTJx3DS7H4DJtIQMpJ87/SrZr3phJn5L1wa5c9XN0tPfJQfXHimnTL3EDKwPWDi5vbdNqkrMjBzmb5kBoA+tvy1zXtLGpOs+n4FdALFJH/+Cjd6zbqW03vvfdhuA2HDRx6TIeJhqYLpKpq0Mh8arPmdgS4eFFSWNU+whoFPTd75it4FLdeddmZn2kp29Tetkyy+z09gCoyZe/SdSWBn8nuhZb3TcE+iwiYzSP64zAKjGU3bj2mFTtnIcz8kAEhrIYH5nt7/8lLQ/90hGQfWJ50jFwYcHn804AtceDhM+cv2wKWgnffKvZOeyl2T7Y/dlolYdfZpUHmIAuvn9Z4NJC9sDv+qN3ZmuVYOWDwCp6RbjAWjCaJWP5pH2fdyBi6Xm1AtypkOljOvPv8pq0nTaX3wyx25AMK6j8+3X7RS3rL1J0Low4bJPSYFZi9P82ImtB2ny0fx3513tTRolE6dm7o9tj9wjnW++kjrpqmPPkMrFR2fiA9qp96zHWWam+a0969KcelGx4HCpPuEcaX/xCWO7RzPnJW1Um+lVK8w0q5tu/nImWuMVn7FAdvNP/0uqjJdt5aHHZ47VM0XyUNj84/+UfrMuJoG6WHXM6UNHzIM4kSlbMwcSNoDM9R+6MlN+RO1eu0La7rs14azhhy6efb1Mq9zPHtC2UWOdN/MamWm8EWnzCADJ+rJJPBIhv1t/u20H54yfL0z3urWnJdMm02bes+Z7sqY9mP44X1ur+SW115fO+Yw0Dk3NTXxt83sGuuVby76kSSS+n3bCMXLu6Sfa8Rr6Au0dO6XSjHHQLCx9a4V858e3m8/j5H994bN2fEQT6zFjIN/+0W0GGK6VEtN+/tNf/6m0mLGff/n6tzWKnHL8UXLBWafIL3/9kDz2VPCADHDwK//z85m0mjZvsdOY6kOaxx6xRC49/0w7rklCjDXe+ov7DMx7I5Numo3rr7lc5s6eKS++tlQOX3xw5pSbvn+rvP3uasmXz5FLFsoVF59nx8f05Lat2+U/vvVD6+mo+/K9c/2nnpC9B6NTth626GC58pIPDUsGUKu2HGcepv/cxz8qUyY1ZuJtbNosX7v5h84H9TOR/Ia3gLeAt4C3QKwFPvBAEss0NTU5YRjggaejeQdGAiBc04QCDBRAKIyMAhQG7YAGYQDhgmFAHdILwzwXgJg0aVIGRgKwXAPILgDh0q+DRkCeOJiEHtWPbq4zTn8Y5gGB0uh3DbpgK+zP4C+ACzjo0k8c7Ib+OJin+kcDRlJnsD8D9FwbNnPp5zi2RX/SNK2ANYWR1EUXGGfQjnhh/S6YRz3E/tQ3hZFRz1o6uqqfjmeSfuoi+pNgXhr9pKH6sRWgzqUf7QpTiYPdovcS+hn0VRiJfhfMA0Zi/7QwknQ3bdrkvJdoA9CfFkZi/7i2gHqKfuo39Xl3YSRpKUz1bVnwYIVvy4I1I8NtsevBCt+WYYFs8G1Z1hbhtti3Zb5fpjXD98vUEmaAOmW/rLp69Ppl2dz9VtQCwMikMBDyVEuKt7vH7lr1bSkxHjJnTr/CDpD/bMXXbZJd/bnAip0MoDNo/dzmh2TjzlVycN1RNu7i+uMsjGzuXC9PN98vC+qONh6XC+XkyRfJg+t/ZuPw79nND8qMygPsoD1pTBo3XQ6qPTw1kGz5+c2GaJmlGy6+zgKJrb+5w6Ydhmu1p11oYWTnW69J1ztv2HXlxh20xAKGrneXZ7SwAYgAlgFSeg3oGzd/SXDc9K/rL7xWCg1o6nzzVel45WkT18y2M/+wnPPxqAJMAXwqDzteSqfNkfK5B0vXitFdk23Lnd8zQNKsP3/RtSZ/s8aHIwBVdy59wazb+LbUnHK+jDd6Ol55SgbNFJal02ZbGMn0nduffMBsHyZlsw8c7vnoSDe8CzuyLiNTY7Y//6hdz7JyyTEZz7Wt998mALvqE8+V0knTpOX279jTB/uyXlejUj5hUSm2uV409WxYHXiZco6WsdG749lHpHfTWgO2TrN2Ix5wORzGHbDQTn/a8fRDdlpQgJ+GxHowwnw0zV15t/eHAV4Nl35c+raaZXgeussmE56yNV+6towNjGQdyx3PPGy8JKdI1VGnGjh/hbT87JvStXK5dL71qrkXDpXulW9ab8Lq48+W3i1NqWFkPg0c73j5aQOB3zD303wZf/iJsvXBO6WvLfCu6w/B9M5lL9tyHTdvsQWc7rsjOUfuF0A5AJLrKJ04zXpKJp81/OhvTVs3rni8nD71Mqkx3o/RAIy8e/Utctb0K21bCmg8ferlsqThRAskNX51Sb3xsrzftLVdcsLk8+XcGdfIzRYUDkratpa04trre9d833hFlpuHRC6WyeNmya0r/sNmndY7UnXy/sQzL8rcOTNlqoFeTz3/skwz3pLzD5ibibLJgMNHn3xW1hgvw4PnzbWg8RNXXSp/++X/EODk6nXrZfaMwJuQqUkJrK/IWNCTz76YSae42CznY8De3b95xE5zOm3yRLnonNPkjnt+I5MaJ8jlF54tXWa879cPPS795twLzjzFArvl76y0sDSTUIoNc8vKYYvmy5vm3KdfeFUOWTBP+sz4WZp8GAPivMeefsGMRe0w13KYHHvkErnm8gvlxu/9NEXuQZSHjc2Wvf2uPZ/8zeBSzrmvLXtbWr5jPOaHwonHHC5LFh5kvFOz60x+6qrLLIx8ffnbxpYvyXFGx6L5B8pHDcj84c+DtkHP9+/eAt4C3gLeAuks8IEHkgAIF0xSAAFIUW8oFwwD2ODNxQB40qAdAIg0SQOA4oJ5QAUdQE7yjFSYRBEDIFz6AVcMrjJgkgRTATYK89AF+IsCIOAK0AP96s3l0h+GqcDDOBg5efJkC2PIB/u7YBL6AY3ozwcjsZvCSBfMA0aqfoWpLhiWxjMSm6t+OnfY36WfQTuFYapfnzojDQ2UEfqBYXEwUmEq9icv6plLPyBPYV4cjCRf9GNfYCoA16VfYSr2BwomTdOq+uNgHmkAs7mXyCsJRoY9I8k3ClPD+hWmuvQrjMR2STAVXcRNgpEKU3lXmOpqC9IM4JMP9y/2Rz/2d91Lds1L07ZguyTPSOo1+gm+LfNtma0I5p9vy9QSYh9c0LbYt2XBgyG+LcMpqNC2xb5fFtwr2q/x/TKxfWft1+xuv6zMAJjqmmDGh93tl2VbNb81FhagX7ZwYdYjkTzoU9NPPOKII3KypF6sXbs2Z59+2NG71W72GtDI1IB47iSFO1beJFvMGmkE9dpZWBdMOfuLVd+0U/6x/4b5/2ingQ0DyTfanrHH8SJ63Wx39G6zXkNFBUVmutjslH1x+fdtC6bpGzS/ZwCJfW2bh0UtnTpbBoz31LaHf2WP9d3XYtaO+5xULDxSokCSCFvu+oGd3pLt7nXv8mY84Q6UwnKzVIYBi9seudvuIy/X+a0GYgD9+jvbBW85PARHG0hmrtNctyFpVk/0H15s2x+/3+7eufRFYR1HPPN6m9ZbUMOBtgdvt9eK99ekT/21ScmdVjRt/QwYIrTc8R17zWxveziwD9v9HWZaQ8MUBnu6+Dhm5WMTT/kPTz+86LpXvy1t9/88c1b57HlDZbzMQNw37f7tv39QGj58nVQuOnIYkGQa0c233pg5P1rGcfVgpPlkMtiFDQV2wIvBrk6n/fMla8vYnE9dwmO4e807FmizJijgdaBrpwXwpVNmSe3Zl9l6QLy2u7NwJF8eaY4PmDpkXx3TbXTWjM3cB6EEbBzjHcw0tYSR1eggIaYypnx7zMMF3Mtd1IehOhHESPeftpTXTuNJXluQ9UrTs7v7O2V1+5vS3LXOPIwxU1btWG63G8sDj3ONt7p9ubzQ8rD9OMF4Mi4wD35MN23muo4Vkrat1bRc7XW7aXfNnWvWCQ7u03xtvqblev/dE8+YMZ5eCyR/9/gzcpjxKpw5bYp1VOgw6x7++43fM/1XM0uXGSNbtWa9nWp14oSGTFIPPPyk3HDtR+ScU0+Q2+5+QOpM/6O+tkbeWrHKjPvQ3mXD//vuT+zUqa8uXS5f/fv/YUEhQPKic061kX7zyO+FKVIJv3/uJetheMwRh8hvH33K7hvJv6eee1luN2kTXnljuX3He5KQlA8embxKGUuaUC/Pvfy6HHnoIgMzs9dsE8nzD4/Td1aukXlz5wQxoaShAHxduWad3bO/AcKHLDjITsf649uD9pj8Z5tpWimDBx/9vY330ONP2ylvDz4wC4xDSfpNbwFvAW8Bb4EUFvjAA0kXzGOwTgEKMBKA4gIQYc/IOJgHgJgyZUoGRvIj1gWTGPxg0BSAkgZGku6GDRucMIkBNkAX16H6XTCM/BSmxuln0I6BKh20A6C49IdhJPqTYCSwi7B+/XonjGFQAPsDYxSmuvRHPSOJ64KpCoPRzXW69GOHuto6s7SCeWIsZppWNFOWwEby2bhxo1M/xxUGAyMZhHLpVxiJjakXLi9X6oPqB1yh31UXGTQBiCV5RqJ/6tSpFoYB+gBYLhimHhAKI7FHnH717IyDkaqfugg4TNKvMFU9I10wUvUDU7GZS38YplIP0e/y0qWO6aAjZelqC7AB0E8H8IHBLvtHYaQL7Gv9URiJzVx10cLUhqAtSAMjk9oC35Zh9SD4tkwtEbz7tixrD9pi35YF9vBtWbZe+H5Z1ha+X5a1hfZr6Bfn65ftaO+SYrNmVxKM1H5NUr8sm7vfGisL0K+P9u/oO1Iu0f2u/umu6MKDRmFk+HzWlOzs68hZf6zFQMspFbPMA3RmCtGhwPl9Q2uU9fZ327XSOISHZn//To22y++F48wDb+b3Zo/x7tLAuo8AkyKzdl80WKi5pTm6W4onmPURTWCazqQAnAFgEFizj1Bgfj/sidBjPPw0qJbCUjOVqAnF1XXWw0b3s6+/bYsFlmynDUXGi8zac+ia056n8UarfDS9NO92elkTMWwfzisemloWDzxe4VBk1hONBjxo40JSPRhpPnF5vFf7KWPuoYZLPzEsS9YfxXsU4Nl694+k8crPSoG551jbdKC7c1j8fWVHx6tPWw9apoSmfneteEPaX3hi2Lq0u3s9uhYk0173mxeh16zJy/qS4QB41LDebAMkWbOX/fnaWrvm69DJce21pj0a76xXyHqIBCAZXo+ECjNdKGsn/vEnrpI5swKobA8M/QOYERdvwk6TxqGL51sgefZpJ9gYeDqGA99tuo7jwMCgOadLxpn1JwkTGkz7ZsKFZwdg0n4Y+sf6lbsSHjeen9GQJp/a6ir50+uvkRrzHg70w8YisGbn9dd8xHx/9snXvvmDzLjizOlTbHZMm/vnN3wsJ2tz+/rgLeAt4C3gLbCLFhib1nwXxewNpwEgAEC8AygAEC4YkwZGcj3Tpk2zMIM0ABDRH7XECQ96ASB4uQAKuoAtAIg4mAeAAKCgH8AVpz8NjCQfBkpIM41+YBgwkpfrx7o+gc81r1u3zgljGOAJw0jglMv+aWAkAIJBd/RjdwCWy/4KU9GfBkaiH/u7YJIO2tFRAkqh31WWLhjpgqnYDP3kBQx26VdvqLQwknyA2S79wEjsr/oZRHPpD8M86rUL5qEH+1MXGbRDv6sswzA1CUZyL1E/qFsARJd+7g9si368oXYHRpIG9ke/wlSXftcAvqv+q37smQQjqdvkrZ6dLvurZ2QSjES3b8u4WxkLSNeW0RbQNvq2zHg0DD0Yom2Bb8t8WxbcTUG/hrbYt2XZ6dv3tn6Zb8u0tu7ZtqxjZ5Pth7S3u2d8UBiZ1C/LXonfGksL0E995ZVXcrKYPn267XdG9+dE2o0P23sCD0VXErQp+QL1hr8g8B5spzk3X9rh42EIGt4f3WZNvMSQ55oGXdPuhgCspq3XF/3dpMdH432wLwABpJW1cZBy9LPdGykutIV3sXZiNDjTiUZK8Xm0ykftSpZxtt35xvNSNn2unXa0Z+27dkrOQGJQ94BprL+ZE8zvnmhgKs+4kFwPRpZPXB66P801a9xdfe9rbTaewz8cdrrCdw6UTp1lwSXbeIGyhuiIgoOKFJjfgYNDcGtEae1mZDyK8RoGXjPlMmtXls05yE5Ru5tJ55yevX+COmEPuuwQuhPVi1nfOSdcB3IyiHxIaq8jUXf5o23Th65hwLzrfYjGs0893sJIPP3wpFy9boOBZ5fLrOlTc67hBeNReMLRh4n19Dt4nvXqI26+EDYd+X7pK98YdgqQdKSBdJs2B9MDR8/Nl891V1xsYeSjv39OXnh1qWxp2yp///nPmOuNprT7n7Hxn99wrR0DwHsUb0gNWg5o+OV9v9Xd9p1y8sFbwFvAW8BbYNcs4IFkyG4MvAJQeAdAAFBcMCAMIwF+cd5QM2bMsDADOAEAcsEMvKEAEAyAAyIBKC6YkQZGAiAAKOgHEOGN5tKfBkZiFn6IkyZpxOkHpqr+NDCSL/s4GAl44zrRrzA1Tj+DbQBHysjlGUk+ACD0Y3cAlsv+4UG7fDCSAXoC0zS5wCADtIAi9KMpbgAfe2G3sGekdnRsBuYf+hmoQj95AbBc+q1np5naMy2MJH3s79LP9aGftNLAVDQqjIzq59qwP7YAHAKDXfqBkdxPxAd+xk3TqjCPfIDBLv0KU9FPOmlgapxnJGlgf/QnwVRgJC/00xaQb9QW2Jx7ifqt+l22UJhK3sBI9LvagjQwEt2+LcPyQUjblo0ERvq2TGzb79uyoI75tkzvtmCaXB4M8W1ZsM7gnuiX+bYsqI97ul9GX7y/r9vZL1AYidKkfln2zvJbHxQLtPdts+uVlRpPR9aYJDSaqQb7jPdP2GNn1OwxOGDWdxw3LDm7lqTpd4fX9ysy3oEFxut3JOvo9bZssmmzbmD3qreG5TOSHZ/86Bdl8sRgOsl//+bnjWePmdP0PQ79Zqrbkgbz8LLxCtRrK6rNnUIQoGk9KYe0lbPGZCQMdLRLUVWNtX2SRxweqeaHhhSY9T6ZClPDaJWPpvfXn/uG+d7md1uX/J8b/0x357y3v/ikWY/wKevNV3f+VbL5x/9pPd8UQmKXEcO0nBySP4w0H2xUVFntTLS+bpJ85mP/2x5bs/4d+eFt/+aMl2ZnXD79ZrrjoqpaOyWyuXmdSeFBWnPy+XYK1b7WzWY65CMs0GN617QB72SC1knWHmVK2P4IkLR1ycRjjcfdCYPdZnpScz3FkXqvaeIZuf2JB+yr/sJrpHTKTLs2qurUeO/F+7TKufLylsBDkOmtCW3dgQf2aLa1/YN9UmgeoEg7ZfZIr32xWfuQKnTzD39mxuaC6VenTQ68z8NpPfDwE3atxKsuPd88UFMqvzfwMhron9fX1Uhr2zZzzxdaD0xdc7K5pVUm1NdJTdV42dA0fBrvaFq7+jlNPqyhiWfoXff/zmbDupOlpeZBcQcYJT3C1CkTM1PN2h0p/33y6suk1kxx+6sHHs5M36qnrl4XPGQxZeKEHFCpx/27t4C3gLeAt8CuWSA778uunf++OYsvZqAH7wAIQIsLhqk3FIPRSQACGAkUAEAAsJIABDBDp5Z0AQggHbCFPOM8I8mLwQ30A1MBQC79wJ9807RSqDNnzrT60cNAiUu/wlT069SSLv0MxgG7kgbwAW8AFPQzgBMHg8MwNQ5Gol/tjw2wmUu/eqaiPwmmootBLfTHwUhgE9eJfmBqHAwGRipMpYyI6wJYan90x8FghanoT4Kp1Av0E9asWeOEeRynnpEWMJW67ao/6tmJLeJgJMewP7YAHMbBYIWpxAe+UYdc9Yf7Evsm6VeYiv4kmIpnJ/WWPONgJGkAsNAPTI2DwerZSVrq2ekqS4Vhqt9VFxWmkrfCVJctgJHqJU294F6PBnT7tixrFb2XfFsWTDnt27Kgbvi2LHuP+LYsawt9MIS22PfLfL8sWzOy/eKR9MuYfs31XT6SfllYg9+Ot0Dl+CqZOmOOTJoy3UZqMNOE8rm6Jph+jp1Tps20+8rNeobF5ncHx3nRj9ubwmutT1k5l875jOxXtUAumPVxKS4skXe2vzomMvu3b5Wi6lphvbvSabOlODTFJutAAi9qz7hEyvebL/Uf+qjVsPPVZ1NrAUICbMqNl1TtGRdLSeMUKd9/QSat1AmZiLtbVExzWjLJPLBqXkC+QvP7J/w5jZadrwXXXnvWZRmbAAvDAa840q8+/iwBxFYdd2b4sN1uf/4x+95w+aekYv6h1i41p11k0jwoJ66uZcgx1h4smZhdI280yicnsxQf+tu3y7ZH77VrRtaeeYk9w5axmXK36ujTpPqk8ywYK5u5v9Sd+wcy7sDFKVJNF2Wk+bBOaWFllVQb+2NXgLoG4NFohbh8KGO8Yydcfr2xwyILsisPPc6srfkxmzX1psEAOx40aDXrRm793V3C+qWsJzkSaNjbHACT6hPPkTIDv/U+jV6fTjNcdewZtu5az8xQJO5N7ge1U3GjmSmIzwaqhgNgvNfU8bI58wJPSGNb9QKuO/tyu84q7Qh1AEgKiAx7HYfTcm3T3k0260LyKi8yU0cbL8fs5wrXKbH7ZlcdJEdPPEsOnXCSzKs93D7ksa7jXRt/NNtaXTvyzGlXyKzx8+y6lrGiduHA68vetu3f5ReeI4vmHyCf//R1Zqwut90hWTz7NjQ1W89CAOaDjwXfJ9Esmf712COWyF9+5uP2EGs1En51/8MWfP7Jp66Ri887w3pgnnL8UfJ3f/FH0lCXWw/sCbv4L00+G5s3S5V5iB+PT16f+0Tw/ePKkrUpGYc57/ST5FSj98glCzPR8BY9aP85ZjraQP8csx4knwGchGMOP0TmH7CfbN223fT92+WwRQfb15yZQX+Cft+KVWtl6uSJdgrZxcbzdL5ZO/K6Kz4sf3hl0AZmMvMb3gLeAt4C3gKpLeA9JI2pGHgCoPAOgGCg3wUWgJEAPX645oORADbCqlWrnIMRAAgAEGkx6AXQcOVJHAUQcTASAAH0QD8wFdDiSgvtXAN5AsziPDt1AJ80AFiuwRQ0AUdIC5AEUHLlCaRTmOGQEf0AAEAASURBVArYdE2zCUwFoKAfwAIAcqUFjGTglDyTYOSsWbMsTEI3ANGlHygFnCItYCRAz5UnMFJhahyMpKwZXEI/MBXQ6EoLGAmEI0/iAP5cYfbs2TYtgCA2c+kHpjKgTlpo5xpceaIL/QTK0gXDgH1cJ/oBpNjWlRb5AUHJkzIiritgf9IiL+qsSz/pYA/SUhjpypN6oTB19erVTkjKceoZeWJT6rYrrfA0s3EwEj3Uf9ICptIWuPRTjtRH4nPvcg+78uS+VJga1xZQPgqDuSdpW1xppfGMRLdvy7K10rdlWVv4tixrC9+WZW3h27KsLXy/LGsL3y/L2oKt2bvYL9MpNMOpjbRfFj7Xb8dbYOLk6XLg/EMyERQ2rn73Tdm+rc3uX3TosbbfppEWLTnabm5cv9p6++j+9+7d7TH1WuvTMrVijhxQc4icN/NaK6epc608tvEuu+2aqtDuG0rO1YdMuqbtj90nwLXxR5xkowG52u79qd3e9vDdgodTeG3Ana8/L12r3hyepPtybLwtd/1A6s+90k7hyDSOBLt+nt0KpggtYPQ8T0gRJTEFvM/GH3ZCJk5x/UQDh66zn1vNtJqZtRHNumrDwlDmPZvWScerz0jl4qPFAjmzH0hn1wscOqn9uUctYKxYeKTd0/XuMguAwml2vvWq9ZAEBAPxbDC/XTuXvRSOZj0SAUcANcoBuNN0y1dtnNEqn5wMnR8ylcseRTtaymYdYIEr64Nu+eX3bRkDV3kR8Mjb+cYLdjvnn7lOV6Du5qsHI8mHcsIDkXKoWHSU4OHZ/twjNuvsfeRSEt3nqA+hKHH5hMu45tQLM2dQhwhAZsBj2wO3WWjPvta7fywTPnKD1F9wdeppTrkfu1e/bQEgQBAPRetBS4KhwFS5nctftpBYYfLmn3zD1l+i2XvB/JbUUHv6xXazr22ztPz8W7rbvm83ULr6hHOk6pjT7ectd95ip+vF3tUGimrAS5Q2xvy41V153+tKJ8pl+302J55+Vm/H3PKLTxtvyCMbA439g/1y75rvm3SD+Pna2hwBQ+fk7st+erHlEZluvDHn1iyS/WsWW/D5rWVfykZI2NI2207TOhRP9/GRsYiHHntaDj9kgRx16CL7wkty/cYmwYswHJf4DxuvyKsvu0A2bGoyY2vDp1lljKbSjOVdfuHZRLfp3PfbR+12c8sW+emd98hHLjpXTjzmcPviQHd3j/Sa80YrpMnnrl8/JB83wO+SDwUPdLR37BRejH1GAzbAk/LMk4+TC8z6l3x+7uVg3eJPX3dFzne/psc6mv/47zfJjKmTbXJ4SF59+QWZpPG6/Nf//Lb9/N2f3CHXX3u5zJ4xzYJIdlKln31pbB4UyojwG94C3gLeAu9jCxSYwev4b/D38YXrpQEUGGjgHQABAIp+qRMXEBYGEEA4VwAGKIxcuXKlMy0ABIPD5Ik3FADFFQAQgCdCHIwEQACASAvYRzyXfkAk+gkADwCKK+gAPsfi9DNoBwAiT9IhPVcAsgD+CHEwkg4FeZIWMDUOBgNTeRGwF3ZzBYWR2AAA5LIFMFVhMOUIUHIFyohrJcTBSAbtKHP0A1PR7wrYnjIgAPwAT64we2jQi44nAM6lnzoRhqkAPVdIM+hFXQWaoR+YCqhzBeAh9wAhCabOmRM8aQ5MBYC69AMjJ0wABpspUwxM5eUKaWAksI946AdGos0VABAMvBOSYKrqp6NOmbv0k05DAzDY/Gg0tgcGu0IaGAlMpZzQT52gbrgC5Y3dCNQxl2ckacz2bVnGfL4ty5jCft/4tiywh2/LsvXCt2VZW/h+WdYWvl+WtQVbfK/S196VftmO9k4ZXxnMEEJau9IvW7p0qZ2xhHKhz4kWXnzn89qVQF+ZQD9zJIE+ES9swYu+Ev093rWPPpL09va4fG/STsb1LaP6Fx4zet4jpI2XUEPZFNnW0yJd/e6HAKMaxuoznoVML4qHlU77uCt5FZaWG0BUJ0AKPMH25YBHGFNW2vUQzf3gCths0Py+HTDToCYFO/WlucetN2RMWknnj1b5JOWR9pgt49p6C8QAY2MV3qt8Rks/ZVxQbJaSMVP+jtXUpdikwPy2HEu7p7FHofFCB0wyvfFAV3YtvjTnjlYcvMt5oONXq2+RZvNAR1VJrbR089D78Ht1b2pr811/tZlKtaqyQtZvco8ZcD7ADY/C79/6S3l1qePhkaFM5syabqdt3bbdPa7G1K11tdUCmIuLk09vmuP58pk6qdFM09ojrVvHrj1Jo5M4pYydTZ0kfabvs8GUQV9fdhrttGn4eN4C3gLeAu9nC6xY3iaz96+VouL8v1M/8B6SAAiCAghXxQgG7Rrsj3DglQtGMigAGAHw8GM9DiYx6MWABAEAkQ9GkhaQCFgXDQog2K8wNRqHzwpTSUu9uaLxSAuAwmAH8eJgHj/OAXUEoKALRpKWenORFgDF5RmpMJW0uD5gqiuoZyppkZ8LRpInYJABG+IBU10BGAlMJahnajQeaQEsuVbSQhf2jQYdtGN/EoxUz1TSorxdMJI8ASjYhHjY3xUAvNiWoJ6p0XikxTVS10gLGEz9jgaFqexPgpHAVOoQaalnajQt8lQwroN20Th8VpjKtnqmsh0OpEUdA9aRJ2DQNX2swlTOxVszbsBIYSRpEcfl2Umes2cHDyYoTA1r0u0Apk4wugKY6oKRpMU9DiwlzzgvY66PNoMATM0HI0kLmBoHI31bFpQS9vdtWdYWvi0LbMF/35ZlbeHbsqwtfL8sawvfL8vagu+SvbVfllXpt8bSAvSNee2pwJqRTZ1r9lT2OfnibeXyuMqJlOIDYG5gs/vhxxSnx0apOflD1vsyNoI5gOeZrkGYFC/tMaBSvvTSgqG+re6HY9NqGa3ySZtfUjxbxs3uB3STzhvpsfcqn5Hqiou/K2U80nptwXce+B2nbzT3AyEHutzjOqOZT9q0eKAj6aGOvamtzXdNrKnIyxXw3lt88IFy3JFLrEdjEozk/JWrA09dV1rsa2lts6/w8S99/tPmQauK8K6cbUDd3375P3L25fvgyid8zliuZRnOJ812jxkTfDeP3dKk4+N4C3gLeAt4C5iHLz/oRmCQPw5AMBjBoB0eFUAW4IMLRjKAA0ABkBAPgMJ7NKg3FHnGAQjyBKAAnkgDgOICEOQ52wAU0oqDqaQFTGUQlrTwRHN5RpIWAAVARbw4zzb1ICCOTo0ZvUbyxJsL8Ec8AIoLpob1q2enKy1AGECPtPBGc8FI0gLsAAiJF/fEt8JI4gAFk2AqMJJ4wGAXTCUvABz257jLMxJbAFN5kRYw2AUj0Q9A4Z14LhhJWurZSRzs4PLsJB4AgrIiHrpcMJWyZqAN/dQvl2ckaWF7yoC0sBflHg3oVi/RJP0KU4lDPXR5dpInMJV7hXjAYBdM5V4jT/QzWEQ9iwbSou5zD5MWMNgFI9GPLQi0Ba76Q1o6TS5p0Q64PDtJC/3ASOIBg10wVT070R8HU8mTtod8SQtg6RoYI0+ti74t822Z3gfUHx5e8G2ZWC8i35YFNcO3ZXqHBO++X5a1B98ls4f6lb5ftnf2y7Kl5be8BbwFwhboaVpv1rArC+8atj1g1jj0wVtgX7KAr9e7XloD8sHzXDvvjJOE9RK7zIP+3/zBz3bdeAlnspZiTXUwa5Mr2mhO6+pK3+/zFvAW8BbwFnj/WOADDySTBvCjAMLlDQWYAgAxqEVaABQXgOA40EwBhMsbisGgMECJAxBhz7w4z0gGHdPAVNJSgIJuAArwIxrUg0D1uzw70a8AhbTQ74KpCsPIA/0uz0j0p4Gp6FcYTJ6uaTZJC/1cJ/qBai4YiX6FwaQFDHbB1LD+3R20Q7/C4CSwDFSgnqEfqOmCkehXGIx+IJ0Lpqp+0uL64mBkGpiKfoXB6AdmRwP2B6YCR8gTmOqCkehXgIJ+dLlgahhGUr9cMJK00J8PpqJfYXCSfmAqtuXeAKbGwUiFwegHBrtgKjCSPLEFgNHl2Yl+AAr3AHnGwVT0KwxO0u/bsmyt9G1Z1hbaFrDHt2W+LdOaQfvj27LAGtjC98sCW/h+md4hwUMOafpl2Gy0+mXZ3P2Wt4C3QNQCrIvHywdvgfeTBXy93vXSXLVjufy/N/5q1xPYB8+88Xs/HXPVP7njnjHPw2fgLeAt4C3gLfDBsMAHHkjGARQG8BlEACzEAQhgAAAF2AgMAKC4AITCSMBCEoDQQS/SADi5vLmAMTrNIwPIAMRoYABEp2NDP95cLpjKYDT6ASSAH/QTPxp0AB/9aHLBVGyBfuyGfoCfy5sL/Qpj4gbAGQBUmIqeOM9U9DNoSproBwChMRywBfqBlhyL8+xEPzAV8IR+AJALpoZhGDDP5RmJfkASQAn9cZ6p6AeS8q5gFkgVDuhn0It46I/z7FT9gD/0U0YumJpWPyAPoIf+OM9UdGNX8kZ/XF1M49lJGsBgrhX9QDoXTM3AvAHj2dnt9uzE/goj0R/nmYp+YDDx0Q/Mjgbsn8azE/20F9Q19ANJSTMaVD9lmQRTFUaqfpdnKvppC9CYpN+3ZdlS8G1Z1hZp2wLflgU24z7zbVm2/vi2LGsL7iXfLwvswfeS75cFtqBfQJsxbtzu98uytc1veQt4C3gLeAt4C3gLeAt4C3gLeAt4C3gLeAvs2xb4wAPJaPEx6KgD+ECDOBjJoAsAAoACDACguACEDoAneUMxaAFAYeAXmAFAcQEIBgABQAAUYJPLs5Bj6AfuqP44GKkABd0AFPKOBq6PPNGfBCMBKEBE0gBGumAq+gFA2DhJfxhGAlNd0+Rif4XB6E+Cqao/CUamgamqHxvlg5GkB0zC9tShaGAAU2Ew4A39lFc4YKeRwEiFwXEwFf06aAoMI89ooP7oNLnoB6a6pslFvw46oh8w64KpaQbwKUuFwZQl+l0wFf0Ks5NgZBSmuqbJRb/C4Dgwjv3TwEj0c79xregHBrtgqj6YgJ3iYCRtAfp5cS8Bg+P0KwxO0u/bsmwN921Z1ha+LcvawrdlWVv4tixrC98vy9qCfoHvlwX2GGm/rLVtu/QPmAe7TL/e9ZBbmn5ZtiT8lreAt4C3gLeAt4C3gLeAt4C3gLeAt4C3gLfAvm8BDyRDZchAQ5oBfAYwASgMcAMDACguABGGkQA619SMOugVBhBxMBKAQvw4GKb6gSPApDiYin71RkM3AAWQEg3hAXw0xXlGqjeXwlQXjATGoJ+BLQZl4jwLsT+2RX+cZyf6FaaiH7vmg6lAHcopGhiABQYz2IYN4jxT0+onnTCMdMFU1U+alCX6ud5oSAMj0Y/9sRv64zxTyQuARR3BczUORqbxhmIADfvzjn5gtgumpoWR2Avwh/44mIp+YDYB/XHTtHIfYQ/qQxxMRTcwmHJQ/S6YGoaRcdPMYn/qq8LIOJiabQvi9SuMpD6qfheMRD8wmLzRT1m69Pu2LHtH+bYsawvflmVt4duyrC18W5a1he+XZW2hD7n5fllgk5H2yza3bLX9sm7T742GtP2y6Hn+s7eAt4C3gLeAt4C3gLeAt4C3gLeAt4C3gLfAvmwBDySHSk9hHqBFPQtd69wBMQAoAAiFkUCBaNBBC2bgTIKRabyhGLQAoDBgqJ5VLgABDEsDIxWmohuA5YKpaQfw1bMTmIS9XDAV/QAUBvmSYFL0CXyXZycDyOgH8KAfAETe0UD5AECxUz4YCYRT/S6YSl7YX/XHwbyw/rhpZtFPGal+IK8LpgLDsJnqp5yigfqgnqnoB6a6psklL9JiYDEfjKRuoyfOs1P1U6bURfS7YOpIYCTgjDqIfpcHAfopS+5RyscFIykbhamq3+XZiW7sz3WQlwsGk08URqItGmgLsD9x0U8ZufRrW8D5O3d2xD6YQFsQhpFx+mmjyFv1u2BwFEb6tizw8k56sMK3ZUENj3pD+baswraf3Gfck662gLaYttO3ZWK/J31bFtxLfJf4fllgC/5/EPtlnZ07ZaC/yPZfspYQ2wdM2y9ztTnhtPy2t4C3gLeAt4C3gLeAt4C3gLeAt4C3gLeAt8C+ZAEPJE1phWEkcCXOGyoMI4FhDBK4YKTCGCpCR0d7rGehDtoBk/DmcnlDAWMAKAx4ApMAQC4AkWbQCwjDoCmARGFkvP78ME9hqup3wUj0A1AARsAk9MfB1HxP4KNfYSQwJg6mKszDTmhK8owEYgGTsH+cfoWRcWCZAXzSUZgXN82s6leYh35sFw1h/dSJfDAS/QAnF0ylrNGPxjiY59LvmmYW3dhf9WNXF0xlUJ48kwbwozCPe8kFU1U/9yjl4/IyVv3qGRkHU8MwkrzQ74KpaWGewkjuIezvgpG0BdiCEKefeyPcFqA/H4zUtiCq37dluXdT0Bb7tgyr0Bb7tiyoH74ty94n4bbYt2W5bbHvl1XZ73y+Z+JmrNB+De2L75dlHxLTfhl9vLLSouwNZ7a0X5O2X7Zy5cqc8/0HbwFvAW8BbwFvAW8BbwFvAW8BbwFvAW8Bb4F92QIeSJrSU5gHQEma5hTgBCxi0A6A4gIQHAfAAQaASQC4aABA4I0DhGCwAgCRBCMZ8AEmuQAK+aTRTxoAFAbo0Q1AccFI9DNobZI1UMQ9zakCFNUfN2jHoAsAiwFP1e+CqcC8NDBSYSr6sT8DPtGg+tmfBPPUGyoJRqJfYbCCTRdMVRipg3auaVoZAA/rj4OpCvPSekbqoFccjFQYjH5XXWRAjHJUmBcHU3UAn0FHYFgcTA3rj/Mmoj5gf+KqfheMpK42TghgNmXpAstR/UkwUmGq6nfBVO4lbKZtQZxnIfZCvw7gx+o3aaExqS1QGJnk2Ynd0a9tAfaPwkjqfJq2APv7tgxrZb25fFsWPJjj27KgXvDft2VZW9i22Ldl1iC0xeplr/2aaFvs+2XZusOW75dl7UG/cqT9suzZfstbwFvAW8BbwFvAW8BbwFvAW8BbwFvAW8BbYN+3wAceSDIAy+ASAAIYA1yLBoV5DKoogIiDkaQFgADGuACKC0a6vKEYtAAakDcwCQAXHfRCp8K8tPoVRrr0MwCLfgbTALMuz7yo/nwwUvW7AAr5qH6FeQClaCANbKEwFVu4YCr6FQbH6cfTNA2MJC+FqcAk8nTBVEAG2tCP9nwwEnAF5HLBVIVJXD/6yTMawtO0Kkx1wUjVT3wFsy6YqjBS9ZNvNChMVRiJLpdnp8I88sEOcTAP+xOXMqT+xOmnLhYVF1n93EtR/WlhJLopI97JK06/tgXkgx3i9KeBkbQVVr95+ID723UvqX7sAYzEFq62AN0KU1W/C6aq/rRtgW/Lch8M8W2Zb8u07fNtmVoigEm+LQvs4ftl2Xrh+2VZW4x1vyybk9/aFy1QUlgqFcVV0tW/U7r7O/fFS3hPNBdWjLf5DOxsf0/yI5PC0nIZ5K9n+NIrIxVRUFomhWXl0r9j20hP3SfiF5SUSuG4SnN95nc669Hs5aG4zjwcbn6DEQa6O0elXArLx0mBqTMDHTtksL/Ppj0W+diE9/Q/M5ZVWDZOBrp25pR3QWGRFNc3ZtT1t28zcca2XaMNLS4skc6+jky+fuODaYGCAjMrWeN+0tfTKR1b178vjFBZO9U0qQOyc9umVNdTVFIu4+umS3vbOunvHb4+OYkUFRtHlKkLMum1t66Vrvbhyz9lIuziRmFhsVRNmG2193a/d9/duyjXn+Yt4C2wF1rgAw8kGehXgMKAdDSEpzMD4hHH5Q0FDAN6AOziYBIAAviQxhuHtABBwEjAiAtAKAwDQADD4mAeAAVAkg9GYgs0ot8FULg20gJ8AKSSBvDRz4AVMAz9LpiqMEz1u2BezqBXp/HsbHN7djKATJ5ATtKJg3lpYSRpUfYKI6P6yYe0eCnMc+mnDLEZA5kKI10wFf3Yn3QpRxcMcw16UT+iARgZ1e+CqWH9lGUSjEQ/MAxdLpiqYBktcTAS/eSZD0ZSV9FPfAAdZRmFkWp/6pB6Frr0A/Owv8JI9LtgquonH+yf1BZwryvMc7UF6Kcsw21BVH+4LcgHI7FFuC1w6de2wLdlgWebb8uCVsHVFvi2zLdl2q/xbZkZkPb9spwuhO+XZc2xt/bLsgr9VtQCpQYKzZ57kFSMr5JVK5bL1tbsAFx1bb3MmnOg1Jj3Ih7W275N3n7zNdm+tTWaTOYz36HcE6614zORYjZKC8vlkjk3yITyqTbGyh1L5d41P4iJvWd3l82YKwM9XdLbtOcGeBsuvIZRVNn8k2+8Z8ZovPqPpbelSVp/9cPdzrPmlAukfNYBsunb/7LbaUUTKJkwWQrHV0v3qreih96zz+MPO0EqlxwrzT/6uryX0HhXL7Dhsk8I8IzQ27xetvzi+3Z7V/6VTp4uNadfLEWmDAjbHr1XOpe/bLdHMx+b4Bj/K6qsltKpM6XL1KXB3uEzTWn2lQuOkKrjzpSWW2+Svm3ZNrKotkEaLv2ERpP25x+T9hcez3wei43zZl4rUyvmyE1LvzgWyY9amo3l02R8SY3Q1n9QwsyF50pP51bZtOKpMb/kk66+USbOOcqMlRVKX2+n/OJfjh/zPN+LDM76o59Ld0eb3PeNC1JlN/2g0+Soi/9Jnrvr72XVK3c7z6mdfJCcet13M8dWPP9zefG+f818Hq2NiXOOlBOv+i9Z+ujN8oZ5+eAt4C3gLTBSC3zggSQGAz64YF54asO0MBIYQ3ouAAEY4YdtGpiXD0AAdgAVCvNc+oF55JkPRirMY2AuDialhZH8eCdP9CuMdMFU4vBCP/ZywbwwjAT8EM/l2RnWHwfzVD9x1bMwH8wDhpFndACfOoP90Z8GRmKTJBgJDKMsRwNGUtboou6iPw4GE4drQD/X6IJ5lCG6FEYSLw5GEo9AHF7RAFwkjg6AE8flGRmGkWgingumqv40MC8MI136FeahOS2MRJcLRkYfTMD+0baAckY/+abVrw8mJMFI9KPL1Rb4tgzrBEHbgnwPVvi2TC0mtj2nzvq2TOyDEr4tC+qGb8uy9whbvl+WtYfvl2VtUVERPGQ1Gv2ybKp+K2qBeQcvsTBS9zdvXJcDJA+cf4jUN0yUluaNNsqEiVOE11OP/yYWStLWL1iwYJeA5LzaQy2MfGzjr2RdxzvGO9J4Gu2loeb0D0v/9jbZcucte6nCsZHV27JJejcH9WF3c+D7cKzC+CNOEqDxWMDOsdK8p9Nt/u5XzRNHBTLx2j/fbSmVBsYWjquQtgduk/5tZlzAeAVqGM18NM2xfC+bOVeqTzpP+u74roHx8R5ZePr2b99qHlTI9R7ua22Wpu9+xdjDzEr10c+OpdRM2i1dG6WoYO8fsjxq4pkya/w8uXHp32S0v983Dr/g76Rrx2b59f/78Jhe6vj6GTJpv2OkedVz8sYj3xTvjZds7i3rXpVf/OsJUlEzWc7+9O3Jkf1RbwFvAW+BPWiBwj2Y916RdZoBfJ1a0gUgGHRhoBbgkgRQ+FHLALgCCGBdNAB+SCsfjCQOL0Kc/pHASNJikD4fTOVa0Q9kcemPDuCjjfjRQH4M3AFqSGt3YCQ2jeqP5se16QCywuA4GEla2I7ri9NPWuhPgqmUIWmlGcAnHjA4DoYpQAF2AdSwmUu/wsiwfhdMRT8wDP2klRZGujw7SSeffoWR6FMYHAcjSUsH7bB/kn6FqXHTnJJWPhhJORKPgQTy4xUN6CcO+tUz0qWf8iEe8RVmu2CqtgXox/5x+omHfsoaXS4YGdWfD0b6tqzQlpFvy4Ja7tuy7N3u27KsLXxblrWF75dlbZH2ITHfL8varMRMc1hXV5vTr0zq1yT1y7Kp+i2XBaZMmyXr17wrr730tOuwvPvWG/LQr++QF599zL6ef/phGw+vydEMTC1YWlgmc6sXSf9gnyzf+ry0926VzgiQJB4vQqWZ0nVa5X6Zz6qnrGic3c/xcCg0HiLkwfHJ42aaQwUyrtg8kFiWnUoxHD9um2k47QuYZn6HZD4bT8VoKKqqMZ5Vs2yc6DE+FxSXmFdwHtOvlk6ZafdF49pj02YL6cWF4jqz/MnQFK5xcXZr/9D1tt7zE9nx9EPDkrJ2wLvOxCuZOC1zXdGITGlpr9NhL7zz1ENPzysgnrHzsGD2lTROkZJJ03Pywp5o0XMy5cO+SBit8okkm/gxoy8Sy2qh/B06iRq+JqY8LZkYeBHbY1yzqUuEfPUgKZ/BgX4ZZAxiN6aXVXuXTp4hfVuapWf9Kgsjw56FafOh7PG0LK4JHuC1F2j+2XrisJPN21Gv9Lxh79y/Q/df5hj7hrxE9f7GC5mg12bLInPC0IY5r2vN27L5ZzfJQOfwmZiw62Bfb/SsYZ8LyyukNM+9PuyknB0FhikXylNNv5ZfrvpWzhEAJe1ndUmd1JdNssdqSyeYdjCY+pkdeNLRTvJOGzqlYpZJL/CazUnMfIhrazVeUnvNMfIpMvkQ2ObFVLO7GvBwmzb/NCkfP2FYEkzZOeWAE8yUnAcPO1ZaXi3FpRX2eElZpRAXL7ZwYD9xsMvk/Y8TYF84sF+P637dp59Lykwbb/Iq4M/UMbZ5kV80lFXUybSDThWmJh1pYOpR0t3v8Evtqcse/45sb14hHW3DvfmZOpR8iO8K7C8sCsqkftpCAziPtjbgWly6SYP4HNfA9qS5x1r7YiNXiMsnHJdpZzX/8P6RbgMcqQvYKRr6enaaqW3zPwiVz26kyzVNnXeKTJi5xNosmlf4s5YZdSZN0HraOOtwW0c4jzqrZUUamibbXDPl54O3gLfA+8MCw39xvD+uK/VVpBnABxrkg5FANdJyAQjWX9IBcKafdMEkBr0YHFbPwjgAAfAAQhCYVtUFk9QbChiWNE1rGKaiPU4/0x/m0++CkS6AwjUy8EvAFi79Ixr0qjUw1awziL0og6g3GqAP/Qywooc8XTAJ/Wgjb4VJLpiqA/jkQ1oumKT6KdMkz0jsQFmiEf3YP6ofGKn6FUa69IdhJDYlLZd+0iJf6mmcfpdnZByMVP3cIy6wrPoVRhIvTj+2pe6iH3u4Bu24lxjsVP0uMA7EI60wzHN5RqKdFzASW7j0AxexWRhGutoCHcBHv7YFLv2khX6Okefu6KctoCyT9GtbkE9/uC1Q/b4tC7y849pi6phvy2xTbu2gbYFvy7LeUL4tS9cW+7YsuI/4H26Lfb9s3++XFRT2mH5Nqe3X7E6/LFtD/FacBR5/+F7pNwPldaH1zcJxWw1QCIe2oelcKZ/RDFfM/TNhYFzD9fP/wW6+u/11uW/tj3S3fOyAvzGQsl36Bvpk4rhpdj8Ak2kJGZA7d/pVsl91dtCtpWuD3LnqZunp75KDa4+UU6ZeIgNm3SkG7Lf3tklVienPmr9lBoA+tP62TD5JG5Ou+3wGdpU0TJJJH/+Cjd6zbqW03vvfdhsw2HDRx6SoOvjtyU6mq2TaynBovOpzFl4AK4BrBNbZa/rOV+w2cKnuvCsz016ys7dpnWz5ZXYaW4DKxKv/RAorAwDbs97ouCfQYRMZpX9cp0Kvno1rh03ZynE8J7GJhYHmN1P7y09J+3OPZBRUn3iOVBx8ePDZ/CaMgpsJH7l+2BS0kz75V7Jz2Uuy/bH7MulUHX2aVB5yDPQkkxa2B37VG7szXasGLR+AWNMtxgPQhNEqH80j7fu4AxdLzakX5EyHShnXn39VDkxuf/HJHLsBwLiOzrdft1PcsvYmQevChMs+JQVmLU7zQym2HqTJJ+11JMVTexMHaKqftz1yj3S++UrSqTnHqo49QyoXH53Zx5S31HvW4ywz0/zWnnVpTr2oWHC4VJ9wjrS/+ISx3aOZ85I2qs30qhVmmtVNN385E63xis9YILv5p/8lVcbLtvLQ7BSX9UyRPBQ2//g/pd+si0mgLlYdc/rQETPWFJmyNXMgYQPIXP+hKzPlR9TutSuk7b5bE84afuji2dfbBzI4om2jxjpv5jUy03gj0uYRWrubLJhkTdjfrb/dtoNzxs8Xpnvd2tOSaZNpM+9Z8z1Z0/6WPS9fW2sjmX9J7fWlcz4jjUNTcxNf2/yegW751rIvaRKp3vc77BI59Ly/Ns1Odoj23RfvlBfu+Sd7/qLT/1gOOv46sx1cN2sIPvaTz0jLmpdlXPUkOf/Pfm2OscZrgQz099pxJWBOV/sWuedrZ5vPA3Len9xjAJxZD9WMP2k+25relt9++yozvtIn0w8+Q4659F/l+bv/QVa+9EuTlshxf/B/ZeqBJ8lt/3CY/XzR/3jEfk/xobJ2mvCZ0LZxuUnno3YbiHXKdd+Rmon728/829b8jjz0navNd3VPZl/SxlEf/ierR+OcfE0wLSigDQ9AAqDztE/8QMorGzSabHjzUXnyZ1nvaEAiGpvM1LITZh6aAZDbW1YKwHRwsF/u/vczM+frxikf+5aFX7f/4xFytJkmdeai8/SQfd/49uPy5K1/bu3KjqR8HrjxUnO8Us684WcZOIsdCvWhgZyU839YdPqfGGAdXDPlyhSuq1/N/V5OSiWN3SjDk6/9pgDINQz098hdXz3NCTsBhaf+4S32u//+Gy9JtS7mBX/xoCkPvgeCOk1d5brI53ff+7i0bVgqWg9a17+egZHEe/RHN8j2ze+qNP/uLeAtsA9aIPtttw+KHwvJCiAAVEAYoEHcNKEMwBKfQQYG8V0AQmGkAojdgZEMgAMzABBJMBLoofoBQC79pBPWzzW4AERjY6OFeegnTxdMCnsQqGdhEoxE/+bNm50wD4CCftJUmOqCYao/DCNd+rE/sAg4R1m69KeFkQqTqHfod8EkYKTqTwMjAXYK86IwElCJfmAS9kyCeQzokncSjFSYRz6UpUs/MBL96lkIXHDZn7oDjEnSz7GwfuyfD+ap/rh7iXLPp19hJGWN/iQYiY3RRb7R4IKp+fQrzHPp515isJl6iv1dbUFamKoD+OiPawt8W5YtUdoc35Zl7eHbsqwtfFuWtUXaByt8W5a1me+XZW3h+2VZW9Bv43u62wyE7tix3fYxXA+JpemXZVP1W0kWAEaOJEyaHEDAllGaslPzvmvVt41nTJmcOf0KO0D+sxVft4e6+js0SuYdzx4GrZ/b/JBs3LlKDq47yh5bXH+chZHNnevl6eb7ZUHd0cbjcqGcPPkieXD9zzLnP7v5QZlReYAdtCeNSeOmy0G1h6cGki0/N4O7ZjC04eLrLJDY+ps7bNphuFZ72oUWRna+9Zp0vfOGXVdu3EFLLGDoend5RgsbgAhgGSCl14C+cfOXBMdNH6z+wmul0ICmzjdflY5XnjZxzW/V+cHgtiaCRxVgCuBTedjxxrtqjpTPPVi6VizVKKPyvuXO71lvsvqLrjXpMXg/PABVdy59wazb+LbUnHK+jDd6Ol55SgbNFJZ4fQEjmb5z+5MPmO3DpGz2gWI6+MMTStiDHVmXkakx259/1K5nWbnkmIxn4db7bxOAXfWJ50rppGnScvt3bGqDocH8USmfBI2uQ1wvmno2rDbA+CdBFC1jo3fHs49I76a1BmydZu1GPOByOIw7YKG1X4fxUGVa0LCXZGI9GGE+4TxHum3vDzNI3nDpx6Vvq3lw9aG7bBLhKVvzpWnL2MBI1rHc8czDFtZXHXWqgfNXSMvPvildK5dL51uvmnvhUOle+aadOrn6+LOld0tTahiZTwPHO15+2kDgN8z9NF/GH36ibH3wTulra7Gn9oe8IDuXvWzLddy8xRZwuu+O5By5XwDlAEiuo9R4GReb6bJHGn5r2jo8Hk+fepnUhB7y0HSAkXevvkXOmn6lbWsBjadPvVyWNJxogaTGqy6pN16W95u2tktOmHy+nDvjGrnZgsJBSdvWklZce33vmu8bj8hy85DIxcZjfZbcuuI/bNa9A+mgm+oE3B1+/hctSGTNv3df/IUBYOfKuKpGG6V28jwDI//QgKAOee2hb0jtlPkyZ8mFcvwffM0AolM1Gdm66U1hys65R3zEwpqN7zwh84691nj2HSOb3vm9jQek7Ni63qYz/8RPSs2kA2TBqZ8xn/8zk054g9/R4fDbb19tvjqK5ZSPfceuIfn7n/+lPdy5PfvgzwlXft3CyA1vPiLvPH+bzD38MuvBeOSH/1Gevv2vwsnFbr90//+RN5/6oRxw9JXCepXP/uLvZEfrGgHEajjuI/9mYSTXBpBbfOafGm++kwW4C8wNB7wbAVnLHjdTFnfvkIbpi6Wssj7jrQjYC4fqCXOkc3uT3dVrIOiKF26X1a8YoFtcZvL5M+OdeKLsf9QV8vYzuQ/OuPIhkcPP/58WRrasfVlWPHebHHLWX2SgYjjfNNtllXXyzrO3SldHqxx88vVyxIV/L2vfeNCCvDTnp7EbZQiMpE698chNFrwuOfsvMyA7nA8ejidf800Dm7vkgZsuTwUj9XwA8wv3fFmOvuSfpbisQp6582/N9pdl/yP/wIJWjVfVMMvCecpttqn7S87+gjz240/rYf/uLeAtsA9awAPJUKEBIBhoA4YBMfLBSOBZEoycOHGihWEACACWC4YpgAAEJU3NqINeAIg4mAeAYHAD/UAkQIULJumgURimRmEeZkE/gyrAlTj95MXgNjAsCUYSBxhDh6a5udkJw7Cn6gdGYv98+gFOQKA0+l0waaQwMkk/NkA/ZZoEUwF5DIIrzAOGRWGkAhTszyAWZenSr4NeaWAk9idgfxcMIw2FkeQFAI2DeQojFeZF9VNPuZewLzA1n37KXmGka9BOB8DJJ05/FKbm0x+GkVH92hagHxug3wX2RzqAr/rj2gLsH24LXPaPwkiXl67q922ZrfK+LQvMYP9Tx/gO8G1ZsOafb8uCyuHbsuxN4vtlWVv4flnWFrvSL6MPu22gN/GBRXKI69fQL/Nh9C1QasDYokOPkZ0d7bJ21Ts2A+77hQuzHons5PuB/ucRRxyRI6KpqUnWrl2bs08/7DDTsxJ6DWgcMF4XeO4khTtW3iRbzBppBPXaWVh3jP38i1VmrSwzqM3+G+b/o50GNgwk32h7xh5nutfXzXZH7zbrNVRkpiXsN3nnC33bWm2UQfM7FZDY17Z52CmlU2fLgPGe2vbwr+yxvvtazNpxn5OKhUdKFEgSYctdP7DTW7LdvS7wXCifdaAUlpsHTQ1Y3PbI3RyyebnObzUQA+jX39kueMvhITjaQDJznRYg5g60W3HmH15s2x+/337cufRFYR1HPPN6m9ZbUMOBtgdvt9eK99ekT/21wSPutGwijn+AIULLHd+x18z2tocD+7Dd37HdkCSDTHuCwfeMbg4OhdEoH00rzTuefnjRda9+W9ru/3nmlPLZ84bKeJmBuG/a/dt//6A0fPg6qVx05DAgyVSnm2+9MXN+tIzj6sFI88lksAsbCuzMj3QZ7Op03h/5krVlbM6nLuEx3L3mHQu0WRMU8DrQtdMC+NIps6T27MtsPSBe291DoDdfBimPD5g6ZF8d0+0ZrBnrqk82jnlIg2lqCSOr0fYU8+DBOKF8e8zDBdzLXdSHoToRxEj3n7aU107jSV5bEEC58Jnd/Z2yuv1Nae5aZx7GmCmrdiy3243lwcMmGnd1+3J5oeVh+3GC8WRcYB78mG7azHUdKyRtW6tpudrrdtPumjvXrBMc3Kf52nxNK/q++Iw/NbsK5NUHvy5vP/tTexgQpCHwjBQLEd95Lrj36gwsAlTy6t4ZfPesW/aQ8AJI8r7ypV9YIDm+LihTTe93t/yhgXMtsn75I3LpF5+WWYvPiwWSeo6+b9203G7iWQgcxHMtHJgCtWHGIQZWbpOlZppVwvInv2fA31F2itFw3KRt9PHqNOtUEtpMvlGPOK69p2u7PP7fn7Nxtja9addNBBRGgST18u7/m/WExI4HHP1Ro+sYaZx9uNG7Q066+kZTBl8zcO8BKSmvkk0rAoj74r3/bNMvHVdjp7l98/c/sJ6keFxGgaQrH05melWOPWw8/whA4dM+/n27PdJ/eA4CbAm1BihPP/hMmbHgzNRekvnsBrSmDHu7dsiD37oyI2/j209ktnWjftoimX/Sp+zang/816UGkm7RQ6netzW/K2tev1+OvOh/yY6WVXb7iAu+JBXG6zccWD+UMuU1a/GHhk03HI7rt70FvAX2DQt4IDlUTgzgA+D4QQoEAMC5YBhQB5iUD0ZOmjTJwhgABD9cXTCJvBgcZsABQARAifMsJF+FkS7PNgUQpInuOBhJOvzABkYC84BALm8u1Q/oY6DEpV9hJLZIAyPRT1ou/ejhRz8wBv27CyMnT55swSzXlqQf0Iv+pGlagYwM1jIYRVm6YJ4O2qEfcIX9XTAJ2+sAOOWN/V0wFftjX9XvgmHAMvWMRH/cdGBp9FMHiYd+yhr7u/RT94EZ1DfikG8U5mEn9FMXgYvcSy79ClOxXT4YSVwC9nfBPNXPO8fzwUj0U0Yu/dRTbQsUprr0px3AV7CfpB+7a1ug+l1tAeWN/dEYp9+3ZbaqZP75tixjCnuP+7YssIdvy7L1wrdlWVv4flnWFr5flrUFW7vSL6PvUFhg1umLeBeMpF9Gv8eH0bNAkfm9cfTxZ9gEX3jmkUwflr5stN9FH5w+enS/q9++KwqBjQojw+ez3llnX4eFjbq/xUBL1kALr8vE+X1DXji9/d3SO9hro+Oh2R9Zs1LTGcl74TjT9zZ1t8d4d2no32GWxzDApGj88DUgLdTckvWQ0XOKJwSDikzTmRSAMwAMAmv2EQr2EJTvMR5+GlRLYWmwPlpxdZ2hhIMZjcTrb9tigaWek+a9yHiRWXsOXXOac8JxRqt8wmnm27bTy5pIYftwTvHQ1LJ44PEKh6LIuokcw4M2LiTVg5HmE5fHe7WfMuYearj0E8OyLDbTS+M9Sl1qvftH0njlZ6XA3HN4nQ50dw6Lv6/s6Hj1aetBy5TQ1O+uFW9I+wtP2HZjNK+BBz4ITHvdb16EXvMAEOtLhgPgUcN6sw2QrDXr7bI/X1sb9piLa6817d1917UcV74ceOJG02NqVMK6pQ9lDm1e82IAJCfNk6aVz9j9fT2dBiK1B9vd5ntkaDu8FiLTYQL6CGwDnZiec7RCgwFUBODdGZ/8cSTZXfG7jSQx9JH1BIG4rCupAWDJ1LOu9TeZMjYa1r7+gPG0+0u7RmKRWTOyrKLWrlnZN+SFuX55ALNZn/IoM21rsZnuNhxcdnPlwznFpeNkZ8iLFE9W0wCEk0u9vXn1C5m4Te8+Y4FkeHrczEHHRhq71U1dYM/cvOYlRwq5u1iLlNC1wwDkEcJIzsOrkjBgYK16vwK7o2t7rnol+8BOb3e79VS1J/p/3gLeAvusBXK/sffZy9g94QzuK0DhR2ccjNRBu7BnYRLMYwBiw4YNThgDgGBAIg2MVAChT1BHAVBYv8JUF0wCRgI08sFIYB6wi3w2bdrk1B8etAMwAoBcnm1AFoWpqj9aWgAU7I9NgJHY36UfOzCIrPrjPCOnTJliYR4DBgzkuGASsA/7p4WR2DgORqIH6IR+8kqCkejnepNgpOqnbmF/FxinfLBtPv1AXgUQpOWCeaShMFj1RwdfKDO0K0xVGOkalEG/wkhs5tIPYFQYnA9Gqv6NGzc6wTj3EPbnXWFqPv2UEfU2ei9xz1L/VT91Nkk/ZZ80TavCSNJN0o/9FaZiW5d+hZHUH+4Rl/5wW+DbMrFl6duyoMXVAXDflvm2LPwdrG2xb8vEfof7fllQO3y/LHyXmKfah/qVI+2XufpII+2X5Srxn3bHAnz/HXnsaTKuolKefvw31kNS06Ov98orr+hH+z59+nTbLkT350TajQ/bewIPRVcSUYjtikMflr8g8B5spznXlV7cvjAEjYvDftbESwymL5wUWH9yWDBrZEaDXl+0Dx+NtzufB/sCuEsaWRsHKUY/272RS0NbeBdrJ0aDM51opBSfR6t81K5kGWfbnW88L2XT5wrTjvasfddOyRlIDOoeMI31N3OC+T0bDUzlGReS68HI8onLQ/enuWaNu6vvfa3NxnP4h8NOV/jOgdKpsyy4ZBsvUNYQHVEw9S0aCszv+0HzkP17HfAoxmsYeM2Uy6xdWTbnIDtF7Whqyd4/oWt32SF0J6oXs76jJ1wHkvQltddJ56U9pvdcXj2hdjR7HREbDNkhsNHQsXCDlCAKDz5CuF2JQriE0+0hBblrXrtPXn7g33Ki45E/WkFtBvQfFiLTr3LcBQoBaH29ndJoPB0BqDvNFK11Uw4y3ozH2ySZcpa1NoGRvL/64H/IuuUPWRh29qdvh4cOC658iJTRO+yMXdjhuGa1e77UMjocaRgXzqHTg3qTtz6a2Du3bbS2ZQpb1jllSuERhZzqG+QfVOFc4wIhNdhryD2sh/y7t4C3wD5kgeG9/H1I/GhIpZFNA1CAIgAUHbQDQuSDkevXr3fCMMCVAhQAURyAiE7Timde5gtk6OLD+gEQABQXzAvDSDzp4jwj1bOQ5JNgqgIU9exMCyOj+hkcwP7YBN1x+oGRYZiaD0aSDwDIBSOBTQojgTp4irr0RwfwXTCPQTtslham5oORU6dOtTAV/XEwMuyZmtazMw5GUp8VBmMrQJcLhoU9O5Ng5LRp0yzMYxAuTn8YplIP4+wfHrSLg3nAVL2X0sJUhZGugULsT/1IGnRkAB8YrG0B95OrLQjDSO4ll5dxFKaizWV/6r7CYNUfvZfCbQH1OQ4G+7Ys+83BfevbssAevi3L1gu2fFuWtYdvy7K28P2yrC18vyxri7Hsl2Vz8Vu7YwH6SIcdfbLU1NbLc0/9Trab9f/21tDet03KiyrMumRlGYmNZqrBPuP9k3bAMXNimg0zAMk0i9Fg15I0v0fC6/sVGe/AArN22EjW0ett2WSTZt3A3Q2f/OgX5Yt/epN9jSsPZk/Z3TRHen4/U92a+sR0shqKaht0074DNK133NDectaYjIQBM2VwUVWN0/bhqHikmpFwKTDrfYbDaJWPpvnXn/uGtesXPv013TXsvf3FJ40Hn/F4MvWi7vyrbF0gkkLIkoZJwbSjxusT4GZf6B+lMNJ8sFFRpdvzq75uUqYuXXPZ53dLYVw+/Wa646KqWjslcsYeQ3bRDPEgrTn5/GAaYzOtccXCI6Rs5v56ONU73skErZOsPcqUsNFg65LZyRqPuxMGu41Hk6kDxZF6r2niGbn9iQek+Qdfk56Na2w8F5TX+GP5Pq1ybiZ5prcmtHUHHtij2db2D/aZGREKjYdm7n2ayTzPRvuWNTbGnEM/7IzZ3rbW7p9hpubUMGHWYXaTqUxHEgqNJ+C4oekw2WZqUqY9Jeh73dSDM0myXqUzmO+O4rLh7XDr+tds9GqzLiZTyYZfmr4zvRHuDNZ3HJSaxmwZ4yUIOGRtxbQBD8uqBrM2sPG4fO6uL5n1MUtk6oEnW939Zs1ergMou+HNR+2alh1t6+2almnT13j9BnzqmqDsmzBzifm/a1StcWZQ9qTDmpWEbU1v23f9121tMGimNp2pu+x7Gru1rg/Wbm4cqmM5CUQ+rHr5V/LkrX9u7cXUwvXTdv+7PpKF/+gt4C3wPrXABx5IMujIoDRAAejhgnlRAAFAcQEIwA6whR+9wEiXZ5UCCEAKgAK44IJh0UEvlzcUdVL1kwYAyKU/DCCAJ3EARWEk+tetW+fUj624TvQD6OL0uzwjXQAF/dgECANAccEYhakMmGP7JBhZbtYoIcTZH9jE4Cr6ganANZf9XTAyqh+YCsBCP3aP06+DdmlgJPqS9DPoBUBBP3UizjMV/diNsqReuGAYeoDB6KeuAoNd9geEqWdnPhhJ/cBO2N9VF9UzFZinMNV1L6WBkaRBnUU/MDJOP9pVv8I8F4zUJ+E5BkB06VeYSt7q2enSHx3Ad4FxypB7Cf2UDzDYVRcVRlLfiOOaZpY6o22Bb8sCz0jqmm/LzI8d0xbwHUD9oY2i3fZtWXbKaVdboPeSb8uya0lzL8U9pOTbMvu1nfmn9cf3ywLPQt8vC6rGrvbLMhXLbyRaoHJ8lUydMUcmTZlu4zWYaUL5XF1jptc0YcHiI4V9zZvWSUVllUybuZ99NU6aao/vTf9ea33Kyrl0zmdkv6oFcsGsj0txYYm8s/3VMZHZv32rFFXXCuvdlU6bLcWhKTZZBxJ4UXvGJVK+33yp/9BHrYadrz6bWkv3qrcEYFNuvKRqz7hYShrNTCr7L8iklTohE9F8Fe1WYJrTkknT7AvIV2h+t4Q/p0l852vBtdeedVnGJlFYiFcc6Vcff5YAYquOy0IEzaP9+cfsZsPln5KK+Ydau9ScdpFJ8yCNYt91LUOOsfZgycRg6kYOjkb55GSW4kN/+3bZ9ui9ds3I2jMvsWfYMjZT7lYdfZpUn3SeBWNAtbpz/0DGHbg4Rarpoow0H9YpLTT3e7WxP3YFqGsAHo1WiMuHMgbETbj8emOHRQKwrTz0OLO25sds1tSbhguvMf3yATNt609k6+/usuuXsp7kSKBhb3PglVp94jlSZuC33qfR69Pph6uOPcPWXeuZGYrEvcn9oHYqbpwcfDZQNRzwous1dbxszrzAE9LYVoFj3dmX23VWaUeoA0BSgGnY6ziclmub9m6yWReSV3kRwMvMYJT5XOE6JXbf7KqD5OiJZ8mhE06SebVmncCBbjNd67s2/mi2tbp25JnTrpBZ4+fZdS1jRTkOvPJbHgQYNB5mfyJHXPj3MmHGEllyzhfk6Eu+bGMvf+J79n3h6Z8ToM8xl/6LXTuQdRqjIMqR/LBdrF04Z8lFctYNt9pjq1+5x75v3RisWzlz4dmy32GXyAlXfl1KHNCRyJ1mis7yygY57Ly/kenzTzfTxwZtFxCPKUVrJx0op3/ih/YY6ycee/lX5biP/LvNZ7T+tZq1FAGqJ197s8w9/DI56ZqbbNLRdR2T8mPKU6YHHeg3zh0rnzMef5ust6Sulck71wT4mzb/NDvF67zjrk1K0nls3bLfme+wQjn9kz8ya3xebmzxf53x0uysn7ZAWGeRtUenzTvFal/7xm9yTkVzx9YNZn3MI2w8ylOnmM1nN6bypQyLSyvl7M/cYQDsObYcz/3cXaY+DH+ggTbs0R/dYPM/2ZQBa1D64C3gLeAtkM8CH/gpWxlIY0ASgOKCAcBIBhEYzAWEAcRcA5iABR0Aj4Nh5AVAAQQBIAAoLpihUzMqgIiDkTNnzrRpkQYDhS794yvHW28u1Q+MdOlHFzBMB/BdMAZwwnWin0Ft4IhLPzA1Ok1rdACcijljxgybFrqBwS79pEN66Ed7IowsQ7/I2rVrnWANWAYoQj8wEjjl0g9MzTeAj50AWKQFxEO/Ky2Fqein7gCxXPYHbKKPsGbNGqctFKaSFnUC/a60FECgUWFk1P6kwaAp+ilr4rn06zS5xNdpZqNpoZm0qB8E7O8qS+4P7E9aQDXgpks/MJL7Dv3Y1QXz0I3NeAemAlpc+tWzkzwVprr0U5bcnxwDxrv0AyPRRlqUI/Zw6eca9cGEuAF8gCYwGP0KU136dZpc8lSY6tLPvUSa6PFtmW/L7I1o/vm2TC0hdu1V7ifuJd+W+bZMa4bvl6klgnffL8vaY2/tl2UV+q2wBSZOni4Hzj8kswsYyWv1u29ab8hq4xlJIB4vDR0Grmxu2qAf3+P30DxloZxfa31aplbMkQNqDpHzZgaDnk2da+WxjcHaYq6pCu2+oeRc/cRQ8sM2tz92nwDXxh9xkj0G5Gq796d2e9vDd0u9ASbhtQF3vv68dK0KBq1zEnNfjo2y5a4fSP25V9opHJnGkWDXz7NbwVR2BaYPni+kiJKYBN5n4w87IROnuH6igUPX2c+tZlrNzNqIAw4tQ5n3GKjd8eozUrn4aLFAzuwH0oU9Itufe9QCxoqFR9q0u95dZgFQJmOz0fnWq9ZDEhAMxLPB9OM7l70UjiarZzMwAABAAElEQVQdLz9lp/QEqFEOwJ2mW75q44xW+eRk6PyQqVz2KNrRUjbrAAtcWR90yy+/b8sYuMqLgEfezjeya53Znfwz1+kK1N189WAk+VBOeCBSDhWLjhI8PNufe8Rmnb2PXEqi+xz1IRQlLp9wGdecemHmDOoQAcgMeGx74DYL7dnXevePZcJHbpD6C65OPc0p92P36rctAAQI4qFoPWhJMBSYKrdz+csWEitM3vyTb9j6SzR7L5h+soba0y+2m31tm6Xl59/S3fZ9u4HS1SecI1XHnG4/b7nzFuspi72rQx7BeInSxpgf2TnnJ32oK50ol+332Zwo+vnlLY/b/bnlF5823pBHNgYa+826dPeu+b45P4ifr63NETB0Tu6+7KcXWx6R6cYbc27NItm/ZrEFn99a9qVshDxbO1pWybO//JKBTP/TgkJgIWHF8z+370wDuvTRm+Xgk6+30JKdfT075fH//mN7XP+x9p560gOO9fsgPFUqoKq8st6CT85r3fCGvP7wjTYJPBjfefZWC8wOP//vzK3aJ2irmjDbHg//e/7u/20hI3CNV9vGZfLbb19lozx565/JiVf9lzRMX2zjBOcNykrjTberQa8rfP7vf/6XBnr+QCbOPtK+OLZu6YOy8qVfhqPZbWzjCmvfeEDmn/gJaduwzB7e+Pbj5no+IhvffiITfdnj35aDT7pejrv83+y+FrO2ovVwdNTruHxevO9frD3qzfqMvCg/7Ou6rkzGkQ2Ny1qU6k1LOT9z598603n+7n8wwPhvZd5xH7MptbeuleZVz0kauwVleKPRvMiA8X+257PGI5oJetdpHQOMv/HIzbLglD8yIPsbGUBpIyf802syF5C9BgM4dfrY3Hs9ISF/yFvAW2Cfs0CBGXzQtmSfEz8agufMmWMBkAsGABUUoAAgABra4IbzBtIpgIiDkcACBUAACACQC2YAIxk0BcYA/JJgpAIIAJBLP1BHAQogj0FYl/6oZ6QLRjJoh34Gc4GpACCXfuAhEAj9AFfXNLPYbtasWRbGoBsA5NIPFFQYDIwE6Ln065S75BkHI4FlDC6hH5iKNpd+BvCBcKQV500U1g+4Qr8rLWAk6ZEn2rkGl34d9CLPOBgJrOQ6SQubUjdcebqewI/mST4Ks4Gp1FlXWthBYTB1hzoUTQtbUC8Upq5evdpZlsBU6hn6k2BqGs9I0tBBU+oq0M+ln3rI/UR87l3uYZd+YKTC1Dj9wFTuc9JKgqm0FwpT42AkEFJhNjAV6OrSTzuAfsoLGBnnGYktFKZSf1z3km/LqKlB8G2ZWiJ417bYt2W+LQvXDN+WZa3h+2VZW/h+WdYWafplO9o7ZdbMaZl+cdxDYkn9MvqP9PfpO/BOP4QX5/DalUC7T6DPM5JAH4oXfRZefG/Q5+Cd++T9Fuj70Rfm90CasPCYXC+iNOckxcFLqKFsimzraZGu/p1JUcf8GJ6FTC+Kh5VO+7grmRaWlhtAVCdAioGd2fWgdiWtPX0OHmFMWWnXQ4wBbNhs0PT1B3rMFJcJwU59ae5x6w0Zk1bC6TJa5ZOUR9pjtozNAwAAMcDYWIX3Kp/R0k8ZFxSXSJ+Z8lenWB2ttDUdbFJgxgzG0u6aV9J7oZmxCjDJ9MYDXZ1JUcfsGN7lPNDxq9W3SLN5oKOqpFZaujeZ77DhMHxvamsxSFXDLDO150TZ2vSW4AEZDkxHWm8AUffONgsKw8fSbF/0hYeNN12f3PO1s6VhxmLpaDPLyuxoHnYqU7nWTNrfQLpg6s5hEVLuwPOwzkz5ivfh1k3GW9543o1FYAraagNNW9a+IkCzsQoTzFqTgLfweoYjzauy1jgiGCDcuv71kZ6aE7+sok6qG/cT4KirXudEjvmQxm5ahgDUrZscDyPFpO13ewt4C3wwLbBieZvM3r/WeErn/536gfeQXLVqlRNSKICgCimAcMGMNDBSAQQDBwogXGkBIHgRdGpG+yHyT2GSGROwgwmutBRAcKp6c7nipYGRClPRrzDVlRaDEUAgAsAP8OQKDIQwmMJgBgDFlZbCVM5Xz1RXvDQwEgAB9EO/wlRXWsC3MIwE/LnC7NmzbVoMwgBAXWnpoB3nAyJ3B0YqTP3/7N0HnFTVvcDx//a+y7K7LG1h6R0EVFBQQVATSzRGXzQaaxRNYhITE5+aGEtssWBJNJpYY6LmxR40ooIoCtI70pYtLGVh2d7bu/8z3LszszPbF4bld/zMzi3nnnvu9w7jnPnPOUfLsoOpvs7pHYzUvL6S+quFHYDwVZYdTNXj9cuw5oKRLQXz9Es7fZ3pOe1gqq9zuvfs1CCd3ivvpGXo61+f7WCqr7LsYKoe31IwUl8fmvS9wFdgUIOp+u9cz2kHU32dszVf4GsZGkDUZzuY6qssO5iq9WquZ6eWpf8+NWn9fZXFe5nhMX94L2u00KV03sscEPde3v5+mMB7mcNl3sN4L2v04HNZowWfyxot9LN4rDWUqP4/X4ORHflc1lgqS4dLQD+H+voserjOr3NG7qvIPlyna/Y8Glzy1eOq2YN87NTAXP3+PT72dGxTwmnnmN6XzZWiPc/sOQiby9fafRpUaqm81gaGagvzW3tan/k66/74LLyNG809zuv6XseH6zxtvHy/2dtzj9v6ujaB7xaC334r2Ik7NAhZX5nbiSV2rCj9QUdzP+oIpPdavdKS/Czz8HXV2jtNA1AdTRrAOpC9xm8xGjjsaDBSC9fgoHd9p31/rjPvob8KLLZ6fmpPvtYmnRfRNTdia49oXz7va2lPKTqMqj7ckwagv31T871Hi6wA9afPX+EcpkFpHVa1I6k1br7uYUvnbM/1tFQm+xFAoPsJHPMBSV9f4GsAQr9Q0aQBCA0O+kp2AEL3+esZqV9C2L9E1gCE5vOVNBCpATFNdm8oX/n0Sy87AJGRkeErixk6VgNAmjSYquX5SnYwVfdpLz9fPSM1cKjn1KTBVO315StpMNL+dbTds9NXPrXQAK2mnTt3+spieptq3TRpIEwDMr6SHUzVff56Ruq59EtTTRpM1UCXr6T2djDY7tnpK59+ga8m+rrx98tyDabqa0OTBiK1d6GvpEFSfa1p8tczUoNl2ptOk34pol9o+Up2z07dZ/fs9JVPewTra9IOBvvKo8FU7amoSYOR+vCVWtMzUoOVmk+TfhHn71fmGozUIKImuweBWfH6o/XXZAeDvXabVQ2manma7J6dZsXrj3vPSH/BSA1A6H3SpMFUfW34SnbPTt3nr2ek7rPrr8FU/TfnK2kwUu+nJn3t678BX0lf13YwVf8t8V4WbZh4L+O9zP73wnuZLSGmFzvvZS4PPpc1vi50ic9ljR6d/bmsqLjMfObq6OeyxhqyhAACvgSq9+Vac9hF+NrlbKu35jgkIXA0CfC6bv/dqhffw3O2v8TucaQ93OaRvJr8XWslNMLVbvdXj8oy39//+ct/tG/XoJ+6NJcK93zT3O6A2tfdriegcKkMAt1I4JgfstX7XmqASL+Q0N6HZWWlPgMQ+mWW3RtNgwAa5NJgl3fSfO4BCA2aeSfNo4EYDUBoWf4CKJpPAygagNB8zfWG0mCq5vEXTNWy7ACK5tMAigYbvZMG3tKtAJwm3e8rmKplaQBFA3palt0bzRzk9kfz2b25NF9zwUgNNGoef8FULcsOBms+rZevYKoGI+1gsN4fX8FULUsDkRpM1bL8BYM1X2MPCP/112CkBlO1LHuYXzcGs6hl2cFgzacBFA1QeScNPNvBYA1G+gqmallad70GLctfMFjzqYXdM1VfP76SfoGvtlqWBsJ8BVO1LLsHhObT17X2tvRO+lq1g8EajPQVTNWy9LWjryEty18wWPOlu/Xm8hcM1mCkvra1LA0G+wqmaln6b1yDjZrP3zCnGky1g8EajPQVTNWy7GCwluXvS0fNZ78XqJWe01fS9wJ9b9GytO56Dd5Jy7J7c2k+tfDXs5P3Mpce72WNryJ9/fBe5vJQC97LGi14L2u04HNZ43uG9vLjc5nLo62fy7Kyd0tEuM673nTEDX3/ac3nMv0soOfVz7T6rP8/04cer4/2JPuzsb/PUv7K1M8c+tDPHPrQzzPdechWfw7+tnf2kK3+zsN2BBBAAAEEEEAAAQQQQCDQBBiytZ13xO4NpY1tDaD46g2ljX/90k4DH9oY1wCEr2CkezBMg03+gpH20Jh6Tn/BSP3iQQMLGuCxe4Zpfu9k9+zUff6CkVqWBjw08KT11yCRr2Cke/399exUC/3SrqVgpJ5TAyj6RYrW318wRoeWtL/0sofG9L5Gu/4a+NP6a5CupWCkv56dWn97aEwtyx4a09c5NTClJlp/X1/gaFn20Jjqbw/z66ssDZjpF3x6Tg2SNheM1NtcVeW7Z6eeUwOR+tCyNJiqbt5JzTQwqM/N1d8e5lfr7y8YqWVoMFVfa3pODQY3F4zUsvTfR0vBSC1Lg6m+hsnVc2oARa+3ufrbw/za9fcVjNSy9DWm/9b1nBoM1jK9kx2M1LI0GOwvGKmvff03oGXp+4Wv4dj0dWMHlv0FI/Xa9N+kHYzUQKSvYKTWXwMoWj+tt9Zfz+2deC9rFOG9rNFCXz+8l7k81IL3MpeFvv/wXtZoweeyxvcMPpc1WtjByLZ8LtNAZG2NK3jYWJKYz2Ot/Vzm67OMe1ksI4AAAggggAACCCCAAAIIIHA0CRzzQ7baN0u/wNegmX657y8AoV9g6pd2+mWVBgM0gKJ5vZN+aaFf+moww9/QjPoFoJajAQg9pwYffA3NqF+mawBFg5EazNAAkK8AhN2zU/dpUETr5p20/hpM1cCN1l8DKL6CqVp//aKkpfrbwUgtS+uvPQK9k9ZfAyhaptZfAyharntSCzuYqvW35xl0z6PLWn/1suuvQSJfwdTGL40aTLCyuZ6d2rtQ669f+GgQ0Ttp/TUYrM9af3+BZftLO61/c8FUOxip59Qgna9gqnv9/QVT1UKDqRqM1LI0mO0rGKn11te15m+u/hqM1C/ntf7q4KtnpJal9dd7pWVp/X0FU+2ekXqf9fXlq2en1kfrrq8hrb8Gg30FI9WiX99+Jhip5/QVzNbXj74mtGen1t+eM9XXvdQ8+m9dy9J66bN3soORWpa/YKrWX187dv01GOwrGKn1t3tZNld/e2hJPae+D/j6AlL99R5p/bQsDWarnXfivaxRRP15L3N56OuH97JGC97LXBa8lzW+X/C5zNOCz2WNHu39XKaf8cLDXEPz26W19XOZfm4mIYAAAggggAACCCCAAAIIINBdBBiytbvcSa4DAQQQQAABBBBAAAEEAkKgpLRCYmMi2z20ql6E/kBJA6IayNRn/RGBPjSAro/2JIZsbY8axyCAAAIIIIAAAggggAACCPgTaEv7lx6S/hTZjgACCCCAAAIIIIAAAgh0IwFfUw90o8vjUhBAAAEEEEAAAQQQQAABBAJYIDiA60bVEEAAAQQQQAABBBBAAAEEEEAAAQQQQAABBBBAAAEEEEDgKBcgIOnjBkaERUhKfIpEh0f72HvsbdL5BXXuzEBIek8ivebjCYR6UQcEEEAAAQQQQAABBBBAwBagTWlLuJ5DrHncw+NiPDceoTXalEcIntMigAACCCCAAAIIHPMCAT1ka1JKbxmQPkxi4xKkwfpv7+5s2ZubJaUlxV1y4zTQ9atzbpG0pDRT/rrstfL0x093ybk6Wui0adOktLRU1q5d29GiWjz+zjvvlLS0NLnssstazNvVGR645EHJyc+WR+Y90tWn6lD5A5IGSGJsoqzNav/90bmBHn30UTNn0P333y979+7tUJ04GAEEEEAAAQQQQACB7igQHh4h6UNGSnRsnGTu+EYKDx5wLpM2pUPRZCFp/EipLauQoh1ZTfZ19oYJP7tSegwbJAuuv62zi25zecdSm9KacFZOuP0nEhweJmsef0GqCora7MUBCCCAAAIIIIAAAgh0lkBAByR79e4ncfE9pLDggAQHB8sgq5E5ZNgY+frLTzwamZ2FMWXoVBOMfGPJ67JlzxYpqyrrrKI7vZzrr79eCgoK5Be/+EWnl+1dYE5OjvH33n4k1rOtYGTWga5vMHf02s6ddJ6M7T9Wfvzije0uaurUqdK3b19z/Nlnny0vvPBCu8viQAQQQAABBBBAAAEEuqPAiNHHmWCkfW15e3Z5tBVpU9oyTZ/HXv8DqdifL8vufqLpzk7eUpK9W4JCQjq51PYVdyy1KZPGDJOEoQMNVL9TT5SMdz9uHxpHIYAAAggggAACCCDQCQIBHZD8ZsMq2dyw0rnMuPhEOfm0syRt4FCPRqaToZ0LYSFhEhIcIpPSJ0pNXY0s2bbElKTL7ik8NFwaGhpMnoToBEmNT5XMA5lSXVvtZNPhX/on9Zd9RfukqLzx14caUA0PCZfgoGBJ7dFbMvN2SmxkrMRExsjewtb3fNPhU7XnnCYtMybGNexNbW2tVFVVSYjVyIuMjJSKigqpr6936mVvLytzBVn1uOrqagkLC5PRo0fLli1bpKSkxMmvC3oePcdf/vIXj+32ip5H8+i5Bg8ebHps5uXl2bud5whreJ6xY8fKjh07pLCw0NSxrq7O2d+aBXUT67LnfviYWJ1lPZLeP61HXGSc6NBIuwt2S2pCqpRXl0tJheua9Hi9f3qv4qLiJDkuWTL3Z0pdfdN69IxNsvYnSfaBbKmsqfQ4l6409zqwX0v6etJkDy+rPXyraqrMttb+mT17tnm96X2aPHmyR0BS70tUVJSxV9/hw4d79Ja173dLr4PW1oV8CCCAAAIIIIAAAggEokCffgMlNztDDubnybiJU5tUkTZlExLR4VO1bRUUHGQ9giUk0lq3UoPVRquvqTXbtEddfXWNNLi1KTWvbq+rdLVr9LgGqx0aFBIq8en9RIOOtRVe7SernaZtte3/90HTilhbtDxt3dZZ54rp20tqyyulqrDpiEjBYaGSMHiAlObulZrSclNH97r5LNxr47HYpux7yommTamuqSdO8AhI2vdT73NwaIjEpvX16C3rvt/d2t5uvw68mFlFAAEEEEAAAQQQQMCvQEAHJDX4557qDgUIa2s9A4Xuedqz/LsL75Re8b2cQx+/wvUL0TVZq+UvnzQG4+77/v0mwFVr1WNAsutXhhq0vOmln5pA4/WzrpfjBk50ysnJz5HHPnhUKqorZNrw6XLZtMtMkFCDSfml+dIzpqdpnC3Z9pW8/PnLznHNLTz//PPmGM3Tq1cv0XVNO3fulNtuu80Ern75y1/Kxx9/7OzT/b/73e9k5MiRcsMNN5igoB6nAci4uDjdbdL8+fM9gl4PPfSQDBgwwOzTAKL3kK2PP/64aDBMA592YDQzM9PUw753Z555plx99dVOnfPz8yUpKUnuvfde2bhx46Ezt/yk90QDgZq2793mMWTrnFk3yJj+Y5xzaECyb2Jf0/B65YtXrADzVzJ+wHi5YfaNklec59xrrfef5j8lm3I3mXI1yPzrc39jgpVmg/Vn8ZbF8uriv9ur5rm518FvzrvVGfJXM9uvJQ1s/uKVn3uU09KKBhnVa8+ePTJu3DjRYHR5ebk5bMqUKfLzn/9c1Ds9Pd1s04D0Sy+9JAsXLmz166ClOrAfAQQQQAABBBBAAIFAFvhi4Typs4JiiT1TfFbTbpfYO2lTisx4+h4T0FOTuAF9ZeYzfzA8BzdulVWP/FUSRwyWSb+ZIxnvzPcIYI378Q+l1+Sxsuim35ugoB5XmV8gkUmJNm+TYyZb5SSOHGL2a7DTe8jWqff8UkKjo0wwNKJHvKsem7aZelgNOrOugbSxN1zmtPfKdu+zgpeppmdnceYu59wtLRyLbcpka1jeMiuIW7prr/SeOtEEo+usdqOmnqOHysRfXScHLe+eo4eZbRpQ3vjX12X/6o2tfh2YA/mDAAIIIIAAAggggEArBKxuZ4Gd9Nd3/QYMluGjJsiJJ88yld2VtaNTK/34h3PlnrfutuYmzJHa+lqzrOv//PKfTc6jga5eVu+7eavnyZP/fULWZ683eWaMnmmCkdnWcKK6fXXmahOYuuSkSzzKeH/Ve7J1z1ZJsnrhfbDmA9m4a6NMHXqSR57mVjTo+Nvf/lZqamrk4MGDZlnXH374YXPYsmXLTE/Jk08+2SlGe0GOGDHCzEGoPRTtpMHIdevWyTPPPCPac1KDh3ZwS/PMnTvXBA73799vgnv2ce7P2ktPy3ziiSckOzvbHH/GGWeYLBpA02CkBjNfe+01EyTt2bOn++GtXn7wvQfkgXfvN71TPcPUriL0V7d/+ugpKa8qN8HIP8//k5RWlsrscbM9zpEcmyzvrHhHXvvqNalrqBMNZlq/2TV5rjrtahOMXLp9qSlLe65OHzFdJqZP8ihDV/y9Dp7++M/m9aNBUw146uvI9binSRnNbdBgpN63NWvWyOLFi01W7THpnQYOHCjvvfeevPrqqxIeHi6XX365ydKW14F3mawjgAACCCCAAAIIIHC0CGgwsqVEm9JTaMkdj8iS3z5iejqW7ckzy7q+4VlX+/fg5u1SY80t2X9mYztVh1tNmThaNACoPRTtpMHIPUtWydonXzI9GwdfcKZE924MDm/82+smcFias8dvmzI8LkYqDxyU1Y/+VQq2ZJjgWOoJ480ptDfn2Dk/MD03N734fybgGd2n8cfEdj1a83ystSlj+/cxvV/zVm6QfV+vMUSpUyY0odKA8dbX35eNf3vDCliGy8grLjR52vI6aFIoGxBAAAEEEEAAAQQQ8CEQ6mNbQG3SoS/HTjjRqdP2b9ZLSXFjUM3Z0YGFg6UHzdHai02DZ9rDrrn08H8eltyDu0wWu3fdqSNPNeuPWj0idWhO3f7EFU+aYNaLi150itMedzps6PA+w+WLbz6XwvJC07svNDjUBEOdjH4WtEecJg126VCe27dvN+vuf5YsWSIzZswwPSK/+eYb+da3vmV+TfrBBx+4ZzOBy/vvv99s0/J+8pOfyPnnn2+Ci7pRe+bpQ4OVzQUS77rrLtPbUgOkd999twwZ4voF7KxZs8x5P/vsM3n33XfNeUaNGiX9+/c3y235Y98TracrfOh5tAYiN+zaIFn5WTIoZZCsz1lv5pockOzq4Wnn3rBrvfx37YdmNc0aWnf6iFNkeN8RsmX3NzKyz0hrmN1CeenQ/dpTuEe0N+TpY063Asyr7CKcZ1+vg4KyAtFHudUrVpNdb+egVi5ocFjTJ598Irm5uaZn6/Tp003w0b2ITZs2yT//+U+zSb179+7t7G7t68A5gAUEEEAAAQQQQAABBLqhAG1Kz5tavne/2VBfVy91VdVWD7p9nhmstdzPlkr6OTMlbqA1FGtWrvQ5aZLpVZn14WceeTVwufG518w2HfL1uJuvlbTTT5Yt/3S1/yrzC61elIVSXVLqEaj0KMRaWf3Y82a416qiEtFek3refcvWigYmNaCc9eGnsvvzZeawnmOGS49h6d5FtLhut82OlTZl31OONyZ7l6625go9aALCfU6e7DjaYHkr1kv2R5+bVb13cYMa2+utfR3YZfGMAAIIIIAAAggggEBzAgHfQ1KHZ/3o/dfl80/fl8yMLTJ05DgZPGx0c9fUpfs02GgHI91PpMN9llSWeMwTuMsKWuowo2auikOZNehZdWjOSV2255/UuQ87K/3rX/8yRV188cXmWXssaqBVh3F1TxpstNPKla65OlNSGn/Nau9r7lnnKLTnntR5KDXp3JKa7MDj8uXLzbr+8RVAdXZ2YMGeC7LGer3Yc3+qrQZ63dM3u1111G3aU1VTb6vHa3xUvAmeZlhze9pJh9XVspJim/bq9Pc6sI/t6POECRNE5wXV3qna87GgoEDS0tLMnJ7uZdv3Tbft27fPGcZI11v7OtC8JAQQQAABBBBAAAEEuqsAbcq239nsjxaZg9LPnmme086Ybnop7lu+zqOwkizXD3V1Y8EWV1sqKjXZI09LK9UlZc7ck9qTUlNolKtNqfNKasrf4Gq76XLh1sY2m653Vupubcpex483c3PqnJw6B6cGojWQqwFe93Rg7WZntWyPZ5uyta8DpwAWEEAAAQQQQAABBBBoRsAzWtNMxiO9q6K8TLZsXC39+qdL37RBkrFt0xGp0oHSA37P6x549JvJ2tHQUO+2u8Est/ZYtwP9LmpPxd27d5sekjrPpD5Wr17td4gcLUiHPG1P0qCZd9I5MjVpEFSTDt1qJx2GtCtSg7gcLV2n+AZxd3Zt9rxO+5qDrKP834fGEp2ipbnXQWOu9i1pb1R7bk97jlC7pJNOOkm+/PJLe1U0IGwn7/lx2vM6sMviGQEEEEAAAQQQQACB7iZAm7L1d1SDhEXbsyRl0liJSEwwc03uXrxCG7Oehbi3Iw81r+xWlmdG/2v11nQk3slut9XXutqUoZHhThYNrnVFstuE3aFNGR4fK5E9exgme45Q26znmGGSv77xh7q1lVX2ria3t9WvA6cEFhBAAAEEEEAAAQQQ8C/g+dM4//kCYo8GukJCQyUstGuCWh25SB16NSYiRiLDXL/k1LLSktJMD8h6jwBkR87SeKwOM6PzN/pLOkRqiDXPhw6nqumNN94wz+5/+vTp46xOmuSaJ1F75HVW2rlzpylq8uTJTpH2cK7OhsO8MKLPCOeMOmyupr1Fe6WkosQEbAf1GuTsT4lPkbCQMLGH9HV2tGKhtq7W9Gb07qHZikPl29/+tsm2aNEi0YCkPuz7d/rpp7emCCdPa14HTmYWEEAAAQQQQAABBBDo5gK0KRtvcIPVpgyL8d+mzPxgoQSHhsikX19vDsr8z6eNBx9aihvQz9mWOGKwWS7f5/9HvE7mVi6U5uw2OZPGNbbjegxvbLO1sphOzXY0tCl1aFZNOsTu+qf/bh6bX37TbOs7/QTz3No/rXkdtLYs8iGAAAIIIIAAAggc2wJd89PCTjI9/qSZkr9/rxQV5EuENQxovwFDrCBPiOTtzeykM3ReMYs2fyaXnHSp/Pq838j7K9+T6SNPMcO1Ltm2pPNO4lZSYWGhaEDx2muvlQ0brEnqreE67fklNZsGs370ox+ZuR+Lioo89tnFREREyJ133ilLly6VSy+91Gy253rUYVdHjHA1+uwejjqMqKasrCzR87eUPv30U7niiitk2rRpoj0jExISPOY4bOl4e78Op5oU5xr2R79AiIqIlkG9XI3d7ANZdrZWPY9LGyfnTfqO6HC5U4dNNc9bDw3jqvN+juk/Rq47/TpZtXOVfPeEC02Zn274pFVlu2faXbhbJln/XT3jalmydYmUVZXJzv2uAK17Pl/LU6ZMMZtfeOEFM8+nneeCCy6Q4cNdQVR7W0vPrXkdtFQG+xFAAAEEEEAAAQQQCFSBmNg4SUhMlvh4V2+wpORUHf5FSosLpbioQGhT+r9zlda8gvGD02Tw+WeYYVArC4rMsJ72EftXb7TmmKySmD69rDkI88VXoFEDmuN/8kPRoVxHXHaBOTTnU9eILsHhYRKX1tdsC4uxRs2x7kvCkIFmvXzffqkpLbdP5fc5b+UGU4e0M06xhh0Nk/D4OIlPb5zj0O+BXjuOtTZlb2vOT0073v7IDLVrcwz7n3MkefxIe7VVz615HbSqIDIhgAACCCCAAAIIHPMCAR2Q1GFaho9yBcHsO7V3d7Zs3rDKXj38z95D1ByqwaJNi2Ro6jA5fvDxcsPsG83WzP2Z8saS182yPZym/awbdUgYu7i29qJ89tln5eabbxadH1IfGRkZcvvtt5tz2X/WrFkjJ5xwgixcuNDe5PFcXFwso0aNktGjXXNyfvDBB07gcvDgwXLbbbd55LfXv/jiC/nzn/9sehR6ZPBa0V6c9913n9x6662iQTYd3nXHjh2ivSR9DfXqdbizetqoGXLOxHOc9X6J/eTW824164/852HzbA+DazwbnKxNFrQ3pF1WbX2tPP2xdR2Hhmt96fMX5Vdn3yKTBx1vHnrwZ5sWypqsNU3KcW5c0z1my/x1H4n+cnZS+mRTlgZAf/HKz/3kbtysvVp1Hk8dbrXKavy7J7XTezV06FBRW032s3s+7+WWXgfe+VlHAAEEEEAAAQQQQOBoEejVu79Hm1Gn99BHVsYWE5CkTen/Tm5++d8y/qdXyOALzjSZdJ7G1Y/+1eOAvUusaVNmTJWcTxqnjXDPUHGgQFImjxOdr1DT9v/7wAlcaiDzhN/+1D27s5790eey9fX3XUPA2o1ij5yuFe3FueKBZ2Tir66T/jNPMnMi6nCj2mOy/tAUIT4Oa7LpWGpT6hyRsWl9pGxPnkcwUlEObtxq7lVMv1RpqDs0xUkz/jZkS68DOx/PCCCAAAIIIIAAAgg0JxCUlpbWTPimuUMPzz4dojUy0jUHYWVFuTUvYdM5Cw9PTVp3lvDQcNGAWV5xnukV17qjuibXY489ZnpRXn311VJZWelxktdff12WL18uTz75pJlrctu2bU3yeBzQwRXtIVljzQ1yzz33mF5+Wif3+Q87WHyLhx838DgTKH7qoydFA8U9Y3tK7sFc8RUIjouKk6TYJLO/pq7pfCYtnizAMjT3OgiwqlIdBBBAAAEEEECgWwiUlFZIbExku+dpV4SCggIJtdpC+oM1fdaRQvShATZ7fr3DhaU/qtSH/hhOH/rjQp0vXp8TExMPVzXafR7alO2mkxPu+KnEDxkgC2+4Q+qrPdtGs198WHI/Wypb/vGOxA7oK6W79jbJ0/4zNz1Sh4/VOSUn/PxqSTlutCycc7sJUDbN2TVbjuU2ZXOvg67RplQEEEAAAQQQQACBo0WgLe3fgO4hqeB1ViO3rLT4aLE3c0a2dmjOrrqoE088UU4++WTp27evbNq0qdlAowYJ169f31VVkWuuucZ8YbJq1SrTW3PYsGGm99/hDEZ6X5wOn6oPf0nnk9TH0Z7a8jo42q+V+iOAAAIIIIAAAggg4E+ANqU/Gf/be44aavV8HCsJQwdK3op1zQYaNUhYnJHjv7AO7tEhZTUd3LTN6hk50gw5qr3/6rwCpB08TZsOP1balG15HbQJkMwIIIAAAggggAACx6RAwAckj8m70sGLvvHGGyUqKkr27t0rDz/sGtLUV5GtGe7T13Ft2RYfHy9Tp041w8rqcfpL7/vvv78tRXRK3rr6uk4p52gqpLWvg6PpmqgrAggggAACCCCAAAIIdL3A2Bsvl/C4GCnO3CUb/+qahsTXWd2nJPG1vzO2hVn1SJs1zRlatnzvflkz9/nOKLpNZRyLbcrWvg7aBElmBBBAAAEEEEAAgWNWIOCHbD1m70w3unAdUiopKUmKiorMsK3d6NK4FAQQQAABBBBAAAEEmgi0ZciaJgcf2sCQrf5k2H5MClhtyvC4WKkpK7fmPjz2fmx6TN5zLhoBBBBAAAEEEEDgqBBoS/uXHpJHxS09uiupv5o9cODA0X0R1B4BBBBAAAEEEEAAAQQQQODICFhtyurio39ajSODx1kRQAABBBBAAAEEEAgMgeDAqAa1QAABBBBAAAEEEEAAAQQQQAABBBBAAAEEEEAAAQQQQACB7ihAQLI73lWuCQEEEEAAAQQQQAABBBBAAAEEEEAAAQQQQAABBBBAAIEAESAgGSA3gmoggAACCCCAAAIIIIAAAggggAACCCCAAAIIIIAAAggg0B0FCEh2x7vKNSGAAAIIIIAAAggggAACCCCAAAIIIIAAAggggAACCCAQIAIEJAPkRlANBBBAAAEEEEAAAQQQQAABBBBAAAEEEEAAAQQQQAABBLqjAAHJ7nhXuSYEEEAAAQQQQAABBBBAAAEEEEAAAQQQQAABBBBAAAEEAkQgNEDq0WI1wsMjZNzEqVJbWyNrV37VYn4yIIAAAggggAACCCCAAAIIdH8BbSumDxkp0bFxkrnjGyk8eMDnRdOm9MnCRgQQQAABBBBAAAEEEEDgsAgcNQHJMRNOlORefaS+vu6wwHASBBBAAAEEEEAAAQQQQACBwBYYMfo4E4y0a5m3Z5ffgCRtSluJZwQQQAABBBBAAAEEEEDg8AscFUO2aiCyV+9+Ul5WeviFOCMCCCCAAAIIIIAAAggggEBACvTpN1ByszNk/eqlzdaPNmWzPOxEAAEEEEAAAQQQQAABBLpcIOB7SIaEhMp4a6jWjG2bJKFHT4mMiupyFE6AAAIIIIAAAggggAACCCAQ+AJfLJwndbW1ktgzxW9laVP6pWEHAggggAACCCCAAAIIIHDYBAK+h+Tw0RMMxo6tGw4bCidCAAEEEEAAAQQQQAABBBAIfAENRraUaFO2JMR+BBBAAAEEEEAAAQQQQKDrBQI6IBmfkCgD0ofJhrXLrLkj67tegzMggAACCCCAAAIIIIAAAgh0GwHalN3mVnIhCCCAAAIIIIAAAgggcJQLBGxAMigoSCZMniYH8/Mkb2/uUc5M9RFAAAEEEEAAAQQQQAABBA6nAG3Kw6nNuRBAAAEEEEAAAQQQQACB5gUCdg7JiMgoiY6JNXNGnnbGd8xVREREiTYqdX3DmmWSv39v81fHXgQQQAABBBBAAAEEEEAAgWNSgDblMXnbuWgEEEAAAQQQQAABBBAIUIGADUjW1tTIzu2bPdj69k8XbVTu2ZUlleVlHvtYQQABBBBAAAEEEEAAAQQQQMAWoE1pS/CMAAIIIIAAAggggAACCBx5gcANSNbWyNbNaz2EdP6PsPDwJts9MrGCAAIIIIAAAggggAACCCBwTAjExMZJQmKyxMf3MNeblJwq1rA6UlpcKMVFBU3ajrQpj4mXBReJAAIIIIAAAggggAACASgQsAFJX1YNDQ2+NrMNAQQQQAABBBBAAAEEEEDgGBTo1bu/DB81wbnyvmmDRB9ZGVtMQNLZcWiBNqW3COsIIIAAAggggAACCCCAwOERCEpLSyPKd3isOQsCCCCAAAIIIIAAAggcAwIlpRUSGxNpddQLavfVFhQUSGhoqISEhJjn4OBg0YeW2ZFy21MhDeLpo76+3jxqa2ulrq5O9DkxMbE9RXIMAggggAACCCCAAAIIIIBANxBoS/s3uBtcL5eAAAIIIIAAAggggAACCCCAAAIIIIAAAggggAACCCCAAAIBKkBAMkBvDNVCAAEEEEAAAQQQQAABBBBAAAEEEEAAAQQQQAABBBBAoDsIEJDsDneRa0AAAQQQQAABBBBAAAEEEEAAAQQQQAABBBBAAAEEEEAgQAUISAbojaFaCCCAAAIIIIAAAggggAACCCCAAAIIIIAAAggggAACCHQHAQKS3eEucg0IIIAAAggggAACCCCAAAIIIIAAAggggAACCCCAAAIIBKgAAckAvTFUCwEEEEAAAQQQQAABBBBAAAEEEEAAAQQQQAABBBBAAIHuIEBAsjvcRa4BAQQQQAABBBBAAAEEEEAAAQQQQAABBBBAAAEEEEAAgQAVICAZoDeGaiGAAAIIIIAAAggggAACCCCAAAIIIIAAAggggAACCCDQHQQISHrdxejwaIkMi/TayioCCCCAAAIIIIAAAggggAACLQvQpmzZiBwIIIAAAggggAACCCBw7AmEBvIl90zuJYOHjm5SxbUrv5Kamuom2ztjwwOXPCg5+dnyyLxHOqO4LitjbP+xUlZdLjvzMrrsHBSMAAIIIIAAAggggAACCAS6QHh4hKQPGSnRsXGSueMbKTx4wKkybUqHoskCbcomJGxAAAEEEEAAAQQQQACBLhQI6B6S0TFxkpTSW0LDwiU4JMR5SFBQl5FkW8HIzANZXVZ+ZxV8zYxr5ZKTLums4igHAQQQQAABBBBAAAEEEDjqBEaMPk5mnvVdGTR0lKT27i/R0bEe10Cb0oPDY4U2pQcHKwgggAACCCCAAAIIINDFAgHdQ9K+9lXLPpfqqkp7tUueg4Os2KwV55z74WMiDZ6nCAsJs2KgQRIXGScRYRGyu2C3pCakSrnVQ7GkosRkDg0OldCQUKmsqZS+iX2tooIktyDXs6BDaz1jkyQ5LkmyD2Sb/N6ZwkPDpaGhQWrqaiQhOkFS41OtIGmmVNdWm/Nr2VofrbM9vGxdfZ3J711WS+s9e/aUYcOGSU5Ojuzevdtk17Kjo6Olurra6ola4xRhb6+sdN2LyMhICbECxYMGDZJ169ZJYmKi9OjRQzIyGnttxsTEmHLCwsJk9OjRsmXLFikpcZlpwXqe+vp6scu0T6bb9dzu57f38YwAAggggAACCCCAAAIIqECffgMlNztDDubnybiJU/2i0KbsujZleFyMxPbvI+V5+VKZX+C6B1abMiQiXOpraqWhrq7xvtjbq13tzOBwq60dHCwxfXpJUUa2hMdGS1hsjJTtyXOOCYmMkIbaWgmy2tvx6f2kJHu31FY0fj8QEmHtb6iX+kNl2gea7XW1Ul/rdn57J88IIIAAAggggAACCCBw2AWOioCkBr3CrF6SXTVMq6o/fsUTooFATdv3bvMYsnXOrBtkTP8xJgio+zUgqUFHDRq+8sUrsmTbV3LZ9MvlpGEnSV5xnvSK76XZTLDyvnf+IIXlhWZdg4u/Pvc3VjAy2azrn8VbFsuri//urOvCfd+/3xxbawUkByQPNPs0OHnTSz+VuZc/LsFWg01TWlKaqbcub87dLE/893FdbFUaOnSo3HbbbaIBQzvt2LFD7rjjDgkPD5e//e1vsnfvXrn55pvt3XLuuefKZZddJq+88opoMPJ//ud/jIEGKouLiyUuLs4YrV69Wh566CFz3PPPP28CkLrPTvPnz5cXXnjBrD7yyCOSkJAgP/zhD01gUjempKTIU089JRs3bpR7773XPoxnBBBAAAEEEEAAAQQQQMBD4IuF86TOClYl9kzx2O69QptSzA9YO7NNGdMvVSbdcr1E9Ih3uPPXb5HVj/1NgkNDZMbT90rJzl2y7N4nnf19px0vo6/9H9n43GsSbAUsR135PWmwfqCqQcmKAwUSmdTDtCl3L14hm55/wxw385k/mEBnZFKiU07GO/Ml492PzfqJv/+ZRCX3lIU33GHK0o1ap1Pm/k72LVsr65951TmOBQQQQAABBBBAAAEEEDhyAgE9ZKvNcuqs8+T0b10os799kQxIH2Zv7tTnB997QB54937TSPPqIGnOo0G3P330lJRXlZtg5J/n/0lKK0tl9rjZHvWIjYiVvy54Tj7btFDiouLk6hnXOPuvOu1qE4xcun2pKWtv4V6ZPmK6TEyf5OSxFzTg2cvqhTlv9Tx58r9PyPrs9WbX3W/dJfe8dbfpWanH67I+XvjsefvQVj3/5Cc/Mb0TNfB30003ybPPPuv0bKyqqpJt27ZJnz59TLDQLvDMM8+UOuvXrR999JG9ySxnZ2dLfHy8LFiwQDSoedxxxzn7dUGDkdqD8plnnpGysjLRctLT000eDU7qlwNnnHGGWdc/F110kVl+6623nG0sIIAAAggggAACCCCAAALeAhqMbE2iTdn5bcox13xfwhPiZPXc5+WLm++VtU+9LEU7XNOfaM/IA2s3S/zgNAmLiXZu0YAzTzE9Fvd+vcbZlvH2fCn4ZocVVEyUzPc/FQ1q9pk22dmvCxqM3LNklax98iWpKiyWwRecKdG9XUHo7I8+l+CwUOl1wnjnmLQzppvlrA8/c7axgAACCCCAAAIIIIAAAkdWIKADklWVFZK54xtZu/JL81xvDUs6atxk6WXNDdLZSXs9ZllzR+rwodbIrU2SBiI37NogWflZJhi4Pme9ya/DuLqnN5f9W1buXCmvL3ldDpQckOG9hzu7R/YZKUVWb8mXFr1oynrqI9cvRU8fc7qTx33h4f88LO+vek825W6S5xY8a3btK9pnemhqPatqq8yy1r2ksnEYVPcy/C1HRUWZa9VA4f79+2XhwoWivRnt9O9//9ssXnzxxeY5OTnZ9FzctGmTCUra+d577z1ZtWqVWX333Xdl5cqV5hetOkSrnTTAef/998uiRYvkpZdeMpvPP/988zxv3jzTy/Lb3/62nV2mTJliApfaQ5KEAAIIIIAAAggggAACCLRXgDZl17UpQ2OjrKFU66RoW6YJEu5ftcHptaj3S4OLmuzgYHh8nMSm9ZG8leucnoy6P3fRUtm/2tX22/XZUsmzytEfBGsvSzvVlFWYXpWab/OL/2c2p51+snnW3pTay3Lgt06zs0u/U6eYOhVn7nK2sYAAAggggAACCCCAAAJHViCgA5L79+2WLZvWyN7dOeZ5+ZKFRmvg4MYg3+Hi0zkaNdXUWvMaWsOnatI5HXXuSPe0efdmZzVzf6ZpSMVHxYs+tFGVkbfT2Z9fmm/KSort6WyzF6pqqiT3YNc1nuyeic8995zpHTlnzhyJsObesJMGKrU347Rp08wmu9fiG2+4hs2x85WXlzvzP1ZUVDjL7kPB7tmzx85uApa6osOyatI5IjXI2bt3bzP/5Pjx481wsF988YXZzx8EEEAAAQQQQAABBBBAoL0CtCm7rk2Z9eEi0zPxtD/fI9P++L8y5HvfMuv2vdI5IauLSqT/zJPMJu0dqWnnoUClWbH+1FZVS5310FRXWeXMBalzR9qpJKvxOgq2uNrUUamuqVB0jsq8Feut+SX7W/NPRkvC4AHmedeCr+zDeUYAAQQQQAABBBBAAIEAEAjogKS3T0lxodRaAazomFjvXV2+3iANh85hP4u1pb7JeYPc+lda8UeTNBBpHx8c1JS8scTG4g6UHmhc6YIlHQ71l7/8pSxbtszMGTlz5kyZO3eux5kWL14s2pNyzJgxptdiSUmJbN++3SOPzqOpD03aa9NO9jyX9rr9rBbeyQ5y6pyUF154oSnvzTff9M7GOgIIIIAAAggggAACCCDQIQHalB3i8zg41+rNuPiW+2XXgiUSEhkpg86dJVPuvtkjT86nX0l4fKwJFvY99UQzF2RZ7j6PPFYD0GlTmrblofalR9vRvR1pt7PdSrGDnAPOPFUGnj3DlJfzyZduOVhEAAEEEEAAAQQQQACBIy3QNDp2pGvUzPmjomMk1BoKtLKivJlcR3bXqH6jnQqkpwwyDaGi8iIpqSgxy4N6DXL2p8SnSFhImBwsPehsa+1CXUOdxETEtDa7z3y7d+82Qcirr75adB7Inj17mnkl7cw6bKs2CHW+SQ1MfvbZZ/auNj3rXJR2mjTJNV+mDhNrp61bt4oGO08++WQZMWKE5OTkmHV7P88IIIAAAggggAACCCCAQGcI0KZsVOyMNmVlfoFsefVt+fxnd0nBlgyJ6dNLQtxG3sn5ZLFpU465/lIJj4uR9gYJ4wb0cyqeOGKwWS7f1/gj3tJde0ywU3tjpkwcI4VWXWorKp1jWEAAAQQQQAABBBBAAIEjL+A53uiRr49HDY47fpoczN8vJUUFEpfQQwYOGmH252Tt8MjX0RUdTjUpzjXci/bsi4qIlkG9XI2cbGteybak7534PdHhXYf2HipJsUniPoSrzgU5pv8Yue7062TVzlXy3RMuNEV/uuGTtpzC5M0vyZf0lHQ5d+K5sm3fdiksKxCdX7K16Z577hEdlnXFihWSlpYmGjTU4VMrKxsbbRokzMrKkvT0dNOIfPvtt1tbvEc+HQr2zjvvlKVLl8qll15q9ul8k+5pwYIFYs8r6b3PPR/LCCCAAAIIIIAAAggggIAtEBMbJwmJyRIf38NsSkpOFWuuDCm1RtcpttqRtCltqabPHW1TTvjZVXJw41bJ37hNonslSfzAfq4hV612pZ00KFjwzQ7pOWqoaVPuWrjU3tWm57CYKBn/kx/KvuXrZMRlF5hjcz717AGZPX+xDL/0PLMv88PP2lQ+mRFAAAEEEEAAAQQQQKDrBQI6IBkZGS2jxrp61CmF9tbb9s062Z2zs1NlThs1Q86ZeI5TZr/EfnLrebea9Uf+87B5bmhwDUdqRo/xNcbqoaMLywvlylOvNGu6/NKiFw/tEXnp8xflV2ffIpMHHW8euuOzTQtlTdYaJ4+zcGiYGmfda+EfX74qc2bdIOdOcjW4NNj55H+f8MrlfzUpKUl0Xkh7bsjS0lJ5+eWXPYZd1aPff/99uemmm0xgUueLtJM9PKs+20O26rO9XGfN42Gn4uJiGTVqlIwe7eo9+sEHH0hmZqa92zxrsPM73/mO1NbWypdfejYsPTKyggACCCCAAAIIIIAAAggcEujVu78MHzXB8eibNkj0kZWxxQQkaVM6NE0WOtqmjLbmcNTeiHaqKiiSzS9Zo+y4TeWh+7L+u8gEJAs2b7fmiqyys2sD37VsP+uatenQVqsce0mk4kCBpEweJ72OH2+O2f5/H4h7D0nduOuzJTLsknOtOSirJX/dNyYffxBAAAEEEEAAAQQQQCBwBIKs3nGNn/IDp15OTcIjIiXCetTV1UpFeZkT8HIyBMjCladeJScNO0lueH6OJFu9LYOsuSL3F+f5rF1cVJzpPZl7MFdq6hp/Peozcxdu7NHD6nU6cKAJNhYWFvo8kw7netZZZ5mhXb/++mufeZrb+Prrr8vy5cvlySeflJEjR8q2bds8emHax+pQrXfffbcsWbJEnnii9YFV+3ieEUAAAQQQQAABBBAIFIGS0gqJjYm02gSHJrtrR8UKCgokNDRUQkJCzLOO5KIPLbMj5bajKqYNpj881B8j6kN/RKg/QNTnxMTE9hR5WI+hTdl13GGx0RKdmmIFB/dLTWnjD1jdzzjovNky5MKzZNUfn5WDVlCyrWn2iw+Lzle55R/vSOyAvlK6a68VdGzajo5N6yNT7/mlGRZW85IQQAABBBBAAAEEEECg6wXa0v4N6B6SSlVdVWkeXc/WeWc4UNI4l4WvUnU+SX0c6aRBSH+ByOHDh8uJJ54os2fPloqKCmlPMNL9+nQ42PXr17tvMsspKSlm7kjtHanptddeM8/8QQABBBBAAAEEEEAAAQQ6Q4A2ZWco+i5Dg5BFpb6nOYnt30eSxo+QQd+ZLdUlZe0KRrqftb62Toozctw3meWIHtYULONHypDvnmXWM+ctaJKHDQgggAACCCCAAAIIIHDkBQI+IHnkiVpXA503sjulSy65xAyxqsHI++67r0OXZg/v6quQE044wcwrqb+ufvXVVyUvz3evUl/Hsg0BBBBAAAEEEEAAAQQQ6C4C3a1NOfj82WaI1eriUln5x7906DbZU4P4KqTn6GEy+uqLpc7qNbnxb29IVWGxr2xsQwABBBBAAAEEEEAAgSMsEPBDth5hH06PAAIIIIAAAggggAACCLRJoC1D1vgrmCFb/cmwHQEEEEAAAQQQQAABBBBAIFAE2tL+DQ6USlMPBBBAAAEEEEAAAQQQQAABBBBAAAEEEEAAAQQQQAABBBDofgIEJLvfPeWKEEAAAQQQQAABBBBAAAEEEEAAAQQQQAABBBBAAAEEEAgYAQKSAXMrqAgCCCCAAAIIIIAAAggggAACCCCAAAIIIIAAAggggAAC3U+AgGT3u6dcEQIIIIAAAggggAACCCCAAAIIIIAAAggggAACCCCAAAIBI0BAMmBuBRVBAAEEEEAAAQQQQAABBBBAAAEEEEAAAQQQQAABBBBAoPsJEJDsfveUK0IAAQQQQAABBBBAAAEEEEAAAQQQQAABBBBAAAEEEEAgYAQISAbMraAiCCCAAAIIIIAAAggggAACCCCAAAIIIIAAAggggAACCHQ/gdBAv6Sg4GAZOnysJPfqLeERkVJWUiKb1i+X8rLSQK869UMAAQQQQAABBBBAAAEEEOhigfDwCEkfMlKiY+Mkc8c3UnjwgMcZaVN6cLCCAAIIIIAAAggggAACCBwRgYAPSE6dfobEJyTKwfw8KS7aK4lJKRIX34OA5BF5uXBSBBBAAAEEEEAAAQQQQCBwBEaMPs4EI+0a5e3Z1SQgSZvS1uEZAQQQQAABBBBAAAEEEDhyAgEdkEzt098EIzetA6BXOwAAQABJREFUWyE5WdsdpaCgIGeZBQQQQAABBBBAAAEEEEAAgWNToE+/gZKbnWF+wDpu4tQmCLQpm5CwAQEEEEAAAQQQQAABBBA4IgIBHZDsP2CI1NbUmGBkSGio1NfXS4M+GhqOCBYnRQABBBBAAAEEEEAAAQQQCByBLxbOk7raWknsmeKzUrQpfbKwEQEEEEAAAQQQQAABBBA47AIBHZCMiomVsrIS0SF2EhKTDE7+/n2yduWXUlNTfdixOCECCCCAAAIIIIAAAggggEDgCGgwsrlEm7I5HfYhgAACCCCAAAIIIIAAAodPIPjwnartZ4oIj5SEHj0lNDxc1q/5WnZl75CklFQZPf74thfGEQgggAACCCCAAAIIIIAAAseUAG3KY+p2c7EIIIAAAggggAACCCAQwAIB3UOyrq5WQsPCZPWyL6SstFh25+yUnkmpktonLYBJqRoCCCCAAAIIIIAAAggggEAgCNCmDIS7QB0QQAABBBBAAAEEEEAAAZGA7iFZXV1lzRtZZ4KR9s0qLDggQUFBonNKkhBAAAEEEEAAAQQQQAABBBDwJ0Cb0p8M2xFAAAEEEEAAAQQQQACBwysQ0AHJ4sKDEhwcIlHRMY5KfEKiNDQ0SEtzhTgHsIAAAggggAACCCCAAAIIIHBMCtCmPCZvOxeNAAIIIIAAAggggAACASgQ0AHJ7Kzthmz8pJOkZ3IvGTJ8rMTGJciBvD0BSEmVEEAAAQQQQAABBBBAAAEEDqdATGyc9E0bZE3r0d+cNik51azrD1k10aY0DPxBAAEEEEAAAQQQQAABBI64QEhCQsJdR7wWfipQVVkhNdawrWkDh0o/q5GpQcniogJZt/Ir0blASAgggAACCCCAAAIIIIBAoAlUV9dKeHiomWqivXWrrKy0RosJdh46bYX7o73lduQ4HalGH/X19c5zVFRUR4rs8LH9BwyR0eMmS4/EZFNWnBWITO3dX+rr6uTA/r1Cm7LDxBSAAAIIIIAAAggggAACCPgVaEv7NygtLa3Bb0kBskMb3tExsVJTUyPVVZUBUiuqgQACCCCAAAIIIIAAAgg0FSgprZDYmMgOBSQLCgokNDRUQkJCzLMdnLSDkk3P2nVb3AORGoysra21fiBaZ54TE109Ebvu7J1TMm3KznGkFAQQQAABBBBAAAEEEEDAXaAt7d9Q9wMDdVkbwGWlJYFaPeqFAAIIIIAAAggggAACCCAQwAK0KQP45lA1BBBAAAEEEEAAAQQQOCYEAnoOyWPiDnCRCCCAAAIIIIAAAggggAACCCCAAAIIIIAAAggggAACCHRjAQKS3fjmcmkIIIAAAggggAACCCCAAAIIIIAAAggggAACCCCAAAIIHGkBApJH+g5wfgQQQAABBBBAAAEEEEAAAQQQQAABBBBAAAEEEEAAAQS6sQAByW58c7k0BBBAAAEEEEAAAQQQQAABBBBAAAEEEEAAAQQQQAABBI60AAHJI30HOD8CCCCAAAIIIIAAAggggAACCCCAAAIIIIAAAggggAAC3ViAgGQ3vrlcGgIIIIAAAggggAACCCCAAAIIIIAAAggggAACCCCAAAJHWoCA5JG+A5wfAQQQQAABBBBAAAEEEEAAAQQQQAABBBBAAAEEEEAAgW4sQECyG99cLg0BBBBAAAEEEEAAAQQQQAABBBBAAAEEEEAAAQQQQACBIy1AQNLrDkSHR0tkWKTXVla7SiAsLEzS0tIkIiKiq05BuQgggAACCCCAAAIIIIDAYROgTXnYqM2JgkNDJKpXkgSHhR7eE3M2BBBAAAEEEEAAAQQQaJNAQH9iHzPhRImKim5yQTU11bJ25VdNtnfGhgcueVBy8rPlkXmPdEZxXVbG2P5jpay6XHbmZbT7HL1795aJEyfKokWLpLy8vN3ldOTA448/Xn7+85/Ls88+KwsXLuxIURyLAAIIIIAAAggggAACx6BAeHiEpA8ZKdGxcZK54xspPHjAUaBN6VA0WeiMNmVEYoIkjhwi+1dtlLqqqibnOBwb9PwTf3WdrH3qZaseGw7HKTkHAggggAACCCCAAAIItEMgoHtIhoSESLDXIymlt8TGJbTjUlt3SLYVjMw8kNW6zEcw1zUzrpVLTrqkQzWYOnWqXHnllTJgwIAOlcPBCCCAAAIIIIAAAggggMCREBgx+jiZedZ3ZdDQUZLau79ER8d6VIM2pQeHx0pntCmTx4+UsddfKtG9kz3KZgUBBBBAAAEEEEAAAQQQ8BYI6B6S61Yt8ahvj8RkmTJ9tuRkbvfY3hkrwUFWbDZIZO6Hj4k0eJYYFhImQUFBEhcZJxFhEbK7YLekJqRKudVDsaSixGQODQ6V0JBQqayplL6Jfa2igiS3INezoENrPWOTJDkuSbIPZJv83pnCQ8OloaFBaupqJCE6QVLjU60gaaZU11ab82vZWh+tsz28bF19ncnvXZavdR0mNTw83Dx0f2xsrMTExJisZWVlHofEx8fLiBEjJCsrS/Ly8jz26Ypdlh4XFRUl48aNk4yMDDlwoPFXyXa+4cOHS2hoqGzZskUqKyublKXHa561a9c22ccGBBBAAAEEEEAAAQQQQMBboE+/gZKbnSEH8/Nk3MSp3ruFNmXXtCmD9IfD1hCpweFhxjw0MkJCrIemukrPnpKh0VESN6CvlO/dL1WFxSaP+x8dcjXIaifqcSFWeQlDBkpp7j6pLna1te28es64tD4mb0l2rtRX19i7nGc9PjatrxTtCPwfGTuVZgEBBBBAAAEEEEAAgWNEIKADkt73YMCg4WbT7l07vXd1eP3xK54QDQRq2r53m8eQrXNm3SBj+o8xQUDdrwFJDTpq0PCVL16RJdu+ksumXy4nDTtJ8orzpFd8L81mgpX3vfMHKSwvNOsaXPz1ub+xgpGNvx5dvGWxvLr472a//ee+799vjq21ApIDkgeazRqcvOmln8rcyx+X4GBXx9a0pDTRemvanLtZnvjv42a5pT/XXHONzJw508l2yy23OMs/+9nPTOBRz3HnnXfKyJEjnX0akLzjjjukpKSxYXjbbbfJqFGj5Msvv5Tp06c7ee+9917ZuHGjWb/xxhvl1FNPdfzUbe7cubJs2TIn/1lnnSVz5swx61XWUD8vvfQSQ7g6OiwggAACCCCAAAIIIICAL4EvFs6TutpaSeyZ4mt3k220KTunTTn4gjNk0LmzHN/J/3ujs/zFL/8gVQVFEmS1Kcf9+IfSa/JYZ19J9m5Z+eAzUlvR+APVsXN+ICmTx0nOx1/IgDNPdfIuu/sJKc7cZdaHXny2DPz2DI825eqHn5ODmxt/rJw262SZcNOVJr+Wv/Gvr8v+1a42qVMoCwgggAACCCCAAAIIIHDEBI6agGSI9YvJ3n3TZN/eXVJrNTg7Oz343gOiPSFvOffX3h0kzam0R+KfPnpKdFgbDUb+ef6f5IpTrpTZ42abgKRdn9iIWPnrgudkWO9hMmP0TLl6xjUy9wOr16WVrjrtahOMXLp9qazYsVwumnKxTB8xXTbu2iirM1fZRZhnPYf2tpy3ep7s2LfdyneK2X73W3dJSHCI/Oa8W6WwrFCeW/Cs2W731PQoxM/Ka6+9Jp9++qnMmDFDZs+eLc8//7zs3OkK8ubn55ujLr74YhOM3Lt3r7zxxhuiAUMNTv70pz+VBx54wKNktZk2bZqsW7dOFixYIFOmTJG6ujqT5/zzz5fTTjtNioqK5N1335WtW7fKRRdd5PTItAsaOHCgvPfee1JcXCyXXXaZXH755QQkbRyeEUAAAQQQQAABBBBAwKeABiNbm2hTdl6bMuvDRbJ36WpJPWGCDD7/DFn/9N+ldPc+cyuqi1w/YE2bNc0EIzWouOPND6XfjKnW+jgZcfkFJljoft+0TZk2e7rsWbJK9ixeISkTx0hDfb3J0vfUEyX97JlSsT9fMt6eL8VW78h0Kzhp98i0y9G5JLe+/r7UlJbL6Gus9uwVFxKQtHF4RgABBBBAAAEEEEAgAASOmoBkv/6DzK8hc3Zu6xI27fWoqd5q9FgjtzZJ5VXlsmHXBsnKz5JBKYNkfc56ybLmmhyQ7Dn/4pvL/i0rd640j7Fp42R4b1evTi1wZJ+RUmT1lnxp0Yum/D2Fe0R7Q54+5vQmAUnN8PB/Hpbcg65fhG7K3WSO2VfkauRpPatqq0xvTbOjDX806KePsWNdv1TNycmR7dsbf1mqRWkQUdPtt98u5eXlsmTJEvn73/8uY8aMMdu9/3zyyScmsKnbly5d6uw+99xzzbL2wrR7Vj744IPOfnth06ZN8s9//tOszpo1S3r37m3v4hkBBBBAAAEEEEAAAQQQ6LAAbcrOa1PWlleIPqqGFpn7Up6XL2XWMKvuqd9M1xC6Kx/8i9RZo+Dkb9gqM//yB+l1/PgmAUk9bud7n0jGux+bIg5uamz3a8BT09e/f9zpWbnxb2+Ybe5/8lasl+yPPjeb0k4/WeIG9XffzTICCCCAAAIIIIAAAggcYQHX2J9HuBKtOf2AwcOltqZG8g94NnJac2xn5NE5GjXV1NY4czXqnI46d6R72rx7s7OauT/TBFHjo+JFH/qrz4w8V09EzZRfmm/KSort6RxjL1TVVDnBSHvb4XzWOSUrKipMMNI+rw7ZqnNA2kPG2tv1+aOPPnJfdZZ1fkoNftrBSGeH18LKlSudLfv27XOG4nE2soAAAggggAACCCCAAAIIdECANmUH8NpxaESPeKkuKTPBSPvw0pw9Zp5IHc7VO+35qrFN6L5Py6k4UOAEI933uS8fWNvYFi/bQ5vS3YZlBBBAAAEEEEAAAQQCQaBpKyAQauVVh7j4HtYQn3GSk+XZi88rW5euNjgDuTY452kQ1xAyzgZrIcitf6UVfzRJA5H28cFBTckbS2ws6UDpgcaVI7Sk9W5N0jkhd+1y9eT0zm96nLaiHA1+2knLIyGAAAIIIIAAAggggAACnSVAm7KzJNtWTlvalBX7D/osvKG+wfrBqs9dHhtrK6ucdZqUDgULCCCAAAIIIIAAAggEjEDT6FjAVK2xIgMHuYY9PZIBycbaNL80qt9oJ0O6NbSrBteKyotE53jU5UG9Bjn7U+JTzLyVB0t9N7ycjD4W6hrqJCYixsee1m+qrq42mVNSUpocVFpaKpGRkR5zPaamppr5OzXI2Nqkw73GxcVJQkJCaw8hHwIIIIAAAggggAACCCDQqQK0KZtydkabsr7GNYdnREJckxNUFRRJWGy0x1yPsQP6SV11jTM/ZJODfGyoLiqWyKRECYuJ9rGXTQgggAACCCCAAAIIIHC0CHiONxqAtQ4ODpG+aYOkuOigVJSXdUkNdTjVpLhkU7YORxoVEW0FDgeb9Wxrnsi2pO+d+D3R4V2H9h4qSbFJ4j6Eq84DOab/GLnu9Otk1c5V8t0TLjRFf7rhk7acwuTNL8mX9JR0OXfiubJt33YpLCsQe37J1haWkZFhsl566aUm+FhYWCgrVqwwgdOFCxfKRRddJA899JC8+eabovM66nCta9asaW3xJt+7774rl19+uTz66KPyn//8R7Zt2ybnn3++fP311/Lpp5+2qSwyI4AAAggggAACCCCAAALuAjGx1o8fE5Ml3hpVR1NScqo1bE2QlBYXWm3IArONNqVhaPKnM9qUpbv2mHKHXXKehESEmyFaC7ZY7Uzrx7i7FnwlIy7/rpxwx09kx9vzpf9pU8xwrXu+XNGkLs1t0GPH/Oj7MvXeX5o5JkuyciXtzFNk/6oNovNGkhBAAAEEEEAAAQQQQODoEAj4gGTvvmlmPsHsnY2T2nc27WmjZsg5E89xiu2X2E9uPe9Ws/7Ifx42zw0Nrl6BZuiXZkYULSwvlCtPvdIco8svLXrRKfelz1+UX519i0wedLx56I7PNi2UNVk+gnzmRM6hTRb+8eWrMmfWDXLupPPMPg12PvnfJ5rka27DN998Izp346RJk+Taa681WW+++WbZs2ePCUKOGjVKxowZI3PmzDH7dPtTTz3VXJFN9mkQUntWzp49Wy655BKzX3uKzp8/3yzbvS3t5yYFsAEBBBBAAAEEEEAAAQQQ8CPQq3d/GT5qgrNXf8yqj6yMLU5Akjalw+Ox0BltypLs3ZL7+dfSd/oJMu7HPzTlL77lPqnML5ScBUukx/DBknriBJlwk6uNXJyRI9+8+o5HPVpa0QBmVHKiDDr/DBl11UUme4M1as/uRV+7lusOjeDTQhu6pfOwHwEEEEAAAQQQQAABBLpWICgtLa2Z8FrXnrw7lX7lqVfJScNOkhuenyPJVm/LIGuuyP3FeT4vMS4qzvSezD2YKzV1NT7zBMrGqKgoGTZsmGRlZUlRUVG7q6VzhwwaNEjCwsJEe2bW1AT2dbf7QjkQAQQQQAABBBBA4JgXKCmtkNiYSPPDyvZiFBQUmBFKQkJCzLOO5KIP/Vzd2nn52ntu7+P0B4X60B8R6qO2tlbq6urMc2Jiond21tsp0F3blCHhYRLbv4+U7zsgNWXl7dSxDrNe+zG9UyQoNETKdudJg/UaJCGAAAIIIIAAAggggMCRFWhL+zfge0geWcr2nf1AyYFmD9T5JPVxNKSKigpZt25dh6uqX2DYQ8R2uDAKQAABBBBAAAEEEEAAAQS6sUB3alPqnJFFGdkdv1tWm7Jsj+8f/Xa8cEpAAAEEEEAAAQQQQACBrhYI7uoTHCvl67yRJAQQQAABBBBAAAEEEEAAAQTaI0Cbsj1qHIMAAggggAACCCCAAAJHiwBDth4td4p6IoAAAggggAACCCCAwFEh0JYha/xdEEO2+pNhOwIIIIAAAggggAACCCCAQKAItKX9Sw/JQLlr1AMBBBBAAAEEEEAAAQQQQAABBBBAAAEEEEAAAQQQQACBbihAQLIb3lQuCQEEEEAAAQQQQAABBBBAAAEEEEAAAQQQQAABBBBAAIFAESAgGSh3gnoggAACCCCAAAIIIIAAAggggAACCCCAAAIIIIAAAggg0A0FCEh2w5vKJSGAAAIIIIAAAggggAACCCCAAAIIIIAAAggggAACCCAQKAIEJAPlTlAPBBBAAAEEEEAAAQQQQAABBBBAAAEEEEAAAQQQQAABBLqhAAFJHzc1IixCUuJTJDo82sdeNtkCKSkp0qtXL3v1sDzHx8dLXFxcp5xLy+nfv3+nlNUdCklOTpaIiIiAvZQePXrIyJEjnUdYWFizdT2c16N1SUtLk5bq5K/C+l4TGRbpbzfbEUAAAQQQQAABBI4yAdqUrbthET3iRR+HM4VGR0loVOd89tZyopITD2f1A/pc4fFxEhwWGrB1DIuNlriB/ZxHcGhIs3U9nNejdYnqlSRBIc3XyV+F9T0nLrJzvivxdw62I4AAAggggAACHRUISUhIuKujhXTl8T0Sk2TQ0NEyetzxkmAt19fVS3lZSZecUgMCt37nf+X7J10ip485Xfok9pHlGcu75FwdLXTatGnSs2dP2bdvX0eLavfxjz32mMyePVvef//9dpfR1gP/9re/yeTJk+Xjjz9u66FN8t9+++1y6aWXyptvvtlkX0c3jB49WsaOHSuZmZkdLeqwHN+3b1954oknTEBy7dq1bT6nBuLOOussqayslOLi4jYf35oDfvCDH8i1114rM2bMMI81a9ZIfn6+z0M7ej0+C21m4znnnCO/+tWvZOPGjbJ///5mcvre9chlj8rIviPkq21f+c4QIFsHJA2Q9F7psq+o7e87f/jDH0Tftz7//HOPq5kzZ45ceeWV8tlnn0ltba3HPlYQQAABBBA4WgWqq2slPDxUgoKC2n0J+rkqODjYeWhZ7o92F9yBAxsaGkQf9fX1znNUVFQHSuycQ8PDI2TI8LGSNmiY9Xm0XCoryj0Kpk3pweGsJI0fKeGxMVJVUORsO9wLU+76hfSfeZJkz//isJ36tKfukp6jhsruxR1v64+94TIZ+cPvys73Pun0+mvgLGHwACnf2/b2RadXphUFRiYlyilzfyt1ldVSuC2zFUd4ZtFAXO+pE6Wuqkpqyys8d3bSWvq3Z8g46571nzHVPPYtXyfVxaU+S+/o9fgstJmNfU4+Xib/Zo4cWL1Rqgrb3qb+6Vk3ycVT/0c+XPNBM2c58rs60qY87icvSPL4WZK3+kOPCxly/q9l2Pduk71fvyMNdbQpPXBYQQABBBBA4DAItKX9G9A9JGNi4mTK9DMktU9/2b8vV+ITEmXSlFMlfcjILmGcMnSqpCWlyRtLXpd73rpb/vHlP7rkPJ1R6PXXXy9XX311ZxR1VJWxZ8+eTgvydeQLopbQLrnkEtF7dLQk/cKrqKhIcnNz21XlmJgYE1T61re+1a7jW3PQiy++KFdddZW88847LWbv6PW0eAKvDB19LWXnZ0vmgSyvUgNv9dxJ58mc029oV8Wio6NlzJgxoq8V9zR9+nSxfhgjFRVd86WD+7lYRgABBBBAAIHuJzBi9HEy86zvWj9iHSWpvftLdHSsx0XSpvTg8FgZe/0PZMTlF3hsOxZWijNzpXhnTqdcalBw+3900FIFBl9wpoz/6RUtZQuY/fU1NVKxP1/K9x1oV51CoyJk7PWXSp9px7fr+NYclGEFjhfMuV22vvZei9k7ej0tnsA7QwdfS7vyd0nm/kzvUgNuvSNtyrCYHpJ6/LkSEunZpkybeaVEJfWXumralAF3w6kQAggggAACXgIBHZAcPHyMqe7yJQtk84ZV8tWi/5pf4vbtn+51GR1bDQsJM8MlTkqfKDV1NbJk2xI5WHpQSis9fykXHhoumldTQnSCDO89XHSbe9KhF4f3GW72u2/XXzdrD0zdP6jXYLF+32yG0+jdo7d7thaX9Ut9+wt9LVOX9eFrqE3tJXbCCSc4+b0L118zR0a6hqrR4VePP/548fULZ903ZcqUZoc3HTx4cJcO36rXGmL9YvK2226TZ555xvtSzDVqLz3NN378eOe6vDNq4EN7WPry0uO9h9zUfHpe76T5NLgyYcIEj3Opp94P+xj7/uh9806ddX+8y9V1rZ+e2ztQptu966J11WDkj3/8Y1mwYIGv4hxf3Tl06FAZN26c8wt9PU9srOuLH/Wyr9k20GN8OaqVd/102NOpU61fq/oYSld/ja+Bxhqrodtcaul69DXg/fA1DLAOD6z/fvT17yvpNU2cOFF0KNn2puAgV6+HuR8+Jm8t8+ypq+81+v6SFJskfRP7mlOkJqRKXFTjMDx6vL6v6LO+Jw1JHSIhwU1fr3pwT6scfW/yNzRsc+9v9nukXbaWoQ8dFqi1admyZSbrKaec4hwyYMAA81rdunWrs40FBBBAAAEEEECgLQJ9+g2U3OwMWb96qc/DaFM2ZQnRNk5khGgwLUjbWdayPnwNtam9xBJHWp8xrf2+Uki41QazHpp06NXEEYNFt3kn3ae9Epsb3jSmb68uHb5Vr1Ufq/74rGz71zzvKroMrGEzNY/2TLSvyztjWEy0uU5fXjrspvcwoJpPy/RO2iMwPr2/JAxN9ziXntfcj0PtUPv+6H3zTp11f7zL1XWtn7nvXj299fq866LXV1NaLl/97x8lb9UGX8WZsuzhSGP6pUr84DTrJFZA13roeUIPvcZCIsLNum5zd/PlaO6RV/102NOeo4dJVErPpvXQHt7VNVJf03wvupauR18D3g9fwwDr8MD678ffsMR6TT2GDRIdSra9Sb9b0u9B3l7xlmi70j11dpvS3/dd9jm7uk25d8V/zKlSxs2yT2nd54HW6zFa8jd6jsTjZGABAQQQQAABBAJKIHAH97eYqqsqDZY9jJ9riKB6qa6u6lTE3114p/SKb5wL8fErnjDlr8laLX/55C/Oue77/v1SUlEitVbQckDyQLNdA5g3vfRTExC4ftb1ctzAiU7+nPwceeyDR6XC+pXWtOHT5bJpl5nhjfTDYn5pvvSM6WkCMkusYRpf/vxl57jmFp5//nkniKPzN+q6pp07d5pgnS5rAEWHR9Sgi51WrlwpDz/8sL1qnp9++mkpKyszwyT27u0KjNbV1clll11m9muQUQOA7sEa7UGnQ1PaKTQ01NRBg1CaMq0hSvUYvVedmV555RXRc2nKycmRX//61x7Fq8PevXslNTXV+Oj5Fy5cKM8995yT7+abbzaBVd2g+8vLPYdyeuqpp0wg8brrrnOOefnll2X58uXy6KOPOttuvPFGOfXUU537oGXNnTtXNODyxz/+0SMwa98fDaL98Ic/NGV01v1xKuRjQXud6VCY//rXv+Stt95ycmj99F7r8Kdabw0Aur8uPvjgA1Fr96QBTL2OdevWyYgRI5xgrr4WXnjhBfnd737nZNdgkx1w0vPq+TWpow6x+uCDD5r10047TdRRzb/88kvzGtNAs32PNVOVNVTPQw89JJs2bTLHtOZPa67n2WefbVKU++teX8u///3vRYNldsrOzpY77rjDCYbq8LRXXXWV8xrQgG57kr7X2D9q2L53mzwy7xGnmDmzbpAx/cc459hdsNsEJvW+vfLFK9YPJ76S8QPGyw2zb5S84jznPUyHUPvT/KdkU67LTQOVvz73N5Icl+yUvXjLYnl18d+ddV1o7v3tN+fdanqP2wfY75GVNZXyi1d+bm9u9nn+/PlywQUXyIknnij//e9/Td6ZM2eaZx2ulYQAAggggAACCLRH4IuF86TOGvY9safvH5HRpmyqOuPpe5xAT9yAvjLzmT+YTAc3bpVVj/zVLGsA5fjbf2x92Z/kFJD7+dey+cV/O+u6MO0R6zOyNeRlndXe0eCaJg32LLj+NrOsQcaJv7pOIns2/oivaHumLL/vz2a//gm2fjR5ytzfOUGbg5u2uephfe7tzDTDuk47WFq4daeseOBpj+LVoThzl6iJBqQarM/VmfMWyo63XJ9dNfPIKy40Q8zqsn4u12t3T1P/cIsJ7C7+1X3O5tOfe0ByP1sqm19u/AHi0IvPloHfnuF81teyVj/8nBzcvF1OuP0nZo5DuwD7/tRVVsnCG39rNnfW/bHP4es52RrSd8LPrjL11vrb6fjbrPql95NPf/S/imDmPZz2kLV8KG3/vw8k84OF9qp51gCmXseeJask5bjRzhye+lrY8o935cTfN7YpBn7rNNGHpi3/fFdyPl5sltVxz5crZOPf3jDrWs6En18tq+c+L/nrvjFlnvL4nc491ky1FZWy8qG/SElWrjmmNX80oNnS9Zz2p7ubFFVfWycLrnM5aDD1uF9cYwLXdsaCLRmy+pHnRPNpSp1ynIyd8wPnNaC9S9uTbj77l+aHp3qs/f2UXU5ntSn1B7DNfd9ln6+r25T7lr8rwy/+raRM/JbsXe7q5Zo6+Wxz+j1fv21Xg2cEEEAAAQQQCGCBgA5I7sreIQOseUAmnXiK9avXnZLcq4/1y68QycrY0qmkj3841/T2ufq0a8y8kfe/42o8ePeQ1JNqTyX9En7e6nmyY992mT7iFFOXGaNnmmBktjXs4jsr3pFTRp4qE60el5dY81G+uOhFp77vr3pPRvUbbT4wahnpKekydehJrQ5IarBPgzYaMCkpKRGdx1HTwYMHnXNowFCDkToXoM7XpgFG7RU4a9Ys+fTTT518upCcnGyCLLp9w4YNcsYZZ5j9GjS98847TfBp9erVZp7FgQMHmjkj3QvQHpUamNK5Hb/73e9Kenq6KUODD52Z7rrrLlMXnfdRG2u+kgbavv76axMYvOaaa+T000+X1157zThpEER7eRYWFsrf//53M9/h8OHD/Zblq3zddv7554sG0zQA9e6774r27LroootMr0Ddf//995veghoM1F5+drDOPfjZGfdHz9Vc0gDPj370I5kxY4YTkNRAW58+fUydbcPdu3fLvffea4KoWmcNZvlL2vNU/d5++20TzFU/vf7f/va3JqB46623yooVK5whVXft2uWvKPMLTu+dmn/ePOvf1Y4dMmnSJPO61cBzW4Ymbs316L8dO+nrVct3DyjqdWgwUq9FX8f6b0J7SmoPUp1nUwO0GozUH0q88cYb5j7ra6I96cH3HjC9rm8599fi61WtPUj/9NFTcs2Ma817z5/n/0muOOVKmT1utglI2udMjk027zv644eLplwk2vDUQKE1y5NcddrVJhi5dPtSWbFjubX/Yut9a7ps3LVRVmeusoswz/7e357++M8SFR4lPzj5B/L/7J0HfBVV2sZf0huBJCQkIQFCJ/TeFQWxYl0Loqgg9oK9rHV31VXs+1l23VVxrVuUVRQ7AiqgdOk1lBBIISG9853n3JzJ3JubflOA5/U3mZkzp83/zMV77jPve7pFdZc/zf+jzl9YUveXQ/BvFF6A6N69u9UmPIzxLC5btsxK4wEJkAAJkAAJkAAJ1IcAxMiajHPKqnSW/f5Z5f3mJSMfulUK1fqR619xvJBoF9f6zb5Mi5EpP62Sg7+slV6XTZVOJ42SjN+2SurK35wqhbcbxDKso5i1fbd0OnmUvg5RD+KVT3CgWq9xpez58gcJjonSa/fZK/BrGywQpjb94yPpes4k7d3WccRAOfTLOnu2Rh//8oeXxFuJn8OV4GfmQ66VQlTdv2iZpK3dJP1mXiIJUyfJnoVqrXMlbMHDE+td5qemaxEN6xBGDumnhUvXemo6jz1ppHQ96xQd3nTXJ19L9t5kwdqG2htRFVz70lviExQgfWdcpLwnu8jyRxxzfqzNaMwT42Pqqm4PBhDPcJ9GkEQf4dmIawqiLlqYnim/PP6S+CvRedCtV+k5SHV1xowZqvlt/2iBZtque2fJ3Z8iyx56VnyVNyHGJnnxCtn7zVJdRUFa5e8cVepUcyVXO7Jzj+z9aomq86D2TEycebEMufNaWXJ7VQHRtaw5r8v9mDFBmeDYjnpdSrugiNCz8BbGvRxY8ovEThghnRTHnpdOVc/OfO1hijzlxcWy5Z/z9eeiy1kTTRfqtX97yVs6+taMCTMk0vaivanEE3PKuv7ehTabck5ZnJMhRUcOSXjvMeb2JHLgaeozWKbEfMczY13gAQmQAAmQAAmQQKsk0KoFybzcHEnauVW69UyU0AGOcBsIx5OemuJRmAjPCoPQCE8peCLVZHMXzJXkww6xxXghnaQESNhzyiOySP1Ij/SXZrysRMmhToIkPJOKS4u1ILl0yxLJys/SXlA+Xj5SWl7zZBr1wwMRBuGoWH153bFjhz63/4FwiB/+n3rqKZ28Z88eefbZZ7UI5ypIIgO8KbdudYi8RhiAwIKQmhs3btReasiHttyVh1gIcRSCw+OPP+4kOKCcJ8zcJ+7bNcynqR/3DE9FWJ8+fbSQBC9PCLNnneV4aw7Xca/wynvvvffcCmOmPnf7c845Ryfffffd+p5xYrz+cAwvTZhZD8/0WydW/PHE+Njrc3eMCTbuMzExUYuFGB/Td4h+xvC8Y4wzMzN1EoTo6gx5b7jhBuuyEZ1xjyZsKQRLd/dsFarmAP27//779XgglC2ETqwXiuP6WF3uxzzrEGghcENYhKgKQxhWCK3oj/EshfDcv39/LZIiD4R9PIMQfRcscISMQZn69hV1mX9r9HONBBfLL8qXDfs3yJ6MPZIQmSC/7ftN9qiXHjp3qPTeRJEN+3+TL9ct1KXj1doZeFGiV2xv2Xpgi/SJ6SNH1L8zb1e8GJGSlaK9IU/td2oVQRIVuPv3LTMvU7DlV6zJYfqtG6zHH3i7mjC4aWlpWiDHONckhNejemYlARIgARIgARIggSoEOKesgkTyD6bpxPKycikrKpa85ENVMoUp8a0oK1t5o32or609cEjGzX1Q4iePryJIIsOvT74iufsc8/SMDdt0mQ7Kgw2hKCEsQmyEoS1XQRPpa57/hxaoio7kyOg/3Kk9BD0tSJr7hHhR3ZyyWLW/5Z2P0SUtTGIdRwhOELriJo3T6ev/7x19r/DKO/WNPytvyqrCmM5YzZ9u5zleAl7x6Iv6npHNeP3huEiJxNhK8h3r4Zl+45oxT4yPqavavZpTpq/dKFHDB2rvQ4iynSaM1Nn3fV0p/sCTFJ6lATl5+hpCiFZnEDh/vu9p67IZY9yjCVuK587dPVuFqjlA/xCOF0J4QHg77RWZvWufFnWrKeI2uS73Y551CLTD7rtRrV1YIqv+7FhaBmFYIVQXHs6SvV8v0W3s/fZHiRw2QKKVIAtBEoI7+rln4WLt9YlMYX2761DBbjtVQyJ+z8KWXZgjUWqJD1fzxJyyrr93mbabck6Zvv479RxeLv7topQ4mar+rRigxvo3LUqa9rknARIgARIgARJovQRatSCZ0KOvFiN3bd8kB/btlvAOHSVx4HDx8vaW9auXtQhViI1GjLR3AGERc9QXQFw3tl+JlljTDeEtjEH0LFKCJAzHECdhWIuttKh2QVJnruEPPB4xuUJYU2PwPINQExYWZpKsPUKJGoHGSlQHxosJHpY1GYQ3iDcwU49Zl7Kmck1xDcKrsV27dulDs7ZhRESEfgvW9BEXIaCCV30M9WVnZ1v3XJ+yyOup8alLu5999pkWJKdOnSrvv/++DjOL8YYXaUPM/kw1pHxtZSBsQ0h2NYiECN/qaXviiSe0AAnh3ngYY31MGMIUw9vVbuYtarO+JULQGtu+fXuDBElTvrp9mfqxBFZSWqLD7+AY/2bgBQa7bTngeKEAadtStmlBMlpNRlPUyxX492BX6m4rO8JFI5RPREjVNVWq+/fNKtzIg2+//VYLkgjVumXLFt03s7ZkI6tmcRIgARIgARIgARJwS4BzSrdYakz0C22rv6dBhDNWoLzgEIrV3RqQZeq7uhFoTH7sEfoUdlCF6azJipWQBTEJZupxtx5fTXV46ho8PI3lVAis8PCEBalQnpgTmD4iLT8lVeAhWh9DuFXwNPdcn7LI66nxqUu7e5XwCEESXp3wPOw0cZQSsYt0aNm6lHfNY+fres0T5wNvuUqihvWvUhVEwtrWjaxSqA4Jw+67Qa0lGSi//un/pLgifG9Ip2hdEmGKxzxxj1MtZk4ZFBOp0zO37LSu4xhrl3raGjunxEuutf3eVX603Op2U88pU5Z/rAXJqKFnypGkdUrY9RaztqTVCR6QAAmQAAmQAAm0WgLOv2q3sm7GdOoipUpA2b5lve5ZXl6OxMZ1lY4xcXqCZL7MNWe303PTq23OLjxWm0ldOGr7sqbOdNa6lq2pXlwznkbu3vh0x8seqtJet8lbk8cc8pv1Pe1l3ZUx/TH12vN76hgeo9WZaRf9sB/b85t0k2bWxTTn2NfkoWnPV92xp8bH1G+44ty1/wi1CyEP60lizT6IskhrqDVWkLT3FaF+7YawtxAj4a356aefai9LhCeGQGgvZy/TmOPbbrtNr6UJL0h40BozDH/88Ue97qVJx96Mndnbr7l75u3XG3qMkKsOM3v8i1E52TP1OjMybySrZ72Gf18qazS1iNT071tlroYfgTVejkBIXqylCjOetg2vlSVJgARIgARIgARIoHoCnFNWz6b6K45vivDgcrWKKJ1OyTWG1URONQerycrVnN/VnL/fOq6aNPOd3bWMJ87hMWqZy81a7eJ+zDXXWzPpFZWYMKxWnergaPnR2pDYs7s59uz4GK5oyLrHilaztidp4RRheA/+vEp7iyL8bkOtPms5um+jEriraB136lgtRsLrcq9adxKhYAfceIVgLcxGAnfblV6Xn6vXTYXHo128NwzhHblr/jdOZc016/mxXXX3ebNdbvChmRNiJmmsPnNKU6auv1k19ZzyyK7VKpRwiUQOmqI8YeN097C2JI0ESIAESIAESODYIFB1htGK+h0QEFhFjMCXNKwjCS/J1mQIvRrsH6zXojT9io+I195M9rfFzLXG7iGKuIo6qBOeXviSa7y4kBYfHy/eihfCadbVTNjNCRMm1LVItfkQ0hRrOWKD51lLWHp6un6WevfubTXv6jEK70HjUYlMJ510kpXXHGAtSNwD1uisySDUYmLnq9YosZunxsfU+c4772iub775pkly2q9fv17Cw8Plyiuv1Onz5893uu6pE7CDmdCtrvXimezYsfLNYaxpajes74k88EqEaIXwuwht686wTiSsuuvuytjTsCbk2LFjtfj5r3/9y35J4OkIw2cGnr/2DX2CGWF2yJAh+hx/jGelldDMB71jKp/rXjG9dOsHjxyUnIIczTUhKsHqUWRopF630oSqti7U4aC0rFSH1XX10KxDUSsL+OHfp379+ulxNt6pVgYekAAJkAAJkAAJkIAHCXBOWT1MhKaEd5erwdML383t3lqByjsQXmaFGY6lHlzLuDs34lPM2KHuLtcrrTXMKQvU2pGY4xnPT9xAUHSU031A0IQHpDGE7nS14iPZEhARptgHuV5yOj+KOSV+//Bx/u3DU+NjGqttTnloxVq9xmHC1Mm6iAlDasp7ao9wrjA7P3vdeF7t3qgdBvW1X5boUYP1c7vhr+/rNUmxrmlY78p5kD2zWe8xuMJT0X6tLscIudr5tAk6HPG+b39yKpKXfFCft43vpMVceMKaDX2C5R1I1XuE3jUW1qubOWyRfXVzSnTGk793eWJOmbXjFwlNGCwR/SfqNSWxtiSNBEiABEiABEjg2CDQqgXJ9LSD4u3jo8O0tmsfIQi30659uKQk75Ey9eW8NdnizT/o7twz9V4Z3GWw3HL6reLn4yerdq9qkm5CXIQoNmvWLIGY07VrV6sdhCuFd9/DDz+s11E06+MtXLjQylPbAUK1Ihxr3759dT0QD8444wxrXcraynvyOsKcDho0SG/wRIMQa85dBb/q2kX4Utidd96pmSBMJ0Rau0HowgTz9ttv12tOXnLJJfbL+hjrCcKee+45Of/887WognUIsa6g3ZKTk/Up1kUcN26cDBw40LrsifGxKqvl4JNPPtE5xowZo8fTHrIWF/DcgCXGGRYVFaXP3YVO1Rmq+QOxDp5vqOvCCy+UkSNHaiHUZM/NzdWC5EUXXSRXX321DiVrrmH/66+/avazZ8/WIT3xg0N1Y7t8+XI90bz00kv1uphY79RYbfeDZ2nmzJm6r1gDEmODDesawiCsYp1DiJ1YWxWfLQiPd9xxh9x11106z/fff6/bnzhxosCz03hb6ov1+BMaGCoJUd30pp9r/yDr3Fu9dFEfGxA/QKYOPVdOGzBFRvccrcNBb6sI44r1bNHW7FNny7CEYXL7GXN01d9t+LY+Tei8B7IcYvA1E6+R/nH99bqW9a0E67f6qH/XIZSDNY0ESIAESIAESIAEGkMgOKStxMYn6Cg6qCdCLfOB89B2Ybpazimrp1uYdlgCIyMEaxqGK2EkKNoRwQIlDqt1IP3atdUeZhBfht49W1eEEJ51tbS1m3QYS6ydB0+10K5xEj16iFVXXevxRD6EOW3XvYveEOLRJyig8txlXlhde+beERbUMHEVC+GVBxGx9/TzJUatF9hr2rlVqtv5ydc6bfQf7xR4HoJLv+umqdCoA5zy5las7dlv9jSJUF5+doHYE+Pj1FgNJ+a+408br8fTHrIWxYI6dtAscR8wiNdgbRdu9YVa/kCsgygJYbHTxNH6mfQLDbFKYW3Jtl06SdwpYyThnElVeB1auV7PKbtfeIaE9ekuQ++5TrzV8h/uLGPjduWpWq7HJ3b8cIlU650aq+1+8Cz1v2G6DgGborxGIwb01hvahOEesE4q1oQcfMcsfR/te3aVPjMulL5XXaTzoK9ov8uZEwWenfC2bJvg4Kcz1PGPr7evNYcM8Q/R92/mmHhhvj5W05zSk793eWJOefCX/4m3X6AER3cXrClJIwESIAESIAESOHYItOqQrZt/WyXlSuSIie0i8V0cb47l5WbLts3rWo6welPUnS3etFh6dOwpw7sNlxsm36izJKUlyUfLPtTHeMMUZvb6GAEVK6qrrxflX//6Vy2SwNsLG0QuCGMwiGUQUyAiYoNBxFm0aJE+tv+x98c1/dFHH9V12uvZu3evla26slYGDx1ccMEFToIfRCWE84Q9/fTTVhhSd6E0TRpClS5dulTg8QkRF32H95vdI3LevHnacwviHTaIJYmJlRMTtLdgwQItrE2ePFkuu+wyJOm6XMNOYs1GeGOiPPhB6DJeip4YH91wHf7guYAYiPt0t1YfBFqIkMaGDx8u2MBn2rRpJlnvDUunRNvJhx9+KBBxjZCLcKjGA/Htt9+Wa6+9Vi6++GJdYtu2bdKrVy8rDCqEXowNRD5sEDeTkpK0YOr6nOH8n//8p+C5uOKKK3RfFy9erOut7X7MGp4Qo2+++War92hv+vTp+nzu3Ln6+UL/IETC0CYETFhhYaH87W9/k+uuu04LkkjLyMjQIXFxXFc7ue9EOXvI2Vb2TmGd5L6p9+nzZxfM1fujFeGdVfP2CDtWGXMAb0hTV2l5qbz6zStWuNa3l7wld511txIjh+sNZX7YtEjW7qlcA9PUo27UOnR38PX6rwRvzg7tOkzXhXVw57xzu7us1aZB0DWssaYkjQRIgARIgARIgAQaQyAqOk569R1kVQExEtueXVsl+0imcE5poalysHnef2TgLTOk2/lT9LUMJUKuee4Nfbzx7x/KsPtvlI4jB+kNifu++0nSVm/Q153+VPcVUn23XPnEKzL4rllO9djXzdPfP2v5DurUVgNP4ieNlYRzJ1ulQ+JiZMRDt+jzlU++KmZtQ4RTrWJKOIIhfCnWUex8+kky4KYr9Ryh8HCWk0ffzk++UgJjvMRPHqdKjFPC1Hq9BqOuoOJPyk8r9VqcCUoI7nv173QqxKkDi1fYs8meLxZpYS1KCcIYBwh2i258SOfxyPg4tVb9SZ5aJ7Mo84j4h7UT9N3VIDZDKDQGkRUb5lDfzbzXJOs97rMm2zLvv9L7ivMs4Q7hUI0H4ua3/yMQZyHswSB4ayGxos7kH5artQVHStezT9Eb1ow8vGm7hCf2xITOuVl1vunvH0n3350pibMu1eLgd7Mcc7Ha7sc/LFSLzhCeB8+ZadULIfL72ffr841vfCBtlGcr+qdDxqpU8MCYwsqLS2T9/72jP399rrxAp+UdOKRD4uqTOv6JaR9jzSFNETOn/LbiBVRPzClr+73LtK33rqydLqolOzwwp0xds1ASZzyja8aakjQSIAESIAESIIFjh0AbFZrQ5ZtZ6+x8SNtQwRqBxUWOxe5bZy/VAvPKKxLCQmp2quQVOUI8tlRf4YHUqVMngfiDtQQbaqGhoTqEZWpqqqSlpTW0mlZRLihIeaElJMiWLVu06OWuU7GxsVrEy87OdndZp8GTEvXAiw+inwlZWm0BNxc8NT5uqm61SQhtumfPnmp5IeQrNoiRLW3+/v56jBF+112fIWrCkxQiPcTtljB4Y+MFiL989bLgBYjwkHBJPpws7l5waBvYViJCIvT1krKSlugu2yQBEiABEiCBE4ZATm6BhAQHaG+Vht50ZmamjiqA7xyILoCICtjwPRRbcxp+SMeGF9Sw4fsRXujC3nUZhObsV33b4pyyvsTU/FZ5qAV0CBN4xUHgaaj5BAVKkPKcg5cbtmPZ4HWHUJ85ew9oIcvdvSAkqw7TmV/g7rIjTX2Og5VXKoQrhPA8qj5T9TVPjU99223J/AjbWnAoXXsiuuuHb0iQDoebr/K0tCHMcXBsR9XXUsk/mF5ljCFqwpMUfcXz0hJWnzlla/q9qyVYsU0SIAESIAESIAH3BOoz/z1mBEn3t8rUY5nAK6+8IhA7qzP8wHHNNddUd5npJHDCE7BPHjfu33jC8yAAEiABEiABEmgtBOozIauuzxQkqyPDdBKoJND3mt9J9MjBlQlujlY9/bpkJ+13c4VJJEACnFPyGSABEiABEiABEmgsgfrMf1t1yNbGgmD51k0AIVHhJVidNcTrsLq6mE4CxyOBsvL6v0V9PHLgPZEACZAACZAACZAACZyYBI7s3Cs+AQE13nxJbstGLqqxc7xIAi1MgHPKFh4ANk8CJEACJEACJxgBekieYAPO2yUBEiABEiABEiABEiABEmhaAvV5Q7S6ntBDsjoyTCcBEiABEiABEiABEiABEiABEmgtBOoz//VqLZ1mP0iABEiABEiABEiABEiABEiABEiABEiABEiABEiABEiABEiABEiABI4/AhQkj78x5R2RAAmQAAmQAAmQAAmQAAmQAAmQAAmQAAmQAAmQAAmQAAmQAAmQQKshQEGy1QwFO0ICJEACJEACJEACJEACJEACJEACJEACJEACJEACJEACJEACJEACxx8BCpLH35jyjkiABEiABEiABEiABEiABEiABEiABEiABEiABEiABEiABEiABEig1RCgINlqhoIdIQESIAESIAESIAESIAESIAESIAESIAESIAESIAESIAESIAESIIHjjwAFyeNvTHlHJEACJEACJEACJEACJEACJEACJEACJEACJEACJEACJEACJEACJNBqCFCQbDVDwY6QAAmQAAmQAAmQAAmQAAmQAAmQAAmQAAmQAAmQAAmQAAmQAAmQwPFHwKe131J0bGfp2q23+AcGSs6RLNmxbYNkZx1u7d1m/0iABEiABEiABEiABEiABEiABJqBgJ+fv3Tt3keCQtpK0s4tknU43alVzimdcPCEBEiABEiABEiABEiABEiABFqEQKsWJGM6dZaBQ8dKSXGRpB06INHqvENUjPy8+EvJzTnSIsDYKAmQAAmQAAmQAAmQAAmQAAmQQOsg0DtxsBYjTW9SU/Y7CZKcUxoy3JMACZAACZAACZAACZAACZBAyxJo1SFbE3okajo/fPM/+W3tCln63efSpk0b7THZstjYOgmQAAmQAAmQAAmQAAmQAAmQQEsTiOnURZL37pLf1ix32xXOKd1iYSIJkAAJkAAJkAAJkAAJkAAJNDuBVu0hGaxC7mQfOSzl5eUaTGFhvmCL7Bjb7KDYIAmQAAmQAAmQAAmQAAmQAAmQQOsisHTR51JWWiph4ZFuO8Y5pVssTCQBEiABEiABEiABEiABEiCBZifQqgVJTCz9/AMsKPCOxPogbdq0asdOq788IAESIAESIAESIAESIAESIAESaDoCmDPWZJxT1kSH10iABEiABEiABEiABEiABEig+Qi0amUv83C6BAQEaY9IiJGdE3qJl5e3DtuKcxoJkAAJkAAJkAAJkAAJkAAJkAAJVEeAc8rqyDCdBEiABEiABEiABEiABEiABJqXQKv2kNy6aY1EdOgoQ0eeZFFByFZ//0A5evSolcYDEiABEiABEiABEiABEiABEiABEnAlwDmlKxGekwAJkAAJkAAJkAAJkAAJkEDLEGjVgmR+Xq788O2nEhkVLb5+AZKRdlB6Jw6WNu3oHdkyjwtbJQESIAESIAESIAESIAESIIFjhwDnlMfOWLGnJEACJEACJEACJEACJEACxzeBVi1IAn1pSbGkJO/Vo+Dr66fDtx7Yn6TP+YcESIAESIAESIAESIAESIAESIAEaiLAOWVNdHiNBEiABEiABEiABEiABEiABJqHQKsWJLF+ZFzX7pKRelD8/P2lT7+hmsqu7Zuahw5bIQESIAESIAESIAESIAESIAESaLUEgkPaSruwDhIa2l73EUt+SJs2kpudJdlHMoVzylY7dOwYCZAACZAACZAACZAACZDACUagVQuS3t7e0r1nP71hXMpKS+XXZYskLzf7BBsm3i4JkAAJkAAJkAAJkAAJkAAJkIArgajoOOnVd5CVHBufINj27NqqBUnOKS00PCABEiABEiABEiABEiABEiCBFiXQJj4+/miL9qCWxr28vCUwKFiLkYWF+bXk5mUSIAESIAESIAESIAESIAESaFkCObkFEhIcoBz12jS4I5mZmeLj4yMQ1LD38vLSG+psTL0N6dDRo0cFW3l5ud5K1YuiZWVlgn1YWFhDqmzWMpxTNituNkYCJOz57UEAAEAASURBVEACJEACJEACJEACJHACEajP/LdVe0hizMrLy+gReQI9vLxVEiABEiABEiABEiABEiABEvAkAc4pPUmTdZEACZAACZAACZAACZAACZBAwwh4NawYS5EACZAACZAACZAACZAACZAACZAACZAACZAACZAACZAACZAACZAACZBA7QQoSNbOiDlIgARIgARIgARIgARIgARIgARIgARIgARIgARIgARIgARIgARIgAQaSICCZAPBsRgJkAAJkAAJkAAJkAAJkAAJkAAJkAAJkAAJkAAJkAAJkAAJkAAJkEDtBChI1s6IOUiABEiABEiABEiABEiABEiABEiABEiABEiABEiABEiABEiABEiABBpIgIJkA8GxGAmQAAmQAAmQAAmQAAmQAAmQAAmQAAmQAAmQAAmQAAmQAAmQAAmQQO0EKEjWzog5SIAESIAESIAESIAESIAESIAESIAESIAESIAESIAESIAESIAESIAEGkiAgmQDwbEYCZAACZAACZAACZAACZAACZAACZAACZAACZAACZAACZAACZAACZBA7QQoSLph5O/rL5GhkRLkF+Tm6omX5O3lLaGBoeLVho9LU4x+UFCQxMfHS2hoqNvqO3ToIP7+/m6vNWeir6+voC9eXnwOmpM72yIBEiABEiABEiABEjj2CHBO6TxmnFM68/D0mbeaLwZGRYhPUKDbqv1C24qXr4/ba82Z2MbbW9CXNpxTNid2tkUCJEACJEACJEACrYaAd7t27R5ryd74+flL9179JT6hpxQW5kthQb5TdwICgqTvgGHSK3GQhHfoKPl5OVJUVOiUx1MnAb4Bct+598ulYy6TU/udKjFhMfLrrl89Vf0xW8+piafKnDPvkF92/iJ5RXmt9j7CgsNkYOdBkp6bLmXlZa22n6Zjbdu2lWeffVYuv/xymTJlivTu3VsWLVpkLut9bGysvPTSS1qQXLdundO15j655JJL5M4775Rff/1VsrKymrt5tkcCJEACJEACJEACxwyB4uJS8fPzkTZt2jS4z4WFhfpFMLwMhg112bcGV9yIgkePHhVs5eXl1j4w0L0A0ohm6lzUS7042VnNI/skDpEeffpLp/gE8VPCzJHMDN0/UxHnlIZEy+05p2wa9j6BATLi4Vul9/TzpPNp4yU4NkoOrVjr1FhARJhMeOEhKSsslqztSU7XmvsEfRx6z3VycPkaKcl1/u2nufvC9kiABEiABEiABEiABDxDoD7z3xZ9Ra534mDp2r2PddepKfsl63C6de7j4ytjTz5dvH18JCV5r0R1jJWoCVPkpx8WSl5utpXPUwejeoyW+Ih4+WjZh7I1ZWurFt88dc91qScjN0PSc9KloLigLtlbLE+/uP5yxfgr5In5f5J9GftarB91bfj000+XqKgo+fjjj2X16tVy5MiRKkXxQxTSk5OTq1xr7oRDhw7pvuTm5jZ302yPBEiABEiABEiABEiABKoQCA4JlT79huq54eH0VAmPiJIevQdIWHikrFz+g87POWUVbC2SwDll02CPHjNU2naOla3vzZfDm3dIaV7VOXt5SYkUpGVI/qHK31qapje111qQnqn7UprfNC+Z194D5iABEiABEiABEiABEmhJAi0qSMZ06iLJe3fJ4YxUGTBkdBUOseoNV1/lQYnJZEbaQYmO7SyDho2VBCViblj3S5X8DU3w9fYVhJAZ2nWIlJSVyLLty3RVOLabn4+fftMW6e2C2knH0I6SlJ4kxaXFVjaEeY2LiJNDR5R4k18pMOGtZj9vPx32tGP7aElK3S0hASESHBAsB7MOWuVb2wH6vX7fer3hTWhjdb0feJ2WlpWKtwrN0iWii+zN2CuFJVUnHxiDzh06KxE4X/FIMc1Yex8vH/Hx9tFlMQ4JUd0kJfOAZBdk67FDeT8lYMMCfQMF7cLctaUv1PKna9euWizctm1bFW9AvJnes2dPCQgIkM2bN0uJmuAZAxe8JV5QUKC9Gnv16iWuno0oBx7Dhw+XsrIy+fzzz3Xx4uLK5wgJyAMx8qabbtJvoZs27Pv27dtL9+7dZcOGDYLyaB91etrQlyVLlujNXf0I5+rn5yd5eXn6/gcMGCC7du2S9PSWn/R6mgXrIwESIAESIAESIAESaB0EilSEneVLv5EjWRlWh8acdLpEREYrT8kAKVaRdTintNC02MGJOqcMio6UgLB2krPvQFVvQDWnDOkULd5+vpK9J1mO2uZwCGfqpdLLi0vEy8dbQuJj5cjOPU7jh+vIFzV8gJSXlMqBH1fq6zi2G/LAE/Hn+59x8hq25/ENCdJ9ObJrr5SXlmlP7KO2ub89b2OO0Zf0tZv05q5+3Gsb9TJ6WWGR5tKuexfJTT4kxdk5jWmWZUmABEiABEiABEiABFoRgRYVJJcu+lzKSkv1G6zumETHxishpkyLkfjy2qffEJ0tKrqTiAejVz584SMSFRpldeHFGS/p47V71sjr375upT9x6ZOSU5CjBLYSJZ510ekQJ299+xYtNF436ToZ3MXRR1yEl97zXzynPQvH9Rov08dN18ISJmR4QzQ8OFx/2V+2/WeZt2Se1U5rOThtwBS5aORFVnce/c8jWmhFQl3vBywP415DIqx6Plv9mXy+ZoF1Pqn/ZPndyN9pFkiEJya42b0cZ06cJUOUYPz9xu8E+Y099b8nZbBKP3PQmSZJ7jz7Luv4/g/uk6z8uocXnTRpksycOVOLgaaS7777Tt544w19OmzYMLnjjjvER02UYAhZ9d5778mCBY77GTVqlNx+++2SlJQkEDVhRUVF8vbbb1vhWF988UWBkGjsH//4hz7csmWLPPbYY/oYa0rOnTvXZJEvvvhC3nnnHescB+gH2oOhH/BcDAkJkWnTpuk0T/2ZPn26TJ061aru/vvv1/dnJaiDBx54QPr27Ss//fSTjB8/3rr0xz/+UTZu3Gid84AESIAESIAESIAESIAEPEWguLhIvZRX5FTd4fRDEtouTPDCHARJzimd8DT7yYk4p4waNkD6X3+505qNuz/9VnZ+8pXmH9a7mwy+81otuiEBc7lN//iXpPzkEBXDE3vIkLtmy+FN2yU8sacuU1pQKBvf+FDS1jjmVqP/cKcEdeygr+HPKa/9SR+nrtog6//P8dsC1pQc9/T9Vp4d//5Ckr5wXiKk9xUXSPyksToP+lF0OEv8lYj63az7rHKeOOhyxsnS89JzrKp+fuAZyT+YZp3jAMwiFbt93yyVzlNOsq798vhLkp203zrnAQmQAAmQAAmQAAmQwLFLwKGqtFD/IUbWZFjro6BiTcnuvfopb0k/yVATzAi1lqQn7cWFL2iPumtOnqnXjXxy/hO6+tzCqqEpY8Nitdfd52s+l52Hdsj43hN03omJp2gxcm/6Hpm/cr5M6HOSFtAuU+tRvrX4Lau7n63+VPp2SpReMb2UKPe5dI3sKqN7jGmVguRPW3+UbSp07ZieY2Vi4kS3b1TW5X4gRq7YsUJW7V6lRNnLZerQqbJSrc0JL1IIwRePulhyCnN0qNy48Dg5feAZcvOUWwRiot3gmXiKWs8SdS1XXqwDuwyS8qPl8s36r+VXtb7lsIRhcvaQc+SN7/8mKRVeltmFdQ/tCxHw2muvlVL1XEKE/P7777W4FhYWprsBIXnOnDlarFy4cKFkZmbKxRdfLBDsfv75Zzl8+LDV3S5dusinn34q2dnZ+voVV1xhCZKPP/64BAcHy2233SYRERHy6KOP6nL2dRkPHDggEPMQ0vX666+v4iE5YsQILUbCg/Ldd9+ViRMnSr9+/dyOkdWpBh589tlnsnbtWr3OpRFA3VWF8Rk3bpysX79es0Ned96U7soyjQRIgARIgARIgARIgAQaSwDfRzvGxOuXXvNyHV5VnFM2lmrjyp9oc0qIgANuvlJ5NxbLrvnf67USI4f2F//2oRokXrQePGem9nzc8Z+FUpyTK72nnSuJsy6RjPWb1XmeBTysT3fZ9uFn2sMxcebF0mfGhZYguXruX8U7wF/6z54mwcrTcsVjL+hyJTmV6zIWqvCoEPP8w9vLoFuvErUCrFU3DlA/xEiEc9367nyJGTdcOo4cJO68F50KNuAkeckvkrllp8SMH+EQQJX46c7wGY6fPF5Slq2WFOX1GTlEzXGbwFvTXdtMIwESIAESIAESIAESaHoCLSpI1nZ7vr4qBKRaKzIoOES69+wn61cvk7CISC1IYl3J2gTN2uo31w/nOoQkhPeEgHJAhQKtyeYumCvJhx1v6G1K3qSznqQESNhzyrOvqKRIkP7SjJeVKDnUSZD8UYl8CPEKQXLpliXae69fXD9BSNLS8poFWt1AM/7JL86XPUpg7dGxh24VkwNXq8v95KswrG8tflMXLT9aJrdMuVVO7jtR/rX8Iy104gLW7Vy5a6XeEiITpHdsHy1WpmanOjX5xdrPZUGFd+XmA5uta+hrt6ju+hxlahtDq6DtAMIi7hEej19++aW+Ak9HY/COxJvWv/32m8yb53jrFMLieeedJ2eddZYWBk3eTZs2yfvvv69P4XUZHR1tLklKiiMkLdaHRBjcHTt2WNfMAZ5DeBZC9IRBDLXb2WefrU9feOEFgWfl0qVLdb9d89nLNPQYoir6gjCstdm3334rxuNz+fLltWXndRIgARIgARIgARIgARLwGAGsHxkYFCxrV/5o1ck5pYWiRQ5OtDllt3Mn6znl5rf/q8VIQN+z8AeLffteCVpIPLhijSR9/r1O91FLevSaNlViJoyQPV9U5k1d+Zvs/WqJzhN/6lhpmxBn1VOY4YgCVKrCmx5VS6TkqdCmrgYhD56FARUiZxtxns9D+IOtf+WfkqPCxqav36IFwDbeznNP13obcl6aX6D7gvvX5ua3BVMvvEl3/e8bfQovURoJkAAJkAAJkAAJkMDxQ8Dz3zQ9yKYMaw8q4XHg0LGSeThNUpL3KO80h4ZabltjwYNN1loVxEYjRtozY01JePnhurH9SrTEeodebSoxQ/QsqlhzEsdm/Ul/X39T7Jja1+V+9mTsse5p+0HHhMKEyI1S63DCNidXiotbDmzRadHtY/Te/mf5jqYTuYxo+MMPP9ibtI47d+6sj+1rQq5YsUKnxcbGWvlwsGrVKuv80KFDVjhaK7GRBx06dNDekBAjjWVkVK6dY9Kae//VV44wRM3dLtsjARIgARIgARIgARI4sQnExnWVbj0TZe/u7XIoxfHyKIhwTtn6n4vjaU4Jb0VY6uoNbsEHxziWijm8YZt1PWODY04XHF25jAwupq+rnCPnpXh+ThnUMULPKSFGGstLcX4h2KQ35z7l58q5dHO2y7ZIgARIgARIgARIgASankClUtb0bdW7hSK15kdI23Z6DRB4R8L8/QP1upJY36AlLD03vdpm7cJjtZnUhaMqzGilOe6jrmVNOXjymc2kue5ru+6av6Hntd2Pl+1NTOutTOeXM52btt6WdB5jjHl6TvX8nSup/5l5psDNnZnrdi9Ec2yumXIFBQXmsEnCqCKsLMzb29tqx35sJTbjARjs31/5408zNs2mSIAESIAESIAESIAETmACkR1jZcCQ0UqI3CebNziLGZxTVv9gmPlidfMflDR5qq/FM1eOlzmlWlNEA3E/o3SsF6kz2CPgmPmny28c8H405nLJJDdqX15apssjjKwxL5/K+aVJa8495pQFaZVLoTRn22yLBEiABEiABEiABEig6QlUfvNs+rbq3UJWpkN82rH1NylUa0liMhQW0UGyjzjCWNa7wiYskJWfJcH+wXotStNMfES89oDEOoeetJiYGPnggw/0ZtYfdK3/0ksvtfKcc07l4vGu+ZrjPD7C4VmItnpG99RNph5xvHl5KNsRWgZha431UeFaYSlZB01SnfYlZSU6H7xVG2ImlOopp5zitvjevXt1+qBBg6zrI0eO1MemrHWhiQ/S0tL052Hw4MFWS+Hh4dax/eCVV16R1157TU477TR7Mo9JgARIgARIgARIgARI4JgnEB4RJUNHniQZ6Ydk3aqfq9wP55RVkOgEzindc2nsnDI32TGHjRo+0G0D+RUeiBH9elnXI/r31sd5B9OstOY4yFft4TeW9j27Ws0FRUdax/YDzintNHhMAiRAAiRAAiRAAiTQUAKO+KcNLd3IcsEhbaVdWAcJDW2va4rooMJ3qi/EudlZWnTcl7RDOnftKVHRcXJYTTDju/RQa+l5qzA8leFNGtkFjxVfvPkHuWzMNLln6r3y2apPZXyfCTpc67LtDs9OjzWkKqqLJ5zx3GtMu106dNG8I0MdkxIIi0FKdM0pyK5XtUH+QXLdqdfL6qRVcunoy3TZHzYtsvaT+k3S7Hy9faVTeCfpFd1LMvMyJc1l/cjaGj2Q6Qg187uRF4u/j78Oobs9ZbscVf/Vxd59910ZMmSIXH755RIfHy8I3TpmzBhp27at/OUvf9FhWIuKiiQxMVFmz54tR44ckTPPPFN7QC5YsKAuTdQ5T9euXaVdu3aC0KywqKgogRCK9hGm9aOPPtJrOs6ZM0cWLVokWN8Sk0lXT02UjYiIwE7i4irXHNEJdfzTr59a41SFTjYhbXv37q37hhCx9IisI0RmIwESIAESIAESIAES8DiBoOAQGT7mFP0dOFWFaY2NT7DaSE9NkaLCAuGc0kLidMA5pRMO66Sxc0qsfRgzfrj0ueoiCY6NkoMr1krkoETxbRss2z74VDK37ZbSgkKJGj5Aul9wuhTn5Kr9FP0MH1j6i9UPTxwEdewgviHB4t8+VFcXGBUh7bp3kfKSEsnZe0B2L/hOokcPkcF3zFTrXC6WjiMHCbwlsfakqzV2ThnaNU7aqOg+6AOsbZdO4hscJMXZOfSIdIXNcxIgARIgARIgARI4jgm0qCAJobFX30pvM0wgse3ZtVULkrk5R2Tjul+k36CRMmq8w7sraecWtZakw1OtRcalmlgpizctlh4de8rwbsPlhsk36q4lpSXJR8s+1MdGKDJ7JEIoM9XVx4uy3M0EQTdi+2Nvx5Zcr8P7pt6vBMlKJ9prT7lWlz+QeUC+3/i9Pra3U939ZORmyJCuQ2RowlBd5pNfP5bUCrExLTtNPlz2gRYqr5wwQ1/PK8qTv3z1sj6uz599Gfvkx60/ytieY2X2qdfpog9+9IAczq1byJcDBw7Iq6++Ktddd53AS9J4Sn799de6Ltzr888/L3fffbdMmjTJSps3b55kZWXpczM2Zq8TG/Dnzjvv1CKkKTp8+HDBhj5MmzZNduzYIe+//77AE3bKlCmSl5cn8Jp09ZI0gibqSU52CLamzrruH3roIS12mvzXXHONPkxPT5dbbrnFJHNPAiRAAiRAAiRAAiRAAs1KIDAoxPqe2nfAMKe2V61YrAVJzimdsFgndZmv2Od6VsF6Hpxoc8rCjExZ99JbMuDG6dL17FP1BmS75jvmlPgBYM1zf5eh98yWhHMna5oQADf+7QMpyc13nJdVCILmxwKdWv8/A268Qgt/pmSnk0cJNozrdzPvlbzkQ7LprX9LnysukG7nT5HiIzmSuy9FgirWuTTlPDGnHPHwrVrsNHUOuGG6PkQflj30rEnmngRIgARIgARIgARI4Dgn0EZ5gtXNfawFQcDzKzgkVPLzcvX6kS3YlVqb9vPxk05hnbTgBmHtRLfXZ/1Vlm5ZooTZjyQuIk6SDyeLCYNjZwPhE9zyivKVgJhhv9QixwhhBHEPYVpzcnKq9KFz584SEBAg27crD8xGThSrVF7PBF9fXylRb7lCGMXakrNmzbJquPDCC+WSSy4RrGlphETrIg9IgARIgARIgARIgASahEBOboGEBAdYYllDGsnMzNRRKuDJhmgV+L6MDXMjbM1p+L6LDSIWNnznLCsr0/uwsLDm7EqD2+KcssHoWrzgsTqnDIhoL35tQyT/ULr2inQFGRTVQbz8fEWHeW3hOSXWjsSakif/3x/kqPp8L5nzB6u7nFNaKHhAAiRAAiRAAiRAAiTghkB95r8t6iHppu9ukzD5xZutx4IVlxbL7rTdx0JXm7WPpeWlAo/R6gw/bMDDsbUY1oSsaV1Is55kS/YXnosbN26Uffv26fUh/f39ZfXq1U5dGjrU4ZUKb0oaCZAACZAACZAACZAACZyoBDinPPZH/libUxZmZAm26iw/Nb26S82WDk/Fw1t2Cta2jJ0wUoVRDZR93/zo1D7nlE44eEICJEACJEACJEACJNAIAseEINmI+2PRVkCgvIXf9mwFCJqkC1jTsX///rpu/MCybds2ef31153awvqSa9eulW+++cYpnSckQAIkQAIkQAIkQAIkQAIkcKwQ4JyyaUYquFNH6ThqsK4cc8q0tZtk+78/d2qMc0onHDwhARIgARIgARIgARJoBIFjImRrI+6PRUnguCaAcK3t2rUTrOdIIwESIAESIAESIAESaB0E6hOyproeM2RrdWSYTgIk4EkCbVRYaN/gICnOrrpUiSfbYV0kQAIkQAIkQAIkQALHJ4H6zH+9jk8EvCsSODEIYO1IipEnxljzLkmABEiABEiABEiABEiABEjA0wSOqvVgKUZ6mirrIwESIAESIAESIAEScEeAgqQ7KkwjARIgARIgARIgARIgARIgARIgARIgARIgARIgARIgARIgARIgARLwCAEKkh7ByEpIgARIgARIgARIgARIgARIgARIgARIgARIgARIgARIgARIgARIgATcEaAg6Y4K00iABEiABEiABEiABEiABEiABEiABEiABEiABEiABEiABEiABEiABDxCgIKkRzCyEhIgARIgARIgARIgARIgARIgARIgARIgARIgARIgARIgARIgARIgAXcEKEi6o8I0EiABEiABEiABEiABEiABEiABEiABEiABEiABEiABEiABEiABEiABjxDw8Ugtx1kl/r7+EhoYKnmFeZJfnH+c3V3V2+nQoYPk5ORIUVFR1YseTAHTguICKSkr8WCtx3ZVoaGhcvToUc2/Oe4kLi5Ojhw50mztNcc9tUQbsbGxgrGDlZaWyo4dO5q8G+4+p/7+/hIVFSWpqanVfn59fX2le/fuVv8OHjwoWVlZ1jkPSIAESIAESIAESIAEPE/gRJtT+oW2ldKCAikvKfU8TFuNnFPaYFQc+gQFippUKv6FVS82QUpghzApyStotvaa4BZaRZUBEWHiGxKk+1Ku5pR5yYeavF/uPqdevj7iH9ZOijKPVPv59fLxluBO0Vb/CjMypST3+P+tzLphHpAACZAACZAACXiMQIsLkn5+/tK1ex8JCmkrSTu3SNbh9Co31yEqRjrFJ0hxUaFs3rC6ynVPJQT4BshdZ98t8RHxusr1e9fJq9+86qnqW2U9EFaef/55+eKLL+Sdd95psj6Gh0TIk5c+KZ/8+rF8tf6rJmunsRV7e3nLsIThsit1p6TnVH0W61L/s88+K35+flWyLliwQL7++mun9FdeeUUgEN1zzz1O6U1x0rZtW0HfFi1aJH/96191E4888oiUlZXJE0880RRNerxOiGuTJ0+W3377Tfbv3+/x+lHhOeecI1OmTKlSd35+vtx///06/e677xZ8dmDgN336dH3cVH+q+5yOHDlSbr75Znnttddk8eLFbptPSEiQxx57zLqGZ/DNN9+0zutygGcHz8jPP/8sH374YV2KtHie6OhoGTJkiOaCsaORAAmQAAmQAAkcfwS81Hf3+K7dJTqmswQEBUlJcbEcStknu3dslvLycqcb5pzSCYdHTyCsjH/2Qdnx7y8k6YtFHq3bXtmJNKcc/uDN4u1fdU6Z9Pn3cuiXdXYsMuH530vOngOy8qmm/+3CJzBAxs19UHYv+E52/vdL3Y+BN88QCGob/vq+U79a60kbb2/pOHKQHNmRJAVph5ukm8ExUdL/BvdzxPX/N0+3O+CmK6Rdt866/fLSMvl+tmOu2SQdUpVW9zkN79tDBt8xS9a99Jakrd3ktvmg6CgZ9dgc69qu+V/Lrv99Y53X5QDPzrD7bpCUn1fJ3q+X1qVIi+eBUBvWp7ukrd4oZU38An+L3yw7QAIkQAIkQALNRKBFBcneiYO1GGnuNTVlv5Mg2Ta0vQwePl6CgkN0lqYWJEf1GK3FyI+WfShbU7ZKXlGe6dpxuy8sLNQec8nJyU16jyVlxVrgS81ObdJ2Gls5ROmZE2fK52sWyGerP2tQdZ06ddI/gMAT0W7eauLjaikpKbJnzx7X5CY5b9OmTZV64TkHD79jxYKDg+Wqq66Sb7/9Vv7+9783Sbe7deumvQ7hNVxSUmK1ATHUGARknD/66KPSubNjEmmuNcW+MZ/Tbdu2ydVXXy3wsIQg3RAznpg9evRoSPEWKTN69Gi57LLLZPfu3bJly5YW6QMbJQESIAESIAESaFoCwSGh0qffUMnLzZbD6akSHhElPXoPkLDwSFm5/AfdOOeUTTsGqL1cfWcuSMuQ/EMNe6Gzrj08keaU7Xp0kaNl5ZqrnQ/ENFfLTkqWnKSmeVnTtS1xM6cM79dTyosr501VyrSyBJ9Af+l/3TQtqEFYawrza9dW2naO1V6kRVnZzk1UMFz5xCvSRnkeDr7tamnfu7tzniY4a8znNHd/inx//YPir+5r3DMPNKh3Xmr+3LZLJ8k/mNag8i1RqMPAPtL36t/JisdeVKJ/0/5m1hL3xzZJgARIgARIoCUItKggGdOpiyTv3SWHM1JlwJDRVe6/XfsI8fLykvWrlynhsrcEBDjCWVTJ2MgEX29fgWfc0K5DdDjRZduX6RpdQ4v6+fjp8JpIbxfUTjqGdpSk9CQpLi22ehDkFyRxEXFy6MghOZJfKUjhPvy8/cSrjZd0bB8tSam7JSQgRIIDguVg1kGrfHMeQCCDaHbTTTdVeYMY/cD1gIAAMd5FAwcO1PmTkpLq1U3cO8TdR/7zsBwtP+pU1jCNaR8jRwqOSHZ+tnTu0Fn2H94vZeVlOq/Jg/OEqAQ5nHtYMvMynerBSRv1X2xYrCD/3oy9Vnl7RgiOGD/UZfLuSXMIggirhOswP5/K42Ilprq+YW2v091xWlqazJlT+Qahax4wgUD4wAMP6GfKfh1CFzwswR3hXI1BjIN4aA+tizp69uwpEIw2bdqkvfVMfuxxvW/fvrquw4cb/vZnfHy8QGiFV6LdM9E8IwUIz2R7C92k5+VVivqmr3imNm/e7CT24RruAfdm7ll/ZhQHiHG4HqTeeg8JcbycgLzgAcN1eCl62p577rlqhSy0Z7aa2jX37G583I2nu7Gv7XNq2ofgiHHasGGDE1tcByNstRk8MbHhWTKf+9rK2K9jzPA8tm/fXrZu3eoUGhYMfHx8xP5MoCzSUQ7PkDGkJSYm6n9vdu3aZZL1HjzAyX4/OIdBQDYMjZcynhnzrLi2rQvxDwmQAAmQAAmQwDFLoKgwX5Yv/UaOZGVY9zDmpNMlIjJa/PwDdIQdziktNE1y0EZ9j0Poxp/vf8b6Hm9vCNe9/HyVd5Fjztyuexcpycmtt3iJ74sn2pwSItAvj79kx+l0DLaw1c84ot/YLyLEZhv13Vtzt80pvQP8ldBZ5hyaU821QlQ4Ti8/HyVsJqs5u7N3MURIiGtlhUVSnFM5v7O3V5fjwKgICewQrkVWu2eieUYgatrbNulo17KKvnqrZypbCUS4F8vUNYQf1WGDK+4ZdUD004Kpug6vUx/FAIZj8IC5tq0TPfAHnoDViZ6416PF5VKuhOcareKe3Y2Pu/GEaA0O9rEHh5o+p6Z9hHQN6hgh2bv3Ka9XG1uVAYzKimoXnuGJibC+EMob4lWIvgZ36ih+IcGSs++AU2hY3Bfuz+mZUH3T6YpTmU0YR1po1zgVXjhf8g44vxjv9FxU3DzqVVXo+zYM8W8XDM+MeVZc264ozh0JkAAJkAAJkEAdCbSoILl00edSpgQWvMHqzg7sT5L9e3fqS1269XaXxSNpD1/4iESFRll1vTjD8aV/7Z418vq3r1vpT6iQozkFOVKqBK3OHbrodIhbt759ixYar5t0nQzuMsTKvy9jnzz/xXN63cRxvcbL9HHTtWiDyVRGboaEB4droWXZ9p9l3pJ5VrnmOIBwMXfuXKspdyFbTz/9dJkxY4YO8Tlx4kTdVxT46quv5K233rLK1nQQGRopf7z4T1YW15CtT097RouAEG5gacqDMlKNRVFJkTz16VNKrE2Rx3/3Bwn0C9SiMcRj2LaUbfLily9YIljP6J5y6+m3aTES1yFqvbN0nhhxGWkQHDG2K3askIGdB+o6kb7z0E751/KP5IHzHsSpttMGnCbYYLj2/cbv9bGn/iA8LsQZ2L59+5xCtp500kkye/Zs+fXXXwWiGOx3v/ud3r777jt54403dNqkSZNk5syZWjhGAgSy119/XZYuXaqvw9Pv8ccf1wINEjIzq4q4OmMNfxCqE+FATV+RFaLh008/rUWrYcOGyZ133inffPON/OMf/7Bqevjhh6VPnz5yww03aFEK+e644w6rHozPe++9JwhjC4M32+23365DySKkLOyuu+4SlIOXG8Qp1GlswoQJgg328ccfy7/+9S9zqdXsaxufF154QQtl4II1ICHCIZQuWN944416nc+6fE5xw9OmTdMiII7B9tVXX7WeA6TVZnhWfv/731vCHfJ///338re//a22otb1k08+WY+3+SzjQnp6uq4XLz7gWRgzZoz2KoVYaQz3jD5fc801Ogn3cu6551r/3uB5e+qppyxx+LbbbpNRo0bp58LUgdDHqOP666/Xn4lTTjnFXBKE1zWGsmBNIwESIAESIAESOD4IFBcrgURtdjucfkhC26m12dQLS4iwwzmlnY5njyEwjXv6fqtSdyFbo0cPkX6zVdQKFeKz61mnCIQA2M6Pv5Ldn31rla3pgHNK93QmvvYngTAHy9q22ylka4dBiTLwlhmS/MNy2TzvvzpP3Kljpc+VF8juT7+VnZ98pdOihg+Q/tdPFwiYMIhQCCmavm6zPg+OjZKRD99miTEN8W5DqM4JLz5i9RUVY73LVU+/rr3Ownp3k6H3Xq+FO3sY0AE3XSlRw/rL4lsf1aIU8g2+81qrHnz/3/SPf0nKTyt1XyOUp+aQu2bLur/MUyE2N+i0vlddJLEnjZRvr7lHQpV33shHb9fp+NPljJP1huOt7/9P9n3zIw5bldU2PqP/eJf4tw+Vn+55UuCJCRFuwvMP65cAls75g+Zcl88pbrrntKkSFNVB3z/E0nUvv209B3WBgmdl2L03CLxDje3+TIX2/fhLc1rrPnKwem5vvcr6dwIFIMyv+vPrWljsefHZEn/aeFn+yPOSuy/Fqg/3jD4vuf1xndZ5yknS87JzrDmlft7+/Jrk7D2gr/e6/DyJnzRWPxemkrF/vk9Npsvlp3v/LN3OP00SzplkLsmw+2+0jpfe+Se93qaVwAMSIAESIAESIIF6EWhRQRJiZE1WXuEhV1MeT1x7ceELWhS75uSZEhMWI0/Of0JXm1uYW6V6eNUVlhSqkJ6fKyFrh4zv7RBFJiaeosXIvel7ZP7K+TKhz0kyRHlcXjbmMnlrcaV499nqT6Vvp0TpFdNL19E1squM7jGm2QXJAwcOyB//+EcdmhI/4tu921xvGj/u7927Vz7//HPtPWX3ZHLN63oO4fWp/z0pYcFhcsPkG+WoawZ1nluUK28rRhAUg/1D5C9fvSy3TLlVxvYaKx//4pg8wXMRAi8EzTMHn6X5nZp4qny74VstBt885Rbx8fLR7HMKsuXi0ZfIjAlXyYZ9GySnMMep1VE9Rmnh87+q7sKSAkmITJDkw8nyh48f1yLlPefcKz9uXWqJkGnZ9Q8pEhkZKS+++KLVLsRCCGzGHnvsMS1APfjgg1pIMenYQ3QcMWKE3saNGycIp3vRRRdpIcWIkXFxcVq0xFh89NFHWoy8/PLLtbfrunXrJDs7WwsxELcg8KEOCHsNMXhEYux37twpQ4cO1eslImQpBKRffvlFC5Rjx461BEn8+NO7d2+9NmZWVpb2foO3KDzbFi5cqIXRiy++WNeDNQmr89yEcG8MYUcfeughgUB63333ycqVK2X+/Pn6st1j0+T3xB59tnvhQaD79NNP61R1XcYH4V6xfitEYwiQeBbgPYqwqggXC6vr57Rdu3by5Zdf6nHHswLxb/ny5VU8Jd11HpyxligEUdSB9TmxJuapp54q69ev1/W4K+eahn9DkB8vN0D8xjqcWO8TIiD+rfnggw+0IImx/9Of/qSLDxo0SN8z2MK6du0q5513nvaWRH6sfzlRvQwBUfHaa6/Vedz9gQiKHyRgKIfPEMqhfQjlCNsKy8jI0Hv+IQESIAESIAESOD4J4DtBx5h4/dJrXq7j+xTnlE031oXpmdqDzz+8vQxSIsJRt7M9R/v4cT9z6y7Z+9USCYyMqJfn1Ik6p4TXol1AO6p+P/lVhfk09ssfXhJvNffCepPmu7C5lrrqNy3UdZo4WlLXbJSC1AzpfcX5WpAxYmRgZLhg/cfi7FzZ9sGn2tuw95UXyqDbrlYi4GNSml+gRM2rxEt5EkJQLlAheXG9IXZk5x499rn7D+o1+RJnXixDlLgIAenw5h1KbCqQuFPGWOsSwkMtckii8rLbr8VICNmD58zUwumO/yxUnpq50nvauZI46xLJWL+5es9NVc4YhK1lDz0rvkGBmlny4hWy9xvHy7x2j02T3xN7iMAdBvW1qoLn4ZZ3PrbOazqoy/is+vOrOoQq1mb8+YFnZMCNV4hvSJAS8F7TYiTqr+vnFN6rEA/hBdtbCXZ4Nhbd+JCzF2o1Hcb4DH/gZvEJCtBri2Zt3y09LjlbEqaqz/2WnXJ40/ZqSjon4zk+uGyN7FdCeol6LqPHDpVu550mfWZcKL+99q4kLfxBC5IJZ58qv73+ni4Mr2vcM8RPWFDHDtJLiau4j63vfqK9e7uolyHw/EBMrM7U/z7U58hxdc/CxXJw+RrpOGKQbv+3V/8puQcO6YvFR5x/X6quPqaTAAmQAAmQAAm4J+DjPvnESkUIUBiERghHBzIdb01VR2HugrlKwNqvL29Kdiz6fZISIGHPKY9IePch/aUZLytRcqiTIPnj1h91iFcIkku3LJGs/CzpF9dPi2ml5TULtLoBD/3BfW7cuNHymrOLP65NYJ3De++91zW5TucQKfYokTanQtxV3/GqGMLXbty/UXNDCFwcYyzClYhpNwjHCNOD9T1fueZVLQZDkOwR3UMLyr/u/FW+XLdQFwlQHpUXj7pYxihR8+v1jrc/TV3g/PC/K73tVu5yvFGJcQ/2d4QBRbjd2p4DU5+7PXhC4DFmX4sQaTt27NCXwMfuUWbyP/PMM9rbEeF0i4uL9XNp9xC88sorddb//ve/ArEOhnUVp06dKvDMgyATHh4uGDt4oMGioqK0SKRP6vgHwtj999+vRUWE8kRbqBPHxpYtWyYTlfgDj0is1XfGGWfoe4IwBYOXI0RKCF3z5s3TaQihCeHprLPOknfffVen1fQH/MAMoUBhEDoNw5rKNeYa+myf2Nf0GXFtp7bx+eSTTzTHN998U2bNmiUvv/yyHh+IxxBbjdX1cwqx+O2339bFsKYlPE6xGW9ZU5+7PV44gBCKfw+WLFmis2CcEE747LPPrrMgibaw4bmPiYnRdcFrEqF+YfBMxIYQwmCJZ/+CCy7Q1yCqw+AZCYOo+PXXX+tjiJJdlVCJLSkpSafV9AdiPLb+/fvrbPBAbupnpab+8BoJkAAJkAAJkEDzEcD6kYFBwbJ25Y/N12hFSyfinBIeSRCMAirCeGIJjeose9c+LZJUd72m9BN1TtnG28sKLwo+ZUXOfPOSHQLJUfUit7s55aY3/63XJhykREV4iCGUqT28a7fzpmjs2//1uRIqk/Xxni8WSc9Lz5GOIwfJoV/WSXBMlGDsdv7X4eWGcJzdzneU0wXq8Adto12IVgHh7bRXJOrEOpnG4MnZ9exT9BqDWKsvZsxQnX+PEqBg7XslaC/NgyvWSNLnjpcZfdQcBsJTzIQRsucLRz6duZo/8P4EM4hXMHgUGobVFGl0srfyWDQhYlGZlxJa62q1jQ+YFWZkyQYlzMGbdNTjd2jxDXwg/hur6+c0Y8M2S9QLiYtWHoTjJKJ/rzp5SUYO6ae54plJXf2bbnrb+5/KiIdukc5TJtRZkIRnLjZ4euJZS135m/JiPUnadnXMKYsyj2hRPXLYAP184N66nDlRt4eXHWBxyvMRBjES/cEW2q2zhPftocXKuqx1CzEeW1GPI7qufCXoN/WzohviHxIgARIgARI4AQhQkKznIENsNGKkvSjWlIQnHq4bwzqI3Tt21x58Jg1CW1HFmpM4NutPIpxoaVHzCZKmP3XZwwuuKQ1rNMKwrqPhB9EQ6zgaQzrESBjyZSsvSDCHYf1JmBGHcQxRE4JkdLuOOHWynQcdYqBToodPDh06VOMakrU1h0k3vCgRsjUwMFB70iHspbGOHR33dcUVV5gka48wnxBxYBCqjK1ataregiTKoh8QG10NwhPCaSJcKgRJeL7BE+60007TAirCuMIgkMHguWlsxYoVWpC0C5vmWmvZI6QxBNaGWG3jY+oEIwiH/fr1056iRjw21+u6x5qcxiD8ok7D3aRXt+/evbu+hD48+eSTTtkiIiKczms6gQAOz0fs7QZh1xhE6quvvloQDhqCIzxp4b1rnm2I5jA8H8YwBhAju3TpUidB0pTjngRIgARIgARI4MQiEBvXVbr1TJS9u7fLoZT9rfrmT8Q55cEVa5t0TI7HOSXCS9a0hmRtQCHWwFNu3NwHxC80RIuCWE/PGNbpg/W79lKTZO0RfhNiJCxrhyPaCI4hWtVXkEQ5eFoi/KqrQXiCULr3q8VakERYX3jCISwn0g/9ul4XMX05rNo3lrEBc7WpEhzt6KdJb037PUokq24Nydr6Wdv4mPJgFKVEN4jIeSmpAg/Shlim8lQ1Bq9GCJLgbsL3mmvu9m1VOFwY+oDNbggZW1fDc4rwqGa8TTkff8dvRjiHSN3/+sul46jBckj9uwJP2iM7knRIV1wP6uhYEurwxu041Za5aYcWJINjO9Z7/VpTB/ckQAIkQAIkQAKeIUBBsp4c03PTqy3h1car2mv2C0dVXPpKc8SEqGtZU87+BqTdi8tcx97kqe66PW9Nxw0VZWqq037NhMVwpFXEyFA75/c/7SWcj8srKvBqU1nCHFfU5lRgrwr9eiwYwqOaMURIVFdhGON63XXXVbmV/Px8veai64X6ePiZsli7EmIkvOcQrhSeZvCc69Gjh9U3hFxFaFHkg6CEbc2aNZZ3oXn+7O2bY3MNAizMpOPY7mGK82PNahofcy8Q6yC2wRB2tUOHDnrdRZ1Qjz/mObEXMUztae6OzRggfKxd2EReeOfW1bCWKMRIiI4//vijQJTHWpb2MYUICe9RCJII4Yt+m3VE7e24ux9z3d19ITRxffpq6uKeBEiABEiABEjg+CAQ2TFWBgwZrYTIfbJ5w6pWf1Mn4pwye/feJh0Xzind4w3v292at0UqQRDhUe0G0XLxLY/ak/RxWVGx5ZVmv9jGq3LObU+v6RhhSyFGwlNtr1qnEaFTEVq0w0D10mvFHB7hNY/s2CORQ/uLf1g77el34EcVOaZiYM2cRU0uKpuqKGvlKXPMKe1zCZ8Av8r8x+BRTeNjbgfhbbG+JgzhkP1C26owvA0IK2p4morV/mi5u19UbBnMYcU4wRMWXtN2K69lqSZ73n6zLtViJNajTVOhhguVR+T4Z39vPSfIi+coceYl2vPSS3kRw/M2yZ2HrP1RNcfmHwqztzXu5ecnZYWFthQekgAJkAAJkAAJNAUB27e5pqj+xKkToVcR7hNrHRqLj4jXHpDlTgKkudrwPcIhIqQhNqxD584uvfRSK88555zjLssxlQYP0raBbXWfvb28JTQwVBBWFXYo66DeY21OY4kVx+aaSa9tD+9LmPG+rC1/U13vqkQqrOOXnp6uxUB4vE2YMMFqDmFTMdEKCwvT6w0itKrZEObThLaEcGgMAmd9bdSoUVpYhOccPBzz8vK0p5prPf/73/+0wARvSpgJwYljrD8Kw3qBxkaOHKkPcR+w3FzHeq3dujkmUkhLqPDyxLExE/rWhG416fY9PP1ee+01vRmPO/t1Tx5jTUIIa0FBjrA/pu7axsfkg7iL8LUffvihFu7gYWqfQJt8te3tHqwDBw7U2Q13UxZeiJjI498Pu5lwpnhWzDNk9vCArathvBBK95133pFdu3bpZ9NVVIaYiOcoOjpah2ctVZNThKk1BhEThufdGEK8wsw6kGZdz8REx+cd64rCi9jVjECJ9VxpJEACJEACJEACxy+B8IgoGTryJMlIPyTrVv18TN8o55RNO3wn2pwSa+n1VcINQk1CxIHHmxYBKzBjPUeIOX5tQ3RIV4RWNRuEsPyUNJ2zfa/KOVp4v171HqRo5cmGeciGv76vPdnKCouUgJZQpZ4kFS7Wy8dbht7jeOk2Sa1baSxfef7BImztR/TvrdPyDjr6ib7D2naO1Xv8sffdJCJ0K8y/fahJqrJvzjkl1q/EfXurCER2q218TN4BN0wXv3ZtZfPb/1Hj2Uat5Xijk4Bn8tW2D+/jiJyDfOGJPXX2vBTH/MyULVUvP2Msg6Kd51hGhAxR7M0zZPbwdK2rhamwqgipimcB3p5+Kryub7DzXA/PJtZ3DO0aJwkq7HBZcYkWL00b+RXPg3k+kB7et+J+Djieo9IK4dF4dvoEBqjPgWP5HlMP9qbv/oovjQRIgARIgARIwDMEWtRDMjikrbQL6yChoY514SI6qJAhSmTJzc6S7COZ+g5jOnVWX6q81RpngeKjvIli4x1fXFP2J+kvQp7B0PhaFm/+QS4bM03umXqvfLbqUxnfZ4IKOeony7Yva3zlLjVAAKnN7F5J7vJC8DIeWbgO4QaCEQQIT3pERoWqUC8BIdK+IrxqZGikJER1k9KyEtlXT0/FO8+6S+av/EROH3iGviWswQnbfnC7FBQXyFC1XufUoedKrgqdiz2+KP+07Sedp65/EEYX4WKHd1PrUKTvldTsVLWWZLLkFDTgDcNqGoUXnFlXD+MEMcWIdZs2bdKlsF4kxBsIfBCSXn/9dbnhhhv02KSlpck///lPGTx4sA6RCkEHHmkQpeB5BlELa/VBzETo0FtvvVV7q2GtQHeG9QNdQ79CkILI+OuvvwpCwM6ePVsQ8vWiiy7S60G61rN48WK59tprtYcc+msEUeRDOTxXEJBQD66feeaZenyMd5zJD09QiFnDhw93KzJBEIXgCl4XXnih7N+/X3ttwkvTGMRKCLWw0NBQzcJc8/Qe63ZCtMU4IfwqBLX169fXaXyw3ieYLF++XObPny8Q5zAOc+bMkRdeeEF3ta6fU4Rdvf7667WwC3aoC2t72g1iLp4dtAmx++DBg7rtH374QWbMmKHXH4VYuXDhQkGoVjxL6JsZI9QVFxdX5VlBWGC0BQEU/UU5fPYQwtedQXyFOI6xwfNlN3AYN26cTJs2TfzUG6qoD6Fn8TwagRXrmOJZxvOGZ/T888+3V2Ed4zmCoS484xBLsT4n+kYjARIgARIgARI4PggEBYfI8DGn6P+/p6owrWauiLtLT02RosICfaOcU1Ydb0/MKSF4+YYEW8IOQjO2695F/Yhfotd5q9pqw1I4p6zKDV5wgZGOpRLwe4lPUIBmj5wQh9q0ESVM3SRHldfgKuW1hlCt8KIbeOvV8tM9T+r1ExFKNGbcMBnxyG06ZGrq6g1K5ImXLqefJGte+IdgvT54M0K06TXtXClIy7DW63PtkU9QYJVraPPAkl/k0Mr1eg3I7heeoUK+bpWEqZOqiG+oDx5xZWreiHCdaMu+1l/mtt1a6IoaPkC6X3C6FOfkqv0U/dk/sPQX3R0jTHY6ZYzk7DsgHQYl6lC1rn2FIApREkIpWBUoASw3+aDyKnS8JIv8zTmnTPl5pRKLx8rgOdfI/u9/1utCHtm1V4d6rW18YsePEDDZ991Pkrx4hRrvMklUXoa9p5+v11DEvdT1cxo+oLd0v+gMKc0rkNgJI7XQZw97irrALXdfivJ4HaDWdjxZCtIP6zC+aWs3qTHJk56XnK1C6EbKfrW+JUS8OCWCQwxP+Ul5u1ZYWyUkmnUfTVquGi+EA87apl5sVWIowrGqwdX1mTz2fdKC71UfR0hghzDBWpp2AwusW9n7igvEy89XsB5m+z7dpPBwluSnOiKeZe/er4v0mXGhoK6EcybZq7CO8fzDel42VT2zfvoe9fqcnFNajHhAAiRAAiRAAvUl0KKCZFR0nPTqW+k1hQkktj27tlqC5IAhY5w8hgYMHqXvMSV5jxW+o7433aj81XzxWLxpsfTo2FMJWcPlhsnqjTRlSWlJ8tGyD/Wx+RHc7JF4FP9V/DZeHy9KdyELdSO2P/Z2bMnWIcIr2r3HIGJgQzn8gG+3urRnz28/nn3qdQJPUWPje08QbGjnxjdv0Mmmr+BhOGg26twYhMKIkAi5cfJNOglrRC7a5PCsQt6Xv3pZ5pwxR84ecra+jj6/tfhNa91JUw/2pg17mv34/Z/ek0tHXybTx03XyRhD05Y9X03H5p7c5bngggtk0qTKL7wQKOEpB3v66acFHq3wmoOXH0RF2BNPPKG3xx9/XG666SYdIhXhMBGy9YwzztAb8hUUFFihK1EX1vSDwAODSIkxdx1P/Bjh6kUL8QpiDzZ4Zk6cOFFvxvsSQpHrPa5du1ZGjBjh5PGGdpEP4UDvvvtu676RNm/ePC0SIQ+Exi+//FKvPwnREu0gDKy7NSYhaF1yySV6Q9mPP/5Yr2OJY5j9uTb8HFfq9tfcl9nXVArrNS5dulR79M2aNUuLfBAU0feaxgfC3uWXX67F2Zdeekk3AeEPnqMQOMeMGaNFvto+p2YsIcgawRns/vKXv1QZZzSCNSoh5EEMhUGURDheeFo/+OCDevwwhjDU89VXX+lj0w4m5q7PCoQ/CJIQye+66y655pprdJns7GzB5vpjF4RFiNJ4IQLrj9pt37598p///EcL3+ADg0cknmVjEOBxrz179pQbb7xRt4Hn3tXwYgXEcIifGBvYHXfcIcYr1zU/z0mABEiABEiABI49AoFBIdZcse+AYU43sGrFYkuQ5JzSCY0+Md/vql6pTKnt+zDCbhoPI5TqdPIovaHcdzPvraxIHdU59KNTKcfJiTqnVBNXNzQcSRCwEs6dbF0PiYuREQ/dos9XPvmqxE8ep73m1r38thW+c9XTr8voJ+6WofdeL8senKuEr0xZ99JbKnzqdIFYiA0GYQmiMmzdX+bJyEdu1wIPzrGupfZAdOkb1oKEGGU3CH8QJCEYdVICV9ezT9EbvM4Ob9ru8MJTz4rdDi5bI50mjpZ937q8WKzyrXnu78p7crZ13/CU2/i3D6QkN19XgfZ2fvylun6aDLx5hvZuQxjYdj262JvQx1vm/VcJVudJ36su0udb35vv1GZj55RqEuxo0+yr9KAyIXvXPtnz5WKJO2W0DLjpSi2SYu3Q2sYHgnTfmRdr8Xbre//TFSLMbaQSC/F8pK/dqEW+2j6n5nMOL1QjzEF4XPfim+pza19uyNHnzW/9W/pceaH0vPQcnYC+Qthd+af/k8F3zdLjhzGEYaz3K4HQYQ4mEEhdnxWIkdi2q1Ctg+fMFHh9wgrSM/XmrZ4vu0FYhGiNELVJC3+wX5KC1AwtxvZSomziNY6XZPGMrHn+71a+NCW+Q0TtMKivDLrtat2GXZA2GfG8Jy9ZIRB+MTawH+9+QovGJg/3JEACJEACJEAC9SPQRnk/OX8DrF955nYhAK/ITmGdtGddXlGey1WeNoQ4gngKAABAAElEQVTAU5f9WXtUPvLvRyQuIk6y8rIkR3lBurNI5ZHp5+2rvBoPQO51l+W4S0P4S3i0QWixewqaG0UYVKwrCfGpoQYhCpvxZHRXD0RHeNhBkDJhNV3zwdsN3mrbt2+vImgiL9ZUhEem8W5zLV+Xc4iwCD8KoQ3eoi1ttY2Pp/oHj0MInRDi6vIDk7t2UUeXLl0kMzNTe5+6y1NbGsYYAiG8Md0ZBEqEdYVYCUHRnSEPBEfkgbjrztDXkJCQaq+7K8M0EiABEiABEmguAjm5BRISHGCJZQ1pF/8/xjrJ+P8i9oisgQ3h3RsS4r0hfTBl8IM1NnzHwIZoDHh5CXsTmcLk5b7xBDinbDxD1xo4p3Ql4nyOdRvh0QYRDIKkqwXHRikPxSLtNel6ra7nvjr8ZpCT56Nr2RG/v0VCu3eWRTf8XspVKE53FhTVQXu+wavREv5sGbGmYlDHCMmrCM9pu1Tnw9Y2p6xtfOp8Y7VkhKcrhE54QboTI2spri+jjqDoDlKiPE4hKDbEMMZlxcXak9ddeYQaPuV1CIOZ8vMDz7jLosMRh8THaMEa+dwZ+opwrdVdd1eGaSRAAiRAAiRAAlUJ1Gf+6/yaUdW6mFJPAsWlxbI7bXc9SzF7XQhAYKwtzGuaCrF6ohmExprExsaIe4Ylwl1ic2fw6kOoVXgzIuRsdWIkypqwm+7qQRo8MxvbXwia+MEMHqatwWobH0/1EeKdCfnb0DpRB7w+G2PVjTF+QJ08ebL2gsUPq5999lm1zeAHztpCR6Ov2GgkQAIkQAIkQAIkcLwR4Jyy6UaUc0r3bBGeFVt11hhxz9QJLzXjzWjSzD5crR0YOay/9mZMVSFeqxMjkd+E3TRlXfcIW9rY/ra2OWVt4+PKoKHnpfkFkrMnuaHFdTnUAa/Pxlh1YwwhEiFqsR4qvHJ3f1a5zqhrexBUa7sX9BUbjQRIgARIgARIoPkIUJBsPtZsqYEEysodi843sDiLNTEBeLlhHUwIb3Pnzm3i1mqv/osvvtB9aUi41tprZ46GEvD395eZM2dqsRihVDFONBIgARIgARIgARIgARJoDgKcUzYH5Ya30V+F//VrG6xDf25848OGV+ShkpxTegikh6vx8vFWIYav0N6bCKWa8vMqD7fA6kiABEiABEiABJqaAEO2NjVh1k8CJEACJEACJEACJEACJHBCEahPyJrqwDBka3VkmE4CJEACJEACJEACJEACJEACJNBaCNRn/uvVWjrNfpAACZAACZAACZAACZAACZAACZAACZAACZAACZAACZAACZAACZAACRx/BChIHn9jyjsiARIgARIgARIgARIgARIgARIgARIgARIgARIgARIgARIgARIggVZDgIJkqxkKdoQESIAESIAESIAESIAESIAESIAESIAESIAESIAESIAESIAESIAEjj8CFCSPvzHlHZEACZAACZAACZAACZAACZAACZAACZAACZAACZAACZAACZAACZBAqyFAQbLVDAU7QgIkQAIkQAIkQAIkQAIkQAIkQAIkQAIkQAIkQAIkQAIkQAIkQALHHwEKksffmPKOSIAESIAESIAESIAESIAESIAESIAESIAESIAESIAESIAESIAESKDVEPBpNT1pRR3x9/WX0MBQySvM+3/2rgM+iuILPyC9EkJISAhJ6ATpvSlNQIooCIqIFAVBkD82rKCCgEpRURELgmJBEJReVBAB6b2XkFBDKqQREgL853vHbPYud8ldciEB5uW32d3ZqW9n93bmm+89upJ5pRjVzH5VCQwMJC8vL84wKyuLTp48ab/MCzEn1PnmzZuUkpJSiKVYlzX6SHpmOl27fs26BCqW0sA9ogE3NzdycXGhxMTEXFvs6OhIAQEBdPHiRbp2Lf/PkZ+fH78X4uPjcy3PlouoW+XKlbUkqOPly5e18+J6gHp7e3uz7m/cuFFcq6nqpTSgNKA0oDSgNHDXa+BeGFO6+PqQo4cb38sbYkyZdj7mjrivDm6uJD4eKSv9apHXV40pi/wWqAoUUw24u7uQq6sTxccn51pDJycHCgz0pfPnE8SYMivXuLld9Pf34TFlbKz9xnwOTs4UVK2OVmzihdOUkhirnRfXAwdHJ3IvXZZSEmLoxo3rxbWaql5KA0oDSgNKA3eoBoockHQSP9ChlWuQm4cnRUUcpcuJ2RPKXqXLUEhYNfIW+1IODpSanEQnjh2g5Mu5T3Ln9164OLrQy11foWDfYM5i/5l9NPPPmfnNrline+WVV8RHWyDX8fr169SvX79iXV9ZuS+++ILBi1dffVUGFcm+jIcvTXp8Ev2+YzGt2b+mSOpgTaGlSpaihmGN6FRsBMWnZD9b1qQtijjh4eHk7+9P69evL4rii6TMli1bUmpqKu3bt69IypeFAhisX78+bdiwga5cKdhCjHHjxlFwcHCe75XOnTtznAkTJtChQ4dkVWzeT5kyhZKTk2nUqFE2p7WUICwsjN59913t8tq1a+m7777TzovrQa9eveiRRx6h119/naKiooprNVW9lAaUBpQGlAaUBuyigZLiWzc4tDIFlK9ILmJB1LXMTIqJPkuRJ4+ISVTDwhw1prSLqs1mUvv5p8i7UkW+diPrOq0b8rrZeMUtsPX0tyjl9AXaOblox/pqTFk4PaNOnTAqX96X1qzZWTgFFMNc27WrJ8ZDV2jnzuNFWjsAg02b1qC1a3dRWlrBAP8pU4ZQaKg/denydq5t6tGjBQ0Z8hCNGfMt7d0bkWvc3C5+/fVosQA1lQYMmJJbNJuula9ciwZ/9KuWZvvyH2nFzHHaeXE9aNPvf9S6z3Ca9UJ3io7I/zi9uLZP1UtpQGlAaUBpoGg1UKQmW6uH16O2nR6lsCo1yT+gArm5eRhpo1rNulQ+KISupKVSStJl8vULoOatOxIGlYUhTas0YzDy1y3zafzi9+inzT8VRjHFIk8AegMHDqTIyMhiUR9rKxEdHV0sJtmvXc9kgC82uXivbgPIPrjNYGpetbm1Ki7SeE888QQNHTq0SOtwuwtHewcNGnS7i81RXrNmzcTgawBVrGiYVMoRwYaAs2fPihWq5/NMUaJEiTzjFFWE48eP8zsSizfuJImJiaGkpCQGue+kequ6Kg0oDSgNKA0oDeRHA+4eXlSjVgNydHKixPhYchSsjirVa1ODJvdr2akxpaYKux/snPgFrXvuTUo8VLQgiK0NS446T8mRZ21NZvf4akxpd5VyhoMHd6aXXupZOJkX01xHj36URozoXuS1e+CBOjR8eDcKCwsocF2iomLo7Nm4PPMpWbL4jinPHtlNE3vdR58P65RnO4pThMTo05R6OZ6uJF8qTtVSdVEaUBpQGlAauEs0UKQMSYCN58+cosSEWKpdv1kOlZ46foj2XN5I168bzC6UKVuOGjdvx6zJA3u25oif3wDHUo4EJlmD0PpsfnPLiS2clakpTicHJzbhgHBvN2/y9/KnqPgoyszK1Ip2c3KjCr4VKCZJTApfSdLCS5YsSU6lnKhkiZLkXzqAomIjycPFg9xd3Oni5YtavNt1AFak3HIrEyZSq1evTqdPn6bY2Gzwzd3dnTLFCmRzZhZhqhFmVTMyMrSswcbEdvjw4Rzsq1KlSrF5R8nKqlOnDk+o69k90B/AizfeeIPz1jK+dSDrgzbdd999BDDh6tWcK/JKly7NZhgPHjzI9Ue+SGOLIE1aRhqN+20s3bxx0yip7CPlS5enpPQkSr6STBXLVqRziefo+i1TFzIOzsPKhVFiaiJdSsv5oVeCSlCgTyAh/pmEM1p6fYEAHNEfkZeMezruNEeBmShchzg5ZB9nCjBVrhjni1b8g+6rVq1Kzs7OfA+lzuS9wx6Msv3795OPjw9Bz6dOndJylvcH5iTBgjx27JiR2V30GeSBDYL4EPQj9AtZTnp6ulHdZXhaWhrHt+c/2ffRD+PisgdC0AH6gK+vL/dbmDsODQ1lhp40UYrrrq6uhPoinuz7+ucFZk0lIIf4ss0woYxnB+U4CGa4adtk+cjbFkFZeLZw7/F8yOcT98RJTOJhg3h4iPfSLf2bli3vI9pRpUoVbiOeJdwnCMpAW2bNmsXn5v6h/ugDuS2GsNTf9PlVqFCB+xrKLyzBO8Tce0Rfnqwr+vCRI0e0dyLaif4p32v6NLJ/4JrUndTLpUuXKMoMsxH9CXFRH5ioDQkJYVapvh+gvH///Zc3+YzKcuV9xj0tW7YsP6PmTHWjHniHRkREsIla5GmaF/JEn0ffRh4AQJUoDSgNKA0oDSgNFIUGMq5eoa0b/6Skywla8c3v78QLWZ2cXSgz4yqpMaWmGrsf3BTflTczb9CN6zdyzRsmUj0rBtKVi3GUcTnb/GIpF2e6IUws3jQzHivp5MhmVXFdCkzEupb1IQCK13VjTXldn597kD+VcnYSwOM5zgdxSojvVMjuj77ivek/pL8pvsUxxvMKrUAp56LpRmZOtwIwU+sRFEBJp84QmKH4HoQubBF8D96LY8qaNYPFGMpJjBsjKUvoDuLggPkAJ/HtXFKMOYNo164T4jvTU3zre9KJE9mLHD08XMUY/ppYeOBAdetWooMHo5gVKPUO8574dkU+EMSH4BsabD1ZzpUrGUZjShmemmrb+Iozz+Ofs7Mj1zUxMUV8N1/QYiMc9fTz8xZtdxbj47NifBUovr/ThIlSw7c1+oibm7MYT2RwvIoV/QQD8JSRWVKYNUX/w4a2yzbDdGlGxjUxpnRkfZm2TZaPvG0RlNOwYVXW36FDp7kMpMc9QZ7OzoYpRi8v8Yzc0r9p2QhH3VDH6tWDxdjTmfbsidDGRYa2lKTp0xdZrBrKqlevslH/MI2MfMz1N328kJByoq95cfn6cHseZ6Zfocz03OcrSoh5wgo16pGTqzudPrCNsq4Z5hgdnV3ZWtzVtJwui2AhwFmQOnDt5k3D+wfxQ+s0pdTEOLPMRpiQdXRyofTUJE5bqX5LunD8ACXFZfdNWKfb9/di3q6L96Fe9Om9/QLJs0w5Ondsrz4KH6M9obWbUlpSAsWePs5twO+ErKdMAAapV9kAOn9sHwOgMlztlQaUBpQGlAbubg0UKSC5cf0Kwg+cTxk/s1oGUKmXS7fMuWLlqz1lbM9xVM6rnJblJ09/ysd7T++hWX9lT6xPFCY6U9JTKEsAQBXLhnAcgEEvzB3JQOPQ9kOpXkh9LZ+zCWdp+spp7GewZbVW1K9lP/5ww4dlQmoClXEvwx+OW078R9//+72WrjgcoI4wu1ijRg2tOgAk33rrLQbyZs+eLcyB7KSpU6dq1+XBV199RZhUHz16NFWqVInTSIADcdatW0dff/21jE6dOnWip59+ms10tmnThnWCi2vWrKE5c+ZwvB9++IHBGZyAfWVqshX1gY83mPvEhycGHTD7qS/nxRdfFOZDmnJ+uA4zmQBf+vbty2HW/PPz8qMJvd/XopqabP2w70cMAqIOkDjBoPQTfSvjWgZNXjpZgM/R9N5j48nVSXxYig9IgOGQ49HH6ZPVH2sDo6oBVemFTqMYjMR11PeHjd+TBMsRBsARfXXbyW1Up2IdzhPhETERtGDrr/RGjzdxyvJg7QcJGwTX1h1ax8fW/Gvfvj0NHjyYBziID3ACgNPGjRupR48e1KdPH64f2gyzmZ6ennwP9uzZQx9++CEXgfsDv5+4JkVvAvOjjz6icuWyn0HEhwD46t+/vxj0NBSrXF+iP//8k+Q1XB87diz30WHDhtnNvx/66jvvvGPEFDxz5gz3Y9QHZcK3oLzH8FsIgAf36KeffqLly5fTAw88QM899xzXCeAsBNdnzJhBW7YYFjygHTIPtF22C0AdgHe0qXnz5lwXALhS8HwhL1tYlXheGjRooJWH9GgHwCTc27Zt28rsSc8IhAlUuRABACrqCNAZixQAXEHAhHz55Zf5GPdbMizRT0xNQeNZHyiY2bLd5oCs3PobCgEwh/4CUA6Ce4L3VVEI+iXeKwCOIfo+gPcfTOCi/6KOenn44YcJbODx48czwD9ixAhq3bq1FgWgIfrguXPntLCZM2cyOA3AGuZ1IXodQ9fdu2evijY12Tpy5Eh+/+GeA0yGwCfm+++/r5XTsWNH7lfy/iQkJDDoqDepK83sAuCU8scff9D8+fPlqdorDSgNKA0oDSgN3DYNZGZmiLGJ8YR6YnwMeXkL34bitwqApBpT3rbbkaMgAIC1n+9P5Rrep11LOXOBdn3wpQDysqjtl+/T+Q3b6Mjc37Tr8qD19LGUHpdA29/7lNwDy1HDMcPIyTt7LBG57G+KWLxaRhfgozPnF71lN/nVCycHV8PCzKSTUbRDMDkhbUR5pQB0Crl8PDKHyVbUJznqHIOnqDtAxqgV643Kqf7UoxTcvgXngW+/jMTL5OzjTX8/8xqHWfPvXhxTdunShF54oYcGFl4X4MS0ab/RX3/tEePJB8QY4UH+lsZ3KMxmenu785hh27ajYtximCtZvHicWAiXxteknpct20qffbaET2fN+p8w1ZptTQvxIZmZWdSt21hq1qyGmON4ivRpcP2jj54VC/JCxff5JOGHPSfwgzj5kTFj+lCHDtnzQ6mpV8XY4Uux2DuWYI60evUK2rgIfgvLlSvNOvj221W0cOFG6tixgRgD9+I6lSlj6Pvoc5MmzRduNvZzldBG+e0eEOBDss0AP59//jMxtntMjE3riHJnicWMp7VmLFjwNpf1yCPvamF5Hbz33tOsQ1ke6jJq1JcMpuLedu7cSMvi3Xf7a8cwgRodbXC7BAAVdQToDJ0DWIScORNLzz77MR9/+eUoMY9kGO8AtDY12dqjR3PRtu5auy9dSuV0+n+59TfEA9D71Vf/E/NHPpwMfUQC2fp8bsdx9abt6fG3ZgrQzqAL6HXt7Mn03+Jvqc8bn1O1Jm1pQo8aGkgp69Sq93PUfsArNOe1vhQlQMyer0yjuu0elZcFUJlM377cm+LOnNDC+o+fQyECKDzwz1Kq07aHFj73jX4UuW8LdRz8OrV8bKgWbmqytdcr0ym81UMMQlaoXo/jpV6Ko7lvPKWVE1jlPnpm6kICeAm5HHueSpcLot1rFtCST1/nsGY9BtKDg17T4iBw44Iv6a+5U/i6+qc0oDSgNKA0cHdroGhmcW/p1HS1TV6q9g8I4ijxcdF5RbXp+ierPmYTrQAQs25k8TFMtv68+ecc+YCFVs7bn1bsWUEzVn9KB84c4DhtwtsyGHkm/jSH74naw+Zfn2j+hFEey3YvZfDJV/ggXLl3JR06d4iaVWluFKc4nPTu3ZuBHoB8n376KR09epQBI0xqg1mFCXOAjaYCMAdAxYkTJxgkAKgJIGP16tXio3sKXbhwgdq1ayc+ZJuZJmVQBGDjl19+SUuWLGFQU0aCLzdMimMCHh9o5gST9Nu3bxcDks+YlYRyJADWuHFjnowHAAI/lGBqymvm8rIUBiB58pJJAqj+kqOYq0lqRip9tmYGX3d39uBjsBxbVDMMXHEBzEUwY9GHTlw8QdXKV6N24e04DVi0IzqOJIeSDvTHzj9o3sYfKCMrg55uPYA8XbIH4RxZ/GtaRayAu5pCP276kb5d/w1FxUXS+cTz3I+nLP+Io206tlHr1xuPbpRJ89yDhTZkyBAGoefOncuAFJixzz//PIFBKAXgMUA7hAFwBruqXj3DB6qMA30DzML9Rf8B+BEaGsqXJ02aRG+//TaDzbi/OMb22muGgT3uK/pdixbZOsQkE4Ax9FEAK/YSlAlQDYA76rVjxw4+R5ulYBCGfoY6AYxEnwJzDWCNXry9vWnVqlX022+/MdiMPOQADqAj2giwCsxK2WY8J5BffvmF93gWpdStW5dZmRLUlOG57cFGBHAGoHPMmDH05ptv0n///SdWJBtWO6IclP3XX39xNgAdZV0ASJkKWJZg5QGAgk9FPdPx448/5ucUjFLT5xTvAYCRKPfHH3+kf/75x6gPoRxr+htM3AKMBEiLe4C+hNXAt1sAggJ0RNm4xz///DO3DcBgmTJlaPfu3Vwl0+cAgbVr12b9gFEJUB9gJN6N06ZNY0AbusLiD1NBXwMr8e+//+b3sh6oXrZsGet+27ZtpsmMzsuXL0/ffPMN6x9gOcz0QlAmQG68Y9EnAP6jHaby+OOP8/sA72OAsYsXL+b+axpPnSsNKA0oDSgNKA0UhQbwneVfPpgXvaalmgcW1Jjy9t2Z4PYtGYwEyLdn2jcUu+sAg33Vn3qEmZFgS5auFpajQmAqOrq70qWjEcxqbPTGCHL0dKeIRasZzAQzMax7eyoTXjVH2vLNG1BmSiqDnAe+/JFZjDLS9vGfMsDJrEwLY0owIwGS7vl4Nl1LSeNyJLjpU6Myg5EASveK67E79hNYm7bKvTamBAsNJkXBips5cxkDiGA6vvpqbyNwccmSLcLKzkVhycNDfF/vEN/756hJk+pG6gVQCTBr6tTfxALjdLEgrxkzCxHpjTe+E6DnTIKpT4xFcIxt+HDD2HzTpkNizJYp5h2yx6lg9tWqFSK+xRPsCkY+8UQbBiPPnYujd9+dxwAjmIAffPCM1h68rz744FeuE8DIjz5aIMZZmfTww9ljXkT28fGg33/fTPPm/SW+1W+IMV1vbUw5YsTn3EYAavHxyVqbx40zgLjffbeGy3v66Qe1chs1qiYWeTppoKZ2IZcD+OVs3rwmszyHDfuURo78QiwA36eNKWfPXs1lr1hhGIvMmPGHVpe4uKQcOYNlCdbqnDlr6fPPlxqxR99//yfRN76hmJicVqQAaAKMBFD59dcrxSL2XaK/GKwryUKs6W8vvtiTwUiAtLgH6EtFAUiC5QjQsaQYU25dMof+nPMRXRfsyI7PvEFevgF0fIdhIXmVRm1k87R9pXotuZ+fPrhD+HscxmBk/LlT9MuEYbR50TfMgBww8QctvjxAv6vdpjtF7N5ICyaPpIMbQRS5xpc3L/qa5r7ejw5vWsXnpmN6mUfZCpVo2Wdv0Z4/fyMPHz/q8pwB/Mf1vu98TaUEiWTvX4to1Vfj+bpMJ/ft+r8kANYMAWT2oxlD2tOGXz6n5PiL8rLaKw0oDSgNKA3c5Row0DrugEbC5A7MusKf5Nmok3atMUxmQq5eu8qTsRcuXcg1/ynLpwjAx8BcOXz+MMe9v8b9vJ8mGJFgwyH806dnUP3QBjRng4Hlhwibjm1iE68AoDYe/ZcuX7lMtSrUYvAJYGhxETC8IAAvYFYQAMi8efPEx3otDo+KimKzizjBhHq3bt2YJQVGEAQAElhXMGN46NAhNiGI8O+//57ZX127dqWtW7ciSBP4hwRgYk6kaUGYm5SAjmk8ABMARCBgdj744IMMmu7bt49QHgTXAa6C3Qc2m63MKpR/WoDOKVcNq/BKcK7G/2COF0Az+gFM+uIYfauMu/FgFUA4zPQciz5GXwyaSa2qt6a/Dv5FVQKqMGC5I2IHrd5n+BB0EYzK3k17U3MBaq7dbxhUyFLRb8YuHCtPaeepnXyMfuzubPg4h/ngvPq1loHuAOwuyKJFi9jMJ44BXIGJBSablKVLlzIgByAPYHKrVq2YRQjQULLDAN4B4INAj2CFoe8A8AaoCJHmJ+X95sBb/9AH27Rpw/cW9xDgH/rCypUr9dEKdAwwvVq1aszmBNACQXtgwhIMQyloy+bNm1kPQUFB3J/A/gPYoxcA8+jzkNDQUGrUqBEBHMfzgWcIAl0A5DVtM5iJ2GrWrMn9FPEeffRRTvPrr7/y3pp/AEUhMLsM0BgCIE8KWK3Y0EYIFgWY1kXGxR6AFdibUsB0lYJnGBueRVMwC/0F9wtAJFikEOga5myl5NXffv/9d2Ydog5gEEIAfoJpeLsFIC/694EDB7R7jAUZ6NNdunThfvPMM89wvwGo/fnnnwuzUgeZXYznBCxyDPDw7sQebG70A4DFeH+BxQgdSjPAsn1gNEogUg9M4x7iXQuwMzdZuHAhA5oANQGESral/v6gz0PQ9wASS0F78U6Hn0qAqeiTCxYskJfVXmlAaUBpQGlAaaDINQD/ka5u7rR35yazdVFjSrNqKbTAoLaGRai7PpjFJlYTDh6ntrPep3KN6tChb+YzS7FcI8O3S+D9TajSwx1o67iPyad6Ja5T/L4j5Fe/FsFEasz2fRS727AY+PjPS6nx2yOpYsfWlHg4m/2DRDCh+t9rBistOEc6KWnnY/jw5g2DmVUZrt9nJqXQ0R8M44Bz67dQpUc6CoamPyVFnKbgDq046v4v5lHK6fMUv/8o16/ELROh+nxyO8Y31L00phw61DAW//HHv8XCYMN4ZPnybdS79/1inN5EU9WCBRsYnAM77tdfNzBwCBahk5OD+E42zJUAUATwCAE499prfejxxx+giRN/YVCRKIFNnOI6zKCayoYNB4SFpobMzjt4MIoeeaQFj1EWL95sGrVA54891pq/8adPX8x1B6OxTp1QsaA2WCxo9eK80ZZ16/YS4lasWI7Zog8/3Fx8fxtbEDty5IxY1GsYP1WuHCgW6YZTy5bhBIBVmoFFn8rIyMzRZjATL168JMoO08aUTz7ZlsufOzd7HJdXY2E+F3LqVDSDxjgGkCcFzFVsDRpU4SCAwub0L+Pj3oGRKmXp0i3yUFhviectJQXuTwy6khfBfMSYcvXqnWLR70YOrlWropHO8upvP/+8XgDdNbj/gDkKuXgxkT75ZDgf385/1QQ7EkzCU3s2C/BuAhft4u7FAGPzRwcza7DbiAlUvUk7OrplLb04dyMzGf/4eAz5h9WglESA7zeoRc8h3N+WzniDrgnLAAf/XU6h9zWhoOp1GdhMTjAG+3au/IWWf2GYQzq0MXs+JS0pkSL3b6HKDQzvOktzb+t//IR2rvqFN7AyywSGcN3dvctweQkXouj36a9ymE9AMDXrMUhTq4MAK2Ga9lL0GWGedrsYU16ndfOma9fVgdKA0oDSgNLA3a+BOwKQhA3zpi078N3Yte0f/qEtqlsDkEmCkfo6wKdkimCp4boU+A2s7F+ZzbnKMABTGbd8TuJY+p+E+c2sDMNHtoxblHtMrAMc0vs/AzgC8AUgHsxxApwESxLAI9hvYCQCdMHkOthBmIyHIJ4EomSbwPIxFYA0BREALlKk/0KYZIVIk5oAsqSA/SXNPsowe+zhoxECv46yPwA0hB9HKQgHGAlBvOT0ZPZLinP4n4RIsBvHADUBSAYIdq6pRFw8aRpkt3OYwIU89dRTOfIMDg7WTD2in0hfe+g38hj9SLIXAVRJ2bVrFx/aon8AHwAkwRgEOwuAM4ApMLnsJdKUJfqzaZ/Vrw7EgA8CAEkyDXEsTXfK+gAgkgIwCoAk9GZtXwfYOnDgQDZrDOAPjFCYSDVn6lSWY7oH8A/zsXhOARSDiQcwHmzV/AgAy/yIBLb27t2rJQdgqwck8+pvSAjQWA/SwR+m/t5omRfygTRNiwUPUsBOBCCJNsFEMZ4FgK4AGPEOggleAI94L8k+gGMM9MACNxWYBta3FeC+BCNN41p7Dh+TUvDcAmSEyPsD8FQKgGkZjjCUD32jH6IPwVwx2KH2XBQgy1Z7pQGlAaUBpQGlAVs1EFghlCpVDaczkScoJvpcjuRqTJlDJYUe4FzaS7AV04z8PaaejSbvKqHMfEw4cJT8m9Rlk6wV2jZntqF/4zrkEVyev+9gVhWAIATxsOnFtVzOMeXlE5H6KDYf69OniLpCHARbE+Lm78v1AhgpJS06ljwqBMhTu+3vpjFlUJDhPg0d2iWHfkJD/cVCzVgOB2MODEEIjgHYQeBzUJpSBVglZevWI3wozW7K8Nz233+/lgHJAQMeZBYeGJZg28GMqz3F09OVv/GnT38uR7bVqlXgsBvCVykEYCvGtRCwSB0cSvKx/Ae/kVL27o1gQDI0NIABSRme237x4k3MKoSpU7QTjFCYSDVn6tRSPv/+e4DNx3bq1EjM+9QTi1jjhNWVVcxWtZQmt3AAlvkRsB8hO3Yc15ID5NaDuHn1NyR0cXFkRqnMBHkUxZgyQICKkJO7s8dohzevYkASLMQryZcoQ/ifDA5vQCH3NWbTp7Vad6Gln75Brp6l6cjm1Zze1dOb+9vgj7JBYr4g/gVWq0PJW4wByW3LfpCX87UH+1EKTMNK86zlqxgWmJw9bJjvQZxj29cZAZLwj3n2yG6qGN6Qxi07RkmxF2jr0rm05XfDQgOZr9orDSgNKA0oDdy9Gij2gCTAr8bN2/FK160b1zJDsihvR3xq9gewaT1gatMaMXbkbPgItTatzF+/UsnSh5OMY+m6zMvSXqY3dx0sHoBU8MkIEAHgHsywAoACUwcf1LLc6dOnM5tGnw/AG1PRg4Wm16w5N5enTCdBI5hXlB/7hWXmUeCxOrl1InYldKG5Hd64lUFJAVJIkcdGWd+6eEaYGi5MwX2EmUxTAZgB8AWCOPJ+S7AO4ZYYqLn1LaQzJwBmAKYB3IHPRWwAxmW55tLYGibz2rRpk8Z6k3no26U/ltdlWnmOvb79ss1yr49n6RggJFiDYF+ivyKtZBdaSmMajnphcQDYlU2aNGHzs2A+gy2cl3lP07xwnl9A0pzO9PqRZaG+lvqbjFMc9vJ+69sgj+U16CosLIzBYADzMJHaoUMHvo8wCSwFwB5M+JoKQE292AJE69Ppj/WLTBAu+6N8L8J0qxQJVspz7MFMBbMSADeASfj/BZAP/6hKlAaUBpQGlAaUBopKA37+gWxNJyb6LB05mD0RKuuD32g1ppTayN7L7wCEyO+X7KuGIxnH0nXT+KbnMr1pOM7BMIT43leDTbmmXYhh0NHJ04OuxieyD0dRMY6z+6Ov2L8jn9z6Bz+UpqIHC02vWXN+XbDMNLlVtjwH+xIi/UviuKRDKezsLsZF3x1jyj59JubQE4BH+JCEAKCT/cwA1hnaXbJk9rhY35/ksW7YnCN/0wCYNQWYBv+F8DcJv4vwUynLNY1fkPOYmMvCtOnnObIAk/CJJ9pwew0Xb93fHDENAebab0ubly7dKsZXXcTYvTmDndAbfFTaItBPr17jqW9fLHKtJcY4ATR58mCxUPgnYS3ooC1ZcdzISGOAzNoMzN0nOQbT54F4lvqbPl5RH8u5wRLCdKsUvF8gsq2xUceovPDL2KBjH4K/RphIbdTlSR7HHd2avTgbvhq/GvWwzEbbA9TUC/LV+5XUX7P2+Gqa8ThVVIaTwtwsxMkle0zp5Jx9zBfFv9mv9BYmZh+hBp0ep+CaDanzkLcpqFpd+u3D/8koaq80oDSgNKA0cBdrwDoErYgUgA+lBk0fIO/SZWjHlnWUnGT8Q1pE1TJbLEyvwjwmfANKCfYNZgbkDWFCwZ4Cs5Dw8YVNmi00zR9+vmQcmAS0JAASAXToJ6ERNzU1lU3zAWCUAuARwB6ABYBDMFuJyXWcw38amF8wMSjZidLsIyarMbGu35D2dgrMOqI/6f25mZqUvJ31ASPW09WTiywlPj69XL0IZlUhMcK3JKRmUDjv8S/81rG8pl3I4wDsSwgYvPkRsBqhNx8fH6P7h3spAQxr89WbM5XmT3Ff9IL+hfLMASGIB1OS6K+STWbOdCkYufBTiQ2gpS0Cxh4EfVnfX3EMM6S2CkxeSpEmUaXZVBmO58fV1bDqWobJPa6BgQezmg8//DA/f+vXr5eXrd7jXsGPJUwiS+ALDFO9SEDfFtaqPn1exxLIlGadEV8yUmVaa/ob2Lf6ZxcANfqMqRSkH+jzAgiIQZu+/+K6vI/w6ykFgC9EsoHBQkVfBjMWjEjk1adPH44jGZJ418KsLvqXaZ/jiLfpn/QFClO0UsDQNCcweQ0zuQDL8czqdWAuvgpTGlAaUBpQGlAaKEwNlPEtRw2a3E8J8TG0b9d/OYrCd4IaU+ZQC3/byPFiQceU6XGJDMyVEpYs9JJxKYnNrcInpBSPikF0XfgPvCm+czOTUykr/SqFPPSAOL9Jx39dTqWrhpFb+XJ06VgkJ4H/SYhHxUCOi/hygy/I2ylXLhrGlKWrhmrFugX4ace3++BOGVMCAMRz6OvryWY9pXlP7MFOtEUk+w1pmjWrwUlhklQv10S/QHkw9WpOYA4W/gKnTTOwF82ZLi3oWCI5+YoYs3iI7/v0HG02V6fcwurUqaRdrlfP8H1uCuhhvOLmlj0XpSUQBxhTwu9mYKAvm8mFztesyV4cqY+b2zHSwY/lc899KtyvGIDWbt2aGSUBwxNiC2vVKIM8TiIjDczKpk2razFr1AjWjnFgTX8D+1aazkUaANSFOaZMS0rgMaVvUCiK0yQm8hgfV2nQWgsLb9GJj+EPEnJS+HqEmdPqzTrQ4c1rKPVyPLXr/yJfwzkkPSWJgcqrqcnMqgQIKTeOcJv+RUcYwOmg6tl+Wqs1bWe29H3r/qA5r/Wl9x+pyT4sqzZ6wGw8Fag0oDSgNKA0cPdpoEgBSXcPTwoMDiP/8gaTFb5l/fncy9uHNV2rTmNCWOzFc+Tm7klBFSvxhhWwxU02HPmHq/Rq9zFUL6Qejez0gjDR6US7InOu0C1o3a1h9plbJWauXPgDhADgAUBRp04dPpegx4cffshMGPgtgzlKmJ2Ugkl3AJYAGuDLDGWibjDXCoGvOJgshL/Bl19+mX1OglmDvHIDSWX+cg9Th5jwxoYyAN7Ic0vAlUwr9xK4Gj16NA0ePJi++OILsx+cMr6lfTmvchRWrhKFlK3IUfy8/Pgc4LOt8lKXl6luSF16uesrnBQ+RSEnLp6g9Mx0aiD8j3Zv8DC1DW/LewwyNh/fzHGs/QezwDAX26hSY2ot/JxWDxSrj28BodbkAb+hKBcmUgcOHMgAEu4dfBDaCvbB1Oa4ceOoY8eOfA9QvvRVJ+sCc6SQ119/XfjFaKn1R3l9w4YNbDYSgBTAnaioKHlJ24OFBgAVm5eXlxZuzQFMUh4+fJhCQkK4n4IBDADtxRdf5D5sTR76OFWrVqUhQ4ZQv379GAxH/nqTmIgL5hwAKbAYUV5oaKg+C5o/fz6foy1ghNoqeK7ffvtt9l0JE8uPPfYYZxEREWGUlVxI0LdvX34XwNeluUGZUSLdCXwLyudSLnCQ57gn69at477Upk0brsOoUaM0/4UyG2v6G4A81GvixIlcT7xbzElB+oE+P9wzAOfh4eF8H+FrEe89mB3GwgqE4x4DaHzooYe4jZLFCiY5BPHBdgVACROtAB/logw8A3iP4ZmC70kArAMGDBATJNP01cjzGJMm0Lf0CQn2Is71JldzywQ+JdFWPHfo7/hNkHnJdHjupk6dyv5jYbIW73b8LpguLJDx1V5pQGlAaUBpQGmgsDXg5u5BjZq35d/fWGGmFWNLOWZ0djEs+FJjSvN3wZ5jyuj/DOBGvdGDCCZXvSsZxkrn1hm+hRq/NYL8GtxH9V98hko5OVLsjn1apZIjzxJMu8JUaqLwMVlCMA7BOkzYbzDHGbf3MJt9rdqnK9Uc0Is8Q4KobJ0aVE/kVb5lIy2fvA6cvDzJu3IIb2AjOQjwRjsXY1hrJHL53xyt3ouDqVKPB6n5xFeYLWlNWn2ce21M+fXXK/kZhY++55/vLr53g9lv4rx5Y5ilqNdNXscuLk40ZcoQsVizuWAf9uDo8+f/Y5QMgBRk4sRBbF60YcOqRtfXrt0lvnuzGJCC2dKIiGij6zgp6FgCoKejo4MA8MZQz56tGPAaPrwbffutAUjKUWAuATVrBtPo0Y+KMcdDwuJNdTbxunnzYaMUCQkpYvzrQS+80ENYM7lPjNuN58zmzDEAV6VLw3WEAQQzyiCPk27dmtKHHz7L5mJhcvapp9pzClM/kcePn+PwZ57pLOZ8mnJ8W8aUrq5OYjFnNd7c3V143CfPy5TxFO4itnNfgunY/v3b05tvPiHcCvka1d6a/gb/m6jXZ5+NEGOaZmKh/1NGeciTgvYDmU9WZgZdjjlHobWbUcfBr1Ojh/qSq4c3HdsmxmAZ6RRapyl1f2EiA43NHhnMbdzy+2xODn+QEMTfvnweRQiAEuZa01OTOC2ubVzwJYOWo+f8S/A9WbFWI3roubE08qu1uGy1hNVpTlUa3k9lyodwGphVxblfReNnyFKGYE7GCEant195GvbZMur5yjTB7OxtFN2rbACNnLWGdQA/mC0fG0KlHBxZP0YR1YnSgNKA0oDSwF2rAfNLxm5Tc8sFVKBqNbPZJRhAYjt96hizIb0EMxKCeNikpIlVP3ExF+Tp7d0LcMacbDi8gar4VxXATyMa1mE4R4mKi6JftxjABIA6ELnnY4JJEg4mW1iUWOGWl+jLyS3ugQMHhImNjWxuFYDIxYsXxcfuaFq0aBGB3YVJbvifgwCAxKS5FKQFeAIwEnXCdfhOg886COqA1bYwDwlwAxsEbK01awwfxBxw65+ldsHUJEAAKQAoJcsLgKkEacyll2Fga4LFCeYoADEAAphE1zOtZP657Ye0G0p68LFV9daEDW0d/t0wTip1L+6udl9xjD8pAAp9PXxpeIfnOQg+ItcfXm9IL+LNWDODRnceTV3rd+UwtGPOhu80v5MyH+zz6js/b/6JHm/2BPVr2Y+ToU/KsvT5mDuGidSZM2eyCc3OnTsTNgiAZjDqpH6x19otdCGP9SxKmPJFnwKAA4HfOVNAEfcIQArioO8BIAELSy/wQYi+JEFz/TUc64FSmMK0VaZMmcL9C77/AMxA0B4A7KYi22kaLs/BJJZ9F7qAWUvTNF999RWXA+AQG4BBPDNSwMQD+ArQEn40bRXcG+hSMjRRDzwPWBGvF5hMBsgG9qr0/4r2S7afjCvvuTyXe4Cd8rmUYfIc7xgsAoD/RJhjlaAoGNp6f7J59Tfk+91337FfRrD3sIExiTaZ1qug/UC2AXvco2effZYBOJzjPQn/oDBH/corr2j3GPf2+++/1/ymoj1gEKJ+586dY3+nWJSh7/cAL8E+B9sc5k+lIL6pmPYd/XWAzvrB/qBBg/gynoGRI0fm0I8+LY6hP4C8r732GgPjqDdAa+gYx1LAFAUAC0F9cA+hByVKA0oDSgNKA0oDRaEBVzeDL2aUXbN2Nssf57u2baCMq+mkxpTQRk4x/XbKGcN47GruugxLPnWWTq/eQBXaNqPaz/dn06rb3/uUzq7bQqWrVWIzrHVfGMDREffoj3/IpJRw4BiVCa9KF7cKVwziewQAJQDNBAFOsojvjZ3vf071Xn6Ggto04w3hYEee+3uzIY7uP/IwJ8HtW1DYwx20Sx4VylPjt0fy+c5JMxkQxQmYmjnkVp5p52Po8JyFVOOpR9m3ZWZSCsEnJhidtsi9NqYEQDhlykIx5ulJjzzSgjfoKz09g30mym9c7I2PDVq9fj37nl6+nCoWrYaJhXeV+CL8I5oCit9+u4r9JMp48NHYrdtYQ2a3/sMHYYsW4RaZggUdS/z220YGWwHKDRtmGNOj6NOnY3X1MPQ10WzRbl2wySHMzHbpYrDEAl1MmvSLpicZdfr0RTR2bD8G1wCwnThxXmMxIs6pUxfZZyRAS3OMUJmPpT1M6NarV0ks1q3MUVCPo0fPirGZ8bzOwYNRYn7oCLNXR416hOMOHjxNjIWMx+WW3j9VqwaJ9hnGMbIu8vzvv/cIUHSBGHssFv4se4p5AsPzHBeXRH5+3jI6MyRz62+IOGPGH2JuoqKYe6jAG3yXggEq+5/MrKD9QOaD/ZJPX6fuI98XANxQDk44H0WR+7fQ/PeHU99xXzNAhwsw47r66wmUkmjoK/FnI5hBeD1LLJQ9c4J2rPhJmDt9lC6eygal/1v8LYOIMOUK86dSbDXNOmDyPDGmLCmTU5fh7/JxUtwFmj6gVZ5zT4g89/Unaegnv1P5yrUooFJNity3lSrVa8Ft4MxEXy8TGMYALM6h86S4aKGH5/my+qc0oDSgNKA0cPdroIQwTZjLp8/drwB7txCsyCCfIIpNjjULHtm7vMLOD2xEsLxOnz7NoEh+ywO7C6yzS5cu8cR8fvOxRzqwkQB0ATjARLsEX+yRtzV5TH7iA8q6fo3GLRxHFXwr0OW0y5RyNcVsUj/ByHQq5UgXLl0wAjTNRi7kQLClAB4BoALQZouA5QdmIAA5MMBgGhVAUn4E4AdAEQAu5vIAAxemQAEYgdmZXwGjE/7/0EfQ/9FnrBX41wOQDwAfrGLU9/jx43mCQubyx+r1H374gX2zDh9uWOxgLl5uYWAWY/EAWIxggBaloD3oAwBaYaLUkuTV32BaFiCtNA1tmo+9+oFpvubOwRaEbtGvTQex5uKbCwOYiP6GfABYmvp6NJemsMLkOxJmWQHM41nDIgQp6M8YnKMv2fJcyPRqrzSgNKA0cC9oICU1nTxusTvy2158N4OJjt9O7PF7jg2/GfpFKPnN35Z0+H3DhklkbPg+woIb7GGVQol9NXC3jSnBigQAeCUmnq6lXcm3shzcXMktoCxdE6Ze0+Mv5TsfeyQEixM+JR/4fDzdFM/Bv6PH2yNbq/O4U8eUMBtarlxpMScQRwDabJG1ayfT5s2HhO/C+cw4PHLkjPhGzbQlCy3u7NkvCUsiZQU4+q7ZPOw1lsC7GmxFMP8AnMJnprXSuXMjAbz14vbu3RshmIBlxff3mXyNKR1Ef1269D02H9u372Rrq2AUD78/aIuLi6Ow/BJpdO12n6A9tWqFEEzXwjyuJcmrv8G0LEBagKvmxF79wFzepmFgC8L34rmjexmUNL1uzTnAxPKVw8nJ1Z0Byxy+Hq3JxE5xYGb2ung3tu4zjNoPeIVWfTWeti6Zq+XuGxRGPgEVKerAVgKDVInSgNKA0oDSwJ2tAVvGv0XKkLyz1Wy+9plZmRQZV7QfZ+Zrlr9QTELDzGBBBew4MCqLUsAgAkgFE7NgogFwkuZli6JeYEyeTTD/4SvrEyeA7eIiYIVhK4gAvMhvP4B/vhYtWjALF0CIOTASdYP/R0yYwYdkQQQmNcEaLKiA3YjNVsGAD6w59FVMRC5btswoi1dffTWHSVujCOLkgw8+4D6PiUNpktU0zu0+x+QlnsO8JK/+BoZzbqZC7dUP8qonrkt/ktbEtRQHfbao7xHMWWPSBO9FsJCxGAWLD/RgJOqPRQmmzFlL7VLhSgNKA0oDSgNKA0oDtmvgbhtTwmdk0qkztivCJEXWlXQCw7IopfawfpR4NIKuRMdSYOsm5OjuSmf/3FRkVbrTxpQXLiQQtoIIGI+7d5/MVxatWtWiNm3qijGjH+3bd8osGImM7TWWwDc+2IoFFZiWxWarYEwJliY2gHgLF240yuK9954mU5O2RhHEyVtvzWFdYUwpTbKaxrnd52Az4v7lJXn1t5iYS4TNktirH1jKXx8eE1nwuQewKy+cPKjP9rYfN+jUh2o07UB7/l5EfsFVqFXvYQyw7l+/xKguCecjCZsSpQGlAaUBpYF7TwMKkLz37vk922IwrqTZSgwMwFibNWvWbdfH9RvXb3uZxaFADGAKImAHgrELoApmVS0JTMEiTn7MtVrK09ZwsAUKKgDMARChr8KUKtqll2PHjjGbTh9mepwfINQ0jzv1vDj0gztNd2CyN2vWjEFw1B3MnEmTJt1pzVD1VRpQGlAaUBpQGlAaUBooNA24B/mTf9N6nD++0+Hj8sTCFYVWnqWM790xZcEMfL36am8xpnRmUPSdd36wpF4eexX9mLLg8wZgM44c+TCPKWFKFSZu9XL48Glyc3PWB+U4hpnce1XUmNL2O1+yZCmq1rQdVW/WgRPDR+aiKS/SlWTLwK/tpagUSgNKA0oDSgN3sgaUydY7+e6putusAZgihJnHogSrbK60SqA0oDSgNHCbNACGJEwzA8xW5lhvk9JVMUoDSgN3pQZsMVljSQHKZKslzahwpYGi1UAJYb3E0d2NMpMtux8o2hqq0pUGlAaUBopWA+7eZdhvZFGajS1aDajSlQaUBpQG7i0N2DL+VQzJe6tv3POtxQS7AiPv+W6gFKA0oDRgQQNY6a/ekRaUo4KVBpQGlAaUBpQGlAaUBoQGbgoXBAqMVF1BaUBpQGnAsgbSkhItX1RXlAaUBpQGlAbuaQ2UvKdbrxqvNKA0oDSgNKA0oDSgNKA0oDSgNKA0oDSgNKA0oDSgNKA0oDSgNKA0oDSgNKA0oDSgNKA0UKgaUIBkoapXZa40oDSgNKA0oDSgNKA0oDSgNKA0oDSgNKA0oDSgNKA0oDSgNKA0oDSgNKA0oDSgNKA0cG9rQAGS9/b9V61XGlAaUBpQGlAaUBpQGlAaUBpQGlAaUBpQGlAaUBpQGlAaUBpQGlAaUBpQGlAaUBpQGihUDShAslDVqzJXGlAaUBpQGlAaUBpQGlAaUBpQGlAaUBpQGlAaUBpQGlAaUBpQGlAaUBpQGlAaUBpQGri3NaAASTP339nRmfy8/MjNyc3MVRVUWBpwc3OjMmXKFFb2d2y+ZcuWJWdn5zu2/qYVt9SeKlWqUI0aNXgLDAw0TWb381IlS5GXqxeVLHHvvAbVM2b3bmSUYenSpSk4OPiuel6NGqhObpsGSpYsyX2pXLlyt61MVZDSgNKA0oDSgH01oMaU9tWntbmVKFWKnLw8qYT4LVWSrQHopKSjQ3bAHX5kqT3uQf7kGRLEm4uvT6G38l4cU7q7u1DZsl6Frtt7tYAyZTwpNNRfjCkd71UVqHbbSQMYU6IvBQQU/rvQTlVW2SgNKA3cIxoo8i9SJydnCq1cg9w8PCkq4ihdTozXVO/rF0AVQ6uSh6c33RR/Fy+coYvnT1NqSrIWx54HLo4u9HLXVyjYN5iz3X9mH838c6Y9i7gn8woICKD69evThg0b6MqVKxZ1MG7cOJ6A7devn8U4d8sFR0dH6tChAx04cIDOnTtnsVkA5qZPn04rV66kH374wWK8or5gj/a89957VEpMIEAuXLhAL730UqE2q03NNtS7WR9657dxFJMUU6hlFSRzH3cfqhpQjfad2UsZ1zIKkhXdS89YgRRlY2K8355//nny9PTklL/88gstWbLEqlwaNWpEPXv2JH9/f3JwcKBLly7RTz/9RDt27LAqfXGN1LJlS0pNTaV9+/YV1yoW23q99dZbdN9991GJEiUoIyODBgwYYFVdK1SoQE899RRVrlyZXFxcKC0tjf766y/67bffrEqvIikNKA0oDdyJGigpFpgFh1amgPIVyUUsbryWmUkx0Wcp8uQRunHjBjdJjSnvxDubs87OPt7kU6Myxe0+RNfF76MlCW7fgqr1fZj+e+MjunIxzlK0uyIc4Kt/k7qUdDKK0uMSLbYJwFyrqW/SyYUrKWrleovxivqCPdrT9N0XqaSDYUyZdOoM7ZjwWaE2614cU06ZMoRBji5d3i5U3d5rmTdpUp3GjOlDXl4GYsR3362h+fP/sUoNLVqEU79+7ah8eV9ydCxFCQnJ9PXXK+m//w5blb64RmrXrh4lJ1+hnTuPF9cqFtt6ffDBYDEPW4XHlFevZtLDD79jVV1DQsrR0KFdqFq1CuTq6izG9Om0YsV2mjfvL6vSq0hKA0oDSgPWaKBIlw1WD69HbTs9SmFVapJ/QAVyc/MwqnO5ALGyzas0JV1OoNTkyxQmgMuWbbpQ6TJljeLZ66RplWYMRv66ZT6NX/we/bT5J3tlfU/n06xZM55QrVixYq56OHv2LJ0/fz7XOHfLRXd3d9ZJ586dc23S1atXKSkpqdjrxR7tGThwIGG7du1arjqx18WE1ASKT4mn9Mx0e2VZKPnUqnAfDW4zmMp5FZwpdS89Y4VyMyxk2qtXL/H75UZffvklvf322wwCWYiaIxh9PiwsjFJSUigxMZGByZdffpkAVN7JMnToUBo0aNCd3IQiqTsW8NSuXZsOHz5M7777Lo0dO9bqevTo0YPq1avH71D8lgIgf+yxx+i5556zNUUXtAAAQABJREFUOg8VUWlAaUBp4E7TgLuHF9Wo1YAcnZwoMT5WTMQ6UZXqtalBk/u1pqgxpaaKO/qgbJ0adN/QvuQWkPtcQHr8JQHOJVDWlat3dHutqbyDmCyGTsq3zP278YYYX0EnV2KyF39bk//tjmOP9vwz/C1a99ybdP2qZdDanu26F8eUUVExdPbs3Q3227OPWJtX//7txZjSmaZO/Y1GjZpJy5dvszYpDR/enapUCRRzR6kUF5ckgMkyYizRnwBU3skyevSjNGJE9zu5CUVS98BAX2rQoCrt3x8pFvp/RaNHf2l1PR5/vA01blxdjCmv83Pu7e1O6Jsvv9zL6jxURKUBpQGlgbw0UKQMyfJBIXT+zClKTIil2vWb5ajr0YO76cjNXVq4p5cPtXigEwWHVDFiUmoR8nngWMqRYGqjQWh9unb9Gm05sYVzwrFenByc6ObNmxzH282b/L38KSo+ijKzMrVoMPNawbcCM66SriRp4aDKO5VyYvOQ/qUDKCo2kjxcPMjdxZ0uXr6oxbudB66urtwegF5+fn4UEhJChw4dovT0dGaqgfWGa1JwDpGAERgYYHAgfqVKlZgNExsbK6OLCQFHchKTA9ggHh6ivQKIg4C5IQV5QD+zZs2SQdoejDmUgz0m7ffv308+Pj4E04inTp3S4skDMAqxYTI3NzamjG+6l3VG/aAfTAyjnPh4w+ANplOzsrLo+vXrWlLUDywW9A20A+mgE8StVk0w23QMIbQVwAV0AUEcqRPoWp8v2gwwEswrucJbFooyEAYmTFxcHNcvPDycjh8/rt0fGdfLy4uqV69OUVFRHFeGW7NHfVFH2T6k4b4s7inqa6/2IF/0K2ymbcU1vaA+devWpcuXL9OJEydY7/rr1hyjDfvP7udNXx63zYrnFGzqrOtZ3C9DfEPoTMIZunot+1mRdcC7pWLZipSWcUU859EyWNs7lHQgh1IOnBbvl7BylSj60gVKTk/mdxLSOzkYnjtXR1dCuRBzZWmZmjnI7RnTR4fJ5KpVq4oPz7PMUtVfy+tY/+zA/C50if5oKqgLysBzc+TIEa2/4r6iz5t7bpEX+jyu4TmDID76PBiFUaJvmwriI66595tp3NzO5fNz+vRp0r/fkEY+u3h34trOnTs5K3NtsFTGwoULOZ18J7Zt25YBJICcMj9LaW0J198fmE3GO/TkyZNms7D0HoVOcf/07ZP3JlMwUvD84v2GOBBckzrCexPvEWtE5on3qK+vr/ZOl789+jzM3R/5u6HvL/o0qJP+fSv7JPoUfjv072Gk0+eH8zp16vC72Vy/w3VLIvss3uumv1/y/oA5D1m8eDE/h6Z1sZQ3wjdt2kRLly7ldDgHIPn1119Tq1at6KuvvkKQEqUBpQGlgbtOAxlXr9DWjX/yAlbZuOb3dyKwIp2cXSgz4yqpMaXUTOHsSzk5CltGRDcyr5FzaS9y8y9LyZFn6bo4h9nUEoKthmtSwILDp8KNLMN4qqRIjy8HxHcPLMdAYsblbItIiA9To4gHcXAR34xig5iCTigvfu9h3m7eYsgiHsK5HHyblC9HYM45ebiRo4c7pUVnj18RFwJGoWtZH0qOOp8rG9MQO+d/MPRKCMsXqB/04105hFLPx1BmcgpHRntuXr9B+jqifjeuZZH4gNXqC70hL49gATREnM4uSCiwlLMT6wKBOJY6QRp9vmj7tdQr9N/rH2nf0TIjvneiPPdAf8pMSqEMsXkJc6cpZ6NF/bLHu4jv4OZKnhUDmXWqvz8yr1z3or5os2wf4hr1DTu1B/ka+tX1HG3FNb2gPqWrhFJmSpq4N2I+5tYYQx8nr2N8sxaHMSXqgbkmaU2nkn8lSklPodjkWLuPKUuVKiksOC3KVTUw51qzZkUxRrMduHRychDzR47MyqpePVh8h5cQ3+dncpSH7/eaNYOZwQXQ5RqeHSEwc+ognpm0tJxjc+gJgB+uZY8pHcXcQiWxMDRFjI0u5CgH8RE3PT1TLBz1EfMv5Wnv3ggxHrJuXCMzBKhTq1aIGANE08WLl2Qw7z08XHlfqVJ5viZZjebaYJRQdwL2GtKBzQbp1KkRA0hPPdXerixJ/f0pV660cLnkSUePntXVJPtQtjkiIppiYrLbDJ3i/unbJ+9NRgbmhLLEGNIw14h4GItJHeEa4lgjMk/cKz8/b6pY0U/cu1NaX9HnIetqen9QrqyTPj6OXV2dxNzVTa0+sk+6uDgxEJh16zdOpkO/xDXZ7kaNqnK/g35sEfRx9NnLl9PEfIuxtTV5f7p2bcpZ/vTTOn4ObRlTrlu3lxYs2MDpkAkYuwsXvk1t29ajadNyf/ZtaYeKqzSgNHBva6CE8HdlmN0tAj2Uwke6mKT0KeNHTVq2pwN7ttKFc1EWa+Lm7kGt23WjM1En6MiBbKDSYgIrL4zvPcEs+2jv6T00669skGxKv6n8YZclgMqKZUM4d4CWL8wdyUDj0PZDqV5Ifa3UswlnafrKaczAal3jfurXsh+DLfhhxEq6Mu5l+Id4y4n/6Pt/v9fS3a6DOXPmiB/DNAbYwMqA4IcKJlNffPFFatq0KT3xxBNadTCxiY8xybYAgIgJVgA6ctI5SgADb7zxhhYPk+vmZNSoUdrk/kcffSQ+DgzsSVm+TANThn369OH88AOfnJzMk6w43rNnD3344YccFYAozNzJeiBw3bp1PBkr87JmD5OWNWvWpM2bN/MkrkwzYcIEBmvnz58vPmL20gcffMCXHnjgAbEabTh99tlnnKZ58+b0v//9T/x4R1FoaCjHwST83Llzaf369eIjtJZFxgsmoBcsWMBp4IduypQpfIx/piZbv//+ewZ6oQcIwDkADJiwf+edd3iyG7rAsdQt4p05c4b1ZG5iH9dNRbYHk9moP+TVV1+lhg0bct+wV3v05aJtCQkJOUy2YsJ+2rRppPephnb0799fnzzP4wdrd6ReTbJXd+lNtlr7nM565itKxDPs4auVt2z3MlqxZ7l23v6+DvRYk8c0cAZMTLwP8F6QMrTdc1RfLIRYd+hvQnwpk5dMonoi/KG6D8kgo/3rv7xGl69cNgrL7SS3ZwzpACDiudU/PxEREdxXcstXf+31119ndpbsi7gGQOm1117TnnX0G7xbYJoUgvcJzJMuX76c48H0Ke6naf985JFHuL+NHz+eAaMRI0ZQ69atOQ/8w3sMfV1v/ji395uWMJcDvKfxPoBfUykAHfGeAZsRgveBOUGbli1bZu5SnmHo5/PmzaPo6GjWVZ4JrIwg3+kAIXG/IbhX77//vqa3vN6jY8aMESstGzATFCa4IUiP/PAuxjsZ5mrle4kj3PoXGRnJfUwfZulYgrL6voS+MmPGDNqyZQsny+3+gF2K36kvvviCNm7caFQMQPeZM2fS33//Td988w21b9+eBg8ezANdRMRvEH7b9Om6dOlCTz/9NL8D27Rpo7VvzZo1hH5mjfTt21eYyXlYS4vfhcmTJ4sB/FFOLu+PaV4ATgcOHGgabPX5t99+y881yleiNKA0cHs1kCImBT1uTajlt2QsusFvJibjsMe7Dxves+betfktx5p0eA9jw3c/NrlAD3ssFixOAis8cAmyaf0KSks1/Gbr66fGlHptFPz4/hnv0rXkVLouvsu9QitwhgCe1g19g6o/9SjBhOpfg17VCmo55U3xEXiDNo8xjKdafPAag10AwABoQhIPn6DdU79hkKhyr84U1q29ll5/sPGl9ynjkmERcEjnB6jq4920y3qTrUFtmlHNAb0YqAMQBhali29pfo4ubNpJh2f/yukAiDYcM4ycvD21fCKX/U0Ri1dr59Yc1BnRn/wa1qazf26kih2z2brb3/tUgJznqMOcKRS9eScd+tZQrl+9cKr7v0G05+PZlLD/KPneV43qvzyE9VAmvCoXmZV+lQ59M5/i9hxiPTd5539mq3Ls5yWi3E18zbWcL7X88HUtnqnJ1jYzJzCQKd8nV2Ljya1cWQZht4+fQWkXBKAlwN96oweTT/VKWj6Xjp2iPVO/1kBl7YKFA9mefZ99L0zuHuRY4YN6U+D9TbhvoN/Yoz364tE2gM2mJlsBcDcZN4rBVRkfwPH64W/LU6v2xWlMCUtfgx4YRKv2raJOtTvx7wQasXTXEnIUi17tNaacNet/YiF6AOsHYIupyVYAiJMnD9LAI0Q8duwcvfDCF5zGmn8TJw5kdhYAQoBdEABKw4fPEOMjg1niZs1qinFaP/G7WIqv47fpm29WCTcFG2nChAFiHqsGde06Ngfw1LdvW2HBpSO98srXDBjBPGqHDtnzd6mpV8X460s6fTp7kcKSJe+KsV+6+M27LhZJGsb+5trOFTHzD7/ZU6cOEe4YQrWrACShk6QkwyL9tWsna9f0B2jTwoX/6oOsPgYwtXz5BDHOixdjnWlWp8sr4tix/cQ4/D4GIWvUCObouFevvfatpjeAeNOmDRWEAkNfQaTIyIvc5szMLO0eTZmykP78czfnMWPG82LcHSysDc2l7duP0Zo1k8x+5wA0fv75zzhNXv86d24k5pR6Megn+xL6yqRJ84U7qf2cPLf7AzOny5aNZ0D33Xfn5Shu6dL3OO+BA6eKZ6GJaF8P8b1WkuNdFwtOpk37TVhO2qOl69mzFQ0b1pVWr94pAOOGWvuWLNkixq1LtXi5HQwe3Ikef/wBLS3A0jfe+I4OHoziZPL+mOYBQL1Hj3dMg60+X7RoLD/XnTqJ328lSgNKA0oDFjRgy/jXMCtsIaPCDgYYmZdgwBBYIVRMqHnyHvHPnY7IK5lN1z9Z9TEzjwY9MJjK+5SnSX9M5PSpV1Nz5BPoE8jspBV7VlBEzElqVd0wKd4mvC2DkWfiT9MfO/8gABsAGp5o/gTN2ZA9Ybls91KqGRRO1cpXE+DFCgr1C6VmVZoXCSCJxoEpg8l/TM4ePHiQHnzwwRxtlgEYqOAHXC9gzMA0HCY9H330UQoVIBzyWLt2LU9MI982YgK3g2B9zJ49W3yIRHJyAE5SPv74Y/GxWUb8OA+zOKGBiV+woQCuIU+UA9N0EHxEADgAOLp69Wr2ywhQtV27dsyo3Lp1qyzKqj3aCf9nYGMC1AQwa2lFEco2J2BMgakCABV1gV8vAHpgjMGkI5grAGrAgPrjjz84Cz2YAh+KAEEBvmFiXc/ik+Vhohp6f+GFF5g9BlB05MiR4uOmEwMGyB/6Qhm4H7gvjRs3Zsblp59+KrOxea9vsz3bk1dFAAhAH7jHAGjLly/Pbc0rnen1zcc20fHoY9S8agtqE94mR59GfGueU4CR205uo12Ru8Rigyepe4PutPPUDmZHw7xq76a9KeVqCsEEdIUyFahTnc40ouNIApioF/S3tuHtOK+tgp1dJ6Qu3RCTNH/uX0s7IrZTw7CG1LV+N/pm3dcUfYtlmXw1e9W4Pi9Lx3k9YwD4wGxDH8I9hf86gFP5EbwT8KwDrIa5ZpgfRV9Evxk9ejRPqq5atYqZjb179+bn47///qPdu3ezr1k816b+E8FUxrsHjEqYpQQYiWcE4BfYv127dmWgEIsD9GLL+02fDseoG8DIixcv0q+//sp9Ded4xgAkQd58801uF/yf4p0GwAwCMDG/0q2bYSIN7+PCEDw3AOLAUm0j3s3wTzhx4kSr3qNTp05lsA7mWMGmb9GiBYOReLcBjIQA2MakOQBiALfwgQuBOVpbxdvbm9BXADjj9wVscbzP0Rdyuz94v+G9CYBbDyyi/CZNmnA18F6Ez8UhQ4YwcI57jPf8k08+yeWA2Y73t14AlGJRx4oVK5i1CcDdGsHvFfot4qPPgu0P3b/yyiv07LPPchYANgFiP/TQQ/z7AzAV/chaVqm5emBhC9j4BemP5vJVYUoDSgNKA8VZA/iu8i8fzIte9WCkGlMW7l1zD/JnNmDk0r/o8olICnrAwM4wV6q4ReK33PiKk6c7+0EEMBgqwEeAcP6N61DM9n10etUGurh1jzivS5V6PEgHZs6j1AsxnAFYfVLO/7udLh2NoPKtGjMImqMQEfHU72upTK2q7IsSdfUKCxbmThsyIIk+0uiNEQIcdaGIRau5HVX6dKWw7u05X4Cktgj6YnCHVhS9ZTdFC9DTr34tI+aiUV5QihmBz8zj85cxwzF8sPg2fbonA5Kp56Jpy9tTyVGwFhu9OYLOb9hGZwT4CdH7krwqgFeAoM5lSlPdFwYIJquJ4kV8sCcPffML1X/pWXIUC1r3TP+W6r34DAUKPZ5YsIJNwgKMRBkXhI4DWzcmALxVH+9Ox34yjGO5YFv/CX1LsWd7ZJ6W9mHd2jEYCZAZYDTYsEECGLVVituYEvUH8Hji4gn688Cf5Oflx4zJ3WKsaq8x5fvv/ySsl3iJb9jHeG+qs9de6yPm7VzE4u1fxVjhtPgWryzGHEGm0aw6B4vus8+WMBPs/vtri7HFU2K+aAaPWd5++0kGfn7/fTMDQv37dxDf9A/RP//sYzALgGTjxtVyMANRH4wjDhyIEotdMUdVXwB2cWJOZbUYu4YKVwetRN2fob59jQFCMAEBpK1cuV2MeSKoWzfL7zfTxj39dAcGIy9cSBALGdeKMUFzPoeu3nxzDkcfOfILBpg+/vg5YfkqWYzNfuHw8+fjTbOz+vyxxwzzlGBzFoZUqOBHn3zyOzNhAa7BZOzrr8/mot5/fwCDkWBsLlu2lfXVsmUtsbC9N7ftnXfmiYW9bzBYuG/fKcG8q8tg5Jo1O/n+IZMRIz7neQMAm/Ah+d57P3LeCQmGBSh8YuU/Hx8PQl8BexSg9Jgxvenffw9wX8jr/iANfCmaCkBXsB3B3oXPRZiWBXA+d+5aMaa8IcZ4nbm9O3Yc14BnmQeAUgC0ixZtEuPRssy+lddy24Odi36bnp4h5lvWiGcrkDp2bCh005969ZrASQFsLljwrxg7txDzofXEouEFDEpnZGTmlnWu10JD/cX8pRvnk2tEdVFpQGlAacAGDRQpIGlNPWFK9b662R+IJ48eoBThT9KekphqmCiFGURMSF4QJhNzkynLp9D5xHMc5fD5w7y/XwCQkGmCAQVTGQj/9OkZApRsYARIbhJgCEy8ApDcePRfZjnVqlCLYLox60beAC0XYud/YLgcO3aMc5XsE1uKePddrBoz+D/DxDzMiEIwmYsN4AYEZiDNmQjEZCk2TDoDmDQnAPcAwAFgW7JkCbMXUQ7YRPfffz+bf8QE+b///svJwbLDxDiAClsBSWTw119/MaiC4/ykh9m/n3/+GcmZgSMZqAB/oQOwGSFgAJnTCfoh2oOV8RA9CMgB4h8ATDA5AeQCFMYxgAKYOAQ4C3OxuC9gXkKgN9wLMJzsJfZsT151gmlGCIArMNWw6c3h5pVeXr+SeYVOi4UDVfyrcBAmC0zFmuf0ijDDOmfDd5z0xs3rNLLjC/RAzTa0YOuvDHTiAsDInad28hbmF0bVA2swGxvmc/Sycu8KWn6LXXnkwhHtEupaqZzheUKavN5NWkKTg7yeMYCIAL0BwqPPAGCSjFiTrPI8RX/7888/eQOzVjJ0wY7E83rgwAHC8wkBIxNADRho6J/PPPMM908Akp9//jkvkgBbDXngWcAAEoAd9mBsw0wowEwAhWDp4f1hCnzl9/0G9jMEoCNMf+LdCOYigFYp0uwm6oM45p5lGdeaPQB3MMIBXM0VrOrCEJiIxaIObAB25bsJYBvM6Ob2HkUfAdAIkHHSpEm8sALPod4cKNjhEMTF/SmITmCSWfaV0NBQ9quJRRXbt2+n3O4P7gV0KJmgYHYCnMYe5lZxv/DuAFAOWbRokWZeGO/+7t2783v7999/5+vyH54j5GGrgBkJARiJxSEQgJJoEzboDL8F2OQ7H4t39ItUOJEN//CbgcUvaGtBFqDYUKSKqjSgNKA0UCw0AP+Rrm7utHfnJqP6qDGlkToK5WTHpC8oVZj6hCQcPG5zGXumzyawAGE2tNn4l8hTmA4FIJl1RbCTxJZRxTARfSU2gdKE+VNTQRywD0tXCzNcKlHCNIoA1bYK07CZDEie+2crlRXsSt/a1dksatm64cKEqxuXGbv7AKc9/vNSavz2SMFybM1sxRwZ5hEA0PPUkj85lq2AJhLF7jxAZ9YYxrfB7VqQZ5hhYhxmSaED1BcCE6rmdALTrdCJS4qBiVWCcuokWZivTThwjFmRMLXLx4Ix6CJATJg1BZB6NfEynVlrqMeZvzYx+zOgeYOCAZJcc8M/e7ZHl63ZQ8l+TTx0gtm1YNgmnYwyGze3wOI4poyKi6JpK6bmqLa9xpRg22FLSYFbBcPYXF8YQESAMTt3HmcQCUwwbPmRn39ez2AWAK1ff32LAS7k06xZDWEpykHMCZwUi7CXc9YAQQHUgIE2f/4/zFQDixKA2Lx5r7GJVbDVwNhLSEjh72MAdvhOnj59MYONYMzVqRMqFrsGi3GDFwOD+nqDAQiQFSLZdfrrlo4BGEEAsMFUJ9KuWDFBLK43jPFxTW92E3GOHTuL4HwL/EcOGPAgA1czZy7Ldz65Jfzhhz8ZoAVIC2A3KMiXo8OcaHh4CN9/3EPI/PkbxBi/CjNXcY5xIvwazp79khjzjyCYSwVrVG8OVJrPRVyAaQXRyZEjZ7S+UrlyIPvVbNkyXLi7OMSAHupk6f7AnGqdOobfFPSxXr1aCbDxY60tmzYdFHNwXZEF/fjj35p5Yfj/7N37fjEf2UTMCxr0wJHEPzxDzz1nO0EAzEgIwMilS7fwcZUqQWxGGGAl6gq2Kjb0c8jJk+c15ioH2PgPY8oPP3yWn5WJEw3zmzZmoaIrDSgNKA2Y1YCD2dBiFJiVdY3WLJvPA8uKYdWoSg3BlBF/p04YgMDbXVWAjRKM1JcNn5JgQ0m7/bh2ToCWlf0rszlXGRegZ8Ytn5M4lv4nnR2Fb8KM2w9IAlCSYKSsoy17TPoCwIDIfDCpbW/BBDMASQjKlMcANCQACqAAk+R6ATiXHwEjsyCya9cuLXlMTAyz+bQAOx1gsh8iJ/7lMXx2yol4MDFNdYIP7ztRAFiB3QSACH0AQAeYXgBE7C3WPKenEwwDEpSNlagQMCMNe3/eHzmfDS4evXCUAcmA0uXZnwdHuPVv60nbWLz6tPY4BkgCIAwgHxYRAPQFIJYfdhbAIikAVPBcAgySwKQeRN62bRsDkvBZiPcI7iuAdACMSAOTwagTWF4yXxwDRMZCCFPBu0APSBbk/YZ3C+qDd48U9LWgoCBeIIDnzp6CZ1WaoAZj0RIru6BlykUbyAdtA0gMsfY9ClDuhx9+YGYl6jh27FhOXxj/AI5KAWMUpljB+kNfyOv+wOcnWKAQMCXRZ9CnwPyFD0fcP39/w3MKBrupoBxTkX3QNDyvc2lmGv1dCky1hoaGsu9mCeLKa/bYow+BYYqFMYWRvz3qqPJQGlAaUBqwtwYCK4RSparhdCbyBMVEnzPKXo0pjdRh95PrwhS5BCPzkzn8+AGMhMh8HFztP6bMEhPb18UGgZlO6dsSZkkBgEL8m9TljU9u/YPp0/xI9H/ZY8L8pI/flz2WSIuOIa9KOb9P8pOvPo3Ux42sG5q/TACEJYVfSo8gg8lFgJPNJ76qT8YT1EYBd8gJzNmCwdt47AvsPzLx8HE68esKzfSvPZtxu8eUO4S1nqKUpUu3ClcDD7K/Ofi327btKJuitNbnn77uAHqknD4dIyxpVRbWkkqLb/nyHLxr13F5mYElgEXBwX4MhIFBFh5ekZmI/v6lxULG2vTxx4vZFx5AKIinpyuPD6ZPf07LRx6AERcfnz3fCL+FEoyUcazdoxzUR/oNRDqYnq1YsVyhjCkB7s2aNYqrN2aMWOQhnuXCEGlqFXmjbY5i8QJEmnGF30GAjXrRz0MBlJs1a4VgVnZjEPt//5upj2rXY/iNlALGaIsW4WIcFsD9Jq/7s337UWbpok+ACQr9wjwrAEC0B+Zlhw7twtnLvSwLe7ALTUXft02v5XYeEGAgb2zceECLduBA5C1AMpABSe2CnQ5wD8EwnT17daHkb6dqqmyUBpQG7kANFHtAUuo0/UoaHTu0h4LEQDMwOKzIAMn41HhZpRz7kiWyzY7kuKgLuCnMMWaLARyyNq1Mp2d16X/Y5XXsZRxL1xEHE7PmxNxkO8zwSRBMpoHfGFMxx+YzjWPrOdog26GvG8qS4WDtwKSjXkzrK3WCODKdPr4Mz42Zos8DzDJzAiBDiqVy5HV77PU6Qf1kmZs2bdIYRrIcfVwZZmkv4+rvKdiXRSFgo4FBB+AMLCmY8QTzZ+DAgfkCzvJqQ17PqfDgpGWhrTbODtKuaQfivhjEGBDGvYpPsfxe0dIX4gFYjWACP/7448wgA1uubt26bLrS1mLh58pU9H1S35fkseyvYFGDOYbywRYDkxjmnpEeJjalxMfHm/VHKBdHyHiW3m/yel57/bOeV9yCXMciDphDlfuCsArzqoceYEVc2UZ5D6x5j+L5g+Beg3FoahaVL9rhn+wfyErWU+71YeaKgq9fANswYQ0BAx99CSCdfsEI2g1muamY6gnXpb9H07jWnuvrbm2a/MSDdQA8RzBvDesCSpQGlAaUBu4FDfj5B1Lt+s0EEHmWjhy0DAKpMaVxb9D/NslvAeMY2b/Blq4jvt5MqFF68TtrKiXF4snrtxaayms3xCJZU9HXzfRavs91Y0puz636cVm3jnd/9BWzCvVl3DAZ8+rrZkkvCLeoF85cjg2ILIGvWQI0lXKrevK0cPbydonC0EbZNrAjT/3xp1GZ8ppRoIWTm4I1B9HrzUGYOywKgV/Jf54fJ1ivrSigWX0KaFqfzQGvH/YWwfepveV2jSlR76i4SHtX36b8fv55nRgXHBDj845iIWFVgmnKRo2qCZcIk23KB5GlLz4cy36D/Y0bhk5qbpwg+2RkZAybs3zoocbMFoP/QJhZRXqwJqXExFwW7jg+l6faXvp2lAGJianyMJ/77Gc9nxlYlczV1Uks5h3NpkRhFrUgrMK8CtQDrNC7vEfyHqxbt1djJcq8wJ7VC4BBCO51gwZVhQUfgwsQfRx7HJcsma1/WU/RFXRidKILJ2E1ar8wB9xFWGirxT5E4+KS2IcmgEyA7hLwRbv79JlolBYnej3Ji9Lfozy3dS/boE8n9a4PK+jxpEmDBNEhULiY+k+wlDcUNDuVXmlAaUBpwEgD1iFoRkmK7gQfHaUEKOboYGB0FF1NcpZ8+cplcnd2Z1+U8mqwbzAzIOEPzp4CH2Aw/YYN5vPMCYAFGUf6JDMXz1KYZCDCbyME7B1L4JulPGS4BAX9/PxkkF33cvIerEAAEvrNlOEFZg/08t133+WrDvihl6waZAAzlPkRMLcg0nRrfvLILQ1MHULA8tHrA8eYmLdWUlMNH996f4KY6DYVe7YHYC5AA3MCkADMPfg8XL58OX/4tmnTxlzUQg8L9q2olVE1wMDEik2K5bCYZIMZKZhjllJDmGuFRF++KIOs2l+7bugrYGEXpsAnI3xNDho0iP3kwfwp/EraKmCxSUH/wzMTFxfHeSIcQKcU6c8PrDsITMaCsYc8wEYDoAgAGiLZaeiT6B/ox6Z9myPa6R/KAUAIJp4UPPtYhCGBehlekD1APYCRaNPMmTONwDJ9vmCafvnll7xJxp3+ekGPrX2P4vcEvwswYQsdwWS0uXc7dJTf3wzZlpo1a8pDzfQ3fDhC8ro/MOULQf9B/4IZbQluS0AS4RjQ+fj45OhL9mSogiUPgU9VKbJt0q+yDC/oftSoUfyMwYQ33pVKlAaUBpQG7gUNlPEtRw2a3E8J8TG0b5fh/Z9bu9WY0qCd2zGmzLoFPEr2IYA3+IvMj0iwyNnbMz/J80wD06YQj4qBzNYEY1NusmyZSYHHlOI7CX43pZStm/3NI8Os2YPJCHEundN8pjXp84qTdt4wbvEMDtJ0IXUChqm1ItmvnkK3UkpXqyQPtb0925OZLL7lBbPTnIDRG7nsb9ry1lQ6sXAFwX+oX4P7zEUt9LC7bUx59mwcTZjwk7CC8y77yYP5U5hUtVVatMgeR8NHH8aUMTGXhOUPQ59s2NAw/ka+AIsgZ88aFvmCPQnGXvPmNYVbG7jBSRXWXTpwHMlOg1/CMmU8xBggnX38AYSUG0e00z+UA6AQPgelBAb6MpBlzzGlg0MpAUa+yGy2KVMWisXGxgv1ZdnYw1c9xpUPPvigPtgux0ePGszNghko9Sn38McopXfv1sw8hAnblJQr7JfU399HXtb2uO9uwq9vQaROnex3jTSVCx+OkLzuT3x8klj8fo0BbYDhYAqibWXLemumdtHnMab09fXM0WYJWBak/jIt/JBC4FNVijQnGxFxQQbZZf/mm0/wYgIAy4Vl9tcuFVWZKA0oDdyxGihShqS7hyd5+5QVphMMH4q+ZcVHuXiRpwofkclJl6hR87aUEHeRki4lkLOYGA6qKMyfCp+SsRejip3CNxz5h55o3pde7T6Glu1aSq1qtCYnByfacmKL3etqjoFkWoh+xZjpNWvOjx8/ziylZ599ln27PfLII9YkMxsHzDZI3759eYIfzCewnfBxgQn/6tWr83UJfkjAAib3rJF//vmHnn76afb7hYH1qlWr2I8imDFgfQG4spdgEhygRK9evRiklYCtrfkDTMGEN9ras2dP9hUGQECamwwNDWWAAiYGIQAgEBcAqzUsHQCEmIBH/eBDb9myZcxuBXiHvjFt2jSrqixN/bVo0YJwHwEUmQMZ7NmePXv2cN/DxDpMNqIvgjk3fPhw7jMwOQm2rgSzJPhqVYNEpJCyIfwe8fMyAOQYBLqJxQQp6cnWZsHx3JzdaGi752h31C56vNkTHPbP4fXavn2t9vxOcCzlSEFlgqhaQDW6lHaJ4kz8R+ZV6IVL5znKY016k7ODM5uGPhF9gk1X55UW1/N6xvA8jh8/nsFAPJcAEfEcoQ/JhQnWlCPjPProowzaAXCB30/ZhwACof+iTw4ZMkR8rCfRQw89xPdUPqMAkR577DEGAWFGFn0Nfg7Rv+TiApjuhYnNzz77TPjfWMH9smnTpszUe/nll2U1CryHD03U5cMPP2Qfg+3bt+d+B+adPQV+d/GcAxAOCQnhDfnjXbBy5UqtKCxeAHAGgV7tbarYmvco3kv9+vVjP4dgJ+N88uTJYtJhgvZ8ygqjX6EfgdUMc6sA5WRfkHHy2sPkKvoKFiLUq1eP+yT8i0Lyuj/QD/owAGX4hcR7UzI7pelU+ARFvqg/8gOjXLIqEWYvHf/xxx/UsmVL/g2ESW3oDSaMAahLgDUvXVhzHf0V72o8K/BFqTdFC9Ot9pz0sKY+Ko7SgNKA0sDt0ICbuwePGTGuiBVmWmFJR0p8bDRlXE1XY0qpEJP97RhTJkcaQL4aT/ekqOXrKKxbe5NaWH+aes6wgK3qE92plDAnCjOvl46Jcaa49xCv0ApUQiz0kuZVAYI6urtRZnKKVYXE7T3MeVbt05XcA/wIPiYBflZo35L9SkZvzrbWYVWGuUSCz0fUr0Lb5lzHco2yJ5hzSZbjEpudFaBkQNN6zOpMj4mnVAEiAoyDuPmXFX4m3TXAErrxrhwimIDXKOVM3hPYAAjhxxL1q/fiM3Rm9QYCWxT+IzEBf+T7RTnqZC4g7WIcBweJ9qacvUDw1+nk5ZEjqj3bE7tzP4V2bUfVnnyYLh+P5PamC/+juL83BbAQs2MflRT9JaBJPa5HqqiXLXKvjSkBqtWqFcoqAsCI+w/2I+TUKYPvuk8+GSYWV54UCxcPizGNv3B1UZb9M6anG8wkc2Qr/z35ZFseU9auHSYWcXsIdy2G+7NlyxHxrXuNwazRox9lsLFnz5Y8ply0aCPn/s8/+6l//w4MAsLXnqurM/s5BCAmzceC8QUTm/PmjRFjvU0MLrVufZ9YcF6VfQRaWc08o8GHZv/+7QUAOIp++un/7J0HfBZF+scfgQRIoyR0AqE3QSkqKvaGvZ1nOz3FylnOXs5ycmf3Tj27d3qWv569o9gVQSxI7z2hEwgtIUAI8J/vvMy++77Zfd99kzeBwDz5bHbf3SnP/HZ2dmd+8zzzjV5TEPJw7NhZceMmEgDXsy1aNFbjJiuVp5RWqg8Vcm1bVLRO3n//x4ikzLJGbdu2jTifjB9lZeVqXGGBXnfxiSf+pNz3/qAxP+64AdoS8p57/k9b3V166fFqncP1ct99b2iXo888c43yfjVU9Zce0PfS6MJaiG3b5uh1QXG3irtbUxdMmHj7Hj1yhbqCteL++3fTdfLHH0OWskHuD5hiKcgajdStW2/9va7/uGtF/v3vz3S6jz8+VK+ZCom39955ipQ/UG655QWtczwdg1xnfdQjj9xXhgw5TlirE7exrIsKqTp/fohgDZJOvDDU18MP30eNBZXptSixEDUCIWv7lAYNu7cIWASqgsBOJSSbt2wrXXuErWXoQLIVzJ+lCUk+ctzXKejypQuVG57xVSlz1eLu6PBEJzJy+kjp3KKLDOg4QK48eqi+zKLib/30pj6mk4yYvT6GUgidlkSsKIO8ANz56Ix9/vmFY3AWt4kMCEMEsa6c2w2p1t8o75O2Oc1AMGREv3799OA056+//npttYLlHe7l3GJ+4wZwyZIQGUOZja7szTGkHsdYirK2IAPOZtCZa1VdC9KtF8dYnEDSnnXWWfoSZBlr3pl7Er2Pju/+/eabb2rrHWMBhtvMt99+Wwe54YYbNAlpwkMEslFWiF3E5OXGw43TI488orFFP/BGCAvxEFQggnD7x+w5iAEwhThhzb9oqWp5THrvvPOOJn1ZP5DB9W+//VavIwixBvEEqYpANnz11VeakNInAv679eTbNClrgl96xKX6cOmapfLttG/1MTgZYc1a89P9nBaVFEnfvL7Sr0M/HfSDse87a0OuXL9S3vzpDU1UXnDIhfr6hs0b5MkvnjDJBt4vKloko2eNloO6HCSXHXm5jveXt26X1SWrA6UR7xljhiSdEsgMNgTi/ZVXXnHqWKCMdgQiriFCODbkN5jiDvSmm24SyD2Ec+QDeYVQt7BApJ7hNpn7CyHpJrIgL5kUgLUbExGMeLlZdt9HEy7o/r333hNIVSwTr7jiCh0NizqI0GRKy5ahtXl4ptzPFc+em5B0W0XisjZRMe2FXzywitWO8j4260Uay3zuC20WFvlMIICkNPL888/rdoe2g40JDbTRiQikrKkr1IknnnhC1xnSCHJ/uF8Qf9QjMCMNLPaNO1bqG1apuGwdPHiw3kibd52x7Oe3kXgYmnDReyZUvPvuu3oiy3nnnacvQ/ZDdvtJZfKirUdwqx3tGYF21ZD6fnna8xYBi4BFoDYi0DAttLY0uvfoHem5ZNwvIzUhafuU3nc2yLsm8LdU+NM5IrOV46cKRB8WgPtce5FsXLXGIcucgHxos8URCLQlP/wirQeppRv+dIEOPfqm+2RTUeg7kjUBsXQz0vvK8/XhhiUrZOFXIaIiIh+y3REYgoprv937lOx74yXS5vCBeuMy1pGLv4kc0N8RrdK7GS+/K70uO1cgahEwarZvTzp4+rdxcRqhr75S8d9MRQp2+8Op0uOPZ+qLs17/UBZ9HdK399A/OGtjcpG1E9m4r98MuUWHd1yKqnPbd+RPvuZ42n/ekL0UgYJ+OX2674izXQo++04fB/kH0Tjv/c+lwynHSJ+rLtSYrptbII06t68QvarlMQku/OIHRcg2k9yjB0m7Yw7RFpHogMvg3KMOUmTlEToous3/8EvZsLTQRA203xX7lNvUffOTqvYpu3RpI7hwdIv5javNhx56W3lNaazJNwgNBMu3Z54ZXqk+JSSLIUJIZ9iw13Sa1F2Ohw27QK/lx0nOPfvscO2eld8QSFimsRUUFKoJ6j9rQhJCyci7745Skyebasu3K6880ZzW4Z0fzoE/rk4Qn4PXXvtGLTWTpyZBdpIbbgg9o6yf+MADb3nGCNzmRsVu0yZbn2EdTTYjJSWbIghJM+Gd62aszYQNsg/y3rj77ldUXRmi1/G8665QO0y5vvxynCbyHn74Mp3V9dc/p/fcl1de+Uq7+sUyD5LSyKOPvqf6oOcr44OBepszZ4nylvWUuRxov2rVeqeu4Db2/vvf0HWGyEHuz4QJczUhiTUn5V+yZJUiSZsJvxHqG1ap119/hpx22kF64zxrhxoCnN9GjNth8zvoPj9/hSLQv1FjLUeqcdXBOhpk/513vuybRGXy6tkz1C43UG61sWR1y6uvfqXKFHpPuc/bY4uARcAikCgCeylrmMq/XRPNrRLhcdHaoEGajrlpY6kaUEy+X/9KqOUbBavINk3aaGICAqK2C5Y4GRkZmiioDWVBX6yMsA7xIiiSVQbcw2LBCSm2qwuD07hZheiprM640cRyzli77qwyQ0rmKesiCIVkWhYlWp7nLnleRs38QU04eEvaZreVJauXiHGt6k4La1Tagw2bSxWBWOS+tMsdY4HHs0MdMQRhIkredttt2trsnHPOUR/obTXp63ePIIm4l1i3VrbTxeAi9Zp0IMYMyZSIzkHCYqXJxAxwqeqalEHy8wuDpTPtDlbDWO9Vp9RUO+pXBibDQAJD/mJdiaUlkz+8OsDJuj8QwxDzkJjGUt1Pv8qexxKFusQEH8hQKxYBi8DujUCxssTI2GFFUtmS8j2LVwjaD/Z8V7DxDmSrSeF9zUZbzGYmELE3Fvw1qU+iedk+ZaKIJTd8vbSGep3ETUVrkptwNaWGvmktc2SLsjSERK0uwW0rVo3GVWl15ZOMdOsoF5jprVtoC8nS5atku5rolahgwZrWIjth8i/RfOKFr5OaIumtmstWRRiUFiY+0S9e+kGv7459StZr7NixlRo3CFlNBsXChLvvvovUBPNucuyxt6u+aXNtVedn/dWxY0vVF0yVGTMWValPifUbFqAQY15r/hndqrJPS6uvJru207jgQnZnCd65mBDPBEyWaqlOwYoPInvLlq263FuqYY3WWPqzhikk8AMPvClYV2KxO336Qs8+ZbLuD+54mzdvrMYiV6oJsetjqVfpa1jYdu+eq93DQoZasQhYBCwCuwoCifR/d6qFZBDAtqpO7oaS6mnIg+SfaJiy8jJZsJMXE09U51jhGThlqy2CrlOmTKl2dc16a9WeURIywCom2s0r1kC4XowlWJe+9lpoJiLE684mI9EVq6LossQqQ3VfK99WLlhC+wkDdsxGrQ0CCelFRN58883aHWqsMjz44IMRl+NNBvAjKiMSifODQdHK1Mmg5YH4Q+issbZlopJoPvHSN+txst5HdUt1taNB2x33bF1I4FhEcGXvTzSGy5cvF7ZEhHVW3VahXnEhsu+88059CQvNyrRfiebjpYc9ZxGwCFgE9nQEbJ9y59aA8tKNwlZbBF3Xz6/+b3isN2uLYClaXLAkQt2WA/s6lpkRF1w/5n/ytbKm/F6fgcRM1BLRlVTSDreVKZe1UWVJWuKVSGh36lOuXl3sWCq6oRg27ELtDtV9Lvr4jjteijiFdWMs8SMqY8WJvkafEqu7RCVoeSZNmq+TLi3drLyGzUk0G2UJGgw3k0+8DPBahrCcQ3UL1oFTp+YnPRvWJX355Ztjpgsh/tlnvzphIIFjEcGVvT9OBjsOWOfRrPUYfc3vd9DyXHvtMzoJLH8rg2ui+fjpa89bBCwCFoFkILDLE5LJKKRNwyJgEYhEAOscLI5iCQPpVvwRiOUSxz9W7bsya9YsbYUYS3MII8iW2iBBy1PVsiQ7H9y3QphVxl1rVcuSrPi7W7vDZI947eiCBQuqDF9N5VNlRW0CFgGLgEXAImARsAjsUQiwJuOqyTNjlrk2ka4xC1JNF/eUPuX06QWCFVosWbu2RFnf1w53kEHLE6u8Qa4lOx+WZpo4caJe0iJI/rtimE2btiir2IUxVYNkhrirDRK0PFUtS03lU1U9bXyLgEVgz0Bgl3fZumfcBltKi4BFwCJgEbAIWAQsAhYBi4BFYHdBIBGXNX5lti5b/ZCx5y0CFgGLgEXAImARsAhYBCwCFgGLgEVgV0Egkf5veNX3XUV7q4dFwCJgEbAIWAQsAhYBi4BFwCJgEbAIWAQsAhYBi4BFwCJgEbAIWAQsAhYBi4BFwCKw2yBgCcnd5lbaglgELAIWAYuARcAiYBGwCFgELAIWAYuARcAiYBGwCFgELAIWAYuARcAiYBGwCFgEdj0ELCG5690Tq5FFwCJgEbAIWAQsAhYBi4BFwCJgEbAIWAQsAhYBi4BFwCJgEbAIWAQsAhYBi4BFYLdBwBKSu82ttAWxCFgELAIWAYuARcAiYBGwCFgELAIWAYuARcAiYBGwCFgELAIWAYuARcAiYBGwCOx6CFhCcte7J1Yji4BFwCJgEbAIWAQsAhYBi4BFwCJgEbAIWAQsAhYBi4BFwCJgEbAIWAQsAhYBi8Bug4AlJHebW2kLYhGwCFgELAIWAYuARcAiYBGwCFgELAIWAYuARcAiYBGwCFgELAIWAYuARcAiYBHY9RCot+uptPM1qp9SX7IaZsmGTRuktKx05yu0i2rQuHFjadmypaPdvHnzZMuWLc7v2nawq5YnJydHiouLZfPmzQlB2qxZM9lrr72ksLAwoXhVCZyWmibbtm+TTVs2VSUZG9ci4ItASkqKdOrUybm+fPlyWbt2rfO7th3squWpbLuTmZkptKWLFi2qbbcirr5paWnSoEEDWb16ddywu3uAzp07S716oU/I9evXy9KlS3f3ItvyWQQsAhaBhBGwfcpgkKVkqPdrdhMn8IYly2Vb+Vbnd2072FXLk5qVKeUbN8q2LeUJQVq/cZYOv3nt+oTiVSWw7VNWBT0bNwgCqan1pGvXtk7QpUuL1Dd+sfO7th3squVp3ryxrFu3QY1lJTZO2KhRujRpkiH5+Stq262Iq2/d+vWlrqp/ZcUb4obd3QOkt2khdXb0KbeUlMqmojW7e5Ft+SwCFoEdCOx0QjI1tb7kdeouaRmZkj9vpqxdvcrz5hCud9+BUl6+RSaNG+MZpqonG6Q0kBtPvElys3N1UpMXTpJnvnqmqsnutvHPOOMMOfbYY53y3X333TJ79mzndzIPGLQ/+uijZcqUKbJ48eJkJu2kVZPlcTKNc9C6dWt59NFH5bPPPpNXX321QuiePXtKixYt5Lvvvqtw7e9//7vUrVtXLrvssgrXquvEA+c8KIuKFso/Pv1HdWWRlHTbZbeTJhlNZFLBpKSkV9lEklWvY9WDyuq2q8br0KGD3HPPPY56X375pfz3v/91fif74OCDD5aSkhKZNKl66kpNlycIPlVpdy699FI54IAD5JxzzgmSVbWFefzxx6VOHX8nELSr+fn5CeXPOy43N1fOP//8CvGYnNO3b18ZOXKklJYmfyJTdZSnQiESODFs2DD9fiEKZOQNN9yQQOxw0GS1geEU7ZFFwCKwpyFQp05dyc3rJC1btZMGauLIlrIyWbFskSyYO0O2bdtWAQ7bp6wAyU4/kXvUwdLxtHCf8ue7HpWSxcuqRa+9VN+oxf77yLq5+bJxZfVMMKrJ8gQFCcJ30D/+InPf+UzyP6vYb8xs30YaNG0sKydMq5Bk/9uGSp2UejL6xvsqXKuuE7ZPmTiyRx65r6xfXyq//Vb58Zg+fTpIq1bZ8sUXvyWuQC2L0bkz4yxXOFp/8snP8uSTHzm/k32QjPsTS6eaLk8sXcy13Nxm8uKLN8j774+W55771Jx29rHq27XXniaHHLK3Gm+83Qm/Mw56XnK2ZLZr7Zt1wecjZflP432ve13Y59o/SuMuHeTbyyuWrbrfUdVRHq8yBj13wD3XK0Kyrg6+bv5CGfv3J4NGjQhX3bhFZGZ/WAQsAklBwH+0LinJx06kW8995YjjTpcOnXtIi5ZtJS0twzdCr332l5zmraR5yza+Yap64YDOAzUZ+dZPb8rf3h8mr//4elWT3K3jv/TSS3LRRRfJhx9+WO3lTE9Plz/+8Y8yePDgasurJssTtBCbNm1SM8rWyZIlSzyjMOh/+eWXe17bGScXKjIyf1XBzsg6oTxP6neyXHHklQnFqY7AyarXu1o9qA6sTJpMeqDduemmm8ypat3zfF188cXVlkdNlydIQWpbu+NVJoguLPjYsBZv3ry589tY9nnFi3UOq0+/tnjgwIH6HdWuXbtYSVT6WnWUp9LKqIg8g2xV9YqQrDawKmWxcS0CFoHajUB6RpZ079VPUlJTZfWqQklJSZXO3XpLv/0P9SyY7VN6wrJTT87/+Gv59oq/yOw3Pq52Peo1rC97X36utDp4QLXlVZPlCVqIbcqL0caVRVK6wnvyN4Rwn6svDJpctYezfcrEIb7uutPlqqtOTjyiK8aQIYPVJLMzXGd238Pp0xfKqaf+VU3efqxGCpmM+xNL0ZouTyxdzLWNG8tkzZoSWbjQ22NXbahvdVLq6gkZTMpIa5GtycmU9IbOuTp1Ex9SL164VCDfvKS631HVUR6vcgQ99/3QO/T7f+umxLzBRadf3bhF52d/WwQsAlVHYKdaSLZq016WLJwvq4sKtfWjX3EMEVm6oUQaNGzoF6zS51PqpkhdNbu2X15f2bJ1i/w05yedFsduSa2XKtu3b9dhGqU1khZZLRT5ki9l5WVOMNyLtM1uKyvWrZB1peuc81hqpNZNlTp71ZEWjVtKfuECyWiQIekN0mX52uVOuJo+aNq0qXTp0kW71/NyuVZfuRPA+mrNmjUVrEnAgoHrIAOSWNywTZ8+3dd6hEHjjh076gFfYwWJy1Hc5GVkhMhq9GEAEyHvrVsTc+eDdUubNm20laXJw2AetDzosPfeewsuanEViRVitB4GN8jE+fPnmyycPYPLqWrgZMOGDdJQ1enevXvrcKtWhTuJpEv8P/3pTxVmeOM2kOtsiMGEMnhZ54ArVl5u963oSL3Mzs7Wbgjnzp0reXl5ambl+oRdElKvZS+Rx0Y8KrLdKaY+4PniPmY2yBRcVy1ds1RaNGqh3SEXbwy5RSE+zxfPUmbDTMnJzJH8lfmydVvF+9s0I1tdz5aFqxZ6uoaN9ZyaZ53nHcEqGtmu/jZvSewjiGfH4Aqp5J6FT3nBFze73BNEtwHqnlNvE6nXhOUZ5Z7PmDEj4nkLUg+oI9Q38jXCb8Q8u9SfMmVRQD2mblMed3gTz+hC2XiWo+u9CRdvH6/diZcPunnpF51vkHaHsvfo0UM/H7NmzXLuF+0OeiDcO/OMlZeXJ+w+OVa7Q/pBygPmVW13qAvUGdNG9OnTR7cx+S5LQcIkq93B7SvuW2lbjCSz3TFpeu2vuuoq5/Szzz4rWVlZui11TroOTP3necAVKW3y1KlTnbpAPaAOPPfcc65YoUPTltOeI7yrTF2hfXcLZed96vVeMOkQxwu3RMoT6/lBN55b6vzMmTN1u0WZp00LW0RQftot2gTeTStWrBBcI7sFrNjc7Z77OsdgRttFHeDZcrtWRseg7/ZY5YnO0/62CFgE9jwENm8qlZ9HfSXr1hY5hT/w0OMku1lLSa3fQMo2h79/bJ/SgSjpB6mZ6ZLRtpWUFhZ5ulxjMDcrr612UVe6fGVk/uqds61MvVMCuBLF0q9hThNZn79EtvosZ1G3gVp+RVn8lW/cJMWLlKUl3+LqvVO3fqrUU9cQjgmHkPd2D2tafdHnX8Pm2UqPpprkq2BpGbA8YNKoYzspUS5qcVW3l3pvRuthcNuyoVQ2LK04qI9lyV5q8hWDuXVTU6RRp/YqvRVStj7sepJ0SX/MbQ873zamWHVUHK7X2dGnNJjQn/PCN711cykv3SRu963oyLs6NStD6ihcN6j801o2U+E2Kj1KTFaB9ntinzInp5FyHdpGWzdCKrm/rcC1QQP6caqOUo+V8H1Vv349gexB0oESvU8AAEAASURBVNMbaPwJy3d8RkZovGyLep7cbjK53qNHrvrOrS+TJy9Q33Fh170NG6rnQcWtu4NcMWmQ54YNoTa0nqprKYqcMfmSd4q+96K+GUNpEa9MPU/l5duU55BOqr9YEBGeOIjRpUGDVK1LeSVdNOfkZKkytRPcei5aFNWuBMiHsrjLo5Xz+IelH9ukSfMdPKKDUXYs/rBSnTatwLlfQe9PdHpev/PyWki7ds2loGCF2iq2B0HKU79+iro3nVV/f7F2Uct9jcafMPvs01F9u2/Q4aJ1IQ73ztSNAQO66LTmzVPt7Q4hzNq1JcqzzIOq77HNnNb7IPXNHQG3r02bZqq+yyLnNDpSX5s1a6R0qa/6GotUP6611nnVqvA4rBOhkgdTn/ufE7Pb+adJ7tEHy8THX/K04qf95D22XfW1cEXKe2b9AuXdbcezy3uIuo+legXh+Q34jor1XnC/E3DTnZKZpttkk18i5UHfjDYtpY5yL1us3rnu9xNl5Tfv2uICdU2VkbDr88Pe7Hgn0WptV893lnrX4Y5185rIexNyz77VeV6Mnu497yjwTM1IV+/0pfp95lxPALdY5XHSswcWAYtAjSGwUwnJUd99KlvV4G6Tps18C1y3bj3po1y1zp8zXRo1blothORdZ9wtzbOaOzo8fuG/9PHEggny3NfhAcj7zr5fIFDKFVHZLqe9DgNpec3LV2ui8fKjLpd92/d10llUtEge/eyfsrFsoxzcdZCcf/D5+gOTj8iikiJpmt5Uv5B+mjNGXvnhFSdeTRwwAHn77bc7A6fkCcF2xx13ONkzAHrIIYc4vxko/etf/5qQy1QIG9I0A7Qk9u2338q///1vJ13CoAtrjxnBCuXGG2/Ug7d33XWXOa31MTq9//778vbbbzvXYh2QNoPSbssYyKKHHnpIEyux4rqv4aIWayk+JJCioiJN6OEe1QzonnvuuXLKKac4YcjngQce0IO/Ji3Ky4Dwjz/+KIMGDTKnxaQDgfHII48456Ndtj788MPa4scEePHFF/UhA8QXXHCBOa3LyzWDP8QDefPBAK6sxWfKAhnKQDjXXn/9dRk+fLiTTrwDnhmIQGTu8jkRLluvOOpK6dW2l5MPhGTrJq11Pq+OelVNABgjfdr1kSuPHiqF6wudZ5HO2FNfPinTl0zX6TIJ4OaTbtFkpT6h/o2eNVpeG/1/5qfex3pObzn5VsclM4HNs86al9e9+ueIdGL9eOKJJyLwB7M33nhDPv44NLMba6k///nP8vzzzzvudKnP/fv3164sISWC1GvCX3/99U69jb43QerBtddeW8GF5tNPP63xv+KKK3QxqSMQDrj/pT6QD26A3c/pUUcdJUOGDNGdVSJBakDQjBo1KhZUEdeCtDvJyCdIu8MzwT3Iy8tzdOT5wcUxBCGYmGcD6zrzjC1YsEA/Q06kGAe7Wrtz3HHHyYUXXqjv7eGHH+6U74svvhAsxJPV7gDJvffeq8k9jiGi+M0kkGS2O6RdVYEU495OnjxZunXrpicSkKZ5B3HMe8JYPlLv3S5beSaOOOIIgmlxW+7y7JlJIPHeC1dffbV+TiFveU4QN276RIB/sZ4fJgI888wz+vmmbkOu86xDhpLX0KFD9W/aN4hrvlUYnEIWLlyo633QSQiHHXaYXHnllU4dIw3eMXwPQMgGbQNjlYc0rVgELAIWgbKyzWoAPHJS2epVKySrURPdvhlC0vYpq6euMEjY76bLxawzSC5FU2bJhEdfcDLscvZJ0n7wYc7vsnXFMva+pxJymQoR1v+WKyW1Ubi/uOCTb2Te+5876TJAus81f5SmPbs45yDVRl47TDJat5D9/xr+1kcfo9Os/30ki74a7cSJdVCvYQM55PG7NflnwkF8jnvoOT0oa87F2+M2du8rz3fekxuWrpB0peOvw/7lDOi2O/ZQ6XLOSU4Ync+DzwrWNUb2vuI8ada/t9J/lBDeiEkH4vTgh24zpyu4bN3vL1cJ7lqNHPHsvfoQgvO7oXea08oaKEUOeewu5z6vnj5Hxv/jP3qgvc/Vf5Ts3t0cPSEkqRd8Y8z479uydPRvTjrxDva0PuUrr9ysXKQ2dWABs//+9wt5662R+tyhh/ZW307nKtei78nnn4dwvOeeP8jAgT0cV5bvv3+3g33Llk2Ue8y7ddy5c5eqyXgh94eEv/vu81WfMvRdRz7/+c8IeffdUD/uuef+HKGHSQOi8aSTQmMxt99+TgUXmq+/fqu6zyJnn32fzpN4rMVImUyfEr0fe+x9p4wnnLC/XHPNqQ75CVn1z3++K19/PcEJE++gW7dcNb5ysUO+En7WrMUq3aedqMnIhzUmH3zwEpVPaBIziY8YMTaiPBCRDz98qSbDTOaQvb/73d812Rnk/ph4fnvWU3zjjdud+0c4yOY77nhJE7p+8aLPn3LKgdqK1vRxV65cpwm9W255QSZOnKeDDxlynLqfhzl1inxuv/2/arJmvpMc6Vx55Ym6Th53XH8n7Ecf/SRPP/2x6l+3UOMI1znho122BqlvJvITT/xJunfP1T9Z4/PWW1/QZOwjj1ym+m5tnbwLC9eq8ZnGut154YUR8s47wccoTF5V2bMuJO3nMuW+tdm+PYV3BYJ78LH3hepl/1uukCbdO+nzEJdul60Qe0HeUfHeC13OOUVyjzpIVk2eKTl9uuu8SgtXyQTVXleYPKOvev9rPqC37H3F+Y47VYjDyU+9IqsmzdCTTw7911811tSlrWoSghro1pN8yIvJLzQMBz5wi6SkNRTcqUKiImtmzpPxj/w7gtz01iB0Fiz7qPc6pKQRXLqPe/A5YaJOUNxilceka/cWAYtAzSIQahVqNk8nN8jIeNK15z46yLzZU31d78RLI971x0c8pi2lLj5siLRq0kru/zD0QVWyqeKMPogUyItPJ3wq81bMlUHdDtHJH97zCE1GLlTuKj/87UM5pPuh0ldZXJ5z4Dny0siXHBU+Gf+x9GjTU7q26qrTyGuWJwM7H1jjhCRkIwOxTz75pLaGwvKGQXwjp556qib/sJqEaGGg9sQTT9SDiQxaBhEGM1lzC6uQzz//XK//yEDukUceqQd/f/75Zz3gacJMmDBB3nvvPWnfvr1eL5I8sNS68847NVl56623qjURfnNcxEZbOMbTifCffqrumyJe+/XrpweVb7755sDuGMELMpIB2XfeeUeTd6xr6RbIDbDbuHGjxq2DWu/ucDXwzyA1a6u5hZc369MxEA5Jy7prZrAX3CEnIUIgjdwzJUnj/vvv15Y4XGvbtq1DbhnLJ5MPli4MrL/wwgty+umnq4/DPDnmmGOEdfcQdKAO4JYSMhKiigF2XOMmQkg++PEDgvXhTSfdrGdBmfzNnnye+uJJGXL4JZqMfPrLp+TCQ/4oR/c+WhOSJlxORo5+fiDxf3fA7wQyE6IQC8aLDrtYk5E/z/1Zfps3Vl0/Sz1/g2Ta4mkyIT/Sb7/fc/rMV09Lw9SGct5B50nH5p3k3g//rrPelKB15MqVK+Wbb76R8ePHa6LioosukvPOO09Gjx7ta13K82AkSL0m/HXXXacJgREjRmgr5bPOOkvX2zFjxuh8gtYDk6/Zcz/oiLqFNfB++eUX+fXXX3Ud4Dnl2S8uLtZ1DKKOev3WW2/pekp5sd5lbUWsaoNIvHaHulzVfIK0O+hKe5KnngdIep5nnjHcQhsCBuKeCQxMwgAD1hxEVq9erfdB/+1q7Q56Q6BBMNEeYkXKfUWS1e6QVqtWrdRAx3+0hRxtINjed1/o3Zqsdod8kiVYi0LKffDBB9qCtGvXrk7Sjz32mJqV21QTbE2aNHHOc8AzQltAGXkfQG5CWiNMWEGoZ0HfC7Fw04nF+Bfv+TFRCwoK9LuVCTbUz4kTJ6rBppPUrO4+zlqpkJSQqZSPdweE7Nlnny3/+194lrBJz2vP88S7jck0eFggL/CBpOXdFqQNjFeeoO2Ol372nEXAIrD7IsA7pkWrXD3pdUNJ2ErM9imr5573GnK2JgknPPailCiiDCuIzNxWTmatD91fE3+4p8MqJKtDrnT+3fHS94ZLZcztatAygDAQOeD2q6ReWgOZ997nsnbOAun8+xOlw8lH6cFNyDEEV6yQkatnzJUFH32lBzy7nneqHshkAPOnO/+hB0cHKBJuychfZKEi8ZBEBmkJv25egSz84gdlIbNcDy73HHKWLs8Pfx7G5bjCwDVEIgPSs17/UBo0aSQdTj0mIl5aixzpeu7J2qJ01msfaDeB7U9Q4w3XDZFRN9wbEZY6n3v0ID0QvkyRf8369nIGezetWqNJzvpqfUjIWvpUbpn4r5c0rj0uPFMadW4vP98d+t7duinsAYrwWMAysD79xbck76SjNM4t9usjK36dpJNDB+rA3pefp8nIiY//V3oO+b20O+7QhAjJPa1PCYkCwfXzzzOkQ4eWiiw6RS65ZLD6tpyoJnKtc98q5xis3XLVVU/p/ss//3m5ts4bNuw1fbmoKBSfvtGdd56nwtRR37k/aku2Cy44WvW5jpfvv5+k8lmvCadMZUl1441nqrGY5up77VmdRqmyho0l6BLdp2zdOltNWJ2qJl5Pk6uvPlWOP34/TbKuW7dBp43r0tLSzfLyy1+qPuU2NUYyWG6++SwZO3a2mrS2IVZ2zrVbb/29tgx98MG3tDUi1phdurRxrlOGquYDbpBeWKh++OEY1e+fq8ZMjtflGTdujvzwwxSd3733/lGTkVgHvvLKV7pPOXToSU6fMt79cZSOcQDGWES+994oTbwecEB3ff/+9rc/ymmn3RMjZvgSlpq49AXzV1/9WhORJ510QDiAOurUqZWaPH246htuVn2aLxSmrdU3fH8ZNuwCOfPM0LiJO8LgwQNUv2e50mu0Gi/IUfFC7cbixavUPf2PJqZvuOFMhUlkuwPBGbS+tW3bTB5//ANtCQv5OXToyXLbbS9qNah/1AHuNWTkww+/revcKaccVOOEpMGl1YH9lKeAVTLnreHaSr9Rp3bmkkx74U3VlmbotrGhauPdEuQdlch7AaJu8tOvKs8EuZJ34hHS6czB4raOdOcdfdywWVPpc9WF2sIdV+pYfHa74AzZ59qLZOQ19zjB16h37drZC/Qa0Gvn5Os1iLuodzOW+rwvECYKMYlm7juf6ncHhGzuMYP0O1QHiPOPur/8pwmy+PufZYuyuG95UD/pqN6X3S88Q6Y8+5q2VI33bo9XHqz5rVgELAI1j0C9ms8yeI7MbG2X10UmjB1VgZAJnkr8kKtLQgPMEI0QQlhwxZJHhj8iS1Yv1kGM9dahioBE/qksInH9yPl/XfiEIiX7RRCSWHThlhJCctTMH2Rt6VptPVavTj0p3xafoNWZJOEfRJUZMGSwHWsoNiMMTtL4YyGF2zYIkO7du2vLDQZmgwzKM+iNlQWWgz/88INO+pVXXtFWFpCbEJJYUZgwWKEgWIgwwItgscRvXL4hDBi73f/pkwH+UcbbbrtNE6AMwDMYumzZMj0YHyC6DoKlBh8933//vXz00Uf6HFaODJoawTISYRDXkH6QknlqQJoN8sMtX3/9tWN5BR5GqIfgxkAuwgexW4z7PEMkxMLknnvu0YQK92zYsGHaKtKkhfUmVponn3yydmWLtRtWVAyKJyLmmaFORXaRQqmUbi6VqYunSkFRgXRo1kGmLJoiBYq8b5cT/kAj5NTFU+TzSSN0pFzl+hjCv2vrbjJr6Uzp3qq7coO8Vl7eQfAvW7tMsIY8steRFQhJEvB6TtdsWCNspYrwRIze+kcC/xhQRyBxISfHjRsnhytCAuL+p59+iptSkHqNdSSkwJQpU1Tn5hWdJlZ9EBsnnHCCvPbaa44bxSD1IJ5SWEBDvCA86xDXTFKAcDRWt0wY4NlBqLvUG54LSJwgEq/dSUY+QdodcIVwosy0C0aYFGHEPKvUadrAWM+YiRO931XbHdq+W265JVpd/f5LVrsDyUs7zoZVO4S3kWS1Oya9ZOxpc7HoM2Lab36DFxv1hfefWyDF2JjUgyxatKhCXUnkvRALN3e+Xsfxnp+RI0fqaEw8YIMkZAICE2J453OPeN6NMFmIdy4Tgf7v//5PW/MHJSR5l7AxIYn3Cd8AvO9xmY4EaQPjlSdou2PKY/cWAYvAnoEA60c2TEuXib+Ndgps+5QOFEk/qKesg3DHtk4NRmLBt3L8VL2ZjBg4pE8589X3FQG3RVlXTJemakAyW1luQHKVFccnICDYUjLSNPlVOD5EAsz+38ey351XK6vAQwRCEjd1hMP6cvzDz5vsNRlnfmC5RzoILkf5nahQRtKHJG3QtJG2ilw/f5Em84KmBZFH/IIR38jSH37V0Zr26iqNu+Q5SbRVFi4IZCSkHxtkb9MendU6ZjkV1oJcoNbhnK9IWMQQtBzjUg8Xeg124KwcBnLaEdznsW3ZMSAbC5MJj76o7/FmhfHAv92gLSsNIbllw0YpUhY5xQWLtRtarGjIl0HxRMT0zfaUPiWkDQKZsmLFGtWPnKH64v2lV6/2MnLk5EDQYQmJgNnmzWXadaU74sCB6llLracJtWefHa4vQU5BPJ1xxiA13vOZtmpUU+k0UUgA3F9WVkpKNqnJZ6/r6JTj5JMHarLwt99mK0LvRH3+tde+UV6qFurj4cN/kbPOOlRNft9fTXwLj0fFyj8trb4m1kgTF6lYYRoLUuIlI5/Bg/sr97ap6tt4vmO9+cwzw9XE8IsVOTdIE5Lg2rOncpOsyjx06BOOyr/+Oss5jnd/nIAxDigj6TMmlJubo13hQvrhRjaoYDHKWNYXX/wmb775vY7Wp09HTRKbNLCMRCAjP/44NKbRuXMbTVRCVrpdshIOHa644l8cRgguYMENi0akTp3Idgcr2qD17dVXv1ITHH/V29FH91V9iWydJv82qYkT3347UVmjHqJd2WJli/UmJObOEiwJx9waGtdEB9NGcrypaK3eyopLtFtrzhkhXrx3VCLvhdlvfiKFv03RGxNDMlqH++ImT799x1OP1ZfmvP2pIhOX6OOCz74TvB1g3c97HlkxdrL2iMAaxCt+nai2yQIh2SC7sSIkdRD9b/wjz2s3q6tnzJOjXnhQ2hx2QGBCkncJGxaWuGynTO0HHyqZeaF3SxDc4pVniSI7rVgELAI1j0C9ms8yWI68LPfpf7BeX7JweagRDBazekNBNhoy0p0T7iSLNxVHrEO3WJGWnVp00u5cTVhIz8071pzk2Kw/ydp65ZtrjpBksPX3v/+9JhwZTMXS6+WXX3bWRmMdLO4BZFa04OYzCCFJOKRXr17aos+dDusWIiaMISzdYZJ9TFkgWqKFAVMGyOOJIR7Hjh3rBIWkMOc5iUUjwmCvEdbpysvL05afhuQw13CVWJ0CUQUpgrCGFwIBbISOCwLhgvs+c+x2batPVvGfWQtyS7lad2zH2qzUfYh4t8xcGv54n71stiYkW6r1JpepSQLUx/lq7VUjuD0mreyMSIKA637PqYlb1T2Wvgzgo5NbGjVq5P5ZpWPjItJNEFCvICQh1ZMtWE0ZMeuemrVbceWK/OEPfzBBnD1uPoNKvHYnGfmYNiVIu8OzWd2yK7Y7kFDVLe42HcttSGAjNdXumPyC7CESq0sSeS/Ewi2efkGfH1wSG2t69uaYCQNGIAwhIxGOIWON628TJtYe4hY3vdEErrsexIrPtaDliZeOvW4RsAjsOQi0bpsnHbv0lIUL5siKZYt1wW2fsnrvf8GIkdLjj2fKYU//TTatWi3Lf5kokGNmPUhcuXIPDrgn7L7PaJTepqWUKfdt8cS4FGUglM0tuCRFSAth4LK6BRelzfuHJiK582LA1JTbfT76GPezSNHU0CQ/jrEycROSaS1CA+qrp83hspY10+dqQhLXrqUrVpnTer9szLiI38n+AXEMGYuUsC6nEuOSkGMsaBBc921Vlp/INtW/ZH3LZMru1qfEShEyJbpP2aRJRtJg69ixlU5r3LhwfRs9epomJBMhtIIqNG9eeHL/nDmhcbysrNBEAEMmXX75CRWSw81nUPn445/loouOUVZwd6rv1Q1q7GWmdhVq1sxMRj64hUVYS/Gpp66KUK1Zs9BkeVy6IlOnhscoIgIm8cejj16hJkDmVUiRtRRNuStcdJ0w+I4ZE1oOh0usyYg1qZGWLUPjKqNGTTGn1OToBTsIydYVCMnRo0PElBO4Gg6++mq8kyprVrJuqRFjeYlrYeNpDCzq1YuczG/C18QeC/7qkkTeCysnhO8zawrXUfUkqOByG+l16dkVovD+WrnjlmxVEyDMWsO4+eY3YtZq5pjrrGGM8J5g0pDbxbu+EOMfaxP3v22opLcK11OC16sfyitGVOdSvPI4Ae2BRcAiUKMIhFvzGs02fmb1GzSUtPQMvWbkYceErM7q11f+p1WHht9TJ/4qRSuXx08oySFWlUR+/LuT14uwu0/4HG/fHiKBQpe3613QuCZJ90crs069xITxus76i1jk4YINN21YFe2zzz7aBaNJi/WecFsYLYbgij4f/dvki6vDGTMiO4cQYIgJE20BGJ1WVX//7ne/02Qk1j+s8weRSNlYq8vgFC8P85GD61YjfoOrQdKk7Im6nTX5Bt0bktEd3o21IQbc1809cZ+r6nHYPVC4rm4X93MQyiESN0P2KVcwO9wLeT0n4RTDWsZ6TsOhKneUp8hlLAOxXn3zzTe1u0OsCaljRn+DqxtriO9ExNwHdxrm2FwLkp7RxR0Wwtk8g+Z89G9z3uzJE9e+0WLIjOjzXr+DtDtVzcdgE6vdMboZPM3vZO93xXaHMtYEERtdL8yzQf5eddLcN67vDKlOQtKUx42BORe9j4VbdFiv37GeHzNhgjBuvM1xEP288vQ6d8MNN2gyEpetuLJesWKFXr8y0WcuVnm88rXnLAIWgT0XgWYtWkvvvgMVEblIZkwNkzO2Txm7TrjbfvM+iI5hwnhdx7KANSPbH3+4Jgs7KHeezdWahj/95REnGVzR/Xb/M85vc2AILvPbd7+jr4tlIlZ3btlmloDZEUaZ4rgvJ/247ZEHaTISq5eFat1JytZ76B9Ca3VFTVT0yxyLDqReg1QniFlfyzlhDkx3iN/m2JR1RxjuS6JuZ03yQfdYt0aLqRf6vNHJ7NXJ7VFuGqPjV+a36ROq1J3otbVPicUZloFFReu1S1Os/U46aaDyTBPyykQBzTez28KsgaveOCDEODCkjfsbzNw7r2faLymji/s6FoKbNkXWjTLWk9shrupgTulv0N///j7ntzmAbAoq//vft8oTxxRFSh4rAwZ0UcvNDFD7rmoJlQecJChbVfIx2Pztb68pUi7fSZcDLPPcYvB0n0vmMXUCMhKrw7ffHqnG1hZpS03WVnTXjVh5YrWIpCnX10ZSUuqaw4i9V3kMHu6A7nUl3eeTeeyuF+jg1s3UbXd7kMy8K5NWcUGIhK9M3MBxzLuACOY46mEzRKFOMwq3IPlgXT/y6r9WCArpaDwNqIfZgV5nb8a5A74LKyTucaLXJWdrMhKX7ysnTJNNyqJ/0D/uYO0pj9D+p2KVxz+WvWIRsAhUJwLV+8VeBc3L1UfvgrkzpGC+cq25uEBvZZtDHyn83lQa371LFbJPOCquV9Prp+u1KE3k3OxcbQG5zTTM5kIV97g/wyUoG+ubeQlEowmDJZeXsF4YLhpZF5H1xLBkMGRbSUmJMHiJVQQEpHuLTot0ENZ+dItxcQjp547PsbFINGFw6RdLsNBAjOvWWGG9rrE+Ix8wrLmHxRnlitbXxPMrz4Id64LhStOIscYyvxl0RQYOHGhOKX/3PfSxie9cSMIBhCMfZX7EaBKyqNEkurXq5uSHW2Nk+brlUryxWN+/Ds07ONebZTXT61Yal8vOhQAH5VvLtcuTaAvNAFHl0EMP1cFeffVV5UpnpFrrYp3qAA2IiMrzg7jXZcV1b7TEqtc8kwgTBYzsv//++hD3kW6JVQ+whkJ69uyp95mZmcr9TNgSSp+M84/8qGesnxf9LBuiPk4SzuVY7U4i+YA7z3S0e2HTpsRqd1hHFvGymHYU3XFA5ztRvEwaibQ7fuUx7cae2O5gxf/ss8+q9UAeNpDusntD6DdrVtFFUE29FxJ5fuIByTvFWDdyjHUk781owQrfEJ3ua7R3WFjSTmJxTdvhNSkjVhuYzPK4dbPHFgGLwO6HQNPs5tJvfzWwv2qFTBo3JqKAtk8ZAUfEj2T1KTcVrdGuRX+49h5ZM2u+HjxknUQEd6Cs38QgJgSke4tQRv3YuLJIn0pvFfkuNSRkRrvWEfFJy1gkluxwv5qzT6jfFZ22+W3IwEQsNExc9i0P2Fd/f059/n96jSysQpp0q/iNT1i/8pQsCvWds3uH+z2Nu0amUbp8JUlI9t7hME17dNHnNiwt1Ptk/ttOn1KRubi+3R2kNvQpjzmmn4b6uec+FazA1qwpkQMPjKy/xcUbdRhjiccP91qJ+uKOf/SL3GSTuZafH5rE379/qP5wftCgXvryokWRk+23KOtW+nwQjdFi1gfs0ydUVxs1Sld9pNBzHh3W7/eiRSt1+tnZmXq9SNaMNJshzPziRp8nLVzDnnrqPXodw5ycLL2uJOESyWft2hL9TBurSpMPpB+CpaTR0eyNReKsWaEJEgYTE9dr73d/vMJGnzvkkN5aR9ZeZK3NkpKN2moxOhy//cpjXMe66xiEpltCrlRFjXf0dk6bsrktX52LVTyIVd+qmHRE9NrUp4z1jqqp9wLrI/M+YL1L9zubY4i9RIRvAawckb3q1tVrTuMyPVrK1PqQDdRax9HSRLkpxyNAvnIZu2FZoaQqt+sp6RXHsmLhlszyROtnf1sELAKVR6Dil0bl00o4ZnpGpjRqkiNZWaGGJztHmYarD6CS9Wtl/bo1MntGeC0jEmf9j5TU1ArnE864GiKMnPG9nHPguXLzybfIJ+M+lkHdD5HUeqny05yfkp5bXdWQxxP3DDivsH/7299k8uTJem0oXC7SIWVg0JAXrJGIe8Ynn3xSPv30Uz2gyOA61pQ33nhjRJJYWl577bXa2pIBRwgLiBrWWrzwwgu1NRnpjxgxQnDVyhqFxBk+fLheV+qiiy7SpN1dd90lWFChD2tNua0zGQiF+ICcOeOMM7RlIcRDENexKIubVdK97LLL9Hp/Z555pi+J51ce1kKjPAcffLCOyyCse1008vnwww/19XPPPVd9yKdKXl6e8mffTmNiCCbCxRPikT5rFCK4/KPsELlu66YlS5Zoool18FgHDOy5rzUpWQ2zJDszpCf1rmH9NOnQvKNWYaFaJzIR6Z3bW07ud4rgznhgl4F6P3uHG1fWZe3VtpdcduRlMn7BeDl9vzN00t9M/TqRLHTYpWuXSj/1d/HhF8tPs3+SDZs3yIKVCwKlA86s4Xj66adrV4esw8b9ckt+fr7+edBBB+lnB8LSi9SKVa9Zl5L7DZFIvYWwOv7443VnhGfHLbHqAWs+YgF96aWX6rVPTzvtNHfUQMesH7fvvvuqTt/f9VqzWDxB5vEsc66wMNjASLx2J5F8aK9YvxN8cKHLuqo8u0HaHeJOnz5dx/3nP/+p2x1IXZ7bv/zlL44LS8CBVKH9uuSSS5Q7nqna0svc33jgJdLu+JVnT253aLMhsrKysuJBXW3XcXHN2rCImbBjJgng5ti4NTVujqlDxOE8ay8y+JCs90K8QsZ7frws5mOlybP97rvv6nc44dzuZE081l2lfeEbAA8EtDdYm/K+o12kjQCDs846y0SJ2MdqA+OVJ2i7E5Gh/WERsAjsdgjgUWfAgUfotqZQuWltndvBKeOqwmWyedPGCn1H26cMQZSMPuU+114kq6fNliLlWjRNuU9lzUBIOmNRN++DL7Xbt4F/v0HyP/1OWxRm9+4uzfbtIWPve9q5VxyQBoOdXc89RerWT9Vu3lZOnC5suAxlbar0ls1ksbLKrN8oU9oedbBen2vZj+p9q/qJrC3VfEBv2e+Oq2S+chvL2padVZxxDz4X4VaOgUuIRYjOjWqgs2TJcmEwNIis+G2yQB52OmOwcrk6SzqcfJTS1ZuU8StP4bipWp/cYw5R62KlqMHaTMnKC7l+NDos+uZHvT5mtz+cLnVSUySjbUtp3L2jbFq9VkoLI0kkE8drz3qTKRnpjos8XNw26tRe35/ihSFilHgQus0HKBd9l50rSxWe5crF3rr5ocmRXulWx7k9rU85YsRYvYbjeecdoSZ9bdJrLXbu3DoCWkMiHXHEPuoba4kmLFk/0UuKiorVUjI5cs01pyoPPvPU+uerlVeopXpdSgg0XI9ed93pmvg844yDdZv53nujIpKCyCPcffddrMZuxmoibty4OTrM9OkF2hKRNN58c6R2+RoROcAP1qvcf/9u8vjjQ/Waj6z/h+XfqaceqNa3f0HrHCAZFf9KNaYzV5Vtuppk3kKtK5ijvP+UiyFNE8mHeCtWrFXjXB1Vn/t4WbKkSK8P+eWX45T3sJOUleWheq3G998fLbhqRdcffpiivpFHqfGzcjX2skDF7SAvvHC9vP76t2oZnK2q3zhYrrrqKX1fTXn87o+5Hms/Zsw09V3dQv7859N1mf/wh6MiXJe64/qV59NPf5UrrzxRfbfvo+PiFrh165DLaxOftSWPPHJfGTLkODWRMEWTnh06tNTrdM6fH9w7Hda/TZpkqjGs0HI2uILFghXLUrdVZaz6ZnRKxn5X6FPSjmfmhp7vlPQ0Pe5NW4yUrljpuDXV70+fd1Sy3gvxMJ3/4ZfS6uD+st/d16q1HkdKoVozMisvV9qrtSgnPPai46I7Xjrmev9br5S5746QvBOO0Ke81mwsVO/WvBOPlK7nnaJdmPN+2lhYpI7VxNaeXaSFemerRkt/B5h03ftYuMUrDxOnrFgELAI1j8BOJSSbt2wrXXuErX/oQLIVzJ+lCcloOBjU2unio8PI6SOlc4suMqDjALny6KFazfyV+fLWT2/qY6O72XMSlyMmuUSsKL3cZehMXP/c+bhOO4cQg7gTZEOw6HrllVcctyAQHqzfdPTRR2sSzkT0cjFKXgwcQtBAYvIbQpI9FpwM8O+33356Ix2IRbN2ojsMa76xIV7kHe4xmd3EhkBevv322/o43j8IVqwwDz/8cL2hA6QCA6bo4BZ+e5UH3O+77z659dZbBXKWwV0srbCSNAO9DMQygAvhed555+lkIXkfeughdxZxj3F3Z9YdIzCEFhu6MeBt5H//+58eLIeUATtIjQsuuEBfji6XieO1TyRsdPzDehwuJ/Y90TndpkkbufXkW/Xvfwx/RO+Nm2INdSTcTjwOsIY0aZVvK5dnvnpaPydce/mHl+TGE26S/h0G6I1z30//TiYWTOQwUqLuaeRFkS8nfyHMnO2X11+nBQF63at/jg7m+ZtngEF4CDpIc7CbMmWK9O7d23l+GGT//PPPBVeukInUNywDvdZ+9KvXpIvb0ZtuukmOOuoorQvneE4NCWIUjFUPvvvuO00YdOnSRYYOHao6FOtVZy0029bEZ+/Vrphz6P7MM89ol62DBw9WndHBOirpGMswd1p+x/HanUTzef755zXRigtdBFISUiReu0PYRx55RLdN4HLNNddwShPA3Cu3kMf111+v7yX3E+KJNi2IJNLukJ5feZLd7pj7Gl2GZLQ7fmlH58XveO2OsYg3E2W80kjWOT+9sXJ2T44hP/N71KhRar2a0GAqE0WYRNCvXz9NXhOOeoOVX5D3gl/+pBNU4j0/ZqISeRnso49NXrxLmBRzxRVX6FO867zet++8847+VjjwwAOFCRhM2Pj3v/+t36FMXsIDA0K7w+Y1+O3XBsYrj07Y/rMIWAT2eAQapoXWvQeIHr3DXkz4Pe6XkZqQ5Ngtpg10n6vxY59v1drWp4TwatY31H8DQwb2Zrz8rmNFAVnYMKeJdDj1GEV2nePAvHZOvnPsHChMpr/wlnT63fHSU7lpg5z85hLVp1Dnf7v3Kdn3xkukzeED9UYcrCMXK+LOyLT/vKEIvnqClWTfGy7Vp0MWHZHfdjNfeU+6/eFUvfYlgWa9/qEs+jqcjknPa89AaptD9lcDp0foDR1WT58jTdWAKXpGiE95KNdvDzwrfW+8TNoecaBedxG3t1hMbtvxHcpA7KzXPpCu558mPS8OTephHa4Jj74QkUW8H7iTNWtwErbNYQfojWfgmyG3ONELlPVJk+6dpPl+fbTrXQZ3vxt6Z+g65YoumxPTBHGVPU7YqKjOzz2tT1lQUKjXPoSgu//+i/W32fjxc9S3ZBenX4Yl3IcfjtFkJUQgZBckjtfaj48++p7cddf5OuzJJw8U1m+EFONeDxv2mtouUJNqQ952OPfss8PV5O5iB38OXnhhhBpTaK8JNohJyK2TTrpLh/n8899UH3A/NZE8V/VPf6f6oyVqEufmiPj8CLvRDF/aujVkVYXujzzyjvpGPkNOO+0gvRFq48bNqh8WdvUajul9BDGIG1M2pLi4VPVVhzu4JZoP2F177WnahS7pLVmySrtHvf7659S9GaK+cXvqjWvcg48++olDLXff/Yo88MAQhUs71UcItXGUhXBu8bs/7jB+x2+88b0aD+irJvr11xtpQzZDYHvh7VeeW299UY1nXaTGxfbW+mHh2a1bW02sknd+/gr1Df+NGtM7UpOqnIPkvfPOlzmsIF55E+juu/+gJvQ2dcIb/Kh3xx0X7kfHqm/B+kahdocmh81PktWnNGNafvlw3s+CkDUQ97vz6oio5vfCL36Q2W9+4lzze0cFei/EAsLJIXTgVx68Hkz610vKHfn5evINE3AQJgYx2QjrSYSyck+1cBw6isCAd0mDnKbC5CWEd53X+xYMWCMz9+hB0k5N1lnwyTcy7/3PZY5y1brvdUOk95Xn6/gbV60RtrqutUT1BfXPD7d45THx7d4iYBGoWQT2UrNFTLtRsznvprlhFQkhU7i+UFtd7crF5MWM21K3lUe0vrjswPUaFh8QeNHrW0WH9/uNhQt5se6eF6lJPMIwewmrByyfqkMoMxtlqYrgwo4BWyy+unbtqgdd3SQPg64QHQzAMqhqJTYC+7bfVxP5T37xhEDkN81oKktWLxEvoj6zYaZkZ2Tr61u2Bu+4xNYg8avUAcgKLHWjSSyTGmGo05BYVRGsbHkG58xRM8fNR1+CCfJ8ZWRkVLk+YhUMsQjREtRC2a1qkHaH8FXNhzSCtDtYddPGQXpVtV0gTy+x7Y4XKvHPQb5zf9hjYV/bpSbfC1V5fv7zn//oNo0JDFiH8k6uzLPO/aLt4t1Y1Xd6VcpT2+uN1b/2IlCsBpIz0hto93SVLQXfzaz7TPvBnokFbHyfs9Wk8P3BxiAhG5Px+P5hjzW7leQiUJv6lKwnxUCi28qjAhqqvmLdiJVI6fJVjsVihXBxTtRLayhpLXNki7JoZFDSSyAl01u30JaauHqrDqHMWLlUNX1cpGKxuc+fL1ZWoz3luyv+oglKozMDvxm5ypORIiMZVLUSG4Ha2KfEPSpuWCGHokksU9oUVaexVJs9O+Qi1JxPdN+xY0vVp0zVaxBWtk+Jq9asrDRNjCaavzs81nnNmzdWY0MrZdWqii4c3WG9jps2zVR98Vaqn02fNJJYdYevaj6kRZmx+mO9T4hkL8GikPsIuTpv3jKvIFU+R5mxbKxq+tQ5yGYsVXv2bKeI4XsiyOV6ql3CnSsuaiF3a7vsbn3Kmnwv1G/SSHsk4P0DIZmIDPrnHer9Vi5jbntYWYe20hOWEk3D5JfWPEe9G8vEy92rCRNkX5XyBEnfhrEI7OkIJNL/3akWkrvjjSorLwvs+nFnlx8rq2hLq2id+FCtKplCmhBzWJHFEsJg3ZSIYKmFu8ZYgjXma6+9poMEKXOstIYMGaIHgMaPH68tPiEdGah1k5HEZ4DG7Vo1Vpr2WiQCuE9l8xPWk2Tb2QIhPWvWrJhqECYZz4+XxXDMjD0u8nyxVVWwQmRzC1ZikH9+wmClsZQK+gx65eOXvt/5IO1OtBtkv7Tc522740ajeo6xEIeMxNp4dyAjQakm3wvJeH54/1f1PZaMtgvsklEe0rFiEbAIWARqCwK1qU8JWbaupCA2tOqdwvpPVZXy0o2yfv6imMlgtVhcsCRmmOiLLQf2dSwmo6+Z3/M/+VoKPvte/6TMbJWVjspiFMG6Ehe2OX26a3y2lkVOtsQCJdGyVFan3S1ebelTQgxNmxb7+cE1aFXJSO5vIm43/eqDWUfR73rQ86xXaNYsNHFef/02Tf6Z39F7CFvIMwQSMhYRqQOpf175mGtB95R5/Pi5MYNjFel2Rxoz8I6LWIleeunxMYN+/PFPyvvIZzpM0DL7JYg7X+SXX2aqZYZ6aWtXyOBoS1dwTrQsfnnu7PO7Y5+yJt8LeD2osktT9f53uwivTJ1IxFV5rPSTUp5YGdhrFgGLQGAELCEZGCobcFdEAOtD1qyKJViAJksgXQYOHKjdN5ImM9fvv//+ZCW/x6azdVukS5M9FohaWnDWY2zaNOyWJboYELO7k9h2p/rvJtY3uA5nHUYrNYtAMBdJNauTzc0iYBGwCFgELALViQCu8FZNnhkziw1qncVkSUpmuuSqNTA7nnasTrJ0+UqZqNbmslI1BGyfsmr47ezYkyfPl5ycRr5qlEUR9r4Ba8kFrA9nzIi9VisWoMkSLD0PPbS3dutLmlh83n777t3u2D5lsmpP4umwtrMVi4BFwCLgh4B12eqHjD1vEfBBABdZuKxct26ddtvqE8yetghYBCwCSUPAtjtJg9ImZBGwCFgEagSBRFzW+ClkXbb6IWPPWwR2AwRUnzI1M0O2bCgVO3C7G9xPWwSLQC1AgD5ls2aN1MT6EmftyFqgtlXRImARsAhYBGoBAon0f62FZC24oVbFXQsB3NitWlU965HsWiW12lgELAK7CgK23dlV7oTVwyJgEbAIWAQsAhYBi0ASEFB9yrL1O38ZiiSUxCZhEbAI1BIE6FMWFq6tJdpaNS0CFgGLgEVgd0Wgzu5aMFsui4BFwCJgEbAIWAQsAhYBi4BFwCJgEbAIWAQsAhYBi4BFwCJgEbAIWAQsAhYBi4BFYOcjsMdbSJ6Qaf1a7/xqaDWwCFgELAIWAYuARcAiYBGwCOw+CIwv2y69M7ZKSp29Kl2o19dUOqqNuIsgkJaWJi1bthSsUoqLi329rBCmYcOGWuslS5ZIWVlZhRLUrVtX2rdvr9PavHmzsKa1lzRp0kQaN26sL61cuVJKSkoqBMNtX7t27aROndD85AULFlQIw4n09HRp3ry5vrZ+/Xq15liRZ7hWrVpJgwYN9LXFixd7LmtRr149nSdYbNq0SZYt814bjXXJGzUKrSNXWFgoGzZsqJAn+ufl5enzpJefn18hDCcyMjKUe8Jm+hrLbaxevdozXOvWraV+/fr62qJFi6S8vLxCuJSUFMnNzdX4b9y4UZYvX14hDCdycnIkMzNTX1uxYoWUlpZWCIf+HTp00GmxxllBQUGFMJwgHdJD1q5dq9wsVmwUSAv9U1NTdbiFCxfKVo+1u7jetm1bnSc6oZuXgBe4IZSRskaLW3/yIk8vycrK0kudcA3dKUO0kFabNm0EfBHuJfc0WqhflJNr1AnqhpdQX6m3CHWMuhYtbv2519xzL6EeUh8R6j7PQLSQFrhSvxG/Z4nnm+cE/XkmeTa9pEWLFkK7gfCM86xHC89tnqr/pEVbQZvhJbQDtAcIHp5og6IF/anXtC+In/62LQsjZ9uyMBbuZ8m2ZbYtC9cMEduWhdGw32VhLOx3WRiLPf27bI8nJMNVwR5ZBCwCFgGLgEXAImARsAhYBCwCFgGLgEWg6ggEGcBnMBcChbAM5kKgxCIj0YrrXmQkaRkCAqICAsKLjITMgECBgCBPCCAvgdRhQJG0/MhI8iQMZAtpodeWLVsqJGcG8LkAweJFRpKWGbQjTwgbLzIS/SFQCO+nP9cMmUpafmQk4SCDIbtIC2KnsmQkaUFeQcKRJ4SZFxmJ/pDBCHl6kZGkZQbtSCsWGQnJBZlKWpDBlSUjyTM7O1uToOQJYelFRqI/xDjiR0aSliFTScuPjCQt9GdQDv0hBgkfLZQvHhlJnpC34EZa6O9FRpJn3g4y24+MJC1DpqIPRLYXGUla6AWZSp5+xCz1Kx4ZSZ6QwdRb0oIMjkVGghHPmhcZSVqGTEV/yFQvMhL9IYN5PsnTqy6Sj23LQCEkti0zSIie0GLbshAeti0L1wvblkViYb/LQnhQL+x3WbhuBCEjwWx3/i6zhGS4Ptgji4BFwCJgEbAIWAQsAhYBi4BFwCJgEbAIVBoBBhAgIIxlJKSg1/rzDGBCoDBAA7EDgeJFQEQPgMciICD0IBYgULwICEhICBTSjEUmQTAaMpJ0vCwj0R8CBbKCtCBQvMhUoz/ECOWLRaYycIf+5OdFpqI/BAp7yCQvAgj80QmilzwhkrwsI9GfMJQV/SFJvchUt2UkBJeXZSRpoTskEPpzv73IVPSGDCZ8LP2pE2CL/pCpXpaRpME9oq6hP7h6kanuQS8IRi/LSNKi7kDCoT9ksBeZiv6GDI6lP6QgdZu00N/LMpK00B+yEf2p1+yjhevcc7BAJy/LSPSHDIYEJU/CeJGp5GkIFOoqBG60UH9Ih0FA0kJ3yhAtpMUzDr7oTVqEjxbuj5tM9bKMRH/yAzfSQn8vMpU8DRkcS3/uI3igD3XHi0wlLUhS6jd5epHBti2LvJu2LQvjQf2xbVkID7CwbVkIC9uWhZ8R2k++Cex3megJZPa7LFw37HdZCAtLSIbrhHNUr159qd8gS8o2b1CdkoouVpyAteQgtWGapDXNkU3r18qm4pCbkUYt20j9zCxdgm2qM7dqwZxaUprao2bdeinSIKuRlK5dLds9Oic1WZKUlDTZrv7Kt1R0uVOTetRkXn+6o4mkZdSRf9zu7VqqJnWxeVkELAIWAYuARcAiYBGwCOz+CJgB/HjWUAxgQhjEIyAMGQZykHleZCQDgG4Cws+ai8F0CBTSNJZVkDxuQX8IOkOmQkZ6kanoD4ECcQYxBYHiRaYa/cnGj4xEfzNoBzHiR6aiP7iyR38/MolBLwaHIWP8yFT0hzAjLPpD0nmRqe5BIwgiL8tO9IeMZEN/PzIVvSGmyBv9vdyEgr+xIEB/PzKVNCAsuVfoD0nqRaa6yTwIOj8ylQFT7oHR34tMRX+IQcobS3/qNLqhvx+Ziv6QwZB16A+u7KPFrb+fm1n0MZap6E999SJT0R8CBYxjkXnGshP9ISPjkanoDRlM3tESTUbGI1NJA8LSi0zlWUJ/xK8toGzGshP9ISO9yFSw4BmhfqM/7Qrh3UJa6G/bshAqti0L1w7bloWxsG1ZGAvTFtOG2rbMfpeZmsG7xH6XGTRET8Iyk6z2+O+yMCw75yg1tb7kdequiINMyZ83U9auXuUo0jSnuXTs3NP5bQ4mjRujPoIrrqthrld2Xy+loRx8xC3SqHGuTmL50ony6+inKpvcTo9XX2F64h0PSobCEVk5b5aMePBOfXzEVbdIVsvW+nj7tq3yf1eco4931X+Qe10PO0aWzpgs65ZWnMmI3pnNW0rb3v1k3pjvpWxj9RHJQfPpc/JZ0vuE02X432+R1QsX7FRojzn5EVm3ZqH8+N1DO1WPeJk3atJeGqY1keVLJsYLGvN6q9x60n2f+vL1RxXXnIkZ0V60CFgELAIWAYuARcAiYBGwCFQSATOAz+A+pI6XNRQDmIaMhAzwIyAgC8ygRSwyz5CRDABCnnhZQzGYDgHEHjIGAsiLgDBkJNf8LDvR35CREFMQQF7WXG79Y5F5howEC/T3suxEbwgUBsLRHwLIi0wNMuhFGuhPWPQHfy8yNSgZif5s6A8B5GXZif6QvGCH/l7EMoN2hozkXoKDl2Un+kOmcq/QH5KLNKPFkHncS/D3IiPRB92pQ+hPfn76Q0wx4BxLf0NGoj/10MuyE/0hLHlW0B8ymH20GDIP/Rm087LsRH+IYAbA0R8y2ItMBX/IYDBGfz8y25CRRn8vMtLoD77oDa7kHS3cHzBDfz/LTvSHDDb6+5Gp1EX0R/zISO4N6VC30R8i0o+MpC0gTbBAf8JHi23LwojYtiyMhW3LwliYtsC2ZaLfbbYtC9UN2mL7XRbCIigZybNkv8tCmNX277K99gpN0jPfNbG+y3aqhWS3nvtqMtI06YXLFkcQkmnp6oOqWUtZpyzMtinSzBH1IVkd0rb9QE1GTpnwhqwqnCFblIVkbZbuRwzWZOTk4e/K4snjtYWkKc/H99wgdRTJN/iWYdKkbXtzepfdp6ZnyH7nXCyzR34lP7/2b0898wYcJH1PP1eKFPlXOGeGZ5hknAyaT/HK5QrzdbK5pOLi8cnQI5E01q0pkLVr8hOJslPCdut1irRo1Vs+eefyKuV/7pXKXZJqMka8XVKldGxki4BFwCJgEbAIWAQsAhYBi0AQBCC4jGWhHxnJoIsZtIPMoKPuZQ0F2QGZwWAOZJKXm1OvQS8vAoIBZAgg0oxFQAQhI43+EE/oD4EST3+u+1kWMmgHHhAifmQqZAD6s4eMgUCB5HFLIoNekMEQf+gPGelFpoKVIYDQ34vMA383mQr55kWmorchg9EfLLzIVENGUrZYZKR70M7PMtWQeeSD/n5kHvpD6MUiU9HfkMHo70cGGzLS6O9FRlIX0Z+6Rl0Ef/bRElR/dDdkMGSqFxmJ/oYM9iPGqT/RZKSf/oYMRm/wpx5FiyEjwT8eGWnIYNoCL8tO6iL6U99itQXRZKQXmWraAvBFf+qFF5lq27LwHXW3xbYts22ZqRm2LTNIhMlI25aF1lWNJiPtd1lsjxV8V9rvstDzZMjI2vxdxvdFlvIUyXd9vO+ynUpItmrTXpYsnC+riwqld9+B4RYt6mj8rz8o96mbos4m72fduqmqs6cWJG/bX5EYyn3Kgh914tu2RX5cEg7ZurVMzehrJOmZLRWBukD/1hfUP1xjNmqSKyXrFRm1KbzWAOmbfDKyWsqaogWSWj9DdazSpaR4uYmelH29+g2kjpptl9t3f1WerTL9q+E63a2uj33Omy1WpvWUBWuLbr1k47o1EVZ+pE8+5eq+kI4Rnbf6WE7EQnEvFb5Zx67SMKuxFCorTvIyQucgRbmcTVWdRgR9UtNCxyZvrCfrqo4GG1JfkZcmTFlpJKlMejkdu6h0GsiK2dMq6L5Xnb1ki+q0Zed10kRiyapCnSb/EskHfOb/NFJvbnycxNQBbnOzWrWRFbOmSbSe6L9VWQETt1WP3lI4d5bG2h0/yDH1Dhnz/T8qBK9TN0X2Un+4J65bL1WK1y2VjMwWsqWsVHX2QySqqbfU+fr1M5Ulc46q8/mREwR2pNwwTblt0tcLVMem4vMa6/kxz0adOnV1avXqNdiRqnIzW765gu6xTqSl15G8LikyY9Jm1UGMdEMVK569ZhGwCFgELAIWAYuARcAiYBGoDALuAXwszCBaooVBF2PNBYlBR92LgKAzDwEEARFrABwCgkEcQ+Z5DXpBxkCgkCZkEgSKFwEBGUaeECh+lpGGjCRf9PcjU4Pqbwbt0CceGQkpgP4QKF7WXOCP/oYMQ7doMYNeEGeQMYTxIiPRHwKIfiP3x4uMZNAI/SFTjf5+ZKQhU8kL/b3I1CBkJAPgZtAO/SGDwSRaDLHMefQPSkZ66Q/u6E/e6A8WXmSqm4z0czNr9Odeob+fZWqYzIutfzQZ6WXZif6Qwdz7WPoHJSMNmQru4E85oiWs/3ZNkPLMRQv1B/2pQ6Yt8CJT0Z96TfhYxHgQMpK2AP1NWwD+XmSqbcvCd8u2ZWEsqD+2LQvhYduycL2wbVkYC77ZKCc8AABAAElEQVTZ7HdZGA/7XRbGYk/6Llu3foOUby1XhoVrPT1uuL/LdiohOeq7T2Wr6oA0adosfKc8jmjkUlJS1QdTxQ8+j+AJnzr8uL8qIqWFE++EM0JuWpctGS9jf3zGOX/MSQ/J5k3FslURlY2Va0kEAnP4e0M1oTngoCulVZt+Tvh1axfJmO8eVnpvlPYdD5E+/S9QH/DbdNjSDauUa8ps3dFZlP+jTPj1JSdeVQ9Ov+8JadioiZPMOf96WR8Xzp0pnz90l3M+3sGgIddIxwMPdYJBmo146E7tMjVdrUl52n1PagvAd2++XHdMcjp0lhNuv1+KV66QD+64xokX66DTQYfLQRf9SeNgwm0oWimf3n+7Thsy9Ngb/2ouaX2MTpM/fU8mfvimHHD+pdJ50JFOGNzRGvngL1drffjd9dCjddi9dpBeuKr98eVnFGn4gw4ObhCqrPdoCE1crX567626fEHz6f+7C6TXcacYFSq4bM3IbiYn/OUBvb6kCbRo0m/y3VNhd6rcs+LC5ZLRrIXGho7f3NHfyk+vPmeiBNpTlw0RWLRyToTL1v0O+pM0b7m3gz2EZGaj1rqsE8e+LNTLFq33kf0Pvko2lKxwnhHq8M+j/iUrl0/TOkDODzrqNklLDz/HBfNHyaTfXonQMdbzM+jI2xSR384Jb55BiM3P3r/aOR/koMveIWJ63ozICQVB4towFgGLgEXAImARsAhYBCwCFoFEETCWkfHIyHgEBAPgzZo11wSEH5lkBr0gF+KRkYaAgIyBQPEiINxkJKQU4aLFTUZCwviRqQy6MGhN/92PzEN/NxkJkerlZpZBC/Rnj/4QKF5kKmQYpFMsMpIBZAggNxkJwRMt6E9a6AhB5EXmGf3dZKSf/pDBWv+Nm6RwZaEnmeomI2OReeRHWPD3I1PRHwILMtVPf+5NtGWkHxmJ/hARYAWx5kWmJkJGoj9kHvp7kalmAJP7smFDic4z+h4Z/SkD9RlLRi8ykmcJ/bn3sfQPQkaCAWQw+hkyMp7+sdoCdHfr70VGhtqCZppM5VkCfy8yOCgZif7UD/TmWfIiU91tQSz9g5Cpti0L11zbloWx4Hm0bVkID9uWhesF7yzbloXxcLfF9rvMfpeZmsG7ZFf/Llu9pljWrF6j+gCRxmGUIfq7rK76ELrHFK6m9xA/SMOG6dKmXUcpXL5YitevddTIatxUmrdoo8i8btKhcw/poNaaLC/fol24OoGqeNCl/na9Xt3CBaOkaXYnZbWYLt9/eY9az/I7WbroN0WYhmcddu4+WJEuOVIvpYHMnfm5zJ7xqT4mXMcuR0mnrscot5gFMmHsS1Kvrqoozbvr9fCWLZkgjZvmaXJn5tQPVQdBuXdR5MscFR/Ls1Zt+svs6Z9UsSTh6IsVuTX/5x+kZffekqo+Okc8cIfMGfWNWltxpLL+i1xbscshR0la4yaCW1e37H38adLz2JNl/fKlMkaRYKWri1R6e0u7vgcoi8tPtEXfJmXJ2GH/QdK4VVshz1PueVR3fnAHW+4xW9Odvjlu0radtnoc+8aLMu2Lj3V8LAKz23eUecrCEGtJ0l44Yax0POAQWTRxrPz436d0eRZO+FURwmrdlfmzpWDcz4pI3K4tG39+7T+6PJQZ/flwb9S6rRz95zukfNNmGf/eazpNyE7cr87+/gspL9ssvVR5WXezZNVK+VXpk6UsGJvm5smm4vVSlD83UD6Ua82ifFkydaImNxurfGeP/FI2uur1sTfdo9e7JMykj9/S1qE5yiKTshYVzNfQ7HPK77Wl58IJv8gURbyCSfPO3WTmd5+L29LV4Oi3X750giYWc9sfKJs2rtHHJiwuirGIhFxs0aqPNExvKr+MekKatewlWY3bqGfge8nIaqWezf215e/MqR8IJH3zFj2lde4AVX9H6KT2U4Rl4yZ5Ku0xMmPK+7quN1dprF+3RFkKLzPZSaznp3DZZFmYP1qyGrXVz8z3X/5VP4PzZ38t5YrQT0QOPLKhdOiWKt+o9SNXrQhb7yaShg1rEbAIWAQsAhYBi4BFoCoILNu4VVo0rCt11SBLZWXKus2aGIEAYWPAxr1VNt2qxOO7mg1iwuwZ5N7ThQH6WINGZgAfEgACxYuAAEfIPMg/CAhIAzB2C/cfIgOiDnIOMs/LMtIMgNP5h8yDAPIiICCTjGUhBEQyyUgvyzBD5kGOBNFfk3k79PciUxMhIxnshIwBfy8yErLJTUaCf7SgP/gHISPdZCq4epGp6GTI1HhkJGVFf8jgIPp74W8GwKmP4IllqhcZaQaNDBmJ/l6WqRDL1FmuoT/YRouxJnKTkdTJaOE6WFDHeT789Ed3t/5ByEjuZbT+5AP+DO7F0t+QkYbMA38vMtIMIFMuPzIP/NGdOsTzCP5e+pOXm0xFfy8yGPypZ+hPO+DlpjVaf7+2wOCP/rYti5xY4VUXbVtGTQmLbcvCWJhnybZljPXbtszUDPtdZpDAs2Rokpj9Lgu5POabwP1dU5u/ywpXFmnDPdo/t5jvSjNJjO+anWoh6VbO63jzpo2KlJipCMgitbZjtrTJ7SA9evdXnSo1Q0+Rl8mSjaWrdVJYY7FWJZZisWT0tw/K+rWh/I2VWF7nw3UULCJxMcn5E854WlopN7Dyy4tOcgXzf1AfjGWKrOymyjZSWiqSCCu1OnXqqbwrLobuREzgYP2KEAkEycaH66oFcxOIHQra61hl4ac6wJCRuA7N/22MtOjaU7CCTFNEcala13P2D19rt7DtBxyoz6eol813zzyiLRuDZoh1IhuuWLNatlYk5PfS6eDDpZEiOZGtqqOE/sbic+O6tRXKA2HI1qpHHx1n7dJFFcIMOOuP+tqk4e9ot7D8YD1KLBm7KMvJKZ++r6/z7/OH79LuWkvXrJbBt/5dIAtnqfNB8iE+4ZbPnOroo3pVnHYEkhNr02/+dZ8+t1oRmKcOe0y6HXm8xtQEJMzIZ/+pfzZXhHy3w49VRG0nWTptogkSd2/q8jZl1SjKPWu04J61cNkUvb5kk+yOskIRg7hkbeyyViQO5+fM+ExHb9Q4V00SOFTX4VWFM9W+hyI71yor3//q6z8rEvLoEx/UJP2yxeP0Ofc/r+dno3oORG1btoQIc6O3O17Q49btU3TQgrnWQjIoZjacRcAiYBGwCFgELAIWAYtA5RGo6gA+ZBgkHR11yBgIIC8CgkELwhkCwo+MhDBjIBDiCgLFi4w0ZAylRn+IimiJtoyEcIIsjRb0hxghvCE2o8lUN5kXT3/KyOAF+vsRKEZ/8olF5jHI4x708tMfAgjCyJBJsfSHXPRzM4veRn/yQn8vMtWQSfH0517GIyMZAAd/9PeriwZ/8DD6+w16oT+Dp0Z/LzLV6E899SMjIcOMNZQhU/3ISPBHR3TyIoPdZF4sMpV6j/7kzbME/tS3aEF/wgXRn/qN3jxLXvpzf8CfATiw8CL2vfT3IyNJy+jvRQaTj9HfPEuxyEijP1h4kanoD/6x9OfZpu6Qb6yJFbYtC9c0niHTFti2LGQZaduyEAHBs8T73LZlti0LtxjiTJLhnP0uS9PvJftdFrIsrC3fZWWKh0pVRnxu8fsu26UJyZUrlgobslyRTEsX58tBhw1WZEhXTUjysb/33nu7yxnzeMGCBZ4drZiRoi5CNhoy0n2pfgM1y02tu+de745wTXM6qQ+70Dp+hMfi0lhdQoCWl4fc0LJmXllZiTvJnXqcmp6h+Ku9ZPAtf6ugR7YiJUuVdSLy7ZMPytmP/VfSlRvS/LFjZNGO8xUi+ZxIa5Kt3Jfer0lOd5C6qjOeTMlq3lInN+CsCysk26RNO+fcFkV2by4JrZ+Ii1uknqpnyRJc3YLr2iULnSTXLV2s14pMc7nZ5SJEpZGignn6sL7qLCRTtm0Pdc62KtfDuB9GIMzr1InEf9WKEBZcLyqcpQnJDLWGavH6pbrjsqZoPpe04I6YtNLSs80pZ+/3/DgBknBQvDZUpibNlKuoDduSkKJNwiJgEbAIWAQsAhYBi4BFwCLgj4AXAVGZAXwICi8CBaKAAUzIHQgIyAc/MpJBCzcZ6UVAQNBBeiCkQ57R4kVGell2uslIBtAgbfzIVPQ3ZBjETbSYAXz0hwzzI1MNGUZ89CdctBj845GRkHlgZsg8sPAiI8GfLZb+0WQkevmRkRBA5MO99LMsTJSMBNN4+scaADf6cx+41376M5BO/eE+g38s/cEXEo8wXpadhsyDjDT6R9/LaDKPtPzIPO6lIfPAwotMdesP/n5kniFTg5CRRn+vtgD9ScuQeeTnpz+4MjGB6+DvRaa6JyaQll9bQJ48n+AOZrHaAtqYWG0Bdd/oT1p+bQH4G/3BP1p/25ZF1m7bloXxcE+sMG1BrLbYtmXieEygLbZtWei7xrZlott93iV8B9nvsshJYn7fNbTF9rss1B7X1HfZLk1Ihl9NoSPcuZYri7k0yDIlvJy8PvBDoSv+j+4YVQwR/0zphoquW5xY6iMunignR+EOjtJflSIUJUBcd9o0skaiX9LmfFX3rOU4XK2fGC2GsOM8ZF5qwzQdpHmXHpqcSkSfw4fepMnI6V8NlwW/jNLrPf7u4edVOmESNzr/yv5Gr7dvuKRCdLcb221qtmu01EmiLg42rvtn8mNtRrdgmVrt4uTpcgflnAvn7q5vEKpa2Os6DMda8X45ZQ0nowjCGM+PK1xVDhfM3iL7HarctnZJkSX51kqyKljauBYBi4BFwCJgEbAIWAQsAokjYAgIyDD6q/EG8CFQYhEQhow0g45+BEQQMpJBF8JBoDCAyeBMtESTkYTxsixkABnSAwLCDHpFExCkTRjKYMjUIGQkmHlZdhr96Z8Qhi1a0J8yMqhirLn89DcEitE/esyAfNDd6E9+hI0WQ+axj0WmGjKJ+ODvpT94glk8ayKuoz/lBVPuU3QfjPtMWuRryFQv/SGBCYf+schIUxfJx28AHP3RKwgZSTieF+q0n/7kafQHLz8yj7TcZKoXGUlahIulP88jWBj90cvLMpLnO1r/6Hph2gLqrSFQvPSHOCRPd1vgpT9h2GK1BUZ/NxkZS/9YbYHR37ZloTsL9qYtoP7btqypBsa2ZaG22LZlITLMtmWh9sI9yYqJIbxLvCaGmO+aWG2x/S4Lv13td1kYC45q63dZrSIkG6alqzUbmS22TqPPgzxp0qTIO7GTfrE+X2ZWa9UZaKA+9ENrIjRqkqs6XWXqYzeSaKqqilktWslp9z6hkymcM0O5GL270kluUGtD5nTooknFMtf6kmVqEfkGjRpr16Jmrc/oTOrWSxHWQ+RjeNrnH0nvE8+QQ6+4QUY+F3IzGh3e63fTdh302om/vf2Kvsxaj/XUjMwtqrF2iyHnGiqd/MSEyVDWmuDilnVqLclMZSWJu9k1iwvclxI+jpVPvMRK16jZx6rz1rh1rhO0sSJ166hO2Mb1oXrtXNiFDrLVeqjzZn+lNcpu1k3vWR9ys7IKpjPXJLuDo216RjNVnhQxrpCdCwEOcFsMuVkVF8Zzp4eI3NyOkVaeAbK3QSwCFgGLgEXAImARsAhYBCwCVUKAAUlICjOAzwBULGsiyAMIIogWLwKCtBhsoM9FWvEGwOMNejFQyKAX+TGIHC1Gf0PmkacfmWcGHY3+XmRktP5eZJh70I680M1r0A5Syq0/4aIlmoyMpT+6QZ6BKWn56U++XCMtL/2DkpHcRzYG00jLC3+jP2QYGBDOz7IQLAgPmUdaXmQqYdz6e5Fh0WQkWHhN/DaDXuiP9ZsXMe4mI9GftLz05/lw60+4aDKVfLhHDNbybICFn/6Eox5x3U9/8qMMCGl56c/zSFqQebEsI43+PC9gzxatP89Z0yaqLcjKdPT3awvQza2/V1tAGDbyQX+vtsCtP7iDhRcZCaakZfQnXLSYtsC2ZSFkqBfUH9MWe7UFti0L1yLbloWxsG1ZGAuObFsWxsO0xfa7TPQkINpZ+10WWn+V58RMEvP7rqnN32U7lZBMz8iURk1y1Adm6KMwO6eFdmdZoiwh169bI/sOOFhWKyu9YnWcqYio9h1CRMiiHe4rw4/wzj/Kn/ud9O53vgw66jaZOfUjyVNr7NWtmyqL8sckXbm91EdvsoR1FNv3HyjHKdess0d+qS0Ul06bJFNGfCC4Nz3jgWdkxtfD9ZqMrBXZuuc+8tHd1+nsj7nhLklVJPGoF/6lrBtHS/Mu3XVaHQ88VK8LGUTHtUsKpKlaG7T7kYPVh7XIvqf83jMa6yluV+t7tu61r/Q58UxZu2yx1kkTfDtimLUy+515viI11Zojqh4tnjhWf7CPe+dVadu7rxx/230y98dvZf7Po7S+3dW6jV/9c5gut2fGHidj5UPwlt3VmqB164lxE9u8czdpkNlINqxZJbhnXaXqb05eZzn2xr+qtTl/cso84+tPPXKr/Kn6DbKUNbFyEasEK8+UVDXrVa0Tiaxbkxgp26JVH+m+92mqY7pRcvMO1KT7KuW6FVm5YppeB3XAgVcot8rjpGefM/V5Q2DqHwH/Fa9bIqLWXe13wCWyUD07W8o2iNsdbJBkli8ul9KSbdJn//ryxvNBYtgwFgGLgEXAImARsAhYBCwCFoGqI6AJCDWYApkHoQNpEIuACEJGQiZBQEAA+Q2AM2gRz00r6bBBMjCw4UWgcA03X5BhRv+gZKQXgUJaDLbF058BKOOmFd38yMj/Z+9N4Owqyrz/yh6yd9ZO0tkhECBssgqICCiCC8ig8LqNDrzOjOMyrqO4jqK48I6OOvpR37/LKC44KH9BcGFRdogBEsgC2bfOnnQWSEKCb33r9HNP9emnzj2drbM89fl039v3nFv1O79Tp7ru871PHQIveJyCSQJQ0E9mJPuV6a8X9GL5LmAMAAL/NRhGsEiCRrRFm1pmJ9rxX/Tjf7EQwMczYFgVGIl+gZEaTKUu9LOtin76Kv5r+jlG9FeBkfX0owk/BKbSpgZTi/q1a0lgagzzNJga62dZVQ3mCUylznowUvQLjEzpZyzg2sB/TT9eoa2efq4R/KdQl6ZfYKTox9cUjES/jAX0IRWm2lhWu0RtLKtZEa5dG8syP2wsy/uFjWW5F4znjOuMxWVfEuM64kfGYpuXZStulH1JzOZleT+L5zXMC7QvWcm8Zn/Oy3q3rrhRb17TqUByeGOTmzzlxJqbozyY4mfxgrkBSPbu3cdNOf6U2nYmSc/OmeFWLF1Ye22/P4lWtozbXjjvXjd42GQ3esxp7vSz3x02bVi/0M2cflN4XpvgQd1qJXrekSzKF6P31eravSfNs2cEeDjutLPcGW++1m1evdL9+rr3uFl/+K3rP6zRHX3eRe7UN769VjlAjXLsRa/xQG+KW+qBHzCS8qevfd698f/8X3f23/+za541M2Q+hg0lvx77xY/c+e/+iDv96mwp1W2bWxw/AL1imX7LTe6ky64KP2ybcduv3BO3/qK2G/d8XPrkNNd0wkvcmW+5Nrz+m0+8121a1exaVi539//gm+6st/2jh5+vDj/swD0jd/oPq5Q2pya8ov8qa4d3XPSBT4UPavJuObat69e6//noP7l7/+ur4b6ZgEt+KIs9mJx3/93ylvCoZaZqr7V5U/THhCNf4SYf+5raKwMGNrlzL/h4+Pv+u78UHvN+WVs8uLZ//GTL5uZaXWQxPnr/N/zmrB8+/og/56/4qL92Tws/vG/hvLvdyuWPx1Vkz+t03Xlz7nRDfTbmyKZTQ11kG//uln9pX0+dV373yy3u7945wB17ci836/Htdfa2zeaAOWAOmAPmgDlgDpgD5sCeOQCoIVASAwgNhhEUAC7Ug5ESAEcVAEWDkTGAqBf0EgABMCPYU/sc0HrYgDL0C4wkuKHpZztBENqmHgJoGoykLoGRa9asUWEewQqOE6hHW/VgJEE7gZFF/WwT/QA19GuZeeiPv4GPfg3miX5AE/5rMBL91CX6y2Ak/uNxCiahHy9imKrpp3/hfz0YOWzYsBpMRb8Gw9At+qvCyBTMK8JUjlODYRLARz/eE0Arwjy6JP4LTE3pJ9iL/npBrzhol9KPHvzn+qwHI6mP40U/P0X9jAX4L2MBbWrXEvqpq55+jlFgJNeSNhaIfoGR+K+Bfa5Jgalcb5r/Npa1DoqtDzIWMObYWJZledtY5sL4xLVkY1mezWVjmQtzI8bsKjDS5mXZIGvzsvx/zsE+L+vuV9Ic7Oc1HEe9FSu6jBkzpg4iyI3pjGc9faZbL/+za9dOvwSkz5KrSo0qir2k/66Ke1bbjazIAYOa3NbNq/w3C7dWe9MBvBeTUZZVJeNww9JFLl7WdW/Kbmga55dpfc5t8Rmx+7qwdGvfwUPdJr+M63Mb298zZV+3L/X3aRjiBjaOdmvmz/VQ9MCEZo2jTw6A/eG/fM1t9ID9iL5D3KaNy/x12H4Z4l69+oeMzJaWZe7FXZ1/78Yv/2iEW79ml7vhQ2vFcns0B8wBc8AcMAfMAXNgvzgwfd12N7Whp+vRtctut/fTJZtC0BtQQfCbACA/zM/52Z+Fz2D8EHjnBwAFxOGRgLoV50aMGBFgEr6sXr1ahWEdhZGcZ+rSYBhAkEA5H/oBKCkAAcgoBr00gDJ8+PCgn3NK0F2DYR2BkcAk9K9atUqFYbF+2kK/lpmHdskgYJ8UTEU//pIdBwBK6SdQSAC5DKYKzKPP478G8wi8xjC1DEbW0881TpvoxwP0azCvozCyTD/9Bv0cRxUYydiDLmAY9cYF/fhPALZMvwYjNRhMXRwr/RT/NZhX1I//WmYk5xsIh/4UzGN8xX/0A/E4znowT2Cqpj8eC2hT009b+M91UBa0Yx98Q39qLKA/MxZQZ9lYUAVGcl5j/bSpXUs2luVXgI1luRc2luVe8MzGstwPG8tyL2xelnuhwUjtS242L8s9ky9ZHYjzsm3bd7lxY0f7uUh2z9SyeVn7NLT8GA+IZzu2b3P8HCyFe0Z2dInJA/nY+LCxbvGCDkuccsEl7pQr3lL6vrn33Omm+aVUKXt6X8fShgobyQLlp7MLy83GS852tp567QPYyyA795Pk50ApN358nRs0uOuBIsd0mAPmgDlgDpgD5oA5YA4cog40Nvp71XuYtDdgpGSGlcE8ARACIwEoGswLQS9/6xOCxAAbIFwRRnJKABCxfg2GCYCgbaAUQEYLGlXRTwCf4BIwrCMwUoNh+IR+YIzAVE1/R4JewDAKMFWDSQIg0M/2KjAyBfMIKAnME5iq6a8KI6mrb99y/QJTY/1a0Gh3gl4AOA3mAdWoTzILycwrg3nEIfBfg2G7CyM1sC8wlTrLYKTAVPSTWci1VKZfYKqmf2/CSIGpoj/1xYSqMNLGsnDph182luVexF8MsbHMxjLpGTaWiRMufNGJMcPmZdyJz+Zlec/IvphwuMzLVq1mdZWt4TOCNq+MvyR2wAPJ+CTa84PHAZZIJfOvrKxftqhss207ABzgvp0Ha1m1fKdb5W9JacUcMAfMAXPAHDAHzAFzwBzYlw4QlANAAFA0mMR2ycyTbKgUzAM8lcFIAATQCShGWwSHUzAyZOZ1L4eRI0eODAE04EpKPzCS7AbaBgoCZOrpX7lypQrzAJrASNFflhkJRAEYsQ/tajAVgEIAUPRrMExgJPrrZUayL/43NzerMExgKo8CU7WgSzGAz3kvZhbSDvoBg/hJNpqmvyMwknPlq03qpy385zwAU/FW0w88jDMLNf3AVGAwdVJHCkaiHz/wv15mIfop+K9dS7RF0Bf9ZHaWZUZKZiG66unnGmI/7VoqwtQUjORccq1znun/mn76KtcS+tGEfu1aYh98k8xILUuXawP/6Yv0m5T+qjBSxgIby7Ilg2UstrEsz1Ln/412LdlY1naGIV/ysbHMhfHOxrKsfzAns3lZ5oXNy/Ix41Cal+3Y8ULyMwKfg+J5mQHJvA/Ys73owIqnn3T8WDm4HVjVPMP9/7+85uA+CFNvDpgD5oA5YA6YA+aAOWAO7GMHACgaTAJACEApAxDsI0G7VGYeAALoEQMIDSaFzEgPgNi/LDNy1KhRAeYBIAi6a/olAwKAUgYjgVz1AvgAKQEowBoASkp/CNrVgZGjR48OMAwYif8aTIphKiAJmKpltsX6UzASDwQGAyMJzmv6NRipwVT8JxCFHvzX9MdBO7IKAXqa/iwzMoOpK1asUGFYDFOBkejXYFicGZmCeQAIABb6qYM+q+mnTxCE4tyjvywzMoOpXdzy5cvVvkhbHCfnQWCqpj/+Bj6QF5hXhMGAPtHPOWQ/TX8RRqb0C4zEl5R+xgKBwQJTNf3FpQ3L9HNO0Y1+rS8CIzmfjAWpe0YyNOKFwFQby2wsk3+XNpaJEy78f7OxLPPDxrK8X9i8LPeCZzYvy/04HOdlz/tb8XVxPcMX+3InXJgHypfcZF5mQDJ2yJ6bA+aAOWAOmAPmgDlgDpgD5oA5YA6YAx1wAAChwYwsaDfcw5huAYqQjabBJA1GagAFgAXYoS0AkAYzJBuqCowE8FAAWJp+AAUAhboEpqb0S2YhYE1bppI6gB7oB3wSkND0xzC1LDOSoBcwBp/Qr8EY9OMtbQtM1fRzjKI/BSPRDXTiUWCqpr9qAL+pqSmANUBlSr/AVPRLZqemn6CXwLwUjATiAYPRLzBV0x9nRqayoegz+E+d6MEzzX+Bqegvg6no4lyVwTzONceJ/jKYWvwGvgbz0M+1hH48oM9q+oGpAvMAwfxoYJl+wbWO/mXLlqnXEtca/Qz9aKJva/5rmZHFsYB2RD+6GQs0/cBU+iPwtR6MRD/FxrKhtbHAxrL2mZFa/7exLFw64ZeNZbkXNpblXti8LPfC5mW5F4fivEz7H5GalxmQzPuCPTMHzAFzwBwwB8wBc8AcMAfMAXPAHDAHOuSABvMAEAQngTEACOCOBpMkGwrIIJmRGoAg6AvMADwQKNdgBkEvPvgHALE+u8+dFhwAZgiAWLJkiVoX2wFA6AdGlsFUwAf6JYBf1I8eABb68Yr9NC/QDwBif8nsLNbFiZFv4PM8pZ+gl+gHRqJf8wJIJJmdgDVtmU08EBgMTOU8afoFpqJfYKqmn3MpMBWApZ1LAKPAYGAkfmj6OUaBqSkYie8Cgzk+YLCmX2Aq+umv+KbpHzNmTA2mArA0/WgSGAyMBIhp+rlGBKamMgsJ2gkMBqaStanpj2FqKrOTPiP6qQPPNP30Ca5Nzn09GCkwNQUjOdccJ+dBYKqmPw7aSQZByn/qQjd9VtPPNUl9op9zoPlPvxCYunTpUhVs2lhGr8mKjWXiRPZoY1nuh41luRc2luVe2Lws98LmZbkXNi9zzoBk3h/smTlgDpgD5oA5YA6YA+aAOWAOmAPmgDmwRw4AIAj0E7wGQABHNBgA8CBYVQYjETJ27NgAFgAPABQNZgiAoE3gz8aWjSpMAqz16pVlQ6VgHgACAERdAlM1/QCnejCSYwMAAUaAqejX6oqDdsA3AIoGY2IYuXjxYtULAAvBYfQLTNXaLMJILbOTOgi6ox+YCgDS6gJGCkwFRgIRNf0SwOe84r92LiVoR9tAwT2BkejGMx6BqcBgTT8wEv2cryowkmMDYGn6BaaiX5bJ1dqsEsAnaEefRT8wFRis1YV2jgH9ZTCSa4k6qQOAqOkXmIp+ganaueQaqQcjgamMBeinfwEaNf0E8OlD6C+DkePGjQt1oRuAq+kXmIp+YCrjgaa/Coy0sYwrNSs2lokT2aONZbkfNpblXthYlnth87LcC5uX5V7YvCzz4rAHkoP9xLXFf1jQJnJ5d7Fn5oA5YA6YA+aAOWAOmAPmgDlgDpgD5kC5AwAIABDBawAEAEWDAQTtYhgJ+NPK+PHjA1jj8yoASKsLAAEcpE3J5tL2q5IZCYBgP+oCpgJHtLqKMJJ9tQJAAYwAUwFAWl0E7YCztClLS2r7VYGRwFRAC3XhKXBKq6sKjKQOABb6gakAIK0ugansXxVGLlq0SAVTBO0AXdQFTAUOam1WyYxENzCYR2AqMFirS2AqbVaBkZxnYLAG1gB0BOepSzJTtTarBPAJ2gE90A9MBQZrdQEiOwIjqQP9Wl3AVLxFv2SmavtlMLKP388ll2kFfKKfuoCpwGCtLmBqDCM571oRGInvwGytLmAqfZs2y2Aq1wjnipLKjLSxrO1ZsLEs9yOGkTaW1c/ytrEs7zs8s7Es98PmZbkXNi/LvTgc5mWHPZDMT7c9MwfMAXPAHDAHzAFzwBwwB8wBc8AcMAd2zwEABAAIUACAAKBoRTII2CbZUNp+4z2MBCxQHwBFKwIg2AaMJJtOKwS9gHWUVGYkAIJAM+0BUwEoWpFlZtkmy8xq+02YMCG8DEylTa0ITGUbMJIfrQAjgaWUVGYk29kP/QBStGkFmEq7eMs50jIjeR/6qQuYCrTRisBUtklmp7YfvuIvJRXAF5jKPsBU+oZWCNpx3tEPZKSvaYX+g35gKjBYKwS96I8UganafvRr+jdl4cKFod7ifgJTeR2oBgzWCsCv3jKtHBtBa/QDU4HBWpHMTrYJTNX2kyxjtqFfKwJT2QZMpT6tAFOzzMg0jASi0ib6gamcJ61IZifbJLNT209gGNvoP1oRmMo2YCTnUyuSGcm2FIy0saytczaW5X7YWJZ7YWNZ7oWNZbkXNi/LvbB5We4Fzw6HednAgdmKGxxv2bysKztYMQfMAXPAHDAHzAFzwBwwB8wBc8AcMAfMgd1zgAwIAAQlBSCALHHQjg/qWjaUwBigBiUFUAh6AUcoks0V/oh+UVcRQGj3nBMAwVtTMJW6qsBU9htfAaYCBQnoUiSbK/wR/aKuIkzVVjci6EWgnJKCqdQly+SyH8BVg5HsJwDixV1ZNhr7FwswEjhIkczU4j7UVYSpWmYhMJL92D8FU9kmmam0A0zVYCT7TZw4MUgpg6lkduIHRTJTwx/RL+oqAgggW7EAIzlPzmWZqRpMpS7JgOD9QDqulWJhP/E/BVPZJ4apwGCugWJhvyJMLe7D3wBGrhNKCqZSF/2V644CJAWWFgvX7Xjf/ykpmEpdMUwFHgJBi4X9Ypi6YMGC4i7hb2AkWZsUyUwNf0S/qEuWmeVlIDX+FouNZbkjeDbexrJgCF7YWJb1DbywsSz3wsayfMyweVnuhc3Lci8YMw6HeRm3hOBzDqXuvCy3x56ZAweHAz2P6OP6DB7qtm3a6LZtbv+h4+A4irYqB45q8sfT4rZvaf8hpO2e2V/de/Zy/YaNcFvWrHI7d7T/EMdeRwxscP2HZx9K+Hvdonlul/KBg217UuR8tDT7JZj88jFWzAFzwBwwB8wBc8AcMAfMgcPJAQL4ZDBRymCkBO0AUikAAcwAAFEn4E3LjCSwIdlcwKEUgKAuAAr70iYASAMQwMgsmwv9emYnbaKfH+oCpmrLzNKmLBNapl+yudAPjNQyO6kL4Arsok0AkAZT48xOAJ2W2Yl+ganURTaatswsbeIF+wf9Sxa368psA6YSkEa/3KevuCN1AYCAjbSZumdhnEEAINUyO2lTYCp1Afw0mEqb0hdTMFL0AzfRD4zkGIqFuoB06KNNsul4LBaODxhJXXiagpECU6mDY9RganwtlcFIyUylzVRmKvrRRf+gzdQyp/QvjpO6ymCkAAjqoo9pMDXWXwYjBabSZiozFf0AIK5P+mIqy1hgJHWlMjupC/3si35gtgZTY/02ltlYJtc6/cfGsswNxk8by3IvbCzLvbB5mYwYLvzfZS7L/yWblx0+87Juz+8I53z9+g1hbp/3iOxZPC/r9CVbe3qwMn7SMa5Pv/5u0fw5buP6tstidPH/+I6cfLwb6sFKT09at/pvjc2a+Zh7bqu+rn7xYO3vfetAt+493OTzLnIrZs9wLSv0ZWD2loJevo9cet0Nrt/Q7Fu0a+bPdXfc8Im9VX2n1cNxvf6z/+Hm3X+3e/BH366kY+wpZ7hz/uE97oEffMvNf/Be9T0nvOYKd/TLX1XbdscN17k185+p/b23npx21TvcpJe+3N3ysXe7LWv1ZYX2VltWjzlgDpgD5oA5YA6YA+aAOXCgOSAAiAC+trQkAUyCdnxrGBgAQNGyoYABABQARBlMIuhFcLgqgABmAFA0AJHDyPTSkgQQYv0AFC2zE/0AFB7RrwEUvACKABrRn8rspA4ACseKfgCKBlOBTfWWyUU/IJVjwP8UTBX97F+mX5Zjoy70a8vMUhcwGNiFfmAwdRaLZBDgRSqzEz30HTIaqQv9GkzlXEqWZZl+ganoBwZrMBL9nCNgI3Whn7aLRTI70Z/K7EQ/MBiISB3AYA2mol+yXOmr2jKz9B/qAQigH+0cQ7Ggn2sEf9HPdcn+xSKZneiXe44W90E/MBjf0A9w1WAq+umLlDL9cs9R9NB3tMxO9ANJ6d/oxws0xgUv0C9jAdckfaNY0I9f9Fv0A4M1mCpjAe+3sczGMulHNpaJEy7cz9bGsswPxh8by3IvbF6WXyc2L8u9OJTmZczBtdsXxPOyxUuWh3nZJp9wVSzFeVmnAsmjjz0pwEgRudpnWBWB5JnnXOQG+Eyv9etWu00tK13DkGGu/4BBBiTFtE5+7Nm3nwNIPfPnP7qHf/LdfarmmPMvDjByxm2/cstmTA8Zkvu0wf1UORfvviiP3vR/3V9/9RM39ZI3+J/L90UTVqc5YA6YA+aAOWAOmAPmgDlw2DsAKABAaDASGCBBO2AAAEUDEAQtAAs88qEfAKQBCAl6ATNSAIIP/QAUwB8wA4CiAYg4aMR22iwW9APyAHroB6BoMBXdABTaRr/mBZ97BEaiP5XZSR0AFI4V/QAUDabGMA9ABLQsFvQLjEQ/MFiDqegHBov+FAwD6gAaqQv9WmYndQBTgUXoBwZrMFVgHl6kMghEP32IumhPy0zlXKKf/ctgmMBI9KdgKl6gH33oRj9tF0usP5XZiR4J4FMHMFuDqaKfPlKmX2Ak+lMwFf2cI/oH+ukX7F8sAiPxP5XZybkEBuMb+gF+GkxFPzCYkoJ5eCGZnehJwVT0A4OpE/1cl2iMCz6hn2uObSmYin78p9+iHxiswVTakmwWG8tsLJO+ZmOZONEWRtpYZmOZ9AzGYpuXiRsu/N+V/yU2Lzv85mWc850vbAurjOS9woXPNsV5WacCyZGjx7nlSxYE2Dj15DNjreH5iJFNAUbOmjHNLV08r7adC/5QL2QeDjvyaNfNT0ZXPTvH7fRL58Sld/8BfvsxbsPSRW2y0rr6CWd3n0nK4+CxE13zrCfD0p1H+JuKrlu8oFZFzz7+23Ev7PD193Ajjj7OrZ43p81yoby/q98Wt8u+/pYQYdlPzkEPv3Rqz9b7J7CEKHVSeM+LhQn/wMbRbkDjKLdq7tNux/PP1XRUeSLHM+bk00O9s/54W3jbrsL9GtA0dOJRrkfvI3w7s9yunW3vhyDevNDa/qjjTnTPt2x0672HwQ9fX/E9NET7PhpQWxq1T8MQN2TcxODXmgXPqMuUxvUNnXCk19THrZwzsxZUQOvwo6Y4tDy3cX0VG5L79PXL1w4aPTbUHy/JSgCDc7FrZ/v7WsSV1fNN9uWYRkw+Njtun51aDJDIfjyGc8aH4YrnuocPNvzN359lyPhJbuu6NW6rz5SmX66ZN7d2TqizS9cu3rPnw34sb2sZmbHr9twcMAfMAXPAHDAHzAFzoDMcKIN5AAiAQBmAAAbIB3VgAACoCFCYs1cJegEzaA+AAswAoGgAApgEwKKUBY0AYQAZ9KSyudAvAAX9ACANoFSBkaIfgIJ+AIoGUwWG1dMfw9RUZqrop230p2CwwEiOLQUjqUNgMPqBwdRZLKKfz1T4zzkvFmCA6CcAnoKpgDf8Z/9UX6T/CIxEfxmMFBiMfmAwj8UiMA/9KRiJHmCwwFRgpAZT0Q+MF/0pmB3DSPRrmZ34LzAY3SmYyrUky7TWg5GiP5WZin7qAjhWhZHAVC2zk74oMDg1FnAuBEbifz0YiW9lMBX9jAX0Efpi6osJNpZlVwE+2ViWjwg2luVe2FiWe2FjWe6FzGtsXpaBfZnXMK+0eVm2/P+hMi9jDtGvr2coUUnNyzoVSN53z+0eNux0DYOzG8FHesPTprGTPFn1KaEeRgLmOEHco64MhBTrOBj/Pvsd73aTzjrPw79W8Oonmfd+50a3ZPojHsh0da/68GfdcA8jpQBlbr/+3wIoOv7iy9xJl10VPAoTys0trne/AaEusgrv/sYXw9uu+voPw/4sFypl7r2/d4/89Pvhz3Ovfb8b95Iz3Y+vvVI2uyu+7JcT9auE/PKD1wRY9MoPfrq2beJZL3P8UGbc/j/uid/8PDwHMF30r5+swUpefPa+u9xDP/5O2F7l1+XX/2eAqrIv2ilA1Du/9MnwvOnEU93L//GDHqK2dmnv2bRf/beb9Yffhu38OuYVr3anvvHtYWnUSWefXyP2ZHey7OzSJx5z93zry7X95ckbb/y+B5cb3K+ve4+7/AvfdP39vRtrxbcz/Zab3FN3/qb2EvdUROOKp5/00PEYB6yltDQvd7d+6v0Bpl38kc+5bv7DBuW5jRvC4+78OuUNb/beDApv5bp44AffdAse+kvlqqr4BojkXA8eO6FWL+D2F+9/ZxtgLRuPfeVr3alXvs1tWrnC/eaT75OXSx+v/Or3XPcePWt9HlDMcdEO53jdovmOfgCUZAxAE2X9koXu9s9/9JAfE0rNs43mgDlgDpgD5oA5YA6YA53qQFkAHzgFDEgBCAKYACAegRkAIPYvlqowEngIOANmAIC0bC4CyAAUCttTmYWAGOAmelKZnegGoBB8FP0aTO1oAF/0E9wolhjGoD8F8wSmoj+V2Yl+YLDopy7iDnHhc7XASI6tCoxEPwALT4olhnmpZU6LMBL9WmYn+oGRBHwEbBbjJegXGCn6qa9Y8ID+Sl9DPzCYx2Kpql8yUwGDtKfBSPoi/nO86Nf6IvqLMDKln2sJfegGBmswVWAk57kejKRd6iBoyr7Fgn78B0aiv95YgP+pzE78Rz910m/Qr40FXEsAXPSnYCT9oWFQltmJ/lRmKm1RV4gdVdCPnj0dy+KxIJXlHfTbWBa6G9eGjWXZlWdjWdsRyMay3A8by3IvbF6We8H/EvmSmM3Lsi+JAYQPhHlZpwJJYGRZOcIvB7p162bHsq0DfVYaZd2aVe7Jvz7gzWs/MS6r62DZdvyrLwv349vm19udecevwz3/TnzdlTUAc9Lr3hRg5ObVK93jv/mZYxlTMu3Ovea97k9fu752mHPuvsM1+gyzhqZx7pm//MnDpPGuaerJte08AUYCzRY+er877U1/H+43CCwE8milS5euHvxkH864f+PvvvAxX8cAd8F7PxZg3szf3RLetrH1XpIBnn7oM66bB3Kz7/qda5490536d291R517gVvhMzcXT3tIa6bda7//yqfD8QNJ+w0ZWrtvJNCKQjvnvesDroufqNHO8x7wnfi6N4a2Fj36QLsMxCPPeYXbsHxJgJVkbr6w7Xm347mtARQWGwd8dfeTdLn3Itl7z973p7BkbIPPSjz96ne6U654s1vwyH3uuQ3r2rxdMjBn3n5LyBQcNmly2H7+uz8SADv3jGxZudydfNnVbd7XkT96DxjoONf0lxNee6V76dv/2S1+7KFaVmFZXVV94/wCI8kkfeLWXwQgeNpVfx+ycIv1n3DpFQGIk7l7mweFHSkv+GzOh//7u+7ca98Xslzv+97XQ7+mj3OvTArZr4Bdlgee6ttC12R/n8y599zZkaZsX3PAHDAHzAFzwBwwB8wBc2CfOQCcEJgnAELLhiJoJAAFmAEA0gAEMAzoAWiqF8AHoBB0AaBoMBJYIwAFwKLBvFi/AAhtmVnRTyAQ/SmAIjAPgJJappWgkWR2oj8FUwnAop/AdEp/MYAPTKXdYkG3wGDRz/mKC+0U9eNtsQCT0M++EvSizmJBPwCIgn4AdLFoMDKlX2AwbVGXBlMFRor/ZfqBRcCwFEzN9GcwGxjGOS8W9BdhpAZT8V9gMH0V/RpMrQojBaaKfs5DsQjMox381/TTFwnYcQ0LjNRgKtcS+tk/Bca5ltCPNhkLtMxOrqVYP2MBbRdLrL8MRuJ//wHlMFX0c77Qr8HgeCwQ/TaWDQ/XmY1lNpbJ9WljmTiRLdlpY1nmB/8b+JKYzctc+NJR/MUKm5flmZH8L9nzeVk2rzyY5mWdCiTzIUt/1qtnbz+h7x+g5MwnHvGZlEMdWZPHnnCqh5IPhm++HX/88fqblVcXLlwYPtgomw6Yl4575euClls//a8hg5E/7vr6F2r6Jp398vCcrDCWw1z02IPuzd++ycPHtj48feetPnttewCST/vsvQmnn+OGjj8yZOXJsp5s/9PXPh/qI+vsnH94jyPD8i/f/Y9ae6kn1LF24bxa5iJwkL/jcuTZrwgZbSvnPOUWPJxl7T368x+4C99/nTv2otdUBpKbVmX3Atm5Y3uY+BXbIcuPbMPm2TPcY75+CiARuEs7027+cSzLUd9vP/PBNq+NnDI1ZH3yIu/jPJDNOHrqKWG/xY8/Eh7/cONnwyPLpG7x9zVd+uQ0d6TPthzul9flXMTlby/ucjd/6NraS0AzltrtM2hw0PDgj3zGqS/9hg4PMLi2YweerFs0zz36s/8vvAP4PO7Us9y4086qlCVZxTd8HTbp6ABsb/v3D9eULZ85vfZcnpzogeikl77csYztnTd8ot2HSdkv9bhxxdIAx1/6jn8OoBZQftbb/9GxRG5c7vzyJ8O18dyG9e7ij37O9+tJbm68gz03B8wBc8AcMAfMAXPAHDAHOsmBYgCfoEsqgE/QDigATAIAaQAihpEELdivWLSgF7ClWIBJACwARCpoEesXGKnpJwAb60/BVGAY0AYAlArgA/MAKOxbBlPRT11oRL8G80Q/QUD0478GUwVG8giMKdOPZ8A86kkFjSQzFRjGPhqMBCahH8iZ0t8RGCkwVfRrMDWGkWX6BaaiHxjMY7GgP4PBLoBxDeaJ/vgb+BqMpN+jn3OPfurSYGoVGAnMQz/6BEaW6ee40MQ5LxaBkbF+zlWxoJ9+wf4CNlMwletEYF4KRqKf/k2/wX8NpsZjQZl+rqV6MFXGAtFfdi2hDf02ltlYJteBjWXiRLZ8so1lmR8yFttYlt0zrwgjbV5m87I4y7vevLJj87IuB9287IAGkrt27fTLOPZwjz96n9u6ZZNbsXShGzxkhBsxckwY7ZjwaR/a8n8NbZ8VJ7httx4Yf/X0WaHb/DKr3B9PK4C2kNEX3Ztvy5rVbuDI0SFTUN4DrJT7P4bnHuZRevbpF5Yf5fmmVSt4CGWZB2uUfkOHhce98Yt7J1IajzneXXrdDW2qBOjtrdLQNDZURbanlMXTHw5gkftWFgtL3xbL8qceDzpZYpYMSrJHjzr3Qjd4zPhw/8jlM/4a3vISn+HJkqQMInE5YkC2bGr82oblS+M/w3Pu60lZ60GilKVPTNttILnqmdlSTQCyAMkGf2/WKqWKb0M8xKasfjZvJ1U3MJJCNmnxw1jYUOeX3BOUe0nuau2vgHJZ8pa30/fl2mDJXkp3/2HQijlgDpgD5oA5YA6YA+aAOdDZDvAZIc6MTAXwgWAEqiRoB2TUAITAJIF5ewIjCSADRgAQABZgTHHOLjAvAIid2dKSKRjJPkAZYBIARftcHusHhrFfsQiMjDMItKAd+gn6ArxSMAb9gKR6MBLd6BcYia9aZqrAMHwqg3m0x7ECwYCReFIs6AdgoRH9ZTAPoIQeliUF4hYL+jmX6MerevqJg3AetWVOCSCjH9iFfs6RBlPZjv/0cTRpME9gJPrpD/R/jrVYRD9ti34Npor/ErQr04+/6MZ/DUaiH/+r6I9hpKaf6xb/6btcS/hfjDXJWFAVRop+/Nf0y7WEl2VfTBAYyXiCXxpMRT/nsmwsEP1hLCiBkbszlqXGAvTQF6uMBTaWZVeVjWX56GJjWe6FjMU2lnFXqH03L7OxzOZlctXJvMbmZVmWNP/LZV6Tmpcd0EByh4cSPfwkFRgpZeOGta6Ph3bcU5KJ2pNP5hBK9jmoH/2SqCyNWlYYUOsW/6FJlleN77vZ5r1xPbXnWd3y3rgd7s8o0Ch+PfVcPuDe++2vulXPzGqzW0fqafNG7Y8X/xZejX2rHaf3oVhWKXBtoV/aFdg47pQz/T0iG93W9evCPTQzQLzJvegn4cDJ4171unDPx8d/fZMDYh7tlwslM1ArG5ctafcy56JYWDp1bxatDbX+Kr6Jf3X6JPUv/uvDYTnhYy+8NNzvVICh2nadF6XvcM9SF3X3F5VlnrtW0FanOdtsDpgD5oA5YA6YA+aAOWAO7JEDfP4g+FclgM8+QAHAFR/UNRgpMAZRVYNeAIgUzJMAPoAlBVCqwDyCLegn+EJbZfoBQMzrgWHsVywxjOSzfUo/MAn9BFkly7L2eaG1UkAfMEZgHjAM34olDuCjPwVTActAG4FhKf1VYKToR2MKJglMjWEe+xaLBL0E5qFfg6mx/iowEpiH/xqMBIbhPxrxlP5TLJwbtEsAHP81/fR7+g/6gWVl+mkT/6mLn2KJAYTAyJR+galV9HM90l4VGIn+IkxFZzwW4H9KP14QtJOxIAUj0U9J6Qfm4T/nvQxG0hZtsj/Hh34Npsb60c4xFIuMBTaW+VvLtGZ5M27bWJZ9McTGsuyK4Zq0sSzzgv8lNpZlXjAW0y9kLLZ5WfYlMZuX5V8SOxjnZTIXZN5bb162d0lIcYayh39v2rjeT3q7uSN8VqCUAQMbwoeaeveflP0Ptscd/kMR2XncG1Ar2/2ksXuv3rV7SrJP/2EjHKCmMohqrXjA8JG1JppOfEl4vmVtdg+Inf4DCWXE5GPDI5q4f1+x7Gq9l+cRA9tnCK5d+GzYnUxJstriH5Zf3VuF+0FSuGejlLGnnBGetqzMs0Blm/bI/R/RNPm8i3xG5Itu+i0/cYP8PSL7Ngz22Yzzw1smnnVeeJz2yx+6+Q/eG+7bOMYvF9uRst5n+VIke5TnY1q953lHi5wf3jey9fg3LFvcpppNrR6EbM9oSxXf1rUe+4jJU6J36k//+qv/dr//yqcCQ2RZ3jizUX/HvnmVjNy/+8p3ww/L4VoxB8wBc8AcMAfMAXPAHDAH9rUDBF8J9AtAqRrA1wCEBDCBnNQDNCiWYjZRKhtKgl4EzMsABPqBa7I0owbzqgIIgWFoRr8G82L99QL4VQAK+vnZ5TM7ASiafoGRPAoA0jI7gTEECsv042cVGNnPf5lago5lMJW60C/LzGowT/TLN/DpFyn9BH0DDN6oZ0aKfgka0X+0zE4CyPgfw+BgTPRLYDC+lWV2CowU/fQLDabiA56hn3OZgnl4JvqpS4ORACLqEpiqXUscG3WhvyyzU/TXg6noj8eClH72ERiJ/9pYIF9MEP1lMLgqjBT9eKbB1KJ+G8syGGxjmY1lMuzJWGBjWZYNZWNZ1jPieU29L4bwf8nmZdmSx/Qfm5dlX2yJ5zUH47yst+dGfTzDK4ORtXmZDKid8djXQ65RYyb4JVibQvNDho4IfwMdKUsWZ8tannDKWW6wBwuTJh/v+vUf6Nauzu4pGHY6xH7NvOPX4Yhe/+9fc1MveUNYRvTC93/CTX7ZheH1eQ/cHR5f+6mvhKVFL/n4Fx2Zi81zZnbYie7+262v/NBn3NHnX+zOuPqa8P6nWttfPX9u+Pust74r3Bfw1f92vVr/jue2en63y8PAk9wJl17hAIFyz7/5D9wTltg87lWvd+f/84cD3Jx45svcJR//Qlj2VK1wN15kuVlg4oijj3Nner0nvf5NborP0vOfYNysP95WuUbAHUvistQq94Nk0t/FA/HlM7PlWp+9/65Q11R/TlaoTQAAQABJREFUnBzv+f/yUTd47ITK9bMjUHbrujVugM/CPPea9wWt3Gtzdwv3T3zp2/8pZHeOPem0AKYXTWt7L8vF0x4KH+ZOuuzqkOEpS6tW8W3XzhdCdiswmj7JvUjJIr38+m+4nkf0aSeb+3MCJoHmF33gU+22748XgON9Bvn0cP/T248XVswBc8AcMAfMAXPAHDAHzIF96QABBH6AkQT59zSAT3CGzyKADOorlmLQi320pRmBNdRF0AvAlQIQsX4CIBrMi2Ek32BnPy2zUzKrgKnsk9KPLmCXBO2os1hi/WiiLi2bi7qAKMCV9f4+85p+gXk80hZ11dPPPhxDsQjMQz8Qif1SMK9hcEPIgCjTj/9VYR76Odfo0mCkwCQ0s8+Gjbp+PBOYx34p/exHfxMYo2Wmso/ox4tUZiH70Y/Qz35l+mmHfVIwD89EP/ulYCRtAhzL9FMXMA89eKHpl8xC9LOdNjWYSl20iX7q0sYCgCD7xDBS048m9isbCzg29on1a2OB6KdtGQtS+jmGg30sYyzAf20ssLEsH9FsLMu94DrjWrKxLPPExrK8b1QZi/fVvMzGsnzFAeaV/O9lbC8WG8tyRzpzLOvZs4efF2fL52vzGmAk4yxzl05dsnV4Y5ObPOXEmmvASX4WL5jrNrX4yYPPkJztYdCUqS9xp52VQRtef/rJR2vvOdSezPrDb8OSoUf7TL2TL786HB6T2bn3/j48n/Hbm92Io6YEUAmIogCB7vve18Nz+YAQllyV1Ur9+4FzlBc9PJTCvSobfQZkowd5FODd+qWLwvN599/tjjrnAjds4lHu7He8O9zX8gXlXhjsPP2Wm9xJl10Vfvh7xm2/ck/c+oswCb/zS590ANUxJ58eftjO8qdz7r6Tp3ulcMz3/tdXPSD8SA3c8tpjv/hh7X6ZcUOpTNLm2TMDYFz02AMh2xRfuQflIg/0KC0rlrllM6a7pqkn+2O6LnjaPGuGG3nsCf5Y2y/Fqr1GPXd94wZ3yce+4CaccQ5/OrJSyeQrfrgOGxO/5Bi2+g/c3POSAhimH8g2eSteTPvljwIwZlla/ibDs6pvd3/zhnAOh02c7M699n2hWgAw55FCPeGxdTla+vB4fy/LYZMmuykXXOJm3/W7sL3er9wvv9xwa11ZP26tP3uoV03wUnbaur79ckKyzR7NAXPAHDAHzAFzwBwwB8yBveEAEIg5MYGSVACc4F68tKGWDUUglLoIJhBw0WCMAAhgDECNNlMwjzYFQFCflg3Ft/QJtvFZhOwxLTNPC+DX048uTT9BO4IR9fQD+/CCIBOepvQLjAkw0rep6Qfi4UU9GEl7/EjQq0w/gKcujPRtoh8oRV3Fz3u0g/8EaES/BsNi/QIjNZga6+dcajAMPXgm+vFVg5Fooj6Bkeyn6acu9gVucc41/fR7/BeYR10ajGQf2qRQl6af/sx+VWAk+3G94D0/8rlVrnmuM/ynr4n+FMwr6k/BPPTTDv5rY0FHYCR1iX480/TjP/rxE8/K9MdjgaafuhiDDoWxDC+0scDGMun9Llzb8ViAZ9pYQP+i/9tY5sL/8OJYYGNZtuQ0Y5QGIJhf2FiWXXf836L/xGNxvXmZjWU2L5NR+2CYl61avc5/MdB/YdF/Wa9Y0E//l3lNlzFjxlQM8xer2n9/M1HnvpEM9Ds8ad2b5S1jB7gW/wFHGwT2ZjsdrYtjJvuuW4+ejmUzyVSLSw8/qQcQARC3bWq/nn+8r/b8bd+72S15/FEPsL7m7/s3xa1Z8IzbqXjbu/8A16tvf9eycrlWTeXXqKehabx7rsV/sPBgb1+VhqZxPjuvl1u74Nl2E/a91WY3/yFuyLhJjiVpBcrtTt1DfHYjGaabV6/cnbfX3oO3A32WMfdsFJBX21jxSRXfWIJ18LiJbuc2f6+bVnBdsfr9uhsZuEMnHOVWznnK/eHGz+7Xtq0xc8AcMAfMAXPAHDAHcGD6uu1uakNP16NrdDPsDlrz0yWbQsCQD25AAYLn/PA5gZ/9WQhQ8wOQ4IdgNp+feOTD5eFeJkyYEO6rpwXACTwBParCSM73hvUeRrboAIWlOAkQV4WRQBFgjAYg0AWA4JzuTRhJYBKYVAQoHBv6BUbSZr0AeJl+6hKYylKWGgwD5hF057EqzCMAqMEwrkM8Q39HYaQWbxD9bMOLPdHPdci5ZGwo00+bAiNpUwsgS9CI46Xv4IWmn3uECoykLg2GxUsbcnxVYCR1aTAPIIL/6Ec3x1lFP8egwVS8qKeftvC2HkwVmMdYSF+sMhbUC+Djv1xLRf38L0C/wEg8076YgH60xQHwsrGAa7aqfvwv+2KCjWUunB/6D33XxrJqY7GNZfmMqjgW21hmYxm9Y3e+WCH/S/bWvIz6tHmBzGv4n2XzssNvXjZ/wWLXu1f3dp9TtbGsez7UHbjPuGC2bml/Q/cDV/GeK+OY1y1ekKyIbMUVTz+Z3F51wy4PeZtnz0juvm3zJp8duSm5veoG6ii2c8WXvuOX1ByQrIL7Yv7svW9Lbtc2FO+fqO2zp6/hGfBvT4vcnzGuh4zCU654S/xSu+dz77nTTbv5x7XXs3M0q/b37jyp4htZkaufnd2h6nfneDrUgLIz9/700Q/3wA++pWy1l8wBc8AcMAfMAXPAHDAHzIG968CaNWtUmCQwEhgGeCsL4AOTCOCzD4HrYtAIAAEAAjDwRV0AhAbz2nwDf9PmJIwUGIMTqaCRBL1EPwEoDUCQ/QAYFP0ajBSAUkU/9VUJ4BPgwKd6+jkOYA36U5mF+I/GFAzj2ASGCQzW/NeyibSgHeeSfSVop8G8qjCVAD7+ox8vNJgH3OKcAwg5hxxnCubhfz0YOXz48ABm0U9dmv4YRgoM1rKJAGboB6ZyLWkwDz34L/rLYGSsXwvg0+fxn2uFc4NnGsyjraowsp5+gamcU4Gp2rVEPaJfAshFGIlPnEv0AxfxX9MvMLUKjORaothYZmNZ6Aj+l41l4kSWGck4xf8SG8uyL4bYWObC/9zDdV6mzWtkXmnzMhfmDofjvCx84ckDybgwv5B5DXMymZe13St+hz0/5B3Il8jsnENd9czT/j5/g5ONF7NCkzseQhvIRF3Tev/O1GGtX7YotemAe70zjmf2H293m/x9Zm251gOuO5ggc8AcMAfMAXPAHDAHDkkHtMw2AATBGYF5ZTBykL8HerfuOYzUAAQACMDAh30AigbDYgBRLxuHAAFgY9WqVSpMKsJUoEcZzAPYsQ8wSYOpoh8gBfTQYBiAhaBvPRgpMI/OtHr1alU/gWP8FxiJ/1X014PB1IH/mv6qAXy8YF98Qr8Gk+g3ALg4AK7pl2wigZEazOPc4BmAjTo4T5p+CRrhPwGjVGak6KeflumXAH5ZZqTASPSXwUjRD8TDfw3moR8/JLOQc1m8lugzI0aMqMFI2tT8xyv85zoo088+tIt+vCgbC6gT3/Ff018FRqIf/wWmoj81FuBtFRgpMLWefhvLMgBhYxm9MCsyFthY5sL/LgEQNpbV/2IFPcjGstYLyT8IzLN5mQvwSr6kx/9Lm5dlX9I71OZlB8WSrfkluvefHahLtu79I7UazQFzwBwwB8wBc8AcMAfMAXNgfzhgS7buD5cP3DYAOgAUySAAoGgwiYAL3xqWzMIUQBk5cmSASXwjHYCowSRgJHCEtoFSZFdpSzPGQa+VK1eqMIY6CBQCw4AdBIQ0/WiPg0a0WwRABNcaGxuDfvQAPTT9HYWR1JvSD4TB/47o5xxpMDXWD0xFvwaTOgIjOVbqbW5uVmESumOYiv9aZqFkRtJ/UvoBZfhPX6ynH4BVLzNSYB4AAv81GEZb6Oc8kE0EDNb0F2EkMK8Iszk22qRO+iCBfs1/DUZqGRx4wbVCP+Va0vTvLozkWIv68ZNrCf3oTsHUqjAy1o//2rUU6683FtBv6SOpLybYWJb/n4nHAhvLcphkY1l7GGljWZZln8ry5qqysSwfW2xelnsRzytT85p4LK43r2GexP8xvmAF0NPmBQLGbSzb87Fs85bnXb++vcMct968zDIk835vz8wBc8AcMAfMAXPAHDAHzAFzwBwwB8yB3XZAAARQSQCEBvOqwshRo0YFmAFAAUBoMKYqjATSASAIuqRgXgwjgR0EhDSYFAeNAGYajMREYCowRmCqpr8IIwliakGjWH8K5gHBCC7xCGyqop99tAAyPol+ARBl+jn3VYNeK1asUGGSwFQeydyrAiOBdCn9MYwEOml9kT5RFUbS1yj4r8Ewgano31MYKTCVOtENDNb0x0EvAo6Afa3/SABcYKqmX2Aq14Ho18B+MTNSg5ECU0U/50nTXxVGyhcT0I//Wl8ERhLcRj99ouyLCTGM1LJEbSwLXb32S8YCG8vawkgby7IlpxmvUmOxjWW1yyg8sbEs9yOe19i8LP+Sm83LDv15mQHJfBywZ+aAOWAOmAPmgDlgDpgD5oA5YA6YA+bAbjkAgAB6AAMEoGgwDwAhmYVkj6UyI4GRwAwABEFfDWZINhTwAChIfRqMIeglmXkEvbTMMOogGw39wA6Cq5p+tIv+Mhg5evToAAaBqQAUTb/AVLzDhzIYKfpTMBLdwEgegU3o12BSDFMl6FXM7KQD4D9gDT/xTNOPJuCU6C/7Bj7HCuQsC+DjP+dBYKqmP86MTAXAY/3UUQ9Goh+YmlqmFV30NfQvX75chWF4hf/oF5iq6Qd+xsucajCPdvCfc0kfRL/WFwVGoh/v+dHOJdcl+in4r8E8rjWuE/Sjib6t6ed8C8wDkmr6ARAE3dFPvynTT3+kzbJsIoFh6Md/rS8KTKUuYCRjgaYfYCn60cW5KmZ24qeNZbidFRvLxIkMRtpYlvlhY1neLxiLbSzL/LB5Wd4vbF6We8EzmVceyPOy1Lyy6rysX79s+fx68zIDkm37hv1lDpgD5oA5YA6YA+aAOWAOmAPmgDlgDnTIAQCEABRgAQBLgwHASIASH9TrwUgAA2Xp0qUqjGG7ABQBEBqMFABBMEFgpAYgBKAAawAVmn5AJPo53nowUmAqAEWDSQTthg0dFu6fKUtLavrjDIIUjATCCEABRgKKNP0ETPlBPzCSdote4HlTU1MNpgKwNP0E5fGWcwlM5XxqMCxeDiwFIwnaoZ/jAEamYCrecw5Ev5YZif4xY8YEGIafeKbpj2EqIBIgpukHRgqAKIORRf3auYyXaU3BPPEfTziH6NfOpWR21gt6oUtg6rJly1SYB0wVGAygo29o+qtkRnKdAbDQj++psYAAPn6gvwqMpN7UWMC1JjBYYGpKfz0YaWMZPTAvnEsbyzI/bCzL+4WNZbkXNpblXti8LPfC5mW5Fzw7HOZlzKUaBmf38q73JTEDkm37h/1lDpgD5oA5YA6YA+aAOWAOmAPmgDlgDlR2AFAAwCL4AoAAoGgwQIJ2BPwBEOWZkRmMXLJkiQpjCJADUIAZAAgAigaTAGa0WwYj0UPQHf0CUzX9AlPZX2CqBvMkgI+BABQNJhG0I7iNfqAacFPTX4SR2jKb1AEMRr/AVE0/IE9gpMBUTb/ASLYBsDT9Aab6bDralsxUTX+VAD66gcE8CkzV9KM9hpEpmCpBL/QAEDX9RZi6JzAS8IZ+vCjTL5md9B+Aq5ZZSJ8ZO3Zs8AIP0K95AUylb1OXLJOr+V8FRsb6BQZrbVbJhkI//nMu8R0ArdUFFARuop+gHceg6ZfMyHowkuPEf2Aq3mp10R7XMHWlMiNtLOMM5sXGstwLG8tyL2wsy72wsSz3wuZluRc2L8u94NnhMi/r1n2n69Y1W3Gj3ooVBiTb9hH7yxwwB8wBc8AcMAfMAXPAHDAHzAFzwByo7AAAheCLABQNBgAFBUAAf/igrsEwwJpkRpbBSEAFMAOokwIQVWAkB0mgBP0CUDT9gAz0AyyAkQAUTX8cwF+8eLEKYwjaAVDQD4xEv1ZXEUZqy8yiB/3UBUwFBmv6AXkAJfYHRgKDtTYFRuIL+rW6gJHAYNoECgKDtbqqBPCpgzZFP9l0WpvASILg6C/L7JSgF/rpP1pdwEi00SY+4Iemv0pmJP2Gc05dwMiUfrRzDOjnfKcyOwVGogeYrekHRtI3aJN+SH/U9FeBkYBD0U//AtRpbdJ36EPoL8vsHDduXLiWqAOYrdVFAF9gKuMA44GmvwqMJBtBxgJgJNq0NqvASPrMoTKW8cUQYLDmhY1lnOms2FgmTrhw3cpYYGOZczaW5X2jM+dlNpblK1ZwRmxeVn/Fis6cly1bvtLPK1uSn3HieZkByXyMsWfmgDlgDpgD5oA5YA6YA+aAOWAOmAPmQIccAIwQ+AYAaWBBAASVAiDKYCSwjpKCkWRzERyjCIDQ2gRAxJmR7KuVCRMmhJeBqQAgrS6BqewoMFWri2AugIRSBiNFv8BUrU2ADb4BgICMGoyknfHjx/MQYCrZdFpdAAiAEkVgavij8AswiL+URYsWqTADWExAhQJUS8FIgBngDP2pZVrZRtCXQtAxpR8QBtCjCEwNfxR+ASMBbJSFCxeqXgiAYB9g6p7ASPo9AItCZirnSfMfEMkPRWBq+KPwS2AYL+O/VpfAVPaRZXK1/eKgV2qZVoJ2eEYRAKHVhfecAwrAj/OuFc4lnlAH/V+rS2Aq7wem7gmMFJhKXQJTtTbp+1wDFIAr151WuJbok4fCWMY517ywsSw/8zaW5V7YWJZ7wTMby3I/mK905rzMxjKbl0lvrPIlsc4ey5gL7nxhm0hu81iclxmQbGOP/XEwONDziD6uz+ChbtumjW7b5k0Hg+S6GgeOavLH0+K2b9lcd9/iDt2693C9Bwx0z2303wz1gRAr5oA5YA6YA+aAOWAOmAPmgDmwfx0AoGgFAEE2GkWyubT9JBuKbSkYCYAQgAKAIBtNK8BIASiyNKO2HzBSAAQARStAQeAaBXjCj1YkaCcwRlumElgJtKQASNGmFWCkABSOMQUjJ06cGN5OW3imFQAE9VGAkcBgrQhM9SwpwDAts4qgZAxTgVNawS/apQDpgF1aERgMjAQGa0WyudgGPKQPaUVgKvpTMBIAQT+jSGaqVpdkdrINmEqAqVjoN+NbYTCZqcBUrdAPBQYDI4GIWskzI51bsGCBtku4D6TAYMlM1XaUoB3b0IW+YiFoJzCY4+M4tSKZqWyTzE5tP+oCcNL/8V8rwFS0USQzVdtPgnZso1/QP4qFtgQG07/oZ1qRzFS2SWanth/nUmCqjWUZgLCxzIWx38ay7IqxsSwfOWwsy72weVnuBc9sXpb7cTjOy5jb9+vbO3y2yJ1wYe7DuEGReVmnA8mePXu58ZOOcX369XeL5s9xG9evrWk+7sTT/aQzE1x70T954YUd7sm/Phi/ZM87yQFg2OTzLnIrZs9wLSuW7VMVvXwfufS6G1y/odkH+jXz57o7bvjEPm1zf1TOcb3+s//h5t1/t3vwR9/ucJMnvPZKN/WSy91tn/uIW79E//DT4UrtDeaAOWAOmAPmgDlgDpgD5oA5UMmBFIAARgIggFuSjVasELDDPsAi9gOMaPf8I+gFgCBIngIQ1AWAAGJRFwBIy4YCPAjYZD8NQFCXwFTalGwuTT8ABVhHXXybX4ORZB4SnKGuFEylTeAVAXDqAgBpmZ0Ck6iL/TSYSl2Smco+6NdgJPsB6YClop/HYuH4gJa0mYKp1AUMpl3qAABpMBX94z0Aoi7JTC22R134QH3UhXYNRrIfkBR/2S+VpUv/Yj/apE9oMJW6gLecd+oCGGswNdYPLOOcFwt10Q85n9QFyNZgJPvhK4CN/bRzSd1kdnKe0J+CqdQFDCboRV3AbA2mFvVrMJW6ABBcT9QFzOYaLhb2o19TJ/tp1xLvQRPXCfpTMJW6gMEcK3UBGVMwEgBKXSmYSl2SmUpdwGwtsxPdY5rG1L6YkNJvY1l+5m0sy72IryUby2wsk55hY5k44cLYavOyzA/6hc3L8r5xuM/LOhVIHn3sSQFGyulY3bysDZBkUtrV/8SlYfAwt2Wz/q3AeD97vn8c6Nm3nzvtqne4Z/78R/fwT767Txs95vyLA4yccduv3LIZ00OG5D5tcD9VzqC8J2XzmpW7nV25J+3ae80Bc8AcMAfMAXPAHDAHzAFzoL0DzO9laUwBKACBYiGYKwCFYC4ARcvmimEkAELLhqLNKgCCz9gCgGhTA0DUBUABjqAfEAaQKRb0C0ChLnRpMJUAPgCUuspgJEE7IBAAJQVT0Q8AQiNtaZmRbAOg4C1tAsK0zE70CwxGfwoGS2an6NcyO6krDjqmYCr6BQajX8uMRH+VoB1tCgxGP2AN74pFMjvRD0zVYCR1xTA4BVPRL5l56E/ByCowlTYFBqM/tTSdZHaiPwUjqSuGwSmYin7JjExlduJ/FZhKXeinf6M/dS7RLzAS/fTtYkG/wGDqQr8GU2P9ZTCyCkylLiB1t+7Z/W9T15KNZfnZsrEs94L+Y2NZ5oeNZXm/sLEs94L/JTYvy/yweVneL3hm8zLnOhVIjhw9zi1fssCtX7faTT35zLZnx/81Y/pDbV4b1DDUnXHOhW7ponltXj8U/yDzcNiRR/vJYXe36tk5buf2tsu89O4/wG8/xm1YushtWZsvFQPA7d6rdwC5g8dOdM2znnRHDGzwP4PcusX50ic9+/R1u3ymKe2MOPo4t3renDbLhVJPV78tbpd9nWdnu/y3IBlMevjs1Z7+gx6lu890pU4K73nRT6LjMrBxtBvQOMqtmvu02/G8fv+SeP/4uRzPmJNPD/XO+uNtYfOuwtIraBo68SjXo/cRvp1ZbtfOtkubiDcvtLY/6rgT3fMtG91672Hww9dXfA8N0b7/JOt27siWqunTMMQNGTcx+LVmwTPqMqlxfUMnHOk19XEr58wMH4ipE63Dj5ri0MJSq7tbOKYFD/05/BQ9R3eXrl18G8+7IeMnBb1xX6FN6Qe8d+SUqb4fzG1zzkWXeNu9Z2+36pmn253fbv5DWLcePd2O57b6fuG/vTrlBLdu0Xy3Ncp4lrrs0RwwB8wBc8AcMAfMAXPAHDhUHWDeTABfAEQqG4pgbhUAkQfAs/v0aUtLEgCMAQTwU8vmAmwCUHgsg2HAyDizU4OR6BeYSl0AFA2m5vqzzE5tmVn0S9AOGJPK5kJ3ACi+7dQyp/gvmZ3AOWBkSr/AVPSjS8tGA0bWy+xEv8BU9KdgKvqBwexfph8YibfoT2Wm4j/6gV3oT8HgKpmd6AFGAuHQn4Kp6BcYXKYfGEnfRj+ZnVpmKvrpY+hDP/2atoulmEGAtmJBPzCSdkW/lpmKfgEo9WCkZKYCsrXMVPRzjdM/0K/BYPpiVZiKX5x39KdgKvoFBqdgJF7EMJW+r2WmUhf6uT7Rr8FgG8va9jQby3I/6D82lmV+2FiW9wvGHxvLMj/wwuZlmRc2L8uvEZ7ZvCzzo1OB5H333O4B0E5H1mOVMnbC5LDbimWH9rKUZ7/j3W7SWedBrTJbPAy79zs3uiXTH/GAqat71Yc/64Z7GCkFyHT79f8WgNPxF1/mTrrsqgC+uOi3+WzS3v38Dcz9c7IK7/7GF8Pbrvr6D8P+LBcqZe69v3eP/PT74c9zr32/G/eSM92Pr71SNrsrvuyXE/2bc7/84DUBYr7yg5+ubZt41sscP5QZt/+Pe+I3Pw/PAWEX/esna7CSF5+97y730I+/E7ZX+XX59f8ZoKrsi3YKEPXOL30yPG868VT38n/8oIeorV3aezbtV//tZv3ht2E7v455xavdqW98e1gaddLZ5wcoyOtkd7Ls7NInHnP3fOvLvNSmvPHG73twucH9+rr3uMu/8E3Xf1h234ewk29n+i03uafu/E3tPdzjEo0rnn7SQ8djAqxlY0vzcnfrp94f4ODFH/mcB3ge8Pry3Eb9PixhY8mvl/zdW91xr3pdbY/ikq34BpTkvpICi1nS9fbPf7QGRtG5efVK188fE/2Fb52ydGx8fia/7EJ3xpuv8X0vy1b+24u73AM//C8PQf9Sa/uC913nGicf6xY8er+beMa5tdf/cONnPYh9qva3PTEHzAFzwBwwB8wBc8AcMAcOVQfiAD4wJpUNRQAT4AE4AwaQjaYtjSkwDL+2+y99pmAkAAIgBswAoGgwkmA6AIhHYAx1MfePC/qLMFLL7EQ/QUf2RX8qm0v0005qmVkJ2gEk0Q9A0ZaWRDcAhUB4GUyqAiOpA/2AY8BaCqbGQaNUZif60U7gEf34pS2Ti35gMN6hP5VZWAVGoh9gGevXYGqsP7XMLHrQTx/iXKJfWyYX/cBgjrdMfwwjAXkajBT9wDp0A4Npu1iKMFLL7EQ/fZ92qQMYnNIPQKGPA/O0ZVo5Nurh2uRcol+DkegHBuMv+oHB7F8sVWAk+oHBnHf0A1xTYwH6KWwvGwuoDz14n4KRjAVcn+inLsaruOzTsQz9ze3v2Yn/NpZlZwH/bSzLe6SNZbkXjMU2lmV+MBbbWJZ5wf8Sm5dlXnTWvKw4rzyc52Wy4kbZvKxTgSQwsmohU7Bx1Bi3auUydbJatZ4Dfb/jX32Zm/TSl4clOGfe8Wu3Zv4z7sTXXVkDSie97k0BRgKRHv/NzxzLmJJpd+4173V/+tr1tcObc/cdrtFnPjY0jXPP/OVPbvDY8a5p6sm17TwBRgLNFnqIdNqb/t4d/fJXBViYug9hly5d/YfWbKLK/Rt/94WP+ToGuAve+7EA82b+7pZQ/8bWe0kGePqhz7huPnty9l2/c82zZ7pTPUQ76twL3Aqfubl4WtsM2Dbioj9+/5VPh+MHkvYbMrR230iyGym0c967PuC6+AGYdp73gO/E170xtLXo0QfaZSAeec4r3IblSwKsJHPzhW3Ph8w+4GmxAPK6+w8anAfK1nVrvEd/CnC3YfRYd/rV73SnXPFmt+CR+9xzG9ouwyQZmDNvvyVkhQ6blAH189/9kZD5CvhrWbncnXzZ1cVmK/399O9vdcufejycN+CxPznt3ke2KCCU5XSnXnqF7wcT3GR/nufec2dt3/7DG93i6Q8H4H3G/7omnJ/pt/w0AOuBo5rcmW99V8iyfOLWn/vMyJ3+eN/izn7Hv7gVTz3hgfemWj1A7wmnnxP61LP33xWA9osduMbziuyZOWAOmAPmgDlgDpgD5oA5cPA5IJmRZTCSABof1Ak2E6wAoGgAggCs3POvDOZJNhQf+lMAggAmAIVHYAwASAMQVWCk6Gdf9ANQqLNYYv1lME8yCNCfgqmAE/TTNm0BgDSYKgF8YAxQU8uMpA6AE+cKsIZ+HoslDoCn9BMARD9AD/0pmIp+gqbsj34NJgEgBEaiH6isLTOLfoJewC50A+k0/QLzOM/oB7oWC3piGIl+DaaiHxhMkA/9KZiHfrShP7VMLn2wqF8L2nF+ALjoTy0zi36BkdSBfg1Gop+68LhMfxFGajAV/cBg+ge+4yvnvlhi/XiqZXaiX2Ak+oHBnKtioS30U8pgJPqpDz0pmCpjAZ6gn7GA81UsNpbljthYlnthY1nuhY1luRc2luVeyBcrZCy2eVnfMH87HOZlMq/sjHmZNq+kL+7veRnciHkl85F687JOBZL5JVv/2eimCWECuXThs7WdmWQff/zxtb/rPVm4cGGY5NXbrzO3H/fKLOPt1k//awBCaLnr61+oSZp09svDc7LcWPp00WMPujd/+yYPH9v68PSdt/qlN7cHIPm0z94DFA0df2TIymPJVQrb//S1z4fnZNGd8w/vcWRY/uW7/xFeK/tFHWsXzqtlLgIH+TsuR579ipChR4bcgoezbLpHf/4Dd+H7r3PHXvSaykBy06rmUC1LpvKBpNgO2ZFkGzbPnuEe8/VTAInAXdqZdvOPw2vyi/p++5kPyp/hkeVKWbqWwvs4D2Qzjp56Snht8eOPhEcy/ih9Bw91W/xSw0ufnOaO9NmWw/3yupyLuJBJePOHrq29BARkqd0+gwY7NDz4I59x6ku/ocMDVKztWPEJMBBvWR41FP8BSyt3fvmToS89t2G9u/ijn/P9YJKbG+3IMqt//vaN4ZXhR07xWl7pl6Sd5MHiE+7UK98eXn/ytpvdag+hKWSUkpl5lM+cBLbGhW2P/PR74aWqwDl+vz03B8wBc8AcMAfMAXPAHDAHDkYHgGFAJ0BZKjMSmARAIUBQBiD4nAsAAqAAKABwxRIHvXbtTGdDEUAWgAKMAaAUAQTtdARGoh+YAUDRYGqsH0AE9CgWApiSDQVAIWinZXaiHxjJI22hX4OpAiPZRj0ajCSALDAY/cBgPCkW9AsAQn8K5sUwEnioZXYCM/CfttGPFxpMxVP2q6cfmMq5Qn8KpgoMo516MJJjKIOp6BcYjH6tLwpMrQIjBQbjexX9ZTBSYKoEvTSYin6Bwdue9/pX6tdSVRgpMFX003axcH64fvE/BSMZC+KgXSozlb6Ifq73srGgqF/L7OQaQj+eoJ+gqQZTbSzLz6iMBfRxG8tsLJOewXhuY1nmho1l0itcGKflS2IH4rxMvphjY9mhN5al5pX7e17G/8z+nnvIvLJsXnbQAMmxEye7nXxrbG3+zT4M1yaA+XDQ9lnxg0vbrQfGXz379gvLrG7fslkVBGgLGX2t90Fkpy1rVruBI/3yI36SKgVYKfd/DM9b73/Ys0+/sPwo+21alS+TscyDNUq/odWWzw071/nFvRMpjccc7y697oY2ewP09lZpaBobqiLbUwoZf4BF7ltZLCx9WyxkGqKTLEkyKMkePercC93gMeND5uHyGX8Nb2GZ1GNf+doQHIjrOGLAoPjP8HzD8qXtXuO+npS10X1Qlz4xbbeAZLvKlRfoK9KXWOKW0t0PEHHhHppS1i2eH5728h+IKQN89iTl1CvfFh7jX2SIFsuce+4ovmR/mwPmgDlgDpgD5oA5YA6YA4e0A3EAHxgG6CoWgZGAA2BSKpsLmAQAAkCkgkYxjORDP/BBW5oR8EDQlEdgEgAoBSBoU2AYcKRYCMAKTBUYqWVzoV8ASj391IeeVAYBugmmCIwEoBRhKjpjGIkPKRhJe+wr+vGkWEQ/AIJASlUYqcFU9AMZ0Y9X6C/GJATmCYws0w9MBXYBkzhHPBaLgGVeRz9tFgswGBgGjCSekoKpBJbwn3MvYFMLetGn6wW98CDWzzXCeSiWGOYBeLXMQq4ltNf0r9+gZnaiH1/Zv55+rhP6FteSlhmJ/ioAoqr+IkzlWikW9HNdcr7YrvXFeCxAP9pTMBL91CljgRZLs7EsPwvxWGBjmY1l0jNsLBMnfGyx9YsVQDjGk9S8xsay3LPOnJeVfbFC/pfYvIw73uUrVjBns3lZ/iWrevOylk1b/bz+BdeysaXuvOygAJL9Pezp27e/Wzhvdn4V+2dMwJ98ModQbTYerH/4JVFJcS0rXBx1i4e1srwq2Y/ywaHNe+N6as+zuuW9cTvcn3GX8qEh3id+Lm3e++2vulXPzIo3daieNm/U/ngxW6o09q12nN6HYln1bNt+xPaFfmlXYOO4U87094hsdFvXrwtLjmaAeJNfqnRXgJNkBnLPx8d/fVNtudQTX5vfZzNua+OyJfGf4TnnolhikFzctqd/a0umdi30r10vtP8gGLfLefzlB/4hfik8fyGC4uEFv19L63K97Xa2F8wBc8AcMAfMAXPAHDAHzIFD1AGgAXPmvQEjASgAiBRMkqCRLAcGfNAABEEv9iEQCIwBAGkAgsy8WH8KRgJQJDOSoCN1FgswBjCFxhTMYxsgqUrQS2Cq6NdgKjCsCsyjPfQTQyjTT11oJOiSgnnoxw/0pJaZxXf0C4wErGkwVWAeQS/Oo7ZMK0CQcwksEhipwVS2o5/PwmX6YxgJwGLfYkG/wGBgDPo1mBrrJ2in6ccD/Kd/oD+VmYp++iKlXtCrBiPJTN3aXj8wCf/xDv0pGEwgnf3qwUj8p0585xrRYKroJwRRNhYIjKQO/OJaKRbawn8C/mzHf4mvyL7xWFAGI2UsEP1lYwH9x8YyF/qqjWVZT7OxTK44vxKbjWU1M2IYaWNZdv9bm5dl3cPmZbXLJMzbDqd52foN3G5go5936fOaeF5WTr5yDzv12bgJ2b33li5uuyRop4raR43v8JNlsvN6DxiotrDdf1jo3qt37Z6S7NR/2AgHeNJgl1pJ64sDho+sbW468SXh+Za12Tcod7Z+W3TE5GPD62jifoTFIjDriIHtMwTXti6vS6YkWXrxD8uv7q3C/SAp3LNRythTzghPW1bmWaCyTXvk/o9omnzeRT4j8kU3/ZafuEE+A7Bvw2CfzZhlDU4867zw1mm//KGb/+C94T6fY/xysR0p65cuDLtL9ih/jGn1viP17K998Y8PtCwzG58/ngNpO1LIQP27r3w3/LBMrRVzwBwwB8wBc8AcMAfMAXPgUHEAGEOgv1gI2gFjCNBI0A5AUiwC84CRAmM0AAGI6WjQC4CiwUg0CYxEfxmMZF+BeVX0azCvKoyUADgghbZSAGVvBr0E5qERmFSmH6CEn1VgJPqBSRpMBYYBParCSGAYMDUFI6mLz24p/cXMSGAk+xZLEebhvwZTRb/AvDIYib8C8+hHxdKvb7ZkLa+jCc+KBf30f37kWtJgaqxfYJ4GU3cXRqr6W8F+pj89FuwujEzpl7EglRkpMJJrSsA+3hWLLBnM6zaWZV+skLG4bCyo98UKG8vynhZ/scLGMhvLpGfwP4ux2MayzBGbl0nPyFa/kC+JpeY1Mq+0eVnmW2fPy7b5VRq31vmSmMzLOhVI9vWQa9SYCW7EyKbg3JChI8LfAwY21Hpg167dwmubWvy3MBXCWtvxEHky845fhyN5/b9/zU295A1hGdEL3/8JN9nfr48y74G7w+NrP/WVsLToJR//oiNzsXnOzPB6R3519x/wXvmhz7ijz7/YnXH1NeGtT7W2L/cLPOut73KTXvpy9+p/u16tmvsPcq/EUced5E649AoHCOzTMCTsO/+Be8Lysse96vXu/H/+sANuTjzzZe6Sj38hLHuqVrgbL7LcLDCRe0Ce6fWe9Po3uSkXXhqWWp31x9sq17jJwzeWxGWpVe4HycDWxfe/5TOz5Vqfvf+uUNdUf5wc7/n/8lE3eOyEyvWzIyBv67o1boDPwjz3mvcFrdxrc3cKgA8dsqwq97Hk74Gjsutpd+osvuev3H/Tf8WT83/61e90QyccFc7dG274rwDCi/uX/Q207jPIfzPW//TurwP3svfbNnPAHDAHzAFzwBwwB8wBc+BAdCAF8zQYqWVDASPlW8NsBwxqAAIQQ9ClI9lQqWwuCVrgJ5l59WCkACANRgKb0M/xAogAWBpMRTs/Zcu0EsAnyC8ABQCnwVTRTzv4z37FQgCcuuplRop+ARAaWOazYVG/BvPQTWAVEAQAwlcNRnIu8Qz9ZZmR6EcfEAzgp2WmcnzUhX40afrZhn7aLYOpwDzRLzA4pZ/9ymCqZBMJjEzB1KB/6JDw+bsMRsb6U5mdop+20Y//GkzFh1g/9RULdbCPZHZSlwYjCSALDC6Deein38q1VGUs4FymxgL6hsDgVJY0++CJACANRhb1a2OBjWV579DGAs57sdhYljsiY7GNZS6M0zaWZX0DGMlYbGNZ5ofMa/jL5mXZvNLmZS78Dz9Y5mXaHCM1L+vUJVuHNza5yVPyrDbgJD+LF8x1m1o2hCuycdSY8C2/Ja3Zdtlleuj+nvWH34YlQ4/2mXonX351OFA+pMy99/fh+Yzf3uxGHDUlgMqXvv2fwmubVjW7+7739dq+PAlLrspqpf79QCXKix4eStm2ucU1ekjY6EEeBXgn9xOcd//d7qhzLnDDJh7lzn7Hu8N9LV9QluXhfdNvucmddNlV4Ye/Z9z2K/fErb8IH67u/NInHUB1zMmnhx+2k1k35+47ebpXCv7c+19f9YDwIzVwy2uP/eKHtftlxg2lMkmbZ88MgHHRYw+EbFN85R6Ui6Y9FN7OcqTLZkx3TVNP9sd0XfC0edYMN/LYEzK/40b8c23ZW3a56xs3uEs+9gU34YxzwjvISiVjsPhBI2ws+XXRBz4Vrg3Z5fSrs2VVt65f6/7no/8kp1w2Jx81P+S1lpXL3f0/+KY7623/6I55xavDDxVxb8qdyjcrk434DXFWJBqtmAPmgDlgDpgD5oA5YA6YA4eCA3sSwCdAS6CBgD8wBmhTBCgE7QhgStAOMKUFwCUbig//wBj204IDBL0AWBT24adYBEAIzGOfFIyM9eNF8XON6OcY6sFI6iKQT1t4oekXmIRmQJKmXwLgop+6UjCPNgl6Cdjks2RcABB4T7vopz0NRuI7+6Ef2ESbGkylHoGR1KXBsGI2EftV0Y//mv44AE5dqcxCvKAfiX4NRlIX+3Ge0a7prwojgWHUhccEYPGsWDg3+Eq/FZhapp+22U5d9fTjhQbzYhiJ7+yXgpHop4+nAsgCg6vASOri3Iv+4liAN/FYgPeafs4hngFT0Y8Xmn40iX7q0vyXsYBzxfWIFxpMtbEs77nyxQQby1zoz/Qx+WIC/cfGMhvLOjKW0X/4/2pjWbbihsxruJZsXmbzMrmWuE4OpnlZlzFjxrSdbef/Qw+LZ28ZO8C1+G8zaRO9zjSACS3Zd9169HTr/JKhu/xNQePSww/GwyZODgBx26aWeFOl52/73s1uyeOPepD5NTf8yCluzYJn3M7t29q9t3f/Aa6Xv38nYGpPCvU0NI13z/lM1315n8GGpnF+Sdtebu2CZ9t9ENsT/fF7u/kPCEPGTXIsSdvRZUvjeoaMn+TIMN28emX88gH7vP/wRtd38FBHJulzG9t/UKwnnMxYMixXznnK/eHGz9bb3babA+aAOWAOmAPmgDlw0Dowfd12N7Whp+vRtcK93xNH+dMlmwKkIphNQJiAPT98TuBnfxYABz980OWHID+fn3gk6G2lrQOcMwIDEsAnyJ8KGuEf8APARXBJAyjUBYTAe+qqCiM1ACHZCPQl2uOnWOhvtEnQCwBRpp/9AChooi7tczXwjXbZRl0azOtoAJ9rgLo0GBbrxwP2SwXA8V/0sx8exyV8LvfHWE9/EUbihQZTBSaV6Y9hZD39+M/xAqVos6if88w+gCf6FsdYBvMAWWynLg2m4hc/jAfUpcGwjsBI6hL91KfBVNFfBiMBb9S1t/TTpsA8vNCWycVT2uR6px+yX1F/PBagn2PUYB5t0ebeHgvqBfBFP9r5KZZYf72xgLr2tn7GTXTZWFZ+/1vGavy3saxtNpGNZXmWN2MB15KNZdkXKxiLbV5m8zL+59m8LP/Pz+cW/pfs7rxs85bnXb++vcPn1Hrzsk7NkMwP2Z4VHWAiu27xguLLtb/JVlzx9JO1v3f3yS4/KW6ePSP59m2bN/nsyPbLTyTfkNhAHcV2rvjSd/zSnQMS7/CZlP4D08/e+7bkdm3DhmWLtZf36mt4tnrenD2uE9BcLFMuuMSdcsVbii+3+XvuPXe6aSylup8L4HRP4Cn35PSf0NwDP/jWflZuzZkD5oA5YA6YA+aAOWAOmAP7xwEC+AA4AsQCIPYk6CUwD9BE9psG84AwwIw4M7JeAJ9gnAbzBEDUg5Hc869hcB4AJ9BZBiNFvwbDqsJIgkb8lME8gih4JksDcpz1YCRQDS+KMI8eQ12AJ44N/1P6CeBwHMAmvEjBSNFPXRrMqwoji0Ej2izqF5ga9O/MYLCmn35D/6kC89BPQb8GxkU/gShZJlQLgMf68Z6fIswDpuI/+wpMTcE8/K+nn2MELJfpB6ixn+ivEsBnn5R+6kK/jAUp/exXFeaFWFGFsaAMRuID55LrXfQHY6JfNpZFZvinxbFYu5ZsLMs9k7Gg3lgcjwWpL1bYWJb7yjMby3I/bCzLvbB5We4FY7HNyzI/ZCyWeQ3z4gNhXmZAMu+vh92z1JKi+8uIVc887e8nODjZXDErNLnjIbSBTNQ18+eWHtH6ZYtKtx+oG2f/8Xa3aXWzs+VaD9QzZLrMAXPAHDAHzAFzwBwwB/bEAQEoBGABEECbejASqAPM0DIjuS8dwVoABPeS0wLgAiMJvpRlEwEfCNyhkWCEBsMAELRJ0AKghn4V5nkYOahhUC0bB/0ajBT9gLKU/o4E8EV/CoYJjBT9HYGRmv5hw4YFsCz6NZgU6y+DkQTGAIP4jxcazBP9AEKAMseZChpxPtkf7zmXRRhJP8Z/wDLHtnbdWjUzL8DIhvowkgA4+gEDKf0EvYA21FkGI6mHcyn6OYaiftpBP9cS1wZeaP5zrqvCSNG/Zs0aFewLjKyiP4Z5+F+EqZp+bSwQ/fVgpIBxziv+a19MEP30yXowEv+53mUsKOq3sQyn82JjWe6FjWW5FzaW5V7YWJZ7YfOy3AuZ19i8LPPkcJiXHXFEtXmZLdl6gC7Zml++9swcMAfMAXPAHDAHzAFzwBwwBw4mB2zJ1oPpbO0drQCI4cOHB4ACjAQaaDAPwEJAF3hQBUaibvXq1SqMoQ6CGwIjgQupzDwBEALzNACBfoJG9fQDp4BPgBh+NJgKzBOYmtJP0A7Qsjf0A1doU4Je+K/BvHhpQ7SnYKroB5QBsDQYhm70cxz1YKTAVIFJRf8J2nEu0V8FRuK/wEgNpnIuBUaiX4NhAUb6c4l+YDeZcpz7YhEYCaRKwTz04xl1lukngC8wlfa4BvZEP/5zHZTpF5jHNUpf1MA+fuK/wEiuEy3LuKifPqTBVBkLuDY455r/nGu8RX/Zks1V9MdjQT0YKTCV8QL/y/TXGwtsLMuuFhvL8lHDxrLcC55VHYttLMt8s7Es7z/8z7V5We6HzctyLw7Uednz23a6SRPHhnl9vXmZZUjm59OemQPmgDlgDpgD5oA5YA6YA+aAOWAOmAMddmDEiBEBJgmA0GAkAEIC+AAIgJIG8wAjwDwAyqpVq1QYpgXtqsBI2i3CMIGp6EMP0EmDecBUgZGAjDIYCQyjoF+DMQTwOU4e2b43YCowSQCKpr8qjJQAMj4BsFL6CSDH+jWYx/muByMFpqJfMlM1/fQJYFJVGIn+FIwEpnIu0S8wVdNfDHppMK8IIwFwGswT/exfBiO5luhrgDL8164lvKoawJdrKQUjRT+eCEzV9FeBkfR5GQsArfiv6d+bMFJgKvrpN1xLmn764aCB2TKtKRgZ67exzAXIbmMZvcKF/102lmVe2FiW+cBvG8tyL2xelnshMNXmZZkn8bzyUJ6Xdem6089R639JjDHUgGR+vdgzc8AcMAfMAXPAHDAHzAFzwBwwB8wBc6BDDowcOTJkVgEggB4aTCJoB0ABHpRlQ8UwcuXKlSoMow6+KQ5Moi2yuarCyGI2FAfa2NgY9AMgAIgazCjCyBRMRRcBfCBnc3OzCmMkaId+YA36NRgGfCMADrADcgHDNJgKACLohX781/R3BEZyrBT812ASujlOjgNYmdIPjARiSWahpp9t6Acm4QGBqjL9wLOyzEiBeWX6aYt+hn5gJHBK81+DkUX/OTcE2qiTPlgGI/FD9KcyI+mLXCu0g//atURbMYxEP+e+WNiHoBce0y+0LNdYP77jv3YtVYWRop/rjGtJ009fxVv8lwwCTT/nSK6l1BcT8BP/ZSzAf01/gJH+euJ4y2CkjWV5L7KxLPfCxrLcC8YUG8syP2wsy/uFzctyL5j/2bws9+NwmpetXMXtAbYkv3AZz8sMSOZ9xJ6ZA+aAOWAOmAPmgDlgDpgD5oA5YA6YAx1yAEACgACgaDCJoB0fwoEHZTCSADgwjGBOCkZSB8ENgl/ADgCKBpMAEEAUAATAjHY1GDlq1KgAM4CpKRgpGRC0DUgiu01bZjPWn4KR6Aag8AjsA6Bo+jUYqekHoABjdu3cFTzTYAyeSgC5bJlWdHGs+L9ixQoVJgGROE7RXw9G4j/nSIORtIN+6hQYrOkHSgGwqAv9/Gj+SwCQzpvSj1eALvQLTNVgGO0JzEvpB/QB4NDPOQT6afqLAfyUfgHjol+7lgSmol9gqqaf6w3fYhipwVTRj+49hZGcS/TRDv1f089YgP9cS/SJFEwVGIl+rkstS5f+wDnHf4Gp2rXEOCBgvwxGylhgY1mWGSljsY1l2RcrbCxzYUyU/yVlXwyxsSyfQtlYlnth87LcC5uX5V4cSvOyHTteSH5GKM7LDEjmfcCemQPmgDlgDpgD5oA5YA6YA+aAOWAOmAMddgAApMEYAAQAS2AkQECDSRK0ExipZeYREAZ6AGMAEAAgDcbE2VBlMHL06NEB5gEgCLpr+gF0AlAEpmr6OUbJ5koF8PGAQC36BaZq+qvCyKampgBj0LOieYUKNgl6CQwGphJE1vQDIwVApGAeugUGc34AWJp+AtacA2BSCubRwfBfYCSeaTAp6B88xHXrnsHIlH50CUxdvny5CsNoS2AwgAsYrOmvkhlJPwVgCYwEoGv6Y5iKdn40sCwBfOpdtmyZ2hcJ2gkMBkbStzX9nG+BqZIZWYSRnBuBwegG+mn6BaZy7QHigamafoGRZfqBlTIWACPRr/VFGQtiGFmmn+uW49T0AyPpj+ivByMFptpYZmOZ/AO0sUyccOH/m3wxxMYyG8ukZ9i8TJzIHm1elvtxOM7Lnn/+OdfliJ7hi325Ey7Mw4vzMgOSsUP23BwwB8wBc8AcMAfMAXPAHDAHzAFzwBzogAMAFA0GCIAgYCXZUGUAIoaRGoAAYFEXAAKAosEYgZHADABEKjNSYBjtoF+rS7K5aJN6ACgajAGyCMxLwUjqAGDxCExFv+ZFDCMFpha94NQQ9AIQsg0Ap+kXmIoXwEj80PRXyYwEpgKd0A9MBQBp+gngA4FoE+CnZUaif8yYMQFSowcApOnHU+AUdQHCAGKafoJenCv6TwpG4hXQD/0CU+vpL4Op+I8n1ME51/QDI4GD6K8XwOdaKYN5gE+OE/0CUzX9cWZnCkbiP/0f/ehO6Sd4Rn3orwojly5dqo4FwFT6GfoFpmr64wwCyYws9n98Ev2MO8BgzX+BkeivByPRR7GxzMay0BH8LxvLxIkMRtpYlvlhY1neLxhbbV6W+2HzstyLw3Veps1RU/MyA5J5f7Fn5kCnONDziD6uz+ChbtumjW7b5k2qhiMGNrhe/fq7LWt84GHHdnWfA+XFKsdzoGg1HeaAOWAOmAPmgDlgDpgD5sCeOqDBSIJ2AlAAEMAp7YM6wAnwUQYj2QbAAmbQFgBFgxlFAAHEKsIMjpUAmgCIxYsXq3UBiNBPwE2yuTT9VTIjqYNAFfqBqQAUTX8MU4GRQERNP3UBqCgp/QA6ABBtA1PLYKTA1FRmJLol6AhMRb/mhcBU2uR8066mn3MpMBWApXkBTMVb6pJlcrU2OUf1MiMBbwKDgamALq0uAATHQH8rg5Fjx46twVQAlqa/CFP3JDMSrwQGA1MBjZp+gl70IfSXwchx48aFvohuAK6mX4Op2rmMMyNTMJK+KjAYmIq3mn6AB9cw+lMwkj6P//RJICR9VtOvwVRNvyzTSptLlixRwaaNZbieFRvLxIns0cay3I8qWd42luV+8czGstwPm5flXjB3s3lZ5sehPC/rdCDZs2cvN37SMa6Phy2L5s9xG9evzXuhfzaoYYgbOXq8GzZilNu4Ya1rXrbYrVm9os0+9kfnOdCtew83+byL3IrZM1zLimWdJ2Qvtbw/jwfAeOl1N7h+Q4cH9Wvmz3V33PCJNkcyeuop7px3/kuAkWyYfstP3VN3/KbNPnv6R//hja7JtzP/wXvdDp9evbulyvHsbt32PnPAHDAHzAFzwBwwB8wBc+BgcQAAAaggeA2AAI5oMKAII9lXKwAU6gJAAFA0mAGAAGgAFoBvewIjARAEV2kTmApA0fRXgZHoIehIXcBUAIqmHxADUGL/qjBy0aJFal1FmAoc1PRXCaFX1IMAAEAASURBVHqhm6A7j8BUYLCmHxBG4Aj9VWAk5xmYqtUFTAU0Updkpmr6q8BIwBUAF/3AVPRrdQEiOwIjqQOApekHkOIt+iUzVWuzSgAfmEqgFv3AVGCwVldHYSS6AYiafgKh9G30S2aq1mYGI8lMdaEu7YsJAAigH/qBqYBGra6qMHL8+PGhLiAkMFjTD0xlbEG/ZKZqbaKLa4WSgpE2lgV7wi/8tLEs90NgJK/YWNZYy1LnuuR/RbHYWNbWERvLcj+qwEibl+V+8f/U5mW5H/xfYnzh//zBNC/rVCB59LEnBRgpNq5uXtYGSPbt29+dcc5Fbvs2P3FrXuqGDGv0cHKcmzvriQAv5X322HkO9Ozbz5121TvcM3/+o3v4J9/tPCF7qeX9eTzHnH9xgJEzbvuVWzZjesiQLB7Gia+90vXwGZQP/OBbrqV5udu0au/D+PGnvtSdfPnVbt2ShW71s7OLEir/XeV4KldmO5oD5oA5YA6YA+aAOWAOmAMHoQMACIJLBK8BEAAUrQiAYJtkQ2n7TZgwIdQFgCDQoBUABACFwtKSQAitVAl6ASAAFegHkKJNKwJT2Qbk4li1QtCRuoCpACCtACOpjyIwVdsvzoxMwUiCdoAi2gSmAoO1IjCVbanMSOoABvMIbCLQrBVgJOeTIjBV2y8O4C9cuFAFUwCixkb0uwAjgcFaEZjKttQyrQTtCFShnwA5+2kFEAnQowhM1faToBfb8F+DXBlMbQz6gZHUpxWBqWxLBfCBqXiGfmAq50krkkHANsns1PaTzEh0A1A0/TFMBUZyPrUiMJVtqcxIAoT0WfQDU7lOtCIwlW2S2antN74VRgIh0a8VYCp9g8I4wPWkFcnsZFsKRtpY1tY5/Odc2liWLTlN/6DYWJZlqeOFjWVZljpe2Fhm8zL6AcXmZZkP/LZ5WeRF/nT/PwMuLl+ywM18/GG18YmTjwuvP/bQ3W72U9Pdg3++M0waRzWNV/c/lF4kU6/xmOPd6ONPct17Zd9ai4+vd/8BbszJp9ey62RbVz9p79mnr2P7qONOChOmPoMGuyHjJsou4ZF9uvkJBMtrjjnptFoGnuxEPcV20cR7KEzEqKOnn/BSuvtM1/C3f433FsvAxtGhHdrraEFHD/8tUcqQ8ZPaHXNcX6odtKExLhwPr3MsHT2euB7tOW2R3YjeYuF4aJfz96IPLMz6420BND7fkgcOxMuGMePclrWr3dInHgv7vKBkMA4eO8E1nXiq6z1gYLGp8HetrwzJghSykxx/t9bljnp5uCztyj5VHqscD34U+wXvw3dKF/9hOZwL/8i5pu+WFY557ClnOJaytWIOmAPmgDlgDpgD5oA5YA4cCA4AIAAoFABdGYAAwgFEAH6As2JhnjzeB8ApZQBCYCR1ASAAksVCXUBGYCP7ASC0ZR4JMANQKMDIMphKRiZ1sY8GI2lzgoeplDKYKpmd1JWCqdQFTEUf+6WycQh6sR8FTzWYSl3AT3yjLs4RsKhYYv31AARAibpSMJW68FW+wZ6CecBIzpNzfwvL5GowkroERtImkA5YVyzsN761/wAjy2AqQI+6UjCVuujXAEL2SwEIYCSgC/1kdmowkroERlIXkFTLJiJoB0CkcHxlMBWgSl0pmEqbktlWph8YCWikAFM1GEldAiOpC1+1zEi8ok0K/asMpgK0qYsAPssjFwttChhnP/qPVoCReMs+wFQNRlKXwEj2A6bSv4vFxrLcETyzsSzzAy9sLMu9sLEsv074P2JjWeaHzcvyfmHzstwLxs/xh8G8bODAbMUN5hhl87JOzZC8757b3S4/+WkY3BaUyOnasT37YCATJA7mb3970U9Y20+45T2HwuPZ73i3m3TWeVC/7HD8cd/7nRvdkumPBHDzqg9/1g0/8pjaoQKsbr/+39z2LZvd8Rdf5k667KowCaWzb9vc4nr3GxDqIgvv7m98Mbzvqq//MOzPMptS5t77e/fIT78f/jz32ve7cS850/342itls7viy9/ms4X75QevcSOOPs698oOfrm2beNbLHD+UGbf/j3viNz8PzwFyF/3rJwNsCi/4X8/ed5d76MffkT/rPl5+/X8GOPo3/01AoBVlvc/mu/3zHw3Hyd/12rns8193ALdfX/feAPgAZG/8P9/3kKy7u/nD/9s1NI2rdDy0Va+c8oY3+/Pw+tr5456Pf/qPz7vV8+aEt3I8MUjjXPw/9s4D7o6i3P+T3nvvPSEkoQSkhl6CoCACV6Tdq9eul2tH7CJiQa/iX7zILXoFxIKgNEOHgIBAAum91ze99/Kf75w8Z/fdPLNn3+QlCckzn895T9k5M7/97ey8s/M9zyyJ7aN++I3wWj7jTctOXZy8H/PAPW7SEw+HPIPPu9gNv+K6MiTmwwmPP+TefOh3YTtejfzyLa5Nt9KFEB+uXjTfPe7byk7/C9+Tr/2I6z/i3JCXP+d8+svl1w999TNuvb9fZZFUZH+uufNet2jim+6ZO24LRfY77WxHO3/xv+9wc/7xUmhrZ37sc+G4AhtJ+Pba/f/rZr70bHjPnwFnnB90p+Hm9NFPu1fv+VU5j70wB8wBc8AcMAfMAXPAHDAHDrQDTOADIPylWzQaiusziebi2hbgpMHI9HJUwDwtGoqyJBqKsmIAgrKYNAV2ATYBO3J9nfYI2Ad0oqxYZCd1SjQXZaFfW2Y2/QvwPP1FJu0oCwDEpBZ1AoA0mApsBUaiPxbZiX6JTKUsAJAGU6lTYFgMplIWMBW4SZ0xmEpZACD0UWdsmVD2DxhJWbHITuoUmEpZAFcNplJn7z2TXhxrDUZSFlAcP6gzBlMpC120D+oEZpM/mwRGsg2oFoOpRKbSbikLmK3B1LR+YJ8GI9HP5LfA4BhMpSzaBecndWrnEvuCftoZ+vNgKjAYcElZwGwNpgIjpf2wXYOR6AekCgxm0k6DkegHAFEmdWowkrJKkaklGBmDqZSFfvJSFro0mGp9WdK68Yx+HY+tL7O+TFoG7cH6spIb1pdJq2AK2MZliRsujHtsXFZyhP8lvY+AcRnXGoxrSBXHZSVrDs5fYGReWjh/luvZZ4AbftIZPpJyjmvfkftw1HPzZk/L+9o7etvQd7/PAWu2rFvrJvztIbd81nR37KVXlUHccZd+IMDI9cuWujf/cr9jmcyOAwa7Mz5yo3v6Z98r7/vUZ//mOntoCGgD2LTt2dvfJ/D48nZeACMXTxrn5rz2knvXB/7FDTp7ZICFwD4t1alT1w/Qd4VN3O/w8dtu9mW0dOfdeHOI4Jvw+INh25o995Ik6m3kF7/t6nn4N+WZx92SKRPciVde76HSeW7x5HFu3huvaNWonzVo3CQsWcqysMMuucLvTx830Oud9tyoEqStUA+g77Lv3uEuuulW94AHkOd/7usBcj53548CmC2yP6qwzIdte/R2HMPtfpnhsQ/+zrXzOvuffo475zM3uT989kMh9xO3fyscT6Bv83bty/eNTEdIApj5Z4beTatXutF3/zR8d13VknKNx112tQeL29wzP78t5Ol76lkuXQbHBRhJdCWweeBZF7qePirzdH9PytG/+mm4H+X00U95feeG+4C+eu9/eSA4O5S/MXMv13Klyosi+5P9Gm1DS228fxNH/cWD9HXuBN9WTrzqhjKQbO335dTrP+YvBHb4/XnazfDtus/JZzgigC2ZA+aAOWAOmAPmgDlgDpgDB8uBZAJ/dwAsWmQkkxEAFCAEMIALdQ1AAB6YwOEZmKQt08p1giwtCUCR+/Rl9z8NIJhMR5cGINIwEsClRUZSFtrZB/QDUDSYim4ACvnz9AOlmNClLPRrkZ2UBUBhggP9ABQNpgL7qBMvAIxaZCR6mCQBwlFnDKZSpywTilfaMrP4D0wFDlIWMFhbJpeygMHARvQD1njOJokgQD8wFVCaTegHvgFBKQP9GkylLUqUbiwyEv0SmYp+tLMP2YR+IB3+Uidgk/zZxPEBuqKfNqHBSPQDP/GNsthHDabKuUQdefo5jviBHtoObSib0I8u2reAWTSmE16k9XNO0razCf0cb9ot+mljGkxN649FdlIn5xHtEf3AYCBoNqEfGEyZ6I+1xSxM1SI70c/5Rr+Bfs5xDaaKfnxCv/Vl1pfRLq0vS85O68sSL6wvq+6FjcsSP2xclnjB/9UjZVy2cdPWMK5Zs2ZtxXHZQY2QTA6P/mqjj/ib68FX3wFHu5bDStCBJV5XLCtBGQaOQ4cO1b+sfMrSItrgTMl60D4acuGloe6/futzAZTxRqLKeN3v9LN5CtGB2/zynXNff9ld+5+/8/Cxug+TRv3V7fADSIDkJA94+pw0wrXv3T9E0xEdR2L70z+7Nbwm+nDEv/5biLAU+BU2RP5Qxoo5M8uRfoAw3qcToItlOZdOnehmvzo6bHrt979253/2a+7oC95TIyDJl0f96BvBk02rV3lQ912/P/0caLpIPYA8oj9Pue6j7v3fvzMs+0rkHbCOVGR/QsYKf4CRJGAksJTU1i+XC6jksWrBXL/0aqn9EgHIBUjWN76zcu4snnxE6m7Hcc7mYbnVBr79E8VYNX2y4/hJVCpfIwK0Q79BwS8iVkkTPeDuMniYB9MnhPdAPx5dBh8T3q9ZvGCvesKGCn+K7E+FIsqbq6ZNcmP/fF94P/DMC1zLjp3L20648roQdTr2gXsD4GYDfloyB8wBc8AcMAfMAXPAHDAHDqYDsjQjE/haNBQTmAIggAExAMGkBQCFZ2BYLLKNSS9AF9cSgAztGpcJZAAKeYEZABQNQKQnjQBEMQABjOSB/hhMRTcAhbrzYJ5EdqI/BlMpA4ACbEE/AEWDqWn9schO/Af+cAxEvwZT0Q8MJn+efonsRD8grxJMRT++8pxNzGlIZGQsslP0A+HQDzDTIlMBb5TFJHEezJPITvQDIzWYihfAYGApumnX1J1Naf2xyE6OJf5Xgqnox39SDObhRRqm4r0GU9HPOUL74Fiin/1NJw1GajAV/cBPjjtekEeDqegHjJPYHusLBKbiZwymoh8YTJnoB2ZrMDULIzWYin5gMOcd+oHB+JtN1CWTptaXWV8m7YP2Iz8Mof1YX2Z9GW2Dvtj6stJZwv8SG5dJj1GKjEz/SCz2IzcblyXt53AZl23YuCiMKdd71pBN2XHZIQ0k+/QfHGDk7BmT3eIFc1zb9p3c0cecGO5FN37sK2FApl2UZHda3mcHoPL5ofTcsFnzsMwqy69qiWU4ib4DUknasHyZa9WlW4gUlM/YvmPPkrfh9Z5lbhs2be6j6Er3FVlXldwUfuG4N8JXm7fXl8+Vcmvy3L5P/5Cde2Fe8rUfVPtqs7btq72v9IZ9Fk9k6dP6/uKNVLSe6S886XqfeGq4N+emNavcy//nl6Ct5dS8fekG8vPGJNGfAENgJNF/tQXQdu7Y7pZ5WM/Svdfd9XtHRONUH4XK/ShJ7fsOCM9EwWa9B3Ieqmnh+DFlaeuXLw3L1coHLfbAyRmpJVxlmz2bA+aAOWAOmAPmgDlgDpgDB8sBiSbKAxBMvDCZC/zRoqGAAQAULtiBSZSlAYgik16UAYAgL9fLABQNQKRhXh6MBOTxQD8ARYvsRD8Ahclr0Z89HkzaCYwExuCDdp879ANTgS3oB6BoMFUiC7nOR7826YUetDNxin7qi+kHBjPJSl2xZUIFRop+DUaKfmAd+oHB2ryFwDz0xyI70Q8IFv3AYA2mcixFfwzm4b9MeqEfGByDkcBg/EU3vuJdNqX1xyI70S8wkjJiMBX9AlNj+tMwEv2AyBiMBKBQJscS/eTPJvTjGf7HIjvRLzASL/Bfi0wV/dRRFEbivRbZybmEfp7RDwDKzmVxLAVGsi0W2Yl+gZHox3/0ZRP6ZWm9PBhJO7S+rPrSjNIXWF/WNbRT68usL5P+xfoyccIHjdi4rGwG/5dsXFay43AblzG+2LF9S/hhXPmA+xe0/+y47JAGkl269fI7st3NmDo+7MfGjetd1+69Xacu3cPOMVAaN25ceh/f+a/9kqgsjZqXaLAVk4dOsrwq0XNyMVvtu+lyyq9LZct30/XU9Q1opx8QF01S5/P/+eMQxZf+Xk3K4Xu7lAugunt8KloPUYVyf8ImLVs5oGhNliZN66/0On0Mq3le6Ys12M4ytH1POTMsgUs05In/9M8Bzo6++2chYpKiZv/jRfe6j0pNJ9rDwUlJu23YpKkqIQ3ad+/KgNM9b+vUTcpRC7EPzQFzwBwwB8wBc8AcMAfMgQPoABfgscjCdARBDEAAAwBAPHONC0DRAERRGAlAAfwBIGLRXMAmABApL7KQSaNKAALdAlDy9AuMFIASm8AXmAqMAaBQZjYJDONaEP/zYCRALw+mol9gMHVxLOUaU+rlmk5gJPpjMJUJ2LR+/Gc/simtv9IEvsBg/IrBSIHBsbaI/iyM1GAq+gUGoxsYTDvKJmAYMA+fKsHINEzVIjtpi/gPcER/DOxLZKTASA2min78RT8wWIOpnEt4hv4YjGQCjbZDvQIjY/opq4h+zk30o12DqegXGExbRL8GU4vASPRz7tJuBUZqMBX/OZa0EbZbX1aCwdaXWV8m/Z78sML6slJkJH2i9WWlHybYuEzOEheWP5cVH2xc1rD8I70jaVzGvjZvVgoek5YRG5flky/59kF6buzvG5iFOdx7jvtI1vVE/XBM2/w9I4hqa+yBmZa2+nsasAwqkZKSWnTwy/V4YFdT0NTS35NTUvdjS8t4blhRul/FDt+ISJ0GHh2e0cR9HLOJexiSmrRqnd3kl/+cET4jgpHoxvSD5UprKxWth/tG4tubD93v/3PUde+++ba92lfe/hTRu35ZVchGJKakTv4en6TYvTkl3748sxQu93C871PXhDbQdchxoRjxpE3XHtV85xhs27SxWlWyz83b1V50bLUK/Bsu9NLLr3Y/ptTesvny3ktE74AR5+VlCxGwV95+t+MhEau5X7CN5oA5YA6YA+aAOWAOmAPmwH44UGkCHyBSBEZyIR8DEDWd9BKYR5nZJJFhfA5gyYN5aRipRXMBMwAoTDhQlxaNxjW9wEiJJtKWmaWMNMyLRXNlYViefoASMAb4pkWmoh+YCrwR/RoMFhiJ/tgys+hnkhZ9wIxYZCrbZdIOGMYxzyYmwNEOjER/LLJTYB75BSxrMLUojMR/2ofo12Cq+I9P6AdaZpPoZwJfYJ4GU7P6Y+dSERgJWAamiv4YTBUYKWCc45RNaRiJB/ivwUjqEhiJ/5VgqvQFGoxEfxpGol+DqZxL1Cn6OU+yKQ0j0R+L7BT9RWGk6Nf6AtHPs/Vl1pdJm5S+wPqyBObRz/K/hH5A+2GF9WXSekqRVfLDCuvLSpGFNi4rwWAblyXnyTtxXHZQIySbecjVqk17v/xICWa180uyekLkNqzzS1f4ZUVX+CUbiZJkmdZF81mytaNr1bqtW7JontupRMwlh+Kd+2qCv8/fiVfd4C675Wdu8pOPuOWzp4f7Os4f+6qbPvppN/Pvz7pj33uVe+83b3fjHn3AcZ89IhcXTXyzxjtd3198XfjFb7t5Y151wy+/Jnyf+wySWA60/4hz3anXf9yhadjF7w+fZ/8At3bv2ukAYcdccoVbs2RhuA/hptUr3ay/P+fe9YF/cUNGXuZaderqJj/9WIhKPOrci9zcN14J+5ctb1/eF6lnyMhLA1yd5+ud8PiDbtfOHe6EK693Z3788+6Fu35SrjZvf8qZcl7gVZ+TR7jjvZ/1GjT0EZl+qVZ/H09A4OqF83K+WbNNTdu0cxd89uv+XoqP+TYyw3UbdnxoBxu8/yTuiclSsQDli796m7+P6MM+2nibP6bnOCJLn/vl7eUK5f6Uw6+4NsDuzf78W+jvrZm9kC1/YR9ebNu4wQHOj3nvla5Rsxau06AhNS5lzJ/u8fe/HO6Gv/9a19qD1pm+ffXy4Ldx85buxf++o1wecLxp6zbhfeMWrZxA9nIGe2EOmAPmgDlgDpgD5oA5YA68jQ4QKSWRkUzgM+moAQhgDBOTPDOBDxjRAASTLkAzxudAtRjMKzJpx6QFZaExBsNEf5FJLwAQ+oEx6NeiuWTSCICSF1lIfcAWmXTEk2wCJqEfgBLTzwQ4k98SGcmEbwxGSmRqTD/1FNUvkanAPI4Rz9kkYJnPK8E8mcCPLZMLTMJ/QCj6AVh4nE7oLwIjmQBHP/rQHYtMzeqPwTy0p/VrMBL9+A88A/ahP3sNKvqLTOALDKbdoJ92lE20L6IxqQdNMf20HYGp+K/p51xCP+0N/RpYlnMJbQIgtL4A/wUGi35Abjal9ceWaRUYyXHHgxhMzerXwH5av/VlrnBfYH1ZqeVmYaT1ZS3CeS59QQxGWl9Waj/WlyX/AaQvtnFZdRhZaVzJucT/TRuX1Q9jskNpXHZQgWTHzt3dwMHHls+wrj36OB7zZk8LQHLKhDEeHO10Xbr2cj169Q/5Nm5Y56ZPOcyWaS074AKka9Ghsxt01gUean0wbGGwPO35J8Lr8Y/8yRFxx30ZT/vnT4bP1lUtcS/+VwnIyAA+LLkqK1767/sRd8i7y8NDSVvWr3WdPbDqvAcOcf9BucfhTH+fPiLROvh7EZ7+oU+H+1pu9xc5Whr74O/cce+7OjzYPt6D0rf++ocwyGdZ0fM9OOtx/EnhwXaO6dRnR/GyUNojPZqXfc6rp1XX7u6EK65zW9atdaPv/mkoZ9ITD7uex5/sep1wiuv9rtPc3NdfLpcf259yhpwXaxbNd+P8MTr2PVc6AB+Je3k+8/Pv53yrwibNAP9Zi05d3CkeGIfk329ctdK94JfHlfTsL37gzv/3r7sO/Qa6sz75hXI+QF46cU/OBf4eokQtnnLdR8Omv3z9Rke7qq302v3/67V+zB136QdCkctnTQ+6JKp3987ShbO81+pdu3SRe+nXv3Cn3vCJAMsB5iQ5N+Q76ajIt2tJXqnLns0Bc8AcMAfMAXPAHDAHzIG0A0waccEvk0aVYCRQBpgEwNIARBpGEpUUg5EAFPIKgKDMbAImdWhfAijADA3GZPXHIjvRzUSPwEgAkAZTgSJAGyaN8iIL8Qv9TBoBUKL6fVloRD8AK5uyMDIWGYl+ABAgCJiUpx/oh36OJeVlk0RGpie9NJjKdrwAsuXpT0dG4j95swn96BL9GgwWmCf68V/TTxn4T/tAN/5rMBX9AoMBvFr7Ef/Tk16afmAY/uMd/lOWBlOBgkVhpOjnHNFgpIBlvEQ/xzybmAAXGEkZ+BWDkfhKfgGbMhcjZeK//DABAMGx1GAk51ARAJHuC/L0cyyLwkjRr51L2b7A+jLry6RtW18mTvjV4qwvK5thfVnZivC/zcZlJT9kXIAfjBNtXNYijN9kXHykjsvq9OjRQ7BVcuYcgq+at2gZBpXbPNypzXRdz5ZurR+Ya7/krM16aloWg1fud0iU3cq5s3xEaPVfxzXg13h9BwaACGirabrhv/7k5r/5mgeZP3Md+w8OkZiAs2xq7H0nog0YtD+Jctr4+39uWrvKrV1ciuLbn/Ji3z1Q9cTql89ZUri9Pz5b16/bb++kTO25pYeSRB4unTYpREVqeeo39Bc4vfr6JV39UkULiC6u3pa077xdn7F8L5GiRHDuT2K/iRKlLKJP04mI0PZ9BrilUye6J3/ynfQme20OmAPmgDlgDpgD5sABcWDsyq1uWJuGrsF+3Pv6vvnrwmQ3F/JMGjM5zIPrBB4HMjHRzoOLZx5MKHD9xDOT35ZKDnBcmHDBE/xhkkFb2jA9aScwUgMoEtlG6cAAQFE2AXSok7xAJOoE8GQTE8iAHdoSgAgAlAUoWQBRCUYCxagrBlMFJqElTz9+VYKRaf0CYzT9eFFk0gsAVFQ/9aA/b9IIfXkwle0ALM7nPJiHdoF5+E/ebGICXGAwMAz/NRhMOeRDP2XxyCaBkegTGKnBVI4P7Qf9tGkN5rEtrR+/8mAkdaOfsrLzMZxLAvMq6Wcf0zBSg6nox3/aeEw/5wb6qTcPRlIXdaKf/cN/Tb/8MIE+E+9pQ9lEX0D7p0z6ghgMlr4AXyiHOrMJ/ZQlMBL/NZhKXQKD0Y//aEwn68vSbrjQJvCMZH2Z9WXSOgRGWl/mwo+TrC8rtQwbl8kZUlqmmP+rPCrBSP6v2rjMhbEF59I7cVy2fsNm17ZN6YdklcZlBzVCMmmilV9t8GDnSEoMulfOmx3dZaIVF08aF91edANgaMmU8dHsW7zvPPY3UUa2nit+eJcDIMYS98W8/8YbYpvVz7V61Iw1/HDweRf7iMfrcr817blR7o0//TbkIQp02YwpuflrYyNRjJUiGblf575oOeczN7muRycRzJreZ35+WwB/2jbtM1keVttWk8/y9rt1t54hIvjvv76zJkVaXnPAHDAHzAFzwBwwB8wBc2CfHUhP4DPpAoCoBCOBeQAIDUYWgXkCUIrASCZ6BIYBM7jeTCfRL5NGMf1MFqUnjdCvRXaiHwAkMEmDeUzaMelSFEYKDKPOrH5AU00mvQBBwJqYfmASAAJQE4ORol8mjdhHLbJTYJ7AMA0miX6BkXkwT2CY6I/BSNHPseSRTTWFkWiMwTCODceS4057yNOfhmH4n4V56BSYyjbqjOnHC4F51KnBSM4P6syDeQJTi8JIjn0MRqKftogf6Ec7+5BNNYGR6CfF/K8pjCQ/sBv/82Ck9WUlGGl9Wan1Wl9W8oG/AiOlL7C+rNgPK6wvK7Uhxg02Lit5IeNKG5fVHEYeauMyGQsWGZe9Y4BkqZna39p0ICzrWpsF1rCsqumT/L3+2ka/dTAj+bKiiBBd7u+rmZdWLZybt/kdt235zGmuQaPGubq53+ShlqY89Zhbt2yJX8J27yV4DjWtpsccMAfMAXPAHDAHzAFz4PBwAPgAhBAAUQRGAlBiMJKJKgAKeXhkE0CBPEwQSzRXLDKSfEyaoomyNACR1k8eLTJPJo3kF+xMwGr6BSahGRij6ReYVwlGsh1t7C/6YwCFPNSb9wt8JpDJh35gHro0mCowSfRrMAz9+FoERpKPSRpgEnVqMDWrPxZZSFmVJu3QTz6BwZr+ojASmJfWj//ZJBNQlWAkE1Tsp0QWUpYGU8nDQ/RrMI8y0JWe9NIiO0U/k3b4ENNPWeQVmBqLLCRfWr8GU0U/5xnHO9YXkE/0o0uDqXhKnXn6i8JI2ip10nYFRsb0W19WauXWlyVnO30xbdH6MhfOW86ldF9gfVl+lLf1Zcm5JDDSxmUujMfoV2xcVhxGyrhG+uLYuIY+6kCPy3a7ev7HGqW+gPFP3rjsHbNka3Lq1u6rQ3XJ1trdSyvNHDAHzAFzwBwwB8wBc8AcMAcOlAO2ZOuBcvrQqIfJFCbwARBEv2kwD4hEPqAY4JALdQ1AMAHOJAIAgjw8sikLI5mMKAojNQBBxAL1so2yNP1FYSQ+8EA/ZWkwDP3UyaQcHpAvFlkoAEVgalY/0BZfRT/+x2AeZaUnvTSYinbyUS5laTAsDSPz9DNpRFnsr8BIDQbjBZNGTGjjRUw/+0k7YjvtQoOp1Mc+5OlPw7y8ZVrT+jmOPLL6Oc7oJy/68SwG89BWRD/5gJGUpcG8tH7aDV5ok154SllM2qGdfFkYzDZ8RT9+4n9MP/mom/ODsjQAQR78z9Of7gvylmlN66c+9kHTj//ywwT0x/oCvCiq3/qyUpSr9WWl/z7pvsD6stIPK6wvKy3TSp/HuMb6suo/Esvri/EsDSOz4xrOOvp1GddQlo3LbFxGu0j3xYfiuGzFyjWuXdtWYcxbaVxmEZIcUUvmgDlgDpgD5oA5YA6YA+aAOWAOmAPmwD44wKSRAAht0igNICrByPQEuAbDBKAA8wBqsUkvAAVlVZr0YilCJjgEQGgwDIgHzOAZ/dQZg3l4AaSKwTyBkUSGif5KMBIfmHiJTdqhn23UWUm/REZq+tlH9OfBPIHB6K8EI/FfYCT6szCPevCfYyX6NRgmkZ1FJsBFP/cF1GCewFTK3F8YiX6BYbUBI5mkRT+pEowU/XkwEv85X8hDG8rCvABT23ow3rxZgJHUqcE8jnURmIcXQETqwX+tLxCYWmkCHx94iP48GElfIDBV08920U+boCwNpqb144Wm3/qy5B+E9WWJF9aXJV7wyvqyxA/ryxIvbFyWeJEeV9q4rLTihoxrGGNrMK8IjDzY47IdO1a41X6Msc3/2DCbGB+lx2UGJLMO2XtzwBwwB8wBc8AcMAfMAXPAHDAHzAFzoAYOLF++XIVhTOAz0S8wDziiRUZykS4AgskIDaAAJwBYAiOBBpVgngAIDeZRFhMEgDIAigbzBECI/kowEo0xmCT6BUYW0Z8HIzt06FCGqejXYB66mRzmucikF5AqBvMAEHgmMBL9sUkjjifwD/jDPsT8F5ga088EFforwUjycCyZjIrpRw9tEf15MFImjdhf9PPQYCr+M8EK3KJODYahHxhWRD/tn8S5pMEw0S+TdvivnUtp/QIjNf0CgwWmavrxCm8rRRYKzBP92rlEGeRDf140ET7IpB3nG+ewBlOlLwBG4r/WFxSFkdIXUI/1ZUlfbH1Zi/IPW6wvs74sdND+j/Vl4oQLPxqRvpgfOhUZ19i4zMZl0oJkXHO4jMs2bdrsdu+qH8aiso88a+MyA5Jph+y1OWAOmAPmgDlgDpgD5oA5YA6YA+aAOVADB5YtW6bCMJm0A8YIgNAi84APXKynYZ4GIABAwAwARGzSCwAhMEwmvbRoKIFJ7CYAQoN56Aag8AysqQmMzOpn30Q/HgBQNJgH4AJgMUmTByM7duwYwCz14L8Gk4CQ6Oc4VIKR+C8wUoNhAlPxXyYdNf0ARvE/bwJf9APK8D+mX2CY6OfYZxN5qBf9MZgnMBVPgHh5MA8gRn5gHm0oC/OoH/1MoAFa82Ak2irBSI4R+oGpHEsN5tEemPRFP77n6cd/0U8bqqQfzzSYVxMYWUQ/+4l+6Qs0mIr3PGhvAiOz+vGJcwl9AoM1/TWBkZx3JOvL9oaR1pfl/7DC+rJw6oQ/1pclXlhflnhh47LECxuXJV4cjuOynTt3+B2sjho1GMm4pnquxBd7ZQ6YA+aAOWAOmAPmgDlgDpgD5oA5YA6YAxUc0GAeEAxoIDASgBKDkQIgyAMMy06AAyA6deoUYCQAAoCiwTAmvQBAwJsiMJJyly5dqsIw9AOAagIjAVOafkAZk9YCU2sLRqJ/yZIlKkxCN5PDPHN8gDsazAN+4n8aRmb9T+vnGOK/BpOAUpTHJFMejORYcqyop6qqStXPpB3+C0yN6ed4C0xFlwbzgFv4T5noxv+Y/jTMow1pkZ2inwklAJYGwzjW+I9+NAE3Nf9lAh+PYzASPzmXRP/+wsjOnTuXYWqefrxFP20a/RrY5xgJjORYan0B56PoF5iq9QW0Q/zPg5F0RfgvMBL9Wl8gMLVSX5DWn9cXWF9W+ieQ7gtoz9aXWV8mwwPry8QJF/6nWl9W8sPGZUm7sHFZ4oWNy7LYMvHGXpkD5oA5YA6YA+aAOWAOmAPmgDlgDpgD5kANHRAAweRLJQCRhZHZaCiq7tKlS4AxwCGghwaT9mXSKwbzgDAALJ6BTQAgDSYx4Sj6mZgHPGVhHtAQAARMAugAUGL6axIZmQcj0Q1A4VkiOzX91CcwD/0aTE3rp4wYjJTIziIwElhEwn8NJtFu9hVGZv0HoACw8F9gqgbDsjA1BiMF5lEPAEvTT11pGAlM1WBedgJfg3lM2qEfT2g3+K/pj/0CPxid+sO5BCzlPONc0vSzHf85jwWmavrJw3GnjcRgJO2Bc0n00840/UVhZFa/di7RvvAW/bRp4HhMv8DUGIy0vixpPOm+wPqyBIzjkPVlpShv+WGF9WWVf1hhfVnStzBekf8lNi6zcZm0jMN9XGYRknKk7dkcMAfMAXPAHDAHzAFzwBwwB8wBc8Ac2A8HABAAFGCYABQNhqUBhERGajCyW7duAWawjYkqDWYIgKBuQBLRXFpkW5FJLwCEwEhgDQBF06/BSE1/165dg370AD00/cBUAIroB6Bo+tFFXsDA4sWLVZiE7/jPfgBT0a/BmHRkpEQWZmEe9Yh+ygA6afqZSCSaDv0sERq7ZyS6OFaUu2jRIhXMAq7YT/QDU2kbmn4tMlLTz6QvZXIMgcGa/uykV0w/MBJYR8J/DYZRF+0M/RKZqunXYGRWP5P76OeYohv9WlsERnI8gZe0/dgyrTIBTj2cS5p+YGoaRsZgqsBINNIutCV30YNn0hfk6S8STURbRB/68V87lhKZiv9FIztjMNL6sur/CKQvsL4sgZHWl7nwv4s+NA0jrS+LLznNWWV9WdK32Lgs8cLGZYkXR8K4zIBkcrzt1UF2oGGTpq5+o8Zu05pV+62knh+At+jYxa2vWuJ27qh+n43arGe/hRYsoEmrNq5R8xZuw/Iqt2Pb1kLfYj+btm3v1i5Z6G8qu6vQdyyTOWAOmAPmgDlgDpgD5oA5YA7smwMACKAHE/nADkCFBmNqAiOBGUxuArA0GCPRXNQtAEKDeUx6CcyL/QIf3QAUnoGRABRNfxpGAsyIItNgZPfu3QOYYhsARdMvMBX9eTAVSCcwLwYjgTBAv6B/85YQTafpz0ZGapGdtABgMGXiJ55p+iUyFf2AMICY5gW6OFZ5E/gca/YT/XkwFRgpE+AxmJrWjwdAJ02/RHaiHxDMQ9NPuwCGoX/hwoUqDANGsp+UBaADBmttsQiMpB78xwt0o187ljJpBwyoBCPRT+Jc0mAe2/Ef/cBU2nZMP76lYaQGIJh0Rz91xfoCgamUBfzkHND8FxiGfvzXjiX6Oc/RT5umPE1/h/a+L2heAvv4qi25SxnWl+F2KVlfJk6UYKT1ZSU/rC9L2oX1ZYkXNi5LvLBxWeIFr2RceTiPy5p7dsE4u9K47KADyYYNG7ne/Y5yTb3gubOmujWrVlQ7Wp279nS9+w5yjfzgff3aNW7m9IluXS0Aq2qV2JuoA31OHuG2+sHs4klvRfPU1oYLv/ht17pbT3fvJ67e7yKPOvfd7oQrr3dP/uQ7bunUidXKq816qhX8NrzpNmy4G/HhzwQYSfFjH7zPTfzbXwrV9K6rP+T6nXa2e/DmT7sNK5YV+o5lMgfMAXPAHDAHzAFzwBwwB8yBmjvAhbcAFAAEE/0aDNAm7bIwg9opC8BDmj9/vgpjmPQSgAKMBKBoMCP7C3xtmUoAhAAUgamafoGp7C/1AVA0/UzgC0wFoGgwCcAoAIVyACiafvZRYGoMRgJ+BKCwf1XLqlT/BaaiH2CGb5r+Hj16lGEqAEvTjyYi5fCuEowUmBqLjGTSrkvnLq5e/XoBEAGDNf/TMDUPRvbs2TPAMMrAM00/UI0JddGfByMFQMRgJMcaaElZwEi0afrTMJV9BPzF/OeYohsYnKe/0qQX7UJg6oIFC1SYl4apaMqDqZzDAFOJjMzqZxvtX2Aq+jUvgKn4IfrzYKTA1FhfwHaBwcBI9GvnUojsbFFaZlZgZFY/eqwvC11v+GN9WeIFbcz6spIf1pcl7cL6ssQLG5clXti4LPGCV0fCuIyxIH0jY8FKPxI7qEBy0NHHBRgph2iZj+RKA8kuHk4dM/w0t91HhC2vWuw6+/ftfdTbyy+MchvWr5Wv2fPb6MCp13/CbVq7yv3laze+jbWUil6zaIGr4xttbaQ6depGi6nNeqKV1NKGY997lWvgIx3//us7faTjIrfOnweWzAFzwBwwB8wBc8AcMAfMAXPg0HEAAAHA4gKcyCUAkAYDABkCIIBvQKwsDGCv0jBy3rx5KswQAAE8AEAUhZFaNBRlMOmOfmAqAEXTD4xEP/tbBEayLwAUDcbIpB11AwX3B0aiG894BqYCWjT9wEiAHvqLwEiODQBL0y8wFf0CU7VjWWQCn0k79FNWgKk+slbTj3b2Af1FYCRlABA1/QJTqZN2iP+afiBjJRgJTAVmUxbtC9Co6aft0IbQnwcje/XqFY4lutGvlQVMBa5Rp0R2avqLwEgm0MhHWQJTtTqBt5VgJG2eSUfaIhAVAK2VxQQ+5VEnk3bsg6Y/HRkZg5HAVI4TZQlM1erEL+rF/xiMZJv1ZRzFUhIYybuifRl9o3Ysi/ywwvqyPcbveZIJfNqz9WWVf1hhfVnSfqwvS7zglfVliR82Lku8qO1xWb0t2wuPyw4qkOzSrZdbNH+2W7VymRt2/CmJI3te9el/dHj1/FN/DYO4GVMnuLMuuDRETE4c99pe+Q+nD+rVb+A69B/kfyFZ31XNmOp2bN1S3r26fnDL0qbbN28Kn3Udcqzb7KNHVy2YW87Di8YtWvoyjnKr589xG1Yur7aNN03btHPtevX1EZDr3fLZ06st68lyn36k6h/ON6Z6rmHTZuH7u/ygOrtkaKV69qo48wH/KOr4wfPL//fLzJbSW/a1Tt06fn83u3a9+wW9WsRffR9t2/moIW7lvDlqOZXqSX+pbc8+rnn7jm75rOne29XpTeF1q87dXMvOXV3VtElu257jkM1EGXi8Ys4Mt2VdzQC6+N2mR68Q3bjgrddD8XLMpS4iSlt16ebWLF7g1i5eKB9Hn/GSC5Ws5iL7Ey3UNpgD5oA5YA6YA+aAOWAOmANHsAO9e/cOk/wACCZNtcloARBck8ivhrV8RWAkAAKAQlkACOCUVlaIhvLghnxARg1GctgAQOQBpgJQtLIEppIPeFUpMpJy586dq8IYYCoAhbIkmkurs8gEPmUwac0zMBUYrJUFCBMYKTAVjdkkkZF8jn6tLAAdE1rUKZGpWr4ik14ACOqkLGAqx0krCxCZhpHUqyWZwGcbMFsrC5iKt9SZB1M5RuQl0a7xN5uAqUx0UhYwFdCl1Yn3aRjJcdeSwEjKAABpZQFTiaylTolM1fJxjnCsSLHISGAq5xxlcX4Q9aiVxaRdGkZy3mmpt+8LuN4GplKnVpbAVOrMg6nAyEqRkQAI8lEWMBXQq9UpS0uSj2NEXi2hnzzWl1WfwLe+rHJkpPVl1c8o68sSP6wvS7ywcVnihY3LEi8Ol3HZgoVL/LhybfRHVulx2UEFki8+95i/v98O16Zth+QopF4188u4rvPRefLrri1bNvlB7ibXoVPXVK7D7+XpH/q063fqWSUgyO75wfjzd/3EzR/7j7CzLEd64j/9s5v50rOu3+nnhAEjG6Y+O8q9dv//BHg48su3uDYeVklavWi+e/x7X3E7/UUm6fLbfuFadOgkm0MdYx/8nZs4qrQc6Afu+E25XMDc1f49aZUHyI9+96bwGmhWqZ6QscKf93zzdteme6+Qa5cfuGeXbL38ez8PAJb7IAqoW+Uh62O33lQebB917kXupKs/XPZMA4CV6kHAgDPOdydf+xEH9JU0ffTT7tV7fhXeAkQv+Nw3yjr4cMaLz7hXfnuXZHeDz7vYDb/iOsd9LCVNePwh9+ZDv5O3FZ/FbzK27NSl7P+YB+5xk554OCzhetXtd7u6/gJQEqD4mTtuc1XTJ8tH1Z6PvvC97sSrbnDrli52f/nGv4dtRfanWiH2xhwwB8wBc8AcMAfMAXPAHDAH9nKAa1YAipYEQLANGMlDS4ARAAMpFhnJdvIBHYAKABQtadFQWr6+ffuGsgSgaHkEprINGAlE0RJgCsBDik3gA1OZnEQ/UAeAoiWAkyzTCqTTlpnle3369AllAVOBZloSmMo2YCQQS0uAQQAbac6cOaHcbD4AERMq6AeqAYO1BPBjggm4E1umlW1MWlMWsI98WpJJO7ZJZKeWTyLz2DZ79mwtSwB0gEbqBGpSnpaAqQLzYjAS8EadlAVMBQZrSSI72SaRnVo+vKBMEv5rCU/RRp3AVI6nlthHgXkxGCkAhbJoX7QzLUkEAdskslPLJzCP8jh/tSQwlW0Smarlo41xrpBikZECg6kPmApo1JJEdrJNlpnV8nEukawvK8FI68tKrcT6spIP/LW+LPHC+rLECxuXJV7wysZliR9H2riMseD2bZvLPClxwoUfIqbHZQnNSOc6QK+BkXmJ7Q19RJckBuzcczJvOU7J+059Hvru94X7/gHUJvztoRChd+ylV1UDYLJv/Uec6wCNk598xBHhtn3L5rDpvBtvDjCSqLppzz/hBp51oet5/EnudH8vwtG/+mnIs9FHTM548Wm3cPzYkPekD37YQ7Rr3ex/vOg2rV4ZYB9QbuSXbnFbN653z//y9vC9TatXSfWuSD3lzDkvXvCwlUjC0/7lU65pqzZqzgaNm4QlS1+992437JIrHNGHA88e6aY9N8oRzfkuDyN37tzhod/9rnXXHq6/v3diNlWqh2jDU6//WChn2vNPuxkeRPY5+QzXtHXbUBRRnCP9fS7r+TY45ZnH3ZIpE9yJ/j6VA844zy2ePM7Ne+OVkO+4y6724Hebe+bntwUv+556VohgzerJe/+Yh8e094tuujWUMfru0nFbV5VcJK3xSxxPfuoRt3LOLNftmOHhnpnnfuYr7v4bb9ir6GO8Z8e972q3esFc96gHuaSi+7NXYfaBOWAOmAPmgDlgDpgD5oA5YA6UHQAIAOC0BIxkQpc8Es2Vzce4H4ACgCBfbGlAJsiBfqQYgKAsieairBiAIF9vHw1FAkDEAAowEjhIWRLNFb6U+kNZABQm5chHWfKj4lS2sL0STKUsieairFhkJ/kEoMRgKnnQD5ylLIlMTWviNfnQhb/k41jynE1MpFSCqZQlERCUAaRjgiabyCf6JRpNywNMxQ/KkshULR/tAkBFvhjMAzBWgqnoEhhMWUBSLTIScNh7T/uJwVTKEphKWcBDLbKTfLJMKO0mph8YWQmmUpYAFOoEpgKrswkYCQAlxWAqZUlkKmUBb7XITvIx6Ygn6Kf9aIkJ/EowlbIEBlMnMJX2kU0ca+okxWAqZUlkKmUBg7XITvLhBc95+q0vS45CEQCBn9aXlTzDC+vLkvZjfVnihfVliRecJ71tXBYMwQsbl5XaBl68U8Zl/FCyebOE47EH6NfGZQcVSJasjf9dvWqF6+hBGxGRK5YtcT37DPSDvFLkGjvEBdvQoUPjBWS2MLCN/YIuk/WgvR1y4aWh7r9+63NhaVLeEPWmJeDUI9/+QrVNLFvaod+g8N3xj/05bJvowWaXwcNc92EnlPM++ZPvhNfN2rb3y7kucwvGveH6+2jLjn6Z2Lmvv+wjIUu/SCQqkci7FXNmlr/Li6L1VPtS5A37wWPbxg1l+KdlHfWjb4T9AopedNN3XXsfrTjNZxxw5vmhgc986bkAZ/luR+8BS6qmU6V6TrjyOs4UN/aBewNw5LvpZXD7n35uiNRcOnWim/3q6FD0a7//tTv/s19zR1/wngAkWWq3gb9QXb+8KkQq4t9bf/l9Wkah1yvnzirl8xcOLK+a9Z9ldh+95UsBKrKfy2dNC/eXBExnE/eh7OcBLcvyjvrB18sX10X2J1uWvTcHzAFzwBwwB8wBc8AcMAfMgeoOaACC61UmHbkIZ5Jflsas/k1uj1E3AAhgF2ANgKUBCGAZ0AawIEtjZsuiToGR1AlA0QCERIbxferUYCRlSQSE6NciO0U/1+aUBcDiOZuYwAeaURb6tchO0Q9EJB/RaNoys+iXyDzq0iJTKQuAAhCgrBhMRT+QDn8pC4BF/mxi/4CRbEOTFtlJWdRHveRjH9nXbBIYxrHkWAOdsgn9+MDxpKwYTKVOdDGpi/7YMqG0L/aTspgw0iI7KQuYynEnHxF3GkxN65dlfjX9AAiAGGXFYCp1MulImbFjSdnAVGAkZdGmtchOymLSjvOOstCvwdS0frZrkZ34D0wFSFJnDKZSJ+2aZ+qMnUvoBzRSlizzm/WMMugvyEtZwHgNpsoEvvQFWmQn+tHOPlBnDKZSpywZnKff+rLkaFlflniRPpesL7O+TFqG9WXiRAnG2Lis5IeNy5J2wasjfVx2SAPJaZPfdO3ad3LDTzqzfNRYsrVRoybhQowBmDZAK2fOvGAgdqinhs2auy3r15ZhZJ5eWcI1nad93wHhbSO/3O0lX/tBelNYllU+OMFH9rGEJx1COjVp2Tr9Nvq6aD3RAmq4gehPIBxp2cyp4bm+v6giERFJWjTxzfDMH+BbFkiWN0ZetOjYOWyZ4ZfC1VL7Pv3Dx52PGrqXt4Bd0s4d290yDwc7+nt3XnfX791GD9Wn+mjKyU89GrbX5h+gLPVkE7A4fZ9PYCSJ+2Fyzkgqsj+S157NAXPAHDAHzAFzwBwwB8wBc6CYA1xjMYGfBhAAmWxiMheAUglAyAR4HoBgAlAABGABgKJFcwEzAFjkZwI5BvOAUpVgKvrLAGWHh6lLdJia1a8tLYkeieZCPwBFu88d+gFYeMxcQAzmAQXxljkAIlO1ZWbRzzECNuIFYIq6s4nt1In/wEgNpqKfSUcgImUA/DSYin6JckW/tsws+yaRnehHu7bMLPqBdPiLfmCwNueRjuzE00owFf3k0WAq+gFYpLzISImGQg8wFSCfTegXGCz609er5McLmbRjGzCyEkxFP8dIg6nol8jCmH6OJfoFBnPuapGd6BcYjP7YsRSYin7OSe1H8pQFDK4EU0U/ZbF/GoxEv0Sm4n9eX4D/1I3+2LlkfVnScq0vS7ywvizxwvqy6l5YX1byg77YxmUlL/hfbuOy5DyxcZkPdEvsOPRebfIRc88//bDr4EFRg4aN3crlS92go49zdVqVIBoDsHHjxh16wvdH0e5dftBdum9CpWKqZkzZKwsReSSWXn3dR++lk2xr26O3GzLyUrdpzepwX0NA3iC//CmRdEWTlJVXT9GyiuTb5QfI2VR3j0+iJb29qIfp77g9rK5O3eqQVvLIxdHz//njve7TuNP/slLSqB9+w/U95cywlCvRqtzvE/g3+u6fSZb9fuZYASOJ1pz0xF89gJ0RIjXb9/FA2nf06TRvzKsh79HnXxLuQypAt+j+pMuy1+aAOWAOmAPmgDlgDpgD5oA5EHeASZfsBH4lAAEMAKBo0VzZCfAYgGDSiwcwBoCiwUiiAAFYTCTHYAz6i8BIymDSEdiCfiCj9mPhLMyLwcjspJ0W2Yl+ASjojwGg7KSXFtmJfoAlk0LoRhf7kU1p/cA8DUYyGY1+IBb+x2Aq+gUG5+nPwkgNpqIfGIw+9NMuqDub0pNeeKrBSPQDg6kXD9CvwVT0CwxmLka75yUTsJRDpCh6YjAV/cBg2ncl/RxzgXkajEQ/8JDjjn7yaDAV/QKD2a5FRqZhpOjXYCr6OZcoE/2UlYXBnEsCI9nGOYm32YR+/OK8Qz/HSIOp0hfwffTH+gKBkein7WswNaufYynzA6LP+jJxovSc7gs4P2J9WfqHFfT91pe1D+cGfYH1ZdaXcTZZX5b0LfwPOVTHZdaXlY4T/wttXJa02fSPxBjX7Ou4rBj5Suo94K92+HvxLVk0382fM91t27olLN+6ckXVAddxoCrc5i9yiG5s3LLVPlW5Ys6M8L02XXuEiEKiCuWxbdPGsI17GpLe+ONv3KyXn3fcr7LHsSeGz7J/dntA2rBx0+zHfgnRyvXs9aW36YM1i0tL3HQfNrxcg0Rwlj8o8GJd1eKQa8CI89Tcss/ARfFUntMRiXyZJV2fuP1b7r5PXeOAqV2HHKeWua8f9jrhlBDx+vTPbvWRoW85jm0bD5q1NOaBe7yWbwbeyvKyRFCSarI/x132AXfl7Xe79377J1oV9pk5YA6YA+aAOWAOmAPmgDlwxDtQdAIfGCAAApgRAxBMgKcBSh6ACDDSRynGormYAAQAMfkF7ACgaACiKIxEP+AV/TGYWmQCX2Ae+oExsWgu9MukXQyG4X8aRgKSYjBSYKro5zmbmHSRyMhKMBIIJDBPAxDoF5iK/hhMlUkvYFIsspNjKDAVsBmDqcDnMb9dAABAAElEQVQwACjHuRKMBKaK/1pkKvoFpsb8z8JI9GuRnegXmFpJf1EYWQmmol9gak1gZEy/wFT0azCYtlgERtIXCEylDcZgqpxLtFFgWKwv4DgyiSwwUoOp+J/WH4OpRX5YYX1Z0mtIXyZ9gfVlpfv3Wl9WWnLa+rLSuWJ9WdJn8H/pUB6XWV9WWqXBxmVJm2VcU1t9WT3fwL6dFH1gXzXz4K1Dp25+WdaOrnWb9mG5y/oNGoZlObZ6+NjYg7DePgps967drlXrtu74d53h6vvB07gxL7vt/r6GtZGOadUoXJBlL8Zqo+x9KQMA2HXIsa7/iHP9Mjr1XF3/a7lTrvuYh0gN3cp5s0ORHfoNDIBrzj9ecuv9vTXTiWhBlhQFyHUbdry/L+NG19z7O/yKa1zfk0aE+0NuXL3SHXXORX5J025uw/Jl7sQP/LPrPGhIKGaxh1sCqviA+0o2a9feA9LW3vuGrp73f/PaNf6YVK4nrSv2un6jxkEvy6X2HH6ya+QvarlfIu+BfDt8OxjC0rL+l5ZEAko69tJ/cuuWLgr7s9oD66Hvvty17e5vxO7zDTr7QtdpwOAQKTjrlRfchhXLwr0f8SWvHu6bedQ5I4MePNvqI3RZ1rbfKWeFyMLVC+aGe0V2HjTUtfPwDx+o59QbPu4aNGkalkRt2qadu/jm27w/O90ufxHJcqnAyLVLF7vpLzwl8gs/H/OeK92WDev2+m4Tfz50Gni0oz4iIs/86L+7Zrz2acLjD/m6d7iex5/kiIad4peM5Z6WeNn9mBPC/s30y9IW2R8ROvi8i0OUZ2P/q9Pxjz4gH9uzOWAOmAPmgDlgDpgD5oDiwJLNO12nJvVcPT9O29c0Ye3WsKwmk/w8mOBOP/a13P35HtdMPIj2kWcuTi2VJi2KTuADIAB/AAgmrbVoLolsw9tYNA4T4EwYASCASUSfaNFQTHoBgAARAoC0aC6BkUwg86tnbZlZARACI4n4AlBlU1p/HsxDv8BI4KEW2SmTdtRNXQC47PV7GkaiHx80/XiQhpEAIDzJJtFPPXn60c4+cCzRr8FIJmCZdBT9GkxCf3rSKwZT0Q8M5rxDN/o1mCqTRhxn9MciI9EvMBK/YvqBwbQ3/Nf000cBg/G2EoAgD/6iH12aftoXk17oR5P2C3z8pO0LjORc0mAq/lMWGrdu8TDeLy2cTWyjHLzlXIrBVNoiMJgyRT/5swn9eIb+WGSk6JfITvRrkal4hX7aSF5kJMeRvkX6Ag1GSl/AM/r5MQHHK52ox/qyxBHpC/gkry+wvqzkmfVlSdvhlfVliR/WlyVeSF9s4zIXxqY2Liu1Dflhyzt1XLZjxy7XqWOH8rgyb1x2UJds7di5uxs4+NjyGdm1Rx/HY97saW7d2tVhwNtvwBDHg7TTD/Ref+U5t9EDmsM1TX7yEdeiQ2c36KwL3PGXfzDsJhdB055/Yq9d1pYqJdOzv/iBO//fv+4Al2d98gul7/kyZv79ufB67eKFbuH4sa67B5ZEzPmrObdk8njX5ehj/Mvq99l8+Te/dGd/8osB8gH6gKKP3XpTKKdSPaWK8/+269W3pCGVLWjy74kyfOl//h/ychOg7ZXf3uXB4CccoJK0cdVK16xtCdDxvkg9az3gfOnXvwjlAIR5kMR7jgPLsZ7/2a+7Hh728SABHqc+Oyq8RmyLTl3cKdd/vPweLS/4ZV73OSkGTPTQkWVhAcY80ABQbduzT/leoXKRLu2EttX7xFNDuwAwAior7s8e0Y1ble4tut0vDWPJHDAHzAFzwBwwB8wBc8AcMAeqOyAwDwABDOMiPJsAEBINBQyIAQhgEgCLiV0mwLWlAZm0kGioPAABOGGih8kvYAYASAMQaf0AFE0/E2cAIPKiHxipwdS0fmBSbJnT7AS+BlPRDwCi7i2bt7iqZVUB8qS9xad0ZGQejMR/JogBa+yjBlPRD0wioT8P5qVhpAZT0S8wGNiEF3KdJvtQ0wl80Y//HIdsYjv6qScGI2mLaC/rX6XDVCaQ8Z/8Asaz+tMwLw9G0gYFpuJ7DKam9efBSIGpAE1gqgYj0Y//nC+iP+uXpl+LjER/e36s7cuk3cf0c35w/uJTJRgJBOUY5umnLDTG+gK2pWEk2mMwkr6ANin6NZia7gusL0v6YuvLrC+TvsP6MnHC3wcu9cMQ68tsXCYtw8Zl4kTpOT2uOZzHZY0b8+O60oobeeMaxmV1/A3JK+Ce6iYe6HdECTZp2izAyC1bNtV69df1bOnW+qVcshdltV5RDQvk5AUu1fNRiSvnzgrRozUsIizN2dYDv107/K81F8zbqwyiHdv16hciIgFa+5pYAjSvnn0tt6bfI5q0o49YXL1wXlhStabfT+dv6aEi0Yexshr7E6xN995u09pVDsCbTXy/RYdObum0SW6nv0B6u1KTVm1cE7+87yofvbk/qdL+XHPnvaE9cV9SQKYlc8AcMAfMAXPAHDAHzIG4A2NXbnXD2jR0DSL3Jo9/M9ly3/x1YaKHiXQmfJh05sF1Ao8DmZhY5wFs48EkNtdPPAOojvQEDOPiGo8AATGYB0CpBCCAYQJQYhPgtANAUjoyUgMQAiN5BsYAUDQAgSagE8eWcphEyCaBkewrMIk8lJlNTLqgH40x/bRp9OMHemL3uQP8ALDy9GcnvfL0S2SqwEgNpqb1A5NiMFL0S2SkBiPRLzCYCSj8z847oB//yYf/wCRtmVkmwNMwNRaZKjCJcoFJ1JlNe8HISGQq+gUGywQaGtOJeoBhHKdKMFL043sMBmdhXky/wEgmwGORqZxL+ErbjemnnQrMQ3/snpdpAIH+GAxO68d/8mVT0Ql89AsM5lyiLdLHpFNaP+dSLLKTc4hjxDHlvEWXFplqfVnibrovsL7M+jJpGem+2PqyJEo9D0ZaXyatx4XxjPwwxMZlDcK4hv+bNi7L/EjsHTouW7N2g+vYoW0Yi/B/M5vS47KDGiGZFaa93+WXvjycIyK1feYzBpqyRGssT6XPWfJ02Ywp0WyAsmUzp0a3F92g1UME3vArrsstYtpzo9wbf/ptbp6abASqLp06sSZfieZdV7XE8YilLevXuSVTxsc2h+9mv9/UL7N6+W2/iH6HDasXznWP3/bV3DzpjZt9JDGP/U15+8PytUBn7lNpMHJ/nbbvmwPmgDlgDpgD5oA5YA4cbg4ADWoDRjIBzkQVwA7ApcGYojAS8AAAEpgHgIjBSOoU/fsDI5lUoiw0FoF5RWEkMClPP6ClEsyTyM68Sa+0/hjM49gAwySyEIAVg5HoYvJa9GdhJOeBwLwi+mkfTIBzjNiPbEI/bTEPRgoMFv3APE0/k0boB+YxqYT/bzeMlChX9isP5tUURqKfcymmn/MkD0ZyDpEHT5hABqYy+Z5Nol/OJe2HCVkYif+0j2ziWOM/+Tk++E+56ZTuC3b6+8fmwUj0C4xElwYjBYzn6ac94H+lH1ZYX5YcKXznWNKOpC+I9cXkK9IXVJrAt74s8d/6ssQL68sSL6wvS7yQcQF9u43LbFyWtAxXXn2Ez4qMy1au4kd1a/xYae9xTRpGMi475IFk2gh7/c5xgOVPl8+alit4lYdvR1IC3Fb0xC+7eqgllnyd9MTDbsG4Nw41aabHHDAHzAFzwBwwB8wBc8AcOCQcAAbEYJ5M4AORYgCCCWQmo5kY4qIfaKABCMqSSSNgmBYZmYaRTICjSwMQwDAAIhPgeZGFwLxKkZGiH0gSm7QQgIJ+9MTueSn6gXlMWqBfm8BP68+LLBQYCczDf56zif3DfzTiBQAomzQYyb5mE5MuACDRz7HU9AMFBUDgBY9sooy0fryI6edYAiPz9FMWvgHUqK8IjES/BlPRLzAP/2P6yQOgAuahX4OpAC68IFEWdWYTcI62I/o5lrSPbKIu6hSYR1kajEzrRzv1ZlN2Ah/9GowUmMf38T+mH/8F5uXpxwvRH4PB6Kc82hb6qTeb0vqlL9D042k7vxyt/2l88IH9zKb0BL71ZaUodevLSq3E+rLkbLG+LPFC+2FFrC+2vqzkW3pcQ58e64vxy8ZlLoyZ6Yfpg/LGlTYuS85LxpVv17hss7+1wq6d2/ZayUcblxmQTI6JvapFBxZPGud4WEocIMLwyZ98J/ngHfJq46oVbswD97xD1JpMc8AcMAfMAXPAHDAHzAFz4MA6AMjQJo0EoDBBWWkCXwCKwEht0k4mXYBDwAwNhgHzmKjiOQ9ACIzBKfRTXjYBIIpMejEpRj72VybQNJhKHibbBKBo+pk0Ev0CIzWYKvqpBxijwTDRDywVGAkUyyb04z/AMQaTAJUCw9CPXzGYh35AkOjXYCRlkS9Pf1EYSftCPxpjbZF9oz7yyqSdpp9JI/JRN9tp13n6aacxmJed9MKzGIxM69dgnsBg2g/6KSsPRqb1azAV/3nk6ecY4gVtMg+mogn9wGC8iPUF4j9AMKaftko+2i7nB2XF+gL0S2Tn/sLIkn7n9Vtfhv/Wl7nQ7vHC+jIX+kPOEfpH+gLryyr/sML6smSkYeOyxAsblyVeHI7jsu3bt7lGDRsnO+lfCYzMjssMSFazyd6YA+aAOWAOmAPmgDlgDpgD5oA5YA6YA8UdiAEIJjDlF+xMYAIIs4lJO/LJBDj5NABBHiAcAIL6NJgnkYU8A2soS4uGEpiHFsrKg3min3wxmJedwNf0k4d6BeZp+rMwEv0ajBSYh37yxPTjWSUYCaBDGxNDAmY1mEpZaRimwTz5BT4T+GzP00951IOv1JtNTNygS/STT4uMDDCyTXUYqemnrEr6BUam9WswkrJ4cJzZx5h+9jE9ga/pRxNlAVM5jpSXTRwbymJf82BeetKL9kVZmn7KEhiJr5VgXlEYSX0x/eyj6KfOWF9AvjSM1GAqeQRGUl8l/dRFvlhfQHnA1Jh++iY8k76AfDH95LO+LIF56b7Y+rLSD0OsL7O+TPp468vECRfGR/SfJM6R2LgGz6QvJp+Ny5IfKdm47J01LjMgmZz/9socMAfMAXPAHDAHzAFzwBwwB8wBc8Ac2C8H0hP4AlDyJvABEEAFJvo1AMEkFTAPAMQElAbz0jAyD0AAMngAIGKTXqIfGEZEW6VJL/QDpZhA02Aky08CngSmapNG6GeiLT2BrwEUtAtAIZJOg2HowTPRj6/apJ3ASPaXcsin6acs9AtM1fSnYaTAYA1AyAQsDQxf8/QD2IB45NNgnuivV79e8B7/NRiJ/+RFP2XFIgvRloaRmn684BgITNVgWDoycotfvgtfNf0CIwGOAiM1/dSJfvRQVkw/+ai7CIzM048HlFUpMpJzEi+AqejSJpDZN/xnAhn9+B/rC/A/rV/rCyirUl+Q1i99gRaZSjnUiX50afqlL0C/9WV1wrG0vqz079H6smSYYH1Z4gX/d60vK/lh47KkXdi4LPGC/7k2LnN2D8mkSdgrc8AcMAfMAXPAHDAHzAFzwBwwB8wBc2DfHRAAwaQcE/hAMw2GsR3oITASGKABCO4LyGQnoIx7yWkwLDvpBVyIwTwBKDGYB4BgokT0U5amH0DBpGMaRmr6KUv0U2cl/QLzNP3UB0QBplbSD8wDwpBPg2EALrxgf/EeMJiFkbQC/Ccv+0ZZGgxLw0j2DzilwTyZwEc/x1KDefiJZ0VhpOhnH7L6qSc96ZWnH21FYCT+k9CvgXGAGnXiSYCpq3WYSpvAf84X/MJ/DUbiP20NmIp+DeYVjYwstcXK+msCI0U//mv6qVNgZEx/egKfNkFZWmQnZeE/9VCW5n9NYKT0BZzjGhi3viw09fKfUvsp9cX4b31Z6Yct1pdZXyYnifVl4oQLP67ifwnjM/5v2bisNK6xcZmNy+QssQhJccKezQFzwBwwB8wBc8AcMAfMAXPAHDAHzIF9dIBfPQNQACQAKSatNZgnk3ZpGKkBiA4dOgSYAYBYvny5CsMEQPBcadILmIFGdGkwDACBfmBSHkwtCiNFP6Aspl9gKvorwUggFvpjE+DAOdFfZNIL/wVGajC1Y8eOAcwKDK4EI0W/BiOZmEQ/kBAvNJgkMBj/0c8EpgZTKYdjmQcjacL4T1tj3/BMg3lFYWoR/QJTOabopp2xH9kkMBL9AiM1mMqxRD/nRkw/5xowVSIL82AeYNnb75YtW6bCJIGp6Oe8xX9NP97z4HwhD+eSBiPxH32iP68voO48GIkX6CfRfjQYxjkENOOZuvBW0w+I5BigX/oCTT91Wl9War3Wl5V84G+RvsD6ssQv+nzryxI/rC9LvKAvtnFZyQ/5kZiNy0pLftPP8r8870duRfrigzEua9Kk2LjMgGTSF9grc8AcMAfMAXPAHDAHzAFzwBwwB8wBc6DGDjDpCMCSCXyggQaTACxMIjBJkAcgZAKccpcuXarCJCYrmNzjuQiMBEAAdoBhGoBAv8BI8mn6i8JIyiIv9QCANBiGbgEoAvPyIiMFRmowj33DM9EPaNH012TSC/2Aspj+LEwFTuXBSPTHYBIT+KIfiIT/GkwS/QLzaENZmEfj7dSpUxlGol+DYXiF/8CwvEkv8lAv+mMwT/TXBoxEv8BgYCqeafo51ziXBEYC4DSwj36BwVVVVSrY53zkXBL9eTCydSsf2emXyRUYmfU/3RegJ0+/wNS8vkAm8Ck3pj8LU2n/2rkkE+ACI7W+IK2f9mx9mfVlnJMkmQC3vsyFPoXzSfriWJS99WWltsNf68sSL9J9sY3LSitWFIGRNi4rtaFDdVzGMWzbtrTiBuOLvHGZAcmkP7BXR7gDzdt3DA5sWLEs6kSrzt1coxYtw/Zd/FJzzoxo3v3Z0LR1W1eP+18sW7o/xdT4u01a+Y6jeQu3YXmV27Ft71+zagU29L9+aNq2vVu7ZKHb7S/YLZkD5oA5YA6YA+aAOWAOmANHmgOdO3cOMEwAhAbD9gVGLlmyRIUxAAiBkcAaAIQGw4pMegEgAFgAKgEQGgyrCYxkX0nAVA0mASMBcOyHwFRNP8AGmJSGkRpMRT8wKU8/UI3ymEDOi4wUmEc9ACBNP3XhP/qBqTWBkVn9wCEmrSkTiJQHI0U/kzxALC2yk7YIrBMYrOnfVxipRYnip+gXmKrBsCKRkbQZ0Q/ow3/tXEJ/ERjJMaLd5sE80U+bpC781/QTycL5xPGKwUjRjz6ODQBX08/xYUKRyTsm7WKRnekJ/NgPEyiDcwn90hdo+tN9Af0F9WZhalq/9WUJGMcX68tKUd5pGGl9WTzKW84lznXry6rDSOvLSpGR/C+JwcgjZVwm40obl5UiIxkXMK6syY/EDqVxWZ26O/y4Jv9e3jIuO2hAsm7deq5H736uc5eerrHvoLf7gXfVkgVuzswp1QZFjRs3dQMGH+NatWnnNqxf62ZPn+TWrV1N327pADjQ5+QRbqu/D8biSW8dgNoObhUX33ybc34Jlz9+/iNRIed8+suuZeeuYfvuXTvdPR+/Opp3fzZc9JVbXZOWrd19n7pmf4op/N1uw4a7ER/+TICRfGnsg/e5iX/7S6Hvv+vqD7l+p53tHrz50y4P5hYq7AjLVK9+AzfwrAvc4inj3drFC4+wvbfdNQfMAXPAHDAHzAFz4PBwoGvXrgEmASAAKBrMk2gu4AEgCaCkwSTAggCUGIykDAAQkxYACCa0NJiXBhDkYYIjO4HMEejSpUvQD4BAvwYzBKYyaUQkCABF0y/RIEymLV68WIUx6E7DyBhMBb7JcmYSWZjVTz3oB8bgQUx/TSa9OFYk/NdgEnUJjASmoh/vsikdTQSYYtIoq5/JfQCc6Cef5n8WplaCkXn6BabSjgSmavqzv8DX9DOhCsBFP7o5Tpp+YGSb1m1CZCFtPxZNxLEE5uET/mvnEtvxH/0yaafpl0kvPKZdaFG6tGfRT13o186lojBS+gIABJPumv4sjIxFEKT7grwJfPRzTglMjelnHzheeTBS9FtflsBI68uqR0ZaX2Z9mfyvs75MnHDh/5GNy0p+1GRcxjipCIy0cVnJ20N9XLZkKbeX2JD7IyvG44zL6ianz4F91ax5S3fUkOGugR84rfIRaRDU/oOGueEnnVkWUt9P1p921kjXuWsPt2bVCv8LuA7ulDMudHzX0oFx4NTrP+FOuubDB6ayd0AtD3/78+53n7nerZo/+x2gtrjEY997lWvgIx3//us73eO3fdVNf+Gp4l+2nPvsQMNmzR1Ad/C5F+9zGfZFc8AcMAfMAXPAHDAHzIGD6wAwBgARAyhMpABHmHSRJYw0mAeAAPwxmRODkQJQgDEAiBhA0WCkFg3VrZtfAcbrRw/QQ4NJaGISBJghS0tq+pmMY1/zJvDRDUDhOQ+mZiMjYzAV/cAYgFRMP5MfTHqhHxDGQ9OPLmAX+hctWqTCSOpiP9EP4AL0ajCM+mSZU46RBvOoBwBEmUCkPP34gX5AcAwGhyjdxk3CyRDTz7GmndGO0BSDqRxvmTTKAxAARNEfg8H4ECIL/TKnlWAksJSEfg3mCUxFP22CSEXNfw1GZmEwfuIZ+mn37KcG84CpAvPyIiM5lvhLPcB4TT/tC2+L6Je+gHahRbmm+4KiMDUPRkpfYH1ZCUZaXxZOxdB3Wl9W8sL6spIP/LW+LPEi3RfbuMw5G5clbeNIG5cxlor9yCo7LjtoQHLrlk3u1Refci8997ib8Oar7oWnHw6Rj+06+AFho9IgtGuPPh5YNnJjX3vRTXzrH27yhDHh4qBPv6OSo3uYviJyqvNRQ123oce5+nv8kF2t6wfODZuWLlS5iCFP2x69ZXP5ubFfWrTH8Se55u06lD9Lv2jqo057HPcu17H/Ua6Op9PpxDKc1EHEINGsvOZR3x+PbKpUTzZ/+n09fyEX6vEfNvPLfrbvMyC9ObwmD490Qgc+kHjdwA/sW3Xt7r/fP3zWtmcfx/7tS8KLrkOOcy07ddnr67v8hfqOrVscz3kJTUQdtvNRwHkJnT2Hn+xYKrVSCv5n2gLfoYzux57oGrdsVamIvbbLcW3To1eIblzw1utuXdVit33zpmp5W3fr6XqdeGrwuNqGyBvaLG0om1jyljanbcvm1d7T3jkv0EOiDfBZNsXq4diyzzzTZjjOsVSpXfN9OTc5x9gvPkunmG9oDt7vWcqK9iLHQtq1lEPeDv0Geq3H+l8UVz8PJA/flW2cA118VLnmi+S3Z3PAHDAHzAFzwBwwB8yB2nUAgKLBPCbtBAAJQNFgmERD8avhGIwEoAjAEoCiwRjgTwBAPn8egOjevXs1gKLpz8JUgIymXyIj0R+LjGTSDoAFzBOAoumXyEj2N7acGUevR48eASYBUKhTg0kCU6k7LzIVGMm+oj8Gw9DN5BLPMumo6ZfISPQDI2MwFf+BYfjJMdf0AwUFYElkqgaWw6SXb2t16tZxCxcuVGEYdWVhcEw/E+/oj8FIrjXSk44x/ZQjERBFYCTlLliwQD2XgH1pGFwEpkpkZBZGcpzlXBIYrPkfIjv3LPNbCUYCS9GP/9q5xHbOc9qPwGDtXGLSTgCQwMisfo5NFgZr+gGpArPz+gKBkZxX1pd1DD8Msb4siYy0vsyFc9L6MnoIF1ZUsL6s5AXnhvwvsXGZjctKraL090gcl23atFn9kVj6R24yLjtoS7Zu8/en45FOq1ZUuZYezDBA2+ahD5GRu/yymCuXLw0A4aghx4fsHT3UcOPS3zy8Xp/+oU+7fqee5WHgHtDif2H3/F0/cfPH/iPs6FHnvtud+E//7Ga+9Kzrd/o5ZfAw9dlR7rX7/yeAjZFfvsW12QNt+NLqRfPd49/7itvpf3lJuvy2X7gWHTqF1+GPr2Psg79zE0eVlun8wB2/KZfLvRWv9u9JRAY++t2bwmsgSKV6QsacPyP+9UbX64RTwr0YBUZuXrvGPfkf3ykvYfn+79/pwVN994fPJZGa19x5r1vw5mvuuV/e7i784rdc+94eRO7xa6OPpgVu+p8mujF/vtdNeuLhHAXVNxEleO2d97m6/oKVtHbJIr+/Xyr7Vj23/m74+691Qy+6rKyHezE+/dNb3bKZU8tfGHDG+e7kaz9ShqpsmD76affqPb8q50m/OP+zXwvwbPoLT7pX7/2vsGnweRe74VdcVw3WTnj8IffmQ79LfzX3tRxXMgFg5f2YB+4JvnE/yatuv7vsB/nYn2fuuM1VTZ/M273S0Re+15141Q1u3dLF7i/f+PewHTB7wee+EdqmfGHGi8+4V357l7yt+NyuV1930U23lvd348rlrpkHgZwHL//ffxaqh7Z25sc+59vxnABy+RL789r9/xvK4X3Rdn3lj37ltm3a6LiXaIuOnflqANX3fuLqsPRtnm+dBg1xF37hW+E7/Ol76pnhwevxj/3ZvfWX3/MygOazP/GFxH/fpt/wx2byk4+E7fwB7nLcFk8a5zoOOKr8owHa7l+/+dlyPnthDpgD5oA5YA6YA+aAOfD2OABA0cAOAAKAwsQ2UAogoMEkJvYkGgqwA+zKJsoAGjD5xaQXoEKDGbK0JGCE+oBwWZhB2cAwrrv98DIAFE2/wFTqJrITIKPpZx8rRROhG/2UBYxkQkLTL5Gd5KsEI4GM7BsASCtLYCplCYzU9GcjI7XINupi0pGyOD6AOq3OdGRnHozs2bNnOJaUAQDSyhKYSp2VYGQlGMaxBmBRFtF26Ne8EJhKvhiMpP0Agzmm6AYGa/olMpWyiOpkH7Q60dXY/6BVYKQG1oCpTO5RFpGpeKuVxaSXwDyZ9Iq1f/TT7jnnNP2Uw/GkToGpWlm0C2Apaf78+WpfwHbaGWUBI2nbmn6JIMCLGIxkm/QFeBXTLzCV/AJTNf2Uhb8k68usLwsNwf+xvkyccCFanL7R+jIX+jrry0ptg/YgfbGNy0rjAhuXldoG45UjcVy2e/eupOPc8yo2LjtoQDKrkEFSpy493E4/INy4YX3YzP0jN++J1Oo3cEhY3nWlh5bt2qdAWragd/j7oe9+X7gf35Z1a92Evz3kls+a7o699KpqIEd2sf+IcwNoBE4QEbZ9y+aw6bwbbw4wkmi3ac8/4e9Rd6Hr6SMlT/f3CBz9q5+GPMCcGS8+7RaOHxvynvTBD3u4da2b/Y8X3abVK91jt94UYNnIL93itm5c75734I+0afWq8MyfIvWUM1d40bJT1wDj2vcd6Pp7yHqSX8byqf/4boVvpTb79vPif9/hWGIWGPnS//4/d/IHP+KOOueiGgFJoszwBpA59N2Xh8hT4O8/7vvvVGXxl0Sqcgw5FgDedj56kf055zM3uT989kPhi0TNnXr9x/xFzw5/fJ52MzyI7HPyGa5p67ZqwSO/9B3XaeDRbsozj7vXf//rcp7jLrvag9Jt7pmf3xaOWd9Tz3LA3Jqkxzyk5twD9HHcR99dah/rqpaUi1mzZKGb/NQjbuWcWa7bMcPdCVde7879zFfc/TfeUM4jL4655Ap33PuudqsXzHWP+jZEIhpx5Be/7er5KED2YcmUCe5EX8aAM85ziyePc/PeeEW+nvuMh/X8RMCsl58PQHH4lddVy1+Tetr44wR837J+XdgfACpgk1STdk1bA/IDk5dOnRDONRGV59vyWdP80rg3e3DZMtTHuTrh8QfDV9fsuZck+3PWxz/v6vgLZXzbvGa17wv+KXg397W/u01rknORLxJByfGf8NiDbpvvN4mqtGQOmAPmgDlgDpgD5oA58PY7oME8AIQAFGAkAEWDARIZyZgcsKAtzcg2ABaTXwAIAJAGM4CRTJqSvxKMFAAxd+5ctSwmUmTSERgJQNH0S2QkdcYiI9ENwOKZSTv2U9MPjGQSnLIqwUgAGymmH5gqMBgYiR+afvZRYGosMhJwBcBFP7ASUKTpRzv7gP5KMFIm7QBAWlloom1QJyAPoKTpL/8C39cZi8yjLoHBwFRAnVYnbYc2hP48GNmrV68AIykjph+Yin7KAkYC9DT9AUb6ZWZ9tlCWBiM51gKDOT/Qr5XFpBcQjjrzYGTv3r2Dr0BIPNO8AKYCBykL7eyDVie6OFdIMRjJuSYwGBiJt1pZEhlJnbQx7Z6X1IP/tAv6Hdqsph8f8IOyaDu0Ia1O2oXA1Hnz5qlg1voyXC8lfLe+TNxw4f+S9WUlP6wvS9qF9WWJFzYuS7ywcVnihY3L/GqXiR0H9xX3j2ziI+7eeuOlshDuK7lxwzrX1N9nrd+AIW782FdcGx8RBZAETAAvD7c05MJLwy799Vufc1v3gFmi0bQENHrk21+otomlHzv0GxS+S6QVaaIHm10GD3Pdh51QzvvkT74TXgNUNqxc5haMeyOAs479B7m5r78cgA8ZdvuLDCLIVsyZWf4uL4rWU+1LOW/GPfzHAHUAO/18tFiLjnsvl5rzdb+M6lY35x8vOfxr1aW7m/3K6AAjAZ01TaN+9E1HlOW8Ma+66+/6fYjgLAokgZEkYOS050aF1219ZB+gkscqD+pOAKT5C4OxD9wbQBOZ+FxLF3/1+2EZ2nTUHPkApw38hc/65VUhUpHjJFF1Wjmxz1bOnVXa5H9ZDMTKHmfa4KO3fClAxZadu3pAPi0s6QoAzybuQ9nvtLPd8tnT3agffL18wdP/9HPD0qZLp050s18dHb72mgerRH0efcF7CgFJlk8F2K5btiTc55JCmvsIX6JEJdWknqppk9zYP98XvjrwzAtcyz0RjvvSrp/6j1vK0a+cO6RKvgEx8VqW6gUkZr1nGV6WKl4yZXwZRBO9SRvDtzf+9NtQl/zZ7aPJ//TFj8rbcvsrf2AvzAFzwBwwB8wBc8AcMAcOiAMACEAFMAAAEYORMmmHqBiMZFtvD1AoCwABQNHAAgBCYKQACL6bTbJMKJ/HYB4AgslV6hSYmi2H9wJTeR2DkZQBQOEZ2ARA0fQzaScwUmAq5WYTMEBg5Jw5c9SyAESAOuoUmJoth/cCU3kdg5EACGAwZQFT2U9NPyCydWtgqivDVMrNJspiIoqE/1pZwEhAKXUKTM2Ww3uBqbyOwUhgKp5RFjCVdqbVifcCIwWmUm42CYykDACWVhYwEm+pU2Bqthze08aYoCQBNjUYiVe0WcoCRgLqtDoFplKWwFReZ1PvPTASiAdA1MoCRmZharYc3heBkbRVoB/6AYwxGCkwlXLzYGSfPn1CWcBUPNP0E9kpMFJgKuVmUxEYaX1Z4hrH0PqyxA/ryxIvrC9LvLC+LPHCxmWJFzYuS7ywcVnJi9JIOPHloLzq2r236zvgaDd/zgxX5aOxJBFBBng8ZvhpbvWq5W7Jonmu/R5QxT38aNBDhw6V7BWfuWDh4uZQTg09fN2yfm0ZRuZplSVc03na9x0Q3rLU5iVf+0F6U1jCVD4gyo2lNRlUpVOTlq3Tb6Ovi9YTLSCzgag3Sdv8QF3uhyefVXoGyJEAPbt8uyHt8BeMLPVak8Tym8BIEmVu9UtyNmzi76VZMLG8LWnemCTqj6VNgZFE5QEeZXnPGXsi8mJFA6PknpjAvHTauWO7W+bhIPf/vM5DUzRP9VF0k596NJ2tVl5fdNN3Qz3ZwoB3wGpJwEgSUb3pCyPZB+79mG2TYWnd8K38PyzXSlo+c1o548JxY6oByZrUs3D8mHI56/2S0HK/0Jq263AcUkvxlgv1L4r6lv5O+nWb7j3DW5ZilTRv7KsBSAKHs2n1ogXZj+y9OWAOmAPmgDlgDpgD5sABdoAJfAAKCQBBpJaWgJFMVjFuJk8sMhIAQQJAAFC0BICgPBIwkmiubOK6D4CCPuoEJmmRVcBIQAVJormyZfEeYEO9lAVA0ZaZpU7RD2wCoGhJornYxvU6ECubKAtdAB7qjME85gjYT1IeTAWYAZ4oC0inLdNKnb09wCIBI4F+WpIICMpasaK0TG42H2XRLiSaiLkJLQHogKmkPJgKjAT8USeQFH3ZBEwFoJDYP6CrliQy1RcV4Dn1ZhP6AZtMpFFnTL/AVL6fB1MlspOy0KXBSOoCepBoXxwnLUlkKmXFYCr6KQtPyEf70ZLAVLZVgqm0NcqiXWhR0rRVPCMJTA1vMn+YwKcNURbAUouMlLbIM+ct56+WBKayTSJTtXycI5zr1Ml5qS1Za31Z4hy+W19W8gMvrC9L2ob1ZYkX1pclXti4LPHCxmWJFzYuS7yoGa1Jvldrrzr4CLZhx5/iQeQCN2ViAgmoYKu/jyT3lGSQNPqZR0KdjRo18QOwneEzPtcGrjFx2gVXLO9B+9yvt1unTt1C1VfNmLJXPgFzLL2aXt6TjLINODZk5KV+ycfV4X6Diya+6QadPdIR4VY0SVl59RQti3xE56UTgxxJ/jBXS0SJZVOyTnEqc/aL2S8VfL/bpcos+J30MUzvS/j6nuLq1E32MVbsWw//wR37nivduf/2lRD9tt3/KlTSqB9+w/U95cyw9ClRsSwtC5QbfffPJMt+P9MmgJ4A0UlP/NVHP84IkY3hfp+pY0RFRJSS9+jzLwn3O5V7ZnKekp7/zx/vdd/JncqFc8ic+SPR0PX9vUUk1fcXUOlUk3rS7W33ruT41rRdb4kskVsT39L7UO31Hl1qW1La9pqF+gRVtTLtjTlgDpgD5oA5YA6YA+bA2+YAAIKJWsalMQDBtQHRXExWcX0KQNEAhETmUVYMQFCWLC1JHgBKDEYSwQFgIB8AhedsYjvQjzpjMJU6mXSkXsoAoGgwVSZdKEuiubL1URY+UB5loT0GIwEo+Eu+WGQYgIV81BmDqdQJvAU8URYwWIOp6O/tYSRlSWSqpl8iICiLaDQgXDZRFrqAkeSLgWUm7ThO1BmDqegHBgP+KAsYrMHUtH7mTDQYSVkSmUpZwGwNRlIW7QJASL4YDBOYSh70s+xuNlEnMJi85AMyajCVuoCpeCGRqVpZpcjU1qEsYDb1ZhP6OS95ps65OTAS0EudMZiKfvJwrCgLGKzNSXGsgZGUJZGpWV2UBUylDVEWftFuswndAjZj+ilLYCp50M/xzCbyAVA4V8hHu4jBVOvLSu7hv7RF68usL5NzinPJ+rKSG9aXSatwIejHxmWJHzYuS7zgf0nvPePKw3Vc5s+AcOsCxmaMMfLGZQcVSLZt19ENP+lMx30hx40pLXWYHCr/i67VKwKQnDltgtvigVXo5Nq1d+vWrg7ZGNiNG5dED6W/+059TXQg0Y2NW7Zy3EeypmmFjzIltenaIxplyb0GSW/88TdheVZe9/DLQ2oJ0NfQ38szm4rUk/3Ovr7nPolNWiWRm/326N/X8vK+V9dfOBDluGHFsnAPzUY+YlW7L+PGVSs9/BvgoyebVoOp65dVhc97n3hqeTnWTgMGhypXzZ8TntdVLQ4ReQNGnJcb0Ui05/hHHnBb/X0OT772o+6Cz3/TPf69m6vJZwlUHtxv8No77/P3ETyu2vb9fdPrhFNCZO3TP7vVR57uDMUR6amlMQ/cEzy77Lt3BGj5x89/ZM9yvzPcwDPPD7BUi+rVysp+tmre7PBRAKF7NnY/JlmCmI9ok/tbT22166K+0bZJ6fYdPvB/Vi8qAUbuDcn9Lkk9h58cntcuXRyea/Lnih/eFdrJ+EcfcNNfeLImX7W85oA5YA6YA+aAOWAOmAMVHJBoKAAEgAtQlE1MRnCRDgTiQj0GIIAxAlCABRrA4toYAAGcEoACEMsm6hSAwmQ6AEUDEBINRVkARi2yk7LSACUGU9EPQEFjnv4ik3bUKQAF/QAUnrOJSa80TAWUZhNlpWFwDKaiXyLz0K9FdrJvRWAqZaEff9Edg8ESQYD/ssyvpj8Ng2MwlTolMpJJLy2yE/1FYCplAUlp3+jXYDBlpWEq+jUYif8CgykL/RpMTesHRu4PTKUsgcHUGTuXAKQCI4Gy2spa6BcYTFmc4xpMBUbSfjiW7B/nXDbhWRGYin6BwdSpwWDKAlADR6gT/RqMRL8AFMoCBmsw1fqy5Gjhv/VlJT/wwvqykhfWlyXniPVl1b2wcVnih43LEi/oP4+EcVnjxo3C7QsYi8R+5IYXYVyW2HNgX3FfyBNPPScMmJb5ZVq79uhTFrDC3ydu65bNbsHcma5n7wGuY+fubpWHlj169fe/aqvnl3adXs57uL2Y4O/3eOJVN7jLbvmZm/zkI+F+fEMvep+POHs13GOx0v4CsVgitNPAo93FX73NTRr1sNvhoUf/Eee4uj7y8rlf3u5mvPRMuAfdsEuucADQQeeMdG17Jv6n6wDGsZwlQGzplAluvT8OgLUi9aTL2Z/XALwW/n6BZ378c2E50OMu+8D+FFfxuyy1Of6RP7nB578n5JX7Hqa/OP2Fp8K9JUd++ZYAd7iXI0trcvz6nDzCHX/5Nf7+fw29r36p1u69AhxevXBeKGLMn+7x9/Mc7oa//1rXumsPN/Pvz7leHmA2bt7Svfjfd6SrCa+nPf+k336a6zxoiBt2yfvdhMcedE3btHMXfPbrHno+FqIWuw073gFTN6SWPN6roH34YP5br7vW3Xq6U67/eLjPKNGaecvpcl9TwCRtGID6tx98zc3y+/euD/yLj8q9zLXyEdGTn37MsVTrUede5Oa+8Upo55WkEdEIoGvjtbznGz9ya/zypH1OOaPa12qjntpq10V92+aXBObej4DkY/z5uMYfP+4luWn1SrfQ39eVJXE7+eOO/1vWrfFt8pIAiPdlad5mbdsFv2hzlswBc8AcMAfMAXPAHDAHas+B7AS+trQkE5gCIIABsV8NAzO4UOeCHVgQg2FFoqEoA4ACbAGsAVA0AJGeNIpFdqJf7jOI/hhMRT8Ahfx5+oGRaAPMEhWpwVT0A1CAXejHV56zKa0/FtmJHmAkEE70a5Gp6AcGM8kKbIrBPFmODf1EdmqRqegHcqEP3YAp6s6mLIyMwVRgJPVSBjBYi0xFv0TT5enHB4lMxXstMpWy0A9MRT9gkP1NJ3xKw8hYZCdeCExFP/uoRabKuUQdwDwNRnIs0zCVSS8tMhX9ABTKRD/HkkmydEK/RHYKzNNgKvoFplIW+jWYKvqpJgYj0S+RqXgRm7RDPzCYZ86lWFuUZXI5NjGYKvrJi35gsAZTE/2lH1ZYX2Z9GeeL9WVJr2F9WeKF9WWJF/wvsXFZ4oeNyxIv+B9+pIzLNmzcsmdcv6biuKzY2qCJj7X2qknT5mGQz0k7eNgJbuixJ5UfLfbcx3CDv5fipHGvuVat27qTR1wQoOXcWVP9vSQP36UJgZAAqEZ+WdLjL/+gu/AL33Jdjj7GbVaiJWV5yexBefYXPwjgjmiysz75BXfejTe7Xsef7LZuLC1fsnbxQrdw/NgQRXn+Z7/mevhIsyWTx4dikqVPS6W+/JtfhkjNQWdfGMo69YZPlKurVE85Y86LbH1aVpae5R6JvT2UA2yt3BMtp+UNFxjVrzG0bOpnfBcgRYQqAKhVl24Bvr750O/2yr9kyng3+5XRjnv5AWtPvuYjIc8a3zbHeZhZ31+0Db/iWtf7XacHqPTMz79fLmPt0kXupV//wi8Eu9uD4nPDvQYHn3exj7RMLc/itaS9eeaO77kdfgnj4y+72rXq7O/p4re38KAYne/91o/dcA9Aidp8wS+Lus+Jq6ZMmvj4Q27DyuWu/+nnuHM+9aUAJyXSEw0kuaiT9kgbJtKwQ7+B4R6PbGd5WSJ+exx/khv5pe+4Ef/6bx7W9q1RFPCTP/62A/wCz4GRcl9NWc61SD27d5YuoEVrZnfD25q0670dK5VYxDepe+yDvn3Vce64913tzv7kF0OUJ9vYn+d/+eNwT1QiP4/xMJh7or7+h9/4qN29f/2ebi9Stjyn79VJ+7NkDpgD5oA5YA6YA+aAOVB7DjDRwNgtdp87mbQDSAqA0JaWBAYIgMiDSUUmvZgAAaAAIIAZMQCRnjTKg5ES2Yl+YKq2tCT6BaaiPwZTi8BI9AtMRX8MpgLD0pGR7Gc2MYEskZ3AmBhMRb/A1Dz/0zAytkwu+gWmoj8GU4vASPRLZCf6Y5GpEuXKHAswTANYAvOAgxzL2DK5op/2gf48mFppmVnRz3EXmKfBVPTjP4lzqRKMRH9smVyOpcBUjmUMpgqMFJgXg5H4xXkn+jWYKv6X9G9WIyNDX+BXw6I9in5tmVz0C0wV/fQx6cRxLgIjpS9I69dgKvqtLys5bH1Z0tKkL6Cvsr6s1BdbX+bCj45aWV8WThT6YhuXJX2GjcsSL2RccKSMy3b5W48xrtR+JJYdl9XxA47qo5rEt0PmVTi5ffTYJg/UuH9kbabrerZ0a/36+gwGD6XEPgNeiLJbOXeW27lje43l1W/YyLXt1dft8t9dvWDeXmXU84Pcdr36BXgky3HWuBL/hUr17EuZ2ncAcVs3rndb/BKmb3fiXogs27ppzd73XShSd11+Qdl3YFhuNQ8AEX1KtCPRk1s3rC9SdLU8fJ/o0aXTJgWYWm1jLb5p4u/l2sQPNlYtmLtfpTZu0dJHjPZ2m9aucoDxfUlEaO7aucMNffflAdoDrKc883i1omqjntpo17XlG1G23DNzhb+HZ/ZCtNqOR94QfQnw5B6k9994QySXfWwOmAPmgDlgDpgDteXA2JVb3bA2DV2DAvcMj9V53/x1ITKGyXwmBJnI5sF1Ao8DmRh/8GDSngeT8lw/8czE+pGe+vTpE71nZAAQfolWfMIvAIoGIJi0AGBxwQ6AAGDhdTqF62IPRciH/7GlGWkvABSBkQAsDUCkYVgMRtL+iOYCSFbSDwCi7jz9AiMr6QemAouYAK+kH5/QH4ORaCeiTvRrMBj/AUDsL/oBcNlxN/4LjEQ/Ey5aZCfHEP0ygU80HWVmE/sHzEM/0ZpaZCR6aDvUi36i6TQYDDhEP+0tLzKPcgRGxmAq+oHBAiPxleOQTbQv6kR/bJlZ2gP6ZQIfmK1FplIXXuBxEf14gX4tshP9nCMcU3xHP/mzKa2fNqHByKx+8mgwNa0/74cJEtmJntikHbrxX/QD42lv6YRPRWEkMFtgJOeSBlPRz48JSLG+wPqy5Ajgv/VliR/WlyVepPsC68usL5OWYeMycaIUcW3jspIf/F89nMZlM2fNcw38zSH5H5lO2rjMZzv0ExcCREseSYl9zosELOIFyz0umzHl/7N3HnB2HFW+LuVg5TAa5WzJtmzZwgGBbZwTaVniWwy8ZQlLhiWsCbtggsE/nuGZ9RJ2YXmYvDYsGBsccAAbJ2TZsmXLsiUr5zzK0a++ap3bPT2nuvuORhqFU/qN7p25NVX//nf1mer6+nRHq5INuHres9HPq36g9UPG37TXX1nYxNx7b3czbrqxsE72wyKwl62Xf8+z8wBUsbLPnwzkIc2B+gLgLfJetHCLU75aW7Tf7+kzil93zQ2FTW5YutD9/prPFNbJfkhGnpaVl61T5T0wmezSbDn/g//shp04NfujFu/v/tY14dmeI089w81/8L6QvcqtjDlOXnjk/hb1tX5aVCr5gTauS36lxcdt5Zvc7rdFBxV/MGJq8rzNmb/+ScXfsGrmgDlgDpgD5oA5YA6YA1UdiC3gA5MAEAIjARAxGCkAAlgAQCmCkXwWg5Gc9AuAAMYAUDQYKZlhbGPsNqdVYSQLsOinb/QDUDT9soBfRT+wBf0xGCkL4JwPlMFIgCoACHiowUj0A7BYMBT9tJstLK5UhZEAP/ThO/qLYCT9FMFIWbQDCBbBSGAw+ys2FqsuegHB0A9MFf1FMBL9RTAS/fhGGzEYSV/4j0b0x24Tml+002Ak+oHB7FP0A3k1GAmgwzP0l8HIrH705Qv6aatMf1UYmdVPLMjDSPqvB0Zy3DEG8V+DkegHLDPGGYscv/lisSx1JAsjLZa5EOskS9pimcUyOVLysdhiWXJhiM3LOoUL3GxelmQZ5+c1nCfky5E0L9vp7+zYpXP3ZpuQjwUyLzsigGSzLbFvjggHgIdr5s8t1LreQ7FDUVY997QD0sVKa7JPY20dDj8HpJV6758DeriUNfPmui7dmgesvLbt/vmJfRoa3Qh/e+GRU08PH7OdD3z/W63KLM23f7R///z997hlTz0ebgd9tG+rbZ85YA6YA+aAOWAOmAOH2gFtAR84kYeR2i2MACcACE7YgR0ALA1AyO3A+KwIRgI/gRXAGACWBiCAZQAUCjCJhcJ8ycJIYFIMpmZhJPpZaCiCkWX6gamiH4DCduSLwBiBYbHMQha8+EJ/DEYCY/AfGFmkn0Uj6qE/lhnJPkS/wEhgsAYj0Q8AEhjGPs8X9OT1a5mR6AcGs78EBtButghMLcuMzC56MW7K9LOfy2AkxwAe4D/68gX9wEjRr43FLEwFLsYyI0U/Y1L0azBVYCT6q8BI9HMsafrZ1wJT+bwoFjA2RH8sFrCPRD/jQoOpAEb6FBjGcZIvXBwADGZb0U8dDaaKfsZILBZYLEvdzcJIi2UJGLdYlowPi2XpcUIMs1iW+EEstnlZ4oXMK21elmQQ1gsjZV5TNK88kuZlR8QtW9Ow1vbvDtdbtrb9llqL5sDR4QDZrmS17tre8oT26NhC2wpzwBwwB8wBc8AcONIdsFu2Hul78MD0s4DPgks2M7IIQLCQCSwAAGkAhUULoBMLDbQDHMkXWfQCVgiM1AAEMEwAFjCmCOYBNAAiwCQtsxPdsuhIXzGAApQC5pXpl8xO9MeyuQAs6MfjIv1ol0WvGExFv8BgYJIGgwXmiX5gGH7ki8DILEzVYLCAZdrFUw1GsmiX1R+DqcAk/KfvIv34Tz0ACvpjV+ALDEZ3DAZn9TMWGbP5AkxFfxZGajAV/fjK2BWwyRjJFnxiP6IN/WjXMiNZAKcObRYt2gnMA9rif0w/xy7HXRmMZCyyvejnWMrDYIF5aBMYGdPPPiqLBVn9+F8EI8v0Z2NBEYy0WJaOSItlqRfZWGCxzGKZjAyBkRbLXPjbxt8Sm5elt2m1eVkCI4/WednmLdtdr+O6hzsulM3LLENSoqa9mgPmwBHhwKF4hugRYYSJNAfMAXPAHDAHzAFzwBw47ByoCiNZrANS8ApMAiwUwUhAx4HCSBaQAUAArxiMEf31wEjRr2VzZRfwi2Aei3boE5gag3noR2PVBfAYjARc4b/APMAUwCtfZNEIUFamH8CD7lhmKouS6A8wssnDyLUtMyNbAyOBSZp++hH9bQEj0Q+Ao922hpHobwsYCRjHfy2DAECH/5QYzAMuZmFkLLOTfQ1ApL5kWWowUmCe+B+DkRIL0F81FpTBSI6lIv0SC9CvgXGJBfjBsc2xhG/5YrEsdYR4YrEs8cNiWTouWnNhhcWyJMubuG2xLLnIzeZlyTEl8xqbl7nas4yPxHmZAcn0b4S9MwfMAXPAHDAHzAFzwBwwB8wBc8AcMAda5QAL+JLZVraAz6K1wEgAigYjZdEF0AEM0DLzqmZGAvsAKFkYqQEU9FdZ9AKgcPWzwEhNv2S20U8M5ol+9AHz2EYWYvMFGEaf6I/BpHoWwEU/MA+wo8FU0c+iF/7zlS9ZAFEGI/GfMRKDefXqp2/Rr8FUgWGyaBfTjxcANnzHfxZ/84VFYeqx6MW+1GBY1cxI+qIt9j0wjLby+mUBn+OEz9Aeg3nUATDLAn5MP/6X6actySzEC/zNF01/DKZyLKGftjSYl80gQD9eaDBVYgFa8EHLkhb/yxbwOdbwn/qAffqMxQLGkMUyV8vStViWLIBbLEuighYLLJYlsdhiWXlmpM3L0r+ucpEYfxNlXmPzsiNzXtbV78Mq8zIDkun4t3fmgDlgDpgD5oA5YA6YA+aAOWAOmAPmQN0OADrqgXlZGKkBCIFhCAHGADTyRWBe2e3A8jAPmKEBCBYQBEDQH7AiX1g0oh76WTSKwVTaYdGafmhLg2HoB4zUAyMFxmj68Z9+gaP0CezKl/yiF/q1RS/aQltbwEiBecBI0Z/XBYzEV8BTkX4WwKkHjGT7Yvr79+vv+g/oH/TjiH2ZywAAQABJREFUhQbzaINtpE2BkVpmalY/+5E+80VgKvoZz/RZBvMYX9TLL+DTNv6znfXAPHRpMBJNbCfHaEw/cI7+ymAkY5V6jF3002deP/1Qh22oqh+wjxdaLMjCSOrwlS/oZxslFlCHNvMlCyMBpNTTYCra+eLYoI4WC/KZkXih6bdYlu6FbCyWWGCxzGJZ/sIEi2UWy4gazBn4W2LzsiSG8jfJ5mWJF4frvKxTJz8X8WNW5pVFscyAZLIv7X9zwBwwB8wBc8AcMAfMAXPAHDAHzAFzoFUOsEjCopEAiANdwGcRCrDBybwG8wRAABiAMNQDKuULC+C0RX0ABPU0ACGLXuinTgzmUU9gJKBCy4xk0Yh6FOpo+rMwEv3U0/Sz6CL6WcCnnraAj/+AGwEoMf3Ukyvw2U5NP/3180BPYGoZzCvKjBT9ADt8iOmnT/SjB10xmEc99LN9tKXBVOrwhX7a0jLzqsJINNFWVn9+jPEZvrKtAlNj+qlH3wIjNf3UYQwxTtlGTX89C/joZ2GXtvjKF/RTB/0ANTyLwTzqZfXnYSRtU6ce/QIjNZhKTKE9YkFMv8QCjnWBwTH9eMuxJzBS008di2XJKLFYlh4tFstSLyQzMhsLLJb1CHGTOGWxzOZl/M3lb4nNy5K4wd9xvo72edmLrrM/Ryi+Y4XMKw1Ipn9T7J05YA6YA+aAOWAOmAPmgDlgDpgD5oA5UJcDPIuNE2wACrcp02BY1WwiFsD5YjGHtjQYBoAg+7AqjARA0A5ALA8j2VDaQj9wokg/iylZGKllQ1EHmAFAienPw0gAUFUYmddPP+hnsVz0azAsmxkpMC8OI/t5/c4/l3GdCsNEP4vSVWAk+wvv+crD1Kx+FrTrgZGafoFJ7Ff812BeFkainwVkLTMyLBp5MAuwo46mn3GK/8CwMpiKtqoL+PiEfg3sV4WRjEOOpax+fMkWPsvrj8E8xjb68RQvNABBW/QrsaBMfxmMlFjAuNBiAfrxVWBkDKbKhQllMNJiWTo6LJalXgiMtFjmQuaPxbJkbGRjscUym5dJxMjOa2xe5sLfaOYFlKN9XrZmLfPJ7WGOFLswQeZlBiTliLFXc8AcMAfMAXPAHDAHzAFzwBwwB8wBc6BOB1isBaCsXbtWhZGyaAfMY9EOaKDBPE7SWbQQGKnBJAEowDDJ5tJgXhZACIzUsqEGDx4cYAYABf0azMvCVD4HTmn6WcAHYqGftjT9AlMBhCxWsDijwTA8xQ9ZAGcb8jCS3QRAYVvZtph+uc0s+0H0x2Ae+llMi+kH6ACdRD/7sop+AFZeP/3gP2C5bNEOb9FfBFNZJBf9a9asUWGewFT0ozumn3bColHnBEbivwZT8R/9wDn2pQbzGKsC84oyI/GVfin4r8E8gamMScY9+mOLXhxLHC/U0fQLTEU/4yGmn89FfxGMxIt6YgH6i7KJZNEupp9to0/8Ff1aLEA/bQmMZCxqsaBe/RbLEgAhscBimcWyELz8fxbLxInk+asWyxI/bF6Wjgubl6VeHE3zst27/YV1/hxht7/bRL4wJ8vOyzrmK9j35gAOdO/tT0CGjzpszeg7bITr1qv3AenrNdBPmAYManUb/G7nrt1a/fvZXyzanrbsJ9vnwXrftUfPMHYYQ1bMAXPAHDAHzAFzwBwwB8yBY8GB1atXR2Eki5NVYSSQgYVtwEceAPGZACwABNBGAxD1LHoJQAFgxWCk6BeYF4ORstAQg0lZgEIbZQv4LNIAT4BJGkBpaGioAaAi/YA6/AfmAXeKYCSQirZiMFUAUJl+ABb6AU4xmIp+9hWgMqafRTv0l8FIWQAX/RrMQ4/oL4LBAiOBwTH9wFTRLzA4BiNFfxUYSbscS5p+YCT6szA1BiNZAEc/+1s7lgQG4/+ePQnM1vTXCyNFv5YljX72k+hn/Gv60S4L+NSJwVSJBcDgWCxAP/6XZXbSlsBgi2VJljfxymJZcstsi2VpZiSx2GKZxTKZ19q8TJxIXm1elvpxLM7LOCfZ5S82zBfOD/Lzsk7+h1/IVzwU33fs2MmNGjvRTT7xNDdh8hQ3fORY19UH9k0b1rU48RrUMNRNnHyKG+AB0trVK9pU3il9u4VJYP5kr007aYfGOnXu4iaff5nbvXO727m5qW4F57z7I+7Mt/y9m/W7m+r+3YP9C4DI13/tO667f10ya0aru3vD17/nRr9kunv27t/X3UbfxuHuddfc4Dr5k4rlT8+q+/ezv1C0PW3ZT7bPg/Ge7Xjt1d90015/pZt03qWuYcJkN++Bew5GV9amOWAOmAPmgDlgDpgDh7UDK7bvdUN6dHKd/OJ6a8tTm3aGTDMAA18sdGe/Wtvugfwe50x8AVDklcX1Y70ApzSYAQRgoZ8FTE7SgSMazOMkPQ/z8uenjIEhQ4YEmCEAQsvMqwojBSYxplatWqXqRzcAiO0Q/RrMA74BM7IL+Hn9fEafjBeBqRqMkczIMhiJF8AWCvo1MAuEZEEI/ewf4JqmH2BDv2gEDGowSfTTJvsQUFFFPzBMg6noJ7MNnwBAmn68EpgkMFjTzzainzESg0nAOfwX/TEYVgVG4nljY2PQLzBV08/2oZ99KZmd2m1OGWOin32pgXHakGMJ39GvHUscR3xlYWQ+MzWvH8+0Y0n0M34AELHbtKKf4w7/Y/ppg3ocU/QV008sYB+gnzr0mz+WOGYlFjC2GLOa/qowVcBmUSxAv/gvsUDz32IZoyspFsvECRfivsWyxA+LZem4sFiWesE7m5elfti8LPXiSJqXbd223c+5O4fzVdmC2Lys3W7ZelyvPm7ySdPc1i1Nbv3a1R42NrgJk052/QcMdjMevi/o7t2nnzv19LNdz+N6he937dzh5syeKdtkrwUOdPWeneGB4nN/uss9/JP/KKh55H3EH632Lrv9WNzRtMltWrHsgKUUbU9b9nPAQksaAID3GtTgnrz1Zrf0yZnen40lv2EfmwPmgDlgDpgD5oA5YA6YA0e+A1VgJHBBg0n5BXzAjQYgAEDAJIAOAEWDYb38OaBk5pFVFbs1I4tewArOQ1asWKHCMMAJAEJgXkx/FkYKzMvrF5iKfjygnqrfQx3aA8YUZUYKzEP/8uXLVRiThakArqqZkZr/wEj6FJiHfg3GACBEP/AzBiMF5uHTypUrVf30JTAVTejXYF4eRmowT/TjCb7H9Fdd9Bo6dGgADIA+AJwGw4CpaGPxvSibqArME5gqMA8YrPnPohfHE9srmZEajBT9wLyYfmBkVf3sd8Yi+1KLBVkAAcwrgpFsA/oFRmr6GT/4y3hAv3YsSWYkfTMOYzCVYxyYWhQL8jAyFgsslqV/y+TCEItl/u5rFstqA8NiWc2K8MZiWeqHzctSL4CRzEeYO8bmlTKvsXlZ4pvMa46keVm7AcmdO7a5h++/y23auK426qafe6kbOLjRZ0r6qw498Onbb2AYgE/OfMiNGT/J/yHrWat7NL/hNqCNJ5zs1i2c77Zv2uA6+gnpPj9ZzhbqDJl0Uvh8/eIFtY+YSHbxt8zsuv9qUep17ZlcObrHe5pvp/aLBW8GjhnvyLhcPe9ZtRZZfH2GDner5j7tdm3b2qwO/e/bu6dZv539/t27a2c40e7kJ8idunQNv8etSXv07e/WLni+WRt8w3Y1TDzB7d6+zW3buL7F5/KDoKVxWKLF180Xbo3as+8At/LZp/IfVf6e/QFsu/lT73Uv+pOwbOngA2aX7v6qX/8Q186cxI+b5DMon8hWCe+rbE9RP9kG2b9Djj/R7dyy2a2ZP7fFAga3Th3ssxU3+HGyZd2a7K/W3vfsN8BrPd5tXL7EbVpZH2Rlf6J15Glnhv38zF23hnb3Zu4ZXTYOqvomggeMGhvg55r5z4VjQH5ur+aAOWAOmAPmgDlgDpgD5kB7OwAEYHGJhfwd23eEbLqqMFIDEMOGDQuZVQAUoIcGYwKAGDggwLyqMDIG8wRA8ApAAQBpMAz4BkApWjTivIeFEmCSABRNPwv4LEKxYIt+vooyC2l32bJlKoyhL/xnPwCIACia/iqLXmwbi6a0yT4EBmv6szAS+FMEI3v483UK/mswiQU2QBH6BaZq+jUYqcFg0Y9u9GtjkcU/9ieLfLHbtKJZFr3oB5gd0w9oRH9ZZmQ2s1CDeehBP2NRYKqmvyqM5FjCX44zjiVNf1WYmoV5MRjJeAZmh1jgMyM5lmL6q8BI0V8UCwSm0jfjkP2pHUtZ/bELEyyWMeqTYrFMnEheE5hksQw38hdWWCwrv7DCYll6PGVhpM3LymGkzcvSscO7I3Ve1m5AcpcHUnxly/q1q1wfD6SY9AAkly9d6JYunh+qjPZg51gok3yW2Vn/650QuLC5W9ev8885HOjuvO5qD9Fmh5+d/c4PuXHTz63ZAQT8w7Wfc5uWLw2Q8pKPf772GfWk7pO3/co98Ztf1D6r8obbmgKrKADN2675dOiH73kG4xWf+arr3qcv34bCLVTvveFa+db93b//xC2b/bi7+/prws/Gv+w89/K//4C7//vXuwWPPODO/ocP+9umvjRAyEH+Fr6U7Zs2uju/cXWtH4DoZZ/6kgeXXcLn2zZuCK/Z/6hz8cf+pQZf+ez5++92D9343VCti7+C8NWfvy5o5gd7/clkx071P0KV52q+5gvXhTb5D/g2479/VPuebTn3PR9zQGKgGWWPH+eP/vy/arcvrbI9Zf3QLiCSfS398LO9e3a7X370nWFf8fmln/qi6595FuiGZYvd779yVdh+6g8aO8Fd9NHPNfNt7cJ5vs6n+bhSed1XvhVAslR+y/X/L7wFYN9+7b+E92XjoIpvNDTxnIvcWW99VwCgoWH/33N//qN7+Mffk2/t1RwwB8wBc8AcMAfMAXPAHGg3B4AALNRyTkvm2Oo1q1UYRjYRXyysACkANxqMHDFiRIAZfMZClQYz8gCiSmZkbNEL3QAUXoGRXJ2uwbAqMJKdMHz48KAfIAL00PQDU4FrwKcimJrNjIzBSMBPFkbGYGoWRgLpAH95mAeAYNGUNvEA6KTpF5iKfrznS9uXyQJ+j3Cqv3TpUhVsCkxlHKEpBlOrwMisfnSTTafpF5haBUYC8yj4r4FZPsd/9DOm0a/BMG0BP+8/xwb+h/UhD1PRr41FyexEf1FmpCyA0w/jX9MPjATUiX7aK9KPx4wLjpV8QQ8LhegHfDLONP1ZmIpfZJRq44djifEh+rV9SSzAW/RLZqqmvwqMpA2LZeletViWemGxLPXCYlnqhcWy1Aubl6Ve2Lws9cLmZakX9ROZ9Hfb9B07ZcjQkR6o7PG3cd0c2t63r3lWYJt2eBg21tVfKXmmh5FkMc789U/d3PvudMf1T2CgyJ1y+d8EwNi0crm799tfd0/fcUvIiLz4Y/8aqpAh93sPDe/+1lfD90ue+Gv4np/N/sNvpJnKr117HOce+dkP3MK/Pugz/rq789/3ydrvnvf+TwYYuWz2EwEwkrk4curp7vhzL6rVyb8hE04rfYYMC1Bp3l/u9XCrX3h+pdQ7/wOf8hmanQPQe+zmH4dnR8pnvNLmpZ/4QvBhjn8e5D0eiOLPxHMudKNPnx6qTn/bPwYYCSQDhgJxO/jnmNZbmnz2IHD4wR99J/lVfzKjlf4jx7jZt//GzbjpxpABevob316rVrY9VKzSz4Uf/nSAkeuXLAzbzD7fun5tDdbxOTCSMfDH//tlt/jxR8P3L3/nB2taAMKMOzz59VXvD9u1buELtc+rvLnj658PY2zzmlU+Y3Rvbbzd/5/XR389Ng6KfAPSTn/be/wJ2D5/bNzhbv3iJ5Px78elFXPAHDAHzAFzwBwwB8wBc6C9HQBAAD1YyAdAxACK3NoQ4FIEIICRwAwABAArBiCAC/RNNlQMoACJWCDjvDsGI9ENQOE1wNQIQEG/3E5LYGoeJrEvRo4cGfQDVwBYmn5gJAu6eAGMjGVzASOBReiPwUi8YqEc/WUwVfQDXDUYiX7xH6ATg8HASOAg+stgJLAO/TEYyaId28m+JMOmCKYCEekzBlOz+oFgMRhMO8BZ0c8+0GAY4wIYhv4lS5aoME9gKvoFpmowDL/ymZH58UM/+M++ZNwA/TSYJ5md6Jfb5Gr6OS7RR4n5z/6RY6kKTEWjwMi8fvQAsNAP+IzFAlnApz7HbhGMZHxQ8F87ljg+OJbwn3ZiMJht5LhDfywzkjYslgW7w38Wy1IviLEWyxI/LJal48JiWeoFcy35W2LzMpuXpSMjnVcezfOy3v4ujVy0WDYva7cMyewO4T3Pj+zhM7qemPFA/qPo9/wRnDJlSvTz/AcLFiwIk7L8zw+X7yd6kMek8HkP5QQeNvpbcXKbUSknXfIa589I3YM+82/v7l1u4YwHw+06yXQjkxEouHbBvFrGGtmGfN/aMvsP/+Pm3nt7+Bpy/Amuj78dKjCJW5UO8NANsHf39V8JzQPGXnv1N92kCy4PWWv19Dnrlv8Ov0O223if1dm7YWj4dW43ynY1rVpRg4A8p3DSeZfWmp/w8gsCLCWD9IWH/xx+/ugvfugz/z7rTrz4VW7RjIfciFOmBVgmGXtb/HNLL78q0V1rqMIbYDH9cGvYUPz+0gq3r535q5+Gj44/92LXp6ExvK+yPVQs64ds0cH+Nsb4D5iTsuyp5Bmr3CKVz7mNK5mxFPblUH8r4BEnv0Sqh9vLcsK2/OlZoe68B+6pZXLWKpW8Yd9QyASlrQMZbzHfaP8lb7gyZA7PvPknDvBMYcxZMQfMAXPAHDAHzAFzwBwwB9rbAU68ASgs5AMgWOjXwEh20Q5gwGJVHmawLbQlAGLRokVqlhYAAtBI3wAIgIbWJ3UEQMRgJLoBKLwCUwEtWlv5zE761fTLAj6fAVA0MCWLduiXW0tqfVbJjAT8AFDQD0wFAGltsUjCNnDeHXs2Ef6PGjUqwCTaAGBp+jWYqnmRZhPFYSQwFeiHfmAqoFHTDzxkDKG/CEaOHj06tIVuAK6mPw9TAXqafnQJgIjBMMYq24l+YCreavpZwAciop99RF2tT/ynLRbtGLOa/ixMRTtAWGsrgZHAYOcWL16sgk1gJfoZi8BUYLCmH+BHv+iPwUg+Y/yjH3BILND0Z2Eqxy4wWNMvmZGMy1gsYP9wnKBfYKqmn0Vy9jsaYzCSNiyW4XZSLJaJEy4cI3JhSAzsWyxL/eKdxbLUD4tlqRc2L0u9sHlZ6sWRPi/r6lkE+5P5T9m87LAAksNGjHHjJp7oFvtnB65asTTdEyXvmKxpV4bFfk2bkMXqtsfP+w0bGbpd8sSjte7XeE+yQLLrcb0ClLnM34ozXwZ6KLnNZ8G1ZVnss+ukbFi6KIDOvkNHhGc5MqPfuGyxfBxusQpI6+lvu1tvmf/gfbVf2eVPSnhmJWXAqHHhlduISlnyxIxmQBIYS2mcPMW98rNfk2rhledSUgB0Wzekz57k2YN+th8+Oxj/LX3ysVqzm9esdH2GJIC1yvbUfrHgzcAxyTavfn6OWmvQuInh59169W7hSXa7gc2n/s1b3Ju/8QO3Y3OTQze3lwUutkeJ+YaW3vuh7vMemloxB8wBc8AcMAfMAXPAHDAHDhcHWNxn0ZGFfM5PAUAaWABAAJSoD4CoAiMXLlyoghEABACFtgAQABStzyqLXuhm0Z1XYCoASGsLEMZCA33SXxmMZP8AULTzcBa1ASi0JdlcWp9VYCQLHwAU9ANTAS1aWwJT6bMKjKQNAJamH5iKt7QlGRBanwmMJDM1npkHTGWhFv3AVECX1hbe1wMj0Q1A1PQDU4FT6JfMVK1PYCT7ihKDkQAIoB/6gamARq0tuU0ufVIH8KeVMWPGhLaAePSptcWiHXCQtiQzVauHLo4VSgxGAlOpR1sAUkCv1lYeRlJXK8BgvACmAm20toCawFn6ZNHuQGAkMJX9RFt4ytjW+qwCI2nDYlm6VwVG8hOLZY0+FlgsYyxYLMOFpFgsEydc+Ftj87LED5uXpeOCd3KR2NE+L+u0Y0+Y/1SZl7U7kBzsb9V58mkv9SByiZszO4U4zXed/h0nG7NmzdI/PAJ/CsyjdPF/5KUImJPved26bo279cv/nP1ReE82XFsXJqT5wi0zaxPcyOfNfydtg9uDamXX9uaTeemXTMx8yd/uU7Tc953/41Y990yz6nv9CTXl4KHHZt3Vvsluz4v70t6rbE+tkaI3AlM7dFRrST8vPHK/+6vPFs0W+YyfkT256LGHA5QcdtJUN+HsC9ywKae6mz/53uyvtNH7+sZB1rcgYL+NHTqm7bSRMGvGHDAHzAFzwBwwB8wBc8AcaLUDY8eODb8LgACgaAUYCdCgACM5WddKNjMyBiMBEAAUCgACgKIVARB8FsuM5LMxY8bwEmAqAEUrgDAACkUyO7V62QV87lAk52rZugAiAAoFmApA0YrAVD6L3aaV80YWeijAVOppBRjJIjJFYKpWDxgDIKSgXysAOhYdKZubNof2tHoCU/kslk3Eoh19UljfYD9pBRjJF0VgqlZPFr34jPGjFWAq2iiAMPanVhKYWgwj8Yp9TgGmAoO1gvfsA4pkdmr1GIvAPMYNAEgrwFTGBoXjiONJK1VgJDCVY44CTAUGa0UyO/lMMju1esQCxiQwFQCqFRbwOTYpwEi+tFIlmwiYSj0KgBRtWhGYymexzEg+s1iGC0mxWCZOuBAviBsUi2UWy2RkWCwTJ1y4JbjNyxI/bF6WjgveHUvzssVLlvt5ZfIs9eYuJN9l52XtCiQHDGxw0848161bu8rNeuxBTesx9bP1i3l234VuhH8OI89spEj2X/jG/7dr6xbX3T9jkVt1ZsGSfC6v3M6VwvMYD6SMOu1MR2Ykpb/PZKU0rdh/xa8/SZCsTn7OM/46+hOq7U2b+DYUTiTkdqX8YMQp6e1CkxrF/69fkpwEZn0YObV5G2t9FinPraTO4pmPqA3u2bnD9cw8j7NhwuSQaapWPog/rLI9Vbpft3B+qMZtdLWCJ5T+w0aGW7FqdeRnm/xzMf/03evCt6/+wnXhOZOA4yxUlbqtfT3QcUC/TauWh0zTiWdf6J6569aoFDJleTYm5fZrP+e4Pa8Vc8AcMAfMAXPAHDAHzAFz4GA5wFyXq56LAARAg3py1XBeCws4nKgDSKgXy8wDRgIgqBMDELRFf2SRUQ/IAizKF+oBIKhTBlMBStSTbC6tLXQBqKgHTOI1X4CRbCefxWAqugAogCfqAVCAdfmS1U9mahFMBebRlmSmam3JbSqpF4N5wEhgKnUCTF3bEqaiC2DGAj71gIzA0nwBvLFQRZ0YTKUtYDAwj3rAQzJK84V6ABSBeTGYiiZAI21JZqrWFsCSbaUekFe7M5XAVOrEYCq60M42UC8GU6kHmOWVejH9jAm0UUcyUzX9bCPHCvUYF4zvfBGYSp0YTEUPY4cLCqiHfi2zk3oCxokFMZgqmZ20JZmpeV20xRgDNlKPixy0W77yOWOWOjGYSlscu4AD6gEsqZsv1BvjYTB1LJZ1CDHWYhlLZhbL5FjBC4tl4oYL8wv+ThMzLJbZvExGBseJzCttXnbszct27Njpdu/aHv52yJjglXGRn5e1G5Ds6W89evr080PwWu1v0zps5Nia1rWr/QnHjmSSNNRDrg4dO/nU5x6uM7cC2V9vxdKF4Xdrv3QUvOH5iae/+X+7cWee7XhGYI8+/Wq3qZTNe8o/B/D0N77d/e1Xv+3m/PHW8Ly+0adPd8NOnOp++68flWr7geVeN+ykU90pr3y92+g95tl+2zboVz/WfjH3Zsrlr3N79+x2g8cdH+DmhmWLa76vXTTfDfK3Dr3k45/3z7J8yJ36mjeF357zx9tqrQBQew8e4k559Rtct+N6uyGTTqp9VuUNWZ9khPYZ3OjOeddHHLc/5ZmR2TLfP3PzDO/bSZe+1vX1GbfP+P65VevkCy4Lup6583cBVI5/2Xnuis9+1VH/1Ne+JdtE5fc8N7O73y9yK1i2DY8BnqvnPVvaTpXtoZGyftgnZIMO8c8Yfe0X/6978tab3T5/kjXt9W91t/nsWWCifH7FZ65xT99+i9vjIfWEs893HX1W5b3f/nrQevlVX3bLn3nSLfG35gUu9/HP7tzrT+Z3++1py3Kg4wAtj930Y//8y2lu2t++NWid5/cjY797rz7u/u9fX5MLhO/ZL7l6uHvvvgYka87YG3PAHDAHzAFzwBwwB8yBg+FADEBwAi63xmTRDhipZUMBkeREnbYAKDEAURVGAlBoi2w0DUAIDMMPuTVm3hv0AzJk0RHtWmYnbQlAoU8ACq/5Ug+MpF/aAKBoMBUYJgBIbo2Z7w/9+CAwGBjJwmm+oF9gsHjB/soXyezks1hmJ32S/cZ+Rz8wWIOpWf1ym998f7QFyBMYHMtMRb/AYPTHwLhkdqIfGEmmaL7QFvoBl+gHBmswNau/DEYC9GgL/fiWL/QpMBj9GszDCzRlYaSW2UlbwGC2lT6BwRpMBTYBQNnNO/0CGtuZL/SJdiAEbeFXTL/A4CL9x/VMMjvxn3GoZXain21krNEnMFiDqZLZSVscH1pmJ/oZO4wh2gKmareZpU+BwYX6/ZhmbNCnxbLqF1ZYLEsWoy2WJRHGYlnzSGuxLPWDWCzzGmKxdscNxo/Ny1LPbF6WenE4zMu2exbR67jkNvmiLDYvazcg2aNn8iBtBJ5wcvOMt8ce+VMNSJ582vRmZPXkU88K27Rimc/aY/Z4FBUyHu/6xpfchR/+tBs97aUBMPHsRKAfsIkCXOvt4dykV1zsTn/TO2pbv2n50tp7eTPz1z8Lt+LkGYEUoNUTv/2lfFz4yiSTsr1pYwBAvCcr894bruVtKPd9+/84YBcZaXxRFnkwOS/zjD+eR/jSt73Hw8o3h895duPg8cfXsju5/WtZufvfvuau+PQ1buxZZ4eqZLz1GtQQJtX8AK23X/sv7qKPfs6N9BmdfFG4Be6z99we3j/y0+/7ficFL/ETgBhukVvnGHrF+z4RAGto1P838tQzwhdj8cb3vMm9uDfZnqLs1bLtoe2yfqhzzw1fC9sMLD7n3R/hR+HZj3Lr3/D5Rz4X/H7F+z4ePkcnIE9Kz/6D3NRXvzF88bOdHiBzi9ci/fK79byWjoMKvpHJ+cAPb3DT3/6P4day3F6WMve+O5pJYWxI2bq+5Um2fGav5oA5YA6YA+aAOWAOmAPmQFs4EAMoQCngCDCAbC4NRrKAQB2yuViAAqBoAEKyoWgLAKHdmpGTfgAKi1W0BUDRAAQwRm5TSV8awGLRS7K56BOAosFI9ANQ0Edb6KfvfJHbzNIWgFS7zSz6ASj0SxsAFA2mZjPb6LNo0Q4YSZ9o12Ak+oHBLIrSFgCI+vkiMJXP8BRt+YJ++mO/o59t1GBqCsNejN4mF/+BqQHm+XOlDRs3hDGU7xP9wGDaRD8wW87lpS5tyaId+snwi8FI4DPgD/2MMQ2mZvUDK9nn+UKfAAhgHm0x9rXMTvQDg3kt2pcARsYZ+oGCMRgJMKMufQLpNJia1R9g6oqW+tmX6OeLtoCHGoxENzCY+uiPHUt42jAkiQX4EIORxAL2FX0CSTWYylgFgLKfGV8aTEUP3jOGaAu/tMxO9BML2F9F+i2WpSPcYlnqRfZYimVDWSxL/cILi2WpHxbLUi84lmxelvjB3yWblyVe8Lf8aJ2XdfATmaOL6qXHc6V3V47q4zb5k0MmaYdTIUOSTLXLr/pKAEo///Db3e7MrTX4QzZg1FjXuVt3t2HJwja9vWbeh77DRvgThM5uve9HKz37D3R9G4e7NfPnBiCm1eF2qtz6lW1qbRk4ZnyAoptX6891oN3uvf1Jm7+17LZN/upXBdL2Gjg4ZDjKLU1bq6Utfq/K9lTpp3PXbm7A6HFuj88q1vaRfL7PZ1VuWOL3gX/Nlh59/fNIRowO+2f7Jv35Fdn6B/K+LcYB/fcZMtTfgndg0Jx/diqQfNDYiW7ls7PdndddfSBy7XfNAXPAHDAHzAFzwBxolQMz1+10J/fv6rocwLOvf7q4KUAGTsxZqOCklC/OA/g6lIWFb76AAXyxcM35E68AEyvNHWD/5BfwNQDBvpVsNLyMARQWwCUzEkCnZUMxNtgXAlBi2WgsAArAYgE5BvOAgmhjfwPyNJjKuBQAhP4YQMnqj91mNq8fYKYBFPQLAAI2AeDyBf8lgwD9wEgNpqJfABBeoJ/tyBeBkRwDaNJgKvsS/wUAxbLRsvqBYdozL/EC/QJT8V6DqegH0uEv+jUYjBcCI9EPVNNgKvrl1p54EIPB6BeAVaQfH2iPOBGDwehn0RGYjX4NBqOfBXzqsS/Rr8FU9OMX4xb9MRiMfmAeBZinwVT85zhif6If/7mgIF/Qz7FEm0X6JbMT/bHb5KKfRUfiBvpjMFguTGBflsFIgcHEHg0Gox8YzCv6YzDbYlm65y2WpV5YLEu9sFiWemGxLPUiP6+xeVlyxw2bl7X/vKxoXnMg87LNW7aHDEnmbmXzss7poWLvDgcHznrru7yMDm7pk485nt84aNxEt23j+mYwEp1MQNcteqFuySdceIW/reeVhb83997b3YybbqzV0cBe7UP/htvAlt0KltvFHmiR5yYWtbNjc5NbMefJaJUt/vavfGVLz34D3OuuuSH7oxbvN/hbBP/+ms+0+PmB/KDK9lRpf8+unW7183OiVcs+B0JqIPL8D/5zuBVwtGH/wd3fuiaAv6I62c/aYhzQXtOqFeEr27a851mm/gBxf/nhv8uP7NUcMAfMAXPAHDAHzAFzwBw4JA5wEl5lAZ8FTAAKsAIYAEDRsrmyC+AxGMlJv2RzATNi2VzADBYa6Ju+NBiG/qowEoACLEI/AIXXfMnCvBiMRD/whG1AfyybC/1DG4cGMB+DYejPwshYZiceAFPRh24gL33nS1Z/FRgp+rXM1KDfAywWKWP6szASGIZ+DUYCA9DP+GBfop/6+dIaGAnw0zJT0Q/AwuMimFcFRqIfGEyb6AcGs0iZLfRTBUayLyWzFv+BqejLF/oCZlPYvlhmIfrLYCT6gcG8FumvAiMlFhA3GIvoZ3zki8QCfl4EIzmOymAkurOxADDLGlO24L/FstSRbCywWOZjscWyMDgslqXHiMWy1Aubl6Ve2Lws9YJ3h8O8TLvI6lDHMgOSzcdFu3/H8/B4Lt6k8y4JWrb5W7Pc9c0vtZkubntJJmNRWe/h27FUAHalnixecCxZErZ1zby5rovPwC0q3NL3cCtz7rrNNfnn0NrtWg+3PWN6zAFzwBwwB8wBc8AcOLodyC/gx27NmF20A2YAgDQAIYsWuFYGIwEQwBiuetZuLQmMAaDQNzADgKUBiCyMjN1mlkULganoB6Dwmi+tWcAHpmqZkcAYAFanzp2iMCa76AWcK9MP7EI3MFiDqXzOojs+FcFIvAdi0UaRfvxnkbII5klmpMBILbMT/4HB+It+YLAGU4FhQCf0xzIjGQ/op1/0A4M1mIr/tAUwLdNflhnJWEQ/bTLu0a/B1KowEnjIuEV/DKbSF/uSMVIGI0V/LIMA/cBgXmP66acqjKS/LIzE33zJxgL2j5YlzdgSmMp4YOxomZHo5lhiHKGftjQYnIWRFsvSZ0ZWhZFFscBiWTLCLZalRzqx2GJZ4ofFsnRc8LfE5mWpHzYvS7040udldsvWw/CWrWHy6m9HuaNpU4vba6ZDz96ZA+aAOWAOmAPmgDlgDpgD5sDh6IDdsvVw3CsHVxPncLKAD1yJLeCzAAuAkMxIAIoGIATGoLpoAVyyoYAxMQDBogUAhb7pCwCXB0DZRa+q+oFhAKy4/qFefTnMYxvQH4Op6GcBX2AqAEsDKJIZif6qMDIGg7MwrwxGiv4YgAAmBQCxH0ZqMDibGQlMQr8GI4FJwGCBkTEYLPrxCf3UyxeBkUAs9iX+azA4rz+WWSgwFf2xzE70Z2Ekutj3+cKxBMBFf+w2rfkFfPzXYCr6aQuPY2Cfz/CBY7Me/RxL1M8XFpDZ5+gnFnCc5Av6szCSOujLF2IB+jlGY/q1BXzGUL5wLOG/wFRNv8Wy5q4lsdhiGa7kY4HFsvTCCotl6YUVFsuSLHWbl6V3rLB5mQvzfi7sOprnZVu37XSjRg5rdpFebF5mGZLN5xqHxXfhCsz1aw8LLSbCHDAHzAFzwBwwB8wBc8AcMAfMAXOg2IHsFexFMJIMCGALmUkAFA3mAZOAGYABABEALl8AEAIjASIxGMkCMgALAAHMYNG0CEYKQEFbvghMFf0xGIn+BKA4D5Piz1wkM09gXgxGoh+AQt/oB6CgMVvwqQqMxAOBwfhfBCPRTynKLER7Vn8M5gGDgU8syqBfy0wVmCeLdkUwEkDCuMF/QGK+CMyTzEi2M1+yMFJgsKafvrL6tbGYhXnoL4KRAlPRj64iGFmmn2MJ3/AgBiNFP8cL24f/+ZLVXwQjgXlZ/RxLRTAS/TEYyXhm/BM3BOzHYCSxAI2xWCD68UNiQRGMZDskFsT0s8/LYoHFsmQkMbYsliVeSCzmOLFY5sLfev6WWCxz4fbbFsuS48TmZelfYZuXpV4cDfOy7t07+nlNcseNsnmZAcl039s7c8AcMAfMAXPAHDAHzAFzwBwwB8wBc6AuB4AiLOCz6AgIiME8FvABEAIjNQABzKMtIAMwTAMoeRgJzAN85IssegEggGEAIA1ACMwDQACTaC9fqsJIYBj6WZhGE9AmX/IL+MA3tjVfBEayYCX6NZia1Y//mn7awH/8BYaxj9gP+VJVfx5GavqBYSzM4x0wCf81mEpmnizg438MRgJTszBS0y9gnO3C/zIYWZQZSV/AYBbJ0M++ZIxnC/tZMgvZN2hnG/KFMZjVjy4NpqKfRWuBeTH97MsyGMm+zurXYLDAPLRxbMRgahZGctwCgzWYmtXPWKRevgiMzOqPxQL0c7zEwDj6GYv4UQYjGWMCI/E1FgssliV7rGosyMJIi2UWy+R4z8aColhssSxxzGKZjJzkNTuvsXlZtXmlzcuSsdOe87INGzf7udGuMBfUMiOz8zIDks2PefvOHDAHzAFzwBwwB8wBc8AcMAfMAXPAHKjsANAAgMKi0YHASBbAgQYAiNgCpizasQgOUCiCkUAWgZGAEQ1ACAwrg5EsmqJPYKqW2cnneIHGemAkdfMFGIZ+QCIwrEg/9dAPDIjBPNEvMFLTzwIy/qMfmKTBsDxMxf8YjMzr12CqwCTxP6aftgSm4kUMRuI/i1Ex/dkr8ItgJH3RJ/CM7aNPDaaK/jIYif/sU8Abx4gGI2UBlrEQg3nozy7g439s0Yt9SX30sy81mJrVXwQj8QJALjCySH9ZLODYzcJITT/HEn0W6ZdYgB9FMBLdop++2JcaTJVYUKaf/jhWJBZoMNViWRrRLJalXmSzoYjBFsvSCysslpVfWGGxLD2W+NtMLLZ5mQtz5uyFITYvS46l9piXrV230Z+XbPRzpW3pYN3/jnlldl5mQLKFRfYDc8AcMAfMAXPAHDAHzAFzwBwwB8wBc6C6A4AkFkHyRRaNyhbw+RxoAPACxgBt8gAFAMGiS1UYyeIdMI+2NAABjGFxQGBYTD+6WPRiAZk6GoAIMG9ACvNYaM4X0U+/6Km6aIR+DaZm9bcljARMafrZNywAAm6q6geGFenH231797kNGzeomYXZBXx8xzMNRgK42JfAyCL9jB301wsj8zCVfUtb+FFl0YuFKPTjRZF+2mVfUi9fNBjJ+M6X7KIXsJu2NJia1Y+vHHf5ks3sBObRlgYjBebx+7ELE0S/xAL6LIOR6GcsxvRLLMAzTX9+AR/9WixI9A/y6l8M/qMtXyyWpY5YLEu94B2x2GJZ4onEYr6zWJZeWGGxLL0wxOZlyR0rZF7J36Wyi8SK5jU2L0tiD/9n5zXEH3zLl+y8pq3nZdu37/Bz2l1hLprtV5uXGZDMOmTvzQFzwBwwB8wBc8AcMAfMAXPAHDAHzIE6HOCk/0AX8FlQAVgIjNQAhCy6FGVGko1DPYGR6NIAhCxasJno5ytfABACI4FItBWDkdTr1LlTWPygngZT8/pjmYXUY8GkaNFO9NMP/WmLLnKb1rJFLxaQ6RPgGINJAAjqULcIRrLoIvqLYCR12Iagvw4YqS3aoQn/0Rgbi2wbdYBhoj8G89CGd6Jfg5Gin3GK/xoMYx9SrwxGAsOoJ/pZnMyXLMwrgqnsa9pi7AqMjOkHovBZkX4845gCHFJPg5G0Q5/AYOrwlS/oF/9FfwxGin48pa1YLMjqZ1vzhRhAW7wWwdRUv/P9WSxjP1ksc+G4ZfxwHEss0C4MoY7FsuTos1iWRqFsLLZYZvMyGRk2LxMnksxOmRcc6nlZ9o4V2kVirY1l3K61W9fu6Ub6d9lYkJ2XGZBsZpN9Yw6YA+aAOWAOmAPmgDlgDpgD5oA5YA5Ud6AIQHAizsk+kCUG8wRAAMMAShqAIPuNBQIWhGlLg3lZAAFsQpcGUATmsYVkX2kwLwsjizIj8zAvBlBYdCnTL7c2lAVw2tJgqiyAox8vivQDw9BPvRjMoz2AnYBZDabiv8BI2iqCeVn9sQV8+qQf/NdgnpYZqenPLxrhWV6/wMgq+tlP9M2iEW1p+qnDGGKc4oWmHw+oV8+iF/1pYFz0A1MZz/RZBPPQ39S02be1IQBHxkm2sC+BcKJfg3lZ/QIjtUW7FOZ1CLo0/VkYKWBf08/2SSyQBXwNpuKrwEi80PQTC6jHa1ksYF8CU2mrSL/FMhd8wleLZckRxXi1WJZ4kY3FFssslsnfHJuXiRMuXChE/LR5WQojj+V5mQHJ9Ng4LN71bRzuuvXuE7Ts8yebaxc8f0h0dfJXEPZuGOo2r1rh9u7Z3WZ99h02wu3c3OR2+K+DWXr281exceK0emWbdoP+HU2b3M4tLa84bMuODlU/banZ2jIHzAFzwBwwB8wBc8AcMAfMgZYOACCAHizgC0CpCiM1ACEwks+ABjEYWQVAsHgMzABAxGCk6GfRSACKpp+FFGAG9YtgKs81pC766VODefXCSPTzXEANhgFT8azqohf6BUbGYDD6BQZr+ukLb7MwUoOp7CP8pxTBSPTjicDgGIzEf4AdC+DsgzyMJOuQtoBd6KdPDYahH21lMJK20C8wVYNhAlPLYCTtZPWzD4r042c1GNkU9qcGU6vorwdGoh+P0aWBcfYNfdYTCxjTeKHFAo4lwAfjlH1ZFgsEpsYuTBD9tKXpl1hQj36JBZp+vEC/xTIX4gX+WyxzYUxkY4HFsiRLXWKBxbIky5u/cxbLbF5GzORvic3LkvOPKvOaw3Fe1m5AsmPHTm7kmPGucego191Pfnf7K91WrVjiFsybU7sitI+HTKPHHu/6Apv8ScIWD4aen/uUa9rY8hYeyW448v8//wOfcn0ah4UNeXHfXvfj977lkGzU5Asudy95w9vcnddd7VY+O7vN+nzt1d90y2Y/7u6+/po2a1Nr6LKrvux69Onnfvr+v9M+btXPuvXq7dA/74F73IM/+k6lNgCLp7/x7W7QmAmuc7fubte2Le65P//Rzbrlv6O/35p+oo3ZB+aAOWAOmAPmgDlgDpgD5oA50G4OACCABgAeFs5Y6NdgXjYbqmgBf/DgwWHRBQABgNNgGFfgsyABSCnKhhIYCUCJwTwAhOgHRqJfg2ECI4F/wBO2QQMQ6Gdb+SymvyqMBJgBM1iMWrNmjZoZloWR6AcUafpphwXwIhjJIMrr12Ae+uuBkVX0C4zEf7YjX7L6BUZqMJV9KTAS/zX99cBI+qXgvwbDWPRiLNYDI9lHLLxrMBL/gWHASPRrxxKf4z99Fy3g4wXjtkg/xxD6OaboC22xBXCAKsc7+yimnz5FfywWiH7Gbpl+/Mcn/NdigcBU9LOvy/QTC0R/MCbzn8WyjBn+bT4WaP5bLEs9k1hsscyFixYslqVjg7hosSzxw+Zl6bjIzmtiF4lROx+LtXkNccfmZYm3h+u8rGO66w/tu+N69XGTT5rmuvhJ4/q1q33qblc3YdLJbtqZ59aEHH/CVDd0+Gi3besWt3nTRjdwcKObfs4lDlB5tJZbvvBP7mcffJtbv/iFQ7qJHTq021A4pNtZT2ecKNZbTr7sdW74lNNClummlctcd5/tOvXVb3Qve8f7ok21pp9oY/aBOWAOmAPmgDlgDpgD5oA5YA60iwMs7rNQwkJIEUCpCiMbGhoCTAJArF69OgogACgsOJTBSBZ7BEZqmW0CINAvMFWDeVVhJPqBLYCyGEABnEhmnuiPZRbSL/pjMFJgKvqBeACsmH5gEvVjMI8BNGTIkGb6Y4teoh9AR3uafvYR/nPux77U/GcBn4VaPEH3gcBI9Iv/wGA80/TXAyPxX/RrMDKvHximwVS8F5gnMFKDqRxL6CM7qAqMxFMWMbVsInzluEP/qlWrCmEqUA8Yif8xGMm+FBhJvxpMxX/0F8WCqjASLwSmlsUC9FeBkaI/BlMtlnEUJUWOJYtlLgB7i2XJuLBYJkdI8+fEFV1YYbEs9QxgZvOyxA/+vtm8LPHiSJ+X9eyZXiRWNC9rtwzJnTu2uYfvv8tt2riudjROP/fSAB27klm2c4d74bmn3eMb7/dXU+4JdQYManBnTL8gZE0+9fjDtd87mt7s8ycL8lW0XYCuwRMmuw1LFrotHujmS9cePd2gcRNdB5+Juuq5Z9we72e+dO7azTVOPsmtW7Qg/1Hd3w8YNdb18vtnzfzn3PZNLR/i3sGfOA494WS3et7cqJYhk04Kv7t+cVxPWT9Z4V39QYCX2W1nm4v64QSlYeIJbvf2bW5bKzJxX3jkfjf7jt+6jcsWBylkP775Gz9wY886p1mW5YH2k91Oe28OmAPmgDlgDpgD5oA5YA6YA+3rAPN7AJbASKCBBmPqgZHACtpdsWKFmhkGeAC0ZAGEBsNk0QsAAdgpAigCIwFYRfolszCWGSkwD1ADANIy2wBv6BeYCpzS9EtmpMBIDYaxbUAD2hQYqeln0Qs/BEaycKpldop+AERMP14JDC6DkfSL/hhMQg8LtaL/QGFkY2NjgGFsG/o1MIt+gamMCWBqEcxDP21pmWHASNFPX4wzDeax4Ci3ZozBSI5k/GdRDv14pumXRTv6LloAZ4zhP8fSypUrVTAr+qvASIGp7CN802CqxAL85FjS9HN843+ZfnwVmBrTzzGUjwWa/3gv+mOxwGJZ878lEgssliUw0mJZMj4slqXHicWy1Aubl6Ve2Lws9YJ3x8K8jPnMgAHV7ljRbkBy166dfoLa/NYj69eucn369g8TMoDk+nXNQduG9WvD3iSb8lgtgL1LP3m1a/AwUgpA8ravXFV7zuHZ7/qwG+cBWLYsfXKmu/eGr9Wu3Jt8wWXuzLe8k6dyh2o8J7E1ZeI5F7mz3vou19GfAErhFqUP//h78q3r459NeeV3fxFOAJjEcQvUh278bu3zs9/5ITduepoZu2vbVveHaz/nNi1fWqtTpZ9aZf/moo9+1g076VT33J/udA//5D/DR2X9DPS3EL7sU19yPE+Tsm1jS7AaPij4b/nTTzT7lGdP7vTbAxyV0hb9SFv2ag6YA+aAOWAOmAPmgDlgDpgD7esAC/hDhw4NMAkAEYORsmgHfCq6Tatk49Du8uXLVZgBgABU8Eo2FHBEg3lZGAkYAZzls7noh4USYBhtoF+DGUARAEoVGAksogBTNRgji3atgZF5/YAy9NMmutlOTX8WRpJJF4ORsmhEPwAgTT9eCYwE0AHXNJhHnfwCfl4/i3ZAjzL9ZFLIbWaLMjsZi8BG+imCkQAsFo8Epmr6qcN+L4KRjAfGLPoFBmv+V13AHzZsWBiLgD7818Ay4wtv0V90BX4VmEcbop99DajTjqUszIvBSMa8xAKBwTH9WRjJ/tTAeFZ/7MIE0c+xJJmdZfrZxlgsEP0Wy1IwbrFMh5EWyzqF2M/fkvyFCYwZi2W4kBSLZeJE8vxYybK3eVl6kZjNy3qEC4uO5HlZh457/DlCtXnZYXOfznAV1tCR/laXe9xWD3G0MqRxePjx2jUrtI+PiZ+d+po3Bxi5efVK9+f/+KZb/fyckJl4joeQUvbs2B5A3B++9tnwTMh1i15wI06Z5iZfeEWoQvbkGR5Gknk646Yb3by/3BtuLSq/X/W13/BRbvrb3uNPdPa5uffd4W794ifd03fc4rr4DNds6d3Q6BY//oi7//vXh8zDiedc6MgcpEy5/G8CjGxaudzd++2vJ7/v9V38sX+tNVG1H/kFgC0wcs7dv6/ByCr98PxOnlUKMH3s5h+77vs1SruteUV7t+N6OfaXlIPRj7Rtr+aAOWAOmAPmgDlgDpgD5oA5cGgdkEVHgEIMoAAjAShtBSMBWAIgYgAFGCnZULFFL5wS/QAIAJYGk7IwEphalBkJLOL8ftmyZSrMQzcAiNcimAqwkduZxfTTD/qBYUCYmH6g4ID+KUxl4UsDQMBIYB4lBoPpS2AwMBI4pcG8KjAS0AcAEhhZpD+b2Yn/2gK4wEj0x/wHpmZhZAym5mGkdstXYKrAYMBbDGYLTKV+UWakjEVAB/5rMI/9I/qBkTH92QXwWGYhx6PAYPpinGkwj+NIjqUiGDl8+PAaTAUgavo5Pmr6m5LMVG0sZvUXwUiJBcDUmP4sTBUYqY0f8b9qLJPMVE1/1QsrRD8w1WKZxTJiF8ViWeID/2djgcWy5lneXFjRFrGsLS4Ss1iWjNl65mUyr2FOZvOy9CKx2LzmcJ+XderU0V/sVG1e1m4ZkmloTd7x/MgePovsiRkP5D8K33Mb15NPe2l4nuSShfPCz5hIT5kyRa2v/XDBggXhZEH77Ej52fiXnxek3vblf3a7/G1FF/71QffW7/zMNU5KfZCMQKBf78FDPOT7rTv3PR/ztyKd7Ob88TY38dyLwgnivAfudc/c+bvQXsP4Sa5P47C6bHjJG64MGZYzb/5JgH/88volC1u0Qcbjn75zXfh5w4QT3KTzLnEDR493ZBOedMlrnCea7kGfMbl39y63cMaDbsjxJ7pBYye4nv5Zodw2tWo/dHDFZ74afvfJ237lnvjNL2payvrZ5+Es/TWtWlG7tSq3oJ103qW1Nup9QzbrJf/kwarfvj9/7xvh17nVblv3U68uq28OmAPmgDlgDpgD5oA5YA6YA23nAGCNBTEAigYzJJsLGFO2gC8wLwbDuHKaRS9AigAIDYZJZiTASwBEPpsFB0aMGBGyzAAKQA9Nv2R2op9FO7K5tAVAdAGLBEZqMAavAFi0BYAAoGgwAxgpmYUxGCn68QIP0K95ITAVL2TRS9OPLtYY0L906VIVzAIO2U70A+jwVtNfBUbSDwAL/fjOQrOmP8BU7wf6yzIj0U9ZsmSJui/RDyhCv8BUTb+26JUfP+gBYKEfiA1M1fQDIxmP1C+Dkeij4L82Ftk+FufRz0I07cX0M27xGF+1WwbTBtAD/YzVmP5sZmcZjGR84xMwWNMvMJW+A0zdoOtnG0V/DEaimzEr+oHBmv95GEm/+X2J5xIL6ollscxOxpjFMlx1IavcYlnihcWyxAf+t1iWenE4xLIYDLNYlu4nm5elXlgsS73IxjLmghs27FLPEZhXyryGedlhASSHjRjjxk080S1e8LxbtWJpulX735G1dtbLLwrfPfbIfbXJE5MobZLXooH9P9BOOmJ1D9efc+vP3T4DEhgpZcua1a7v0OH+eZEd3Yv+RHjkaWe6c/7hw67z/sm81OvWs1d422/YyPC6bPbj8pFb88JzdQNJMh8pz/uMwqKShZTrFs0PVbv5275QuvrsQX+W4G+V+sXwffa/gR5Kbnv8UVe1H261CsikrHx2drap0n72+oOGsnY/7Ob9kidmHBCQfOVnv+q69+nrZv7qpxpRuiEAAEAASURBVDVQO2DUOJpu035Cg/afOWAOmAPmgDlgDpgD5oA5YA60mwMAFA0GACAEoAAjASjaeWmVbCIW7QBAwAxgJABFgzECIABAALMYgBg5cmSAkegBoGj6WTxgEYE+0V8EIwVA0JYGI4GpACDaAhABUDT9WZhaBCNHjRoVYAxt0KfWlujHC8mA0PwH7AhMjcHILEwFRlaBqWwj4E8DQPjPPsV3ALSmH5gK3EQ/C6ZFmZEsCgHgimCkwGA0oV/zQmAqbTHG2Na8fj4DYKGfNRmgmaZfW7TLt8VBy7gGRtLu4sWL1bHI9gkMBkYytjX9jFf6pS2Bkfk+8VNgMAto1NP0azA13xb6aUtgakw/40tgMMckcFPTn82GisFIjiGBwRxrMf0CU9legamafvalwFSLZcnzSxk/FsvSC0Mslvks+9yFIdqxZLGMiJgUi2XihAu3WyceE4ttXpbMK/HC5mXdahfpHQ3zMuaLx/VM5nLp6HfhPCI/L2t3IDl4yLCQ+bhqxRI3Z/ZjWb3hPQP0jOkXhOzJh++/M2RISiUmXrNmzZJvj5lXJkaxwrMcgZG8ctvRxTMfcR39id9rr/5m7VeAlvnSoUMr7t77YtJKh45xPdQg87GobF23xt3qMz7zhecvhlKxH+o+ccsv3dRXvcFd8KGr3E2feLe/Rez2pA3/f1E/Q084pVZP3gB4W1t4hiXw8dl7/uBm3/6bWjOq9wfQT61he2MOmAPmgDlgDpgD5oA5YA6YA+3iAABCgxkACAAK528CILQFzCpX4HNeDPTgVQCEBjOAkXzRZ9miFzDJX+MbAJDWFoCRBUXaAkYCNDT9VTIjBaaiX2Cq1icwkkU7+iyDkUAZ9ADgtLaAkaKfRS9gsKY/wMjuSWZnDEaKfnQJTNX6zN5mtmgBf/To0WFfMm7oU2sLGAlco09gJDBY0w/kLYORAoNpS2Cq1mcVGMlBBgxmXwJTgTZaWyw+0R59op1t0PRXWcAH9rGfaItFuyIYiW/Ui8FI9AOD0Q9MBQZr+oGR7E/aYuwwhjT9HJfAPMqiRYvUWCAwlbaAqUUwUjIIYjCSNgCI6AemUk/Tz3HE8UR9+uMY1vRLZiT6LZaVZ3lLLLBYxohxzmJZ4gP/WyxLveBvr8WyxA+bl6XjwuZlqRdH47xMm2Mwj9XmZa0nLqmHrX43YGCDm3bmuW7d2lVu1mMPtmiHidO0s17h+vpbaf71oXtc06YNLeocrT/Yun6dz3js5HjeY7bs9JPXzv72tWRKSuG2rPv8iQCwi2cWkhm5ZNaM8DzGzWtWuXFnniNVw+vG5UvC64iTp9V+PmjcxNr7qm+aVi0PVSeefWHVX2lRb9fWLa57336O27oCILNfUrlqP3v9ycSTv7vZPfrz/3Kdu3ZzF3O71P2lrJ/1SxaEmpJhyTcjp75k/2/X93Luez4anmG54JEHgpbsb9fTT+PkKe4NX/+P8MXtY62YA+aAOWAOmAPmgDlgDpgD5sDh54AGIwEQABQWrQWgaCfqyaJdr1AvdptWzotZ9AXAFQEUARD0CUCJAQjJjKTdhQsXqDBDYCptCUDR9EtmJ/Vi2UR8Rp/oLwIosmhH/aJsLsmMTPQvVPUDU9FGW8DgIhgZMjv9RbYxGIluAVhFMFhgKn0WwVTZl4xkAJAGk2TRjrYkM1XzX56zhhexzEgAigCsIhichalkRjJutT7HjBkT9iWfxWCwwFT0SwaE1hYL+AJTY5mFLNpRj7aKYLDAVOoBI7XMTjwfO3Zs0I/vMRgsMJW2JDNV0y+Zkfgfg5HASvYTbRXBYFm0o14MRqJf/C+CwQJTaQsYHIOpkhkpx5LFsuPCfrJYllwYwvixWJZcGIIXFssslhGDKcRM+Vtu87LkIiXmGvK3RJvX2LwsGTv8b/My5zr5k5YvpJYcunc9/a06X3rOJaHDRS/Mdb38rS379O0fvnbt3OH2esA2ZeqZbsjQkW71yuT5DfJ5d3/14rat+7PnDlDyKX27hStMtcnlATZ9QL++y0/+x09/hRvuoaGPc66b9wu42NWfWDVOOsmNPfPl4datL73yPe64gYPc8mdmuQWP3O+2b9roplz+OtfLw15A3vGvuMSdcOEV4XauW9audvMf+pPbsGxxqDNgxOjwc57pOGTiCeHWqXxOvSpl/eIFbvL5lzrAGcBsp4eLJ17yajf+pa8ImZm0MfU1b3KbV68M2vh+wKixbuSpZ4TPN3odL764zwFGJ7z8grCdZCXSxhlv+t9u7r238yuuSj8nXPRK18WD2qf8syPXLZzvhniPGiZM9id3e93q5+eU9sMtWye8/HzX229HH5+1O2DkGDf5gsuDP/QP4K1Spr76jeH39nDbFH/b2GEnTq198T0/r9rP4PHHuwkvO8918eN9waN/Cc/TrKLB6pgD5oA5YA6YA+aAOWAOtK8DK7bvdUN6dHKdmMi3sjy1aWdYGGURjC9O8rNfrWz2gH6Ncya+WGiQV8CVleYOkM0FqGB/AXXIlNMKMDK5hZELAAJYpJVx48aFtgAQACCtACAkmw6Yx8KpVgRG8tmCBQvCfszXAxABgNAPjGRBWisAP8ATBZgKrMsX2gAA8QqMZKFfK8BUyaYj+w0IpxWBkXz2wgsvaFXCrVcBQPQJjKQ9rZDZCfijoAt9+cKxN8YDONpi+9hOrfTv19/1H5Bko+EX/WpFFjD5DP+1wqKdZAPiA/tTK9ShLiUGI4Gp9Il+xhegSyvASMmslcxOrR5e4AnH/8KFC7UqwVPJDAbmAYO1IjCVz2IwkkU79jn6gZGARq0wdhhD1JPbzGr1ZCwSwwCIWmFMM7ZpC5jHl1YEpvJZEYwE+tEWMBJtWuHY5RimnmR2avUkFgAO8UwrxBTJDMZ79oFWBKbyGftSW0C2WJY6x76R8WOxLMmMJL5QLJYNDX938MJimcUyxgHF5mWJD/zPuYLNyxI/juZ52a5de/wdIxIwXTYva7dbtvbwzzPkDzrlhJObZ6I99sif3E7/nMQ+PjOS0tA4InyFb/x/W7c0uTX7s/PkZ0fb64o5T7oXHvqzG33GdHfWW98doN7/fPZDPgPwpgAPgYAve8f7wmY3rVrh7v/P62sWPHnbzf62pW90573vE+FnADngHCcNlD0e+D5043fd9Lf/YwCG/IyMzOMGDORt5bJp5TL3wA9vCO1MOPsCxxdl7n13NGtDu02p/OyZO3/neg9udJNecbE7/U3vqP3epuVL0/dV+gmLI+mtaO++/ivuzd/8L3faa9/iFj/2iKvSz93/9jV3xaevcWPPOjv0DZgFtGoT85q43JvB4yeFn5CletKlr2n26axb/tvt2bXTVe0nmxW5db1+Et2sA/vGHDAHzAFzwBwwB8wBc8AcMAfa1QFZwOfcKwYgOA+WbC7qASmALfkiMIyfAyM1AEFbAAiABm1JNlS+LeoBUMg24/yGtuT8MFsX/dTjsxhMpS3J5qIeAEWDqVn9LOCTjZYvtMWiHX7QlmR2avUAKACqIpgki160FYOp9Cm3k6MekE6DqXn9GkylrZCZ6mEkbUlmp6YfMMVCFPoBQFoRGElbMZhKnwAz6lIPXWRo5IssevFz9o8GU2lLMlNpC3iLb/lCPblNa5F+AC8wkraAqRqMpC25za/oZ3zni8BIfs7xocFU2pLMVNoCBjNu84V9KWCzSL/ASNoC6mswkj6BwYB72mJca5mFHGvsc9qKwVTaksxU6gGDiRv5gn7AMoW+NJhKW+hnbNMWIFKDkdRjYZhjHf2xLFeLZeleyMcCi2UWyxgdHEsWy5LjxGJZGi/wwuZlqR82L0u9OFbmZcxrmBszF4nNyzr4KyQTSpX6c0y9u3JUH7fJT5S1CeThbEQXf3XB4HHHu/VLFrodTfrVrw0+63Hj0kVu1/aWE1q2jedMUmeDr1N7XmMrN7rPkKGuZ/+BrW4r/PHy2ZPcjnaD36aY5kPRz8Ax48MtZMnsPJilrJ8rPnONGzR2Ysi0vPO6qw+mFGvbHDAHzAFzwBwwB8wBc6ANHZi5bqc7uX9X16XkWetFXf50cVOAL5y8sjDPgihfzJv5OpSFE0q+WLzmC3jA+ROvwAAriQPcmhEAgUcACC0bin2IZ0C4ohN19jvZjOxrfNYyI/lMAAR9btroAcrGltlc9AlAEQABwNIAkACIMv0sNLDYRj0WGjSAgn4AEKVIP+0IjIwBFPQDUPCXPmMASDI7qYMmLTOVtugP36hHHQ0Gy6IR+wjYVwQg8IN6MZhKn1kYrAEg9iX62U50AQW1zE7aAgYD/qjHGNNgcFZ/LLOTPgNM9eOxSD9toV9gsAazaYtFR8ZZmX6AGTCVesBsDQYLjERXkf4sTI3BYPQDs3mlzxjMQxNwgTrAYC0zFf+BwWwr9YCkWmYtMJLj98V9L7od/oLwKjA1BoPRTVyh7yL9jAm0UScGU2mDbRSYCqTWYLbFsiSm8z/+WyxL/GD8WCxLvbBYlnhB/M9eGGKxLLkwJMRim5eFmIEXNi9L7lhRNq85kudlm7fscCOGDwkXWrGdRfOyzkn4sP+PNAd2+xPc5U/PKpRNZmRR2ecXEbiNaL68/trvuu69++R/XPue51X+/MNvr33PG7I0+WptCQN1kX7LnWybh6IfbvmaL9z2dtrrr8z/uNn33GJ2xk03NvtZ0TdaP9n6PA/Unxm6v/zw37M/tvfmgDlgDpgD5oA5YA6YA+aAOXCYOSAL+JzXAIiKYCSLDQBdFu20bC5gDACFxV9gQSUYSTaXAiNZTBcAARgEjBTBSPQXwVTJ5kJ/DEaiH4DCImVRZqRkELBQFYORoh9Yim4AinYxscBI9JctetEvbcRgJPqBSZQyGAncRD+ZdNptZtEPpGN8oB8YTP1swSeBkehnTGgwkrYEpqI/BiMF5tFHDOYxtoDi7E/0xGAqbaEfwIZ+wCwasyULI/ksBlPRLzAV/TEYWYN5vpsi/bJoR1vo126Ti34gL6/ojx1LVWAk+gVA0Bb6NRjZLBZEYCT+C0xFP4t2WmYqugFA9F0UC7IwknGoZXbShsBU0V8EI9mXFssslsmxzvixWJa4gRcWyxIvLJbJEZJkzDa7SMzmZeHvF39LbF6W3H6e0VI0rznS52XMZfv5RxjIvLJwXpYeOvbOHEgcWPXc067n/tvlap7s3dPydjBavaPpZ9yeds38uYWbtH7pwsLP6/1wzl23uabVK/ztdO12rfV6Z/XNAXPAHDAHzAFzwBwwB8yBQ+VAFkDEbs0oi3YCIwEQGowExgBQWPAsgnktFr2U59wBMwAoLBAAHgBYGoCQzEhZNNJgKnoAKCyW7N3jYeq6tWGBKe8x+gEobG+R/iowEv0AFNEPAAKk5Auf0yf68VTLjEQ/GRz0SxsAPy0zEv3AYCAbi0babVrZNtoBDgKTyEbTntmJfmAw/uI7MJj6+YJ+9jn6gVKA3nxBP/CQ/Y5+6miZkegHBlP4XLtNK/pl0Qs9wGANpop+xjf6aUuDqVUyI9GPX4Az9LOP8Ddf5Fji5zs9zIvpz8JI4Ju26IUX+M8r+tmXeJwt7OeqMBIAQV30c4yUwsjIMzvxH/0cT/gPTNVgJLoBQOwH+tLGIvrzMJL28oU20M++qqrfYpnFMhlHEgssliUZsxbLkpFhsUyOkAiMtHmZzcv8EDmW5mWbt2x3e/ftdU1+Xlw2L7MMyTR+2Lv9Djzwg38zL3IOkI1alpGa+5UD/vbx3/z8gNuwBswBc8AcMAfMAXPAHDAHzAFz4OA6AAACdMQW8IExAiCAATEAAYwBoLD4G7uCGgCRhZGxbKgsgADGxABKFuZxBXsRjGQbRL8GU9EPQGF7YzAP/QIjgTHo155zxwIOAAV9wBgAFtuRLwAWgXllMBIIh35gMNuaL+inLRZZY/r5LA8jY/qBwSzgox9f6TtfsvrLYGQZTKUv9ONxEYykHeCmwEgNpuJ/Vj8wmPrZQj9VYCRjERjMuGUfAoM1mIp+wDKFY0m7zSn+sx9pDz2xzFT0A7PZp/hPWxpMrQIj0Y9fgD/0A4M1mJrXj2f5Igv4Qb8H++s36Jmd6EY/20Ff6NdgalUYCUBhW9Efg8HoB8ZbLHNh3FgsS0ZvPhZYLLNYxsiwWJZGd5uXpV7wLjuvsXnZsTUv29S0zW3csNFfZLW5+aDw3+XnZQYkW1hkPzAHzAFzwBwwB8wBc8AcMAfMAXPAHDAHqjnAAn4RzBMYCQwAXmnZUMAAABDwA1gDzNAAhMBIYAxXH2vZUJz0AyBYFALGAFB4zZfsolGRfjK52Ab0A4Bi+gEowEj0azBJg5HarSVFPzASGFOmH9CE/rLMSPTjlwZT8R8YzCJrTD+fVYWRwFTaRH8MpgKIgB7oRxPbmS+MB/wXmBeDqfRFW3hcBPNEP3A0ltkJDMvr12BqFuYxJrTbzGZhJGMQ/9GXL+xr9FOK9EtmJ3pimZ3o51jiFf8BKBpMzernWMLbfMnCSPRTR4Op6AcGUxiLGozk2BCYKvq1DIIsjKQv9GswVWAk24b/sVgATGVb0c8+wpN8Ef0Wy1w4bi2WJSOEWJyPBcTRfLFYljpisSz1wmJZ6oXMa2xelmQZyx0rbF6WziuPhnnZjh0+Q3LPjjAXTUd/cpFPfl5mQDLrkL03B8wBc8AcMAfMAXPAHDAHzAFzwBwwB+pwoAjmCYwsAhACI1m8A8YAsDQAITCSz4pgpAAIwAMARQMQAmPYzKIr2KvASBZgWbRmwQ39ABQNpgLDqAdAiWV24kFWPwBFg6myAC4ARYORwCT8BwIJTNVgJPoFBpfpB/SiH5inZUaKfhYd8R3IWLSAj/4yGCn6AU6MtXxBvwCU2FjUYKqWGYl+tpE2gWEx/cAwAC76y2Ak+11gpKYfr9CPRj7XYB6fZWEk2rXbzKJfAIro59jLF4F5cizFYKRkdgqMZHzki+gHBpfppz2JBZp+YgH62Q70M67zMJX+8/pjMJL+qCswkjbzBf3sS/QzFjl+8yWf5c3Y12CqxbLUOYkFxCpigcWy5JbfAiC0WGCxrPn4sViW+MHcwmJZ4gWx2OZliRdykZvNyxI/Dod5GX/runTungja/39sXmZAsplN9o05YA6YA+aAOWAOmAPmgDlgDpgD5oA5UN2BsgV8FmBjC/gswLKYwoIbC7QsWmsAQmBkEcyjjSzMi2VzsUAOAKIAkzSY15pFL/QDsDSYWg+MBJAATmIwVWCMwLBYZiEwki9gDP6zrflCXyz6Ai/RH4PBwLB6Fr1EP33nS3bRCKjDPs8X9LDoSL+0QSapBlNFP/tLwCa+ZIsG8zQYCUxi/AiMRJcGUxmLjB/2c1vASGAwGtGvjcV69LOP2A7AYRX9+K/BSI4l/GfcssCG/xqM5FjK6tdiAfoZhyyo42cMpmZhpOjXYCqa6BP/gZpFMJJ9hX7qaDBSYgELu0WxAP34YbGs5S2ntSxvgZEWy1yIrRbLkohssSz7l8mF+GqxLPFEYjHfFcVijiXiMbGY2KPNa/gbzrxG5pU2LxsQ7hhi87Lk9vlVLhLLzmsO1rzMgGTzeGjfmQPmgDlgDpgD5oA5YA6YA+aAOWAOmAOtdqBqNpHASECEwEgNQAClWFwSABFbAJcMAgBEDEYCw2iLhVFgjAbz8jCyCOYBsFh8F/0aTBWYV0U/i3IsGgFQ2I58AbCgH4BSpJ8FO1m0K9IvMBgYBsBCY7bQj+hn24BJtJcvAiBEfwymCljm99sKRrLoKDAypp/9JPqLYCQABRiGfg2m5vVrMA+YyliURS/GK+MjX/AK/6kvYFODqexH2tvrn7mI9iL9HFOiX4OpAvPopwqMFBgc089Y5HhBv3YsZWEkxzbatcxIdLOPymBqVn89MFKDqVVjAf6zCC6ZnfiWLxbLUkeIBYxXiQUWy6pfWGGxLLllsFwYYrEsyYzMXlhhsSyBkUXzGpuXJfHY5mXp36X8vIy/S7F5zaGalxmQTPePvTMHzAFzwBwwB8wBc8AcMAfMAXPAHDAHWu2AAAhZwAfGxBbwBUCwKADY0WAkMIDFAQAKMEODkSziZmFkLBuKRT3aAqAAMzSYpMFITT/gSvQDw8r0A8pYQIvBPNEvMFLL5hL9eIx+LbMwrx+/tAwC9OMFC1aiX4Op+M92oh//Y/qpUwYggEn0CeSkLc3/qpmR9EWf7Hu2j7Y0GCn62Ta002++AMFoS2Ak40eDkegXGFykn31JXYF5+JsvAiNFfwwGo5/20L9h4wYV5uX144WmX8AyWtDPduYLejh2RX9s0Q6Yx75kfwnY1GAqbUkswP8iGAnUIxbQpwZT5cIEiQUx/fhVZQFfYgH6tWPJYlnz0SGx2GJZktlmsSwZHxbL0uNELqywWObC32aZ1xRlqcu8xuZlLsxBiCs2L0svTDhY87IiGHmo5mUGJNPYeVi869s43HXr3Sdo2eevoFu74PlDoquTn3j3bhjqNq9a4a88bPmQ6taK6DtshNu5ucnt8F8Hs/TsN8B18ieTm1evbNNu0L+jaZPbuaXlVYBaR527dnO9Bg9xW9ascnt2tbyil9/p0defoDU01n593cJ5bq/yYPBahVa+6dqjp+s5YJDbtGKpezF3pW8rm7RfMwfMAXPAHDAHzAFzwBwwB8yBiAMs4LMABTgALsZgJAsM1GPRDlgTAxACkwAQtKXBMBYOgEkAEiAe9bQMAha9qJdd9IoBlKz+GMwb0D/J5hL9GkwFxLCd9IN2Tb9kE4l+vNBgJICIttAfg0l8Rh3qFt3ODP/xgr7ZPvos0g+AwFcN5tEGbbEoje/Ui+mnHmMkBvPQj2f4L/pjMC+vX4OpAsMEoGj6gXl4ll300jJT0USfwFT2owbD8lfg44Wmn31Nn4xdYBhtaTBV9AcY6dvSYF4WRrLARp8xGFlFP31WgZG0lYWRMf0cwwKDNf3EALzILuBr+iUWEHrwn+3MF/ykrTIYyefUQz+a8F+LBdTJxgLtwgR044XFMhfiCZ5ZLHMhTlssS45QYqbFsjRaHa6xzOZl6T6yeVnqhc3LUi+qxrKumYvciuZl7QYkO3bs5EaOGe8ah45y3f3kfbd/LsKqFUvcgnlzapPRgYMb3agxE12v3n3di/7fyuWL3cpli9yWgwy3UrsP/bvzP/Ap16dxWOj4xX173Y/f+5ZDImLyBZe7l7zhbe7O6652K5+d3WZ9vvbqb7plsx93d19/TZu1qTV02VVfdj369HM/ff/faR+36mfdevV26J/3wD3uwR99p1Ibo6ad5c7+hw+5v/zw3938B+9Tf+eUV73eTTrv0tpnf/jaZ92a+c/Vvm+rN2e85e/d+Jed53796Q+4LWtXt1Wz1o45YA6YA+aAOWAOmAPmgDlgDuQc4ESdxWgW2+qBkYAFLRuKBUzao1BHg3mtgZFAKdrTAARgQQAEkCIKI309QBCfF+mnPfqhLQ2GHciil6ZfAEqAeet9ZuTWls+MBBxSL6tfg5HU4astYCSe0hYwMgaTWPTCL4Fh+KrBPPRTD+8ARNTT9FOHMYR+/NdgWBbmAVOpF4OR6GeM0x9f+ZKFwQA12tKuwBcYmdWvwVT6Q3+9MFLTzzFZph84h2cC89jGmH7qCcyjngYjqUO/6MeLKjCPtspgJG1psQA9bKPop17swgTqiX7qafqpY7EsGeWMQ/anxTIX/j4wNiyWuQCe8cJimQsXJHCMyIUJFsvqu0jM5mU2L5M51ZE+L+vUyc+lfFwE8AuMjM3LOspGH+rX43r1cZNPmua6+In0eg9LunTp6iZMOtlNO/PcmpQGny3Y20OmTRvXuS1NG93Y8ZPdy8+7wvXzWV9Ha7nlC//kfvbBt7n1i184pJvYoUO7DYVDup31dMYJ18Eoj/7sB2EfP/X7/zkYzVub5oA5YA6YA+aAOWAOmAPmgDlwiB3gNlNVAAQLmGWLdgIjOR+JAYgsjORknwVADUAAuKoClLaCkWwjXxT0azAyq5+MQurFMgtpC4BStGiH/830V4SRGgzGL/aBZ6lR/SxCU68sM1JgJMCuSD9tZTM72wJGCkA5EBgpMA/9gDANhvEZ/ot+9mUM5rEvswv4GkylLfyvClPLFr3oE4DCMcJXvqAf/4F5AEHqaPp7HZdkGTN2BQZrMJW28E30l8FI0a/ByGwsQJfmP8cGnlWFkehnTNBeHkbiDW1ZLEtGCWOHL4rFsuTCCotlOoy0WJbccpq4YrHsuHBxD17YvCy5Ywjxs+pFYjYvS57ljWcxmMffpcNxXgaI7N69HEaiv90yJHfu2OYevv+uABuTP/XOTT/3UkdWZNdu3d2unTvcs7NnujkvPiYfezjZ373sFZe6kaMnuI3r19Z+fjS92eevoJOvou3q7m/rOnjCZLdhyUI1+43bdQ4aN9F18Jmoq557xu3xfuYLtxdtnHySW7doQf6jur8fMGqs6zWoIWT6bd/UcpLfwZ8ADD3hZLd63tyoliGTTnL87vrFcT1l/WSFd+15XPAyu+1sc1E/nPQ3TDzB7d6+zW3b2PKZEtn2y94f58F5v+GjfMbpU81uycqJIZr27tlV2ARa2Idd/MG8au4z0Vvpsp1Djj8x3FZ2zfy5La52znbS2R9bnIzt8ttnxRwwB8wBc8AcMAfMAXPAHDAHDtyBwYMHBxjD4j7Pr9MyC/O3Nowt2nGSDgzgXIDnumkwSQAEMIzFCvqMwTyABvUBGQAxDUDwXEBgEnCFtjQYxiIDoCWbWagtGqGfPov0A0SAHugvgpHAvKx+tiGvP5wzef3AGBaEY/rpC21l+gUm0e6aNWvUzDaAGvrxBP3sS81/0c+iEXXwX8vsxP+sfg2GoR9tVWAe/VIYPxoME5iK/qLMSMYh/qNfYIymX2AY4wH/Nf3ZzEjGNPtSW8DHC/TTD/q1Y4l9OHDAQNe9R7oAri3aoZ1t4PxX9OePdraNPtHHIjr6tQVk9g/jR2Ae+jUYKfoZpzH92ViAV2iLLeCzDehHV1EsEP20VaafcRjTb7EsHSEWy1IvLJalXlgsS72wWJZ6YfOy1Aubl6Ve8I450rEyL1u9ljnItjDfLZuXtRuQ3OWfr8dXtqxfu8r18c/XY5IHkMxPdvfuTZ5tuKcNn3GY7f9IeA/Yu/STV7sGDyOlcDvO275yVe05h2e/68Nu3FnnyMfhdemTM929N3yt5unkCy5zZ77lnc6fKYbPeU5ia8rEcy5yZ731Xa6jn8hLee7Pf3QP//h78q3r459NeeV3fxFOStmn3AL1oRu/W/v87Hd+yI2bnmbG7tq21f3h2s+5TcuX1upU6adW2b+56KOfdcNOOtU996c73cM/+c/wUVk/A/0thC/71Jccz9OkbNvYEqyGDyr8N+1v3+qfFdkv1GSb//LDG9wLD/25wm8mVUZMPd2d948fdx394sH+RtyMm3/snrnzd7U2AJGXfPzzDkgrhed//vKj71Sh74mXvNqd/sa3u6aVy91v/uUj8iv2ag6YA+aAOWAOmAPmgDlgDpgDB+AAsII5PwBLg3myaAdI4fMiGMmiBQAiBpNY9AJ6AJOqwEjOrYEPQAgNoDQ0NAQYA0BBvwaTqsJIgBn6i2Ce6McT9ANQYjAPmFQGUwEoLBCzbXgW018VRpbpF5iKfnQDirRFF9oRmCowUoOp6Ac2Audi+gWmVoGRgGX8X716tQrzBKaivwxG4r/ASGBYfn2GfvL6NRhWzwI++imMRQ1Gin6OJdEfg3nsA/QLzMvr5zjjWMJfgakx/ezLLIzUYCpelMUCdAvYL4ORAlNj+gWmcnziAeNHO5ayMLUMRpbpt1iW/qGwWJZ6ocUCLRZbLEs9s1iWemGxLPWCdzYvS/2oMq+0eVnqlxaLY/Ma5sXEobKLxOqZl+3evSec42gXLDKPys7LDpv7dGLakKEjfRbYHrd1y+aamwC44aPGueNPmOrOfNmF4edLF82vfX6svTn1NW8OMHLz6pXuz//xTbf6+TkhM/EcDyGl7NmxPYA4nk3IMyHXLXrBjThlmpt84RWhCtmTZ3gYuXfvHjfjphvdvL/c68i4rLeQ/Tf9be/xJyb73Nz77nC3fvGT7uk7bnFdfBZetvRuaHSLH3/E3f/960Pm4cRzLnQ8n5Ey5fK/CTASSHbvt7+e/L7Xd/HH/rXWRNV+5BcAtsDIOXf/vgYjq/TD8zs7+RN8gOljHv51369R2q3ntXufvu7Ze/7gnvjNL9yL/uT+Ze94v287AZ1l7TDmX/Hef3Id/MkT2zDzVz8Nx8Xp/hmfPfsNqP36hR/+dICR632W7D03XOvu/tZX3VafOZyFw1L5lFe+PsBIMmp/+/mPyY/t1RwwB8wBc8AcMAfMAXPAHDAH2sCBVatWqTAyZHP5q6NZyC8CECwMCAASGJkHKCzaCQDiZD8GIFg8oL0yGDlkyJAaQAFgaQvIGoDQFhpk0QjIE4NJLOCjvwygoF8AkMA8DaZW0U9fXJ3Ofih65qVcwY5+vNAyC7P6BQa3FkYy5NAPrCuCwSzgC8CS24RqMEwy89DPWNRgHuMhD7M1/YxDgakAYxarNJgq+tk37HNt0SsLIKoserEuFNPPwhn6GZMCg2Mwkm1gfwHz8C1/LNGPLPriZ0w/+wf/yxbtBEaKfu3CBMag6C+DqdlYoMFg9jP68Vdg9oHASNqSRUeLZcmFFRbLkmdGSiyQWJyPBRbLmk8gOMY5liQWaLHYYlnqmcWy1As5luTCEJuXJZmFjBGblx0Z8zKyI6vOy/anXzU/ANrjO54f2cNnfD0x44Fm3XfytxydMvXM2s/m+dtfbvbPk6QwEZ0yZUrts7I3CxYsCBPSsnqH8+fjX35ekHfbl/853HZz4V8fdG/9zs9c46TUB8kIBPr1HjzEQ77funPf8zF/K9LJbs4fb3MTz70o/HGc98C9tYy7hvGTXJ/GYXVt+kvecGXIsJx5808COOOXgWP5Qsbjn75zXfhxw4QT3KTzLnEDR493y59+wp10yWucPztwD/qMyb27d7mFMx4Mtx8dNHZCgG/cNrVqP3RwxWe+6vjdJ2/7VYCBoqWsn30ezgL7mlatcA/+6Dvh17gF7aTzLpUm6npdt3Cee/Tn/xV+p/+I0W706dPd6DOmV8qSJDuSLM0Vc550f/3FD0MbZEMCVU+8+FUBIvP5YL/P8BYQLGXZUzPlbe116qvf6Ma/7Dy35oXn3O1f+1yLk7FaRXtjDpgD5oA5YA6YA+aAOWAOmAN1O7By5UoVxgiAYPFRYKQG84CHXDXMoksMRvIZAIg2aQOAosEkFrJkAbkoM5K2gBkUAIQGkzjfZnEVkAVgAU5p+gE2LMCiUWBkHgABU4Ee6JdsLk0/7eAHMIkFcGCMBiMbGxsD2KQf/NdgDPoBjegvg5H4JoteGkxCj+hHN/tJW3SpkhmJ56KfxX381/RLZmpWfwxGol8WwGP6gWb4T18x/YAwgWExGCn68Zd9w0Khpl9gKvqBgozHMv3sSw2M0wb6OZboC9Co+c/Yz16BT78aQMF/9AuM1PQLjGTfF8FUdFEX/2P6BUDwyrGGfu1YQr/4H4sF9MPxK/rxXzuWeOalXJhQlBnJuEY/xWKZxbIwEPx/FsvECRf+VvJ3zmKZCzGYeYHFMhfmDDYvS48TmdfYvMyFufOxOC9L5uvNk7Fi87LDAkgOGzHGjZt4olu84Hm3asXSdDT7d9ye9Y7f/SLAylFjj3cTJp/sXvT/Xnj+mQBWtElcswYy32gT0czHR8RbwNRunwGZfQbgljWrXd+hw/3zIjuGbLyRp53pzvmHD7vO/mQjW7r17BW+7TdsZHhdNvvx2sfAqnqBJJmPlOd9RmFRyULKdfuzW7v5EyZKVz9J9jN3f6vUL7ZoYqAHi9sef9RV7QdIB4ykrHx2drP2yvrZ629xQlnrQaKUJU/MaDWQXPXcHGkmgEWAZP/ho2s/K3rTf8So8PHyp2fVqi2a+XAAkrKPBo5JtpMM2bICjKSsmf+cwcjghP1nDpgD5oA5YA6YA+aAOWAOtJ0DGsxjsU4ACoAlBiAABgCIIpgHgBg6dGgNRgKwNBjD4geLpgCUKjCSdpcvX67CpDxMRb8Gk+hPYGoMRrJtLFQJTAWgaPqzMBL9RTBSYOqyZctUGAOswX8WkAWmavoBlgJT0UVdDabKoiO62U5NPz7079ff3xknfWaktgbBvgQ20s+KFStU/XwuMBiYChzU9FNHYCrjQoN5jAfRD7hCv7aOwjhk4Qh4XAQjhw0bFmAY2wbA0mCYZKbKAj5wOaYf/4tgnujnmAIcFukXmMd4jcFI0c/CGZ5p+rMwlXGIfg2MM8Zk0ZF9qcUCPAD6yQI+oFHzPw8j2e/5sUjUYvwIjMR/bSwGmDowiQVVYGRRLLBYlv6tsFiWeiFj0WJZ4gmx2GJZ4oXFsvQ4sXlZ6oXNy1IvZF7DvPhYnZe1O5AcPGSYO/m0l3oQucTNmf1Yundy77b7TLC5Tz/uhnt4OWzk2AAk2WmzZqXQJvcrR+23TBZjhdt1AiN55baji2c+4jr6CfBrr/5m7Ve4hWi+dOjQirv3vpi00qFjXA81yHwsKlvXrXG3+ozPfNm5Zf+teyv2w+8/ccsv3dRXvcFd8KGr3E2feLe/Rez2WrNF/Qw94ZRaPXkD4G3L8v/bOxMwO67yTB/tu2Rr39WS5d3GIBtjY7AxYOxAgslAyEZIMhlICFlIhoc8iTMMZCEwhGQIS8jKQCCQhJmQEDY7gDeMDRYgY1vete+Lte/LnPeU/lvVpf/UrZaEJXd/53m67+2+1ed89dWpv8/93/tXeb67/R8pdrh6TDrHPL5pTc0eWxy3FYvvTZf5vejlr0rzYeMTj7jD6pdyQA7IATkgB+SAHJADckAOnLwDAAgAEI8ACgCEB2PawEjUzJo1K8EM+gBAeDCjmvQCQPDlARR0AVt4f5GDeQAIAAr6AVw5/W1gJOMAgOizjX5gGDCSLw/m2Sfw8WX16tUujCHBU4WROZjaBkYCIABA6Md3AJbnv8FU9Ddd2tBgJPrx34NJlrQjYQWUQr93LD0YWQdY6MEz9DMW0NXTb9VQbWEk4wCzPf0ACvw3/cBNT38V5uUq89CDZ8xF8j/o986lKkxtgpGcS8wP5hYA0dPP+YG36AdqngyMpA/8R7/BVE+/l8D35r/px88mGMncZmyr7PT8t8pIztHcBxPQrVjG2crn6NvFMmIBsZG5q1hWfDDEYoFimWJZcTYV6xpisWJZcfn2M3Fdplhms7W4Qmd1XaNYdvKx7NQSl/JYtXo2cdLUsOjKa8OWzRvCksX3dP0b3gxwj79hLe/F17XDM3iD3Vu3xIrHIYH7PVbb/viGZGi8RyOVkta4LOuR+OYU4MX9FqmMXLXk/nQ/xp2bNoQFV77YNk2P29auSo+zL13U+f3kBed2nrd9smPD2rTpuS8q7u3Z9u+q2x3YvSuMnHBWuvQoALL6Zdu1HedwfIP4wBc+ly6VOnT4iHDDb7/Tugjdxtm6alna1ios+WHOZZd3/r6vT6add1HnT2ZcfFl6/vTqFZ3f8YT7ZtImzulJj/bt6TUr09OZx/6OH+YuekH63fZjf7Nl+ZPp52nnXZgem74Bpr/6/nfGuuIQXv62WwLeVNv0Cy4Jr3v/X6cvLlOrJgfkgByQA3JADsgBOSAH5MCJOUDi1QAKACIHUKowEuCXq4aaM2dOgknACaCBB5OohjIAAYjMAZQ2MBIAYQAFmEo1mgdQ2sBIHJw9e3bST9Ixpx+Yiv62CXzAQA5GAt4MoHSDqSTbyDHkKiMZpwqDAVie/9WkXTcYCWykrVq1yoVhJGgBRcwjqjVzSS/8wjf0W2VkHUZWAQq6czA7VXbGSt22MBL9Of/ZP9PfBqai0WBkXT/7hv/MScAh++nNRWAk55Ppz1VGGsxjnBwMrsJU+mkDU3OVkegBxqO/CaYCI/lie2JBTj/nEvOjSX8VpgIjc/rbwEjFMmZ62drGsr7ASMWykGK/YlkxzxTLyvNNsaz04nStyxTLimOgdVk5F0/lumxIDHjvKrt+5p6NHjM2XPXiV6QBVzz1aBg7fkIYPyHeOyN+Hdi/LxyOgO2Kq68PI0aOCoNjFdhZEyeF8y9+Xry2/biwbs2KsOkYDDtZxc+ZUJTH1he/J9vvyf79gfjm45yrrwuzIjSMa/QwIvoFXBweP603/fyLw/wrr0mXbr3qDW8OYyZNDmsfXhKW3XdX2Lt9W7y054+HsRH2AvLOu+4V4cKXvTJdznXX5o3hyW/dEQBebDMx3tuQKkDu6Tjt3Ai24kC8znZt2taVy8IF198YAFqArP0RLl70ih8L51x1XarEo4/LXv36sHPj+qSNnyfOnR/mPPf56fVtUcfRo0cCYHThNS9N+4ke+nj+638hPPqNr/Anoc04F8bqv2ER1P4g3jsSWDctejR14QXxk4/xnhbxsqbdxuGSrQuvuT6Mi/sxPlbtAgkveOmPJH8YH8DbpnG/SODh6HipnjETJ8f7dl4Y+31JOHr4SLjrbz+Y7pdp/WyPlyd+Tqzm5F6QUWAcd0Z4etXysDPex/LiG18dL1U7I93XEkiKJ5wHd3zsz8KheH4An/EdrT3PvyYB1wnx+Ut/7XfifSrviOfPwTA3XrqX/Vj6tS+lucPfzX7O5envnqhcZnfKOfFSyPGyrsPiubbs298M3LdTTQ7IATkgB+SAHJADcuDEHVi393CYNmpIGBLX1yfafrB9f4INvPnji8Rl9etE+z2Zv+M9E1/AMXskga9WOABQIGnNIwAF0OJVORmA4HhaNZf3fhQYCRSgAbC8KieSdnxqmzli1VzemEA6jhXb5SojGQtog34ACgDI66sKUwGWOZg6d278sGzsk30DYHn6galUo6HLqrm8MYGkwC62y8EwknYAIPQbDPb6qsLUHIzEc9NPH3jm6TeYii67NKZ3LIHUJLXYjmPpgU1gKtuh32Cwpx8YaTA1ByPRP2/evNSXwWBPP/3QH7qo5mIfPP34in7m7MqVK10wyOscJ/oyGOzpr1Z25mAk4+A/XgAhgX6efmAqx5PtDQZ7+g0sN+lnfnGeoN9gsKef8415y3Y5GMlrnL/oNxjs6TcAgS7gIeewp5+4wvw2/V5fnN+ARsbmnKQ/Tz/bEDfYLlcZiW7FMs6iolks4NgolimW2bxQLDMnQrr0PGsDxbLinqNalxVzQ+uy8hzhWX9flx04cCiuKSemL2JB07rstF2ydVS8nyHiaBde2rsSbfF9d4T98T6JvH7ehUV1Wdowflu/dmW8tOt37cd++7hu6QMRLN0Z5j3/6vCCn31Tgnr/esuvxwrAf0nwEBj1wp9/S9r/HRFg3fU3EXYdaw988XPxsqU/EV7ylren3wDkgHO2sAVMfeuTHwtXv/FXEjBkIyoyx0To25e2ff2acPfHP5z6Wfiilwa+aI/e/tVe3XiXKrXfPXzrF8K4KdPD+dfdEK54/c93/m772tXl8zbjpORIeSnar33wj8NP/vnfh+fd/FNh5eL7Qptxvvah94ZX/u57wvwXvCiNDZgFtHqL+I642hPbr91Pb+34cTRCUY6PvWZ/wvG4/58/EZ7zqteGy1/3c+n4PHnP7enx9o/+abj+194Rzrv25Wlztv3OP/2fCJyftj8PX//we2PF4++HKQvOCy9+02+m3x86sD8ciZ8+ptnxtnHxoCfeyxIACaQGVNKqVZG7t25Ov9M3OSAH5IAckANyQA7IATkgB9o7YACCR2AkiX5bj1d7AUZa0s6qobztgBkkcmjLly9335MAIAAovG8G5gE3vb7YBgDBdjkYaQAC/cBIQIvXF9rZB/pqCyMBWN57KjQBR+gLEAZA8cYEcrGvbJeDkQZT0Q+MBHR5fQGvgED01QQjLWmEbgCipx8oRdKRvoB5JF68MYGMwC62y8FIS9qhHxgJaPT6Ah4C4eiLbQBnXuvp6UnACXCFZ55+YCoJdfpCO/vgjQmMRD8tByMNpqIfGIm3Xl+MBwRlTI4R23oN/+kLGMmc9fQbTKUv5k4OplplJOOsWLHCBZtVmIqnzG1PP8cb3xgzByN5DYCFfmAkscDTX4WpnLucw96YVpmH/lwsqMJUYCSxxeurTWUkuok/PCqWlR9MwE/FMsUyzkOaYlnhA98Vy0ovtC4rvdC6rPSCZz0DYF02PF6RkXU264du67JBcaFx7KZ0vY06U37iEq0jRxaXLd23d09cPB46pdLeMHd82B4Xft4nzE7pQKe4s2HxDRkgauuq5WHfju1u71TnbYuXCT0QffMa95lkGy4l2rlfo7dhi99R3Tf67Ekn3BeLdqonuRwtVYI5zc/EOJN6zkmXkKWy82TayHHjw4QZswP3bDQo2Nf+qLjkErybn3rcfUNBf1yCdeK8BeFQhPjMh762V/7ee8Lk+eeG9Y88GG79wLv7+ufaXg7IATkgB+SAHJADcqDmwHe37A+Xnj08DOtyr/Xan/X68dMrd6TqMkARb+p5c8cX62a+nslGIpYvkup8AQl4/8QjgGqgN45HT0w08AiAAAB5MAAQZtVcAAgAiteqMHLZsmVuXwAIQBdjUlUFQPEaAAKAQsvBSOYVAIi+ABBs5+kHRKKfBvAAoHjNqol4LaefpB2gkTHph/68BkwF/NFyMJJzhDHpC5iag8HMVZuv+IVvXjMYiQcAIM8LYKrBYI4jx9NrHCP2lZaDkZzfHHP0A1PR7zW85xjQAH6AJ6/1HEt6ca4C4Dz9zIkqTCVx5LU2MBKYCjRDPzAVUOc1YCrnAK0Jps6fPz/1RYwBAHn6gZGTJwODQ4KpAFWvtYGRwFS2Qz8wEm1eA0CQeKc1wVTTT3zkmHv66WdSvNIV+vEeGOy1NjASmMpxQj9zgrnhNY43vtGYY8y1eqOPHsWyji2KZR0r0v8bxbLCD8Wycl4olpVeaF1WeqF1WekFz/i/ylq7v6/L9uw9GGbPmh7X9cXtI3q7UPxk67Kh3otn0u+4dOvuXf4bnTNJ5zOt5WBc6K99aEnjsFRGNjUq6YBQ9fba930sANNyjftVfuY33tjrZao0+TrRxiJ9y4qnuv75MzGO3Z+xKoaKwkWvfUP1V8c95xKz9//LJzu/37dzR9i38+HOzyfypH7fSa8PqiK7HWvv7+x33Hc0vksK3/z4R+xXepQDckAOyAE5IAfkgByQA3KgpQMACJoBCO/PiqTdpAQncjASGMAbdQAP749yMImkFwCCBoDoBiPpC0gErKs3AxD83mBqfRt+Npia3rcdq+aqb0dfABQAG9vlYB5JbUAdDSjowUj6smou+gKgAEvrzWAqv2f/gKles8pU+mI8D0YyJmCQRBrbAVO9BowEptKsMrW+HX0BLNlX+kIX/tabJe34fROMtMpU+uJ4ezCSMa0yj+3w32sAXrylWWVqfTv6Yh+Za/QFDGZ+15vBVH7fBCOBqcwh+rLK1HpfjGlg3JJ29W342WAqz60ylefVRl/MMWAdYwIGvQ+hG0zlb6nW7AYj6YttvMpOxuw5BvMMplY12fMCpk6OugqY6sFI+uIcB5YyZq4yj/0jZtCAqd1gJH0BU3Mwsq+xzCogbN/sEf2KZYUbeKFYZjMjpA+FEI+Zi4plxQdDcEex7PTGMq3LtC6zKKV1mTkR0ged+rIuW7lqbVxXbnM/ZMX/wuq67IwHkqUNevZMObDhsYfSvQtz43F/woHWuDztpicfbdztrauXN75+pr649LYvhh0b18XL9vqfSj5TdUuXHJADckAOyAE5IAfkgBw4ExwgsZoDELwBt0tLAllIOnqVkYA13qgDSNgOgMJjvVk1FGPmAARjUs0FeKIPAIoHIBizJwIU+srBVPoCpgKU6ItKNK8ykr4AKAAqtstVtlkFAdvYpTHr+8iYVHMB/tgOgOLB1Kp+q+z0+gKEAfToC4DiwUj6AqCQiGI7YLDXDEayDVCwCaYCI9kOGOzBVMYi0YP/vO5VRuIFyXu+6IukqQcj0Q8M5pHtPBhJX1bZyTb44FV2sh0wlWPFdujyYCrHGgCKfuaXVxlJX3jPMaAv/OK41xu6rUq0Sb/BVLZhHnqVnYwJTOVcYTtgsAdTOdcYE/3AVOZZvdEXc59zmL4AKB6MRD9e0IgF3vyhL2Aq5yZ9EQe8yk76Qj8wku2AwR5MtcpO9OdgKmNSzcW49AWwZF/rjTFtLvYllnkwlb4UywqH8V+xrPRCsaz0QrGsjEJnQizTumxG+h+hdZnWZXZm8r+8r+sy1oIHDxS3YLR+eOR/YX1dJiBZdUjPkwN3/92H5ETNAapRu1Wk1v7kWfPj9z7/mWeNVgmVA3JADsgBOSAH5IAckANnmgNNCfw6gPAS+IApABAAhb4AKB6AsGooAxBeNRQJhCpAyQGI6ifAc5WRJBDawFT6MoCCbgAK8KPerLLT9HuVneg3gEJf6PdgqsEwxkC/VxmJ/jYwFf0GUBjTu8wmfaGf/UQ/STsPRqLfYDB9AYM9mFrVf7IwFf0Gg5vAMoCUeYZ+oKYHI9FvAAX9QDoPppp++mL/cjCyDYBAv8Fg9AOz6w3/galUmjEmMNWDkehnG/YV/ejyYGoVRjK/PBhJX+jvBlPRbzC4ST8AAm85N4CpORhpMBj9wGAPppLAZ0y8ADB6lZ3oBwZzDjBmDqai35KOTfoVy8pZqVhWemGxgN8olimW2cwg/iiWFW7ghdZlhRdal9kZUkC6/rYuYz0ydkxxz3HbU+a/ty4TkDSH9CgH5IAckANyQA7IATkgB+SAHJADcqCPDuQACgl8AARgIQcggAG8UQc2AgMAKB6AMBgJWGgCEJb0og+Ak1fNBYyxyzySQAYg1htJI7u0JPqpHvBgKslo9ANIAD/oZ/t6swQ++tHkwVS8QD++oR/g51Vzod9gTC4BTgLEYCp6cpWp6CdpSp/oBwChsdoMRgIteS1XQYB+YCrgCf0AIA+mVmEYMM+rjEQ/IAmghP5cZSr6gaQ8GpgFUlUb+kl6sR36c5Wdph/wh36OkQdT2+oH5AH00J+rTEU3vjI2+nNzsU1lJ30Ag9lX9APpPJjagXlHYmXnfr+yE/8NRqI/V5mKfmAw26MfmF1v+N+mGgr9xAvOFfQDSemz3kw/x7IJphqMNP1eZSr6iQVobNKvWFYeBcWy0ou2sUCxrPCM80yxrJw/imWlF5xLWpcVfvB/Seuywov+vC4TkCzPfz2TA3JADsgBOSAH5IAckANyQA7IATlwUg6QdLQEPtAgByNJugAgACjAAACKByAsAd5UDUXSAoBC4heYAUDxAAQJQAAQAAXY5FUW8hr67dKS6M/BSAMo6AagMHa9sX+Mif4mGAlAASLSBzDSg6noBwDhcZP+KowEpnqXY8N/g8Hob4Kppr8JRraBqaYfj7rBSPoDJuE9x6DeSGAaDAa8oZ/5Vm341BcYaTA4B1PRb0lTYBhj1hvzxy6Ti35gqneZXPRb0hH9gFkPprZJ4HMsDQZzLNHvwVT0G8xugpF1mOpdJhf9BoNzYBz/28BI9HO+sa/oBwZ7MNU+mIBPORhJLEA/X5xLwOCcfoPBTfoVy8oZrlhWeqFYVnqhWFZ6oVhWeqF1WekF6wKtywo/tC4rfBCQLM8PPZMDckAOyAE5IAfkgByQA3JADsgBOXDCDpBoaJPAJ4EJQCHBDQwAoHgAogojAXTepRkt6VUFEDkYCUBh+xwMM/3AEWBSDqai36rR0A1AAaTUWzWBj6ZcZaRVcxlM9WAkMAb9JLaAMbnKQvzHW/TnKjvRbzAV/fjaDaYCdThO9UYCFhhMsg0PcpWpbfXTTxVGejDV9NMnxxL97G+9tYGR6Md/fEN/rjKVsQBYzBEqV3Mwsk01FDAD/3lEPzDbg6ltYSR+Af7Qn4Op6Adm09Cfu0wr5xF+MB9yMBXdwGCOg+n3YGoVRuYuM4v/zFeqDtI0AABAAElEQVSDkTmYWsaCvH6DkcxH0+/BSPQDgxkb/RxLT79iWXlGKZaVXiiWlV4olpVeKJaVXmhdVnphH3LTuqzwROuywgcByfIc0TM5IAfkgByQA3JADsgBOSAH5IAckAMn5IDBPECLVUZ697kDYgBQABAGI4EC9WZJC67A2QQj21RDkUAGoJAwtMoqD0AAw9rASIOp6AZgeTC1bQLfKjuBSfjlwVT0A1BI8jXBpPon8L3KThLI6AfwoB8AxNj1xvEBgOJTNxgJhDP9HkxlLPw3/TmYV9Wfu8ws+jlGph/I68FUYBiemX6OU70xH6wyFf3AVO8yuYxFXyQWu8FI5jZ6cpWdpp9jylxEvwdT+wIjAWfMQfTTZ72hn2PJOcrx8WAkx8Zgqun3KjvRjf/sB2N5MJhx6jASbfVGLMB/tkU/x8jTb7GAv9+zZ3f2gwnEgiqMzOknRjG26fdgcB1GKpYVVd5NH6xQLCtmeL0aSrFsdIqfnGeck14sIBYTOxXLQvo/qVhWnEv8L9G6rPCC71qXlV4829dlApLlsdQzOSAH5IAckANyQA7IATkgB+SAHJADfXagCiOBK7lqqCqMBIaRmPRgpMEYhOzevStbWWhJO2AS1VxeNRRJCwAKCU9gEgDIAxBtkl5AGJKmABKDkXn93WGewVTT78FI9ANQAEbAJPTnYGq3T+Cj32AkMCYHUw3m4ROamiojgVjAJPzP6TcYmQPLJPDpx2Be7jKzpt9gHvrxrt6q+pkT3WAk+gFOHkzlWKMfjTmY5+n3LjOLbvw3/fjqwVSS8ozZlMCvwzzOJQ+mmn7OUY6PV2Vs+q0yMgdTqzCSsdDvwdS2MM9gJOcQ/nswkliAF7Scfs6NaixAfzcYabGgrl+xrPfZVMRixTJcIRYrlhXzQ7GsPE+qsVixrHcs1rpsXPqfz/+Z3BUrbF1DfNG6rPyQ2LNxXTZ48JBeH7JqWpcJSJYxVM/kgByQA3JADsgBOSAH5IAckANyQA702QGDeQCUpsucApyARSTteKPuAQheB8ABBoBJALh6A0BQjQOEAEgBIJpgJAkfYJIHUBinjX76AKCQoEc3AMWDkegnaR27jVDEv8ypARTTn0vaAZMAWCQ8Tb8HU4F5bWCkwVT04z8Jn3oz/fy+CeZZNVQTjES/wWADmx5MNRhpSTvvMq0kwKv6czDVYF7byshuSS+Dwej35iIwj+NoMC8HUy2BT9IRGJaDqVX9uWoi5gP+s63p92Akc3XK5AJmcyw9sFzX3wQjDaaafg+mci7hmcWCXGUhfqHfEvhZ/bEvNDbFAoORTZWd+I5+iwX4X4eRzPk2sQD/Fctwq6zmUiwL6X+WYlkxL/iuWFZ6kWKxYlkyhFhsVfa2rqnHYq3LyrnDM63LSj9YV56p67KRIwfHY1Vc/p+1T3ZdE9dlApLlMR1Qz8ZPmxEOxEt97Nu5o1/s94Tps8KIcePTvhyJl4fZvOzx7H4NHzU6DB0xMuzZtjW7jV6QA3JADsgBOSAH5IAckANyQA60cYAELMklAAQwBrhWbwbzSKoYgMjBSPoCQABjPIDiwUivGoqkBdCAsYFJALh60gudBvPa6jcY6eknAYt+kmmAWaBHvdX1d4ORpt8DKIxj+g3mAZTqjT7wwmAqXngwFf0Gg3P6qTRtAyMZy2AqMIkxPZgKyEAb+tHeDUaS4CHR48FUg0nsP/oZs96ql2k1mEpStN5MP9sbmPVgqsFI08+49WYw1WAkurzKToN5jIMPOZiH/2zLMWT+5PQzF4cMHZL0cy7V9beFkejmGPHIWDn9FgsYBx9y+tvASGJF0h8/fMD57Z1Lph8/gJF44cUCdBtMNf0eTDX9bWOBYlnvD4YolimWWexTLDMnCpikWFb4oXVZOS+0Liu96C/rsqe37Yxr0/1p/dZtXXbagCRlnHN6zgnTZ8wNI+NC/WD8ZOKGdavCsieWHrdI5xANHz4iXPq8q+Ii62BYsvie8qjp2Qk58Jo/+ouwesn94esfft8J/f2Z9kfXv/UdYfz04gb1R48cDv/wyz+VlfiKt78rnDVrbvjUr+S3yf6xXpADckAOyAE5IAfkgByQA3JADlQcINFvAIWEdL1VL2cGxGMb71PDwDCgB8AuB5MAEMCHNtU49AUIAkYCRjwAYTAMAAEMy8E8AAqApBuMxAs0ot8DKOwbfQE+7DKtwK56qybteB39Hkw1GGb6PZjXK+m1N1Z2Pu1XdpJAxjMgJ/3kYF5bGElfHHuDkXX9jENffBnM8/RzDPEMTwxGejAV/fhPvxxHD4Z5SS/mR70BI+v6PZha1c+8boKR6CdBhS4PphpYRksORqKfMbvBSOYq+tkeQMexrMNI8585ZJWFnn5gHv4bjES/B1NNP+Pgf1Ms4Fw3mOfFAvRzLKuxoK6/Ggu6wUi8qMYCT7/FAsWyorJNsayICl4sUCxTLLN1jWJZSGse/i8RQ9usa6qxWOuyeMUNrcvSGoN1jX1I7Nm6Ltu0mbXPtvheYW99WZneQ1TXZacNSI4ZOz5ccPGisHtX/NTY5o1h4qSpYeH5l4azJ04J9997+3HCL77syjB56owIKw8f95p+IQf+/V2/HQYPHRZuese7w9mz5zUasm3NqjAovhFWkwNyQA7IATkgB+SAHJADckAOnAoHgA8ezKte2rAtjATG0J8HIAAjJ5L08gAECTSSAwbzPP3APMbsBiMN5gFJcjCpLYwkAc6YJO0MRnpJO7bhC/345cG8KowE/LCdV9lZ1Z+Deaa/L0kjYBhj1hP4zDn8R38bGIknTTASGMaxPBUwkmONLuYu+nMwmG3YB/Szjx7M4xiiy2Ak2+VgJNvR2IavegMuso0lwNnG+wR+FUaiie08mGr628C8Koz09BvMQ3NbGIkuD0bWP5iA//VYwHFGP+O21W8fTPBiQVU/urxYoFhWzkiLBd0+WKFYVnpGLGDOKpaF9EEJxbJibiiWlecIz7QuK/3Quqz04tmyLgNEHj0yJK1FS/VFlTQxj3WcrctOG5Dcv29PuPeu28L2beUlRK6+9sYwacr0MDxeTvPA/n0d7YDIqfGSnHt27woj46fq+msbGqtABw0ZHEafHe+RET3YvOyJMHHu/HRZ1T1Plz4Nim/ypiw4L4waf1bY+OSjYe/2crE+OII2Lkd6ME2CIx2r7PdcprXahkU/p59/Sdj4xCNh/66d1ZfSczRNO//iNMbWlcuOe73NLxjj6JGj4VA8pmMnTQlnz+kJ6x99MByMbwitdRuHy6xOXnBuGBQrazc89nDqy/6WxyPxTZB9VX9ffc4/Ory75xMfrf668xzfhsZFUr0d3LsnHI73Zak2LhFLReaGRx8KB+LranJADsgBOSAH5IAckANyQA4MTAfaJPDt0pIegCDpQhKKN+oGIz2Awpt5tjUAkassJOlb/QS+ByAMxnDE0J+DeWzXBkayHUl6QAZfdYACqGQb0w9kyX0CnO0MRqItByPxjHHoy4NhbWEkUIG+TD9j1huvWQLZKiCa9DO2wUhPP30BgQymevr7ksDHMzzOzUUDKMAugBqe5WAefVX1ezC1qp++2Nd6Qz/bVWGkV9mJD/hv+j3/DUYyF62CoEk/8MySXjn9HHeDqZ5+rzLSg5Fo54t8A154MA/9+Ir+pspIjg/bVZN2uVhg+hnTiwXox38emav46sWCNvqrMFKxTLGseq5XYwFzTLFMsYz5oVhWniX8DySua13G1S/Ly+c3fUhM67Jy/hiMfDasy1hjjBjeuwDM9NfXZacNSHJNWb6qbevmDWH8hOKTeAYkhwwZGp4TL9X61OMPhwlnxcVUPwaSr3j7/wyTexZyJ+hky+6tm8OYiZNDfJcVFv/fT4WHvvrv4ZwXviS88Bd+tRdt3r1lU/jie3437NuxPcy+7Irwkre8PTx6+63hvk//TcdeLlM6deEF4V/e/uYOwJxyzvnhp//ik51tnrj76xHW/WXn5xf9118PC66+tvMzMPPL7/v9sH3t6s7v2jx53f/6q3S/Su7tOG7q9PQnwEO7ZGq3cV70334jLHjBi3sNtfqB74ZvfPi9x73R7bVR7Ycffef7O9WT1fFts2vf9JvJP/vZHh+749Zw76cKLyfFywzf8Fv/IwwfPcZeDo/f9bXwrU9+rPOznsgBOSAH5IAckANyQA7IATkwcBzwAEQ9gQ80yMFIAxBAQfryAAT3XzKYx+UnPRhG0ovkcBXmeQCC8YAQNC6r6iWQTT/VLE2XaUWT6Ud7Tj+XP+ymv15NlAMolgBHP154+vuS9Dr7rAhT430GGY9j4MFU9JNgxU/G9GAY+tFWTRrlYCT+Mw59eTDM9HNMmTfMnzYwD//r+oGRpr8tjMRT+vL005fB1Jz+E4GR7KMHxk2/wUi28/zndfyvJ72YJ9XGuUSyk/MM/W1hXjcYSV+efuAinqGvDYxEv8UCD6bSl8HIk9XPucuxBKbm9Fss6Ka/GgtMv2JZUeWtWFZ8MEGxrIjFimVFRFYsK/8zaV1WesH/N63LCj+IFcwN1oT9bV02uDzkp/cZC6BpM+aEwxFa7d5VfrruvIsuS8KefOzB0yvwmRo9+nDX334wVgDuTzDy7r//UKx23BcuuP6mpODo0SNh7UNLwtc++MfhC+9+e3jsjtvCmFh1eO2b3pZeX/nd+9Lfzr/ymo7iIfFSpsDHnRvXd2AkL44YOy6sW/pA+ObHPxL2x+rThS96aYKWvHbJj7wmwcgd69eGb3z0/QmGDotVijf81jt5uc8NsErl52N3/me486//PFVk0kmbcQ7Fak+g4Jffe0u49QPvDltWPBVmP2dRuOBlr+yTjjs+9oH097siwI3v0o772/v+8e/CV973PzpfgF7a+lgFSaO68sYIdvFh6de+lO6/iT/nvvhlYd4VV6dt9E0OyAE5IAfkgByQA3JADsiBge1AHUCQ6M/BSMAU2xvM8wCEwUheo6+TgZEG8wxAeDAPAEGiEMBmAMW7zGlKGsVESVW/ByCmTJmSYCT6AaA5/SRdusHUqv4mmGr6m2Aq+vG/CiM9/fgPjATO4b8Hw9rCSHQBgGibNm3Kwki2awsjAXYADw9GUnVo+oGpTTCvTdKLvtAP9MR/D6ZyDE0/XqHNg6l4n/w/ph+I5cFUxiQp1wSDOT5VGIkXuXOJ4276PRhpMNUu04r+JhiJx/jqnUseTPVigVUTdYORnEvoZ57iv6ffq4z09HO8OZboz8FIxbLyfxkxU7Gs9EOxrPRCsaz0QrGs9KLth8Sq6xpisfe/ROuy0ldisa1rtC4LyYtn47rstFVIllOpeMb9I0fFqrPv33935yWqJef2nBu+9527jvuUKBux0Lrkkks623d7smzZsrTQ6rbd6XwdELnsvrvDxa94dZgwY3Z46lt3Jhg5ftrMJIuf+eISp1wy9Mlv3R7OueYlaVvTvfz+e8LCa64PU8+9MGx8fGkEdz+SPvH28H9+0TZJj4diheptf/aHnefX/fJvh4tvujls/PAjaXyg3T2x8u/wwQOBPqedd1GYPH9hGB0rVfds29qrrzY/3PZnf9ABkcu/c0/6E/az2zhWnQhAHTdlWoSj/xauffNvxf27ICyt7VOTjh0b1gW+DkT4yj7UGxWpfNEWvfZnE+jFa9O68JqXpsvhrn/kwfDUvXem7b792Y+Hl7/tlnDRDT8aVtz/rfQ7fZMDckAOyAE5IAfkgByQA3JgYDoAgCBpTSIKCEByyYN5VBORxCTJBDwBxngAZerUqQmGASAAWB4MMwABSGm6NCNJL2AGACIHwwAQJHrQD0QCengwyWCewUj012EeMwD9wCT2LaefsUhu8wlwAEuumoht8I1k1MaNG10Yg5+mH9/xv5t+xmur34NJfYGR+NakHw/QzzE1mOrpJ/lkMM9gWB3mGUDBf5J2HEtPf9tP4KML/2n474Fl9HOc0M9YaPNgGNrZB84XS8DW9TNPOZfwFxjZTT/HvqmCwGAS4+T0G0xFP+daN/0G8xi3rt9iAfrxAP1eLOhLAh//TX8uFuB/NRZ4/ldhJLo8sGz6FcvSlFcsK2xI35ljimWFIYpl5cRQLCu90Lqs9ELrstILrctKL84IIDlzdk9YcO5FYeWyx8OGdcXlQDlIl11+Tdi6ZWPYuH5NqbjyjIUYC9O2zXuD1PZvn6ntjsY3mjTuWXjk8KH0/FBcvA6Ol66lUWX4yt97z3FAbUhcfFv7/uc/m4Dkc1/9+lQReP5Lbkz3V3zs9q/aJumRiklra+IlUGnc45E2fMzYdOnYm97xB+nn6rdJEUru+d63q7/q+vzwoYMdGFnduM04c553ZXjxL/3Gcfd3HDE6avwhNC57e8lNrwnb160JVKhaA8bSpl9wSXjVLe+1X6fHdGndXr/RD3JADsgBOSAH5IAckANyQA4MJAdI4APgSEQBAQBwHkxqCyOnTZuWYAzvezds2ODCJMYiOQwIAhABULz3yMBIxjUY6VVWGYCgT3QDKnL6gUnASGAeMMaDqaaf9+EAIA+GGYwkYdUGRqI/ByPRA3QCxqD7ZGHk9OnTE5hl35r0W2UeUAc/vMucAvNI1pLn4Fh6MM+SdugHXOG/B5Pw3mCewUgv14H/+Gv6PRgGLLPKSPQDx09Uv8FU9HOs8d/TTwIfmMF8YxvGrcM8fEI/cxE9nEuefoOpbWAk29Lw34N5pp/HNjAS/Qbz6vqZpxYLDKZ6+tsm8A3sN+nHd4sFpt+LBRxv/EdjTr9iWZoqnW+KZR0r0gcmFMsKPxTLynmhWFZ6oXVZ6YXWZaUXPBsI67LRsdiQdUa3ddlpB5JTYuXfpfEekRvWrQpLH1zcOVIjRo4KoyMU456R190Qq+hiGzFiVFrA8/OD3/922LJpfViyZEnnb/rDEy7JWrTKJUXjG1Br3B+S6r6Hb/uPWEl5V9i5aUPgHo2DBpVX36V6cXuEuNPOuzBVFI6dPDVwz8X6Ijn+kXXbuW9ldRsuWfoff/Q75TbHnu3fVV5S97gXM7/Yt31b5pUQmsYZHBf5wEgeF3/uHwKXpB0c36ze/O4/z/Z3Mi8AZPH40P594Ut/8ru9ujJvbv/LPw0bHnu412uHY8JBTQ7IATkgB+SAHJADckAOyIGB6QDJfQMoQIAcjLSkXbWysAnmAWbWrl3rwhgABKCrDYw0AGGVYfbexo5WVb/BVA8mATVJNHSDkcA8YBfjrF+/3tVfTdoBI4FrHgwDshhMNf2m2x4BKPiPJ8BI/Pf04wNJZNOfq4ycMWNGgnmAPgCWB5OAffhP0qUNjMTjHIxED9AJ/YzVBCPRz/42wUjTz9zCfw8sc3zwtpt+IK8BCPryYB59GAw2/R4MQ7vBVIORHkxFv8FIPPP0AxgNBnerjDT969atc8E45xD+82gwtZt+jhHztn4ucc4y/00/c7ZJP8eeeZi7zKzBSPpt0o//BlPx1tNvMJL5wzni6a/GAsWy+IF0xTILsx0YqVgW0v8RxbJialgsViyDW2hdZgFD6zJzongcCOuyYcOGx3VZ93tesl45rUBy4qSpYdGV14YtmzeEJYuLS3ja4ToU38Qte2Kp/ZgeqaQEVK5bvSLs27O712sD5YeJc+en+0De/8+fSLs8YebsVDl4MH4Csdoe/PLnwzW/+NZw47EKx+9//jPVl9NzLn9qjXsy0nZt3pgeuazpyAlnhQPRZ6vaTC+c4m/dxjlr1ty0fysW35vuY8nwz3vNT2dV7N66JV5W9twwPN7n8cDePdntvBeAnq+85U/SvSK5l2Td082xgve8a1+eLlsLGG1qz735J+M9OV8W7825M3zhXf+9aVO9JgfkgByQA3JADsgBOSAH5MCz2AFAAYkGElEANQCKB8OAIgAUS9oBIbrByDVr1rgwg7EAFYAgABEAwoN5jGcwEgBBZZ4HUEw/AAKA4umvwkjgSa4y0ioLOaTAVA/GoJ+EBPqtstPT78HIun6S4+gHxqAb/R6MwQeADEmypsu0WtKIcQBAnn5gk8FIq+z09FtlpCXwPZiHHjxDP2NxnHL628DImTNnJhiG/hyMrFamtoGpzPEcjGQ+A4PRD4zM6a9WdjbByFmzZqVzCVDJmN5cNJjK2MxDjqd3LjHHusFI5qDByLYw1WCkB1Pxn/ltMNjTTwKfuW2xoA2MzH0wAd9NPzAVbd5cZO5zDJiLpr9+LimW9f5HpFhW+qFYVnqhWFZ6oVhWeqF1WemF1mWlFzwbKOuywUMOxXVNcfn8buuy0wYkqX684urr05uhjfEyrTPnzO8crc0b46J/397w2NLe1Y/cU3JYXGzVf9/5wwHwZNuaFWFi9OqCl94UvQuBy7J67cl7bg9X/dybUzXlvh3bw9ZVy4/bjPtQcklW7g/53Jt/Kr3+gy/9v+Lxy/8arviJN4b/8icfjfdp/I+wedkTYd4VV4eZF10W/u2dbzuurxP9xQ+6jLN15bJ0+VrGnbvoBek+ludf94rscI/dcVuYd/lVCcQ+dsetqYJ07UNL0r0fpy68IP3dsAgr4/upMPPi56afn46Ae+/2p8NLfvUdYeS4CWFlvBwt9+/ki7Z5+ROBy9s++c1vhOf/5C+Ei2+8OUyIlb3ck5NLtXIslsf7Rz586xfS9nw7O4LU0WedHUbFN71qckAOyAE5IAfkgByQA3JADvRfBwAoQAEABADLg0mWtAM+ASJ5o+7BDMAOsAUwkIORBiAAKU0Aog4jvWoojorpB2IAgDz9BlPRDzzhy9NvCXz0r1692oVJJO3YT2AMgA444sGkNjCScdCPF+gGBnv6Daa2gZEj44egafjvwSRgJAAI/cBU4Jqn30vg1wEQSTsSVehnLPR7MKkKU5sqIy3p1aQfGJk+nR71MyfoL6cf3/CYecFcqzf8BOCiH5gKDPb0k8A3mNoGRuIT/nvH0ipT8d9gqqe/DYykD+Ys+oGROf1o56sK87z5P3v27BQLeA2A6Omvw9STgZHo5lzikeMDDPb8r8JItukWC/BTsay4ZLNiWTiuMpK4rVhWXnLaiwX2wQrFsvJe0pxLuQ9WKJb1/u+qdVnpB2sMrcsKP1hXnsnrsrXruL97cfn/buuy0wYkR8X7/xGMaBdeennh7LHvi++7IwHJXr+MP9T/4dVf708/p30tr9Ta2bXv/NMnwvVvfUe48qd/Kf1u387tgS+7x2Rnw/hk7Q++F7j/4uN3f736685zQCWQbuq5F6bfPfL1L4cty59Mz4Fr46ZMD+dfd0O44vU/3/mb7WtXd5735YmzK63HeeCLnwuX/ehPpEup8kcbH1+adHvzYd3SB8JT37ozzHv+1eEFP/umBBL/9ZZfD5PmLQgvf9stvSTbz0/de2e4++8+FMZPn5Fenxs948vao/Hem/d9+m/T/KNy8uVv+/3kK97SjsTF+iNf/4ptnh6pLqUdjG9q1OSAHJADckAOyAE5IAfkgBzovw6QSCMhCUDxYAAwkiQCMKMbjAS28D45ByMZC4ACCAJAAFC8N/12aUbGbAIQc+fOTX3RB4lCT//Y+GFi4KDpb4KRwLqmBD4wFYCCfpLaaPP0A1NJujAm++hVdjKj5syZk/pCNwDF008/9EdfaOcYeAnklPQagf4QVq1a5cIkq4BAP5qaYCoQlzGBjF4CH58AWPQFuEK/5wX6OZ70BcimItDTb5V5+LJy5UrXC4Op9AWUQr/Xl8FUNBqMrL//pg+SpugHprKdp98uk8v2BlPrfaHZErA8x3/vWHJ+AIPpCxgJ3PT0AyM579CPr8DGekM3nvEITOU4efqtGooxDaZ6+jmWnJ+8Boz39AMj0UZfHEf88PSzj/bBhFwCH5jKnEW/wVRPPyC1W2Uk3nAu0Sd6FMuKS+4qloUU+xXLiuihWFZGUcWy0guty0oveKZ1WenHQFuX7d9/IK5r9rv8rr4uGxQnSo4VlQ7242dvmDs+bI8LQW/hdibv9tmz58VLiu4Ju+J9HnPt5j/836mS7x9//Y3pnojedkPignnKOeenCkjum1hvLMC4TOzQ+Mbs6Vhl2dfLoNb7y/3cZhzA6bZYzfjD0pDT5v1+5Lh4uZ94CeE92+P9Oh1I+zMf+VSgAvU7n/14WPq1L3ld6HdyQA7IATkgB+SAHJAD/dSB727ZHy49e3gYNrj4AOaJ7OanV+5IyWGSzSSJSWDzxbqZr2eykWDni0Q1XyTaef/EI6BkoLf58+cnAOS9pyRpZwAFAAHQ8GBGm8pI5oEBIAAEAMiDGRwTIATzpBuMNAABAPL0A3UMoADyACie/jaVkSTt0M88BqYCgDz9wEMACvqbYOS8efMSjEE3AMjTTyLdYDAwEqDn6S8+gV/A1ByMBKaSXEI/gBFtnn7gLYlr9OdgJOeM6ec8Qr/XFzDSYDDa2QdPvyW9GDMHI4Gp7Cf6ganMDW9M7xP49TEZx2A2MBWA5fWFDwaDmTvMoXpfeMG8QB9txYoV7rEEpjLP0N8EU5mvHHc0AiO9yk76sKQpMBXo5+lnHhoM5tzlHPb0W2Vkk35gKuc5YzfBVOKFwdQcjOT/gsFsYCr76eknDqAfL4DPjOvpxwuDqcwf71xSLEvTM31TLCu94JliWemHYlnphWJZ6YXWZaUXWpeVXvS3ddlTy1aGMaNHpDVHuZchvY+or8tOW4VkVZie990BLjOaa1zadP7zrwkTps8K6x99KAsj+fvD8c3D+kcezHWVFqtbVjzV6/XRZ00MP/6eD/f6Xf2Hp1cvD196z+/Vf539mUVxfZz6xlRGnilt384dgWpMr42dHC/fE2Ek998UjPQc0u/kgByQA3JADsgBOSAH5ED/cWD58uVukt8ABHtqAMKDAW1gpAEIwIIBCK8vAARfNIAT43rNYFJ8G5YAkNeXAQj+3qq5vO3awEiDqeg3mOr1RdIOCEQD+AGevEYCHLADhAGgeH0ZTOXvrTLV264NjARAAP3QbzDV6wv4VoWRgD+v9fT0pL4APwBQry9L2vH3gMiTgZEGU+nLYKo3Zh1Gsq3X8B8vDKZ6fRlM5e+BqU0wEn20HIwkacc8Y0yDqd6Y1crOHIykD+Y/jwZTvb4MpqKrG4xkftCIBR4YBKZynjOmwVRvzDYJfPoAIPJoMNXry2AqupoqO+mL85OGfq8vxbJkT/qmWFZ6wbMexbKOIcBIxbLCDsWyzrRIazKtywo/tC4r58VAX5cJSJZzod88u+YX3xqGxftecN/Db3zkfad8vw4d2B82PfloY7/c+3GgtqPxTfFDX/33sGrJ/QPVAu23HJADckAOyAE5IAfkgBwYMA54CXwABKCLBoAADnrNkna8lrtMK+ABAEQDQLCd10h4AcRoVg3lbQeMMQDx1FO9P3xq2wMgAEA0oCb9ec1gKq/l7hkJOGRMGjCVqi+vASP5olllp7edVePw2rJl/vtOYCraaIAwgIzXDKbyWq4yEhgMtKEBUwFdXsN7SzpaZae3HQl8PGHeAOC8RtKOuUEDRFJd6DUgKXONlquMBJZRTUcDplJZ6zWr7OQ1q+z0tqMimDlpMNjbBphKpSINGMmX19pUE5G0YzsagBRtXgNGAhFpdplZbzv00wwGe9sAU+mPZpWd3nbVysgcjASmcpxowFTmhtesspPXcpWRvGb6gamcc14DRnI8acx9zgGvWWUkr3EuKZaNTjYplimW2fmiWGZOhFTFrlhW+KF1WTkveKZ1WemH1mWlF03rMgHJ0qd+8+wz8RKtP8xG5d+tH3j3D3OIZ3Xfu7duDos/9w/P6n2QeDkgB+SAHJADckAOyAE5IAdOzAEAEQkJqg93797lAgiSWVbNBQQAcgHr6o3tugEItrFqLvoCoFDRWG9sB0ABRrIdAMVrwEhgKtvkYCp9AVAAZ2wHQAGW1hvgrScCOBr758FU+rJqLvqyaq70R5VvbAdAARCyXROMBDSyjVWmVrpJT+kL4Ae4ZDt0AXjqjbEMBgMjPZhKX4BIvugLeOtVdrIdYNZgZE4/ngJT6csqU+u66IttmGtsB0ChWrHeONYGU4GRHkylL6tMpS9gsFfZyXZ4wSMwMjd/SODjLX1ZZWpdF30wx4B1bJe7ZHAVpgIjPZhKX1aZSl8AP6+yk+16js1FYGQOBgMjmdv0ZZWpnn7OcWAp2wGDvcrIKkzFUw+mogt4yLj0xTbMtXpjO4sFHGs88xqxgP7oyypT69vRF5AXf9kOL3isN8Wy0hHFstIL5o9iWeEHXiiWlV4olpVeaF1WxgzWWlqXFX5oXXbMh3J66JkckANyQA7IATkgB+SAHJADckAOyAE5cKIOWDUUyX2giFcNRQLTknZAjByAqMIwYJkHIOjLLo3JmLlqLpLpABQAhFWG5QBENxhJXwZT0Q8k8mBqVX+ushP91aQdMNKDqYwJQCGRg34AkNesspN9s0tj1rcz/YA/9APpPJha1Z+r7ES/wVT6ysFUxrR7/uVgGH3ZpTHRn4Op9AUwI8HHmEBSD6biFdAgdhWPj1/ZyZgGU+krB1MZE7DJY5N+NFVhpFfZSR8GUxkTGOzBVOYqY+KFXea3fizRD4zkGNBXDqYyJl6wfZN+5oTByBxMpS8Sq5zrjAkMps96A0ZyzNFvl/mtb2P6OQfoKwdTmYvop+GVN//pyy7zy5g5mIp+znH0oRv9jF1vimWlI9VYoFimWGYzQ7HMnAgpttoHQxTLtC4rZ0ZI6xqDkVqXaV1mc0MVkuaEHuWAHJADckAOyAE5IAfkgByQA3JADpygAyTwgWYk43IAggQmSTsgIjAAgMK29QZMMpiRuzQjAIJ+gIOMCYDwLs1IMp1kEIAHmAEA8gCEVUPxGjAVbfWGfmAq4Ab9ABSvmss+AQ4YadJvMJK+0O/BSPQDUOgT/QAU+q02vEA/26Hf7jNY3Ybn6Mcv0w8M9mBqCfOOZi+Ty5gGI9FPNZp3z070A4N5RH8OLBtMRX9T0s5gJGMCgz2YWtWfg6l4gX6AJH0BD73KTnQzr9m+ST8wEtCIfnzwYCR9oZ9jRV/o92BqHUZ6lZ3oQTtzCP3AYK+yEy9mzZyVEuaMmYN5zAlgKvpzlanoZxvOdfpCF4/1ZjCSvnIwFf1Uppp+YLBX2Yl+YgGtSb9dWpIxczAV/Rwj9NEXMBvv6k2xrHQE/w2MK5YpltnMUCwzJ4r/q4plhR9al5XzQuuy0gueDYR1Gce87bpswAPJrZl7GfSeNvpJDsgBOSAH5IAckANyQA7IATkgB+SA74Al8JuqoUhgVt+o5wAEMAaABbAANgHg6s1LegH06o0EiAEUkukAFA9AGIxEf66yE/0kHYGgwAz0ezAV/QAsNALDvMu0sm9W2WkAxYOp6DeAYvrZvt4MRqI/ByPRDwwG3KAf4OrBVPQbAMpVQ6G/ClOBkR5MRb/BYPQDgDyY2gZGot9gMPqBwR5MNZiHR91gJMeT+ZCDqeg3GIx+jqWnvw4jgYP1hn5gMNuiHxjswVSDeYzD8WmCkd1gKl7g/5ChQxrBeFsYCUzlWKE/B1OrsaAJRqIdINwEU9GP/91iQRsYybGswuAcTK3qz32wgmOpWFbM8Hosy30wRLGsjAiKZaUXzB/OJcWyospSsaycG6d7XaZYVtxLnTVn7kNiimXlfCWWMWcnTDgrfbAr9yE3W5cNeCBZWqdnckAOyAE5IAfkgByQA3JADsgBOSAH+uZAPWkEaKk3S+ADIIAZuWouYEwCKDHhn4N5VRgJzACE5WCkAQjAD7oYu94ALEAPg3neZWbRbxUQpt+r5kK/AZSc/moCH/2ASE8/SQv0A0jQDwDqpp+kkVfZiX6rTKWPHExFPzAYj4FJ3j0jTT/9oR/tHoxEPzCYPk0/21cb47SBkcAMg6mAQfR7MBWv0E8DJuVgHjC1CiNz+oHB7Af66asOg9HfBkai32Aq+jlGHkw1GIb+JhhZr+z0KlMt6WX6czC4DYw0/ewr+jlH8KTeTD/nEv4zZ+uNuWj6mYu5pB3zBv8ZOweW8b+awOc4ApfrjT6Awcw19BMLeKw3xbLSkRONZd4HK5iDimWFt8xFxbLCC/6XWCzgfwOxQLFsSqdKXbHs9K7LFMump7mYg5GKZeX/S4tlO3ftDYePxHV9XBd3i2UCkqV/eiYH5IAckANyQA7IATkgB+SAHJADcqBPDgCAABAAujYwkqSjd2lJYAYAiyRHDsYAIOwyrSQwcwCCBDgACAABOAGgeACiLYy0aij6aNIPQAG4dIN5aEN/E4wEoABIgDHo92AkgAiAi/85GImf6Mc39AODPZiK//RFYqUJ5lllJ/pzFQTADPTTJ/pzMLgK85qSXsBDwBP6czAVr9DPHGnS36nsPBQrI7f5lZ3oB6DwaPrZ32rrC4wEQAD+TL8HU00/Y3B8cjDPYCrzAf+9pBe6OZc4D9BPXx5M7QuMZFvOJfynz3pDPzCe1hQLDECgn4Q7x73eqvrxCv3M8WrzYCTnZr1ZLGCuoR8Y7MFU9CuWFe5x3iqWFV4wFxXLCi8MQCiWhfR/XrGsmBdalxU+2Hety8yJkNawA2ldtn3H7rDt6W1xXbOzNOHYs+q6hjWUgOQxY37mLRPCeZcMD+966/H3yTjORf1CDsgBOSAH5IAckANyQA7IATkgB+RAdABQAGDMVRYCw0jcAWNyAKIKI4FJACwPQPQVRvKmH4DiAYhq0iinnwQs2qv6PZgKzABgASNzlWFWWdgNRpK0YBv6RD8ABe/qzfQDmtDkVUYajARi4QH+ezCSsQBYBiM9GFbVD0wCpnoVBNUEPjAJXR5MJakN9Gi6HBj6DUaiH+CEv/WGfvoiMZqDeeg3GGn6vcpI088j+nMwuArzgILeZVqrCXz0s42nHzDeTT9zqw4jPf2cSwAUQJzp92Cq6ec1oGAO5uE/c425iH76rDf0k3SkMRdzH0ywBD7zOQdT0c+5hH68wn8PplplJPrxP6cfGIw+089jvZl+xbIigaxYVswQiwXMScWyorKTuKFYVlZ5K5b1/UNixGCty4r7P2td1r/WZfyfOHxof1qLVtcZ3rrstAHJwYOHhDk954TpM+aGkVz2Ii5ON6xbFZY9sbSz2Jo4eWpYsPCi6j6k50sW3xPfkBx/eYzjNuzDL+67fW+46vpR4fpXjQnf+OLuPvylNpUDckAOyAE5IAfkgByQA3JADsiBgepADubZpRmrMM+rhgImGUABJgGwPADRBkaSQK4ClFw1l8EYjhmacjCvDiPb6Aeg5GBqGxhpAIXEBgCIhFW9oR+AZQAlp79a2QmM9GAqMAb/gWdW2VbXX4V5AKAcjCTpgn6OKfrx34OpVf14ynb1ZjCS444HACcPpqLfAEpuLlb1G4z0YCr6DQY3AQhgGAAXn3IwEqCG/2xr+nMw0mBwDuaZfuY2+nOXyTX9PDJWDgYbzOM8a4J5BoNJIOM/ntQbsBL/gcE5/RYL8MP0M269MW/wn/PY9Hswta1+q0w1GJnTj//oZy7mPlhxIrFAsayAwfiuWFbcf9higWKZYhkxR7Gs/C+gdVnphdZlpRe2rrF1ZdO65nSvy1hrDBs6shQfn5n++rpscK+tnsEfxowdHy64eFEYFhdaWzdvjJ/+Gh4Wnn9pWHTltR0Vo8eMC5OmTA9D42uD46fh7CuulDrbnKonTy49EHY8fSTc9Loxp6pL9SMH5IAckANyQA7IATkgB+SAHJAD/dyBXAIf+MCXVRDkYB4AAnhDghYw5QGIvsBIklqWACc5UG+8DkChAUU8mGcABQhBAjlX2WlJI/QDY3IAgsq2E4GRnn4SmNWki6cfmIf3VhkJTEJfvZl+tuf1HEytVhbmLtNKssVgJDCJY4l39YZ+g6lU+LWBkbnKToNhHC/mF154MJXjiLauMHLipJQ8Mv0eTGUu4j8wD/2AlnozGMm2HMMcTDX9AMccDOM19HeDkQbzOA52LrG/9YYm5r/pR1u9ob8OI/Gk3uxcMv1tKiM5lt1gJPo5lt30A5U9/QBNg5EWCzwYaQlwwACaFMuKylrFMsUyO9cVy8yJ3pdp5X+DYtm49GEm1mz8L8SPerMPiWldFtKHvrQuK2aIrWsG8rqsa4XkuMFHw9iILblbwNbDg8Kh3petr59rrX/ev29PuPeu2+KNLsvF69XX3pgA5PARI8OB/eUnz7777Tt7/dx6kD5uSGXkzW8YFxa9cGT47j3l+H3sRpvLATkgB+SAHJADckAOyAE5IAfkwAB1ADhE0gWIYjDSAxDAMJIRABQS4IAdD0AYzAOgACAAYvVWT3oBKTwAAQyjGpBkSA6Gefo9mIp+q+Yy/XWYik6DYd304wWAygBKDkaiH4CS01+HkSQJ0VdvjMWYJJzZP/xHY7Uxjuln37pVRuIJ4Ar/PRhpYJkxcjCvXhnZpB//2R79gM2cfuAa+psqC/Fi5KiRSX+umqvQX8Bs9HswrJ7AR79XDUWC1vRzfjCmB1M5l/ji3MjpB0Ym/fGRsdDlwVTOJeYP4zTpbwsj0c/5gn4PLFvSsarfiwV1mNoUC0w/c7FbApxziG1ysQD9aNy5I34wYfPxty/yYoGnX7GsjBoGgxXLCgDBuUTcsA+25GKxxQLFMsUyO5uq6xrFsuPXlVqXTezci5z/h/VmHxLTuiykdS7rEGKxnUune12WBZJDYxHi80YeDpOGlATyQHz6xIHBYdXBwaH8bf2Qt/v5wIH98R9S709rbt28IYyfcHYyqgokWQRRQXmqL9NaV/rw9/YnIHn+c0YISNbN0c9yQA7IATkgB+SAHJADckAOyAE50OgAyX3e9AOxACjAgFzSCIBiMBKA4sFI+mI7AAow5mRgJIkI+kIjyRsPJvHemwQy4MYqIDz9BvNIGPJ6N/2AMrzwkkbVBD4wj+08GIl+Ayj0A7SpNwMo6O+WAMeLqn4PpuI/fqAf7z39XtLL048mxgRy0pfnf1sYCcyjL+AfgIi+PBhp+tk3fAXC1VtVv8E8D6aiH/+j/K76Ad/dkl7oZ3/Rz7HM6WcfmmCqByM9/QaW2X/8x496w882MJL9M/0GNj2YSl/VWODBPNNfjQUeTKUf/LdY0KTfqnHYxqvsNP2cL+j3ziXFst6zw2KxYlno3ItWsSwEi8WKZcX9V4mLimUhrS2I/xaL+R/tfTBE67IyznrrSq3LRnU+ZOWta57N6zIXSAIjr4gw8qwKjGSKDI+/v2jEkTAyPj4WweSpbPwjmzZjTrz55aGwe1fva+lf+7IfS0Px2mNLl4SVyx8/lUN3+lq/uricx8y5ri2d7fREDsgBOSAH5IAckANyQA7IATkgB+RA1QES+CTjSDABF0lAeTCPT2uTqOqWtDOYBICgLw+GVSsISHY1Jb0YEwBBP2yXAyjoTzBya4Spu3dVdzE9J2lEX1WY58FUtmEfGAcwktOPZ/RpMNJL2pF0oT88zsEk9o2+gC0GU3PVOKYfQIS2Jv0ACPzKwTz6qn4CPwcjq/rpr94MRqKfxBPb5D7BTl9VGOkl7dgGiNUXGIkXXtKLfuiPvA3b8FVv6Md/ErD0wTbd9OMp23kwkr447ujHixzMQxdQrwmmVvXTF3Oo3voCIxmT/TUY6elnG/Qzt9hHT7/FAvQzV9nOg5EWC9DMNjn95j/nENs1wUj0c06ynRcL6EuxrJglHEvFssKLeixWLCtisWJZsa5RLOsbjCS2aF0W0hoQL1hXal1WXDKb9QHrGv5HP5vWZSPieoZj2W1d5pK3BcOOHAcji389xfee4UfCqkODwt4jkUyeosb9I0eNHhO+f//dnR7379sblj/5SLqs64SzJoVZc+aHCy+9PH6qYG/YuH51Z7tT9SS+T4qLv6Nh4pQhp6pL9SMH5IAckANyQA7IATkgB+SAHJAD/dwBQI0BlG4wku2AkcBKEg0egLAEOLaR8PVgHgCFvoB5bWEkIIMvD0BQfWUwkjGbYF5Vvwfz0GUJfKqvPJhH4sn0t4WR+JXTT19t9LNdt6SX6e8GI9muG4wEhuEFMNX010+HKkxtAyPRj6d44cFIjiXjmn4PhnEMTb8lvTyY2gbmGYzsBlN5nbnN3LUEvqcfXYzbDUayXTUB7iXt8J4vztEcjDT9wFQ8YLsczDP9nJP478FI/DcYSV/eBxPQbUk7g5E5/WxH41xqigVWjcM88/RzftCXJcDZztOPr930M+/ZrhoLFMvaf7DCYoEXi/FVsayIkoplhQ98VywrvVAsK72wD4lVY7HWZeXl83PrGq3Lijl0KtdlaS0V1xisD7qta1wgOXVo8wVZqY2cHbd5/MCpAZIzZ/eEBedeFFYuezxsWFeCxk0b1ga+aOvXrgprVy8PL7zupjBvwXkJSLKAu+SSS9Lrbb4tW7bMvRRF9W+HxvLQvbu5Y6aaHJADckAOyAE5IAfkgByQA3JADsiB7g5wXzcSZAAUoIEH8/qawAegcF86D+YBdEjUtoWRJAmAJ00ABf0GU3P6gRnVpJcHIEimA5NobWCkVXPlKiNJGgFQSOADY7wEPv6TVEE/Y3qVeXiFtm4w0hLgjENfHswzmNoWRpp+/Pf0Myb68ROA5ekHNuG/6acvL+nYRn9fYKQl7dDlwTD2jTGtMhLPPBhm+g1Got+DkRxLYBigjL5yMI9jaZ/AZ27kYJ7ppy9PP+dGVX9fYKSnn75MfxOMNP1NSTuON+cSsaCbfuY3iVe88Pzn/MYL9hcfvFjAOatYhgtFUywzJ4p7AVdjsWJZ+cEKxbLuHwxRLCvPJYOpWpcVlZFalxVzoz+sy8KgofE9QnHFim7rMhdIDhvUDCSxasSpYZFhyrSZ4dLnXRVB5Kqw9MHF5RnqPNu5Iy644wJ99Jix6VUW8t4bIOdP06/qn/yqbzduwuB0P4T1a4pLt9Zf189yQA7IATkgB+SAHJADckAOyAE5IAeqDkydOjXBJN5vAhBzMI+kSxuYB8wAQGzatMmFYSSxgAbAMKvm8mBem6QX+zFlypSkH7iCfg+GtYWplsBv0m8wlT7RDWjxPsGODwZQDEbW39MzDvqBXcC5nP46jCSBnIN5jEvDfw+GAQSBTn2BkYApwLIHI+v6PZhkMI+xrTLS028wqY1+YB5j4a3nP94DwwCOBiM9/YyJPnIzHMucfuZGFUbm9OM/4+C/dy5Z0s5gJNpyMBL9VKaiywP77Bv6mR/0kdNfrSAwmOfBSI4l5x3zNKcf3cwf9qMNjER/7oMJFgsMRqI/Fws4nvjP3GcfPP19jWWm38vLcbwVy1IoST4olhVeKJYVPvBdsaz04nTHsqYrViiWlcdJ67LSC8Wy0guLZRs3cXWJPWmd0W1d5gLJPfFSrCNq948shyme7T5S/03ff544aWpYdOW1YcvmDWHJ4nu6dsAlXYfGBdSuXdvTtiyalyxZ0vXv2m5wzgXD06YrnzjY9k+0nRyQA3JADsgBOSAH5IAckANyQA4MYAdISgAgNm7c6MI8AAQJLWBStwQ+MAMAkYNhJO2AHvTJ+2FAhQeT6KeaAAfG1GEeh2zatGkJxhhAaYKR6G9K2gFZGBdIiBcezLOkI/pPFkaiH4ACjAGu4JkHw+owEgDnwbA2+gE6ACySL+gHhnn+A8KqMM/zH5/QD9hET5N+q4zsBiMBZ/S7YcMGF+ZxDE0/XgGwckkjEo8AO7ahSrQOI6v6AVLo92CYJe26wUjmNfppzJ8cjDSYx1ztBiNNP77V9XOeMSb+o59zydPfFkZyLNlXxsnFAuYN+quxwPOf443/BiO9Kl32zWKBwVRPv8WCNjCyr7EM/3MwUrEsTeVWMJItFcsKv/hOjFIsK/yofjCEWKxY1u6DFX2NZawLFMu0Lquua7QuKz+wSDRqsy7jHMqdS/VY5gLJpw4MDpePyl+29MDRQfEekly49cQbVY5XXH19sViLl2mdGe8PaW3zxnWB+0c+94prwtYt8VOh258O4yacFebNPz9tsmrFk7bpKX287pWjo54Qvvmfe09pv+pMDsgBOSAH5IAckANyQA7IATkgB/qvAwAgD4YB3kiuGoBoSuAbgDAYWQcoAAiS1vQJgGiCkQAN4B+JARKYXjXU9OnTOzAypx9YYwClDYwEoOSSFugx/QZTPRjT5hP4zCTTz76h34Mx6DcYDNTJwUhLgKM/B/MAOug3GIn/nn5AJIkXjhfHG/89GIx+9KEfzzz9wFT8L2DezvSpcw+mot9g8Pr1610wTh8ALPR3g5EGUw1G1vWTtDP9lrTz9JMUxv9Cf3HPS0+/wUj6zemvwtS2MJJjlIOpwHiDkfjvgeW+wkj0r1u3zo0F+M5x4tH0ewlwg5HMn1wsYJ6i32IB2zXp59xrqoykL4OpuVigWFb+/1IsK72wWKxYVniiWFbODcWy0gv+P2tdVvihdVk5L/rbuiy9Dzo6LH0wrtzL4v63tq60dZkLJDcdjp+oOzQoTHPuJcnFXB+L94481P2qrtWxj3s+anTxyT1euPDSy3u9vvi+OxKQHDlydLjwkkWd13hD9vgjD4S1q5Z1fneqnowZNzgsiBWSDy7eH3bvPAXln6dKmPqRA3JADsgBOSAH5IAckANyQA7IgTPWAQCEB2MMQJBwoNoLuOPBGIBNvZqoDiMBEAAgoAwQA4DiwbBq0gsA0QQjSQrRAECefgCEwTD0A9c8/WwDuKnCyLp+4ArQA/3oBqB4+tvCyBkzZiQYwzjo92AM+wcAAh4YTPX012GkVyVqAAL9TTCVhIslXZpg5MyZMxOYAvTl9BuMZGyg2rZtfmUnCXBgUhPMYw4CU9HPsSYh5MEwQCrHgOOVg5HMGfxnfhsM9vy3ylT0Mw+BwR4Yr+rPwTzTz6PB1Jx+85995LjX52JVP/MhByPx1BLITZdpxVf2Ff/Xrl3rnkv4zn6in/mFt57+Ngl8xiEW4H9TLDCYiv/dYCT6aYplimVpIsRvimXmRHmfO8WykP6HKJYVc0PrsvIc4ZnWZaUf1XVN7kNWtq7pT+uyYo03rDQiPqtWRlbXZS6Q5C+/v29ImDXsSDh3+JHO/SK3xUu5PrJ/cNgWgeXJti2b1oevfuGzjd3ce/dtYXi8GSY3xDx8+FDYu2e3u5hs7KTli6/+mXFpy8/+VXE52JZ/ps3kgByQA3JADsgBOSAH5IAckANyYAA74ME8EgyAiiqA8GAYMNIqIwEjgL86QAFAALDoEwBBcsODGcBI+gMmASD4qle2cZisso1+16xZ48I8YIclHZtgKjDSYGpOP0k7ElXoB0JSgZXTD5BBP/AKCOTppy+DqatXr3bBplVz4T9QKgdTPRhZ9x89BoMBb+ynp99gKtt3g5HoYxwAlgdmqzAVGEl/OZhnlzZkXnhVuiTRDQajHxjs6a8CiCYYOWvWrATDODYALE8/gMtgcDcYafqbYCT+cyw519DvnUte0subP6YfP/HM0w+MZG7jXTcYaTA4ByPRjf88cnxIyHn6mfscA84X9jEHU9HPuUQfuViAp8QC05+7ZyS6DKbmYoFiWfnPTbGs9IJn/F9SLCs84f+lYlnhhWJZ4QPftS4rvdC6rPRC67IQskCSAsjVBweHNfFrVLw66+H4i/0nWRVZWt/+2YH9+wJfP+x2x1d2h3u/sSdeHlbVkT9sr9W/HJADckAOyAE5IAfkgByQA3KgvzoAeACgkHAAQAAXPJhk1VAGIDwYiUezZ89OMAMAAbTxYIYBiL7AyBzMA0AAKtBPNRcAxdPfBkYCPQEoeAIEA6B4+qtJu24wkqQWbdWqVS5YA6YCg9FvMDWnH9/wH0jKvtZhJK+RdEe/wVRPPzDSYGobGIl+/PfAIPtHchv9BlM9/QZT8dhgZF0/8wGA200/IAz97G8bGMk4ACxPPzB1yuQpYcjQIamys6kyslsCHw8MRhoM9vwHRvJV1V/3As85l5jfgEoAoqffYCreAVMB+57/zLFuMBL9+M9jE0ytJvCrFQRorrY5c+ak4RnCewAACVRJREFUY4keYoGn32Aq+gGR+O+B2TYwUrGsdF+xrPSCZwYjea5Y1h1GKpYxU8qmWFZ6wf84/m8SY7QuK6vUtS7r3+uyLJC0UwMGuWcAMLq1Kw7ZLutRDsgBOSAH5IAckANyQA7IATkgB+RAnx0g6UiiFhgAgKCazoMZVQDRVA01d+7cBDMACgAgry8ABHAKGGPVXB6AaJP0AkAAUNAPTEW/15dVdpJAy1VGYh5JRzwBIgGAPP1AKeAm+u3Skt6Y6ALWMWYORgKb2E/0Axjx1uuL8YCI9JVLevEaAMv0A4A8/QZT0W8w1YNhzAuu/kRbuXKlC2aBqYAi9ANTgVOefo4346IxByPRAwxGP+Aqp99gKtsbTPX0W2Uh+vHfA4McH0Ad+oGpwE1Pf72ayKsyTvpnzkpgExjMfnr+A1OrMBKI6Ok3GMlrJH09/QmmRhiMfqtM9fS3hZF4Rl/AVOaZp98qO9lfjrd3z0s8twQ+eogFnv46TD0ZGKlYhutlUywrvVAsK71QLCu9UCwrvdC6rPRC67LSC63LSi+6AslyUz2TA3JADsgBOSAH5IAckANyQA7IATkgBzwHAA9ADyARgAWA4sEMg5Fs1w1G0icABYDl9QWAICFKX8BIgJIHY9rASAAEACXp37svARRvzLYwct68eQky0gcAyOsLGAlcY0xgJADF098GRgJTSZTTVxNMtcpOtsvBSI4vMJjkERAppx8oSH/0hXb2wdNfJPBHxO3yMJKkHftJX8BIQK/XV70yEvDqNfTTF+AKgOX5D4zkeLIdc4c55I3JvEAfbcWKFS5YA6Yyz+gLGMnc9vpivlplIZCUY1Vv9GH6ganAbE+/VXayPfCzCUYyP2jo9/oCpgKD6QsoCBz09AMj7TKnucu0Mm8sFgBT2U9vTBL4fDFmNxjJ+UnLxQJgKtroCx/ww9PfpjJSsSxZ3fmmWNaxIsVYzvU4zbIfrFAsK/3ifFQsK/0wsM9vFMu6V0ZqXVbOHZ5pXVb6caauy8aPLyo7iX1N6zIByfJY6pkckANyQA7IATkgB+SAHJADckAOyIE+OwCAsKSjAQgPBngAwhuMvgxALFu2zAULQBEDKACIJhjJtrTc5cAAECQKSSBQzbVu/Tp3zCpMBZgBnrxGAt9gKgDI8wIoVYepXl9AOmALLVcZiVcGgPZFmAoM9sYsYOqElEwHRgL+vNbT09OBqSRNvb48mOr1BYwEdtHoy6tsA5YZDAYw5mBkFaayjzkYOX/+/HQsgal45un3YKqnH10ACFoORgIgDAbjaQ5GWmUnfeVgJK/hP3MRr5iznn4PpvK39WaVkfx++fLlLhhk/wwGM6dzMNKqoegrByPRzfznEZgKDPb0ezCVfuvNKiP5fS4WcH4YDAam5mCkVXbSF7o41+tNsay3I4plpR+KZaUXimWlF4plpRdal5VeaF1WesGzgbAuYy3F+wTWEfYht94uFD+xLhOQ9JzR7+SAHJADckAOyAE5IAfkgByQA3JADrRwAPDQEwEKDRgJQPEaSTuAGA3gAUT0mlUQADEAEF4zAMFrVs3lbWfVUPQFQEFfvZE4IOlOA1AAKrwGTCXRQLPKTm+7agI/p9+Sdvy9VXN5fVllJ/rR5d0zD/AJwKVRmbp23Vqvq+Q9+0Czy8x6G3Is8YQxAVheA6YCd2hWmeptZ5Wd9MW88GAkSTuOOY1qQUCj14CRzCGaVXZ621nSi4o8AKLXgKnANZpVpnrbWWUn+oGp3iVHgZEkl2gAUrR5jQQ+EJG+2CZXGYl+GmMxpteAqfRHI+nFPnjNKggYM1cZSQKN7WhWmer1hV+MG7uKx2hdmmv17YgFpp+5Cgz2Gj5wPGnAQ+aQ1/AVWI1+5iKP9QbsZp7RrDK1vg0/M1857nSxLp4jHoxULOvtnGJZ6YdiWemFYlnphWJZ6YXWZaUXbddlrCm1Lit86w/rsr37DqYPY7VZlwlIlueLnskBOSAH5IAckANyQA7IATkgB+SAHOiTAwYgcjCSJL8l7QAKvFH3YCQQDAAEgGiCSSS9SA7TVw5AMCYABXBGX0AuD0AwZk8Fpnowkr4MpjImAAUIWm/0BdghEdWkHxgJaKSvHExlTAAK29IX1XQeTGUsg6kJRkboWm/0ZZWpjAkM9io70Q8A4pExAUBew1NAL33lYCpjsg3Hir6AwR5MBUYaTAXQsZ/1Rl9WmcqYwGCvshPdVuWa009fBlPpKwdT2Y5jBOyiL+aFByOZq3hGXzmYSl92mV+2AwZ7lZ3oNy8Yy4Op9GVJO/oCRHowku04R4CN6AcG81hvwFTmLH3lYCp9WWUq2+VgKvptLgKePRhJXwZT6cvuOVrXxXbEAvShO1ely/FhO/rKwVT6AqAUMPJoigW5e3b2VGKB98EK+lIsK4+WYlnphWJZ6YViWemFYllvL7QuK/xgXtiH3Pj/pXVZ8SE3vHg2r8tWrFwb12RPux+y4phX12WD4oL1+I9YleeLnskBOSAH5IAckANyQA7IATkgB+RAHxzYuWtvGDtmZPqUaB/+rNemJKpJ8AFceCTBxRdv6Ph6JhtvkPkiMc4XyXaAAY9WMfdM6tFYckAOyAE5IAfkgByQA3JADsgBOXBmONCX97+DzwzJUiEH5IAckANyQA7IATkgB+SAHJADckAOyAE5IAfkgByQA3JADsgBOSAH5EB/dEBAsj8eVe2THJADckAOyAE5IAfkgByQA3JADsgBOSAH5IAckANyQA7IATkgB+SAHDhDHBCQPEMOhGTIATkgB+SAHJADckAOyAE5IAfkgByQA3JADsgBOSAH5IAckANyQA7Igf7owNDTtVODBw8Jc3rOCdNnzA0j443qDx44EDasWxWWPbG0183GB8X7pCw875Iweer0MHzEyLB7587w8A++E/bs3nW6pGtcOSAH5IAckANyQA7IATkgB+SAHDjNDrR5Tzlx8tSwYOFFxyldsviecPDggeN+r1/IATkgB+SAHJADckAOyAE5IAfkwA/HgdNWITlm7PhwwcWLwrDhw8PWzRvDsGHDw8LzLw2Lrry2155e9aIbwoJzLwqHDh0KmzeuT/By3Pizem2jH+SAHJADckAOyAE5IAfkgByQA3JgYDnQ5j3l6DHjwqQp08PQ+H5z8JAhna8waNDAMkt7KwfkgByQA3JADsgBOSAH5IAcOM0O/H+9sCqIL3maBgAAAABJRU5ErkJggg==" - }, - "image-3.png": { - "image/png": "iVBORw0KGgoAAAANSUhEUgAAA7UAAAJKCAYAAADz6mJNAAABWmlDQ1BJQ0MgUHJvZmlsZQAAKJF1kE9LAlEUxY9mCSnYoqWLgRAMLMR00dKGEMHFYEr/FjHOTBro9JoZqWjRF2jTJjctatMnCNwU1K59URH0AQraFMymZLrPqUaLLhzej8PhvsMF/AGZsXoAQEO3jGJuRlhYXBKCT/AhihAiGJMVk2UlqUARfL/9Y99SmuZ6gu+Kx44PX5/3W62h85vZxrL/b75vhlXNVOj9ICUUZliAL04sbVqM8xbxqEGliPc4V10+4lxx+bSbKRVF4iviEaUmq8T3fGelx6/2cKPeVL468PZhTS/PcZ8URQEi0phGjpRB6Z9supsVsQ6GbRhYQxU1WBCQJYehDo04Dx0KJpEgTiFJyvAb/76d5+280OoN+irveeUwcLZC9VTPiz0CkSRwuctkQ/65qM8OmKtTKZdDbWDwwHHe5oHgONC5c5z3tuN0ToCBB+DC/gTm/mIG6OCHqAAAAFZlWElmTU0AKgAAAAgAAYdpAAQAAAABAAAAGgAAAAAAA5KGAAcAAAASAAAARKACAAQAAAABAAADtaADAAQAAAABAAACSgAAAABBU0NJSQAAAFNjcmVlbnNob3Sp9AzEAAAB1mlUWHRYTUw6Y29tLmFkb2JlLnhtcAAAAAAAPHg6eG1wbWV0YSB4bWxuczp4PSJhZG9iZTpuczptZXRhLyIgeDp4bXB0az0iWE1QIENvcmUgNi4wLjAiPgogICA8cmRmOlJERiB4bWxuczpyZGY9Imh0dHA6Ly93d3cudzMub3JnLzE5OTkvMDIvMjItcmRmLXN5bnRheC1ucyMiPgogICAgICA8cmRmOkRlc2NyaXB0aW9uIHJkZjphYm91dD0iIgogICAgICAgICAgICB4bWxuczpleGlmPSJodHRwOi8vbnMuYWRvYmUuY29tL2V4aWYvMS4wLyI+CiAgICAgICAgIDxleGlmOlBpeGVsWURpbWVuc2lvbj41ODY8L2V4aWY6UGl4ZWxZRGltZW5zaW9uPgogICAgICAgICA8ZXhpZjpQaXhlbFhEaW1lbnNpb24+OTQ5PC9leGlmOlBpeGVsWERpbWVuc2lvbj4KICAgICAgICAgPGV4aWY6VXNlckNvbW1lbnQ+U2NyZWVuc2hvdDwvZXhpZjpVc2VyQ29tbWVudD4KICAgICAgPC9yZGY6RGVzY3JpcHRpb24+CiAgIDwvcmRmOlJERj4KPC94OnhtcG1ldGE+CpvbxyoAAEAASURBVHgB7J0HnFTV+fefnZntvS/sArvUpYMgKCCgIAo2RKxR1MSWxCSmJ5rEqDE9+ScmryWxRGPsDUVURMQuSpHeYWEp23vf2d33+Z3ZM3tndurubJnlefYzM7ece+6533tm9v7O85xzQkaPHt1GYkJACAgBISAEhIAQEAJCQAgIASEgBIKQgKWysjIIix3YIsfHx5Nl4dOBzVRyEwJCYEARsK69luT3ckDd0qC+GPzfkvoY1LdwwBRe6uKAuZVyIUIgqAlYgrr0ASx89RuXBTA3yUoICIGBRiAyMnKgXZJcjxAQAkJACAgBISAEBgQB04C4CrkIISAEhIAQEAJCQAgIASEgBISAEDglCYioPSVvu1y0EBACQkAICAEhIASEgBAQAkJgYBAQUTsw7qNchRAQAkJACAgBISAEhIAQEAJC4JQkIKL2lLztctFCQAgIASEgBISAEBACQkAICIGBQUBE7cC4j3IVQkAICAEhIASEgBAQAkJACAiBU5KAiNpT8rbLRQsBISAEhIAQEAJCQAgIASEgBAYGARG1A+M+ylUIASEgBISAEBACQkAICAEhIAROSQIyT+0pedvlooWAEBACQkAICAEhIAQ0gdtuu4127txJu3btorvvvpsGDRqkd6nPgoICeuCBB2j//v0O22WlawRSU1Pp0ksvpYkTJ1JGRobLTD7++GP6+9//7nJfsG0cNWoU/fKXvyR/57yvrKxU9fH48ePBdsm9Xt6Q9PT0tl4/az87YXx8PNXX1wekVCmL5qt8khfNs+dXuuYDKlmz3r4uC0JACAQfAfwjwj+XQFj6kgUqm7Tzz7FnV/T2Oipc/Z59XRaEgCcC+L8l9dETIdnXWwQGSl2cPXs2ffe736V//vOftGnTJkpOTlYIo6Ki6He/+x198sknNHXqVLrvvvto7969PYb3mmuuoXHjxtFf//pXKisr67HzuMoYQvMXv/gF/fznP6e6ujpXSQKyDecBRzQQvPfee1RaWkrGc19//fWqceGtt95S+wJyUheZoO5WV1dTa2uri722TSEhIWQymailpcVtGl92/PnPf6YPP/yQtmzZ0ik5rhfleOWVVzrtO+uss2jkyJF07733dtonGxwJiKfWkUe31yBm9/7oHoocMYyiRmSr/LCt7mCeenX7BJKBEBACQU8AYnb7d++i6JE56oULwraa/Yeodv/hoL8+uYDgIiD1Mbju10AubW/WxZycHJo1axYlJCTYkUJcfe9736N77rmHtm/frrZHR0erz2effZaKi4vpV7/6Ff3mN7+h3bt3248L1MKKFSto6dKlKjuIPnj2elPYhoaG0pAhQwhCriftpptuUl7xf/zjH/bTaNF47Ngx5WiqqKjoMUEbERFBV199NV1wwQV0+PBhevjhh+ngwYP2sugF1JFvfetbStD+7Gc/05u79Gk2m6mkpITy8/M7HV9bW6tErat95eXlSlR3OqibG9BYk5aWRnl5ed3Mqf8cHvA+tRHhFoqNDid8urLwMNv+yPBQV7uDepsWsUO+eb1d0OoL0vv0elc/I+KiaOx5U2j+9y6glBHpZIkIpcV3X0GjF0zsapa9ctzIeeNp6Z9WUExKnDrfuMWn0eJfXU4hpp794ezqxaGcKN/kZTNVFpEJ0Yo3uSiuyWLmfRkUERfZ1dP1ynFgfv4vLydX19CdAgyaMJSW/PoKSshKVgxQH9NGO4ZtecrfEhZKoRFhnZKgZdTV9k4JnTYsW7bM/lDgtEutIl88KAwfPtzV7h7fFj0qR51j+HdvsgtafdKYUX1TJpz/jDPOoBtvvJHQYix26hDo6frY3+pVXFwcIcx02rRpp85NDpIr7em6aMRw+umn0x//+EeaNGmSEiwQVHi1tdmCF/Wn8RgsP/XUU7R27Vr1P2T8+PHOu7u1DkF7/vnn0wcffEAnTpxQAgjCNikpqVv59reDIe4Qcvz666/3SdFw7xFGjnvf1NSk7vvvf/97gtCG0INB9N5www2qjqBeQPwNJMN1IsT+G9/4xkC6LAq4qL3juvn0m+9dSPfxy5X9+tuL1f6f3rzQ1e6g3aZFK0KN6w8eIXwG2syhZlr21+tp2tVzKCk7jdpa2yh99GBKzkkLtE7pVtGHz8mlM2+yhVfqjLKmZFNMahzFZ9p+nEefM4HiBieqa9Bp+stniNlEi+5cRknDUungh7aW2FlcXyEIQ8M7i6/BE4fyvuUE4e6PTb38TBq/5DR/DulWWsU8g1ukbf+zu5WX8eDhs8ao+lhXVkMN1fWUNDSFchdNMSbxuDz/jgsIr8h4W2u4Tjzhoulqu1739TMxMVGFbV100UWdDkHrMx5krrjiCoqJiem0v6c36Ic2hBrXHjhM+OwPhoezBQsWqHC7QIW09ofrkjJ4JtDT9bGv61V4eLhq4BoxYoQdBEJK8UL/NrH+Q6Cn66LzlUJAvvbaa/TTn/5UeengqUN/WogXeA937NjhfAhlZmZSdnY2vf/++7Rnzx665ZZbOqXp6gYtaCFi4QGG2Prtb3+rPJUDTdjC843vJryTvWl4NvjJT35CP/jBDwhhzT/60Y+ooaGBXn75ZRVyjd8riF3080U/3smTJ6vt2D+QDF2pEG2AxoU//OEPA+nSyLU7NQCXGMbeq9PGDqHNu/PtueWwJycqsrMosCcI0oUxf77bp5JD+CIUGaK3K31sJ158OsEr+O7vX6XCPbYO49OvOUud++TODs4+FaYHE01kMRIRH0WfPdrRP/CDf76lvLTVhRXKUxidEkvF+0/2YCm6nvWsbyygqKQY+uj/vU01JVUqIwjcptpGam5o6pRxxrgsta1gl+/3AB7qcSxoT+7Ip52rN3fKM+Ab2MMM5kXt9SaQ+cNLDS5NdY0q29ryGkoZnu7TKaISo5W3vrWlleorHf/BodGjK/bYY4+p/jH4p4QW1tWrV6tsIGjRGrto0SIVduTqoaUr5/P1mIkP3O9TUjzcpS9eoERvb/WxRX8d2COPPKJCoHwqqCQKagK9UR/7ul7hwRkPqhgzQ4cWItTwoYceIoQ2ivUPAr1RF41Xiv8FGJho27Ztxs00duxYVTfgKXW25uZmJYL0duRhtVr1arc+nQUtwn9hjY2NStiij2tfhCJ366I8HFxVVUV5HPI6ZcoU5fX2kDSgu77+9a8rr/cdd9xBhYWFDnmjjzRE7mWXXUbXXXcdPffcc0rs4hkCnt2BYhC0iFSzWCz061//mmpqagbKpanrsPzxR5fQvrwiWrluOxWzpwW24pIZrOBN9MQrn6t1/faNy86k6toGeuHtzp2cdRrj56LZYxxE7YV+erKMefXXZT0wlK/lg7DFy58+tmFR4ez5mkyjzp6gQmPSczMpLCqM8jcfVmGebSwIqgo6/kEjHBTeQ/zoHvniABUfsInHUG5QQOhy8YECFlNH7UVG6DLOsWPVRo9evKwpORSbEU+73/7KfizCckfNH8/n2U8mrjNDpo2gmLR4aq5roklLZ3AZD1H50RIav3gqlRwsJIjapKGpqmxamCOz1FGDaOi04RQaGU5Fe4/ToU89DMLAAg0C/8T2oxTG15R12nBqZA/hoY/32EUohBYY7HxzE7U0t9jLO3jSMCW4drGQtDZ1/ocUERtJOex5BLMjXx5Qx1k4ZD48JsLekGDPrH0hfUymui+lh4vUFnhsm2oaqLq4kobPyiUItgMf7lLXjgRDTsvhsg1TDBCyDE673/mKopNjaej0EZT3+T4aPjtXebY3PfcJ1VfUKq/x0NNHUhTzLj1cSAc+2k0tTuVHyDTKjgaFAm7kAHttmnmBQdQOGj9EcS/ae4IKdh/j0OEoGjZjJCVzFEAJn+Mw34PmekcRHzcoUaWJYYGcv+kwHfvqMN/vOIcGiurCSsrgOuqL4VywehbCDsZ1tzvh3E888YQStGhxxwAQ77zzDt1///0qtAv9aNAi35umB4by9Zy6r60/fWxHjx5NGPRi3759qoUZ/7xw3bCwsDDC/mz2Mhw9elQNcoIHJhjCQ/VDFB4yMFjFV1/ZvuOejsO+mTNnqrzg+YKA2bp1q8of+cLjAUGBcG+MJnryZEcjli4rtiMMDX3aNm/eTEVFtu8QjofhWJQZXjV4Lg4cONCpP5KnMtpycXzX58ZgHXhYSUlJUYIH3PCQitZr9LNDeXE+bfp6jxw5Yr9GvS/YPnujPrqrVxgAByx1HQM7hFeirmAb6p++R92pHxAtqFsw1CEMtoI+kniIw7kwQA1Gs9WG9GPGjFEeJOzDfdaDx6AuY9/GjRtV2bKyslS9N9YP5AMRjZBGjJoL0YyGM0/9IfV1uquLmgu8gujLqQ0D6uTm5qrvGwRCMFtv1EVnPggtPnToEC1ZskR9x9HogcgdNIhCxDgbPIpXXnmlw2bc5+72sUSGzoLW4SS8Ak8i+u/CszaQhO3KlStVuC++H/jt7w3D/0T8j3IWtPrcuPcILb/qqqvUp6u6oNMG4ydCqtFAgt/fgShocU8sM/gh/4zJ2XTdxTPotnuep90HC+hMDhUdP3IQrflkDx2HZ41tSEYiXc8P31t2HfNJ1Fr5QX4Qh5tGs+io5QdjCz8ojGAxg+0WFj8DxTAglDeDgIVn1iiA1eBRD+V5O1Tth+CbcOE05aXFjzGWD/G9gaiNG5xEVe33yMzia8EPL6a0MYOVyIKohRje8sKnyhsIgTJm4STlIXz+tkdU6O+U5Weq/CCqvIWlnn7dXNXH0Shqh7HQgiiDMMrkepPL+eO8oSy6UU4IWpwX59n11mYlniCmYAVcl2DotwqR2mrlPi38GjlvHI09fyq9+avn1H7nNwi0yZfOpHGcBkIdTHBOeIhX3/OCOic8hSjX8a15LAJtD8pIezb3Ra6vrKNtr33hnK1aR8grbNurHfvBE2YU4WpD+xuEHkJvEQ6OOPCZN8wna2OzYqXLNu78Kep6Ko6X0URuNErkEF1YAodjx/M93MUNRfDcIpR3/AXTCKHmsA1PrlfXgWtBXjCEd0/k9Vd/8B+7YJ/77fMJolfbGG6ogFBd+4fX1CY785025lMuO4NwrVUF5bTn3W2UNTWH5t2+mBB6jfuAc+Ccq+58RoUUI5Nx3DBx2pWzVX4oy4izxtHRjQcVe9x/bfBoIx9fLJHvJaziWKlD8ngOk8Y9ddXw4JDQwwr6PkGkYCRLTAuAUCI8mOABsbcNItWbIRwZnlnjQx48tof2P+rtULV/xowZNHToUJo/f776pwURCFGLPoTf/OY3VcssHtLBYfHixcojgQdijPiJh3EYlrEN4sLbcQghmzt3Lk2fPl31Q0KdwCAYEM3whhtbtyFwIAi0yNZlxfE4N+41+jhCWL744ouqLBC0CO+DYNbfI4hNCADtffdWRpWR05s+N64V14C88YCKB1fUFdQZpEGZMFqlNqRBefEwFuzWG/XRXb3CdjS+GEUtGlXAFgPEQNTqe9Sd+oE8db9Z1CGcF1Ni4P7qfLWoxffhtNNsXUFQH1B30cDy6KOPqvqB/vc4Bo0+qHNIg2WIIYxQC4uNjaVbb71V1Wc0GKFez5kzR9Vnd1PA6Ot0VxfxHcZ5Bw8eTM8//7y92qGrAEKqMUJvsFtv1EVXjBCVggd8CFl45fDbg1GHIR57yyCy0PCiQ47dnRfCFmnuuusudd89NZS4y6O/bccowBiUCt5R1HNcE9bFeoaAFrT4XeptQYvfYozVgf/bxgaMYcOGKa84ngu+/PJL+4Xr9O+++y5t2LDBvt2XBcv8FQ/QOWeMJvR1/etPL6XFtzxET7++kX73g4voan64/vPj76l8rmGBAntyZcfDvtrg5m37vhM0dWwWLeYH35fWfEXzZ47khwQivd3NYUG/Of+hJ12OcqxDj7tygRBmq375HF38u6/Rnne20qbnPlbZwEsKL2Lxfltr83TuawsBBoGKNOZQC13yh+toCvfd3MXb4NH96uXPaeb182nEnLFKeEF45m86RJueteXprnwIl0VIrhaiOl0632MYPJsQUbWl1YSQ6Pf+uFKtYx88ubCT7YLKfkx7+DH6lVadLKc3fvGsKiMEFwQUBsKCd9fZBk2wiWJsX8XHVBwvpZFcz874+jl0xg1n01v3vkglh2zHQTRpUXv6tXOV2Pr4kTXOWdrXR84dp0ScMZzbLghdhBfDuwoBqsupPaIhrG7fuPN/VMnXNY2FIET6mHMn04b/vE+r736eFvz4EkLY8jM3P2RvTEhl7zIM4n/HGxuVwLfwgGrwpIPvWmba0mylWTctVJ5ceM7hTQYvCNqDH++mDU+8T2jcWIj8+d7ghfsC5ngQKz9WQgt/ulRtP8rHfvTQO8o7DkFr5bxX3/mC8ihD1OI8Ey85nb58+kMVEQBBW1NcRe/c/zI1sid6Eu/TjQBGXmiYgIGL0UuuNjq96RDj0rwOLwSSJHE/cVgtn687htEqL774YjrnnHPUQ0FfCFpX5T/0j0ddjnKM0GOM/tlVgxDD6ImvvvqqCl1DPvAEwPv43//+VwlOCN9rr71WPcChH9lf/vIXuvzyy5U3FOHZ2rwdp9PhnyU4w/MBg/cJoiAvL8/+IA7vOMQvHu51OpQVaTCFAcQl/unBI4uyooUco1JCjOCf2rp165RIQLkxpQb+AcJz5WsZdVn1J84NcQNBggfGefPmKdGDuoLyoDUfXmh477TwQWMAGgXgPRxo1hP10V298pVdd+sH6ghCCr/zne8o8acbVJz70iPkFIIWgveZZ55R9QKiEYITg/ag7502lAkNHaif6LMPr3M2e4FRj1G/8cAIgYRQZ9Tpm2++WTWYuBO1yNdbXURDUU5OjkqH33CkxzrqZU9OuaKvubc/e6IuuroG/A5h+h547fXosqgLvWloFEEfT9xXb4a0CBv1Ja23vPR+fBfQmOdLnghXhehEOQJlmMpn/fr1KuoA/ZXR2IX/FWKBJ4ARvfF7hZB7DJTnq6HxEd7r7hieB/Abi99No6hFI7VuTDSK2jPPPFNtR8O236IWBV3H4Y4XzZ9A09iDFs/hl59sOUQNHNo4j0MhtaidwyGeddxvbrOLB3tXF7th2xGazGGZ0zkUFqJ2Loel8jeH3uNzQewORMPgUPDKuhr9uLvXO8hFv00t7k7yPUFf25EsHtEHFF5GPaDR/vU7lFczdWSG8qZi/bQrZqnBpjByMgTfB/9c7bV46FOKf6ZGjxwOShmeRg1V9XbxovuXFhn6y0JYwYq4oQOWlJ2qQmoRlgvD73kk961UYa8cKQDhjZc7S8+15bfmd6/YPXwI74Xoiud+27DyozaRpD2iCM1FSC+8rc7XoM+DEGwwObLxgN6kPlNH2Ty1Wrgad9oFLwtHmL4nXzy1nipPlKtt21Z+qUQtQpu14VrRAGD0jiOMF6G7W1/ZoJORtaGZXvrOY7Z1bhTCaMAoP64FgheGBgCITd2HuZU94+//bRVB9Na2dykA85ZGK13y+2sJjSGbn/9UiWccD1EMz+pnD71HDezFxjnyNx6ilutblPBGmpncWIB/fG+xJxyCFvYVd0/AuVH3jP2jEZqMtN4ELVcoe4hx2REnUdvuyS7PL1Hn6sob6itCjhE2iP61CBWD4Hv77be7kl3AjlGDRPG0Pa5GPw7ESSDK0PINw0MIHhQQdgkPKkyHHyN8EYxcPdD4cpzKjN8g8rRQxTb844TBswThCIP39Yc//KESrca0q1atUudHSCj+2aHxAR4oeE3gHcMDl/6HiocpiA4IX+TrSxldXZsqEL+hfPoBDQ9WEK1oOYZ98cUXStRCqKCMCNeCwEWjiA5JVQkHwFtP18fuIOpO/fD1vPgewFC39PcGHgJ45o0DTCENBgjSYfvod4m6Dk8bRC0aY2Con/A4o+7+7W9/U9u8vXmqi3jYgycZ+eJ7gU887BkfAr3lHyz7e7su4ndHPzTretDbrDz9RjmXxZ+0zse6WseASRD0iFDxlDcE7Y9//GPViIL/pYE0CB10B8ILEQkiagNJtyMv3XcWv0toKPPV9HG+pneVTjdKY55no+lnsU8//dS4mdasWaN+Tz//3L0OcDjAsGLRyzvZEwRRezr3Q1zLfek+5f548OAO5v6RePCB2H2b+/H5avjHv+9IEeXmpNMc7iuJ4/M5TLaBwzIHkkHIRn0zW10SBC1CjOGV9WYYLMofQz9aWGG7MMRyxjibxxL9JxOHJKv7BPF25cO3YLeD2adGYQG5d+025WFDX801v+VR3bw3EpIWb0aPHPrQQiAd5wYMbcl8vxHeixBWbSksqDEqLvqAwosIcXdsy2G9mwXsZ0qQYgRhCKbN3I8UXkd3BoEG8Y7QZqM11TdSGIWrTRBUEISJ7SL3zG+co360P/nXu8ZDHJYTmCGskkOEjYYQYXVN7SLcuE+LeNwDmBbchzfstyeLbx/wqJT7rsNwL8J42itjv2Z9//I27LMfhwV4guENRV9b9Os1Gjywsfz9hKg86PTdREMDhD5MM8cyRDuOgzdYGxomYHPZW+tsOBYWl55AJdwXWwtatZHrTRP3ncY/Q91Age2ogw7pVOLOb9Hs+cdvC47t1HeXQ7Jhzh7czrm43oJ84XWEp0WHHMOz8eCDD9Ltt99uD191fXTgtxa+9R4N/85NKmP0k0WIsa9hd/6UBr+7+sEcxyGMB4YHb92/UG1of0NfQVf9i3w5Tp8HD0VGgxcJhlFFnQ0PLdpQVi0QsE33p4W3CwYvAgb1MRr+IeuwVT0lk7/XhvxQZ419FLEN67rsCMHGfJV40IWw0uz0AzDSB7P1Vn3sDqPu1g9fz43+r6jLuj7r4/DgB++R0Yx1RoeAonEFhgcziFyEPOOFMGo0JkH84lrcmbe6CM8KfscQoQBRC88G8uvtge7clb+724OhLnb3Gvvr8Rh74t5771X/E90JWy1o0eAHT7FYcBJAVBam8UFD3ZNPPmn/f9sbV4PxBRDN5Wx4dnC13V165+NdrdtFLUQnrJSFDuzxVz9XovaaC6cTR54qe4K3+WOrP9ipRO3yRVPVYe/yQD4DzSBkIWx96VtrvPaSNeuNq16Xk7mPKPoqQqhpQ7gq1iEgMAASbOebm3kApQ6RqdNqQYXRZnN5sCgYvHNevWntGaTx1EEwDFKkTYcRF7Z7KSGuInmQIgwepE2HLWOUX5jOB8JKG/roHmERiHlUEf6L6YDQJ3fPmq06if1TC7QiDus1GkJdoxNjyOjZq2FPKAatAjuUFWIefV/dmRbAzv07IQTR99SVZXJ/dDCsLqpUuyG468o5nMcggO2ND+1RDrqB4mR7n2IcmNHez9jYaIDt5/78UiVswSefGwLgSZ196yJuGIhQnl4MDAVDA4U708xLOSQb/YrhOYcHWzcKRCXFKlG5/u9vdsoCA3BBTKOuQNgbDXmFczmOf5XXsZl/K1AHjPehY6fjEuozDI0jEO/Kc83r2WeOVmH14OrswVUHeHmDFwPT9qBfJwZ80CHH//vf/1S/UvzzRijOG2+84SWnwO2uZc8svBC+CFnjWbs7+rEOT8Sch/A+aoNwhKDUD+Z6u/705TjnME59LFp28c8T02UYDed0JaCNaYzLaMHXcwYat+tlX8qo0zp/otEDD2vak4z9KJ9RfKAP8Hnnnac8tPDiIkwZHriBYH1VHzU78Dea9nIat3lb9lY/vB2v98Nbj2gGZ0N9MNYP5/3O66iPmA4Eg0hB3CKsFeF1EMZPP/20c3L7ure6iDIgugENLvhtwyfCm4111Z5ZEC70dV0MQmQBKzIilyBUjcLWmLkWtOiygv7H/nj4jPn0x2V8v9Hgje8+ut+gwSovL69TUbOzs9V+NHIGs+H3Et1t0IcZA4/hvvvz/zhYrt0uas/kh3PY1vbRUY9y6CQELkKQYUUsEE762b/tCOdRw9N8xHBYZxP319vKo9qmsndmoJlRoDp7aY3z1UIAw/SnWvHhTQtD57BZhKuWcLguTPcbjYiP7BjQiJ8bhk0fqUQvxC88hEvuuUp5x+Cpg4jEQE96lF9PRUF/WrQo4x9wW7trd9LS09UhWoghxBlmDEXVYcta+A4abwsd1p5NlKGGBeHRTQdp4zMf0ZYXP6Wr//1NNcIuRC2Echu3SqtBmDjv9PZBm+ARNhoGooLw2m0QwhCnw7j+zr5loRpwaPPzjqEPxuOxDPEKcxZvEF/xmclKfBk9khiEC8Ju73vb1XFacKOPstEgYsFO3yPt3cUoz9oy2kOq4Q3Vhj7F8HpiNOSPH16jNkP8oWGiPN/2A1veHraLPI2eWfSbhmhF/2rNXHmp+f6hbzYGllr5U9uDFkakxmBkEL16YCZ4l9EfGV7rxtoGVX4dRq7Ld/p181R9MDZQZM8Ype7DUScG+hjjJ6YBghiHt/9MnkYJDQcIAcc67PBne22x6caDfFi+5557lBhBGJNz/0e0UOLBEA+f8PohLKa3zChQY0YNdzgtBK82eHJheNjrrsE7rb+3xhGf4Z1KT093+2Dc1eNQXjwYwAOMhwDkAwNzhHM6ixm1080bBDdGeUXfRNwrGEZYRv9X9I+EwPTl2nBOnB//1I0G7ysGnYJhwBbwMM7RC48wGkbQvwe8BoqXVjPoi/qIc0NEon4Y7ysemv01X+qHzhP3152hHiGCAJ4ojHgMQ9nQn9ufhz6IWTTCwJuKPBFCh8YzbNfW1bqIBil4WOCxRV3uSlieLkN//OyrutgfWfR2mVBXjcIW3VdgiEBAn2NE7WD/QBK0iHbAoG6Izvjd736n+sOjIRxRObq7C8aKwJgN6DuP5wSMSRHshv+BGBMAoeQYeAyDoun/0cF+bbr8lut41FmEGafxw/I2Dm1txQiu7fYme1oxvQ/sce4/54/pfD5jr925PK0JRk12sI7TOGweaCtqlGMWs2oan4fy/Ba04KGFoVHU6nBVvQ0DLUF8qQGgWMBiHVPLwCOHQYcQtnz+r5Yrz9qa+19RU7aMWTiZpl45yydRC4GYwKG88793gZoqBn06U3mEbDxUao+ffmBFGdA3FCPjYnohmBa+avob9mJiFGDY6AUTlHDbsWoTFXMZh7EogmFAKojMK/55Ew9oZaUXvv1vtV2HQZssJrrwN1ersNvU0ZgOaIS6ZkxDo62Mw32zZ46iOB65+3MeQMmbV7qxxuY5hFA12lHuYwuWF//hWjWdEeZjxfmGcFg98tzOfWZh2iNqFHnYjv6z9tGReR2NFLDJy85QohMNE/AmQ+AZRbPuk4tRpXF+S7hFjSKNY7UgBkfc92z+DiMUGMJwzIJJFJseTxsOrEdSbghgUc3M9bRPGDkb9w9ecQhhrEPUXsz9bTGtE0Kac3lQK3yHXwR3/q6Wcd9rlHHJr69Q0y3BQ63vhW6gwLkwsBTqxB6Mpu2DYXTnGSvmsVCPUaNA4xA0YOx7n/uAfnnQhxw6J8FE6ejD6S48DyFXCG/pT33SMDgURj+GJ9efaXw6X33nLeAAAfe1r31NMcHDOkYjhrjQobydjyKVtivHwcOJ8EsM/PTZZ58poYhBlyBQX3/9dZ+9nQjbXL58uZr2AYISDxkoN35n9D9iX67t+9//vuoTi1ZqY4gp+imCBYQs8oW30Ni3Bx4yCHTdR9jo6XbFayBt68n6COGoR70EU0ypBK+mv+ZL/UAYOe4jBi+D1xThwPh9Mpqur4jqgFhEBAPqK8QjRk331TAYCuoKGtJQL3WDjK6ryKerdRGeWtRdhCCjfLp/vK9lC+Z0PVkXg5lLIMuOQdK0sEW9haG/LX4f4aF1F9ETyDL0Vl5oqFy6dKmagxYDKmL+YfwGYFwFzBJw9tlnq6JgPA78fkD47d7tvjtcb5U7UOcxClvtsTVOtxeo8/RVPpabL5/FP/JEB9ircwf6Vxrs2Tc32UXtc7zsi/3+0bUOyVat30l4acNcuN9zOo/eNxA+4YVNpnn2S8E6RkQe8+e7uyRokZEOVzWKJR36q8N6kW7VL5+l8+66TE3bg3UIGXg7t766gebfcaESDZ899p4aSRf7967dqry1yN/ddDVIB9v4zMeqHAhzxgsDE6EfJPpuakP54O2D+JmxYr4StWkslvAQUdY+cBOmr8H8rdre+9PrPBLwxWr6H6JpKi2EKQZXQkgxzPgQAuGI6/rowXforG+dpwa8wn7MWescPqvFNvrfHuAGGm9Wy+lg0RyOazQIYngQh7DXFyMoa4OgxJQ5DVW2sNyMsbb+V1rAIx2uQfWfbe9zi22YO3cYi23MCQvDaMyYkxVTNBkNfOG5hhf6jBttAzXhPqkRjQ2NRJj6aNGdy2j0ORPU4ejPjOP2v79DrYO5nvYJG7747weq8WA6X8tBFrT7+fsJT/yEC6ap+4Y0CAX+4IHVds/t2j+tpMV3X86DfKWpF0Q6QoMRsq0bKND4gnNhbmTt8UVengzX+Mkj76p+v/E8NRLCq+tY3HfHPAk1nS/+mfWlQbgaRzmGoD30wKM08YH7A+KhNV4bhCTCyPBgn52drXbBi+qqL0sgjkM/GYR6X3rppWpuUOSJUEmIEIgKd6a/5zqsEiPXYiCJ+fPnE0ajhUGIY3RZHRbqy7XpfI3nxTkgqCBeIJKRHwS4c91BGoR74qEODzgD1XqzPkIooj80PJhoWMBDFqIIIGxd3SvNXO/zp37gWDRUYI5aPKyibjoLQmxDePCyZcvUFDw4BqHmqHvwunozXS6MkoxpfSBsdUMI+okbp+LRaY15+loXwQiiFn1sB7L1Zl0cyBz9vTZ0UYGwhQcPhjmSsd5bghYDoF144YXq3GgQhYcYDZkI6w9URJX+fcc0Ts5CDt2UIOQheDF/Mb7PeE5wjvBRBeziG357Fi5cSBMm2J7VjNkgCgkNV5jGztkQyWIcYNF5v7/r+H/3pz/9SY17gWiSQMy37G8Zeip9yMzTxrYdZ69as2FgH32yoRyC+PQfVtAu9iTd9uvn9eYB94mYejwsBcowWBQ8tNp0CLIxTFnv64lPhBnDy+mpn6XxvGns6YTX1ZWhv64Oa8V+DPKEf8yeBgJCH0l4I715Ro3nw9REEdwXE2LZaNqrqcOPr/rXbQTx+QbPn0rs8IQArStvnyPWeCAvz7/jAjUC8Du/edku5J2SOKzCQ3vlQ7eoQZQwOrCzIbwZXle4LjGAkbHfrHNaX9YRrgwBqq/N3TFggDBk9BH2dE5/77ur8yG8GSLd3b0DI4gAeKuNhvu37P9uVOIU8+diYLCBZghhNIandvf6MFiUUdjqEGRjKF53z+F8PH7r8JCA1ml/rKvHYdRgPJh0VxAiHBT/iI0DSzmX310ZdQSJFhSYFggPTAg7gzcOx0HYuDLMRYqphSBw+tucoCh3MNdHNLTgvgbiGrzVD9xnhFN6qj+4/6iv8Nh353lA1ylclxbgum51py6i3x8apjAmQCCY6TIF4jPY6yIYoJEF01BhfnNfDH2l0df+29/+ti/J/UqDAeowvVBfNL5ilHeIOpzb3e+iXxfjY2LdtcQ5OfqPw4s6EAy/QYg+8jRWhKvrxPcdEWj6f5irNF3ZhvJg3u1g7y9svHZLHnubXNkvv3kezeZpfGB/eWKdqySyzQ0BiNfeErCuioC+inj5asM5XDhrao7L5OgHahS1vogVFULr2H3NZd7GjfDsOQta7DcKvoi4KDWAkA65RlisHlzImBfCatHHFFPaoD8q5nj1xZTnmcWYHsHY+RgISt2H2XlfV9YxGrQvBgZ6ICpP6f29767ycsXTmA6MXNnZ379QeaSV53oAClpX19zdbRCvPSlgXZWvqw/DXT0OLc/GkF9XZfJlm+5T6ymtuzJ6ehCA6HD14IZ/9HPmzFH9gFF+49x6nsoQzPt6uz6ikcLdPfOXo7f6gfvsTdDinIGoq+7qFPLvSl2ElwahzRC0GA08UMxQnv5qvV0XwQF9S//v//5Peep84YK6ggGWesLgNdQDHPZE/p7yRLj8448/7ilJj+w7cOAA4TWQDY3J3iKkevP6UZ6BJGjBzuIO4Hzu21jPfTP/9tR62u80h6S7Y2R7cBL4/PHgaLSIy4hXIhZ9dT0Z+miiRRzTBn3677Weknba9zGHNTtPndMpkWxwIAAPNgaG2vnWFjVdkMNOWREC/YwAQkLhPfZkCL1DiBgELwZO8SRGPOUj+4SAJwK+1EV4sBCuDUH70ksvecpO9nWTAPpUD7RBuLqJRA4XAkFFIIRHfGR/16ltCJ3pTrjRqU1Prl4InBoEAh1+fGpQk6vsKQKBDvnsqXJKvgOfgNTFgX+P5QqFQDAQMAVDIaWMQkAICAEhIASEgBAQAkJACAgBISAEXBEQUeuKimwTAkJACAgBISAEhIAQEAJCQAgIgaAgIKI2KG6TFFIICAEhIASEgBAQAkJACAgBISAEXBEQUeuKimwTAkJACAgBISAEhIAQEAJCQAgIgaAgIKI2KG6TFFIICAEhIASEgBAQAkJACAgBISAEXBEQUeuKimwTAkJACAgBISAEhIAQEAJCQAgIgaAgIKI2KG6TFFIICAEhIASEgBAQAkJACAgBISAEXBEIGT169Ck/Ty3AyDy1rqqHbBMCQkATwDy1YkJACAgBISAEhIAQEAL9j4BFxFz/uylSIiEgBPofAfmt7H/3REokBISAEBACQkAICAEQkPBjqQdCQAgIASEgBISAEBACQkAICAEhELQERNQG7a2TggsBISAEhIAQEAJCQAgIASEgBISAiFqpA0JACAgBISAEhIAQEAJCQAgIASEQtARE1AbtrZOCCwEhIASEgBAQAkJACAgBISAEhICIWqkDQkAICAEhIASEgBAQAkJACAgBIRC0BETUBu2tk4ILASEgBISAEBACQkAICAEhIASEgIhaqQNCQAgIASEgBISAEBACQkAICAEhELQERNQG7a2TggsBISAEhIAQEAJCQAgIASEgBISAiFqpA0JACAgBISAEhIAQEAJCQAgIASEQtARE1AbtrZOCCwEhIASEgBAQAkJACAgBISAEhICIWqkDQkAICAEhIASEgBAQAkJACAgBIRC0BETUBu2tk4ILASEgBISAEBACQkAICAEhIASEgIhaqQNCQAgIASEgBISAEBACQkAICAEhELQERNQG7a2TggsBISAEhIAQEAJCQAgIASEgBISAiFqpA0JACAgBISAEhIAQEAJCQAgIASEQtARE1AbtrZOCCwEhIASEgBAQAkJACAgBISAEhICIWqkDQkAICAEhIASEgBAQAkJACAgBIRC0BETUBu2tk4ILASEgBISAEBACQkAICAEhIASEgIhaqQNCQAgIASEgBISAEBACQkAICAEhELQERNQG7a2TggsBISAEhIAQEAJCQAgIASEgBISAiFqpA0JACAgBISAEhIAQEAJCQAgIASEQtARE1AbtrZOCCwEhIASEgBAQAkJACAgBISAEhICIWqkDQkAICAEhIASEgBAQAkJACAgBIRC0BETUBu2tk4ILASEgBISAEBACQkAICAEhIASEgIhaqQNCQAgIASEgBISAEBACQkAICAEhELQELLrkbW1tFBISoldP2c+pZ6WcstcuFy4EhIAQEAJCQAgIASEgBITAqU1g385SykgZRiazucsgJrZZu3ys8cCS7EjjqttlC8SsmBAQAkJACAgBISAEhIAQEAJCQAgIARA4+5xZFBUV1WUYx1a/2+Vju3Kg8tRqYSue2g6Ezc3NHSuyJASEgBAQAkJACAgBISAEhIAQOAUItLa20icbV5HZ4n8Ub2hoqCKUQ9G9SsoEQatfvXrmIDpZqCmM4sOSKdzsm/s7iC4toEU1RcUQXoEyU4iZoiwxHBYvXb/9YWqxmCkxPo5MJv9/iIznQR5h7T9Mxu2y3HcEUpIGUVRkbN8VQM4sBISAEBACQkAICIF+SECFH2tRa+5G3HRvXtuiRYto4cKFVF1dTffdd5/HU8NtHh8fTydPnvSYztXOMFMELcu5jVIiBqvdh6t30ZtH/+MqaZ9vCx8yglqbGqi58HiflSX54hXETTpU/L8HAlKGiUmz6KyMi+jp/X+iiqbigOTZE5nEhMZTZtRwOlS9k5pbm3riFH7led78ObRg7pn0l4eeoOMnC/06VidOS0mmn333Zvrg0y9p5dvv6c32zxHZQyklKYE2bN5m3zbQFybkzqD6+lo6eGRnn13qbSt+TQfzdtCzr/2jz8ogJxYCQkAICAEhIASEgDcCmxu651zR+Q/VC14+laiFi1mHIHtJ36e7J0+eTHfccQdFRto8pr6ECCclJdH48eO7JGrHJExVgvbDkyvpWO0Bamyp79Pr93Ty+AWXUktVOZW+8pinZEG1r7qpjKr41dTaf7kD6LCYXDp78GX0/MG/U3FD3zUq6JtbUlZB1TW1VFfXdW5NTU0qj8LiUp2tw+cF586jYVmDTylRe8GCa6m6tpIe/M8vHVjIihAQAkJACAgBISAEhEDfErCLWgjb/m5TpkzhkEoTvfLKK8pTq8VtoMttCQmlED7PiLiJ1MIjd+2p2KhOYXUaxctissWMW1ubKdoSRwnhKVRYn09Y14aQZXh6KxqLqdZapTeTiUNq1Xn4MzEslQr4uEhLFEWYo6m8sciezttCSGiYSqL6Q3OZ9TqhoaLFcdQxc2w8mWMTqLn4JLU1d/YohlhwPRyObrWqMGJLfDKnPcHrHdeDkyHE2JKYwiK6glqqK9T5nd+wv7WxgVrrapx3+bQOPnk1uynvwG5qbeuom75yCzOFq3uHEOa0yCwqrj/B4rih07nNIRa1v6GlziV3Mx+PNE2tjYT7nRE5jMoaC6jOWsP30Mz30KK2I+MwczjhvDCk7wszm020cet29Wpp6eCGsoSHhakRzhsaG2lIZgbV1jVQWXnn+4c8qmtr6d6//D+uRo4DySEPE+/H9xAWGRmhPtEo1tDQ+9eM0PSk8HSK5O9NScMJwn10ZZGWaEoOH0SVTaVU3VzuKonbbeHhkRTCfwxPXXdEuG3QhBb+fjVbO75H+A5mZuRQWFgEHTm2j7Df2XAsjsG+wRnZfE8iKS9/T6dGxYS4ZMpIG0YlZSfVyzkfXHfO0Fw6duIgNTX3Pnfn8si6EBACQkAICAEhIAT6kkBIWlpaGwRtS0sLxcQErj9kT1wURGx9vc379Mgjj6gRua677jqPp8rKylKe2nfeecdjOr0TU/pclf0D1YdWb9Ofh6p20Or8p/QqfWPM3VTfUqNELIQTDCL4oV13qn6gi7OupeFxE+zp8dD9St7D1NTSQBMSz6D5g5cpwQahVsUP2rGhCerheTeL6PeOv2A/ztNCxs13ssrs3Oe06dghKnvzGXUoRGjyJdeTOS7RnlX9ni1U+cGb9nUspF3/A2rl8EqI2tDUQWofhHHho79XyxCqiUuuIXNMnFrHW3PhMSp97T9qPfWqb1FIOIscrkumaFu/v6bjh6ls1f/Ufl/fpqbMo9npF9iTG8OPfeV2+/g/KvESG9pxzRuK1tCXxWvt+U5JPotmZ1xoEyy8FfcF9wf3Sdv5Q67jxo0JtLX0Y0J6bS8ceoCGx06g6ann6E0On0/su59qmysdtvX0ykWLzqaz58y0n8Y5/PjXP75dCVt837UYRXjyXx/+j11UDUpLpR/f/g17Hs7hx3d9/zZKTkyw79cLVq4zP7n3z3q1Vz5zYsfR4iErVAORPmFpQwG9yvdQi1sI3kuyb1aNTjrN0Zq99PqRx/Sq18+7vvewagxwTlhQdJQefeZ+tXnU8Em0/IJbyczh9zZro7UfvUyfb+oY+Q/i+Mff/BsdOrKLGxVGUqjF1iAF4frwU79Whw1KH0bXXPo9iozoGFzBuP8XdzxCZRVF3Gc6VZUJjQlf7fyE3lz73/bzyocQEAJCQAgIASEgBLpH4OCeCsoeyc6wbgwUVZ4fGF05NNfmQPF2RUHlqdWC1ttFdXf/qmOPU0iric7Nuoq9QBkcVvo3lWVDS22nrPHQDK8cxNLJujwal2gTFZO4PygEbVH9Mfq86G0azyIW4mhexlJ69/hz9ny+KF5DQ6JHUWb0CJVHeuQQyk2Y5rOoLXnhYRa1Zkq+9EZqqa2mijUvqbwhTrUlnHOJErT1+7ZRw4GdFDtrEUXmTqXG/IPUcGiPTqY+LYmpyotbs/kjaj7J3uOxU2372QuVdPH1ZGLRWr93K9Vu/Zy9tckUNfY0h+NNEeyJYqFbuf4Nij5tDoVl5lDEiHHUcHCXQzpPK7vKv6DjtQdpbMJ0Qr9aeI+dzRduELR7KzbTgaptqgFhZtoi2l+5VfXPTQhLoTncX7feWksfFrymvOmnpcyni4beSBCkRoOXblLSbJXXnopNlBM3TjVGbCn9gPZVbqFR8ZPp9NSF9Hb+0+zFtfVhrbdWG7PoleX3P9lAu/cfotkzptLk8bmusFF4eBghpPjFN96hc+fNosxB6Sr9xxs2qzIWlZbSg088q4TrlUsX28WuvoBHnnyeG5Mi6MqlSygjNYX+/m9bI09DQ4fHUqft6U+OKVD8d5Z/rjzn+N7gPswfdCm9fczWkLIg8woebCyW3jjyuGqswPdL95H3tXyPPXs/txuZacXyH1F9Qy29uOohdWh1jc3LDa/pZUtuUWm+2PIe1XCI8twzLqKFZ11GO/d+yWHcjt7w4cPGcZoq+viL1dTYWE9Zg4ar/JDPdct/yINzhdGBw9vpow1vUnpqFp02ca5DUZMS0mjPgc382kLnn301TZ0wh97/5FWqq+9aVIRD5rIiBISAEBACQkAICIEgJGCf0icY+tR64xsREUETJnR4RpEeg0SlpqbS9OnTHQ4vLCyk/Px8h216pcZaQeiv28xitbWtxS5U9H7nz5cPP0ilDbaBqI7W7FO74VGEwWuEwYOw/daxv1EhzUZRu7N8A+9vVqJ2By/XNlfR0JgxHPJqZq9vi8rD05u1skztZne7EqPW8s4DKoUNzqZWFryV77+u0lpXP0up19xOURNmdBK1SFC68j9kLbWFQDeyxxcWMWw0mSIilTiFYIXhXM6iGNvLOP+2pkZq4YfslOW3UGhKhl+iFn2X0RgwKCoH2bF17mjuCzfko1m3Hm+li4Z9nUXymfRRwevtYpmUoIXQxQuCJyt6JEHwVjSV2E7d/r6x+D36otjmdcuv3W/fh3PUtHtkEdqqRa09QS8u1NTWsRg6QmNGZNvO2hmb2v7Px57m0ON6qqyqpu/cdC0NGWzzymMnQpaRR1W1TSA5T/NVUsahu1zlGhttIvboMf8HYLMVrvvvedUcns4vhIejAQONF1OS51Jqe9QEzhBhjlLfYTQ4Ifwcg3nh5Y8VFNl+J9o4DB6hwycK8hwOH81eWguH7h8+upvWfGCLsECY8azTz6eZUxeyx9bW0KQPgqf8b//+sV7lUPH1annyuDNZ0IarcOTnVv5TbTtecJg2b//InhYLDY119NKqR9S2IYNH0rRJ82gQhyr35QBWDgWUFSEgBISAEBACQkAI9DIB5anFOQeCqMU1OA8ehbBqPEQ6b8e2QBgEqxa0xvzQxxZeQONouCUsfAdFDVOhyTot9lvbR8xtbmmk5jabWAhFn1A3/QP1sb58miI5jJG9rE1Fx+3J0Q8WYcXmmHj7Nr2AvrZa0Opt+LSwMIXV79+uPt29tTbUKUGL/TqfkDBbP1N3x3Rluy/cihqO2bM+UWcT5+j3DNOf+TUdAhWDgUHUJoandRK1eyo32fMK5gWIUQha2OGjNj7w3gajRfJ0T8uyb1P3y1h+TMGlbUvJB8pLf/PYe6i6qZw9u1+piAh0EwiUpaXYuh4c5LBibbvZkwpRm5yUrjfZP4tLO76L9o28gD62sG27P1ef7t4Kizvq9cnCIypZJL7nYkJACAgBISAEhIAQOEUJDChPbSMPgLN161aHW4k+teHh4Z22OyTqxgpG53Vnzl4uV+kgxPFnM/0JHerGzeYqEx+2IbSxs3WcT+9zN/CTPZbVS7nQH7eTeTmmU3ofNvjCTQ3u056Xcdl99q6Z4/54us/u8+t/e6zcyONsga5rzvn31PpCDi1GA8SnhasJ022hD/P1o7k/u8Gzv4NDk49wH9rTuJ/2yLjJqg80ugH878CfA1YseHBhJkM9tzPt/BWjohLXopZ/CtrzcfVdte3Du9UwOFXHVlkSAkJACAgBISAEhMCpS8A0EDy0/fH21VgrVeijHg0XZUzlUZAxMrJ+CA5oufnBGv1dnU31reWn5dC0wfZdGDAqhAe0aanpGI3ZvtPNQnNJgdoTOWqimxT9b3NqRKa9UIOjbf0WKxptYcUYjRqGUG9t8NLC/A0htrY1q+PQd/NUMau1RTW8WCyqXaxPLhv3C2Him0vWq5GrEWqM0cadDaMdf3DyNXps7z0Ejz2EsNGb65ze3Tp+K8N5ZGNnK2r3vKKvrLbckba+5qXltu+N3u7p8wSHGsMmjrV1XfCUVvYJASEgBISAEBACQkAIdBDouyfSjjL4tbR8+XKeMiNMjXyMB+prrrlGHf/cc8+pMGO/MuvBxNvLPqN5g5bSZTnfpg1F79D4pJlq6hcMNNQThul1IFxjps2lpoKj1MqCVfe3Rb/Y8CEjKGHhMu4Du5tiZ56jilC3bYPPRWnM26dGRo7IyVX51G79jMw85U/UmEn2UZZ9zsxLQowkzZPG2EegTo3M5AaCSKrjkab9MQgcjF58kPtazs24RB26vexT9bmNPyfzaMa4R5iqJ5kHBMtk4VvTXKGmffHnPBhxFzaHR1IOLQrjEbFreaArhDu7cNOplD3zNjJnGFl4up2U5ER1gpyhWRQbHUXlldU8OJRjH2F3JcjMSKfYmChK4L7osOSkBModmUON3Mf88JFj9sOKSkppZM5QuuW6y3mEXx44jEOa9x6wiTJ7oh5eOFF7mLJiRvJAXVP4TG00K31JpzNeMPQG1Z8dYebxYck8SFSmGtjNeXquTge62IABoJIS02nxOddw6PYeqqgqJvS33X9om+prOyxrDC3huWxr66q4L+0CVabPN3eMtu0iS4dN23Z/RovmX8nz/46iay/7Pg8k9RalJg8m9LXVoyw7HCArQkAICAEhIASEgBAQAopA0Inayy67zCE09+KLL1YX8uKLL/aRqHUtXCBqB/NARxgZd8nQ61UZMYfth+wxgrkKOVbb2mMQ/fWgV334JiUsWk4x0+eq/CFky9un9MEAUUkXr1CjEGMkYljdji+pIW+vWnZ4c305KknpyicpafFVDvk0nbD16UMClDmkvfwOefq5sjzndodpWs7LsjVcwIOKqXVs1lFQd9wwTRJCTUfyfMMwhKnqAaAwqBO8d3MHXULnDF6u9mMaGH+melEH8RumAMKIzbk8WvP5Q65Vm5/c91ueUshx1Fudvqc+v3nDVQ7fjWUXnKtOVV5ZRff95UGfTnvD1Zc6TNkzIXcU4YXb+sO7f2/PY9Wa9TxPahaNyB7G4nYYh8T2/pQ+uJ8XRtxIun7gfuOFuYO1Qcii4UIbQpTXnXi5S9ESb7z7FC2/8FY1MBMGZzpZdIQee+a3qt6/9MbDdMXF3+KRis9Sp8J34Z31L6iRkPW59adx3mW9DZ845skX/qSm9Mkekkt4wYpKOhoTsO7q+ECNEYD8xYSAEBACQkAICAEhEGwEQpKTk9swmBIeShMTbR6eYLsIT+XF3LZxcXGE0Y59McxTC3MeWMqXY12lsXkBB7H3r8Q+d6ardL2xDYNGmWPj1QBOGCiqq2biEExzfKKaQqi1zj/vaVfP6e9xmKcW/Sk/OrlSTeFS2ligQr+d88Ecwcnhg9S9QZiqWPARgHBFWH+t1XU4PcKS9YjWev7anrpKDBqFKXkwarG/DVPGMkVFxlJaSiZVVBazR7jUuEuWhYAQEAJCQAgIASHQowSCcp7aHiXSDzLH3La9Nb+tq8vFw3Zh/VFXu3p9G/rXGuev7WoBWpsaqLW476Zy8afcmBYJHnI492AwAABAAElEQVR3Bq9XcYPrgXvcHROo7fFxsXTXHbd6zK6qppbiYjyPbIs5Zl9/Z53HfHpjZ19dD7zungxCtqCXvoPOXlVP5fK0r66+Wk3t4ymN7BMCQkAICAEhIASEgBCwEeiI0xMiQmCgEQhAKHRPImnifqp5+Z4FdV1dA/cfj/BYjBMFRR7399bOgXY9vcVNziMEhIAQEAJCQAgIASHQPQIDPvzYXzyBDj/29/ySXggIASEgBISAEBACQkAICAEh0FcEgjH82POEiH1FUs4rBISAEBACQkAICAEhIASEgBAQAkLABwISfuwGUmhoqJs9slkICAEhIASEgBAQAkJACAgBITAwCZhMJgoNtZDZEjz+z+Ap6cCsM3JVQkAICAEhIASEgBAQAkJACAgBIdANAuKpdYIXqKl8nLKVVSEgBISAEBACQkAICAEhIASEQL8n0NraytObWqm1LaTfl1UXUDy1moR8CgEhIASEgBAQAkJACAgBISAEhEDQERBRG3S3TAosBISAEBACQkAICAEhIASEgBAQApqAhB9rEh4+Q01hFGWJpYaWOmpsqfeQ8tTYFRIaRiFmC7U21PX5BYebI6mN56Ntam3o87JIAbpGwBQZTW1NjdTWYu1aBgPwqL7+jplj48kUHqnItrW0kLW8OCgo43eJTGZqa24MivJKIYWAEBACQkAICIHAEAgqURuXkETDckZTPH+aLRaqqaqk/Xu3U1VFmVsaUVFRFB8fTydPnnSbxt2OMFMELcu5jVIiBqskh6t30ZtH/+MueZ9uDx8yglqbGqi58HiPlyPxvMspNGMIFT76+x4/l7cT3DD6LipuOE6vHH7IW9I+3Z8akUkxoQl0uHpnt8qRvPQGIksoVbz1PLXUVnUrr546OHHJ1WSKiiFikWqtKKWm44epft92l6eDeEq95jtUvWEd1X71qcs03jb2Rt0PTcukuNmLyByfTK01VVSz+SNqOLTbW9E67Q9NySBTTBw15u3rtM+4oa+/YwkLlxGuGdbW2kKF//6dsXgBWbYkpVLk6ElUv3ebXTSbwsIp+rQ51Jh/kOtNnt/niZ58BlkSUqhi3Wt+HysHCAEhIASEgBAQAsFLIKjCj0ePnUyDModRXW0NVVdWUHJqBp151iKC2HVnSUlJNGnSJHe7PW4fkzBVCdoPT66kZw78hdafeMVj+r7cGb/gUn7oPr9XitBcWkjNRSd65VzeTlLccIyK6vO9Jevz/TPSzqXFQ67rVjnCs4ZTaHoWhSanU2Tu5G7l1ZMHhw0eRqGJqcrTFzF8LMWffQmlXHEbhXBDlLO1Wa3UUlVOLZXuG6acj3Fe7+m6b+FrQWOChbk3nzxKEOIJ515GETm5zkXxuh4zfR4lnrvca7q+/o6VrnySCh/7PTUdO+S1rF1NYIqIZpYJZIqMsmcBDzW24dUVa6mpJGtV1+tSV84pxwgBISAEhIAQEAJ9T6DzU2bfl8ltCQ7t20lbKj6ilvYwxaSUNDr9zHOU93b7ls/dHufvDosplEz8NyJuIrW0WWlPxUaVhZWXjYZ0MGtrM0Vb4ighPIUKWWBhXRvCY+HprWgsplprh2fNFGIiS0gohfBnYlgqFfBxkZYoijBHU3ljkT7c6yceAmEhITw6Gc8ppdeJRy1T4ZzYxiF5bVYuE4fp2k1vb25Sm9RxHGZIZjOFpgyi5tICFRJqT68X+Dh41VyZTbSEqHNZElOotbGBWutqOiVFeULTBivvTGsDh3NzniivPwZuGI/ttbx/keGqVBbmEIviEWWOIQuHjpc1FlICM25srad6q608OD6U+Te3NRPSxYUl8r07xqO8MQMniw1N5P1JVMz7m1o7hzV6qge6LplDzCrXMFO4+mzjUje32tg7nc7tamTuFHUPWzlUN2LEeKrZ9FFHWr7/IezBxX0GX0tymqPXXt9vL/WgI8PuLUFcFD/3oMokdtYiip44g2JOn0/Vn63tyJjL1NpYT8XPs5fdw/1H3USdbEMkAjeoaNN13W3d1wm7+Rkz7Sx8wajs9adUY44pIorSVnyfYmacTQ2H96jcvX1/1HeD65yq63yELjsObmv/DqqM8ObhO6bTWJLS1P1uLuEIFCM7b/VAZ8Dp4CnFtViZqfoe6n34xO9H+8u4udeXcT34/eLf/BD+Dpli49w0gHA6Ttuw31MkRAiZ2Usewr9x1upyvkbDL4fP5+l1AnJCISAEhIAQEAJCwAcCQSVqy0odxV55WYm6xNB2YefD9fqU5KoR32cRlGJPe8vY+9TyoaodtDr/Kfv260fdSfUtNUrEpkVmqe0QwQ/tupMfsEy0OOtaGh43wZ6+pOEEvZL3MDW1NNC4hBk0f/Ayfq5qJQjcquZyiuXwVH40o90sot87/oL9OE8L6Tf8yP6gDA9e+td/opLDw1L25jMUNmgoJV14LdVs/JBF0If2rBIWwtM0hoqe/It6oMVxLdWVygulE9Vs/MBBOCVddB3BCwfDQ6Zz+HHK8lsoJDyCw05byBQdq9Ih9LRs1f/UMt4iRoyjBPYqQyTArOUlBAFc+spj1FzMD+g+2q2597FgtTUqnKg77BB+vGToChoaM0axRHYQtUnh6Swj22jd8RcV35yYsbRk6PVU0VRiv9e4F6uOPk5Ha2yhoWiouCznW0rQ6mLtKv+C1p14Sa+qT0/1AMcj9FibrksQx//a/Uu92afP8KEjVUOAtayIIkZOUMJIC6LwzBxKvOAaFeobxssw9FOteH+lCnX1tR74VBA/E1V/uoaixk7l12l2UWuOS6TUq79tz8lV+DGEH8Jw9fUgMa636Km/sni3kre6b8+8mwth7CHHeXV0AvqSN/M9wPdNm7fvT9IlN7Awz9DJ7d9T5Fv4+B/t2719x3AfEd6NBgxl3FBVuf4NDu/epla91QMkCh82ihIXXW7/3cA21Kmy1/+rGhmw3l8slMU7wpEhvOEph6Hhpm7HRv696IgWiZl+Fv+OpNqKzb8/zuHH+I2JnjpbCWRbJm1Ut2sTNZ04olZ9PY/tBPIuBISAEBACQkAI9DcCQSVqneGlZ9jEQokfYsg5D1frK9n7F8oetXOzrmIxlEHPH/ybStbQUtspOcQSBMqXxWvpZF0ejUucqdJMSpqlBG0Re/c+L3qbxieewZ7fCTQvYym9e/w5ez5fFK+hIdGjKDN6hMojPXII5SZM81nUlrzwMD+cmin50hu5j2U1VayxCa7WeltZ0S8NHtOocad1iFr2BEXwgy1EpNFDg7DK+v3bVV/B+DmLCaGSDQd2krU9NLTy/ddVqGD8vIu4b2Gi/RqMC/D8NBceUw/aeBiFIIGQbTi4S4mwhHOWKkFc9ck7ZI6OI+UFM2bg4/ILhx5QohaikR9zOx2FxoE3jjxOi7KuVoJ21dEnaMHgy2lK8lwlavUBcaFJ9FnhW2qgqTkZF3GI8Ap6RInNNlqYdaUStHsqNtH+yq00J+NCvr8z6EjNXjpY5dhH1F09QB9s9M1GA0ZG5DB67uD/qVP766VVnjkWeQ2H96qHeYhacK3f85W+FPUZNmgYC8d31X2Nn3ch4T4Wcf9Nf+qBQ4YBWkEdMopAeHLRkIE6kMDC1dU9RF1B/UHZVYMMCzh4fQkeTzZvdV8lCsCbibm3VFc45ISQaVwP+g7raARP35+Kt1+gEO4vGnfWYgrjEPKSl/6t8muzOnrrPX7HuCEocfFVfPlmqv7ifcJ3PI55xM+/iBqPHuB73jFwm7t6YDtpG9Uf2MGibrM6JnLURPU9RNkq1vbPLhZm9ipDuKMRIJJ/yyLHTnEQtRC54Bs1bhrfk2iHe4UGtOgps5SIb9i/g1p5ECn05UXa5mKOSDEMKuXtPI4Zy5oQEAJCQAgIASHQXwgEragNY4/gxKlnqP61+XkHFM+IiAiaMKHDM4qNGCQqNTWVpk+f7sC8sLCQ8vNd98WsbrY9wDazWEU4Kjx9nuzlww9SaYPNy6i9fBNYxMJeZc8sBAy23zr2Nyqk2Shqd5Zv4P3NStTu4OXa5irlZUS4aouLUFjncmjBqUIF+YHP1Sil9bs3q4c6eIqaSwoID7EIcazd+plDdhC/letWqm2VHHqIB+ioCacTBCgMQgSv1oZaMnvox1y2+lnlJWypryF4b3FeiFr0r1Tn3fKJXYyFZeVQGA865a/pewLvKqucTodjlOojNXuoiPvcpkcOpbzq3WrZ6DXFQUizqeR9dTzCxMdzo0QWNzAcqz3AnyNVyPja48+r/eVHCmnF6J/T5OTZnUQtEriqBzXNlbyn0j5qti63ytCPt8gxtj60DdzoYIXAYoGnBtlxErUIh63dtkHlHDV+OoWmDrKfxdd6YD8ggAtt7Y0sZvbgo/EF4a22RhUtxBzvIYRbePZoJRjLVj1tLwmEsDZf6r5O261PhEnzd8toEFcws0HUevr+qEG9uJ0J3nOYq+8ptnv6jsFLC+81Gppq+TsEw8BKsWeeq/pY137V8X32VA8ggPFCWC/CcTHgVfSkmQ6eZJV5P3qzFp6gxiP7VYngObewp99oStCzqEeIeggGKTMYBo6CZ7vpZD415O1Ve3Dt+E6F8RgNxkG7vJ3HkK0sCgEhIASEgBAQAv2IgM3l0Y8K5EtRMPLxzNkLVdJNG9arKV2wgqldmpubHV4tHIrWigdop+3YFgiDYNWC1pgfQlfrrbUO/SZLWPgiZBahydpwvLW9b2VzSyP38bQ9LMNTHCir3Wrrb6y8FZxpFPdvRPgwhKbRrOif125NPCAODGGi/hgeLu0P7u3h4vCgwBACCMPIptqaC1w3LOj9Xf3UfWPRv7ml1dYXGo0H6G9rNIhXbcdrD6nFhPBUnsIpRoUvF9TZOGAHQsQRXo4+ts7mrh44p+vqOhoEEHbZwn2U8UAOQQePnw7j1vk2HrU9+GPdWlHisN/XeqDzCuSnrgPGyABP+aO/Jwziq8+Nf1fA3Gh63Sh2A/H9MZ7DeRniDNZoGLxJf5csPCqz0TzVA0yhlHLlNyn9pp9RylXfopTLudsAi2VjP19jXj233DnCwt25VN/h9p2taBRp777gLr1xOxpSYNayjsZJhDPDzFG2fWqF37pzHp2HfAoBISAEhIAQEAK9T8DxSa33z+/3GU3sNcHgUJEcYvb5R2uUp1Zn0tjYSFu3btWr6jMrK4vCw8M7bXdI1I2Vqib3I22qAWy85A0hjj+b6U88szl6rrxk43G36gPIIcHh3IcWD3gIm6zf68jJloGLc/pZDvR17GTteWC+SxjCOe3mJBbs27u50MHUkJHy6hrWeRFhytr0Ej71nTC5uH69Tx+HT0/1wJiuK8sQIfCowXSfaZ0PRkTWwgbb2poMHkWuW0bzvR4YjwrMMsKMMTWMGrzMlyx12V3w9+XwQKZBmU3oK24wPWIvpvfpMF2DOrb4I74MR7lZbL+fDkxcnJOP9lQP4s++mKe9SVYDvjWy5xKe89SvfdcvoeimgP5t1gM1Ga6nTS87NTr6XG9clMD+W6DzBh/DsvGQ7pzHmI8sCwEhIASEgBAQAr1LoMNl2Lvn7dLZIPROmzlPzVP75WfrqKqSR7Dsp1ZjreSRjKO4P2WHxzWVw1vhOWxzIa66fRmcp/ODtzHPGp4DFCGdiTxoFKymPXzRmMZiGMgGoY6w7ky1Yswby9o7EsZz6mrrSuixPjYQn+jLrE0vl/NI1RglGQ/DCF3WFh+WrDy9Neyx9dcQSo4BwfQoyP4cHzmaw8XZEC5e8e7L6lX14Wq1TYclqxUf3nypB9lDxtD3bv6DeiXE2byDPmTtNkloeqYaOMyfOZSby4tVfhjUyKt5qfvdvR7MtYu+s0ZPZmjqYNW/0yiCfPn+qPTcMIfvor9mLS9Vh6AhQ1v4ENsyyuirYbA3fK8xL7C6Nu4H7+63A32JUVbjtRvPM+/Mi1U9ueXaXxk3+7Ss+7KaLB2NXKZQ2++lDu/2KSMviVp5CjhYaFLHwF66f7fy+no5XnYLASEgBISAEBAC/Z9AUHlqx086nZJT0qmo4BhFsccRL1gT9wUt5j5X/cm2l31G8wYt5dFzv00bit6h8UkzVegxBh3qCWupqlDT5MRMm0tNBUcJHiTd5xDnQ78xPCjCQ+NuXlA82GL+TfSxi5t9nipm7Y4v1SemJNGjj4aERyqvDsQKDA/IvoSVop8fyoDpXZCfKTLGoc+nysyHN4QGY4AnGIRiuCmSB2Gyic+ihuM+5NCRJDt2LM1MW6QG+xrDA3Rh0K9jtbbw6HzuB41RlM/P+hod4IGhZqUvUQd+VfJRRwY+LpU1FnDKiXRu5lU8UNUmamip4ymEOkKbPWUTgT7QbDVffuDg6Yw9YwFhRGR/zJd6EBMdT7HRCSrbaA7PrKjiMGY/DXUEo81CPKi+1Ox5rfpglT0Xc3wSTycTaQ//RJi7qk/s6VfT9rCnruHQHj42V80Ri+mL4OmNnbmAyt74r6pHOjNvdb+711O37XOK50GrMDIxRmnGSM4Qebrvsi6Hp++PTmPrS8tz955ziYqWQD/c5iJbnfX2HWs6eUSF9mN+3JjT5/FAUXVqMDf0r67f+5U+hddPzLWrBnAbOZ5dljz4FjN1ZxicCX2zE8+/kup2buQ+v1X28uKYtJRMVVeiI22RBO7ycbVdCXG+z+EcWt+CbgscXo8RsmFNhpGNXR3rsI2n6DHHxKtNKsydGz9Rv2AYxAsjrCNvS/pgiqgbZ2M4fJy69sYTeSqdvAkBISAEhIAQEALBTSCoRG1c++BEaRlZhJe2Wn7Q6jtR6xjiqcsEUTs4KodGxU9WU8dgO+aw/fDkayqJPSTOHujKz1hYbg+7RFiyP1b14ZuUsGg5P+TOVYeh3105T+ljNIx4iofGunahatyHZXhl8MCsRAiv4wFee2rRny956Y0Oh+h1PNxjxF2UOcRTuXkf5vrE1DMYeRQPmgidDWfPLQSLrzaRR5Y+PXWhPXlyRAYtH367WsdgTTBHvu5ZYk5gnRe8qRitGEfD3uUBopZl30Yj+R7iBdtW9ikdqt6plh3f3J8D6TaXrFcDUI2In6Ty8nlKH/bqYboRCACjVxB54h7jXmEqE+3977hupHBt3uqB0TtbWe0+vN517ryV7zMEXizP44pGjCaMhs0DkBlHEE5YuMxhYCLblD9T1bEF/7pfZV3J0xFhTlE1BQ1PYwNT/bWdQlO91f3uXk89j5gbmpapBk1LuvBrqhyYMqv687VqWb95+v7oNBjMKWxwtrpvGL0afPSUPr58x8pWP0NJF3yNYk47y5Yls6hgtrpRyZd6gO81RKqaWotzQbnx0v2EdVnxiWmMalnU43cDDV4Y3Ms4WFdMlE3MNjU3GA/zaRn1uXb7BoqeMEMNVKUO4rpTv3+bapTDur4e1Cl3hi4VqGtG0+sYXArCvGbzx4qZ/m1DvmiwA3+YL+cx5i/LQkAICAEhIASEQP8iEJKcnMxdHVvIyh6SxMTOA+D0r+L6X5rIyEiKi4sjjHbsi004w9bi70taX9JgYKjk8EFUyfOhwjvXl5a8lOfK5Ifzwsf/wILSse9rxq2/UFN8VPNIxxb2hmPeSuc0gSw7QhohZPFwDdFS+BjK1BzIU3jMa3jseNXY8PqRx6iIGxsw+FNJ48mOh1vD0ZHKM8z7eaAvDBQV7OapHuDabrzqZ5SZkUN5+Xvp6Zf/2ueXC7GFQcYwKJNuZPGnUIG6HtRZ9d2A569dDOly9Pb3B55IcMH3tKuGPHAdekqiruTz09v/QaEcPrzmgxfoiy3vdSULFfWBUaQxNRk8wfzD0LV8fDhKhZHr87Q3XvlwmCQRAkJACAgBIXBKETi4p4KyR8aT2eJ67A5fYNQUBEZXDs11HNfE3bmDylPr7iI8ba+vrye8+srQh9bXMNOeKmNYJnuGssdweGeWCi32JFYhNOGd6SmzzUsbwnOPHib0rYWXVnkhe1HQOl8bGhs8NTigfy1ewW6+1gOElLKyoDfW/KdfXDI8epiKqqsWqOvx5bvhS5quXofxuK6Ie+PxWO5uHvCAQ9A2NNZ1XdCiIOyFVdM8YbmHrTsCvoeLJtkLASEgBISAEBAC3SAw4EVtN9gMmEMR6mniwWAQOlj5/userst9iJ+Hg/zahXJg7ltqD5OGoC3neW1721qp57xBvX0tvp7P13qwYfNaKqsooi6FHvtamF5M13vX0/Pfn17E5vVUCNn9fNMa2ndom9e0kkAICAEhIASEgBAQAj1JYMCHH/sLL9Dhx/6e/1RJj2lqWhvZg+7UP/JUuX65TiEgBISAEBACQkAICAEh0B8JSPhxf7wrUqZ+SaC1vrZflksKJQSEgBAQAkJACAgBISAEhEBwEQiqeWqDC62UVggIASEgBISAEBACQkAICAEhIAR6moCI2p4mLPkLASEgBISAEBACQkAICAEhIASEQI8REFHbY2glYyEgBISAEBACQkAICAEhIASEgBDoaQIianuasOQvBISAEBACQkAICAEhIASEgBAQAj1GQEStF7Th5kgKM/k26a+XrGQ3EzDHJpApTHhKZRACQkAICAEhIASEgBAQAkIgMASCap7a5NQMGpo9imJi46mN/wpOHKWC40eoprrKLY2oqCiKj4+nkydPuk3jaccNo++i4obj9Mrhhzwl6/N9w2JyqbGljgrqj/ZtWUwmihwxjpoKjlFLdUWnsqReczvV79vmZb7cTofJBiEgBISAEBACQkAICAEhIASEgEsCQeWpTcvIpNi4BKqsKKWaqgrKGZFLs+cvoYSkFJcXh41JSUk0adIkt/u97ShuOEZF9fnekvX5/kVZV9PcQUv7vBymsHCKP2cpRY6Z3OdlkQIIASEgBISAEBACQkAICAEhMPAJBJWnds+OzbS7bZP9rsTGJdKseefRkGEjqaKsxL49EAshISYK4Yxey/sX+4QdzRxioZCQEIoyx5DFFEZljYWUEJZKja31VG+tUYnNIWZCuqbWRkoKT1fpSxsKHDNqX4sNTaS4sCQqrj+m0jsnsphC1SZrazNFW+IoITyFClloYz2Uzx/S/mfiMoeZwlXalrYWammzOmflcj3EzNWAr8cUGU0hllCylheTJT6JWpsayWE+WU5jSUolU0QUWUsLqbWh3iG/kFAuS6jt/CGhobwcpva3tXA5Wlsd0uJ8oamDyVpWSG1W38rpmIGsCQEhIASEgBAQAkJACAgBISAEiIJK1La1OcrLlpZmdQ+tVttnIG/orbn3sWC1ickTdYcdwo+XDF1BQ2PGKCmJc0LUQrgiJHrd8Rdpd8VGOnvwcspNmEYVTSUseG2eZAje5w79nWqbK1VRIVAvy/mWErS67LvKv6B1J17Sq+rz+lF3Un1LjRKxaZFZahsE60O77qSbc+8liFlYinkw3TL2PrWcX7OfVh75t1r29pawaDmFDxmhhC3SKlGbmErEvCs/WEX1e7dS+LBRlLjociIOL9ZmLSuistf/S62N9SxQB1Hysm/oXRQ96Qz1woaqT96huh1f2vdZOO+Mm35uy4vFbs1Xn1LNl+vt+2VBCAgBISAEhIAQEAJCQAgIASHgK4EOheLrEX2cLoRFVebQ4TR67GSaMWuBKs2xIwcDXqoXDj1AeNm8nY5iGieDd/SNI49zP9Z6JWhXHX2CGqy1NCV5rkNZIs3R9Hb+07St7FOKtMTQuZlX2fcvzLpSCdo9FZtUXuWNRTQucQaNiJtoT6MXIJoTwlPpy+K19PqRR+lw9W6165kDfyG84BHG8Xp9zfFn9KG+fbLntHz1syxQGwiis/yt59gTW8fCdKbteBa49Qd2UOlr/6Hi5x6kmk0fsdc2jeLOWqz2W0uLqOSFR6hs5ZNqvW73FrWObfV7tjiUAQK4jrep8/E5Yk6bQyEctiwmBISAEBACQkAICAEhIASEgBDwl0BQeWpxcWaTmSZMnmG/zgN7tlM196+FRURE0IQJE+z7sIBBolJTU2n69OkO2wsLCyk/P99hm3EF3ldYaxvCZhGI7GgQs0dq9lAR97lNjxxKeSwysZwakemQ8JPCN+lA1Tb1yubBnDKjh9v3Z0WPpFprFa09/rzaVn6kkFaM/jlNTp5NB6u229PphZcPP0ilDbYBr47W7FObK5qK1Wcbl7O5tUl5jXV6fz4hZhvzD5K15CSFpmVS49ED1FzMyykZKhus44VQZXNMHDUc2q0Er97f1tqiPLymiEiVvrWOPcscxuzKsK/qo7fUrrpdmylm+lwW0inUXHjcVXLZJgSEgBAQAkJACAgBISAEhIAQcEsg6EQtQo3feeM5ioyKpqE5o2lk7kQV9nto/y6Olm2j5mbHUOSWlhbuzsmCz2k7tnXHWrnPKgz9WltabX1Cm3kZ/WiNlt8uPrEN/WDRdzaKPbYweHsL6o6qZbxVNZcrzzD62DobBKsWtM77ArLOohSG/q2qD6xaZpbob8uG/rZJF68gS0KyWtdvut+sXvfls6mgozEBfXNhMs2PL+QkjRAQAkJACAgBISAEhIAQEALOBBwVmPPefrxeX1dLe3duocysbBo8JIcgahsbG2nr1q0Opc7KyqLw8PBO2x0SdWEF/Wc7mfLqOm6FcNWml3hIJmrlP5iJw36dzUXOVNVU5pwssOu6v7L+RO6G5fizL1aCtnrDOmrM20sttdWU+rXv2vvh+lOYNkMfaJcc/clM0goBISAEhIAQEAJCQAgIASFwShMIuj61xrtl4v61ZouFQnnE3v5qQ2JG24uWFjVUeZURcoxBoyDoELqsLT4sWXl6a9hj668hTDrCHOXvYT6nDxs8jFoqy6iWB3Wy8pRKGAHZFB7R6fg29ozDTFE2b3SnBLJBCAgBISAEhIAQEAJCQAgIASEQQAJB5amdfubZVFpcQJXlpRTO/Wczh47gwXjNVFSQF0AkpMKD40KTVJ4YWTjcFEkZ7eKzqMG/fp+z0y/gfrktNCgqm+I4rDi/dr+9rAhNxijK52d9jfvcbqdZ6UvUvq9KPrKn8XWhqrmMBfIQmpF6LmG05hoeYVn3t/U1D0/pmk8epbDMHIoYOV55cGNn2gbpcj6mrbmJ0L82ktOhf66VhbC1rNhxaiDng2RdCAgBISAEhIAQEAJCQAgIASHQRQJBJWoxNyxGPTZawYmjtJvnrw2kTUyaRaenLrRnmRyRQcuH367WMVgTrCNsFsHCrgKGVTKqsVbSgswr1Aqm8ll7zDYoFDa8ywNELcu+jUbGT1YvbMMoyYeqd2LRydyfAwnfP/EyLRmygmaknauOw0BSGCXZZzOEGhvDjvXxCDtOPP9KSlhwqdrUUl1BeKk5bnWi9s+qD1dT3OzzeGRkm0h3ntKn05y1OM54fqf8ZFUICAEhIASEgBAQAkJACAgBIeCOQEhycjJHjPLItTxAUGJi5wGK3B3YV9sRbhzBoa+whvo6ammxDdLkrjyRkZEUFxdHGO3YF5twRrwvybymWZh5pZqn9p87f6IGh0Lf2sqmUpfHYaofeHFLeGRj2xRCLpP1i43m+CSCNxYjGIsJASEgBISAEBACQkAICAEhMLAIHNxTQdkj47mbZ+exf3y90pqCwOjKobmduzu6KkNQeWpxAS0svmtrqlxdi8tt9fX1hFdfmrdBntC/Fq9gMPSrFRMCQkAICAEhIASEgBAQAkJACPQXAkE9UFR/geiqHHrKH1f7ZJsQEAJCQAgIASEgBISAEBACQkAIBIZA0HlqA3PZPZ/LuhMvEV5iQkAICAEhIASEgBAQAkJACAgBIdBzBMRT23NsJWchIASEgBAQAkJACAgBISAEhIAQ6GECImp7GLBkLwSEgBAQAkJACAgBISAEhIAQEAI9R0BEbc+xlZyFgBAQAkJACAgBISAEhIAQEAJCoIcJiKjtYcCSvRAQAkJACAgBISAEhIAQEAJCQAj0HAERtT3HVnIWAkJACAgBISAEhIAQEAJCQAgIgR4mIKK2hwFL9kJACAgBISAEhIAQEAJCQAgIASHQcwRE1HphG26OpDBThJdUslsICAEhIASEgBAQAkJACAgBISAE+oJA0IrasLBwmjZzHk2eNssjt6ioKBo0aJDHNJ523jD6Lrpw2I2ekvSLfcNicikjcmi/KIsUQggIASEgBISAEBACQkAICAEh0FsEglbUjp88g1LSBlFaRqZHVklJSTRp0iSPaTztLG44RkX1+Z6S9It9i7KuprmDlvaLskghhIAQEAJCQAgIASEgBISAEBACvUUgKEWtFrN1tTU9xikkxEQmfr2W9y/6pHC1w3nMIRaymEIpLjSRksLT1b6EsFSKtMTY05lDzBy2HK7WkSY5IsO+z3khlvPJjB5hT++8H+fCCxZtieO0w+3roaYwdVwIhajy4px4oYxdMVNEFIVlZpM5Nt7h8JDQMCJT5+pi3877sGwKi6DQdFtDA/KyJCR3yifEZFZpwwYNoxD2uBsNeYRYOpddbefjxISAEBACQkAICAEhIASEgBAQAkYCndWDcW8/XDabLTRp6hl0aP8uik9IoojIyB4p5a2599mF44m6w/TK4Yfs51kydAUNjRnDMjJEbStrLFTito3aaN3xF2l3xUY6e/Byyk2YRhVNJZQQlqLS1Vtr6LlDf6fa5kq1DoF6Wc63KC4syZ73rvIvaN2Jl+zrWLh+1J1U31JD1tZmSovMUvta2qz00K476ebce5WYxcYU82C6Zex9an9+zX5aeeTfatmXN0tiKiVdcA2ZomPtyRvzD1L56mcphJmn3/hjai4+SaWvPm7fHzlmMsXPv4gq161kkcoi/6wlRK2tSvy2VFeQOYaFcUgI1e/dSpXr3/j/7L0HfFzllfd/NEUzGpVRL7Ys995wwTa2wTQDBmzTQu8kQBLS9k3yJtl989/dJO+bzS6bbLILJIRAEpIACTWYZoox4N7kjqssWVbvZaRp+p/fM7pX0zWyRpbHPsef0dz79Pu9947vuec851H1Ch78LnnaWgKU5vZtH1P79k9Ufs5ND6m8mmf+jainR6UZbGmUf883qevofmp+/xW9f9kQAkJACAgBISAEhIAQEAJCQAiEmt7OciaTps1WIzx6aO+QjvSlY78kfKA8snYV0hcU2r+f+B11exxKoX2z/FnqcnfQBTmXBJRNMabSOxXP0+7GDcqSu3zk7Xr+lcW3KYX2YPN21VZTdy1Ny1pA4zNm6mW0DVh7My15tLXufXrjxG/peNsBlfXnI48TPk5vN6G+tv9e5Z+1qjF9QzmF8ggltvaPv6Dmd/9KrppKVbfH46bu8iNkzh9BBkvfS4TUmQupx+shx9F9eh9trKA6T51gxTST2nd+SlCMUyYFun/DCuw4vIea3n2JvB1tlDZ/GZnsPsW+c/cmpURbx0/T20yduUBtd5Ru1NNkQwgIASEgBISAEBACQkAICAEhAAIJZanNsGdRyZiJtHPrJ2wQZItgkFitVpoxY0ZAqt1up7y8PJo/f35Aek1NDVVURJ4rC+srxNuDfnwWWZXQ+wfK7In2g1TLc24LOEBTGSuZ2M6zBs7x/axmDR1p3a0+YziYE1yHNSlOnUAd7lZ6v/JFldR0oobunfR9mp2zhI627tGK6d8vH3+CGrqq1H55+yH13eysU989PE6X10nauPVKMW4YLFaloDprTlKPs5u6yj4nwqdX2nd8SpbRE8nGCiYsq4aUVDLl5FPXEVZo/c6F48BOIreLkkeMJsf+HeQd3UaWUeMJLsdQgCHe7i5l3cV2C9fNWnE72WZcSK2fvUudbNXNWLqCUmct8rXNZVKmzFHKLyzFIkJACAgBISAEhIAQEAJCQAgIAX8CCWOpTWI31tnzllBjQy3VVvssiP4Hgu0edld1uVwBH4/HoxTg4PRwSnFwe9H2vT0+BQ0uwR4vrLnESqUrZC5rRa/yifwaDjgFC6+N597ig+3qznJkKWl1NSnLMObYBgsUVk2hDc6Lx35Hr4W04P5vU94dX6X0BZcpi6nWtqu2kryd7WSbNlclpc5aqL6h7PpLj9tJPazUQryuvu2kZJ6T2yvu+j7l1FnlO35jRu8xs5LbdfwgmfOKyGBNYevwSPXduX+7Vl2+hYAQEAJCQAgIASEgBISAEBACOoGEsdRaWMGxpaapObTLlq9SB2BhV1gou9jfu2sLNdRVU2lpqX5w2CguLiaLxRKSHlDoNHYwfzZElFU3MBWKqybaFod0Ii//gxh4/MESpmVqdTYGF4vrfidbVeEqnDr7IoLrb+qcJWQZO4XqX+ybS9y5bxulXXipUjhTplyg5sa6m3yWYn0wPHi8XFCCb/1g/I/Tf7u3ph8HKMoYg43dm01ZPB+Z2+nYu1XvQjaEgBAQAkJACAgBISAEhIAQEAIagYSx1LrZAnv8yAE6cewQVZ08oT5OdmOFYL+rs0M7prPqe1TaJH08+bYS1vFYQWOXYwSNwjZclzWxJ+coS287W2wHKnCTthptA60WUB4BnFo/fYdqf/+fBAsqIher6Ma9pZRiyQqm/fIb2Hpqo859p6domnL7IkEnF/mO39PSp7S7G2uVwmybNo+soyepscAlWkQICAEhIASEgBAQAkJACAgBIRBMIGEstW52aT10INAKizm2ZnZrDU4PPsiB7sM1OMPsC1yEZX0shhQq7FU+a7vCuz5H6mNJwXU8L9dDRbYxagmgio7DelG4JiOK8jXFd/Gc2z20uICjB7PsqvdFAtYLxrDR6mpkBXkULchbTojW3M4RlrX5tjFUp6yrb6Xuk8fIyR8jB20ys+LZ4+c+jDagWCIIFJb8gfUU1t3TEczfzVx+M3UdO0AZS65WTQRbYjv3bqH0i5b78nZtOJ1upI4QEAJCQAgIASEgBISAEBAC5wGBhFFqw50L3c01XOYg0mZmL6YL867UW8Aas7eMe0ztI1gTpM/9GP61uo+tyvP/0+5uoStG3qqSsJTP+yd9QaGQsJYDRN005lGaYJ+tPkhDlORjbX3RhJHmk8h9IP+jUy/TtaPupQX5PkUQgaQQJTlWgSKbMabPquzhqMSt69co5dW/DUQghlLrPFWmlF49D67GEO3bt4cE35ZfOpb7sbJrs3XcVJXXtvlD8rfUIhFzaNMXXanm58ItWkQICAEhIASEgBAQAkJACAgBIRCOQFJOTk4Pgim53W7KygoNUBSuUiKlpfA6thkZGYRox7HIjEW8tmoc5MqRt6l1av9733fVsj2YW9vibAjbcoqyDGdRPUc29i0hFLbYkCciMBOUWyiY3i5H2P7S5i5V82ob33yenJVlYctESyx85J+UhbeNIx2bcgsIrsY9fO0FCyIr597yMHXyXFpERRYRAkJACAgBISAEhIAQEAJCYOgJHD3YTGMm2MloChMHJ8bu26vjo1eWTLHG1GNCW2pjOUKHw0H4DKf0F+QJ82vxGW6BIuuN4F5tys4nS8l4Sp13MZfpPC2F1v/4sLyPq/aUf5Laxlq5lpIJlM5r10Lad36mvuWPEBACQkAICAEhIASEgBAQAkIgHIFzXqkNd9BnIk1b8udM9HUm+khjZRbuwl5HBzX+/flBdhnZldpSPJbsy65XbsctH72hlhEaZGdSXQgIASEgBISAEBACQkAICIFzmMA573480HMXL/fjgfYr5YWAEBACQkAICAEhIASEgBAQAsNNIBHdjxNmSZ/hPrnSvxAQAkJACAgBISAEhIAQEAJCQAicfQREqT37zomMSAgIASEgBISAEBACQkAICAEhIARiJCBKbYygpJgQEAJCQAgIASEgBISAEBACQkAInH0ERKk9+86JjEgICAEhIASEgBAQAkJACAgBISAEYiQgSm2MoKSYEBACQkAICAEhIASEgBAQAkJACJx9BGRJnxjOidmQTDZTOnV5OqnbM7xr3sYw3GErgjVmId7O4V9z1x+CISWVepzd1ONx+yeTKSuPkoxGlebtdpCnrSUgX3bODAGbKY3vqy7y9ASenzPTu/QiBISAEBACQkAICAEhkOgEEkqpzc7Np3ETpoUwL92+gVwuZ0j6YBOSDVa6aeyjlGsdoZo63raf1pQ/N9hmh6S+ZdR48jq7yFVTOSTtx9Jozqp7iYwmqvvTL2MpPrgyBgOljJ9GzuqTrIw2R2zLmG6nvDu/Rm2bP6SOXRsCyuXc8kVKMviUWldtJTW8+mxAfiLumHMLyZCWQd1lhxJi+OnmLLpv0vdpQ81btKN+3Vk95tFpU1j57qRqR/lpj3P8mBLKzc6kzTt2n3YbUlEICAEhIASEgBAQAkIgkEBCuR/bUtMpJ6+QTOZkMrCFTftQUlLgUfnt2Ww2Kioq8kuJfXNy5hyl0K6vep3+fORxWnfqldgrn+GS9itupIwl15zhXoevO0OyheyX30Apk2dHHUSP202e1ibytDSGlKt95mdU88xPqWcIXoiEdHaGEtLmL6Os5becod4G3427x0WtzkZqcdYPvrEhbuGq4jvokqIbBtXLdcuX0a2rVwyqDaksBISAEBACQkAICAEhEEggoSy12tB3bFlPzu4ubTfqd3Z2Nk2fPp2qqqqilvPPNBnMZOB/4zNmKpfIg83bVLY7yD0S5SBur4tSTRmUacmlGkeF2lcZ/MdiTFGKcXN3HXW4W7VkMiQZyJRkZn3cQFnJeWz9qaAUk42sxlRq6q7Vy/W3kcQKPiQJij1bL7V98npD3G1htTSmZ5KrriqsIpdkwvH0EBRBuBKb7Dlc9hTvu1Qf2h+Vl5XLymJzRCupifO9fI5OxxU5yWRSY9D6w0sLuAljXBAcY5LZ0rvNDHsZKPdiPm5dmAfciutefJJ9ov3Sewv0eD2czjs9PXqVcBtJbH02FxaT19FJ7sbYz024tsKl6dw9HjLnjyRveyt5OvquFfSPcxusfKt0ZoPzA2Zsdlbl0IfGBNv+9ZRlGixZkUe/5oKRfEx1fGwdKKqLulbS+FqpD3+toKApO1/166qvDstXbyzCBu4BWD6fP/Iz8gadA9xbPZyWbSmgTncb3zttlJ8ykuq7qrgsnzcW7f7z8H5hyihqczVTuyucC3kS5VgL+H5LprquSr2+/7CSDRbC/Y220SemHNQ4TnKRHrXNV6D6hzGjLAT9xuoybUnGizj+VeHzCElJsapvHGNXV7faxh8jl0nmslra5Aljqa2tgyqra/Qy2MjPzeFPNh0pK9fL+hfA78Ho4hHclpmOchmPJ/T69y/vv51s5t8/Hqc9I50sFjOVn6yikUUF1NHRSc2tbf5FqSg/j/Lzcqi6tp5q6gJfTJj4mjSbTeRwdFFJcZH6zSurGD5PkoCBy44QEAJCQAgIASFwThFISKXWyA/lZlZkhsLlGGf39vHfoszkXP1EPzz1R2r7WOteeqviD3r6fRN/QA5Pu1Ji81OKVToecp/c/wOlrK4ovpvGZczQy9d3naJXyp4iJ88fnJa5gC4dcRM/RHvVw16rq4nSzZnqwfkAK9EfVL6k14u2UXD/t3VFxpxTQAUPflcVd548Ro1r/qy2oYTmrL6PjBlZelOOgzup5eM1+j428u76mlJuoDya83zWbSiKNb/9qSoHRTXr2jvJyO6tmrhqTlLDa89pu0rJyb/7G2RgqzrEWXmcGt/8k57f34aleBxlXXcnNb/7V+oq+1wVt19yHaVMuYCqf/1jNa6cmx7Sm0mdtYjwgbR+9i517t2qtnGseXd8VW3jTzj3Yz0z0gY/2KMvcNUEymDN736m7cblO/e2L5PBwkoO96cUVW7VeeoEnz/mxsp4+qIryDbjQqr/22/I3dCnVOcxZ+Lrp/YPP6fs1fcTXI810a6D4PHar7iBrGOnUMeeLcxtoVacGl55Rr3swDnOvv5u9VJDy2zf8Sm1b12n7ZJ13BSCZ4Dmuo2XAzhf3eVH9DL9bdiTc+ieif9bLxbsfvzgpP9DZqNF3Q8o1OJsINRxeZ300rFfqhc/d0/4DiXzSyNjkpE/vp+yyo6j9PqJp9V9hXojbONo1eiHdAWYX9moe+tg83ZkK4ECi3v88+YdNDZ9GrfpUzirOk/Qy8f/h7405V/VPYrCucYRqiy2K9oPq76w3Z98+6sPUk5Wpl7sJ9//ptp287323X/9Dz196cJ5tPqaK9g9uZQWzJnle1nFuZ9u3k6vrFlLo0YW0qP33U4pVt8YUXHT9lJ66fW39TYumn8B3Xz9VboC7eVr6IVX36JtpXv1MtE2vvzAHVQycgTeJSlpammlLHuGevfz5nsf0UefbaZUWwr983ceYyXc576Pgk6Xi57+41+VEo39B+64iaZOHEetbe2UkZ6GJOrq7qbHn3iWGpoiTxlQBeWPEBACQkAICAEhIAQGQCAhldpLrlipDtHDD4SHDpRSednhARxy/0VfL/sNW2cstLz4drbaFNKLR3+hKnV5Aq1ZSIRVx+ntpq1171NVZxlNy/IpCrOyFyuFtpatPZtq36HpWYvY8juDlhXeQGsrX9AHsaXuPRqVOpFGpo5XbRSwxWlK5ryYldr6l55iZchIOTc+wNa9Nmp+72+qbX/LW+blq5VC6zi0m7qO7KP0xVexkjiHuiuOUtexg/pYsIHgSVCE2nd8Qq4qth5PnePL5yfc7FX3KeXL8XkpdZRu4rI5ZJs6N6C+wWrjeb0nqWXd3yl17lJKHjmWrDz3tevo/oByA9rRnq65EpS6+pd+rcaRzYp654Gd1MkKGsTT1qS+1XZ7i1LUjKlsQb/6C5wU3RqrV/TbSJuzVCm0UOhwzIY0O9lYuR4KgWXV1VBD7Zs+8HEbMZpSWZHt2L1ZzQWGUpt2wRJq/uBV1T0srAZrCp+nT9V+8zsvURK7ZGdcvIKSC4pZAX5apfe4w8w1Z55o23F4Dx/XbrKOmeSztGrnmNtp2/IRuaorlEKdxucRSjZeUMDSn8nuzbi+Wjas5Xoe1WfW1bdS7e//U83rjoVPG7/EgXKaZrLTtSX3ha3S5e5U9wqUUqvRRm+ceIZWjn6QpmZeyHNwfS9kYDXFyyIoxfPzLlf30azspbSrYb16sXT96AdYITXSxpq3+QVUBy0tXElXjLyVTrQfJIc78H6enDlXKc+fcdtObxcVpJSocWHqASy0t4x7jDrYEvx2xR9VOl5oxSq//v2LZLNZ6bYbrqXCvFz6r6d9L8e6usKcH2504dzZVFVTR+s2bFFW2W5WBg2GJPrKA3cSLKmfbNpGh46W0cqrL6dF82bT50eOU+m+g1TAbX9h1TVKeXz7g0/Iw+dn5fLL6I6brqODR45RO1tbYxHccs//7Q26ddUKpdD++eU36abrl9PShXOVUos2qtky+/FnW6m8soqmTR5PK6+6jB6662b6wU9+HtCF1WKhv735Lk0cO5pmT5+ilN3/eOJ3AWVkRwgIASEgBISAEBACgyGQUEptd5eDyo4epJZmttpk5tDIUWNp6sx57H7noFoOGBQvgRsjxMXKKtwRG7sDXf+C+3n5+BPUwG6RkPJ2X4CeGazEQl5lyyysS0h/ZOqPlUuzv1K7r2kz57vUw/he3u5wtVJJ2mRlfYJ7Y3/i7p0r2sPWGCij7qa6kCrJI8aQlxXelo/eUHnut/7CwZMeY+vfghClFgUaXn9Otwh2s8UXYh09SSlRUE6hsELQV7BSjPRGbh/Rhj2Odsq95WFlQRyUUotGewVWQfQLhQ4C9+ZwxwwLJ9ysvV3aQ3zkede9TYd8GWypKq375HH1wgAvDVpYYR8qaXrzeR6vg7pPlVHhl37ALxTmKqUW/ULhtbCFlD7k42CX1dTZi9UwOlnphSh3ZdbRwB0SlonK8f1R1tft69UOlFUILLjginPV3Wslb93wHuXc8AClzlyglNq0+Zeosm2sfLsbqtU2AnClL7pSvbzoPLBDpfX3Bx4KeOHjMAcqlv71ajggU3n75+r+gVu/2vZ0s0eD3b8YvcYvoRCZ/CRbab8y7f/xC6QFSqkdYRurXIUPteyi7fUfqTpQgqHYQjEODkyF++2Ph/9Nb/twS6nabnb67qkeHjPu5f5+D/QG/DbqG/mFC0/r7u72KbFw6Y0mdQ2N9O//80xAkUXzLiC4MR85fkK3ur721lp6+N7b6NLFC5RSu/qay1Wd99Z9RmUVvmt1w9addNnShbSILbjvfxwYLC2gA78dp9NFO3bvp8uWLGRFOUf1t4QVWrg8Qzo6HcriCkU7LyeHysorCWOGW3SwrP34M9qwZaf6/Mt3v0ZFBfnBRWRfCAgBISAEhIAQEAKDIpBQSm1dzSnCB1J9qoJOnSyjxcuuodHjJiml1soueTNmzAgAYrdz9Nu8PJo/f35Aek1NDVVUVASknc4OHnI1hda/PubYwhKEfE0wH7DINlpZkLQ05Lt7y7j4gd3V4ysPS7GHH9QHK1jOBn6ETo7uqwmiBcOt2MiWx2BRirGfi6uWb+p1bYV1L5pAidQVq952YEFMRIEF2MYWbVjBcVxOVm7bNr2vFNx4Hw+4Q6FVwgo5lHVj7xJJSOvYtZEy2XU4ZcJ0crDSaR09UVnEMWf4dARW+2DRzjEs6/j4i9HuU2ZgyYfYL1vln6224bocT9HuC7xY0u4jKJ4mdhfWBOlQaCEoh/m3uPcgWRaf8lTR+6IJaSdYSV5KK3l6ge84kKZJVadPudf2h/N79/5DId1jXipkAls8v/XI/Wpb+5NpT1ebuTm+KQar2IIbLJj/GqvgpQPExd4w2nxcl4t/M3qjhSPvaw/dTWNH+6ZdYF8TWJLhiqyJ/7Fg7u3EcanK+gu3ZhEhIASEgBAQAkJACMSDQEIptcEH3MaBitz88GRL9c3XQtAVl9/DFMp7OPgO5pQFpyMtHoLIrZFEBW+KlNmbjjHjn0+0b+ihA7csRusKAalCpa8/LS/y8ji9ZfsZlxbMSWtPfYepox0fjt9fYA0LruMf9Mi/7FBvu9kjoOa5/1BWSuuEGWRlhdI6bqqaUxu85m2k44nXGLuO7qOeS68n20x2b4diwfNv24OWKIq5L2Ye/jz7zkUjW4xh5Q4Qvo904Xun5veP67vaRnBAMS39dL+DrozeZnr0ebb9ttt7bflf+wj35JPA1pFWx27MZ4scOxH6wk27V5574VV93qo2XiicmqDcD//tl9qu/o35rLGK1pf+06Qq9jG7+rKlSqGF1fjDTzfTiZOn6OF7blXBqbR7QetLC46Ffe2nILiMVla+hYAQEAJCQAgIASFwOgQSWqlNYfdQE1sF2nn+JATzzkpLfS6DGozi4mKO4GkJSdfyh+q73d2i5tvC3RFzbiF5vN4tIiXrils8O2dlUAUbCmpTza3lh1xz/gg9B0GUEJDIw1F2YxUV4ZYLp0ycOeg1UL945z9RYf4o1fXjT/0DObr6XFA1K68pt4DouG++b3JRScgwe3qVLATBGqyAEebehhPf/GIOlMRzV1MvuIjSF15BlrGT1dxkrXy049HK9PcNxR1WdXW+WGHFcUGp1oXPYdfhvSpgVtq8i1XE43Br0SplGwGnWPFV0Z31Bvrf0BRZBMZyVpaFrYDozwgihrGGWyYpbKUhTESQpxRTGntFtKu5szZTuh49vMnpC6qFOev7m3zzruHaD9FcigcyNFgvMbd3MOJ2e9QLK0QGRpCogUg5K44IAlUysoh27/88bNXa+kZeBzeL7OnpdKrGd/xhCw4ycdb0ySpw1K//8KJuyR1ZyPdsGJk5daIeGbmQrcV419DY7PvNDlNckoSAEBACQkAICAEhMGACCaXUXjB/CTU21FFbC0cKtmfSaFYuIBUnjg74wIe6wp7GjbSM17S8eexXaXPtuzQ9e6GKwOofdTWeY8DyOlBc0+ZdQs7qcrUsjDbfFvNiLaPGU+aVN/Ec2AOsmPlcE7X5mLGMAwoUFC7Mu0Q7HaUbychL/tgmz9KjLMfSDspo1ppw5TVFzjZtHs/Z5HmkJROVAhVcFsomlDa447p52Rkcq//SNHCXxfxQo83nlglFHsGVWJNQ81P92wOTKmYI6AAAQABJREFU1DlLKIMDaIGdq75GrW2LqMN4AlfzgVlJtI6frqphXP4S7Xj8y/W3nb3yHg7Q9CEHhFqsijr2bw+oAsssokAjWFOkuau+ubRTeQ3f1Sq4FZZVcvm5ngc0GLSjzjG7WUNxN/Kcdcf+HUq5tk2frxjAZbmd5+GmTJrFLtkPUufuTdR1/HOl5CICddPbf4nZNRvRxaEgppp9LxMQ2biQAzNhWR0EfhqI3DjmEQ4E9Q7Ny71UVcPcdEhlx3EVaRxLcy3Mv0pNB8A3PCP2N21VZQbyp9XVyMGjRtGCvOV0il2VsXzQQJXj2voGdh8uYavmF1TUYsxNRZCnWGTLzj10w4or1fzYPJ7bun7jNoLbMSImI0jUus+20BvvfMgRh8fT1790D0dQ3s3zYvcpiyrKPPnsX+IWdXjvgcNqOR8Epdp38AhddekSMpnYgyCMXLlssVJ8x40ZRWmpNqqsCrx/wlSRJCEgBISAEBACQkAIDIhAQim1Vo6sO3XGXP0A4SJ3+OBuOlUR20OhXjGuG30uef7NQqlFoJqJ9tl6dFcEu1lf9ZoqFs7lWKXBjMGiu/+pvf7/tK5fQ5lX3UJaIB8osk29S/ogQFT2qnvVPEltriSWvtGWzAloPfzhqCINr/+eslfcHtAOouJqgjEn9Y5fSwv3Ha2IsoxuXUepbI1ElF1YHhFN2cwRfYOldf1blLHkao6+e63K8l/SB4q3/xI3No7ijA+U1Orf/CSgKUQYVgo6RwS2cUAkbQkbrOMKhS61V8lUY9u2noMw1QfUj3Y8AQWj7KBtrA2LKMIQRKbu6F2eSKsGy6intUlFssYc23CCdAQGg5s0zjXaHcgSRFieCecYUa21yNY4B537tqnuPG0t1PTOi+rFRtqFlxI+EDWXmsvFKlePuos9F/glQ69M56jh+OAe+J99/1ulavcIvjXvBrXN+5rACyLDnE3X9UZQRjCp3Y2f9Wb3cMTk39LqMQ/ThXlXqjRYW9eefEGfh6u1g2+tD/80/+2PTr1M1466lxbkL1fJCP6G9gcib763jsaWFNP4MaPV3NjgJX20thD4LVhwf/3qt8/TI/fdRjOnTlIflMGcVyz5A4HS/JdX3qRbV6+gixfNUx+kI0AV5sfGLL2Ig3lr9T9Yv5HmzZ6ulh3C0kMYA5RVrGcb/NvVyYr7yqsvU1U7ec3aZ//yitaMfAsBISAEhIAQEAJCIC4EknJyctiTkyPK8gNPVlZWXBodykaSeT1PC388/ADt6OwIeYAK7hvux9OnT6d33303OCvs/oxFocGTwhaMMdFkMFOOpYiXCqkP+yAdYzNxKQaXUShOWBYneE7oQDowJFtZCcxSVjkENBoSYRdaE1tbgxXIIekrSqNJ7CZqyswlLyuHQ+Vum3fX11kzcVPdC0+oJYQQ7bgvarPf4JgJ1p+FYln/4pN+GfHfVOc4M5ut850R5t+SctlGhGiMJ+x44z+sgBbvn/QD8kUs/hnlWouog13+g5fp0SrAEox7saELVsI+pVjLT7RvWDxHFOZTS2u77tobfAxwQ87KzGBFt5HLtQVnx2Uf68+mp6ZSZXWo9fVLPMcW69T+ww9/qpYaMvL1O5Qu0XE5IGlECAgBISAEhIAQoKMHm2nMBDsZTVoskoFDaa+Oj15ZMsUaU+cJZanFETnZnRKfWKWhoYF27doVa/G4l8McWixNcjYI3IfVnM1BDsbr7CJvcCChQbYZUp0tVcOt0GJMCHylzScOGWM/CfZl1+kuy5GKNv79jwFZWLonRNi/GZZXWI0xF7pj56chReKdoM5xbXQ3YCwjpJYSinfnA26vp1+X5RZnw4BbPZsrYL3ZQ0fLog4RywippYT8Sv3wf31FuQD7JQVsuvkFZ/A6swEFgnZa29oJn/6khte0FRECQkAICAEhIASEwFARSDildqAgHA4H4SMiBM40AWdNJSWZLVG7Vcv48NzgaAJFFu7UWHvXcXAnOQ5FX1YpWlvnUp627My5dExDfSxHyyrInhE5uJqLA1nFS7z+EbPj1ai0IwSEgBAQAkJACAiBMAQSzv04zDHENSne7sdxHZw0JgSEgBAQAkJACAgBISAEhIAQGEICieh+HG7x0iFEJE0LASEgBISAEBACQkAICAEhIASEgBCIHwFRauPHUloSAkJACAgBISAEhIAQEAJCQAgIgTNMQJTaMwxcuhMCQkAICAEhIASEgBAQAkJACAiB+BEQpTZ+LKUlISAEhIAQEAJCQAgIASEgBISAEDjDBESpPcPApTshIASEgBAQAkJACAgBISAEhIAQiB8BUWrjx1JaEgJCQAgIASEgBISAEBACQkAICIEzTECU2hiAmw3JZE/OIYsxJYbS528Rgy2N8DmTYki2UlJy9LVgYx0P2jGmZ8ZaPKHLxZNbNBC4Z5IN1mhFJG+ICZxP1/UQo5TmhYAQEAJCQAgIgbOUgOksHVfEYSUZDDRh0gzKzS+kZIuVOtraaP+erdTZ0R62js1mI7vdTlVVVWHzoyXiYfymsY9SrnWEKna8bT+tKX8uWpVhy7OMGk9eZxe5aiqHbQw5q+4lMpqo7k+/PGNjyLv76+Sqr6bGN/4w6D7tl64i6+iJVP30/x10W8ENmHMLyZCWQd1lh4KzhmU/ntyiHcD9k/6R6roq6ZXjT0YrNux5edaRlGbOpONt+05rLNkr76YkS+hLL1yXPc5uSpu7lCzjpvra9niou+IIOT4vJU9bi0pLv2g5JReMpK5jB6hj92Z9DGnzLyFL8ThqwPXt9erpA9kYyut6IOOQskJACAgBISAEhIAQGCoCCWepXbR0OY2bOI3cbjfV11aTlZXW9IzI1rXs7GyaNWvWafGbnDlHKbTrq16nPx95nNadeuW02jkTlexX3EgZS645E12dVX1AoXXVDfyFRbiDSEpKCpccl7S0+csoa/ktcWkrHo3Ek1u08dR1naRaR0W0ImdF3oL85bRi1D2nPZYkfpmDjzkrj8w5BWpbpZHvmjIXjvKl8zVmSLFR2rxLKO/Or1H6RVeqPi0lE8hcUEzpC6+gJHOyPg5LyUSVnpR0+j/VQ3ld6wOVDSEgBISAEBACQkAIDCOBhLLUFhQVU4Y9i/bv3kYVJ47o2OL90GYymMnA/8ZnzCRPj5sONm9Tfbl5219QDuL2uijVlEGZllyq4Qd47GsC90tYepu766jD3aolk4EfUk1JZsLDalZyHlVzvRSTjazGVGrqrtXL9behPQArBmzF1vZh1enxBI7XmG5X7rVQAntczpCmk0w4nh7q4RcGcCM22XNYYTzF+33Hg0oqLyuXPK3NbGlqDmkHCSbO93Z3kbczvAU9bKWBJEIB5U/jm8/zkHtCaioObBHr6fGSOW8EuRtr1HEFFzSwdc2UnUeu2lPBWZRkMKq0Hq9Hz4OigjZDrGbMHsoMcR13Q7XeV5KJbzEoJJwP0c8Pbwefg3idH9VRpD/9cEO1WK+DSF2oNviYoc69VvYbvqICxZjECiCPw2bka4xd+xu7ayiT74Fur4Mcbt/1gvvCzPeHq8elymUkZ/G9dZK8PX3nQms13ZxFGcnZVMf5Tm+3lqx/R7tPtXvdmOQ718kGnys73wXk8obeI3qjQRsNrz2nUvJu/4qyyNe/GN4yXf/yb9W1Y0hJpfx7vkmpMxdS28b3+1rj6wRW3bbNH/alhdkyZeer8+Sq5xc6YSy40a5rrTmlhOcVkdfRQe6WRi1ZvoWAEBACQkAICAEhkHAEEkqpLS4ZT26XSym0RlYWvFDc8Amj1AzmTNw+/lv8kJ2rN/Hw1B+p7WOte+mtij/o6fdN/AE5PO1Kic1PKVbpUIKf3P8DpayuKL6bxmXM0MvXd52iV8qeIqeni6ZlLqBLR9zED+lepeC2upoond0fk/jfAVaiP6h8Sa8XbaPg/m/rChOUqoIHv6uKO08eo8Y1f1bbUEJzVt9HxowsvSnHwZ3U8vEafR8beXd9TT3gQqk188MuBIpxzW9/qrahqGZdeycZ2Y1WE1fNSdIe6JEGJS7/7m+QITVdFXFWHmfF809a8bh94zh9yheRs6o8xP0Y+VDefYomK5R8nbTv2kDtW9fpY8i4eAXZps3z7fM1hId7f8m99ZEQd+qCL36POg/soNb1b+lF0xdeTqmzL+KD77X0cluNa/5Ezsoyyl59P8H1WBPt/EChrfndz1RyvM6P1ke07/64oW5/10G09rW8R6b8iBVW30ufU53HA9yPry25l0rSJqtrHeWh1GZbCvA6hT6s/Ku6/semTaVrS+6jZme9fi/iXnmz/HdU3u5z4caLpJvHfkUptFq/+5u20Ien/qbtqu9o9ynqw/VYE+1eh3L8mwP/R0uO+7emSJoycwLmhOOatc1cwNfpx/zbFqrAJxeV8D14h37t44VOy7q/k+PQbn2M/V3XKAgLceqsRXodvHzCfRzpJZVeUDaEgBAQAkJACAgBIXAWEkgopTYlNY06OtoILsj2rByFs6Guhkq3f0auMJbH0+X9OluXzGyxWV58Oz9sF9KLR3+hmuryBCo9SMTDOB6At9a9T1WdZTQta6EqOyt7sVJoa9l6tKn2HZqetYgtvzNoWeENtLbyBVUGf7bUvUejUifSyNTxqo2ClFE0JXNezEpt/UtPKetgzo0PkIfZNL/ne6D3V9AyL1+tFFo8+HYd2Ufpi6+ilClzeF7fUZ7Dd1AfCzZM7D4Jhat9xyfkqmLr8dQ5vnxW2LJX3UcGnseMuYAdpZu4bA7Zps4NqG+w2nhe70n1oJ3KFqfkkWPJOn4adR3dH1BusDsNr/xOKdDZrKxHEijmnfu3q3ms9ktXKgtYR+lGNccxeeQYpdB62ELV+tm7atsyZlJYq1ek9pGeMuUCSr1gMVutm6h923o1vzf1got0i2zzOy8ppQWKRjK7l9b/7WnVXI+7zwoYl/MTbZB+ebFwQ/GI14FfW9E2Xzr2S6XUQmmE9T9Y8PLm7yd+R1cV36HuoTfLn6UrRnyBLsi5RCm1WvkMczZtrHmb77EuWlq4kl2E76VfK2Wzh64svk0ptAebt9PhllLOv57vvwV0ov1zOtq6R2tCfUe6TzFHHnPn8YKpMGU0vXD056r8QKy0AR3FuGO0Z7MnRDZ5+Z7FnFtN2ja8xy9C7iPb7EXUsfMzLdn3zfdg1orblQdB25aP1EuYDL6XcW13lx8hb1cn32/9X9fqmmWF1lVbqSzC8GRIX3CZUpYjWZgDByJ7QkAICAEhIASEgBA4uwgklFJr4Ui3qWwBhGK7Z9dmysrOJVhvp82az4rtBrJarTRjRp9lFKgRJCovL4/mz58fQL6mpoYqKsLP9Wtz+VxqXayswt0RlqRo8vLxJ6ihi90AWTQr0gxWYiGvsmUWD8hIf2Tqj5VLs79Su69pM+e7lFK7l7c7XK3KigV3SE8YV0vVqN8fzW1QWaxZGXU31fnl+jaTR4xRD88tH72hEtxv/YXn8z1GthkLQpRaFGh4/Tl2ofW5QHezxRdiHT2JDNYUpZzCMgRBX8FKMdIbuX08qHsc7ZR7y8PKUhlvpVY/TrbARhJYn1o/eVtld+7fQQi6A2szgmnZpl+o0pvW/k0dKxT8gi99X7ceRmozOB1zIyFwK9WUE40z0j0d7HLO70K0PH3cyOyVeJwfra3+vvX+o3DT2gh3HWh5/X1r9wysq2zCDine7XGw8nmQannObUFKCZW1HVDb/lZTVEKZ7fUfqfpw45/OL42K+QXQyY4j/D1BufS/X/miym86UUP3Tvo+zc5ZEqLUokC4+7TdhUBNLYTxQLRxq50h+JN/19eVlRURieHW3/LxmwG9OKt5+kJzA6XNWUId7FngL7DSwn0dL6Y0hdfA7SDIVMqU2Vx+Y0zXtbpm2cKLewOeGN3lh5UyjGBzeCkF5VhECAgBISAEhIAQEAKJRMA30S9BRuzpnSO6c8sndKriOO0r9UU9LigapY4Absgudk/2/3h4XiXclP3TsI20eAgUVk2h9W8PrpEOd0fAvLx6Vnzhkukf9AX13b1z91yebp5D6LPgwVIcD8HcPbjFOtkqowlcDPEwa0yza0n6N6y0mkKrJ/KGqdeF1nE40ALmXwbbeCDWFbhexTheS+4E99XfPhQETdwNvhcTWMoGYoIrNl8v/sfqaWrQisf8bWTXbsXTz9oWc2UuGK/zM5A+Yykb6TqIpW4sZbS5sZh/7vH65n7j5Q7m2/oLlFdNKjuOqc1MSx7ZTGnqBUR1Z7mWTXDhh/s/5tgGS6T7NLjcUO8jQJd6EcXXHhj7X6Na320b1yrlVXeN780wZeaqLe1FE3bwMgaC+e/qO4brGtcsfhNybv4i5d7K0d35A4VW1ef55SJCQAgIASEgBISAEEg0AoFPkGf56J2sOJiTk6mjna1fvdLcVE82dkvGHNvu7m4qLS3VstR3cXExWSyWkPSAQoPYaXVGDrASSwArKOL45xPtG8+codatQQwzQJHua6evPy0t8py63rL9jAvzcUMkTB3t+OI9H9q/b/8AV32MfSWC91VqEHKMzT/JP8iT1o+vHf9SWs7Avv1fdPTVHMj58dXSuGJvMGwjXwd9oxvMVlj+yqob2CrclDXRtvCtkTGEuba0PK0evqPdp/7lhnq76V2eK88v1OAmnH393cp1uHntywHdwpXYw79xiJgdeB7C3YMaFV8TYbkGFlEF3Y217JHx+4B+saO9kArJkAQhIASEgBAQAkJACAyAQFlZ2QBKRy6aPY5fxscgCWWpbW1u5CCyRkqxsfWxVxANGQ/vnnDKlFZoGL7b3S0cydjG8/X6LK557D4Jy5SKnhvvMSHgFM93DRY1t5b5mPNH6FkIGIXIp3hwjlVgYYKkTJwZa5WI5b545z/RP37jKfVJsfady4gVhiADc2lhrfIP4mTkoD3+AqVYWbV6E62YcxskXl4fGVGLEW02mqhI1IhO3RtRWSsbr/Ojtfe9x/5bcf3Ol33zwLX0RP3GXHNNtO0mjiSOKMlQ4OC6rIk9OUdZetvZYjtQgas/IpJrUZAHWn+g5RFEDHPPrbx2LebXBguiH8Pd3//6dPd6EmDdWk0so3zbcFmGxHJdY+69MT1TWYqhxPp/tHblWwgIASEgBISAEBACiUQgoZTa8t5lfGbNvYiyc/Np/KQZlMYKRX2tbz7r2QR+T+NGNZybx36VxqVPp5WjH1Sux0dadw/JMLG8DpRVzJeDFQhBaDSBuyIi7GZeeZN6iM6+7k6V1bl7s1ak3+/uskMqMI117BTVDoIwWSfMIK2tfhvwKxDGuOaX2/8mXHbNBSPVB0vlQJn33++/BaLOPVtUscyrbtGZBCucsGah/YwlVytlHgG2gqV928cqKecLD3PQrDkqarSdA3NZx00JKKrNZUUeXD3N+X0Rd+NxfgI6i7ATD24Rmg5IhmtwISub+EBRtBhS/PaNAWX72xmTPpUW5l9Fc3KX0WQOoIagbCc7fC63FTxP3WZKp2uK76IJGbNo9egvqeZ21X/SX7Mh+Y3dvpc2y0feTqPTpgQoyyGFwyTYZlyoImCDMazuiIaNj1rSKUx5JCFAGcTOQcSCpevIXt/cVr+bxVl1QimguAfTLlzGc+IvVNZcuNE7Pt+lmojlusY1C6+D3C88QimTZqoI4ak8hzfnhvuDhyH7QkAICAEhIASEgBBICAIJ5X4MS+2BPdtp6sx5dOFFlyvArS1NPLfWp6AMD/Fwzo5EUGpH2MbSRPtstTQJxoY1bNdXvaaG2ecm2FdfpfEDKmSgrqOt69cQFDQEQ4JAUWrqXdIHgYuyV92rohAjEjGkc+9W6ir7XG0H/OkbTkAyduCumM3RV9GG1o7z1Am9nHLX7R2/nhhmI4YiYWr1JdlmzOdIxhfrCVizM+eGB9R+I49Rn6cYbt50b+co08FKfeqshZS5/GYAV5Zrf8ssllWB8g7lAdJ17IBSgNVO7x9ElIbVK23exZRxyXW+VO7XccCnZGhlEcQHAaFgmQM7zKfUlvSJ1/nR+or0HTM3NBDlOojUvpY+kyN/X5h3pbZLOdZCumXcY2ofwZoggdd/5M6wZrPWFqypiFasDW4tB4i6acyjNIHvMXwguxs30LG2fWo78E/kPlBuR/06FYBqvH2WamugS/pkcLAmbS1itJe+6Ap8qaV2lEt+mIsey/fgxQkihCN6drDg+kPUbCW99Rvf+jO/SLqr7/rna635w9dZAfYFuorluva/Zu2Xrda71e8bPUU2hIAQEAJCQAgIASGQGASScnJyehBMyc3uu1lZoQFWzsbDwLxBzKNFwCdnd1fUIaakpFBGRgYh2nEsMmORPZZiMZdBYKgcSxG18HqbXZ7hjSoKKxJcZREcSbnDxnwUgQURbMnIbt9wY0SE4UQWWKywVqgLgaTCKcF8cGDWw/O1vc7o1xraIaORo0LXR2wrGqt4nZ9ofSRKHrwbsE7tGyeeoVp+GYTgT/XdVWFd91PYMpyBfA7EhkBR54PAZRlTCJQ3QZgDjuW6RjW1Tq7JrIJX4UWLiBAQAkJACAgBISAEjh5spjET7ByzKOm0Yezd1HLadf0rzr08tjm1CWWp1Q4QFsGO9jZtN+q3w+EgfIZLMIe2xlE+XN0H9Iv5m/7r1wZkDmAHyp2XrUzxFvuy69iKOT1qs41//yPBwhUvwYN8f+152mK7KbV5jac7tnidn9Pt/2yth5dB0V4IYX4tPueTqLmzUQ44lusa1Qd7zUYZgmQJASEgBISAEBACQuCMEUhIpfaM0ZGOzigBJ68fm2S2RO1Tc7OMWkgyE56Al+Kz5FbCg5ADEAJCQAgIASEgBISAEOiXgCi1/SKSAmeKgOPgLsJHRAiUtR2g/973XQEhBISAEBACQkAICAEhIAT6JZBQ0Y/7PRopIASEgBAQAkJACAgBISAEhIAQEALnFQFRas+r0y0HKwSEgBAQAkJACAgBISAEhIAQOLcIiFJ7bp1PORohIASEgBAQAkJACAgBISAEhMB5RUCU2vPqdMvBCgEhIASEgBAQAkJACAgBISAEzi0CotSeW+dTjkYICAEhIASEgBAQAkJACAgBIXBeERCl9rw63XKwQkAICAEhIASEgBAQAkJACAiBc4uALOkTw/k0G5LJZkqnLk8ndXscMdQ4P4sYbGnqwL2d7WcMgCHZSj345+wedJ9JyRYyWFLI09Y86LbO5QZMWXmUZDSqQ/R2O5hXS0If7tl4PEnmZGZsIm9X54DYJhmMZEjLIG9HG/V43AOqe7qFDUlGshpTyMG/jz09sr7w6XLU6plMJioZWaTtUn1jE7W2Rf5NzbJnUEeng5wul15nODZMJiOlp6ZSS1sbeb09wzEE6VMICAEhIATOYwIJpdROn72AUlJsIafL5XJS6fYNIelIsNlsZLfbqaqqKmx+tMRkg5VuGvso5VpHqGLH2/bTmvLnolUZtjzLqPHkdXaRq6Zy2MaQs+peIn4Qr/vTL8/YGPLu/jq56qup8Y0/DLpP+6WryDp6IlU//X8H3VZwA+bcQqVsdJcdCs5KuP2cW75IUJ4grtpKanj12SE7hjPB7UweT6ygsq7+ApkLR1HNb38aUsWYmkHJI0qoi6+lHv7t85fkEaMp67o7qfndv3L+5/5ZQ7Y9M3sxXVy4kp4//O/U7Kwbsn4G23Ca2U4jbePoWNs+cnkDuQ227XjWLy4qoMceuktv8rMtO+jlN9/T9/038nNz6Htf/xJ9vGErvf7OB/5ZZ3z76kuX0hWXXESPP/ksVVbVnPH+tQ7nzppGnazkHzxyXEuSbyEgBISAEDgPCCSU+7GRrUOGoE9OXiGlpdsjnqrs7GyaNWtWxPxoGZMz5yiFdn3V6/TnI4/TulOvRCs+rHn2K26kjCXXDOsYhqNzKLSuuoG/sAg31qSkpHDJcUlLm7+MspbfEpe2hruR2md+RjXP/DREoRqKcZ0JbmfyeGJl5Gqo4RcGp8IWt5SMJ/vlN5DJnh02/0wntjkbqZU/Tu/Z7cUyOm0KLS++gzKT8840ogH1V1ZRSd//8X/Sv/3qt/3Wczqd1NbeQTV1Df2WHeoC9Y3NaixQKIdTbl21gm687qrhHIL0LQSEgBAQAsNAIKEstbt3bAxAlJmVSwuXXkkVZUcC0ge7YzKYycD/xmfMJE+Pmw42b1NNunnbX1AO4va6KNWUQZmWXKpxVKh9rZyF3fJg6W3urqMOd6uWTIYkA5mSzJTE31n8kFXN9VJMNnbjS6Wm7lq9XH8bcFOEKIXMYCBtn/2/QtwPjaz8G9MzlRIYbOFRbZhwPOzK63YTXIlN9hwue4r3A93aVB6z97Q2R3TVNXG+t7uLhswVGQoofxrffJ6HHOrqpjh4PMod0pw3gtyNNeq4cJz+AndjU3ZeWAVCs0b2eD16FbiEKhdL5hsgzN6cU0D81oXcDdV6X0nsSshmTU73vT/Szw9XDj4H8To/AeMKs4NjMBcWk9fRyVzCX2tqLGl8rdRXhYxT8cDhh+Hu3x1cw025BeRuboh8HcSBm3+f4bYNKalkysxlF3X2ZMDxBo071uMx5xWpa9rT2uQ7n8HXAHduys6nJL6PwA33YLDg/Cu3YM5Tbs9mLhusvDKTts0fBldVfeLcwRsCkmS26Pd78LWk8nkcppz8EO8NdQ2ym7A5t0h5OYCHugdO4+UQfsfK2g9Q2ZED5A1yPU42WMjL//KsI6muq5K76aEcayHVOk6q8eMPyuA3Fi7M+SnFVOc4xcpxl56vbRiTTCofU0DC/T5qv6fOXgtska2EHO4OthzXq7ZNXF/7vU42WlS/aNvpHdi0BaPRQMnJydTV5as3ecJYamvroMrqQMskLKj5udl0pKxcL6sdC76L8vMoPy+HqmvrWSGt989S292srEJhjSYYS1tHB/3r4/8T1t03PS01pLqXrzu4KvtLMl+D48eWKBfn07WwYizbSveoj8cTeN3DndpsNpHD0UVwlc5IT6MTJwNf2FgtFnV9uPj/mknjx1J9Q5Nyu9bGif/fME64WOM6ghgMSWTmaxysIFYr3w/q/wW+RTgvJcWq0j1uT4hrNtqaMnGcOmaMRWtTVZA/QkAICAEhkJAEfE9HCTl0opKxk9TIT52Mr5vR7eO/xW/zc3UqD0/9kdo+1rqX3qroc3O9b+IPeB5Zu1Ji8UAGwQPak/t/oJTVFcV307iMGSodf+q7TtErZU+R09NF0zIX0KUjblIPgngga3U1Ubo5k5L43wFWoj+ofEmvF22j4P5v6woTlKqCB7+rijtPHqPGNX9W21BCc1bfR8aMLL0px8Gd1PLxGn0fG3l3fY0VnQ6lkOEBHoIHcM0FEopq1rV3kpHn7GniqjlJDa89p+3yAz0/fN79DTKkpqs0Z+VxVjz/pOfHawPHCeUB4qwqD3E/Rj4suD5FkxVKfphr37WB2reuU3XwJ+PiFWSbNs+3zw9KOHZ/yb31kRB36oIvfo86D+yg1vVv6UXTF15OqbMvUkq2SuS2Gtf8iZyVZZS9+n5WHgr1str5gRJS87ufqfR4nR+9k0gbrCzl3PSQj0lvGf9xIAnnOPv6u9VLDa2Z9h2fBnDT0iN9Q2nKWnE7JReV6EVwjpr4OvB/QTBYbnrjUTZybv5iAH9+eqWW9WvIcXBXlFqBWabMHMVNeyGBFwFQXjt2fkZtWz5ShXGsWdfeoV+Tqp91fyfHod16Y6iP8+84vIfd3CcR5nBD/O+h7JX3sGvxaJXuf+8hIZ2t/alzlqg8/MledY++Xff8f5GH59FqYpsxnzLZhRmC+ebNH71OcH2Hgp9/77d8ij0rAOqFFTPB2DwtjVT3whNaE/1+z8ldRksKrtPL+bsfp5jS6KHJP8QrMvWbhhd/UHChxLY4G+iPh3Ht9xB+W9vUb1/fb9Pm2vdoa937ersX5FxMSwqvV+0gEb+f+B3F76kmE+0X0PKRt9O2ug9pbu6l6qUh8jbXvktGfnk4P+9yrSjdOOZRffvZQz+hDlfsc8KXLpxHq6+5gjbvKKUFc2b5lChu7dPN2+mVNWtp1MhCevS+2ynF6lOo0NGm7aX00utvqz5TbSn0z995jOB1pAkUtaf/+Fc6ygpwrAKl+DuPPaQXD+d+/C/f/Zqer21Aqf32P/t+d5B2583X0/zZff9HObq66JdPPx9W0dbaCP5eedVldNnShXpysPvxXdzH7OlTlCI7uniEKgfr8hPP/kXv5x+/9ShZkn0veaEgQ07V1NLPn3qOoCSj/r23rqYXX3tbsUf+A3fcTNMnT6B/+OFPsUs/+f439fORnZWp9pF+sqqa/vPJ57BJmPf7va99iZCviZtf4n73X/9D25VvISAEhIAQSFACCavUGll5KhzBc86qTxL+U4qnvF72GzLzw9fy4tsp21JILx79hWq+yxOo9CAx21Kg3vbjIayqs4ymZfn+c5/F88yg0MIqsan2HZqetYgtvzNoWeENtLbyBX24W+reo1GpE2lk6nj1IFeQMoqmZM6LWamtf+kpVmqNlHPjA+qhtvm9v6m2/RW0zMtXK4UWD9hdR/ZR+uKrKGXKHOquOEpdxw7qY8EGrEdQdNp3fEKuKrYeT53jy+cH4OxV93EgJSs5Pi+ljtJNXDaHbFPnBtQ3WG3qIb2FH+hT5y6l5JFjyTp+GnUd3R9QbrA7Da/8TinQ2aysRxIo5p37t6uHefulKymNx9NRulE95CePHKMUWjzIt372rtq2jOGXJPzQNxBJmXIBpV6wmK3WTdS+bb2yfKVecJFuQWt+5yWlvECBTi4opvq/Pa2a73H3WWHicn5iGHTanKVKoYVij3NoSLOTjcevi3aOWdmCsuaqrqD0RVcobs5TJ1hJj+3lUSa7xkLJ6zywUymPKZNnM9+5lH7RlYo1+osHN33cUTZwfjv3bSOMH+66GZdcR/Zl11P3icMhLzEiNZN59a1KWcW146qvIfsl1wYWZW5Q4mHZBzfcexl8j+Ga6y4/EhLsKWUie4DwuDo2vc/z4LvJnD9Sb6/lozdY8eQ4AMtWktHep+ihQMeujawQ71X3U9q8i6l57cvkbqpXdT1BL2SSi0ZT28a13LdDHa996QqqZaVWE+epMvUyCO7dTj7PUHhxrs18jULJjkX2N22hyo6jNDVzPmFeLZTUYDnZcYROdRynhflXqd/H4zyfdTErwrCkVnWeUMXTzVn0efMOOtK6W73oQ9nDLaVqfi5eLi7l+bqwuq6vfk15vUBpXVnyAEEhDRYor6c6j9HO+vVkT2ZPE7bcot1DLTtpon02XZh3Jb1T8Tw1dvssqw5334uA4Lai7S+cO5uqaupo3YYtbJHNoe7ubmU5/MoDdyqL4iebttGho2W08urLadG82fQ5z+8s3ef7ra1my+zHn22l8soqmjZ5PEEpfOium+kHP/l5tC4D8mobGpRSmMPK2W03rAhrafzVb5/X64zkebo3XbdcuQdriVdcvEgptLX1jbRm7ToaUzKSLl28gL58/+30z//+31qxfr8/+mwzHTh8jJYsmKOUzzCXgWoDluu/vvEOjR41Qr0QuPHaK+mp3/f9XwiLbmNTM7259mNavmwxjSjIpxWXX8L768KOIXi6yH+yAgyF+LEH71LW6Gdf8E0Xamlt1+vfcM2VSqH9ZNN2Wr9xK+XxmJYuCPw/TC8sG0JACAgBIZBQBBJWqR1ZPFa9la04flgHbuW34zNm9L11RgaCROXl5dH8+fP1ctioqamhioqKgDRtp83VrDZd7Jrm7fHoD0BafvD3y8efoIYudjdkKW/3PTjOYCUW8ipbFPBghfRHpv5YuTT7K7X7mjZzvksptXt5u8PVSiVpk9m6YGSrr0e1Ee2Pmx+OIT2sjEEZdTeFBmpJHjFGRUPFAzPE/dZfKO/Ox8g2Y0GIUov8htefYxfaWmxSN1t8IbAsGawpSjmFwgpBX8FKMdIbuX1YhzyOdsq95WFlKYu3UqsfZxQlFK7PrZ/4LCSd+3dQ2vxLlCUSwbRs0y/EUKlp7d/UsULBL/jS93VrkMqM4U/avEtUqfqXf6uOGTsaZ2x7OlpZG+Hz0xudWR83MnslHudHayvat8Hmc0fsZs8GWPXwafFTYKxjJuvnuLs3yFDrhvco54YHKHXmgpiUWrjH4uWAp72VOvdsVsPp3LuVrOOmkJWVObxAgMSDm2qonz/N7/sebGGhxPF2HdmrXkLAgq9d29GaUC7UbKmF1b9t0weqKFyz0xdcpleDAg9LJ14YwXoLMfCLgfSLlrPyPlspo3ph3oC12t8i6n9veNpbmF0LK6MdZMzM9q+mAsEhGJwX1xQLXqSEu56Q13X8IHXs9vG3TZ9PmucF8iBdRw/w8R/le2KZuqcxBii1OLZYlVpEgsdLuyLbWF+jfPcEy5GW3eq3T1NUj7SWKqU2jRVZIp9Si3a030RvpZdWjn6QleSL6JPqN3qVZVIKLRRdfPDirzh1gvKmgXuxv2D6xyvH+UVfkKCP9l6LLCzFmlIbVCzm3bqGRvr3/3kmoPyieRewtTGZjhw/wW64e1Xea2+tpYfvvU0pi1Bq4fr7+BPPKgU4LyeHysorCW1BMR6IwHqJfrSoyMEKHto6Xu57OQE33Ed4DB6ejvFfv/mD3s2lSxbCoUBZkeH2u2tvK40fXUIlxUVkz0inltbYFP72jk41lsnjx/jaDr0MVPo7H35KG7ftUh9Yh3NzAl/aoNAvWRHHMe09eIh+9sPv0LzZ0yMqtb7O+v5qrtOIvOx0uan8pO//5L4S/LuTZlO7+w8doQZWoPE5yAq5iBAQAkJACCQ+gYRVakvGTSI3u201sOVEE8yLcQUta4D/yOFyFZyOtHgIFFZNofVvD3NsYV3wj7JZz4pvkW20ck3WyiLfzR+Iy9NNrh7fNizFHp4/NljBwzx3SE6OUqsJlqyBa6ORLXXBohTjXoXWP8/U60IL18logiVIdAWutx3NzTJavaHIgwVKEzcH3oFASYGY4IrN14umvCPN09SglF5sxypGdu1WPHuV1ljraeXidX609qJ9d+7ZwpbZOcqqj/PkZOW2ja2Fmtuqdo5hWcfHX4wxBiXC3EwIXNRzb33UvwnFW0sYLDetnf6+U2cvYgX0cj7xPpdGrXwSexTEIkZ2x4bAsqmJz2J9mbar5utix19JxksSKLWYlx4s8IAYauku73vZ526uZ2vwiIAu4SmAex2Cb23evIGV83gKftvwchCCb+33EG7ImtR2+ZQv7MPKCkF8Av/viva+44H1F0ptliVfzZlVBXv/HG7Z5b87ZNu79x8KaRvKIGTC2NH0rUfuV9van0y7bzoG9r/20N00drRvuoqWj29tzqh/Wjy2v/nwfTwP2Ey/+cOL1OynqNpY2eX/GgIiLWv9YUmhPX5ltfTBfG/d1fd/h4PnJJvZMusvbp77qinp2IYrtDYv1r/cYLbfX7+RZk6dpJT87m6ncomG9RjKrYgQEAJCQAgkNoHA/1US5FjSMzIpledsHj9yIGDEcAErLS0NSCsuLiYLB6EITg8oNIgdRP2MJOHengeXhSKOfz7RvqGHRnjdHdxAjPsISBUqff1peZHXaO0t28+4EGQqRMLU0Y5vKAN0aA/qGE8fY9/ogvdVahByjM0/SZtT6WvBvx3/Uv65sW8P/vz4+tK4Yi+YLQI21Tz3H8rqap0wg6wTprMFdaqa26uCF/Vehwi+FRJRml8OxSTMDAIrYfv29YFVevOQ6OM/eG6BHQTuQRFPX3SlClQF5d3FUxVwzBlLr1EP84GlI+z1BgnT5m+jVJLRN5e7r0a4eyPysbk4kNhQS49/kCE/7lq/Kkm7/bGjl4k8bq3uQL61LlAH5zzcfYc4Apr4b2tpod995YPzYKk9E3LsRGg/2v323AuvhsyPdbHlEHL1ZUuVQgsr64efblZK1cP33EqYa+p/78brGO75wmrKY4voe+s+C7vETVNzC8FtN1iCg0kF55/OvhZc63Tqai+h/RnhJcBA5eSpavrH//cL5dY8c+pEDko1hn7wzUdUtOnhXud3oMci5YWAEBACQiCQQDhNJ7DEWbg3ujdAVMWJI2fh6HxDane3cCRjmx5lE6l5HAUZAVNU9Nx4j5wjj2K+a7CoubX8wOpvqUHAKLiJwkU0VsHSORDMBxysfPHOf6J//MZT6pNi9bnEDrbNgdbHnEZoNv5BnIzsZuovUIphUdTEijm3QeLtaFcum4iiHE2U0sjWQi2islY2XudHa+97j/234vqdL/9CSwr4hlUOgZ8wF7ttM7vT8pgsYyerMpoiC9dcWNsDPmzZDxaMHWum+ou70ef+buaoxwH10V6vZRDlB8vNv89I29axU1RWG7s8qzm03Q6y9h5ruDphj4dfBEDgIq5JMk998Bc3W/ghluJxerJllG8bLxLiLb4XEHzq/K7NePdxJttDdGRNRqT6uDV3+9yKETUegikZmsBKCxmoC7G7x6Xq2Uzp6jvef8p7I/rCygml0P+jKUyzpk9W7w9+zVZTuL0iIvDIwoKwQ2ljt168a8jLCXRDD1s4TOLiBXNozsypyjX4nQ8/CSnRyX2np6Upi6j/WIdCoQ3pPEwCgjhlstszBNsItgU+EFhtIQjEpUnxiPDc8HLBaonscQDl+lV2C//Xx5+gdZ9tUS8TFsydpTUr30JACAgBIZCgBBLOUmvgYCwjRo2lVlZKHJ2hgZvOlvOwp3EjLSu6gW4e+1UVgXN69kK1pMTB5u1DMkQsrwPFFXMVndXl5GWFVZtvC7dIy6jxlHnlTTwH9gAh6iyks3fOXSwDQiAZPPRDUUA7CJpjZNdK2+RZepTlWNpBmTCG21irqnJw2TWytd63w4svsTJvLvA9GCvFLAbXcrjiwkqZedUtaq6kjQNiKYXTry6i3ELpzVhytVp2JX3x8pBxtm/7mOyXraKcLzxMHWyZhPJv4/mnmJPqP9/YN/dxKq8vuloFacJyR65el/B4nJ+QgYVJwJxJPCWrOZx8H1nHT1elNNdsdY7ZLTl9Ic+tZAXfwfOQoThhTibq+EfyRUVcS4jGi6BIuOYQRAnzPHHcmEOL4EkduzexX7eH59PyXHc+8VrU6HhwC3OIAUlqnigiU3OAMK+rWwXFQuCySBLpeBC5GfNms6+/i7B+bCrPRfcXZ9UJpcDj3ki7cBnfJ51qripYOz6P3R0WkcNN/EIBkoSXJHjp0ntd4yUMgj5BNJd5uDfDgqxcyU+dUHln8g8ivmPpMwRkguSljOQXeSnUyRHhNTfjWMaDZc+uGXUPHeWATpcUrlZV9jRuUN+7+Xs2Rz/GbymW5MnhwH0jWfFt57gHmBs7EGno8r2YW8qRlM21yRy5npfi6YC7s789eSAtBpbdsnMP3bDiShUJGAGI1m/cRnA7RsRkzKeFArX3wGG1nM8XVl1D+w4eoasuXaIUuMCWfHsIgNjU3Ezjx5SoYFL1jU20i9vRFOF0nh+ayTEjIDnZmTSFlxfq5uk3x0+cVEvn3MxrtWLu7ZYde2juTN90Ahe3ueeAz3X6g0820ioOZPVP3/oyfcxBkxC4ava0KYRliv7tV0/7BhHDX7hbmzhAkzZHdmxJMaWn2qippU2PbhxDM6rI1790D7370ad6NOVtu3xzk09W+aaP4DhgbZ0+ZSIrrn0u7P7tt7a3qxcBt1x/NR06VqZci7X5tnfcdB3flj20dedexX3mNN+LyhMn+6bn+Lcl20JACAgBIZA4BBJOqUXEY7gglfsFiBpe3OEfiKDUjuAAKoi4eW3JfWqIcI1bX/Wa2u5zw+urr9L4P1yI5sqmdmL408rLlEBBQzAkCBSlpt4lfRC4KHvVvWqepDZXEsF7unqDAQU03zecgGTsNLz+e8pmRcV/ziWiymqCMSf1jl9LC/cdQ5Fw1fQ0LFeSNvdifR/LqyCYEaSRx6jPpfVTUPXCvZ2jDFxkU2ctpMzlNytlD5Zrf8ts+9aPVYAd2wxfUCkoPVCE/QWKHtb+RTRaRNZVwv06DgQqM4hcC2sf6oMfrJbakj7xOj/+4wq3DQUICiqiNUOU1ZYjNmsRdJGG5ZlwjhHVWotsDcsgIggHC/ipFxvMB4q8tvRPCy8fk8RLllhGTyRLic+qBgWvg5dU0iQe3LS2In3DlR5RnlMmzfJdHzwGBIqC63W4+yvS8TS98yKppXZYIUZUYXUdsBtzj59LduNbf6bs6+7quy75Gmj+8HVdEQ0YY7jrkgtgLV3tOtbKa/sYG6IZQ6BYY0mulEmzfdcup9X96VcqwJTmBdL3+6KqhP7BmrLajai+td8dTo9Rbhn7mL50DqpcXXynqgkL6qtlv1bbvFCW7nLsPyb/bSxnhsjwE3hdcMiGmrf0ubJQXD/m38xLilbT5SNuUflYq/aNE8+o7eA/2vEHp2MfSwAhYvMUjtZ8zai7VZHfH/q/vKRQc7jiUdMQmC9YcE0h4vAj992m5m1i7iYEiiWW/IF8wHM6EfwIywHhgzwoXIhOHO6afJGXArpl5dW6klfH67fCdfn+O24kRD7WZAYrefjgVP6v/++nlJVpV/9PGo1JatkerZz/kj5QsnOzsuiiC+eoZYq0MuHWzdXywn0jWrK/WzCiLEOaWlrpR2wN1S6zcHX906DEY23d2264ViVDyX77w/VqG4o8IhYjwjJeCIBbbX1D2ABbL7z2Ft1/240ESzU+UII1F2u4LGN5ILCHoM8NW3ZSRaXvhYdKlD9CQAgIASGQkASScnJy+NnMo37cs/g/uHNNUlJSKCMjQ0U7juXYZiwKDZ4US71IZXzWhSK2KtQTHsaGU5SFk6ObwtKjuTCezngQbAnLjSDAECIMJ7JgnizWIYWiEGk5H0SE7eH52og8G03QDq8p4VMSwzz0RquLvHidn2j9KGsgK09eVqqVC3aEwuocc/RdWB0jz7OOULk3GS7uWPcWyp+7ha1qEZgMllv0UbDBk63SRl5+SinvEcbQXxsqH8GmuD6s+niB0fzBa0pJ9q+Lebw4blj5Rfon8Nj0n9Hepk30SdXrarmehu5qNUUjuCbW8s6xFKnfUKxre7ZLGlsqRxTmcwTh9rDWyoz0NLZmplJltc8COZzHA4UUSjUiN2M8g5n7errH8aPvfUMFdMRSQlhaqLGpJWz0ZbglFxXkDUoJxXHieHGcWAtXRAgIASEgBEIJHD3YTGMm2MloSgrNjDFl76aWGEtGLzb38r6pgNFKJpylNtrBhMtzOBzsruVz2wuXP9RpmENb4ygf6m5iah/uw/gMVtSyIrzESbzFvuw63SU2UtuNf/9jaBCjSIVjSIe1UptLGqm4py22m3Kw8yfjdX4iHQfSEchLmx8drZw6x7WnohXpNw8vTmLpa6DcsBYylqSKJnAZbnr7BVUES+hoLrvR6kTKw1JHltETyMFL9pgysiltwaVKufWPMKzVjfaiQCsj36EEsHxZtCBPXrYs13Uljosolrk5dLQs9EB7UxDlV4v0G7HQGcqAhRjWTH+5eNF8dnm+1D8pZPvTzTvojXc/DEkfTALGAvfpSIKoyIO1qnZzELVwgb4i9SnpQkAICAEhkBgEznmlNjFOg4wSBJy8fmySOfw8KY2QNq9Q25fv848AlOXu8uhB4lz1cXzpYkhSrr4pvBwSBAGw4JKMb5E4EIjVPzUOXUkTsRGAa29ZRfSXCKeq42fl1KIbxzY6KSUEhIAQEAJCIJTAOe9+HHrI0VPi7X4cvTfJFQJCIFEIwCUbczb9ozgnythlnEJACAgBISAEhIAQiJWAuB/HSkrKCQEhIAQSjEB/c6oT7HBkuEJACAgBISAEhIAQOGcIcOQTESEgBISAEBACQkAICAEhIASEgBAQAolJQJTaxDxvMmohIASEgBAQAkJACAgBISAEhIAQYAKi1MplIASEgBAQAkJACAgBISAEhIAQEAIJS0CU2oQ9dTJwISAEhIAQEAJCQAgIASEgBISAEBClVq4BISAEhIAQEAJCQAgIASEgBISAEEhYAgm3Tm1mVg4VjRxDeQUjqLmpnqpOnqC62lMRT4DNZiO73U5VVXFctzJib5IhBISAEBACQkAICAEhIASEgBAQAmeSQEJZalNT02nh0uVUUFRMdTWVlGHPorkLL6Ex46dEZJadnU2zZs2KmC8ZQkAICAEhIASEgBAQAkJACAgBIZC4BBJKqR03aboivXXjh3Rg7w7a8PE71NPTQyOKxyTuGZCRCwEhIASEgBAQAkJACAgBISAEhMBpE0gopdbZ3aUO1O12q28otD09XnI6u08bgFQUAkJACAgBISAEhIAQEAJCQAgIgcQlkFBzak+WH6WSsRNp7oKLqbL8OOXmF5HBYKQTxz5P3DMgIxcCQkAICAEhIASEgBAQAkJACAiB0yaQUEptR3sblR39nMZNnEYZM7PVQVeWH6P6Wl8QKKvVSjNmzAiAgSBReXl5NH/+/ID0mpoaqqioCEiTHSEgBISAEBACQkAICAEhIASEgBBILAIJpdSOnTBVKbTHDu+nUxXHKTu3gKbNmk8Go5F279io5te6XK6AM+DxeMjr9VJwOtJEhIAQEAJCQAgIASEgBISAEBACQiCxCSSUUls0cjS5WWk9fHC3ot7R0aaCRCEaclJSEnV3d1NpaWnAGSkuLiaLxRKSHlBIdoSAEBACQkAICAEhIASEgBAQAkIgIQkkVKAoqzVFKa/+pJMMBjWvFtZaESEgBISAEBACQkAICAEhIASEgBA4vwgklFJbX1dNRpNJuRzbM3MI7sj2zGyqqjxBnt6IyOfX6ZOjFQJCQAgIASEgBISAEBACQkAInN8EEsr9+MCe7eTlObJFI0bTqNET1JnraG+lQwcCXY7P71MqRy8EhIAQEAJCQAgIASEgBISAEDh/CCSUUutyOWlv6Rb1SUvP4PVpnaStXRvplDU0NNCuXbsiZUu6EBACQkAICAEhIASEgBAQAkJACCQwgYRSav05t7e1+u9G3HY4HISPiBAQAkJACAgBISAEhIAQEAJCQAicewQSak7tuYdfjkgICAEhIASEgBAQAkJACAgBISAEBkNAlNrB0JO6QkAICAEhIASEgBAQAkJACAgBITCsBESpHVb80rkQEAJCQAgIASEgBISAEBACQkAIDIaAKLWDoSd1hYAQEAJCQAgIASEgBISAEBACQmBYCYhSO6z4pXMhIASEgBAQAkJACAgBISAEhIAQGAwBUWoHQ0/qCgEhIASEgBAQAkJACAgBISAEhMCwEhCldljxS+dCQAgIASEgBISAEBACQkAICAEhMBgCotQOhp7UFQJCQAgIASEgBISAEBACQkAICIFhJSBK7bDil86FgBAQAkJACAgBISAEhIAQEAJCYDAETIOpPBx1C0eU0Jhxk8mSkkJtLc105NBeam1ujDgUm81GdrudqqqqIpaRDCEgBISAEBACQkAICAEhIASEgBBITAIJZaktGllCs+ctJltqGjXW1VBOXgEtWrqc0tLtEelnZ2fTrFmzIuZLhhAQAkJACAgBISAEhIAQEAJCQAgkLoGEUmrHTpimSK9b+zrt2bWZPvlgDSUlJSnLbeKeAhm5EBACQkAICAEhIASEgBAQAkJACJwugYRSalPT0qm1pZG8Xq863q6uTsInr2DE6R6/1BMCQkAICAEhIASEgBAQAkJACAiBBCaQUHNqPW43JVusOm5YaZOTLWytTSjdXB+/bAgBISAEhIAQEAJCQAgIASEgBITA4AgklFLb1FhP+YUjlWW2vraKSsZOIoPBqAhAwbVYLDRjxowAIggSlZeXR/Pnzw9Ir6mpoYqKioA02RECQkAICAEhIASEgBAQAkJACAiBxCKQUErt5/t3Uk5uAc1dcIlOGe7HFksK9fT0qI/L5dLzsOHxeJS7cnC65sIcUFh2hIAQEAJCQAgIASEgBISAEBACQiChCCSUUtvZ0U7r3qFQEPwAAEAASURBVH+D8vILyZxspYa6apo87QJKsicp6N3d3VRaWhpwAoqLi5UFNzg9oJDsCAEhIASEgBAQAkJACAgBISAEhEBCEkgopRaE3S4nVVWWK9hmc7JyRT51skztyx8hIASEgBAQAkJACAgBISAEhIAQOL8IJJRSa7XaqHjMeGqoreaAURaaMn2uOlvHDu8/v86aHK0QEAJCQAgIASEgBISAEBACQkAIKAIJpdQajUYaP3G6+mD0iIa8deNH1NHeKqdTCAgBISAEhIAQEAJCQAgIASEgBM5DAgml1HZ0tNHaNX+lFFuqUmgRJKo/aWhooF27dvVXTPKFgBAQAkJACAgBISAEhIAQEAJCIAEJJJRSC75er2dAllmHw0H4iAgBISAEhIAQEAJCQAgIASEgBITAuUfAcO4dkhyREBACQkAICAEhIASEgBAQAkJACJwvBESpPV/OtBynEBACQkAICAEhIASEgBAQAkLgHCQgSu05eFLlkISAEBACQkAICAEhIASEgBAQAucLAVFqz5czLccpBISAEBACQkAICAEhIASEgBA4BwmIUnsOnlQ5JCEgBISAEBACQkAICAEhIASEwPlCQJTa8+VMy3EKASEgBISAEBACQkAICAEhIATOQQKi1J6DJ1UOSQgIASEgBISAEBACQkAICAEhcL4QEKU2xjNtsORSkjElxtJhiiUZyGDNJ0NyZphMSQpHwGq1kD0jPVzWgNNMJhMV5eeRyWQMqYu0LHsGGQxJIXlna0JGepo6nmSzOeYhgicYxOs4kxjXM/9gpi+tCGUay6D+68tm+v7tCbdUdiyHNmRlcrOLyJYSn3tiyAYpDQsBISAEhIAQEAJC4AwTOOueKJOTLTRm/BSypaVT2dGD1NxYH4DEarXRxKmzyJ6VQ+1tLXTs0D5qbWkKKBPvHSiz9rmPU1fl38lR/rcBN5868VFKzllArBVTj7uDmrd+ZcBtnC0V5s6aRp2dDjp45PiQD+mrD9xJhayEfedffjbovi5eNI9WXnUZPfncX+jwsRMB7V196VK64pKL6PEnn6XKqpqAvLNtZ+qk8XTnTddTqs33gmXN2nX0wSebYhrmjSuupAvnzKQf//wpamxqjqlOtEK3LTNSTnoSfbDTG61YxLwD5T10zXwDFWQmUU1zT8RyZ0OG0WiiebOW0bET+6m+sWrYhvTovf9MR8v20l9e+9VpjeGSRdfTrGkXRaxbWXWcXn37txHzJUMICAEhIASEgBAQAmcjgbPKUjt52gV02dU30tgJU6mgsJhstrQAZiaTmRYvu5oKR4xSym52dh4tuvgqSk3LCCjnv2Oz2aioqMg/aeDbMEmdphiSsyk59yJyNm6n1t0/pNY9/3KaLZ0d1W5dtYJuvO6qMzKYqto6qq1viEtfSVHOYX1jM7W1dyhlPS6dDWEjUMCtFgv95dU19F+/+QNt2LZrCHuL3vQNi41KGT1WfXoK6R/edxNqfnXV6Vl6o48uvrkp1lS6atmttGDO5fFt+Ay3BuXcaPB9rBYbZWbkUipbfrU0E+eLCAEhIASEgBAQAkIg0QicVU8wRSNHU2X5MWpsqKWZcxaFsBwxaiyZ2ZK7bdM6aqirZuW2hGbPW0xj2bK7t3RLSHkkZGdn0/Tp06mqaqDWlSQypo6mHo+DrattYdtGItyS8fF0lHHZrr5ySSZK4ofH5FzfcXSdeou8XWwF7Dk9qxZcZMeMKlbus8dPnKRup1Pvy2g0UHJy8v/P3nfAV1lk7Z/03nsnBAKB0BJ671gQKRbEvvauu7r92/L9V1fX3fXTVde6WBcsKIqoqPTeCb2GhHRCeu//88zNe3NrctMggXPyu/edd+ZMe955c+fMOXOGqqtrVNyAfrFUVlZBWbnGWkdPD3eKjY5U2sjC4hJ9fi3gy6a+keGhVFFVRekZWdTY2CKswHRVCYYs3zuwma6bm6vK1lDfQLV1dVoR6tpWPUbMFm5QD0xkP1n5rYVUIhfuK3iqa2ooKoLbW1ltUfMI09x+sdGU2Yr2FdjtSTmkPg0N1p9NRFgIBfj5UhrjUlpWbtau4MAACg70p9Np5/TPwZQJZQDjc1k5Sog2TW/tXsM7PDSYCouL6fDxU4pde+ZaXpgXBwcFUO75C5SXb2zloPEYXhWWjLVpOW31Z3ayPbmy5fN/tjQYFsfPzZEcnd2pvraSx0+9Pg1xdmyCX1fTgl0lD9fjrK0dEmtPTizX1hkXpc/b0YCPlz+VlBV2NLvKh3Hm4uzGCwnu6t7J0Vkfrq2r4T62NBq8EaGx/C66UnrmSWpoaOm/1giUU1dfq9LCQ/uostMyjlNTU8u7Bt7Q4CglcGbmpFJ5hfm7CixjowdSZvYZfv90771WR2vX9VtXEj6ggf2S6Ia5D1DK0e30/fplFrMF+IfyuA9R/ampqdLzoH4X7mdNbTU5OzlTZFgcnUk/ok83DACXvtGDqJH/96G96L8hdRVuzk66/1F19XVGz8WwLgkLAoKAICAICAKCwOWJQI8SajevX00N9fXkxxpYSwQNLSaREGjt7O1p4OARii04NIIoxVKOjsU5uIWT15A/srVws+BWZS4Qg8dz8K/J3slHX0l11tdsnrxC3bv3uYVcQmfq07yH/EmFm+rL2fz4EX28LYFbFlxLI4cPYaFAx4357/uffEkHj55QERPHJNP1V82gnftSWJM0VCd8csqWnXvpi9U/KgH00Z/dSmEhLbjm5OXTS2++T/WMN+h3Tz2ohDZ1w1+oY/VPG2hds2nrs795Ul+uPwt3uAdl5uTSP//9ngpD8GqrHsXYxtcvHr6bwkOCFRcETVPz4988cb8SbBsbG/XCNcyG//nGe3rhAJgsuGaWHjNoYk0J5sjTJo7RR1syPx6bPJwWzZ1NEH412s7a0c++/l7dQqh+8M7F5OaqGyuI3LE3hT796juNnSaNHcmmz1N5QaLldVu7aTvju1HP01ZAwxt8QQH+evxX/bCe1m/ZqcyR//TMo9zOFq0nFhve/vAzNlc9Z7H4qRNG07w501kbXkjPv/KW4rGlP2AcyoIoaO9JY2HMzSeUrn70K6qpKKJvXprNz6OR/CMSacY9H1B5YSZ99+o8lU/7Op7ZSAnRDvyxp4NnrS8qaPztud69+DdK4Dp0fCdt3P41VVa1CNS2lhMTOYBuW/SUnn1IwljCB7Rl17e0YdtXKty/71C64doHGH/tGTfRT5tX8Fj4UaXjy8XFjZ5+6CVlwhwV0Y8gIINgzvzGB39S4RGJk+jq6bfw4kDLc9x3aDN9u/YjlY4vP99g+u3jr6v3EcLwgSNbeSx9qE/vikBYSAzduvBJvQCPMvcf3qKvJ6F/Ei285j5ePMlQAjjSIayuWb9ctQf3oJvmPUz9Y1v+J/F/FvrP8ucpOzdNpXcVbijsqQf+rjBNyzhBH634pypfvgQBQUAQEAQEAUHgykBAm4H1iN5CoG2NsJ+2qqpSscTFD2atrTMVXMijgMCQ1rK1O81jwOMs0LqoPbQNVXnk3vcO4zJYS+GV+DvlOAp7bOvLTpJbzM3kGjGP6kuOU13JEarK+JJq8taRS/AUcgmbQ+XH/0mNNRdYUWus1TQu2PxuxqSxah8khDLsnYQGdfa0iSxEuZgxj0kaRhBWN2zbxVrDAKphTSbovltvVAIttHtbd+2j8aNG8MQ8Xu3N/OBTndamiDW3O1hYO3rijOJdcO0smjtrKu1LOULFpWVKYIRgB6G1gvfULl3+hSq7pLRFULClHpWpja/3l69UDqIWL7iGfNghkiVycXFmTWQBfbZqDc2aMp6gBZ0wegQL8vsIWuUF18xkbVgDCwMbedIdSKOGDzUrZv3WnXTsVKrKN2zwQMy3jQhazxvnXaXKAW479qRQ0rBB3Cadox5okx/mfb/QCG/esYdOnkmj61hIHJs8jE7wnuOUI8dVeVfPmMQT/np6+6PPqLikjBcoEllT24KbUaVWbl568z0lxDx2z+1UUlpKH3ymE6byC1r2k+eyZnbj1t1KEzxoQJzaQ3zPrYvot8++ZFYqMLt6xmQWLs7zs12q0m3tD5ijguwUXAVlxqBVFGXSvtXPUfLc39PYRc/Tzi9/T5Nve4MaWWu5fundZu04k63LPyjajoVas+RORWxloXP8qKvUXtjkoZN5vGQpQfTYqb02l5uZc4aFsL+ycyZPWnz9Y/yMU2jLbp0FwYUC3WIXtJaLrrlfCaK79q9VmtXJY6+jmZMW0ZETu/lZFxvV1zdmEPOUqrZA+xkZ1lelBwWE07Uzb1XjbU/KBiVEDhk4mjw9fI3y+7NQe/z0Pv7sp6um3UIjEiey9vXLDgntRgU336A/t9/wCyUg7j6wjlLPHeO+3KDqwZ5iQ/xCgiLZBH4N111GMyYuopmTb9ALtTGR8RTfl/8nnU+nVT98oBZcxozQvZeoqqtwM+2DPS94CgkCgoAgIAgIAoLAlYVAjxJq24Leic3cKspLyd3Dk+L6D6aD+7aTX0CQEmodWAvWllDcVvlIt3N0Jwe3MKovT9U7hbJ3CSC3qAX67E5+ScznSbUFu6iO98qCqtI+ZkH3DyzAzlZCLTSyDfxprNVNaBsq2ZyXhdr20tQJOk3i3159RwmTyP/2h59aLCa/oJBefO1dozQIXH2iI1TeHzduVWlrN2/nyWYfGsROhzR6fekyFYQXYJgmHzlxSml9+7C58oHDx/QOlGCSXFtXT+cydRN6Lb+t9Wj8rV3RD3yqqqr1AqQl/lff/Uj1q4SF7sfuvY2iwsMU27iRw5UAuGvfQdqwVWeWDtNtmAcbUnlFJZ0+m04D4vroops14RrP3DnTuBziCfl6JbQi3tCke/SIYUpjjDL2pBxW2VZ++yPdf8fNNHX8aCXUwmzchU3mC4qKlMYU+H23dpNWhc3XjKzcZt4mquLFClP8sdDwj9eXKrPtoIAASjuXpTDE4oYpzZk2gYX8IbxAkk2vvPOhXrttS3+0sgK82WTZ2IpUS6LUfSsoYuA0ihw0S2lpnVw8aNunP6fqigI9jxY41SzUxoaagK8xWLlCsOsTNcBKKtGps4dod8p69fFn89mp4+YpAWvRtfdTHZvrtmZya1hoPZuyQqvo6eGjossrS/RaRo0vnrW02O9/loW/Hzbq3k2YGUOghhD30+bPNVZ1hYXB/739jD4OAiwIQjD/B1IaXgiToLz8DHU1/KquqaTPv3lTRUWF91NCe1hwjFXzX8O8toSHD57ACzUubGp/gg4e26Gy/LDhE7plweM0NmmmkVCbnnmC1m3RLXAlsZbZ309nYYFMHu7eKm9efiZbA2Sq8MrvW/4/dRVuqmD+yj1/jrw8fc2ej5YuV0FAEBAEBAFBQBC4fBHoVUIt9qhBeB2aNJ6KCvMpJyudAoN1gkwja+Vc2QQ0MTHR6Gn5+PhQUFAQjRw50ig+Ly+PMjLMJ4wQaEH1Zbo9iypccohVUy1CraNnjOKBR2Pl1Vjd6b7sXbtWa+zOJr0QviC0tEUHj540Y4mODFdx8Jb71AN3GaUbbuODKS7MUbG/zZC8PD0Mb62Gba3HagHtTKipqdVjcvacbsIM7S0oNChQXY+dOqOu+IKG21So1SdaCQT6+6kUCMeWKDpSN1b6xcaYYevro9Pm1vOe47SMTLWX+cU//pKKSkqVgLxx225LRXYq7rF7bqPYmEizMrDgYLjvGQItCPuDDfdy2tIfrfCqmiby8zQeK1oarluWPU7XP7OB3H3CKOPIGso6vt4wWR8O9tGVUVimj7IpkDRkMmvEZ1nlhbkuzHZBhUV59MW3bysh65b5jytzWeS3to/UaqFWEoIDdZifYS2mRsdYkwqhNsDf/P9BfkGWxmZ0hVkxKIXNiVsjCIka5eSlq6Cbm23vqZavtSv2+oKwaHDPLb9VYe3Lm/cpGxIWDzQqKslnobalv9Do1tbdQRCShwwcw2bWubR2ywplfo08XYWbVv/7n76oBeUqCAgCgoAgIAgIAlcYAr1KqK2pqSZvHz81Ed+0dpV6VNinhn22mJzjU2fitAgmqNCMmMYjziIZSnp6BhNztmaesqMvUEO5ic1kU+sm1PoibQygT6aCprWsqenmQromtOw9eIRWfvuTUdbG5n5EhIaovaVwgLT6x41s1piqTJTnsJmziYxrlN/wxpZ6DPk7G67n52pKGk5avwzT7dhUuP3UpLJo5Zrm1/r83vIvzfat1rE2W6N/vfMRJQ8brMySoTHG/ufoiHD6sNmEWOPrzBXPCgIttMbreI9temY23X/7TRTDixqm7YdZdN+YKJo8bhRr4k4QHI+BbO0PeLMKmiiIBVIXJ6IaCxb1PiH9yclVZzoeGM2WDWzSiv21ptQ/QvdcjmWYp5nyGt5v3rWa9h/ZYhhlFC4tLVT3qHckH8Uzavg0vcCVX5BNm3euNuLvzI3WL3uDl0WPuW4IGRV//oJloZYBam5z62O13sTRklHhzTf6+vlee66W+CzFafyff/MGm7K3LO6Bt67OWD1v6DxKy6eVifu///spmjj6GnZKNYJCgiJoyYInlJYZ5tNdhptWoVwFAUFAEBAEBAFB4IpFoFcJtcVFF5RQe/rEIarmvbWYuPkFBOrPqcUe0pSUFKOHGRkZyQ5aXMzijZgMbhqanUI5ecWTpht18jXW/tZXpKkcju7RvIe2RTtjUEyXBavYozG0rNCYWnJ21FZFEG5A2B9qTduLPZ6gld+tVabGCCcO7I+LGWGi6tqsETVMtKUeQ/7uDOfyUUCgQfH92Iz6tApDuGsv5bMDJThlGpM8lCxpVs8xtjB1jo4I0zvtslbHXt6bjA/2rb7wP0/TwP6x1lg7FD908AAlE735wSe8J1MnIGKxwhKt+mEDe7C2p18/fp8SfP/4wr+UJrc9/cFe2OF9ieIj7OlQmrFAau/gTFPveFstNp3Y+h4lTLqX99e+QNs/bzG51doVF6YT4A6dtSD9aUwWrhCmDAUqCyy8J/wOGpowjjG35/7VqD2qcOxUUVlqib3VOJghgzzddWbIhsznmzWv2CuL/aUgeBYGFRRpZuPqttWvguI8JXgP5z2yO/cZL0C1mtFC4q8ffVU5rapl78R/e/0JCxzWo7Jzz1LSkEkUzp6csW+3M4QFx007VqkPPDrfu+T3vMAzRe0J7irctPahbC9PHzp6ci+t2bBci5arICAICAKCgCAgCFwBCPQoodbD04t8/ALJ21vnGEU5gGLBtby0WAmuGWmnKbpPfwrmM2wL2UFUVEw/5Zzl3NmTXfaocIRPQ2UmOXj2Ifc+S6ihOp9cwq8xKr+ucD811ZWxc6ibyJ7NlWvy1pO9sw+5hMxQ+2xr861rkIwKsuEG+1/hofZXj93H+0N1GrjpE8cqIQpeeNsieDeG99u4PtH0xP13KE+5cFo0JknnkXTpsi+Ut94p40cph0vV1dXsOClJOV6yVHYpOziCoHfD3Dl0MjWNJ+3Far+tLfVYKs80DkfMxPIeYJDuGCEICDoBMJudYFk6Tse0DDh0Amajk4YQ2ot9pYF8tJMpwWzYkZ1fBQbozIxx3JEXH3tUxM6ccBzO12vWUwILxnCYFcqLAjBDHp44kBcZ3Omjz7+mXfsP0fyrZyotdxDv1920fQ/B7Biel6ENxX5eHOHzwJ03qzTsYU2I76sc5hTacNyOaXtbuz987JRauIBjqyPHT9PsqRPU8U/W8mDPMvYKA6cH71pMr7z9oU390cr7dlcjLZzoQAsmmAu1U27/N2tpvWjnF7+lc4e/o8DoEby/dibFDL2W0g8aa0iT+ttTUXmT+mhld9UVnouhFd288xs6cabtd6W1erGPFdYdEFyheYTHYuy1LS0volOpB5XnX9R3zYzblNA8ZsQMLq6JdrRDOIW35P6xQ2j6hAX8joUrM+RB8SPZKZwnGe5Fba2dXZGWcnSbOpN3XPJsdZwPnF95e/qxg7Npaj+toUfn1uqDc66B/ZNpz4H1CqdJo69V7DmMG6ircFOF8RdMveFRGs6rhAQBQUAQEAQEAUHgykKgRwm1EFbjE4bpnwDOpcUnPfWEEmrLy9iBEZ9HO3jYaBozcZbiSztznPfWntPn6YpA+YmXCUfwwGsxqKHiHJ9ZG81zVE0j1USlh/8feSX8ggXZqeoDPng2rslbi2CXEQSjQD8/Gscei6+ZOUWVC20pvPGaUpMVk+p3P17Bzotu4j1yEXTXYt3eYC6ChZiDqggIcEdPnqGE/nHKyRHSTp5Jo/i4PjyRN9agLeezY++6eQGNZ0/D+GRm85E+b7ynymmrHtP2WrrHOblwtGRI2j00nR+v0JmdG6abhnGGL47Uuen6qwlmuaBi3svqy06wDOkhFuYMzTQXssdnEPa9/r9/vM4CUQEt++IbVQ4WAfABadjjOcC0GEIrvEnjA4KmFMcpgYAeBGoIm+qeI9CW95Z9qe479GX8SFQROCIIJs440gkftAHHHMErNNoJYgN93bV5nGBsweszxsXkcSOV4N1Wf1QB/AWvx4f4CJ4RcXxeqVOLCXL82NtYiE2i7BMblEAL/s0fP0zznl5Ho+b9mfJSd1J1+QVVzOQh9uTG26DfXG1uSq4YOvn12tLfdbIE4+zwMDx1/PXqgxSYMOOoIOD7+ao31PE10HCCELdmw6cWz5jFea2WqID3nH615j2aO/N2tQ8Ve1FBmiMpLY+l/Fa3U2iZLFw181/TJLT9Pd6fClPhAXHD1Qc80LpCQNWFdX3QxpaKNPlCWizvy42NGqjPk8Va4HWMIwjpXYGbKkxXoD4oAUFAEBAEBAFBQBC4shCwCwgIaMK+U2ja/Fh46g0EQcTD05sqK9i7ME+0WiOYHw8ePJjWrNGZBbbGi7TEsT56FpxF29RQzR6Mdfvz9AkGAeUt2TWUGutKO+Td2KCoVoPoMwQUJ3aUlZGdw8+r9X5bKgwOgyA01rPDLRzlYloGzlGN4vRzWdl6E1ZL5bQV11Y9beXvqnQcQRQbHcXHHJ23anpta13QTvuw1tVaWZ6s4Q0PDebjdsqVlte0XOQP8PflPa/n9GcDm/J0xb03H4Hk5eFh5KW5I+W21R+UGeJrR28+4URfbW+gpT+0fzz++zEn8nC1ozteNN6n2ZH29pQ8cH7kzF7aIby1JvC11V44XPJmT75wClVVXdEWe7elu7t5Kc0njiWCdrq9hD3NMDuGN+X0TOsWNV2FW3vbJ/yCgCAgCAgCgoAgYI7AmePF1KefDzvobd3Ph3nOlpjDO0pabjoRSpqu89HSVhG9Uqhtq1OG6W5ubmzO7E3wdmwLGQq1tvALj20ITBo7ks9NndoqM86Y/XrNulZ5LqdECMm/e/KBVruUxYsPL7/1Qas8lzIxgc+XxdE+Z3N1WuD2tGVIH3u6UNpEOYXtz9ueeoRXEBAEBAFBQBAQBAQBQcB2BHqjUNujzI9th9p2zqqqKj7vVHP5ZHs+4exaBGDKiyNkWiNoj68kwjE7bWGSmW3bYsylwu3YuY4LpKYOpi5VH6ReQUAQEAQEAUFAEBAEBIHejcBlL9T27sdz+bT+xOmzhI9QCwJVVdX0+tJlLRESEgQEAUFAEBAEBAFBQBAQBASBdiNg3+4ckkEQEAQEAUFAEBAEBAFBQBAQBAQBQUAQ6CEIiFDbQx6ENEMQEAQEAUFAEBAEBAFBQBAQBAQBQaD9CIhQ237MJIcgIAgIAoKAICAICAKCgCAgCAgCgkAPQUCEWpMH4c9nijo6OpjEyq0gIAgIAoKAICAICAKCgCAgCAgCgkBPRECE2p74VKRNgoAgIAgIAoKAICAICAKCgCAgCAgCNiEgQq1NMAmTICAICAKCgCAgCAgCgoAgIAgIAoJAT0RAhNqe+FSstMndJ5QcnFytpLYv2juoLzm7+VjM1JX1WKxAIo0Q8PUOIF/vQKM4uWlBwM6O6N2fO9F9V8u2gBZUJCQICAKCgCAgCAgCgoAgoCHQ44RaZ2cXik8YRsNHTSRff8sT/cDgMBqWPJ4SEpO0fli9uru7U1hYmNX03pLgFdiHrn3iO0qc9kinm+zi7ktzHlpBQ2c+aVZWV9ZjVngPjIiJjKfhgydc0pbddfOv6J4lv72kbejJld88xYECvOxo7f7GntxMaZsgIAgIAoKAICAICAKCwCVCwPES1Wux2gGDhlOfuIH6tPM5mVRceEF/7+XtS8NHTiR3D08VV1tTTccO79OnWwrA8dPgwYMpJyfHUnKviauvraLqigIqu3C2C9rMqi8r1LX1WKmkB0VPm7CAIkJj6cCRrT2oVdIUQwTmj3egvOImSs1tMoyWsCAgCAgCgoAgIAgIAoKAIKAQ6FGa2rCIGMo6l0qH9u+w+Hh8fAPI3t6eDu7bTqUlhRZ5LsdIe3tHqikvoNUvXUVn96806qKDozM5u3qrOJgN+0cMMUrXbuzs7CkoJpl8QwdoUWbX1uoxZPbwDafIhBkEE2ZL5OLuRxEDpxH4rJGbV7AqA5rhS0HOTi7k6uKuxhPqRxgfFxc3s+YE+IfSgLjhKt0skSNcnF0J5YFgShwfN0zFqQiDL5SPtKjwfmQHm1oLFBYS0ylT5KCAcEron0yB/patExwdnfT9QLsH9htBPl7+Ri3x9vQzaKfxvwiMI/QDV+SPixlslFe7Qf/6RA0gtAdkb+9gsc/AVuFlAXfkm53M9TkRrdjSgFshQUAQEAQEAUFAEBAEBAFBwAyBHqWp3bx+NTXU15Off5BZQxGRnZlGmefOqLSYvtaFM4uZe2mkT3A/mv3gZ/rWn9zxEaX88A/9/ej5z1LkoJlUmHVIL9BWswC88cP7qTQ/VfH5hQ+iaXctJQjAoKqyfHU1/GqrHvCinMm3vm60F7eUNcdrXl+oioJwPfWud8gnuL++6JLzp2jtO7fxc61Vcf4RiTTp1tf0gjgiC7OPKB59posQuO+2P5CfT4t5+9MPvaRqra+vo+dffVSFIaDevfjX5OGuWzRA5MnUFPr069dVuvb1xL0vUFVNJTU01JO/b7CKbmxsoOdeeViFIQTetujnFBocpWVRvP944+dUW1ej4hxY6EMbwAvKPZ9B7y57lpqabNNOurt5Etrh4NDyStcx5stX/ovSM0+qMvF1y/zHKSayPx0+vosSB47Rx3+04iVKyzhOj9z9rBEuRE20bsuXtG3PGsWb0D+JFl5zn2qf1h/Us2b9cr22Oyw4hu686Rk+GoulUaaS0gLyYSyhDf/mxw9UHIT3Wxc+qe8vIvcf3kKrf/pQpWtfQ2N1QvXek7bhoOWTqyAgCAgCgoAgIAgIAoLAlYNAywy4B/QZAm1rBEHhSqOyC2m08YP7ycMvgkZe90eWMSxP7r0C+tDeb/5CAZFDqM/w62n4nF/Spo8eVHBNuPklFmidlJYX5suJ03VCmyGWbdUDzdzUO94mR2c3yjm1mY5uept8Q+Kpb/IifTETb3lFCbTZJzbQ6T2fUlzyDayxnU6j5v8/2vH5rxTf6Pl/YYHWi3Z+8VsqyEyh4NjR5Bc2SF9GW4HF8x+hIQktwpgp/xvv/5kysnULH6ZphvfLvnyZXF3d6bpZdyqt5tJPnlfJNbXVerYb5j6kBNozaUfo0PEdNGPiIorvO4yShkyifYc26/kQgLYTAjHiIRwmD52iT188/1El0OblZ9CG7V/zI2yk2VNuVtpLjcmZtZ4XCnPo27Uf08TR1yh+lLEnZYPG0uoVwi/y79j3E2XnpVH/2CGqvTfNe4RefP0Jk7x2NHjAaEpNP6oESQiqEMhBEED3H95Mp1IPUnBgBF017RaaPnGhEoJLy4v05YQERSpBt7KqTNUzc/INeqH2pnkPs0DrSAePbqec8+do5qSWMYICMJZuv+EX5MSLLLsPrKPUc8eY5wYakThRtenYqb36eqKC7FisJiooszzu9YwSEAQEAUFAEBAEBAFBQBC4YhHoUUJtZ5+Cq6srJSYmGhXj4+NDQUFBNHLkSKP4vLw8ysjIMIrriTeNjfV0Pm03eZU3a1etmK0e2fBvSt23Qn1ihs4lT3+dVhCmwDD1LStIpz2r/qy6CAE5buRNRt1tq54+w+exQOtO58/uoi3LHld5oR1GnSB4ZQ6IGka1VSV0dPPbKu741qUU0ncMhfWfpO7x5eTiSVicyD2zTfHCnNrUpFrPbCGw+8AGKmbByxqdL8i2lmQUX1h8Xt1rQmx2bppROm5CgyOpmjWwy1a+otKgPX3wjj/RyGHTzIRaMHz8xUt6gfroyT0qD7SVkWFxqpy3P/6LisPX6bOH9WEt8MFnf6fKqnIqY+Hxzpt+SdBm2kpV1RWE8iEwBviFUCYL9oVFeQTzXku079Am+m7df1WSoRD50Yp/qjgI6RBwT55JoWGDx1NkeBxpfQJDeuYJ1uB+oXiTEieRv59OQ+3u5kVenr4EfL/+4T2VDo346BEzVBhfcMwFc+20jBN08Jhuq8EPGz6hWxY8TmOTZpJhewK87ahap+TX55eAICAICAKCgCAgCAgCgoAgYIjAZSXUQltVV1dn2D/WQDWwENVoFo+4y4nSUlbpu1NXU86aWd0eT7+wBBVfxCa+GmWf2Ggm1Gpp1q7+4YNVUvrBbyyyBDTv5cUxQTPv/diEp0XLdnr3J+zB+WG6/pn17PiqkHJObqb9379ADXUtGlKTzEa30Jri092k22dqR+cvZOmrgiYUArmnh48+TgtA02lJQxwe0kexZGSd1lgtXmtZQwyBFqSVgz2r7SGY/GK/rilBIwoTYUPafWC94a0+PIO1qmOTZpntfzU0wQbzqbOH9HmKSvJZqA1R92Eh0eoKoVoj8BoKteGhfVQS9tzec8tvNTZ19TbZ31tV00R+npb3HxtllBtBQBAQBAQBQUAQEAQEgSsWgctKqK2pqaGUlBSjhxkZGcnOf1zM4o2YLoMbCLIaqX2YzXJAU1ODFq2/2rGzrfaSJpba2TlYzAqTWtC5Q9/SgTUvGvE0GSwgHGMtbuaxHylx6iMU2m8cxY6Yz9fx9M1Lc4zyWLuZNuF61pROsZZMS5f/jc1wc62m25qg7WWF5tOUtDTD+PKKEsNbfVjjteYYSmNssGBab6lurRytXC3/5LFzlUAL7ef2vWsoK+es0nzCs7OWR+PFPlkI6KYUEhRF45JnU1lFMa3fulItHsAEGmWbllFTU6XPbtgWzYzZqdlxFpicnHR7ubUMGv/n37xB57JOadHqWldnLHxnFTRRkI8dufD23Brj9SqjfHIjCAgCgoAgIAgIAoKAIHDlImA+Y79ysbgse16ce0L1Cw6aNAqLty4Uajym18JMnWYuZui1pknqHqbIIG92bFVTWWz0qa0uVWnaF/bvbv/8Gfry+YkER1Iwj4ZZsi0EgQgCtrWPJlTZUhZ4wA+BTXNqpOXT7R9lgSogTItSnnzhxbei0rg/egYLAexvBUVH9FfXznzdu+T39Lsn3lAfN1cPo6Lg8Rio/Jf3CkOTDbPpUBZS20NDE8Yq9h83fqb2w6Kf2EPcHsIeWhCEaY36xw7VguqanXtWXcOZB9ppw4+pRvlMNp40UXyE/KtSQMiXICAICAKCgCAgCAgCgoAZAj1KU+vh6UU+foHkzefRggIC2aSRBY7y0mI+wkfnpCYsIprsWLBwdXUjRycnCo/STZ5zMtNs9hRrhkIPjsARPK4eAYTjekCefpEUGjee6uuq6MK5/W22HAJmZUmO2mM7ZuFzVF6YSbHsSMqU2qoHZsfDr/olBfVJpim3v0nHtrxLPkFxFDPsOvrp7SXKu3F++l51bNCMez6gE9ve57gadlo1nx+hPW379Oeqyul3v0d5qTso68QGld/TP0blra+tNG2SxfsN274mfLqKoNWNiYynxdc/xo6OtigBCw6UQNl56QTzYXguPnZqD2ssr1Pxu/avVVdbviA0w/sw6sB+3M072cM3m8RPn7iAvRs/R4Yaz7bKs7KdWmU7ceaAErqvnXGb8tA8acxcI0/IbZWNdHgfHsN7WuGoCu1KZo245uHYlvzgQT6YbMPJFITw/IIsIy/L4Ek5uo0dZd2ktMLY/ws8cYzQyOHT1H7aHXt/BJuib3c10sKJDrRggj0dSru8tgxofZSrICAICAKCgCAgCAgCgkDnEOhRQm1waCTFJ7RohiCw4pOeekIv1A4ZMc7IFHLI8DEKgZysdFZU6bQ6nYOkZ+Uef+Pf2fNxpL5R4QOmEj7Qyn32v0n83fZEH46dprOgGZ14tSqnojiLz5CNYLhaTJPbrIfNi9e/dzcf6fNv5bEYXotBJXkt5qNblz/Bx/W8zh6Yh9I4breOmujsga+aw0RuPiE0aMoD6oNIOJY68P2LyiOwnukiBtZtWcFmu3F8pmq8OlfV8Eifz1e9oY70wd5PfEBwYoSjaUyptZH36dev0ZIFT1BEWF9acPW9Kis0ko0s3IKge9ZMclWEla/WhvfWXd8p4RFOnfBRzrjYsRWEUlvKRpUwST7N+1/7xSYq02W0DJ6J+0YnkGZCru1Fb61MOJu6e/FvVN3wkpzGTqViowbqPSwj73ufvqgwwfm/+IDQ5j0me33h9fjQ2UYaEcfn4jqJCbICSr4EAUFAEBAEBAFBQBAQBIwQsAsICGiC5qge58P6+RklXg43bm5urPn1Jng7toUmXxNLpaUljEeLwGdLvt7Ag3Nm66rLWFvbOa/P8KjsE9KfKooyqaLY3NswPCHjmJ7Ghloqzj2prob4uHoGquOAivNOUnX5BcOkHhmGFhFehOH8yNQ8tj0NhsMmeDSGx2Uc79MdBCdWcOrUmfJhih0WHE1ZuWlK0OxoO3FmLgTV8aOuomnj59Ma9nCMI3wMCd6SIfiWlRdb3OcL3hBfO3rzCSf6ansDLf3h8nsvDfGQsCAgCAgCgoAgIAgIApcagTPHi6lPPx92PNvspKcDDTq8w7K/mfYWlTTdti2Kl71Q217gLmehtr1YCL8g0BEEcGRPfNwwtS830D+Mxo+cw86iXOifb/6CcPRQRyghWne0z9nc1nTiHSlZ8ggCgoAgIAgIAoKAICAIGCLQG4XaHmV+bAimhAUBQaB3ImDP3rXhHEpzMgXt9srv3+2wQAsUjp0TYbZ3jgZptSAgCAgCgoAgIAgIAt2PgAi13Y+x1CAIXFEI7Du0mfCBaXFDY327nGFdUUBJZwUBQUAQEAQEAUFAEBAEugQBEWq7BEYpRBAQBEwRqKwqM42Se0FAEBAEBAFBQBAQBAQBQaDLEZDDH7scUilQEBAEBAFBQBAQBAQBQUAQEAQEAUHgYiEgQu3FQlrqEQQEAUFAEBAEBAFBQBAQBAQBQUAQ6HIERKjtcki7rkB/f39ydHTougKlJEFAEBAEBAFBQBAQBAQBQUAQEAQuMwREqL3MHqh0RxAQBAQBQUAQEAQEAUFAEBAEBIErCQERaq+kpy19FQQEAUFAEBAEBAFBQBAQBAQBQeAyQ0CE2svsgV5W3eHzTu3dPIjs7Lq1W3ZkR3cH/ZZGekzr1np6W+E+Xv7k5Ojc7c2uiX2KquP/bF6PvStVJn9B9f6TzNMMYpqcA6li1Lf6D9l1vcl+9cAX9OXXB842qL0leKP/wzTde2FLxEUIOfDz8QnuR/YO3f+cLkJ3LrsqHB2dKCggnBwcevZBAz4OAfR4yAsU6hRt9gzGec6hOwKfMYvv7gjvoL7k7ObTbdW4uPt1a/nd1vBeUvDFGPsX6zdqts9imu93rxnyUc791Hvjae9tliYRgoAgcPER6HFCrbOzC8UnDKPhoyaSr3+gESLevv40ZMRYmjjtGpoyax4lj5lCiGuN3N3dKSwsrDUWSbMRAf+AQFp06+109yOP00133k0xfeNszNkxNo/BIyn4jqfI0duvQwU4eHiTW/9EsnNqfcKf6DaGYpzj6XT1wQ7Vc7Ey+fsG0+gRM8jFxa3bqwzwD6XH7vkrTR1/fbfW1eQSQnURt5Nj8R7zehqryb4qg2r7Pm2eZhDTZO9CTS6hXMYucj73JlFTk0GqbcHwqGhacMutaly7e/BCigk55a4k56wPVD1NTpbHY3rNSZrsNY887L1Mcnffbb/Rt9DsBz+jwOjhRpUExSRT7PD5RnFy0zYCMZHxNHzwhLYZbeQYNWwaPXD7HykqvJ9Rjq6ux6jwDtxM815ALvZulFeXYZb7FP9f7OsymAa4Go8xM8YujHBx96U5D62goTOf7MJSjYua+9T3NPXOd4wjr+C7xIGjKS5mcJchYG3sd1UFF+s3ytvBn8Z7XkVpNcfNmp5Vm0ruLNBO9p5nliYRgoAgcPER6FFC7YBBw2nanAUU2y+BQkIjyd3d0wgRCLthETFUWVFOZSXFFBAUSuMmzW5VsIWzpaFDhxqVIzftR8CNFwcg0AYEBVNxYQH5+PjSVdcv4OcR2f7CbMzRUFZCDaVF1FhbY2MOYzaX6DjymT6fHH1aX/iY6XMjnak5TMUNBcYF9LC7hPhkmj3lJgoJ7D7MtS7XMeYVlaV0oTBXi+qWa230A2TXUEmO+d9ZLN8p4x1qdI2iBr+JFtMNIx1YqHXK+4qjGg2jWw27urnRknvuo+tuuImCQ8PIzz+AnF1czPI4FG8nx/PfmsUbRuyv3MQ1NyjB1jC+O8N2dpb/hQ+Z8TglX/c/3Vn1ZVn2tAkL6NqZt3dZ3+ysWJl0dT2dabCXgy8Nd59IW8pWUxP/mdKF+hzKqD1Ns3xuNk3qxvvutc5Bw8sK0qk470Q39qF3FX3tjNtozrTFXdZoa2O/qyq4WL9RU73nU21TNR2q2m7W9Eb+j7+9/Dtl5eVubzxfNWOWCEFAEOh2BCzPiLq9WssVQGDNOpdKh/bvsMiQevIIrf1uBe3btUl99uxYr/hiYuMt8ktk1yEwctwENnF0oC3r19KXyz6mvTt1/+DHTp7SdZUYlsSmx9XnTlH+J/+mxqoKwxSyc3Tkj5OKc/QLJHuTxQ/ivEo722zyZ+fkou4taWyhgYDp3dYyY6HK3t6RnF29uShjs0FHZ3dycmn/j5enhw/17ztUmfPix97e3txE1t3NiwbEDSdf7wCj/sJ00dWF6202BXZ1dVf3iOsIoZyB/UZQZFhftuw2nzyibeUs0L78zq/pwJEtZlV4uHuT6cfdzRwTa/3RCmxycKO6EF50yP2ctav1WrTR1aHsENlXZ1FttLnplxFjB2+8vL3J08ubzpw8QVkZ5zpYii5bXVMt7avYRKM8p5M9mT/fThVukNnByZXC+k8iV09jSxawYHxi3No1jy+E8dHGLIRgNa5NzJX18c3jHTwwbUa+8AFTrZppIl9A5FAK6TvG7F0xaLLFIMpHPaaCuaqb+9hegplvn6iBakyjTNNyUR60O/Fxw8ysHZz5fwTeJ3v+3wFCGJ+OWEXg/eoXO4TwzptSW/XgfUS9pubKWrz2fwM8MO9E+9AfN1dz6wLUjXx4z2OjEyz+zwEPzItBeys2qqulr61l31KgYxjB3LK7CM8LFga+oQOsVgEeS+MN8a2Na8OxgDD+r//01hLavfIPVutCeRj7gdEjLI4l3XvIFmWhA62WYS3BycVD/05qPNb6oKVbu+IZ94kaoMzcwYMxgjhDam0cYAxhPHEmNf4Rxkf7vTEsp61wa2Nfy6vjSaTQ4CgtSl213znTtmvj3JC5rd8ojRe/pQP7JVGgv2VrvbZ+o5ztXCjJfTLtqVhPDU0NWrFG110Va9X/+1EeM4zi5UYQEAQuPgLGM/aLX79RjZvXr6aG+nrWlgQZxWs3hQXntaC6FhVeUFenNsxLjTLJTYcQgKlxE5t1HjuYwpNdR0oaPVaVE8ia264mj2FjyWvsTH2xF5a/TvUlhfr7wBvuJzsXnvQ2NJC9h87UszbrLBV+87Hi8Ro5hTxGtJgQ+s9r0bzkf/QyNVSU6cuKdO6rwjl1afo4BNx8QunqR7+imooi+ual2dz3RvKPSKQZ93xA5YWZ9N2rtpsbLbr2AUron9RcfhNVspCOSeizLz+o4jCBuOPGpyk4MKKZh+j8hSz6z/K/Un19HV09fYmRSeRN1z2s53tt6e+oqET3HugjrQQwaXjozj+z0NwiDKH85199VJ8DggHMJTXaue8n+nHTZ9qtuj51/4tG97hpbGyk5155SMW31R8tc6N7nAo6lB3Roixe7cuP8L7aqRbTOht54fx5WvraK1RXV0dz5nXeXBfmaNibHegUSufrsjrbPLP8/UYtphFX/5LjdZPW6gpj64LZD3xCHn4tmvzrf6kTVBrqa+mL51jwZIHr+l9uYC3VOfr+tZb+xo+7XZl6Hljzdzq182Pm2Ug1lcUEM1CNzuz5lPZ9+1ftlvomLaKka36jF6CbGhto99d/pPSDq/U8rQVihs6l5Ln/Q1nH19O2T3+uWAdNeYAGT3mQUvetoL3f/KW17Po0F2dXuu+2P+gXg+q4r/YsuJSWFxPeD1BYSAzduvBJ3eS9Oef+w1to9U8fqjvk9/NpeS+efuglFW/6fjRntXqByeWcadBo6p4PrB0Mqa16HB2c6OmH/kmFRefp9fdbBK6xSbNoxqRF9MPGT2nX/rXM8xL/Hyknw8WkPSkb6Pv1y/TVJQ2ZRFdNW6IEFUTiHV314/t06NgOPQ8CEc5xVMJWKtBGWaPs5v+PEfz/Elrbria/8EE07a6laiEFZVeV5ZtV0dp4w+ILxmxh1iFa++4d+rwjeHzGJd9AG96/l/LT96r4hb/dwQu0Tipccv40/fDGjXp+BCDMTrnjTSNhtbGhlr56cRrV11Yq3tHz/0IxQ6/V56urLqN1S++i0vxUfVxrgTELnqOw+Mm0+6s/UFrKKsU6/Wfv8W/MENqy7DHKObWltez6tLDgGLrzpmfUAgciS0rZiooFuQNHttI3P36g+NoaB08/+JJeCMZvgzb2c8+fo3f++6y+rrYCbY195L9+zt00JEE3d8B9dU0lvffJ39giKIeGDBxDc2fdQRu2fUVbdrVYxdx/6/+QH2+9we8L5iC2/EbhfV+y4AmjxR7U8cYHf0K16v9Aa7+5iom/gpx0v8n4v26NqhorqLKxvFsXfKzVLfGCgCBgjECPEmoh0LaHQkJ1/3Au5Oe0J5vwdgABmGRi4o8flZnXzFVa27LSUoKmq6up6tgBqs1OJ7cBw8id99WaG8TxajRrK+vyMqlkwyrySJpIzhGx5Bo3iKrPHKWKA9up6tRhde+ZPImKf1xB9UU6wa/BROsb4hSlTEbxw2RIFUWZtG/1czzp/j2NXfQ87fzy9zT5tjeosaGe1i+925C11TA0rxBoMbn9adPnNIz362FVHThqtHj+o0qgPXkmhfYc3EDJQybTANakzpt9F33x7du0bsuXtO/QJiXYJnHad+s+phyecIBKyoq0Ytq8wnQZk5bdB9bzxPgn8vcLoZHDphrlKyjKo49W/FPxYYJh2E6N8f1P/6YFKTQoWpmsGU7e2+qPlrnRvZ8K2lelaVEWr/aVPKFg50xNTr5kV1dskaejkegfxnVXEUw1QcGOkV0u1GLiPvyqZ3gM1tGhda+ST1Ac9RluvLiy6eOHlVZ15HV/JDjaWfefO1V76mrK1bWhrpoKMg8pbZerRwBpQnHcyJsIQumZ3Z8oPnxBoM07s53OHf6ehs35BYEndd+XVJx7XJWNd6OupoKOrH+NBaZ6FoqfoFHX/y/lnt5G/aL60ZKFj+nLMg1s3/MjT7o/pIiB0/kzjaITr6bSC2dZoH2AKoqzbBZoUe41bDYJjUxW7lnCIsysyTeSl2eLMA4N2O03/EJpnnYfWEep547RzEk30IjEiZSafpSOndpLy758mWABcd2sO5VWZ+knz6sm19RaF/RM+wSN1+ypN/NaWwOt37aSgvzD+X0fZ8TWVj0QyDNzzirtKqwhtPcqmd9TCKUQXDWCQIv2Hzmxm2ZNuVG9y7CsyD2fofoAXNB+CAmN/GxnTFyo/qecSTvCAnHLwl6QYzjl1qVrxVq8ljXo/s/g/2V30ISbX2KB1onO7l9JZTwOEqe3LLShPozl1sZbTWWRMif2Cx+stKpYhARFJsyk+roqvUCLuPXv/Ywcndxo0m2v813L/2GkgSbe8ooSaItzT9CRDf/m/4ENNHzOM0q7i/SBE9ifBAu0ZQVpdGjtKxQQNZzix96mfh+wALp4/iMsuI0Bq0V64/0/09ZPnqLrfv4j4T09n7ZbjX8ItGcPrLRZoEXhN817mAVaRzp4dLv6TZjJCx+GBA1lW+Pg3WXPKu3uHTc8TVXVFfTZN/9WRZTxopCtZMvYHz/qKiXQ4jdm3ZYveJ95HI3hxZpbFz1JL7/9K0o5uk21Fb+RmlCLBVL8TmXmpOp/i9r6jdLed2dWdpw+e4g271xNIUGRhN9OjWz9jQrh/+OgC/W5WlaL1wJOD24WgC0ySKQgIAhcFAR6lFDbnh47s6YOTqOwvzYjTbdy7OrqSomJiUbF+Pj4UFBQEI0cOdIoPi8vjzIyMozi5MY6Ag5selxdVUUhYWziF9eP9u3cQeFRUUqoxb5EpHUVNfJErJEXKpxDdRMonc7DvPTCb5dRE+/9bGCNBbS3ToGhSqhV+VFGhU5Lgn259UXmK/8oMcgxgorrdQKvaQ3QFmHCHTloltLSwmQMGiVNEDDlt3Q/NnmWil6x+i06l3WKDh3fSb99/HU18UICTLEiw+LUZGLzLp2Ga+ue75W5YH82YQRhAooPTAhB+QU5lJ2bpsLt+fJw91Lsp84eVNpdaHgxwTUkTH7TMk6wmWaJijY1BUNkRvYZlYYJB1bDG1jQX7pcJwTY0h+Vmb8a3XVacrvqTC3K4hXOokCNbn3Ioe6ARR5LkYYmeZbSIdx3NRXW66xJ1Ap/170Sqpl9kxepcZO6/ys6uV2nYQyIGkZeAX303SgvBFYZeo1SYdZhfZoWOLLxDZp86+s0eOqDtHf1s+TOVgkevuGUl7pTCacaH4QBCMkgCLyjF/yFJ/R30Y4Vv6Zhs36h4o9uepMuZKao8Jk9n9OA8XcS2pl9cCVPJlu0LYrB4OvQ0R3qbsuyx9XkftT8/6WGuhq1aLTuXZ0gbsDeahBm/Vic0MZgUXE+3bPkt/o8cPwEs1+M64PNWsofNnxCtyx4nMYmzVRCbWGx7rlpQmxH3q+kxElK4wUt2Y69P6r6I3niHsCTco1sqWfTjlXqvZoy7jr6du3HBA+vENrPsjCO91OjOsbrvyyMgxB//VU/o/Ejr1ILYRDsQZt3fsMCge593csLY+OSZ/PkfpJeaHBgT+HYC4hJeWuEvbZlDcVqsaY1vo6kwQuxm1ewEkr3rPqzKsLDL0ItomjltTXejm1+h1L38qLh7F+wBcFCOsNhCMJYmMk4+oNWjLrq3wkl+Br/usAkHu8UNK8/vrVYn89Qc4oxDmF4z6r/x5Zl1VR5ZA0FRSep3wj0Y/eBDVTMGlNrdL4gm8droxKu5zz8Bc2892Ny8fBTizl7vtb131pew3iYzmLxBmPq6x/eU0mwNoAzQY1sGQdYBAGhTVhU6a6xj7EH3GAdgXqOnNxD0RHxFB7aR/UDQnRG9mmCEzUs2MASQfv91N4ntLOt36hhg8Y1v+/HaflXryKLWvDad2izCrfnNyrIKVzlKWr+v65uLHwV1ueJptYCLhIlCFxsBHqlUAvz1zETZiqs9u7coF/Bs6R1wao5VrhNtTGIE7IdgSbGC4ItTDQrystp97YttHDJ7aqA2poa2wvqIs7G6kol0KK4+mazdDv2nN1eKm8ssXiMhVYOJt3XP7OBJ/5hlMGTF5hKtoe8Pf2YvUkJtFq+0vIinqgGqNuIsFh1hTnyPbe0TMR1vE1ali65bt31Pe/ZHaEmzLUs9EOz9e3aj2w2XzZtxM9u+Q05sbCw7MtX2NRTp8lpT3/s6ponfo4+bEpuXQLUvA3b1VqfKJq2Dffz5tzBK/RRlpJUHLReljTRVjPYkKA5Cylv0C0K2JAm8G/fAABAAElEQVTFZhZM0kG5p7fq8xRkHjQSavUJrQSgfcWkPYq1oxBqYe4LOswaV0MqZ0c6GmWf3KiCEH5Bnv46XIfN0pkNq8jmLxwxdIwXTL5ft9ww2mJYTe7fv4eu4sm9PRaNPnu6XYtGKBQamZLSlu0JOefTjZ4rJs0gLHKYvmPeLDB2FQUGhKmiTqe1LCRAoDQUam2pC9pXmGUOHjBaCbWTx16nskHjakgFbKKs0UleqALB9BTk5xukrtBImxLMNzXCPkE4N3O3wWO3m70HZded1bJ22dUvTLdYV5TdssCWfWKjkVDb1nhDY07v/pSGznqK+o5kx38s1CZMvEe18dimt21uq1+4blE8/9w+q3mcXL04zY7Npd814/GPGExn+DfCdLHQjJEj4Kgq5Yd/KC0wFo3au5gTFhKtis1sXmTEzSnWTBoKtbaOA1VQJ75sGftYBAVuMPs1pfCQPnSi/ABt37tGCbVjWQCGNndowji1aHr8tPXnYVZW8/uuLWCZprfnN6q8oVRld+OFn9oG6/McvD+tme+btkHuBQFBoHsQ6HVCLRx5jBo3ndzcPWjH5h+UplaDpoaFq5SUFO1WXSMjI9mZhotZvBGT3LSJABYFoJEFff7h++rq6uaqJo+XYoGgyZKpuolzDNXINr7y6s7xcRWDyMHOkR1BmJu/+4T0JydXT1VKIK/Gw7RJM20zLFrTaJoKSQ3NmhU4ttC0LPYG56hq/IdZg4v9cobU1bhisv/3N56iqeOuVw6poPl9+K6/0N9ee1ytnBvW3VZ4wdX3Eo4YgmnXmfSWyWh7+uNQflJV0+gWSw411jVFje46wR8Oo9pDS5e/yHundGPWUj6trZbSOhoX6KQTbCwdjdLRMrV8lsedg5bcrmv6odWE/bnBfUaxJcJMtX8W+xGNyU5/i3Gvo5Y4tGfVP2boebRAXXW5mpjeNE8nLGvxhtdNO1azqfBaFRXeH2aBunKjB8+hrGO6eEN+7f1CnOlzYyWtkWMl8Br+K9D4P//mDaPFJZRVV1eLS5eQVo9hYdjb2xGCRQf2KEIQx/YFaK2wCGVIhn3EWdsg7Yow2vPSW+YCRHWN8QLShbpcdgLVIugirym52LmRo50TmylnmCZ1+h7mvaZk1+ywyzC+tfEGPux7Lco+yhrTwWpvbviAKWpcY9+s7aRbSGwZ75ZzVpbk0E9vLzFLxD70aROuZ1PwKWZpWsTS5dhDqvt/FzFgmoqGY7eQvmMJ76UpWRv7sJABYWFRI0v+RWwdB1oZHbnaOvax5/fdZc+ZVYHxDTp99rD6LcL+WmwV8PbyUybEZhlaicD/A5C1d09rqy2/ubk8PwDBSRr2nVsj/N/Pr5NtcNbwkXhB4GIh0LFf3IvVOpN68M89ic+m9eGzaXdvX0elJTrtkAmb3HYDAkUFOhPd0yeOU8GFfGVmB6+xVZWVZrU9fs/z9MR9L1Dy0JY9LGZMFyGiqflH38w7skHdeXU601d/h2CDWF3Qnj3ETr3jbSWMwrzNzSuI99e+YMZ375Lf0++eeEN9TL2Q6szQ7Ciuz2B9PsP9ftpENSggQk1c8eOufaCtMSQ4rQHBHLGjVMMT2jUbltMr7/5amUjinWrvuZzJQ6ewFmmUMufcuP1ro6a0pz/2lbrJpia0GhVkcAOHUnZK6G2fdQXM2WCqbe1jUEWXBWHODjpfrxtXpgVPGTdPvRv3s2Oi9lLp+TMqS1j/ifqscF5miRrZvA8Tc5hTWqIjG97g6CZlUuzo7EFpB4y1gMjjGRCtzxoWP0mFsd8VhP2EKN+V3wlM5A0/2F8LwtzS2qee9wWD4Ol26KwnqbIkl86f3aVM/WOGtDjgUUz89etHX1Xv1zMP/Z8Wpb/W1Faxp2F4UdYJdjBf1IRkMGU3C4PhobH6d0t7x2AGaUgQFFAOPK62l/LZrBSkbRtAOILrtERt1bNp+yrO1sSOdX5GzuwIC/sNTQmLShrBBBtUXKr7P13I+xbRD08PX7M+a4trWl4swAQ4tphIa/GG17YWazozrrF3FWQ4lsPijYVCW8YbyoCTMzz75Ll/YE/gHpRpYnoMntaoMEu3QBcUk2SVrbaqlD2PBxCuhuMeYRCEJmvjHvGaMDpg3B0U1GeksgCqrSrh/eh/VtsAVCHNX9hPqv22YF+4IWl+FQzHWP9Y3TjQ+NozDtBuOF3rCNky9rFfFx7Bq9jKSnv/tKthnam8JQa/kZrp9Nbd3xkmtxnW3ndDh1SGmdrzG6X9H9fMkA3L0cJYSPLhs2w1AViLl6sgIAhcfAQc3N3d/4R/ZtAKuTVr4i5+M3Q1enh6UVBIBAUEBpMvH9XSwJN4RzYtw49zTU01JQ4bzXs6o+h8bibV1taSt4+f+ri6urHGtsxis73ZkVFwcDCdOaObEFpkMoiM6e/HdfHerkb8/FxawvPoKW0pZ5Pj+EGDWUPuTmVlpXye8FWE55Wydw/lZBqv3sNpCX4cIdCdMTDFsxVNp6AwcvDyIeewGHIKjqBadgiF43iwmt3EZrMeiaNwbgFVHtqpL9Jz5GSqu5BDNemn9HH4sXEflEwoD8cC2bt5EM6+NSSsvo73uorqqY5Sa1o0juCZeudbyrRzFzuJOrXrv0qrBYECTqRK8lrqgfCuHd+xfc8a5bFYq6OgKJcd0kyiBD5WADxw2qFpD7HfDe9dTOQAgklUXJ9EquYffF+fAJo+cYEyPzzK+440wsozBFBMYup5Mg7T5sLiPC25zSscT8X3HcbOY6qUSSRMvNzYOc7GHV9TeYUOF5jrhvInmM/CjeeJcmVlmTKFRNtLywqVQL1k4ZM8cWukTdz+IDa5hNdmTLDR1/b0B+fT1gfMoEbPeHLCsT4WCKbHNXG/Iufsj8mhZK8FDp5EOnpTXfgScixYR/aVLc/FIrOFSIzrfgMSKCI6Rll1ODo5UmgYLzLwfn2jveL27Cwt8i5yLNpKDuyR2RJd7/cz3p+YRzjmwRKNHjGdYGrnxtp/aLnbQ9A4wUmNb0g8vwv2bJ55Ix+Bgsm3HXsc/kbtydPK8+djdvzZoyyc2GBxB8Inxq1GDfU1BC2RV0AMRzXRlv8+pjRdWjpMkuEhNjhmpDomCHsVISDvWvl7qi4voKLcY6zpvZlihl1Hbny0ECb4UYlzaMzCv1L2yU2Uf/4sbdu9xuonJy9dlTfnwc+VA54f37qZ90R+Qf1HL6aowbNVf2AirdGkMdcyn70SCLbu/l6LVlfsv4sM76cW0fBOzOT9pA78vwKLQtD25F3IVHtn8Z7hGBE4X4pmfpxHi3cRTmg0igjty88nRu1zb2QNIsZ9UYnl/fhaHu2azx7L4QwH50ijrXBMExPZn5Pt1F5eTeAEf1v1YAELTuYg1OD5YG+gJgwhP0yS4c0cfcJ+YQgAjny/8vv/qP7l5J9jTe9UNt8cq/pQzQIFFqLms4XFqdQUhQ3KAdU0VdEIj0mUXnuCz+rWCcW6lJbvyV5zCU6iVhW/x8bKukWLllRik9eOj2s4L4sdfj177Y5Q49E3ZIAaB/h/D6dkMH1va7zVVZeq5uAdgdmxX9hAdb/tk5/z/vIKfVOxfxxHAsGcOXrINfxu1CnHVLivLM1T7wCsF/BeRLHVQB0LmwhPWPwypbOXYmiD8b8vrN9E6jPien6y/MftjB97OztTe1o5WsPe7dbGPsYljgEaf9OL7OX5gnLmlpe6Xb3PqPPUDgjmuvkHnIVpzvxK+P+v4eIGxgOOq/H3C+b/1cOV46WhvJ8U86Xc/Aw6yc+5PeNg2KDxynwddcILNxxQlTf7pdADaCVgy9iHqN+Pf+PUIiqvP+H3DHvaMV8wdICGPfHY9w0zeexx/27df41qbes36jy/72O43ADGJTqiv/KCjkWfa/gUAeyrbc9vFEyKE9xGqi1KONbHEg10TaIh7uPou5KPqLSh0BKLxAkCvRKBogvV5Ovvyr9nugXjjnTifKZ1s/32lBcW62wTe48yPw4O5Yl0wjB9w8OjYtkZUSylp55QWllv1tCCwIePRhXlpZSfp1sl1+Lk2rUIZJ1Lp4MswA5NHkmzrr1OFZ6RnkZ7d2wzqshQi1jQbGJlxGDDTcD8u5XQqrH6zliggnD2dOHTN9VKuJ1mY6QxWbjWFeRR1fH95BY/jHxnLVIc+R//ixrKWwRbeD3eVb6WxnjMonWlX+hNkOHNEubG2Sc2sPdX3UrxZnaaM+/pdTRq3p+VU53qct0EsLWmwOkG9gZNHQ+TtKlqMglhX7fXVtfoT79+jZ3WPKE8nt4w94HmnjTxsQzG2MKJBiYqWI2/evqtig/HfmA13haCmRpMGYcNHq/YMXHee3AjQcDQ6Ia5DxodbYIzMPHBJOsv//egmvRg0mTHJtQ4nkEjTBS0I31s7Q/yuqS9TFWD/0WNHgPIvkKnsdHKxLUunJ21sHDhlPWRYXSXhnEGs6EX74GDh6jyy8vKqKigwOa6op3jyZ81Xl9d+I/VPJ48YQTV8kS+vYTjRPayc5rk6/5Hvw+2sjSX3L1DzYo69NP/USA7vAlmTRAm6dqRPoaMJ7a9z0Locyw4nGAvxjrzP8P0mopC1iQlK20S4k/u+EjxIlx2IY0F3P9h761/oH4siOIDggABIcUWmrjkVTbt9+JjTf6oNLXIs/HDB2jmfR/TtLuX8lFac2wphn7avEJNgGENgf2E+L/jyw5zsE8RhEXb9z59Ue0lh6CIDwgayz0mzsLWbVmhhIM+UfHK9Lc9R/rUsuMmOMGBsKztgy1l7+QwoTQlW+rZvvcHmn/VPezNOJMXN6tMi2DhtUwJzTrNNCnPz3kszICAwVdr3qO53JZRw6epD+Kxl76u2eID9yAs5sFr9ySv6+hszTFdpMG3s50rJXtMpS18Vq21fYOdGdeoCr4LpvNxafCCDYJFgIdvBD873TNsz3jLT9tDIXHjeEzlsNDYsu8Y5SZMulcdRYUwCL4SJt36mgqjDTmnNtPW5U9w3L9Z+B2iFmmQiDGtWSDASZunXxQLoTcox1QqM3/ZepwPLBym3vGWGpeaJ328g4fXv06J0x5R7yScsYF0Ol8VtPgFT/V3L/6NWqyBh9+0zBMUGzVQvwDSnnGwio8Awu8PLHHwwXaVd//7nMV6TSNtGftw9uTnE6QWnzQtLMrBUTuGhHqh1YXV04nT+w2TVLit3yi87+83v+84txofEIRdjdrzG/VT6ad0a8DPlWBrSRuL9wZHXnXHUVdae+UqCAgCtiFgFxAQ0ARnSvU4H9bP/MfXtmJ6Lhe0ndDWwtuxLTT5mlgqLS1hPHQ/prbk6S4ef3//HtMWrY9wFhUaHsGLCLlKW67Fa9eJo69RAhxWWF98/QktukdfPdjJwzNh/6Kvi/5D+yo3dVtbYdKISfKvHnmFsNf27/9+yqgueGXE+XowzczLz9RPTIyYOnkDrU5ocDQL11VGP/KdLNZidlv7U5n8JQu0J8n1+K+My2HBuWLsRnLK+ZSc014xTjO4a3RlrerIVfoYz62jeTZork3SM3QgUDn8Y9YoJ6icLmde4DZ9YlYKJj6eDj705vk/mqVpEb969F/K47V23qgW356rvb0jL7iMoOK8k6whbVmgaU8Z4B1x9a/Uvtrt7Jwp02Qf641/2M9O0dbRzi9+o+rCMUDaGZ2m9UDLBeEAgoepEGHK2533WGzB3nUIWI/d81c2jz/Ox1O9ZFQlPMZi8g/TdNPJtBFjJ27QhuiIfuodxuS8ozRn2mK1r/bzb94kU0c5v3/yTTXh//L7d1kI70dZrG2GYGGJYEUBh1iwpLB2TEu863BaEsBHq+Q+Q0UNxprpsZ6zabbPzfRC9qNKq2upjq4Y1ygX59VCQ6/z4m2pJp2Tsosx3hycXFnjO0gt1Ggm0oYtgnAK83lHZ3erC0OG/N0ZhtYeizSwFJg2fj5vMflEWSkY1mnLODDk70jYlrGP9xRHwTmzY0dolC0t2HSkbkt58L7DkqiYrS0seaS29TfqsZDnlXnxZ4WvG1WDY3weDn6W3r/wgsUFISNmuREEehkCZ44XU59+PmxV1XFN7eEdHZ+jGMKVNN3T8NZquEdpaq22shMJVXzUDD5CXYMAFkCyMnTOEyyVqO3tgnayt1BFYxm9mvdrqmuq65Ym37roKUpnk7TzBVl8Bu0U5djjlIFZsVYp9vfh2J/2Es4q7Bs9qNVsy7/6l9oDi4lvR+potXAribb2x+3QfWxC7GuhlCZyO3Q/2VWdtZDWEmXP+23dD9zWEmHB8UxLYsdCSuBmM2eQXU22xUJ+KFlOVY3mGk+NGWcEYxIF88Nd+y2bJ2u8rV2hMcLZlh0lmF/i/M645BvVhN1UoDUsFxpeHPXTGkEAaU0IaS1vV6TB6gHaG5zl3MimoVhYA+1J2WhWPI7GwtE47SX4CYCZszXCIpW2iAfhAiaoHaXIsL7KrBT/K6BZNRVoDcvFIllb/cGRL9pRQoZ5DcMnqw/QW/l/puqmSsNoFT5WtYdOVqdYFWi7alyjMjh6aosu1niDdvbCuX1WmwMz5KKc9o8lqwV2IAGmvLCkwTm1OJN2/Mg5SgMMJ0imZMs4MM2Dva2PsDPB1gjm/dpxWraMfWhSoY29GIT3HYtb1sjW36j3LjxP8IBsSqV8fjMWMXPqLk5/TOuXe0FAEDBG4LIXao27K3fdjcCBw1vVPlqYtfYmautw9c70xZ9NrmASpqMmtYdv1Q/vd6ZIo7w40sGZtQqtka17o1oro7vS7GovED5mxJNG+/K2J7kwT7aJz6wC2yPs2zhLFyXl11sWdrVaMAnewSalJ1MPalGX5Dpk+mPKpLiupoI2ffSg1TZg8tkbCCaa0L7OnXWHai7ajTOIWxMG29uv9KyT5MVOl6xRQ7PjK2vp7YmfNmEBmxXHq/2EH39hrGk2LKct01RDXlvC2bWWF49K2tgn2FPGtS19vNx4sHcb21HgKwEEIW0la+87YyFgiBG8gxvuOTdM08K5560vcms8vf2KM5rxMaXqxkrKaRSB1hQXuRcELhUCl735cXuBFfPj9iIm/LYgAPMwmEXC2YeQICAIdD0CcE6HfeOa07Our0FKFAR6JgIws21gC47uNOXtmT2XVgkCgkB3ISDmx92FrJQrCPRyBOCpUgTaXv4Qpfk9GgHs48dHSBC40hCAma2QICAICAJXOgK96pzaK/1hSf8FAUFAEBAEBAFBQBAQBAQBQUAQEASMEZA9tcZ49Ki7wkIxVe1RD0QaIwgIAoKAICAICAKCgCAgCAgCPQ4B0dT2uEciDRIEBAFBQBAQBAQBQUAQEAQEAUFAELAVARFqbUVK+AQBQUAQEAQEAUFAEBAEBAFBQBAQBHocAiLU9rhHYt6glx9yot8sFktxc2QkRhAQBAQBQUAQEAQEAUFAEBAErnQEepyk5OzsQn3iBpK7pxelnTlOxYUt51cGBIVSdJ/+5OnlwycTNlFu9jnKzUqn8rJSq8/R3d2dfHx8KCcnxypPT084dq6JrhppTyG+dpRX3DvOjuzpmEr7BAFBQBAQBAQBQUAQEAQEAUHg8kCgR2lqBwwaTtPmLKDYfgkUEhpJ7u6eRigHh0aQl7cvlRQXUHlpMcWy8Dth6jXk6x9oxGd44+/vT0OHDjWM6nXhD36qZxGe6JF5Dr2u7dJgQUAQEAQEAUFAEBAEBAFBQBAQBLoTgR6lqQ2LiKGsc6lUWHCehowYa9bv44f30bGmvfp4L28/Gj9lDkXF9DPS6OoZLpNAZQ3RcdbWDom1JyeWa+saLpOOSTcEAUFAEBAEBAFBQBAQBAQBQUAQ6CQCPUpTu3n9ajqcsouqKissdqupydj0tqGhTvHV1+uuFjNdJpHHMxvJjvuSEN2jHtllgq50QxAQBAQBQUAQEAQEAUFAEBAEeisCPUpT21Bf3yaOdvb2FB7Zhzw8vNQVGTLTz7SZr7cznMnWCfSDou3o4Nne3htpvyAgCAgCgoAgIAgIAoKAICAICAJdg0CPEmpt6ZKDvQMlDhutZz19/BCV8f5akKurKyUmJurTEICTqKCgIBo5cqRRfF5eHmVkZBjF9eSbU81CbWwo9LVCgoAgIAgIAoKAICAICAKCgCAgCAgCQKDXCbUwNV6zajm5uXtQdGw89Rs4RHlCTj11lGCeXFdnbIrc0NBAjY2NZvGI600U7KMTZgvLelOrpa2CgCAgCAgCgoAgIAgIAoKAICAIdC8CvU6o1eDAvtsTR/ZTBJsih0fFEoTampoaSklJ0VjUNTIyklxcXMzijZh6wU3/CJ1QeyyjdwnjvQBaaaIgIAgIAoKAICAICAKCgCAgCPRiBHqtUAvM7Xl/rYOjIzmZOJDqxc/DatPjwnRC7aGzxs6yrGaQBEFAEBAEBAFBQBAQBAQBQUAQEASuAAR6lFDr4elFPn6B5M1n0YICAkOI7OzUmbSlJUU0ctw0KsjPpZKiAnLh/bMR0XEs2DrQ+dw0xX85fyX1t6ei8ib1uZz7KX0TBAQBQUAQEAQEAUFAEBAEBAFBoD0I9CihNjg0kuIThunbD7NifNJTTxCEWjsWcA3TwZibfY6O8fm1lzNNHmJPbs5Eb66WA2ov5+csfRMEBAFBQBAQBAQBQUAQEAQEgfYj0KOE2rOnjxE+1mj3tnXK3NjV1V2xVFdVUkND68cAFRQU0IEDB6wV2Svib5nqQKWVRBsOyn7aXvHApJGCgCAgCAgCgoAgIAgIAoKAIHDREOhRQq0tvcZZthXlpbawKp6qqirCpzfT66sa6EKp7KXtzc9Q2i4ICAKCgCAgCAgCgoAgIAgIAt2DQK8TarsHhp5d6qE00dD27CckrRMEBAFBQBAQBAQBQUAQEAQEgUuFgP2lqljqFQQEAUFAEBAEBAFBQBAQBAQBQUAQEAQ6i4AItZ1FUPILAoKAICAICAKCgCAgCAgCgoAgIAhcMgREqL1k0EvFgoAgIAgIAoKAICAICAKCgCAgCAgCnUVAhNrOIij5BQFBQBAQBAQBQUAQEAQEAUFAEBAELhkCItReMuilYkFAEBAEBAFBQBAQBAQBQUAQEAQEgc4iIEJtZxGU/IKAICAICAKCgCAgCAgCgoAgIAgIApcMARFqLxn0UrEgIAgIAoKAICAICAKCgCAgCAgCgkBnERChtrMIXsT87j6h5ODk2iU1egf1JWc3H4tldWU9FivoYZH2Ds6EPtvZdf51cHB0Jp/gfoQyTakr6zEtW+51CAT6h5Gbq4dFOP50myO9eJ+TxbQrNdLFxY28PH27vfs+DgH0eMgLFOoUbVbXjf4P03TvhWbxWoS7C9HHv3Km68Y4aFGXxdXBwZF8vPy75P9OTwDEzo7o3Z870X1Xmz+niYPtadlvnCnMn5mEBAFBQBAQBASBbkCg87P4Lm6Us7MLxScMo+GjJpKvf6DV0sGXPGYKDUseb5UHCe7u7hQWFtYqT29I9ArsQ9c+8R0lTnuk0811cfelOQ+toKEznzQrqyvrMSu8h0YMnvKAwtYnJL7TLew3+haa/eBnFBg93KysrqzHrHCJIHc3T3rwjj/RjEmLzNCIDraj4XH2dOhso1laT4qAoDN6xAyCcH4x6PZFv6DHfvZct1c1zXsBudi7UV5dhlld6TUnabLXPPKw9zJLQ0RlDVFJRRMtmW4uLFnMcIkj/X2D1TPEgkFrNHnsXHrsnr9SSFBEa2y9Ju3mKQ4U4GVHa/ebv2PbjzWSsyPRI9f1jmfYa0CXhgoCgoAgIAjoEehRQu2AQcNp2pwFFNsvgUJCI1kg9dQ31DQweNhoCgwOo+DQ1icE/v7+NHToUNPsve6+vraKqisKqOzC2S5ou/XV8q6tpwuaehGKKC/KUNjWVhV3urbWtL1dWU+nG3pZFmB9XD9ynSM18Fx7+YaGHt1zaJlnT7mJhaLpF6Wd+QVZdKEwt1vr8nLwpeHuE2lL2Wpq4j9T2l+5iRqpQQm2pmna/cfrGsiNjR/m9gJtbUJ8snqGIYGRWvMtXouK86mispSqqiospve2yPnjHSivuIlSc82fMd69HccbaXAfewrysf6e9rY+S3sFAUFAEBAEeg4CPUqoDYuIoaxzqXRo/45WEdKE2cqK8lb5LpdEe3tHqikvoNUvXUVn96806hbMXZ1dvVUcTGj9I4YYpWs3ELaCYpLJN3SAFmV2ba0eQ2YP33CKTJhBMGG2RC7ufhQxcBqBzxq5eQWrMqAZvpSEPqenfKOwrSwxntw7OruTk4vOlNUvfBD3x/ICCkzCw/pPIldP65YFrdVj2H/f0IEUwdhaKwt4hQ+Yyu2yvuCDMsLjp5CrR4Bh0e0KB/iHUnzcMDLVNrk4u5rFYWy5urgTtIwg8Dg7uSizyrg+gwmaK0vk7emn6ogK72dmgqmViSvKi4sZbKkIzmdHMZHxrO2KspiOSE+22B8QaUcHWUtbW2/MhudriiXqxDtlyYTcOLfxnRO/i/37DiVPD51Zv729uVYK7Y0M60ux0QlkmI54YIgPCGVp94Z8xjW2fhcaHKXa4+Gu+/9gyI36UO6qHz+gd/77rGGSCqNu5DP9ABtDstYfQ55xnnPU7d6KjYbR+nBdUy3tq9hEozynkz2ZYwbGrUcbqbqWaNFE4/r1hdgYwBjtEzWAMC4xRk0JuPeLTaSwkBjTJHJ0dNI/H5gNR4TGGvGgbOCGMkCurrrnqT1TQ2Zgf/DYDnr5nV9TSVmhYZI+HBQQzm0dqMY4cDfEHnWYjgvdO2csMLbWH+Q3xQB9QD9NCSbqA/slEf4vWKLZyfw/gLOt2GJ90eg/axoIrbt7tuVnbKlciRMEBAFBQBAQBGxFQDcLtZW7m/k2r19NDfX15OcfZLUm/OgOHTGWUk8dJR9ff3J1a93Ey2pBvSQB+zNhzqrRyR0fUcoP/9BuafT8Zyly0EwqzDqkF2irWQDe+OH9VJqfqvggkE27aylBAAZVleWrq+FXW/WAF+VMvvV1o724paw5XvO6bj8cBIGpd73De0r764suOX+K1r5zGz9XnpEy+Uck0qRbX9ML4ogrzD6ieBC+mATz6wHj79RX+eNbt1Bx7nH9/dWPfkWOzm7U2Nigby/Sf3r7Vmpq0pnY9Ru1mEZc/UvOo5tMQptuSm3VA/6+SQtpxDW/4YlqyyuZum8F7f3mL6o4YD/ltjfIybXFRPPs/i9pz6r/1VfXn02fh3CftOeMhONb/kOH1v1Lz9NWAJP5Wxc+qZ+8g3//4S20+qcPVdb5V99D/WOH0tc/vEcHj25XcXfd/Es1wV/+1b/o9NnD9Cibs+om3fb6iff5C5ksPD2nsESmR+5+lvx8DBcBmmjdli9p2541qsyE/km08Jr7KPd8BkE4A9XxGFqzfjkdOLJV3aOtd974jH4SXlZhWdM+JFYnCB1NN9cgjVnwHIXFT6bdX/2B0lJWqXKn/+w99S5tWfYY5ZzaouLa+ho5bCpdNW0xs+nGQWlZEXl7+dFHK16itAzdmEoaMol5ljAmuvY0NjayUPk+HWLhJiZyAN226Cl9NUMSxhI+oC27vqUN277Sp7UVGDV8Os2YuFCPC/i37v6O1m9tWRC779bfU3CzJhHj+7lXHjYq9qE7/5cF2paxpiW+/+mLlJF9Wt221h+NH9cI5zgqaSig2qZqw2ijcFZtKo30mEaBTqF0vi7LKE27yS1qohg2I+8oXTf7Tho2aBxn18poos+/eZOOn96vipw+YQGNHwUBXJeO8fbfL17W9/f6OT8jjMus3LN6gba8opSf8T9Z251DV09fQsMHT9A376brWjB9benvqKjkgkqDefy45Nl6vnf++xc1zrUILOLcd9sfyNdbtyiFdtizUFtaXkwoB/SrR/9FZ9IO07KVund7KPdr3uy7aOX379Lh47sUT1v9WXD1vao/f/m/BxQ/vh6/53n+bqKX3npGxYWH9qElC54w+n+QnZdG/1n2V5WufQ1tfsf2njR/xzSegtImqmeZNy5Mw19LkasgIAgIAoKAINB5BFpm0J0vq9MlQKBti+IHDVMsZ04epqTRk9ti7/XpZRfSaOMH9/9/9s4DPo7qavvPFu1Kq957s2y5yN1yxRhjbEzHtFCcUFNISCCNQEhe8qZ/CSnwJvTQEnqNMaYZbGODe5O7LVu99162fvfc1ay3SqtiWMnn8FvtzG0z859ds8+cc89FaHQq8i//lfi94f1HQ3hslhRAsWnTkDXzSsxc+TNsfvFOef3nXP93IXSCpJeXwpenLvu+B5eBjkNegqU3Py1FXnXhFhzZ/DSixBzUcXOucYy1+Mb/k4K26vgmnNz9OnLmXCs8tsswd9Vvsf3N+2S7eat+JwRiOHa8/QAaKwqQkD0P0clTHGMMtHHDqrvEj/35Pps98cKvxY/QUz7rnSuOb30BNSe/QE7+1+SDAfox525aXShIuO9d9wdMPvcO4emeJNpfh5O7XpMevpkX3QurxSSE4z8RGZ8j2F/hPgQGOg49UJhz2S/lOKcEt6K9byNj2iUICbc/3FHYk0e4cOcrqCvagekrfojsWVeh5tQ2VBxZL4+ZJ+ZbW829IDHW3VaLzOmXgh5w+Gt0nG9c+xMpSHft34CisqNYfu61mDV1MYpKj+Bo4R68/u7j+OG3/ozLlt+M0vLjyJs4V/7AJ6FJglYx8va0tDVIobp43iVSQC1ddKXYf1s2aW1rFGJ5CwqLDoi6VCH2bsQyIcToB3lbR7MyjPDApkmh29XdLoTaNVi+5FqHqCXRoNVq5T6F0J4vxvdmk9LtP6JPVnne3y9e+xEu//F6+d2qK9mFjKkXS0FbvP+/fgta8mavXHoDLBYLPtu+Vib/mTPd9d8mmiN7yQVfR6+xRwpUEpIkPEmInCo5jIrqU3j21T/KecE3XPkDnDhVgM93vS8vp6Gx2ttl+SwjzmbxmXx1zT8ly+lCHHd0trq0f3PdU4gQ3rfLVtyC8D7PsnMDEmrBfXNCg4RH8/or7pKewqaWOtlsoOuh+6VYvDYFNaZSZdfre4PZfo0J2jSforaq0YasRBUSolSoa/G8l14H7itcNPciIWgXyXDfL3Z9iMrqItCcVsWLSp5+amMU92fDF++IBykZQqAuwteu+B7++sSPXYaOjU7E+5++KD734zBDtFm59Hq89PbD8rO+9+BmKWxnT1uCDza8hOq6Mtm3VTzkUGzb7o+lIJ0zfakUle7/pNPnhAQtiecdez/BiiXXDZjMi0Svsw3mepz7kefd5nRCq4SQp88BieUK8e8qeY69ebHT40U/MVBje//3pb3bhqgwFrXOzHmbCTABJsAERoZAQInagS4pIjIaGVkTsG/XFuHxsXvKnPsEBwdj6tSpzkWIjIxEfHw88vPzXcpra2tRXl7uUhaIO1arGfRjO7yjz7sqfnR4s8ObHhdi6C35ypx+GcJi7N4tCgWmUN/2xlLh1fu17EoCmYScsw10HBJrFI5bV7xTiKa7ZVfyDtMxyUhwxabPgLG7FUe2PC3Ljn3xHBLHzZehubJA/KFQT/pBX3Nqq2xL4dTuIdVKW2/vu/ZvEmLJt1Cra6zy1s1rWW9Xs2SbOM7uEVM8NO6NNz1/O3q7WqRQPP+256THmtqQoCchWLRvDU5ss3syiQE9YHC2gY5jT9glwmPXPyxFK/VtqTnuGCJ71io7e/E5KD3wnizf/+FD0uOdu+AbUtRSqGyQCH3saKpAfclu6Uk+tPExxxj+bJCXicIRS4RYpdBIso83vYYbr7obC2Yvl6KWPNQvvPEQvnvzr3H7jQ8Ib16YFK/viTBWd3v+tT9LMXX81H78/AePYtqk+Q5RS6KJjMI4SeCSiCOBkJaSgyMndjuGKq047ugze+q5iIlOkHWGkHD5Q7+puRbKsUkIkMfU3TKFECIrrPT8N4OuZ6O4vyu/9zaWf/Ml6EOj0dlSid3v2r8r7mN526fzIjFQcGQrtgrBREYh0c7JnkiYkG3Z8Z4UsLS9Rwgg8tiRx5O8sVU1JY7Q5Y6uVrlP7QZjFMmiF0n0msR8zdKKE/Jz4M3LS9zo1dPTJcWt+zHqnb5H31r9PzK0/C0hhGkOKJk/10PtNCoNDOowNJpraNenNZntYjk+KFWEknhvVtFgF0z0kGKwolbxjD75n1+jq7tDHkDxctLOovyVsowE7e6CTXI7WQhbEof0qq0//f+Kz7atxd6DW+SLvOnRfeH1JOTpRaHlZPXiYQTdU3ejNvQdU9q5/5NOIewkLJ97lbymAM29veOmB9yH6Xd/MNfT30A6GalilQ9euns65QMkJVLCuV9shEqGhzuXedtuEs86osO81XAZE2ACTIAJMIHhERg1opZ+NM6Ycw6aGutQV+M9PI1+CJhMJhci5D0hAexe7k0Uu3QcZTtK6CSdtqm3Q3hm9fIKopPtP7CaRYivYlXHP/MQtUqdr/eYlDxZpYgq93axfXN5aZkgEgeudvrpPXk4p57/PVx570aRnKkJ1Se2YN+Hf4LF5Ds00Xks8mrR68sys7FTClo6XkP5fnlY8t6SKXOKydurWGPFAQ9Rq9T5elceQBTv9x5iSiHbZAlZcz3YGiITZZ3VYhTnV4C49Jm45pe7QPODTwqvLoWr+2sUakhGcw7vEILV2SKE+FSMxND6zW/IZDj0PXru1T8pVY53i8Xs8A7Sdk9vl5xjqDSgEMwFs1dIMaiU0bv7/M/C4oOO6ubWeiFq7ddLgoOMQiEVI6+vN1HbYtcwiBcevg4vSWzogQ+F9M9ceS9s4oHLhmduUYb0653mPpKReFessrrYRdRGR9m97uT5djelv3v5UPaJdXlVEdLFw4EH7n5Mztckrzt5/IZil1ywWnrLd+3fKB9qKGP4ez0Wm/j3VySBMvjIbKyMR8KXrMPi6lFW6uk9us/DVyvCkAdr5JHt7CLR2fdhcBsgqi8U/mjhXkdNWWWhFLRJbqL2wNFtjja9IoGfVhPk2B+JDV2QTjzoaXIMVV1X6uI9dVT0szGY6+lnGCHwN4I8/z+586+SH30faQoAhUQ7W3evzXF/nMvdt2l5JkoaxcYEmAATYAJMYKQJjBpRqw8OgSE0TM6hPW/FFZIDhf2R2KX9Q/t3orG+BgUFBS6M0tLSRGIbvUe5S6MxsENCVjEZPtbn0LWJH5Xupuqb0+de3t++8jNSJTwv3kyZY1p28H3s/+ghlyY2J6/6UeHFrTi6HlOX3oWk8QtFCO0q8b4I7/3d7ilx6ehl5/xzrhTC5TwvNfai517984hmc7UKkeBu5J0lU67Zud4XH+c27ttKuB99lr2Zcpytb/wUDaV7XJqYnR4GbHzuNmROuxTZs6+SXvMZF/5EzmHe/tb9Ln2U4yjHVSqV/TffewL0g97ZTCbXH7ETc2bKapofOk54pg4e2+HcvN9t8nyR54zmwNI8T3pIMWf6eTIcVDk3ZYDe3tNuO+X8qM7aN6dZaUfvKrV3fsfKrVg6XS2TRRV7EbXUN3Xi+fQmxtCI6IIFKD24Tu47/1HOzfk8qN4ihDCZXni1FCOPqbtRv78/9VP3YiH4T1+jR+UQCl54/c/SKz5ThI2TuCWvakpiFt754F+DGm3qpHnCi7xEPjj4aNOrHn39vZ4GUw3iRAhyfxYXlCyrvS35o/RLEyGuZIWVyr9GSo39Xbk/tOd+j2jfud615+k91zb247lnbHb/TPr42p4edJBb4lQdSdeoK52T92Oc/ry7J3RTDtnf9Sj/riht6V0rPrfOgpUiCI6e3IulC68UydqmyNBqStr2yL/uc+6GShEaTlmN9ULf97o+V3ZpRw8mKASZjQkwASbABJjASBNwnYgz0qOP4Hhm4YEtPnkUpUUnUF1RKl/GXrt3j/Z7ujpH8GhjZygljFXx9tGVJef6FoW+rrypwu4xo3ma3oxCkckixPxQCtV1fhl77CGLSj+av7vtzXvxzv9bDEokReHR7hlolbbu7/TjlH4S+XqRp+rLsrY6+9zd5AmLHYd05uwoHGCjQ3gKyWiOrDdrqjgki8lb7syVtt093CTGNr3wTbz9+/lyjm5SziKXIcnr8ot7npCvBU7JaqhRlZjDR5YisrqSR8v55fxDl/pReC2FCVNI4uUX3upIaiMHEH9I1FF2YzLaJk8ZhbqS0RxPsvWfvSGTTVFIa+64GbLM3z9KOCidq2ITsr2PcbgvQVROsvd/7iYuvBnxWfkoP/yRDImfe+WvPTJ398etpm/eZK4IG1VM8Xor++TdJoERFhrlwpUYUzi+YmazXRGEGSKVoiG900OG/7z5V/zxH98Xc33NoGy/gzEKnabESHR///3GXzy6+ns91JGEaqzW7mH3GKivIF6bKrfqzBW+miAxCugReKz05Xcz8uArn2uaF+5uFClA6xi7RwIo7SjEl2zyhDlKETJSJ8htSlY2GFPuIYXWD8XI+xsWGiE/L9SfvmvuUyPo30HFW05tKHmbs/lzPUZTr+xiH1+s6S746ESSKndrFPPV31r3JP782D2oa6iUYf/uIvpU33z13FTv3zEak4S5XuQqrG12PwLvMwEmwASYABMYPgFPd8LwxxzyCKFh4YiMjkNEhPj1Iiw2TvwQEv8n7GhrQVtrM04cdfXC0hzbIJ3Oo3zIJxCAHWkJHlqahZbrIQuLTgMJFbOpGw1l+wY8YxI+Xa3Vco7t/Kv/IOdcZotEUu420HEo7HjmRT8TP/7n4LxvPImjnz8jEyNlzrhcZAO+SWY3rhdeRFo26II7/i2TI1lE0qKsmavELVRj6+s/lodcdtvzqC3ajsrjm2T/sJhM2ddstAse9/Ny39+09V2RaOdd9+Ih7VM4r1qEDirhvxS6Gxwag662Gkfm6P4GpoRO01f8SCbm6u5oQERctgg9tofFOvcb6DgFn/xdPGg4F9MuuFs8FMhBiZijm5Z3IfSGKJlQq6TgXcH+pzJTM83XLdzxEgwRSRg/73qUiyRRNJ83JCJRZqYu3PEyGisPIHn8YnltSgZs5XzcE8oo5fROc0JpjVTyolIynJ37PpXCNH/m+TL0dPue9TIT8fJzr5Ze1rfff1qGZ35r9S9w6/X3Se+Ns4eMyjaLxEnKfEYlbJOyKc8Xc3QpgRR5veYIz7uS4dj5fPrbJjFIc3FjRFjvqovuEJll62ViH299yutt6BDO0AWT1Xh0rWsLSvxFSbcoIzh5tOl7sOLbr2DZ7S/I6AHFm9UfN5pfSdzIs0kJskg4uS9jtH7Lm3KpmNtEpuj9h7eKhFg7kJ46XkQdnI+XxPxiJTMuiS8K6R4nvGLEh7Lq0rxM5+RZrlfgukcPEm66+h557ypECDQtT0MPFWgcxWjeNC2jRGYXJyrHkkm1Iks1JZW6+bqfSlFFYcuKV57anxThp5Tsyt/roT77urZgmmEBsvWTUdx7lIo8bKbhHFQYT6HH6v3fgUQROh4TrsK2o95jV/u7P3Swrbs/lEnP7rz5f7F973qRKKpYzqM9JryQdP8oOzTdv2XnrBKJ0oLk5zoxPlWKesrcPRhT5tFS4jOdmN9MGZJPFBU4vMcU3q8RWc6Vz0h68niEhkTIUHG6T/vF94MeHFFCtsPHd2GWmHPtbvQ5oc/+ufMvE2I0tE/4nm7lz/VQ4ieaR0+JqWgu+DkiUZa7UWbzotKj4vz3Iz4mRZ4ziXaj0S6Ilfbv77Ti6sUaXHWOGgdLvN+jKxdqZF7ptdtPP8RR+vM7E2ACTIAJMIHhEggoUZuQlIbcyTMc15SSng16lRYdl6LWUdG34fwD2r1urOwvuu4vIvNxmuNyaI1SepGv8o3fzBZ/vf+AcHQQG5TYaZkQmpTZlYwS4dCaq86hyQMeRybUuU0Ip8dlxmLKWkzWWlso3+nPF6/eI5IXPYbYtOlYKM7bbjY4zxUNEXNAp5z3HfmiekosRUmPFPHQ1+lLeVvyjSek4FYONuvi++QmzUdd98jF8kdof58xEuJ71v4Wcy7/H+Sdd6e9rxDEJDidbaDjkOd653//R2TgfRDZ4iEAvcgoEzIZsdkgQouJPa3/Sy8ySu51cudrcls0QpgQ1JRFua9AinMKWXY291BKlzoxxvNiyRZawoOEjCJmyJO4W8ypJE/j16/5MR0KL7z2kOxKHlN6yECeTFoihIQuGf3wpSVhLltxs9ynua/Kwwj64U7iiAQXJaGizzJlWqYwZiVUXZnz3h9/yu57+w33SzFCB6Fsy1ERcVIUyoM6/XllkwXfuliDORPU2FNo/87Qw5alNz8l7zOFbpNRZAMl2JoqMknTQyAldLt/blaZ/faGK78v1/IkzyhdL4X8WkQWYjLydq356HmRNfobmCseEtCLjLLtmvq8s7JA/NkokhURT3qRbdmxDp9t8+9BDp0niSUSKnazgZYXopByxSh7rZ27UgLHPnl413z4LEKCQ2Wlcg5Ky+df+5NIdFU0qOsp6j0Mym58bvjlXkVthi4XMcKTu6bhWeUwHu+3r9SIKwMef8/sUUcF/d0fqqcHMtGR8SLMfYnIkm3/ftFna/eBTVQtkjpViQcw74kQ+EtlFm4qI0/mq31L5tC+v/9G0ZJHJGLJe3rxstXUFY+98KBMzEXbq6/+kfwu0TbZSrkUlPi3VKxX+49nfo5PtrwFmmdN3vV5sy6QrGmOLM33VuzDja/gUnGPz1t4uSyie0LrHyvfG3+uhxI+UYh6WnK2iLa4Rc6ZpQcWzhYRFiOnBVCmaDLy3FPyOHcWlPX4YLEVs3LEutJB3kOQVy1So7XThs8PD/z/LOdz4G0mwASYABNgAv4QUMXGxtoomZKZ1oeNtocL+tNxtLQJEevYRkREgLId+2NLLslGW1ur4HH6B4Q//UZDG1rr1NTTLry1gwunc782yqgcmTgBnc0VQiB7ZhumTMi0TA8lL2qpOSHfnccIDouTywG11J4QS840OFeNym1aWzYuYxboekikD8fCYzNlOLavsYh9VFKu9Cy6e2HpuNSfsltTBmRlbeChnA9lF6bldNrF2pjOXj5/xvrJnX+Ty9s88q+fiR/MOVJs0jjuRl5NSvhUKTyRziG47u0G2ieRRh5fZbkZX+1fvl+H+lYb7nncLjR9tRtOOV0TCXryUpPIeEiEbLoLBRKdlHirsblG8h3O8Xz1pXBcWgeYMiAr4bC+2g633J/ryQ2eiZtif4hHau5Fs8Ue6qscd3XsjxGmicSTdb9Silzeg8Q0/lcf0GHfKSt+97J3UevSoZ8dejCTFJ8hl4Kqqi2VodnOzdViTjXdt06RoZgeRHyVRudK5xMmPP8/uOOPcr1jWvfY2SjMnUKCfd1jf66Hvushwtvr63rDxJJPiWJNY8WL73x8523ypj95TxDWbLPguY9d//9J69j+5mYt/vmuGZ/sY1HrzI23mQATYAKBSODUsRZkjY8UiWfF3JEh2qHtw/tNrBx29rIwZbPf9zEvavu9ei+VY1nUerlcLmICI05AEbUPP33viI89nAHT4lSgpUcKikb+RzWts0sipLD4gPBwz5JhnRTG655QZ6jnP3fmMrmubX/9aSmaT0SYc6Baii4bzWLpnm6ra/4DWse229qBDmub11PXiGma+cLDfrjUig5XR6LX9qO9kELIr73sThEWvVkmRKMwdHpw8OZ7T4LCpQPZJmfYl/ZxT8hGCaJyklXY3RclEcjXwOfGBJgAE2ACIlpwFIragAo/5g8RE2ACo5/AcLyuZ/LqaZ1TZa3TkT4OhVpTkiHK4kxGmZ1fevvhETsMeXUpxLQ/I09aIFuVsdjr6dWbPaM9nBvSEjA7jo/8gwjnYwTSNoVSU5SEErpPYdK0pFKgC1pieLSMgsQ9rblDhHoXeq/zbM0lTIAJMAEmwAQGT4A9tW7M2FPrBoR3mQAT8IsAeWrJy9Yhsjl/mVm4/To5bjTqCOhFJuIgkdSLPP5sTIAJMAEmwAS+TALsqf0yafOxmAATYAIBRIA8apTsh40JjAQBmovtPh97JMblMZgAE2ACTIAJjEUCvheVG4tXy9fEBJgAE2ACTIAJMAEmwASYABNgAmOKAIvaMXU7+WKYABNgAkyACTABJsAEmAATYAJnFwEWtWfX/earZQJMgAkwASbABJgAE2ACTIAJjCkCLGrH1O3ki2ECTIAJMAEmwASYABNgAkyACZxdBFjUnl33e1RdrVqjgyEySaz/OfyPqUarQ2TCeNCY7jaSx3Efm/eZABNgAkyACTABJsAEmAATOLMEhq8WRvj8dDo9cifPwMy5ixEVE+cyekxcAvIXLPV4BQV5ChWXjrwDtUqDiZGzEKGLGTU08s77Di695wNEJuYO+5zHz7sRF975BuIyZnqMNZLH8RicC5gAE2ACTIAJMAEmwASYABM4owQCStROnDIT56+8CtnjJyMxKQ0GQ5jLxRtCwxEbnwStELFqjcbxEq48l3bOOwaDAcnJyc5FZ+W2Tq3HirQbMTkqf9Rcf0dzOXo6G2Hsbhn2Offn7R3J4wz7RHkAJsAEmAATYAJMgAkwASbABAZFQDuo1me4cXJqJirLitDUWIdpsxb4PNrenZth7O3xWe9cERMTg7y8PFRXVzsXj6ptrTpInq/ZakKoNgJR+jjUdpeD9hXTqLRICElDt7kTLcZ6pVi8q6BT68RLL8u0TttmmwlWm1WWU38brI59KqTjmq1msWWTbdQiDFirCoLRapT7yYaMvuM1yH3n84zWJ8Bo6UGnuU3WDfaPWq1FacF78mWV53B6BK3OIJ5jqGDq7UR0yhQYu1rR2VJ5ukHfliYoGAlZc9FcfdSjTino7zhKG3qPSpqE0OhUNJYXoKfDfr3O9eFxWQiPzUJ9yW5xXh3OVY5tGsMQkYimykNSrDsqeIMJMAEmwASYABNgAkyACTCBIRMIKFG7ZeM6WMxmRMfE93tBGuGlpZBjk8kurvptPAYqb5nwALotHVLEknAls9jMePzIA3L7nKTLMCt2idymP13mdrxZ/CjajE1C6Kbia+PudtRRO6Xtlpp3UdD4uaz77pQ/4FjLHnxS+Zrczw6fgkszbsXa0mdR2nFMlk2InIkVqTdgd/0GzI5bKkKa7Y7+HXUfYVf9p7gh50fQq0OENLZI8U2dyjsLsabkX2LLLozlQAP8mb78h5i46BZHq/VP3YiWGvs5UOHF318DrU4cx2qBLjhCtqP6T55eDVufSB8/9wbMuvhnos7uxSePr7sNdBxqP2721Zh1yc9B4lexor1vYc97v5O7JKrP+/oTCAoOV6pRvO8d7F77G8f+BBH6PE1cE83rVezY58/i4IZ/KLv8zgSYABNgAkyACTABJsAEmMAQCZz+pT7EAUayGwlaf2zJBZfLZtT+xNEClJUU+tNtVLeJ0ScKD2mvEI+foLqrBFOi58vrmRI9T4rU2u4ybK39AIlC9C5IuBiXZ9yBl04+hMaearx88q/Qa0JwTfb3cLh5h0PItpma+mHiO6Q7P34ZqrqKsK9hMyJ1sTD1eW5psBBtqDi/Unxa+TqoXXroBEyInI7C1oJ+juVadXzrC6g5+QVy8r+GtCnLRaWnINbqQtHWUIy96/6AyefeIT2pOfnX4eSu1xCkD8PMi+6F1WISwvGfiIzPQdbMK1wPIvYGOg4llppz2S/lOKd2v46ivW8jY9olCAm3P3ShkOalNz8N8ggX7nwFdUU7MH3FD5E96yrUnNqGiiPr5THzzr8LVnMvPn/lB+huq0Xm9EuFt9dTZHucIBcwASbABJgAE2ACTIAJMAEmMCCBgBK1A51tb083Sk4dQ2tLIyKjYpGano3J0+agR5TX1VQM1H3U179V/JgUqXQhZR0n5PXMi18uJJ8Nm6reAYUTF7cfRWpoDjLDJkmBSeHITb21CNYYZHvy4tL+cIxCn98ufsLnEGvLnukLPW7HjcJ7Gx+cOihR29vVjLqSXUgct6DvGN4F9qbnb0dvV4sUiuff9pwMRaYO4+ZcIzMmF+1bgxPb/iPHiE2fIcODMlCpdgAAQABJREFU+waUbwMdhzy55Ok9sP5hKVqpU0vNcdmX/mTPWiU8xgZ5rqUH3pPl+z98COeufhS5C74hRS1lVg7SG9DRVCFDk8mTfGjjY44xeIMJMAEmwASYABNgAkyACTCB4REYVaK2vrYK9CKrqSpHVUUJFp13ETLH5UpRGxwcjKlTp7oQiYyMRHx8PPLzXRMk1dbWory83KVtIO+QN5S8ru5mEHNsVeK/63Puca9CjD4JleZTHuXDLShs3e9zCBLRNJeWTDlfZT6vz05DqDAbO6Wgpa4N5fbzIe8tWUT8OPlO3l7FGisOeIhapc7Xe1hMuqwq3r/Ga5OYVPtnjebtLv/mSy5tDJGJct9qMYrzK0Bc+kxc88td6GqtwUnh1T2x/UWX9rzDBJgAE2ACTIAJMAEmwASYwNAIjCpR636J7W0tMJtMMISGySqbzSbm2Z5OnkSFFotFzL20epRT2Wgymh/ryxp7avBWiaf3TxGXvvr1V67T2BNLeWtDnlpfZhHeYnfrL/Owe1t/960Wz1B15TjKvFrnsVRiSaPBGn2eyCgplTdTjrP1jZ+ioXSPSxOzyS7sqXDjc7chc9qlyJ59FchjPOPCn4AE8fa37nfpwztMgAkwASbABJgAE2ACTIAJDJ7AqBa1IYZQsbxPEDo6WuWV9/b2oqDAde5mWloa9Hq9R/ngUQVmj05zq1x7ljy5isjydqZWm0UWG7SnExo5t6MsyDRvV7HssMnK5qh7b6uze6eTJyxG1YnP5PkrXtXBXExHY6nw7mbKObLePKtNFYdEIqlrEJOSh8qjn/Y7dOnBdaAXCe+rH9iOpJxF/bbnSibABJgAE2ACTIAJMAEmwAT8IxBQojY0LByR0XGIiIiSZx8bJ0SW8JJ1CI9sW2szZuafI5b7qUe72A6PjEJm9kTZrrzULmL8u+Sx1WpH3cdYnnq9nLu6p2GjCPmtEfNpJyJLZC9+S2RAVoySTFmEsKUMxvXdlWLZnwY09taIJXnsy890iaV34kWm5KkxC8X82xCMi5imdP3S3ymcV60JghL+S6G7waEx6GqrQVt90YDnQwmdpq/4kUgOdSW6xfI7EXHZQpxmePQb6DgFn/wdybnnYtoFdyMiIQclYo5uWt6F0BuisOPtB1BS8K5ISPVTmamZlvMp3PGSWLInCePnXY9ykSSK5vOGiCV8lqx+TNS9jMbKA0gev1hemz/X4XHCXMAEmAATYAJMgAkwASbABJiAB4GAErUJSWnInTzDcZIpIhEUvUqLjktRGxxswOSpsx31FB5aeOwAqsqLHWVjd8MzAzBdKy3DExEUg7kJy+VyO8r1U4Zkd9tU9RaWJK/C0pSrZdXm6jU40GSfd7pB1NFyPUuTr5J1xe1HQMv60Nq17ubLI0z3w6byfp7uY/S3v+QbT0iPptJm1sX3yU2aj7rukYuFR1ocpy80WGnj/G42dmHP2t9izuX/g7zz7rT3FYKYBKezDXSc9oYS7Pzv/yD/8geRPXOVfFF/yoRMRhw2iNDiJasfR+qk8+WLymld3ZM77UsjiUYIE4KasijbzSbFOYUsszEBJsAEmAATYAJMgAkwASYwfAKq2NhYG807NdP6sNHRwx/xDI+g0weLcOJgMVfWjO6uzn7FDZ0KhR/n5eXho48+8uvMllySjba2VsHDHq7rV6eAaKRCtD4eWlWQ8MLWuyyzM5jToxDkVuHFJa/uaDdaWzYuYxZaak/A2N06rMuhMOSQ8ASfY+kN0WJZoVx0t9d79SZT/9DoVJkB2WI+O9ZXHhZw7swEmAATYAJMgAkwASbwlRA4dawFWeMjodF6zyvjz0kd2j68397KMWYvs+dOUvZ9vQeUp9bXSTqXG3t7QC9/rbGxEfv3+87W6+84gd/OhubeumGf5nCX+xn2CYzgAOQxpaWBRsLaxfxaevkyWh6oVqxT68sG6u+rH5czASbABJgAE2ACTIAJMAEm0D+BUSdq+78cz9ru7m7Qi40JMAEmwASYABNgAkyACTABJsAExh4B9di7JL4iJsAEmAATYAJMgAkwASbABJgAEzhbCLCoPVvuNF8nE2ACTIAJMAEmwASYABNgAkxgDBJgUTsGbypfEhNgAkyACTABJsAEmAATYAJM4GwhwKL2bLnTfJ1MgAkwASbABJgAE2ACTIAJMIExSGDMJ4oa7D1ramoabBduzwSYABNgAkyACTABJsAEmAATYAJfEQH21H5F4PmwTIAJMAEmwASYABNgAkyACTABJjB8Aixqh8+QR2ACTIAJMAEmwASYABNgAkyACTCBr4gAi9qvCDwflgkwASbABJgAE2ACTIAJMAEmwASGTyDg5tTqdHpk5UyCISwcJaeOoaWpweUqVWo1xudORVxCEnT6YHS2t+PIwV3o6uxwaafsGAwGREZGorq6WinidybABJgAE2ACTIAJMAEmwASYABMYIwQCStROnDJTClqFbV11hYeoXbB4BSIio9HUWIe21hpEx8YjPCLKp6iNiYlBXl4ei1oFKr8zASbABJgAE2ACTIAJMAEmwATGEIGAErXJqZmoLCuSgnXarAUemBOT06SgPXJgN8pLTzrqVSqVY5s3mAATYAJMgAkwASbABJgAE2ACTODsIRBQonbLxnWwmM2Ijon3egfSMnJgNpmkoNVotbBarbDRy2bz2p4LmQATYAJMgAkwASbABJgAE2ACTGBsEwgoUUuCtj8LCQ1DZ2c7KAQ5MjpWNm2sr0XBni9gMhn768p1TIAJMAEmwASYABNgAkyACTABJjAGCQSUqB2Ir14XjNDQcClsD+7fITy6cSDv7ZTp+ULYbkVwcDCmTp3qMgwliYqPj0d+fr5LeW1tLcrLy13KeIcJMAEmwASYABNgAkyACTABJsAERheBUSVqLRYztEFB2LdzCzo72lBVXoyY2EQkJqdL6hSGbBLhyc5msVhkmLJ7OYUuszEBJsAEmAATYAJMgAkwASbABJjA6CYwqkSt0diLIJ1OCloFe0tzAwwiLJnm2Pb29qKgoECpku9paWnQ6/Ue5S6NeIcJMAEmwASYABNgAkyACTABJsAERiUB9Wg667aWJqjVGoQYQh2nTcv7kId2oPm4jg68wQSYABNgAkyACTABJsAEmAATYAJjhkBAeWpDw8JFAqg4RIh1Z8li4xIBsVxPR1uLWJO2GWViGZ/UjHGYPnshCo8dEHNqExAWHon62qoxc0P4QpgAE2ACTIAJMAEmwASYABNgAkzAfwIBJWoTktKQO3mG4+xT0rNBr9Ki41LUkqf26ME9mDxtDuYuXCbbkdg9XLDT0Yc3mAATYAJMgAkwASbABJgAE2ACTODsIRBQorb45FHQqz8rKymU69TSPFpK/mTs7emvORobG7F///5+23AlE2ACTIAJMAEmwASYABNgAkyACYxOAgElav1FSHNoOzva/Wre3d0NerExASbABJgAE2ACTIAJMAEmwASYwNgjMKoSRY09/HxFTIAJMAEmwASYABNgAkyACTABJjAcAixqh0OP+zIBJsAEmAATYAJMgAkwASbABJjAV0qARe1Xip8PzgSYABNgAkyACTABJsAEmAATYALDIcCidjj0uC8TYAJMgAkwASbABJgAE2ACTIAJfKUEWNR+pfj54EyACTABJsAEmAATYAJMgAkwASYwHAIsaodDj/syASbABJgAE2ACTIAJMAEmwASYwFdKgEXtV4qfD84EmAATYAJMgAkwASbABJgAE2ACwyHAonY49LgvE2ACTIAJMAEmwASYABNgAkyACXylBFjU+olfrY+DShPiZ2svzVRqqIMToNZFean0ryg6MgK6oCD/GnOrQROIi4lGckL8oPv520GlAp75cRC+dbHG3y4u7R75bhB+foPWpYx3mAATYAJMgAkwASbABJjA2U4g4H4h63R6ZOVMgiEsHCWnjqGlqcFxj/JmzENIiMGxr2yYTEYU7Nmq7Lq8GwwGREZGorq62qV8MDskZiNn/xU9lWvRXfbmYLrKtqET7oQudh6EKobN3ImWXd8b9BgJcbG4/+5v4bOtu7Dmw08H3Z87+CZw8QVLcP4586DV2r8Ov/rzP9De0em7Q19NsF6PKy5ahim5OQgO1sNkMuNkcSlefed99BqNHv2vP0+D2HAVPt1n9ajzp+BomQ0X5auRGKVCbYvNny7chgkwASbABJgAE2ACTIAJjHkCASVqJ06ZKQWtQr2uusJF1Go0GqjFy9miY+LR0d7qXOSyHRMTg7y8vGGJWpCLbYim1sVAF7cQxsadQhS/B5ulZ0gjGYVIIqFVW984pP7cyTeB8xbNRVd3D15f8wE6u7rFq8t3Y6ea7Mw0LJgzA909PahraERCbCxm5E1CekoSfvf3J5xa2jdXLdJIMVpUMzRB+u9PzFiZr8NdV2jw4L/NHuNzARNgAkyACTABJsAEmAATOBsJBJSoTU7NRGVZEZoa6zBt1gKP+3Fg7zaXsqjoOMxfvBzlJSddykdmRwVNaKYQod3Cu9ruc0gKS6aXpbPEVbCqtFCptULQ2q+jp+p9WHtqAdvgvXQajRrtnZ34zV8fhdXqXRCphPCemJMFq82GkrJKGE0mn+fsrSIkJFh6GrVaDcZnZaC4rEIKPPe2YaEGZGekobKmDk3NLY5qe38TzGaLo0zZ0Ot0sInzcj4n8jwnxMXgZEkZenp6labyna5XJ/oo5RPHZ6O9vVMcU/AbhBGTzLQU6PU6nBLHcT43tVolyvWIjY6SId17Cg6juLxSnqcvxu6HpgcMz7/6Dg4cOe6o+u399yBGjEmhzA1NzY7yC+eoESwix5/93JOPVmcQz01UMPV2IjplCoxdrehsqXT0VTa6BKZjwls7LVuNIPFsx+Q5lPA2B0Gj1sBitYjrHdxnQDkOvzMBJsAEmAATYAJMgAkwgdFEIKBE7ZaN62Axm0HeV38sIztXNquqKPanud9tNCEpCJ/2KxEtHCz7WLo9Q5epTVje/VAHRTrG7al8V4QnvyX3DVk3Qp+03FEXMe1/5bbN3CHCj+9ylA+0QXM87/3+HY5m3sKP77jpGkyZOF4KI2oo9CMeefoFlFV4nrdjILeN3//8h1LEhhpOzxv+YudevPXex7IlicC7blsN8k4qRqL270++IMUw9T90rBDPvmy/fqUNvf/6Zz9AW0cH/vDwk0hPTcKdt9yAkGA7W6rfvqdAeklpm2zx/Dm48qILsGNvAebNmu64rs937MHb69bbGw3wN0/wuPWGq0DefTJisvbjDdj0xU65P33KJNz8tSvlNv1ZmD9Tvmj7wT/9Hzo6B/bW0vU7C3vqW1FVAxLh4eGhLqJ2uhCiZHtOeD6UuPj7a6DVhYgHFhbogiNku5aaY/jk6dXivF0fghyrsGJyhka81DhQ7FpHHb9x7U+QmpQtwp978NBj98ix+A8TYAJMgAkwASbABJgAExjLBAJK1JKg9dc0Yv5jUko6amsqhEfK/37+jB868W4haPVyDq2luxaGcTe7dhNJn8Kn/kImjqI5tub2EwjJvB7BqVfA3HoMptbD6C5/B721G6BPOA/65JXoOPY3WHsbhKN2cN6zusZGPPbcK9KjeP2qi6Un0flkcoRXNW/SBCmmaC6nRqvGeQvniYcDnoLHuZ+3bRK0x08WY+/BI1glROU582ZLwVlZXYuLzj9XClryPr7/yWYhPGdjXGY6Vl97BZ7692voFuG7FHbrbuTB1emCUCK8oCSMv3fbTdIzumX7bpw4VYLLVy6TIbx03ILDx1y6z589A9W19di0dafw6sait9fVo+vS2GmHjnPL9avE8dTYvG23FNQXnb8Yl1+4DPsOHkVrWzuOnjiFh596QXpUvy6ugco/22YXvF3d3U6j+b9JHuasjFQhTq0oLq1w6ZgerwLJ2cZ2T1FLDbW6ULQ1CPbr/oDJ596BqKRJyMm/Did3veYyzqkqe/8pGSohal2qXHaGHjDvMgzvMAEmwASYABNgAkyACTCBgCcQUKJ2MLRS07KlB6+8uNDRLVh4/6ZOnerYpw1KEhUfH4/8/HyX8traWpSXl7uU0Y5Ka4AmJBnmjiJHUii1PhYh6Vc52gZFzxbtwuQ8WVPTHlneXfKSELoPCgF7oRS15JG1iJfVaA/RtXRVSlHrGMTPDYvFKpMPtbV3yB4Upups4WGhcpfCgatq6+T2i2++69zE722j0YQnhUAlI2G2+prLccG5C/Dv19dg7qxpsvxvTzwvw4L3HzqKPz94LyZkZ8hyCg0mgU1GfZaeMx9/+sfTmCySKJEdPHJCeF1ngEKRKZnS7oJDsvy/76/Ht2++HksXzfMQtfWNTXjo0Wdku8H8yZs4QSZ9ItH83w8+kV3JM0zndd7CuXj3ow0ykRN5ss19MbxNLa2D8mx7O59bb7haXt976zd5VMdGqNDjmTvKpd2m529Hb1cLuttqcf5tz8lQZJcGYqewT9RmJ7l+DpR2VTUlCDWEo6W1USnidybABJgAE2ACTIAJMAEmMKYJjFpRmzEuVwgSExobah03iOZtmtzmklosFinQ3MtJtHkzErRk5vbTYtncehBwErXasEzZhjIay6zGcs/+Rx2c6LR35jfJu9lrvBjzZ0/HnOl5MmHR2o83So/rYI9OIlKxw8dPys3oKHt4NXlce3uNjnmuVNkowm8T42OlB/boiSKMz86U4cXzhIeVvL6URCk1OVGG/h45cRLXXLZSjkntfvSdW+W28icqMlzZdLwfEEJ4KJacaA9fJ++vYgeOHJOilubxngm7dPl5oJDnk8Vl2LBlu8chunttiA7zLkSpsdnYKQUtbTeU76c36b2VG05/EiLtYzT5mOb90aZXQS82JsAEmAATYAJMgAkwASZwthAYlaI2PCIKoaHhKD551OU+UXhqQUGBS1laWppMCORe7tLIeYcmX3qY23K+fW3aj/wJlo7Twkl2s41sKLTHqbgVkJD/5R8fxvIlizB9ykQkJybgO8Lz6Z7AyK2b910nzaV4hFVwLvTejUr3iZDly1eeL85hkgjpjRKewjaZCZjEcIdIckUeZzpXMjo3StzkbLQcjrsVlXp60t3beNtXjqMSYciKKdfj7e4qbYb6vmRhPi5YslBkpm7A48+/4nWYykYb4oUg1YtkUb1eItCtFs/rV4kwd3ebkGq/pqPl3h/KuLfnfSbABJgAE2ACTIAJMAEmMNYJeP5qHgVXnNmXIKq81O5NHMlTVpJCBYXbk1DR2EFRriHNZpHpmExryLBnR6YMycprkHNm5UDD/EOC8aONn8tQ3b898Zwc7Zx5swY9arxY/kixvNzxcrOpxR4+3SWWuqHQYRKpipF4tXvCbWgR81Qpu/EikXCJRCWF4CaJJFdREeEoF8mTyMoqquR7Rmpy39I5tHyO/eWcGVk2GsYfmodLNjEn2zHK9MkT5TYtvTOSNnfmNKy6eDmaRfjyXx571iHc3Y+hzIXNTR3eVy4n2S5qDxZ7l+eXrbgZP/r2Q7jt+vvcT4H3mQATYAJMgAkwASbABJjAmCQQUJ7a0LBwRIpleiKEJ5YsNk6E8oo5pB1tLWhrbZZlarFcSUp6tthvQndXpywbyT8kTi1dFdCEZcGQdRMsPfXQp1zicghT0z7YTO0iOdTXoBbhyr21G6HWRUKfeIGcZ2us/9yl/XB2UpMSER5mQJSYG0wWK4TkJJFdt1cISEpGtGjuLOERnYjPd+wVwrINK847R7Yrq7QLSbnj5x9K6ESJnChU9xIRTkv26ebt8n3H3gNYKZIt/fS7t+HjTVtlpmDKLHy0sEjW05/6hiYZbkzza2nO7eprrqDbBwo9Jtu576AUgOcvno94EQZMSZwo7JiyHVMYtZKZWDYexh8KnSaRPF7M973uiovk+r5LxFxachRT9uiRMlou6IarLpXjHhGJpxRmNP7OvQel51Y51vs7rbh6sQZXnaPGwZKhe1lnT1CjucMmX8rYzu/xsSki9DsCQVqdczFvMwEmwASYABNgAkyACTCBMUsgoERtQlIacifPcMAm8Uqv0qLjDlFLGY8plLTMKUGUo8MIbXQcfwS0BA9lLSazdJaJNWsznNaYtaHt0G8RPvknQsgulS9qR5mNe2s/pc0Rs1tvvEpmPlYGnCoyHdOLBNpPfvX/pGdwfHYWJozLkk1ornCp8Iiu85KsSBnD1zstY0PJnkgMkpEAVNaG/XjTFzLb8YRxmaAszGQ0B9c5KRUlZqI5tPtFJmFa65XqaQ5rwSF7VmPy4P7jXy/iO7dcj2mTc+WLxiFPMy3X4242H/Oe3du579Nxnn/lbdx+07WOZXqojJJGKQm33PtIoB6F/RfQtSp5uyhTtLM1t7S5iFrKenxQLMEzK0ftEYJM50avgWzJNDVChFZ9cp3Fd1M/xvHdmWuYABNgAkyACTABJsAEmMDoI6CKjY21UQgpLYsTHR09+q5ggDMOCQkRnt8IULZjf2zqArtHlNrSWrQ2S4/IYHw6gZL7GDJbcnASrKa2IWU3dh9vKPu0hA0JLF2QzmOuqr/j/e039+Pg0RP4zxvvCvGahtLyKpkh2L1/sF6PzPQUVIlsy+0dQ/eUh4UakJKUIJbX6XARf+7HG+5+iphjTB5oEvr+CMfhHq+//olRKjx5TxDWbLPguY/7EaY+Bnn8B0EIDVbh5ocGSKPsoz8XMwEmwASYABNgAkyACTCBgQicOtaCrPGRYqlQ+7S3gdp7qz+0vdVb8aDLZi8L86tPQHlq/TrjQTbqFmuO0msoZum2zwHtr6/N3CWX/+mvzZmuI69ouZdw40gxn/UXP/xOv4enpYAeeerfjjb0cIM8rr6sRyTjcs4q7KvdQOXkFe7vON76D+V6lGWOvI3nq2wox/E1lnN5bYsNP3/ONODSPs59nLcfW2tBQ9vAHl3nPrzNBJgAE2ACTIAJMAEmwATGOoExL2rH+g3s7/poXmlJeWV/TVBRddqD/VV7Mvs9UVE52OsZaDxf9WfyOEfLhi5KhzMX19e1cjkTYAJMgAkwASbABJgAExjtBMZ8+PFgb5Bz+PFg+3J7JsAEmAATYAJMgAkwASbABJjAaCYwGsOPh7e+yGi+W3zuTIAJMAEmwASYABNgAkyACTABJjDqCbCoHfW3kC+ACTABJsAEmAATYAJMgAkwASZw9hJgUet272NiYqDVatxKeZcJMAEmwASYABNgAkyACTABJsAEApEAi9pAvCt8TkyACTABJsAEmAATYAJMgAkwASbgFwEWtX5h4kZMgAkwASbABJgAE2ACTIAJMAEmEIgEWNQG4l3hc2ICI0BApQmBWh835JH+9+taPPStIJ/9VVDhtvgHkB96vs82gVTRm/0j9OT+OpBOaUjn0jPpTzBmfs9n3yCVDt9P/CNyg2f4bDOaKgx64KX7dLh8Pk8LGU33jc+VCTABJsAEmMCXSSDg1qnV6fTIypkEQ1g4Sk4dQ0tTgwuPqOhYJKdmIT4xBS3NDaiuKEV9XZVLG+cdg8GAyMhIVFdXOxefddtqlQYTIqajursUbcams+b6ly1ehdnTzsXTL/4ere1n5roXLV2GcRNyodFoUFVRjk/WrUUgrPkbOv5bCIqeiebttw/6fmckqDAzR423v7D47Ds1ZD4ydbl4p+lJn22GUxEdGYdLlq9GTuYUQKXCiVMFePW/jw5pSJs+EabUbyD4xK+G1P/L7JQ3YxamTJ+Bnu4urH3zdY9Da1r3ojfnPgRVvQKVqdmj3mQzoslci4sib8KJngKP+kAryJ08BbPnL0SI+Le6ualJfn862tscp9nVC7R22nDTMg3W7vD9eXR04A0mwASYABNgAkzgrCMQUJ7aiVNm4vyVVyF7/GQkJqXBYAhzuSGhoeGYv3gFEpPTUF9biYjIaPFjaIkUwS4NnXYo8dP06dOdSs7OTZ1ajxVpN2JyVP5ZBSAteRyio+Kh14ecketeeuFFmDZrttBcKiFCuqW4vfqmr5+RYw1+UNXgu/T1uOtyLSxW4NVNvkXE8sjrcKr3EFosjUM+Tn8db7r6bkzOnY3KmhKUVZ5EXGxyf837rTNmfAcqSxe09R/02+6rrEzPzMLtd92NxcsuQExcHBJTUr2eTlDtGsBmgTH9m17rqXBz+1rEaBMxITiw/+0blzsR5190CULDw9Da0iz+bU/G9bfcBo3W9XnrSxssCNEBl7G31uc95womwASYABNgAmczgYAStcmpmagsK8LBfdu93pNxuXmyfNe2DTh6aC+2fvah9IilpGV5bT9WCrXqINCLLFQbgdTQcY595Ro1Ki2SDVmI0sUrRX3vKpCgpReZVq1z7KtVp28/9Xfet7elY54WRlRvH4fKVOJ4meJ4p8Nbnc8zWp8gz5XGGYyp6BjBEUIkqhGkD0VSzqLBdP9S25KQnSC8TL09PXjx6Sfw2gvPwmwyIS4hEZFRUYM6F5UmGNqwHGjDJ0Al7pG7UT3EPRKVsp23NtRHpQ2FNmKiaOY7bNh9bPf9MHGoiWkqHCi2wmh2r7Xvj9PnIVITiy/aPUWiRis+Y+IekhkikxCTOs3eaZB/kxMzUV1bhmde/iOef/XP+OczvxzkCPbmNhGGbUpcBW3Nm0IMul5QIH3e0rPHyYcje3dsQ3dXl+9rtfYgqPYdmJK/Jm6495DcCuMpNFvqsST8Ct/jBEDNvHMWy7N4/YXn8fbLL6KuphraoCDMmOP68O2LI1b0GIFrFp/+NysATp9PgQkwASbABJgAEwgQAq6Pw7/ik9qycR0sZjOiY9yFmf3EjL09csMs2pBRiKfNJn54G0V82hi2WyY8gG5LB8xWExJC0uSVWsSP88ePPCC3z0m6DLNilzgIdJnb8WbxozLMOCEkFV8bd7ejjtopbbfUvIuCxs9l3Xen/AHHWvbgk8rX5H52+BRcmnEr1pY+i9KOY7JsQuRMrEi9AbvrN2B23FKHCN5R9xF21X+KG3J+BL06BFZYHIK2vLMQa0r+Jfrb5BgD/UmbsgILrvl/aKk5hqikSbK5xdSDfR/8CcX7/ztQ9y+1PnNcDtRqtQiTPyk/i/MXnyt/kNNJTJk+E9s2b/LrfEKybkJw8kqXtsb6Leg8+Ywos3OLmvckLJ0l0BjS7UJGeOp6qtahu+wtRz/DuFugT1zWt2+D1XQ6hNPRyI+Nadl24XCk1Pc9S9ONkyNVm0o8Rpy36vdIm7IcTZUHHYK2p6MRn/3n22irL/Jo76ugq7sd8THJ0Gq0MFvs33lfbfsrtxpyZLWm/bBHs0D6vO3e+jm2btogz3HytP7nw6rbDwFJ18IakgV11ymP66KCSmMRJgXP9loXKIWRUdFob2uVr8TkFCQk2b3xObmTsHfHdpfTrGm2IVOExbMxASbABJgAE2ACTMCdQECJWhK0/VlF2SlkZE/A7HnnCo9usfCIJQtRoUFp0fH+uo2JuhgxJ9Bo7RXi8RNUd5VgSvR8eV1ToudJkVrbXYattR8gUYjeBQkX4/KMO/DSyYfQ2FONl0/+FXrhrbom+3s43LzDIWTbTE39sPH94zE/fhmquoqwr2EzInWxMFmFC6XPQoSnsLqrFJ9Wvg5qlx46ARMip6OwdXBz+yITc3Hsi+fQ29WM6ct/iOkX/mhERe3vfv6C8DV7v8b6xio8/NT9yiX5fI+MjpZ1jfV1CBVzwGfkz0NDXa301IZF2D2VPjs7V1i60VPxXxgbdwHCwxqSfi108efC1HoExvqtjpaa0Cz01m6AqWkfDOO/ieDUK9BT+b6IRO2GNnKKFLTWnlp0Fb8IfdIyMZ92ltDEFkd/fzcmpdu5nKzyLWoTg9Llw4tua6fPYcNjs7Dnvd8hNm0asmZeiZkrf4bNL97ps717RUVVESaOn4nrV92Fl956xL3a732rYbxsq+4u8dnnTH/efB7YqcJoPP09cir2uqnuKpHl1tDxPkVtvakKNO/ZoA5Hl7Xd6zjeCu/7wSOICLN/tt3rLVYLHvzTbRiJ709wiH1KQHtrqzzMyitWSQ+1Xq+HUud8/KpGG7ISVUiIUqGuxfdn07kPbzMBJsAEmAATYAJnB4GAErUDIe/saBdeseNi3uIUREyLkc0pXLmhzp4EKjg4GFOnTnUZhpJExcfHIz/fNZyttrYW5eXlLm0Dfeet4sekSKXzLOs4IU93Xvxy4cuzYVPVOzDbTChuPyrCk3OQGTYJJDC7zZ1o6q1FsMYg25MXl/aHY7Xd5Xi7+AmfQ6wtewZGSw86xbFuFN7b+ODUQYva+pLdOPjp/8ljjJt9DcJjM3wer78Ks8Ukq41Gu5dfabt52zrpZVX2nd8rq4udd31uh4WHyzoKFb141dWwCG/iR++uwepvflvMBw/12c+9orv8HVlkz1Ycg97qDxAUNVWGIjuLWqupFV1FL8i2vTUbhPi9SnhuU2BuP4XgpOWyvOP4P2DpKoep5QCiF5Cn17twl419/MkUwoGssNLqowUQr01Fi9k1iZt748ObHkfR3rfkK3P6ZQiLEV5mP+28hZdJQdvT04UpuXMwI28hCg5vQ1b6RCw950r8+7W/wCqiNPwxq8HuVVb1VPhsPpzPG51TfGyKz7F37d/os26oFeq+a1Guzds4TRb79zxOm4wyo/+iduPnaxATneBtSHR3d8jykfj+RETaQ/R7e3tFroQlMlHUO6+8hMuu/RqCdJ4h+BUNdiFLD11Y1Hq9PVzIBJgAE2ACTOCsJTCqRC0lkCJBW1R4BFXlxSKZSqII88yHWmSdPbB3mwwBNYk5jc5msVhgtVrhXk5lo8nIG0peV3cziDm25HG8Puce9yrE6JNQafYemujReBAFha37fbYmEU2Clkw5X2U+r89OXiqqC7c4SjubK4SozXTsD2ajs8v+I7ytvdml28ebPLPKujTwY8cofoyT5U7JQ6x4cLJeZD1Wq+2C0GTy3+umjZiEsIl3y/mwzoel+bHOZm6zP8igMhKuZCqNvY06mESIzVFOdZbuamhCfIstauPNWuzIEC88Yh01diHh3q7D2oqkoP4fNJQUrHV0M/V2iOQ/9nndjsJ+Ni4492pU1ZTgyf/8Fg/c8yiuuezbKCk7jozUCRifnee3oKVDqEx9iay0kQTF61GH83m7YuXNSIz3Ldh3F2yS/zZ5PfAQC21BdkGoMvZdm5dxQtX2aAG6V4Oxnfs2DNh8JL4/lN2ZjB4OZeWMx8njx+ScWrWYq24yu/47Tu2iw+zfrVoRhszGBJgAE2ACTIAJMAFnAqNK1FIiKUrEU3jsgLyGzs52UJIoyoZMSXvoiX9BQYHz9SEtLU1kvtV7lLs0GgU7/S3D09hTg7dKHvO4CkVcelT4UaDT+BYg5Kn1ZRbhLXY3SsYzWCMRpBjNmx6qbd31oRRH7l69H9/5EDQidN2bFZcfx5trn/RW5VLW1hc2mZ6VjdrqKhSdOA7KYEvW2XH6/GWBrz8i0Q8JWgo77jz5L5hbDwkVpkXk7L+IHm5eVhF+ftrcftiL+eV2oz7O26d7+Lt1rNyKpdPVMllUsQ9RW2sqwzj9FFCCMZrf7c1c76E4J7fL8daHypIS0sXySFocO7kPZiFunnvlT/jOLQ/iOzc/iNKKE+IBlf8PDGg8TV9UgzUkG5reGiryMNdzHdzn7blXH0JwP9m1z8TyTjSXlkzdefpBhyxw+kMeWrJmc51T6cCb37jux0iKT/PasLu3SybsGonvT3tbmzxGfGISTCL0euOH78t9ekhp7PQMa0+Lt3+ACiuVz7fXU+RCJsAEmAATYAJM4CwkMHi18RVCCg4OkeLV+RRUIlEPzaulH0Jno3WaWxGhi5HzWknEOr+ceVj75lYatPaQWec62ibRR/N2FcsOm6xsjur3+sZqeA3/pCRj4sq8vSiM2B+rKC2VzUi0fPjfd+R2zsRJ8r28tES+D/RHo4+XHlpj3WYxf3YLrMZmBMXMGqibR71FzKUl1agJzXDUaUKSHNuD2TjclyAqJ9n3Pw+1Jnsob4yGPMQja93ddkEzddI8OXB51Sls+uJdREaI5bmmLMCxwn2DOqC666RsbzVkD6qfv43bO1pAnzNfL3/HGUw7JezYV5IoGishKA2tYrkl+yfd/9HpIZK37wWVOb4bI/D9oe8NiVmyDULQUvQMPRSiB5QNtZ4PHxKFc7pHPDOz0omwMQEmwASYABNgAkzAiUBAeWop2U5kdBwiIuyhdbEivFj8wkFHWwvaWpvRUF8D8tZSyDElioqJSxBLp8SgurJUZk12uq6zZnNH3cdYnnq9nLu6p2GjCPmtEfNpJyJLZC9+S2RAVoySTFmEsKUMxvXdlWgxNqBReK26zXaPYpe5DfEiU/LUmIVi/m0IxkVMU7qO6veffveviIqKw0cbXsOWHXZPEF3Q35782bCvi+Z4t7a0yOV7ZuTPlRlcKRSZvIvktfXHLOJ+2cTDCF3sPBib9ojlesYhOO1Kf7q6tOmt/kiMMVd6fbtLX4Mu8Tzx3RFf7yEkiiqvt6FDROkumKzGo6cjiF2Od7xnn0wUNTN0Mda3Dj+U23nw1vYmkFBMiEvF7Tfeh01b16Kjs1WKMwq1LyyyR2o49+lvW2WsFx7Nk2JZnysQVPVyf02/8ro5CxZBK9Zo1Yk5pZRZm+aaku38YotLCLM58XJoRAZklZi37s1CRXKoDN0EbGr7r7fqfstefPPhfuupciS+PzTOKfE9mTR1GqbPniMfTC65YAUVY/f20wnSaD9RhMLHhKuw7ejgvOjUl40JMAEmwASYABMY+wQCStQmJKUhd/IMB/WU9GzQi7Ibk6g9enAPrGKObHJKpniiP1626+xow4mjriHHjgHG1IZ39wQtwxMRFIO5CcvlcjvKJVOGZHfbVPUWliSvwtKUq2XV5uo1OND0hdzeIOpouZ6lyVfJ/eL2I6BlfcTCMO7DiB/XnmXUSC6xpPJ+nh6D+CiwWe1eUtsIzXmmMFYSQvR+JmztG6/ium/ciplz7V5FmsP93ptvDOpQ3aWvICRrNcKn3Cf7mZp2C2/tHAHUlbN37vY25vZC9FR/KJYGugihuXeJccSdMzaJqObIQZ2L0viVTRZ862IN5kxQY0+h63lQG8p6vLPjU8wPXYENbW+7hCB7+8wo4/r7/tR/fodvrn4AOVl58kX9quvKEBedhFUX346jwlvb3eMZouprfH3JI+jO+wesoROFwD39wGGkP2++ju9vef7CRS5Nlc8ViTwlO7wlYiaswekIKfy1S1vnnXlhK+RDh20dHzoXB9z25k8+lvPRk9PSQS+y7Zs/Q3Oj61zh21dqpPf48ff8i6IIuAvlE2ICTIAJMAEmwATOKAFVbGysjX6I09qv0X1LlJzRI47Q4GHhEWJ9WiOUtWt9DRsilo2IEMurULZjf2zJJdloE+smms0Wf5oHUBsVokUoq1YVJLyw9S7L7AzmJCkEuVV4ccmry+Y/AVreh7xr9X5+zryNrAnNBC3JQ57boZpKEwx1SLJY07ZsSF5a5+O+fL+4nlYb7nncc540tSNv4L3J/8C7zc9ib9dm564jth0RHo24mCRU15YNSsR6O4GuOe/IOajBx+wPD7y1GQ1lJM5tQbEw7L/J6+mqocH9KY/Khw6ftA3uAYvXAb+EQppaEiOSrVVXlLt4pOnQQWJmyasP6LDvlBW/e5lF7ZdwO/gQTIAJMAEmcJYTOHWsBVnjI0WST3s+i6HgOLS9dSjdPPrMXhbmUeatYNSKWm8XMxJlo1fUjsTV8xhM4DSBtDgVYiNUKCjy9NQqreK0IsmPSA5GczcD3Wy6ONi0UWJdV/sc20A/X1/nR/NpVWJ5J0dWZ7eGIssAknSZaBDr1BptzsnF3BqOkl2NmNqdLyIGDpda0TH05z2j5Gr5NJkAE2ACTIAJfPUERqOoPTMxmV/9veAzYAJMYJgEaF1QZW1QX0M1mD0T+vhq+1WXq0QEAr1Gu6m7ivq9BKsIPK4yFvfbZjRVWsQzlR3HfT9YGU3XwufKBJgAE2ACTIAJnBkCvtObnpnj8ahMgAkwASbABJgAE2ACTIAJMAEmwARGjACL2hFDyQMxASbABJgAE2ACTIAJMAEmwASYwJdNgEXtl02cj8cEmAATYAJMgAkwASbABJgAE2ACI0aARe2IoeSBmAATYAJMgAkwASbABJgAE2ACTODLJsCJotyINzU1uZXwLhNgAkyACTABJsAEmAATYAJMgAkEKgH21AbqneHzYgJMgAkwASbABJgAE2ACTIAJMIEBCbCoHRARN2ACTIAJMAEmwASYABNgAkyACTCBQCXAojZQ7wyfFxNgAkyACTABJsAEmAATYAJMgAkMSCDg5tTqdHpk5UyCISwcJaeOoaWpweUiklIykDVuIvQhIWhvbcHJE4fQ1uJ7HqzBYEBkZCSqq6tdxuEdJsAEmAATYAJMgAkwASbABJgAExj9BAJK1E6cMlMKWgVrXXWFi6hNTs3A9NmLYDL2or62CkliPy4hGVs/+xAd7a1KN5f3mJgY5OXlsah1ocI7TIAJMAEmwASYABNgAkyACTCBsUEgoMKPk1MzUVlWhIP7tnulmz1+iizftH4NDu7fgS2froNKpZKeW68duJAJMAEmwASYABNgAkyACTABJsAExjSBgPLUbtm4DhazGdEx8V6hh4qQ5LbWJlitVlnf09MFesUnpnhtz4VMgAkwASbABJgAE2ACTIAJMAEmMLYJBJSoJUHbn1G9Th/saEJeWpqDq1IFlMPZcX68wQSYABNgAkyACTABJsAEmAATYAJnlkBAidqBLrVZJI1KSEqVntmGumpkZOdCrdbIbiRw9Xo9pk6d6jIMJYmKj49Hfn6+S3ltbS3Ky8tdyniHCTABJsAEmAATYAJMgAkwASbABEYXgVElao8f2YfYuETMnrfEQZnCj/X6ENhsNvkymUyOOtqwWCwyXNm9XAlhdmnMO0yACTABJsAEmAATYAJMgAkwASYwqgiMKlHb1dmBTZ+8i/iEJATpgtFYXwPKmKyKVEnovb29KCgocLkBaWlp0oPrXu7SiHeYABNgAkyACTABJsAEmAATYAJMYFQSGFWilgibTUZUV5ZJ2EFBOhmKXFVRIvf5DxNgAkyACTABJsAEmAATYAJMgAmcXQQCStRSduPI6DhERETJu0ChxiILFDraWkTW42YEBxuQlpWDxroakTBKj0l5s2W7osIjZ9dd46tlAkyACTABJsAEmAATYAJMgAkwAUkgoERtQlIacifPcNyalPRs0Ku06LgUtRqNBjkT8uSLGlE25F3bNqKzo83RhzeYABNgAkyACTABJsAEmAATYAJM4OwhEFCitvjkUdDLl3V2tmP9ujcQYgiVgpaSRA1kjY2N2L9//0DNuJ4JMAEmwASYABNgAkyACTABJsAERiGBgBK1/vCzWi2D8sx2d3eDXmxMgAkwASbABJgAE2ACTIAJMAEmMPYIqMfeJfEVMQEmwASYABNgAkyACTABJsAEmMDZQoBF7dlyp/k6mQATYAJMgAkwASbABJgAE2ACY5AAi9oxeFP5kpgAE2ACTIAJMAEmwASYABNgAmcLARa1Z8ud5utkAkyACTABJsAEmAATYAJMgAmMQQIsasfgTeVLYgJMgAkwASbABJgAE2ACTIAJnC0EWNSeLXear5MJMAEmwASYABNgAkyACTABJjAGCbCoHYM3lS+JCTABJsAEmAATYAJMgAkwASZwthBgUevnnVbr46DShPjZ2kszlRrq4ASodVFeKrlorBCICA9DckI8dEFBAX1J156rwYs/0yFIM/jTNOiBl+7T4fL5Q+g8+MNxDybABJgAE2ACTIAJMAEm0C8Bbb+1X2KlWq1BelYOkpIzEGwwwGQ0ora6HMUnj8JqtTrOJDjYgAmTpyMyOhYd7a0oOnEYba3NjvozsUFiNnL2X9FTuRbdZW8O+hChE+6ELnYehCqGzdyJll3fG/QYX0aHuJhoTJmYg537DqKnp/fLOOSYOcbk3BzcdPVlCDXYH3ysW78Jn27Z7vf1abUaLJo7C8dPlqC2vsHvfkNpqFIB1wlRW91kg8ky+BG6xEejtdOGm5ZpsHbHEAYY/CG5BxNgAkyACTABJsAEmAAT8EkgYDy1oWERmJQ3G0E6HZoa6hAUpMP4idMwe94Sx8lrtUFYdN5KJKWko6WpATEx8Vhw7oWgvr7MIARycnKyr2r/ykkFDNHUuhjo4hbC2LQHbQceRNvBXw9xpDPfbebUSVh18XKkJCac+YONsSOsXLoYwXo9XnlnHR556t/Yunv/oK7QEBIi2S9ZkD+ofkNpfO1iDfTCkfz8+qEL0pc2WBCiAy5jb+1QbgH3YQJMgAkwASbABJgAExhBAgEjant7urB9y3p8vvF9HNy3HZ998q70wMbGJ0GnD5aXnJKeLUSvHnt3bsGh/Ttw5OAeqITgzM6Z5BNJTEwMpk+f7rPed4UKmtAsETKc6LuJqKGwZG3EJOGEtZ+jo7FKK8t0cQtkUU/V+7D21MJmHJxXOSQkGFqtFmq1ChPHZ0MvRL83o3BX8hamJruer0ajBo1B785G4wQHizhSYeQlpDZBfSGzBrFN+/QajJGoo3HpXCdNGAfy/HozumdZ6anyeujYitH5+ArbpXbK+Srtw0INmDY5FzFRkUqRy7tyPlRIbaZOmiCFp0sjP3YS4mLlcbzxUDilJCWgqaUFh44Voq6xyW9PN7GQYwTbWQfptA72dM+U+0ftvBn1db63yucgPTXJW3NZduVCDTq6gf2nTkdAKI11wRHQaHXie6VGYs5CaHUGpcrl/YsjVvQYgWsWu36unBvpdcHi8xAsv6PO5bzNBJgAE2ACTIAJMAEmwARGkkDAhB8bjb2gl7M1NdQiIjJaii1jb4/00FqtFjTW10ClVgvP7izZPCEpFShw7jm8bU1ICsKn/cohVC3d1R4DUpuwvPuhDjotqHoq3xXhyW/JtoasG6FPWu7oFzHtf+W2zdwhwo/vcpQPtPH7n/8QDU3NiI2OkuLAZrNhx94DeH3NB46uN11zGfJnTHXsd/f04P+eflGGsUZFROCBH34HHZ1d+N+H/gnqn5GWjHu+dQsam5vxh4efxDWXXYj5s2c4+t9+0zWO7d///QnRrsWx39/GL350pxAxQVIQKUKrqrYOf3/ieVgsdgGVN3E8br3hKiHE7GJWnA7WfrwBm77YiV/88E4Zav6rP//D4zDfu+0mZKal4Ce/+pMUfd+/fTWSE+Md7apr6/H3J1+A2Wx2lP3qp3ehS7CwWCwOgU3nce+v/+xo098GCeF7vn0zwsNCHc0OC9H6zMv2e0yFdH8Ui4+Nceyv/XgjNn6+Q6ny+T4+OwPfvfVGRz3dR+Verv9sK5oE++tXXYKX3lqLPQWHHe1oIzIiHHSN24RX+I13P8SlK5Zi2eIFgr+9mdFkwpP/fg3FpRUu/UJFhPSJCgHei135s8/Q0VSO0OhUeR9tNitK9q/B7rW/8Whd02xDZoJ3sR0RFo27v/n/ZJ/1m98Qn9lPPPpzARNgAkyACTABJsAEmAATGAkCvt0sIzH6MMYgz1RicjosQqR0drTLkWg+bXd3l9zOyc2TocqNQviS93YkLXTi3ULQ6uUc2s6T/xLe2FjX4YUXK3zqL6DWhsk5tu2H/wBzxykEp16BoMg82ba7/B20FTyA3uqP5H7Hsb/J/aGEH5PH8+DRE3jxzXfR09uLBXNmOOZuXnDuAimC6hqa8Nwrb2PjFzukN/K7t94gj0uC9M21H0lhdvPXrpRe2TtvuUGIRwv+8a8XZZt16z/Dw0+9gG277CGz1J726dXS1ibb+PuHvMqtos+/X18DEpoUynzxMnsIOXlwb7l+lfDkqrF52268t36TEJxmXH7hMinQKqtrERYaKsW7+/ES42PR0mo/l2+tvk4KWvKKkmgjNiRwaU6ru0VHRiBKiD8SfnROxWWuAs+9vfP+bTdeLbkdKyyS7Fvb2pEnvL0L82c6mv39yeclJxLLJEAVbtv3+PeUpbisUvZ5+sU35Jh0TcoYG8Sc3IIjx2X5lNzxjmMqG9OnTHT0SU1KBH0WjGIu+tvrPpYPPoJEuP4dN12rNJfv2UkqkAytbPAuaqlRWEw6Ko9txI63H4C5txPZs66C3hAl+zv/qWq0SQGdEOVd2CptyevLxgSYABNgAkyACTABJsAEzhQB7ZkaeLjj0nzaEEMo9u/+3DEUzbPt7GiDITQMORPycGDvNkTHxiM2LlGETGqlAHY0HuKGSmuAJiRZiNQiR1IoErUh6Vc5RgyKng2VELTGxp0wibmyZN0lLwmh+yD0yRfC1HpYJITqEOfTAauxRdZbuiph7R1aAiDyvD7/6jtynHEZ6Vg0bxbSU5Jw7GQxlp4zX3hfIT23JrMJ+w+1ISczQ3pjyZNHQowE3VQRpjsjbxIyUpOl6CUB3N7RKcckLy69csdlyf2augaUVXh6p2WlH3/+T4jltvYOEYp7An9+8F7MmZEnBWzexAkylPrEqRL89wO75y5EhN2SGDtv4VwcOXESuTlZIO9lV3cPSHy/++EG7Dt0FNTuWGGxDE/OykhFZ1c31n/2hTybT7dsk+c+RYRfe7PHn3/VIWb3i7H8tRQhFLvFeTz1n9dll8rqOtz3g29i8fw5kikVllfW9A1nQ7d44DBYbuRZpj6UNZmsvb3TYwx6kEHedbJvrr4WUVER+Mujz2KiYEX3/vjJIqy+5gpZv+6TTfh8x165nZaSCBK79KqsqZVlE9PsArSs3reoNfWIz8wbP5Xt4zJmISf/OkQnT0HNqa2yTPlT0SeMJ6WrUNfiOp7JbBQPROyf9+aWOqULvzMBJsAEmAATYAJMgAkwgREnEJCiNiUtC+MmTEFZcaHIgFzhuGjy6pF4nT57EZqb6lFdWYq4BPuPfasIMQ0Wwmfq1KmO9rQRGRmJ+Ph45Oe7JuCpra1FeXm5S1vaIUFLZm4vlO9yu/Ug4CRqtWGZso4yGsusxo6WYo7tAHNwnZr6vUliSrHyKruIMvRl2aX5rxRu+v07VitNHO8kYA8KUUv2zEtv4Lf334NoEVJLwo68m2fCzGaLFLQ0Nm2TIFfmoirhwseFGFfswJFjUtQmxMVILzMlqqK5r1rN/2/vPODjqq78/5vRaNQ10qhXy73KVa4YN2wMpoTQ61Ky6W2TTdlkW/afsptks6kESAghCQRCQogxkBDAYFNsg5twx92yrN7LSKMp/3vu6I2myZZsWR7Lv8Pn6d3+7v0+4Y/OO+eea9HW6IVzZ0LcaEVkzsXKBVlEogx/4eP36bTxQxS8UJE5DMY6a/QXC69wraqtM4q0O7dYZA0F1F9xnhOnqmuV67VysVci+6bFi0HmV6g+bLS1qw8nHi/s6T43+PI9PsuutD1yrEIrtPl52X6ltq5FaoB0nw7ty4T8bK7uG6Opaq+utSb0udkbzdOTfQpyjXJDDhVHVwd+9ti/hhYzTwIkQAIkQAIkQAIkQAJDTiDqlNqsnHyUzlqgj/PZt9tnBTVW3a321coeW9kXuvG1dbo4Li5Bu9JKmVw9vQqQ0Uf2U8qRQKHlgccEGW31PZJmhBD3yd42bXu/C3d7n4Lm69+3pzNo3HPI9ATsEwXCFYim5hb8n9q3GipizTQkLztbWWh9wYjGjCrSipHwGk4xnmdSbsiGGAGQZCZiOXY6eyDzE2Vd3I0L83JhWGDFNVf21Ypse38P/vJS8D5NT4T1iNJ3NuKfq2i2IWLUhRSft6y4PwsTsRCLyIcCOf5H9vruOXAo6LkGT19h79wDXvOe4769zf3thZV+bld335gBffsKfanCLN/4BytP0yi0E/MkQAIkQAIkQAIkQAIkMMQEQrS1IR59kMPZM7L1ET6yT7Z8W7CrowzV3ORzZzx0QJ2jqvbWaotVRqb/nNpu5aZZXl4edB06dAgNDQ1BZdKmsrIy4uyMoFCxKehNU24AADZASURBVBP89bFpwdZfV8cxXWdJLIbX7Qi+PD6ror/zeU6Im25KstrbqxQdUWIDL+PREjn4Uw/coZX7V1XwIbE0yv7aUDGU53Tl3nq2Is+SPawikha3YXHhFZE9tiITx47Wd/kxfbJvX2htfYMuE9fnLGW1TVMWdjkeRwJKyT5WWZe46h4/eUq3y8vOClqr1BvP0Q3O8UezsnCLjpybnekfSZ4pAbAMt21/xRAkDPYpKUlho23f5XOZvnrF5ahraMKhoyewUCm18vsvgatEGhp9bu7iYm7I2JIinZS9yoZIxGI5mzYnPVxZN9oM9J6jttl2qV93ZSgOk8SEZHzhY9/X16Rxs8LqWUACJEACJEACJEACJEACQ0Ugaiy1sk+2bOFybW2tVS7HcnyPIfW1VejucqDi2CEUl4xHdm6hOsu2BkWjxqmgQzHKTXnoXGlFSXV3nkRMcgkSS+6Eu6sOcflrjKnoe0/jDnh72pAw6laYlbtyd83rMFttiMu5Qu+zdda9FdT+fGZkP+n1q1fg377wSWzY9B5OVFZhxpRJ+ric7/70l/rRsjdVlEsJNLX9/b0YPapQ76+VKLtby3f7pyd9Ra5dtUwfzSPKm1hHB2uZ/NxH78HLr7+F5Yvn6/G27vQ9Q6yK4kose2Zvuf4qrRwuUXtpRXnc8M57uu0Hh4/q/aPiNnzwyHFlrW3RLtOyD1dEFNvDx05gbEmxjkwsEYZFIZw/e7pW8mSv8FBJxakqvQf5U/ffoVy292P18sV6aAlyNdQiCrl4D0xSxzatWrpIuTo3qL21p9S+1DYdgEp4iBu3nH975HiFPmJI5mAEknpt4ybMnj4F16xcqqKFW7TbcZ4K0iXKvkSgDpTdxzyYOdaM1ESg1Rd3LbB6QOkcFRzKnmLCpn3hxwLJAJaYWOUi7vs4kmbri1I9oMHZiARIgARIgARIgARIgAQGQSBqLLUJiclaKRHr0+TSOZg2Y57/Skn1RV5tb2vBnvJ3YUuzY/7iVVrxPXZ4v9pbe2IQSz5z0/YDP1aBnjpV0KfVSBx9NzyO3mBA6ngTn3jRuvubOvBTXM4ypE7/LyRP+iIstimqn28P65mfMvAWXqXshIrsoxSRo3DeeXeHih6cig9ddQU++5G7sWRhmarx1S9dNFe7ropyKgqtyCO/fQbd3U7c/uE1QftD5egXsfyJJffm61ZDov/2d9asHijCD1E6xS1WjqGR811FUf7r+o26pSjHjyulU/alSgThK5ddpi2fEjRKAkuJ7Oi1Sp7s3Tu894PDulyCSBnyqyefxbGKSu2KLMcDffTuW5SSN1EHlzLaGPcIRkSj6ox3masE2ho3epTmIesq37NfRRbuJ7LxuTxMzebFVzeonyZcfcUSfezRgoAoy7XK20DknXe3Y59iIgqwBJDq6vK5CsveX/mQIGcNy0eJWaWT1QcEJx7tjaqsO/f++Pk6ZapV8sDqyN+0vCoydqjI0T6B8sDqGP0b9tALrsBif1ptBvCnmSABEiABEiABEiABEiCB80nAlJGR4ZV9p6KMpKenn89nDdnYovgmJaeis0OC5IT/AR74oMLCQkydOhUvv/xyYHG/6WkL+gLiyFm0XreyoDkb+22voyXH58LT03rW0Y37HXwQFcKkIC9HW1gl0q2h7AxiiHNuKoGoRNmS83AlQnFjU4tWCiMNLEf9WNWZtuJOPFhLsDGeVSlwEizJpQKISTAlsWaeDxF36uysDBxTx+8YQavOx3OGYkxxj5agUhLN2nDpjjTuN++1YHKRGbd+2xnRfThSH6MsVh0x/PTXrdhx2INv/T6yUmu05Z0ESIAESIAESIAESODiInB4fzNKxtlUgN6z3662e3NvdNJzXPrsFaeJbhowdmRTTUCDaEyKEiRW24GI7KfduXPnQJqGtXE7fPs3wyoCCsSiK8f/XGgRJoZ1c6jn8h///Cl1fqzyVe1HXOqjyNe//UN/rcxFrL6nk1CX2NO17a9OFExxxR2sfOTOm7R79un6/eJ3f1R7V4/rJuICLNdgZbDPGez4kdqLFXwgTL7/R5dWapUOjDN8Fwp7jDgJfO8ZF4ygU2ENWEACJEACJEACJEACJEACw0jgolRqB8PH4ZAAQn1RgAfTl219BA6ro2Fsqf1/JenptZD2G1E6ykAeVa7LcXHW085qKIJBDddzTruQfiplL+2WA8Euxf00DStWevNZ9w0bjAUkQAIkQAIkQAIkQAIkcI4ELkr343Nc82m7B7ofn7YhK0mABEiABEiABEiABEiABEhghBG4GN2PoyZQ1Aj7XeBySIAESIAESIAESIAESIAESIAEhoEAldphgMxHkAAJkAAJkAAJkAAJkAAJkAAJnB8CVGrPD1eOSgIkQAIkQAIkQAIkQAIkQAIkMAwEqNSGQLbb7bBY1JklFBIgARIgARIgARIgARIgARIggagnQKU26l8RJ0gCJEACJEACJEACJEACJEACJNAfASq1/ZFhOQmQAAmQAAmQAAmQAAmQAAmQQNQToFIb9a+ob4KJlmTEmE5/tLDJZIbNmoEkS2pfR6ZIgARIgARIgARIgARIgARIYIQSOL2GNIyLNptjUFQyFrl5xYhPTESP04maqgocPbQPHo8naCaZ2XkoKBoNZ3cX9u3eHlQXmklUY9lsNlRVVYVWXVT5lNh03Dvha3in5iVsr38j4tyvLLwD41JnwKwU2263A7/c/58R242EwgmTp2D2/IVIUO+3qbERr764Du1trSNhaVwDCZAACZAACZAACZAACZDAIAhEjVKblJyKSVNno6O9FY31tbBnZGPcxFKk27OwdfMbekkpqWmYWbYYiUnJOj8QpVYCP02dOvWiV2pd3h60OhvR4qyP+HqTY22YYJuFQy3l2KaUXqenK2K7kVA4ZsJELL9qDVyuHjQ1NCAnLw+33Xs/Hn/4QbhdrpGwRK6BBEiABEiABEiABEiABEhggASiRqnt7urE5jdfQUtzg3/qC5esRkZWLqxx8doqa0vLgNlsxvvbN6Fk7ETExyf6247khM/y2oknDn0PHq83aKkxphjtkjzBNlOXb2/YoBVfD4Kt20GdImSs8alKIeyCx+1C9pj5aKgoh8vZGaHl4ItSktPg6OrQSujge4f3mHfZYl34zG8eR1trCz58x13Izs3DjDll2L5ls7+DuGJbY6063+0cuUq+f8FMkAAJkAAJkAAJkAAJkMAlSCBqlFqnsxtyBUpjfQ1SbemIjY3VSu2pk8dw8sRh3WTUmImBTUdsWvbH3jP+q/71hbofL869DqX2Rf76W8d8Tqe73J14dP83/OVnSnzoKxvQ3liBpPQCiDLo9XpwbOdabF33/87Utd/6mdMWYenC65CdWYCHf/NfqDjle3f9dhhghS0tXSuzotDm5OVrhVa6jp0wKUipvWzuVVi26EN61O8/9E/o7nYM8AlsRgIkQAIkQAIkQAIkQAIkcLEQiBqlNhSYyWRSCkuRdiftaG/T1R6PO7TZiM+39TThmSM/QbLFhjXF94atd0vt37GrcROmps/DjIzLse74Y5A+bu/g3XCT7UU4ue81VKpr9pqvYfSsD2PXaz9Bd2dz2HP7K0hLzcCqpbdg2qS56rzfWLiV5Xffwe2oa6jCVz/7Y6Qmp0fs6lbv9j++e3/EusDC+IQEnW1radH31dffAEdnJ+Li4mDUBbY30mLtppAACZAACZAACZAACZAACYw8AlGr1Mp+2oTEJOzc+taAqcfHx2PatGlB7SVIVFZWFsrKyoLKa2pqUFFREVQWjRmPspjWOk7CEdsRcXpikZWrw+ULktTUXYNWpdSejfR0tWHTH7+ku2YWz8LYsluQnjcF1YffOeNwY0um4vrV9yLTnguv+q+27iTe2vJXbN/V9/5ef2st7OnZEcdyONojlocWptrSdFF3dzfmL16iA0U999STuPbmWxFr9bkaG30am2vR3OrbgyzKNYUESIAESIAESIAESIAESGDkEYhKpTa/sARjxk/BiaMHVQTkkwOm7lX7TXt6eoLau91uHT05tDw0onJQp0s001x9wL/ypqq9Om1NsPnLTpeYP3uFVmjF4vrH5x/Grn1bwpq/u2N9WNlgC7ocvn2+ySkpal/1OBw6sB+11VUq4rMJPSpwVKDs/WAr5KKQAAmQAAmQAAmQAAmQAAmMXAJRp9Rm5eSjdNYCfZzPvt3bBkVerHfl5eVBfQoLC7Vramh5UCNmNAG3K2BPc3A8qjMS+utrT+mPB5MnzMHtN3waN675CHYf2Ir1bz2HpuY63f+eW76I3KzCiGM5ujvxs1/9W8S6wMK2Vp9FOisnVx/79PrfXtLV5pgYODsiW7MD+zNNAiRAAiRAAiRAAiRAAiQwsghElVIrx/jMnrcEDSpAVPm2M7u8jqxXcXGvpqmlHk//5UG9iDkzlmDJ/Gswu3SxvppV3SO/+6YOPtWfrjxQ92BtjVdnGIur8Xql0IrFvWhUiQpuZUJ9TXUQxNLJC7Dy8pvUc4EHf/2vypLrDKpnhgRIgARIgARIgARIgARI4OInEDVKrZw9W7ZwuVJA1H5M5XKcXzTaT7e+tgrdXb7ItXkFxTCZY9RxPgmwqKjIRrsqFRlZ+o40SbNmIj4mEUmxqXppEg05N6EYLhUIqr7rVFQud1v5RshlS7Fj5dKbUTppHlKSbHjiTz8akvke/uAAJk0rxfTZcyAW2iVXrNLjbt0c/CFEnp+U6OMmQauo1A4Jfg5CAiRAAiRAAiRAAiRAAlFFIGqU2oTEZG1tEzqTS+cEQdq2ZYNfqS2dtdDfThqVzpyv21ZVHoc2yQX1vPgzq4vuQlZ8gX8hU9Pnq0jH83Uwpgf39B31YzQ4F7XeGyG6tBztc7bS0taIZ1/4hb7OdoxI/Ta++nd1fnEW8gqL9CVtNm/cgKaGvjOOI/VjGQmQAAmQAAmQAAmQAAmQwMgjYMrIyPBKMCWXy4X09MjHrVzMy05QR8CkpqZCoh0PRJasGY1Wdf6py3XpHR80ED7R1Eas9Xal3FadrBiRVvpoYs25kAAJkAAJkAAJkAAJXBoEDu9vRsk4G2IsprNe8O7NvuM3z3qA3o6zVyQPaIiosdQOaLZn0cjhcEAuysgj0KVc0k9VnBh5C+OKSIAESIAESIAESIAESIAEBkzAPOCWbEgCJEACJEACJEACJEACJEACJEACUUaASm2UvRBOhwRIgARIgARIgARIgARIgARIYOAEqNQOnBVbkgAJkAAJkAAJkAAJkAAJkAAJRBkBKrVR9kI4HRIgARIgARIgARIgARIgARIggYEToFI7cFZsSQIkQAIkQAIkQAIkQAIkQAIkEGUEqNRG2QsJnI7dbofFEhNYxDQJkAAJkAAJkAAJkAAJkAAJkEAAASq1ATCYJAESIAESIAESIAESIAESIAESuLgIUKm9uN4XZ0sCJEACJEACJEACJEACJEACJBBAgEptAAwmSYAESIAESIAESIAESIAESIAELi4ClmiZrtkcg6KSscjNK0Z8YiJ6nE7UVFXg6KF98Hg8epqpaXaMGj0BNnWPsVjQ3tqCgwd2obW5sd9lJKqxbDYbqqqq+m3DiuElkBxrQ0HiGBxp24Mej3N4Hz7Ip1kssViwZCnyi4pQefw43n5j/SBHYHMSIAESIAESIAESIAESIIHzSSBqLLVJyamYNHU2Yq1WNNbXIjbWinETSzF73hL/+idMnoG8glHo7GhHW0szMrJysfDyKyHKbn8iwZamT5/eXzXLLwCBUcmTsKrwDqRZsy7A0wf+yDkLFuH+T38WU2fMRLo9A7kFhQPvzJYkQAIkQAIkQAIkQAIkQALDQiBqLLXdXZ3Y/OYraGlu8C984ZLVWnG1xsXD2d2FIx/swY7mN+F2u3Qbe2Y25i5coa23u3Zs9vdj4vwQMJvMsJhi4ey1ruYlFsPh6kCzsz7ogXExCciMz0dzdx06XK3+OrMpRvW3wGKO1WXWmDhYzXE67fR067s8Q9q5PD1B/Uwq5/a6/WUxqk2MGkv6yXi5CaPQ2F2NTle7biPjur0ueOBFdnwhGrqrgsb0D3SaxJjxE9QHlA71e7kBK9dce5qWrCIBEiABEiABEiABEiABErhQBKJGqXU6uyFXoDTW1yDVlq6stkqRUkptY0NtYDWaGn3KlFh1KeefwHjbTKwquB1b69ZjduYypXz6DP1bal/Ge3WvaQX12lH3I1+5FhtyqvMI1h77pVZI52WtQlnWCqMKHy75hD/96w++jY6eFlyeez1K7Yvwsz1f8dfdPV6lvV789uD/+MtWFd6JsanTUN7wFmZmXO4vf+bIT1DrOImPTf6mvotyLfP0eD3YXv86Nqu5DlTWPvOU+r3z/U5SqR0oNbYjARIgARIgARIgARIggeElEDVKbeiyTSYTcvKK4Ha50NHeFlqt8zm5BfpeX8f9shEBnadCUUxFWd1RvxE2a4Z/X6y4FItCu6dpC/Y2vYfJ6WWYlr4Al+Vei41Va7GjYQM+aNmB8bYZmJu1En+reEJZV2v0LB2uyO9YKsVK69Wtgn+YVM10+2U40Lwd+5u3YXTqFK28Gq2yEwqxu3ETjrbtwxUFtyiF+gpsV3NwuruMJqe9GwrtaRuxkgRIgARIgARIgARIgARI4IISiFqlVvbTJiQmYefWtyICEpfk0lkL9P7aimOHdJv4+HhMmzYtqL0EicrKykJZWVlQeU1NDSoqKoLKmBkYgRpHBf589OGgxuIKPDplCtp7mrGz4U1d937D2xibUoqJttlaqe12OyBXu7LIirQ4G/xKrS44ix9blYX43bpXdM+KjoNBI3QqRfmNqud02e7GzZiXvQp2azaqHSeC2jFDAiRAAiRAAiRAAiRAAiRw8RKISqU2v7AEY8ZPwYmjB1UE5JNhdCXy8fzLVurybVveUJ6pPjue3Ht6+vZiSgO3262jJ4eWGxGVwwZnwRkJHGzZGdYmIz5XlyXHpuGucV8KqvdGtLMGNTnrzP6Wbf32PdV5zF9X33VKp+NiEv1lTJAACZAACZAACZAACZAACVz8BKJOqc3KydcWWDnOZ9/ucIXFbDbr4FBixd385t+1pdZ4Dd1q/2N5ebmR1ffCwkLExcWFlQc1YmZQBMRSGyrGhwWx0hqWU3+b3o8O/vxpEpEUYIvJih5v8H5rGULatjr7P87JFXBcUCT35dNMg1UkQAIkQAIkQAIkQAIkQAIXCQFfpJ8omaw9I1sf4dOgAkSVb3snbFayz3b2/KX6nNr3Nq1Ha0tTWBsWXBgCEnlYRAIzyZ7VoKs3srExM5fXZ01PtKQYRf670+1TXrPiC3SZNSYeCZYkfz0TJEACJEACJEACJEACJEACJBBIIGostYlJyShbuFy7Etcql+P8otH+edbXVqG7y4Gp0+ciIzMHtdUnkZiUoi9pJJGR62p87qX+TkwMKwE5budw6y4VkbgU1416QAeRkiN1JtpmwaSiD79+6ln/fBq6fArwYhVAKrbWCoe7A5UdR1S9V0Us9lmBl+V/WEdZluBOF0oSk5KU18Ac/+OTU1Iwf/ESdKhzknfv2O4vZ4IESIAESIAESIAESIAESODCEYgapTYhMVkpPxLnFphc2qdISH7blg1aqU1Ns0sW2bmF+tIZ9aOjvZVKrQFjGO5edTxOJHml8ml9xqwEjBqVPEk3ERfh7fVvBDWX/a17m97FpLQyXFV0t677zQffQZsKMnWkbY+KVrwXJSmTcU3xfWjtaVJn4frOng0aZAAZOcYnVLzq5NqBSmZ2DmbOnedvHp+QoPPdXV1Uav1UmCABEiABEiABEiABEiCBC0vAlJGR4ZVgSi51dE56evqFnc15eHqCUkRSU1Mh0Y4HIkvWjEZra4vi4R5I8/Paxm63R81cBrNQiYRsj8tRZ9O60OysV8fsDJ5lXEyCOvc2Xim6dDEfDHu2JQESIAESIAESIAESIIFzIXB4fzNKxtkQY/EZHM9mrN2bfaednE3fwD6zVyQHZvtNR42ltt8ZnmOFw+GAXJThIyDKbF1X5Tk90Dj+55wGYWcSIAESIAESIAESIAESIIERTyCqAkWNeNpcIAmQAAmQAAmQAAmQAAmQAAmQwJASoFI7pDg5GAmQAAmQAAmQAAmQAAmQAAmQwHASoFI7nLT5LBIgARIgARIgARIgARIgARIggSElQKV2SHFyMBIgARIgARIgARIgARIgARIggeEkMOIDRQ0nzKF+VmNj41APyfFIgARIgARIgARIgARIgARIYEQRoKV2RL1OLoYESIAESIAESIAESIAESIAELi0CVGovrffN1ZIACZAACZAACZAACZAACZDAiCJApXZEvU4uZqQSiElJg9kaH1XLs1hikG5LhdkcfDB3akoyxowq8l8Wy+l3OXzjbgu+/9HYC7I2kzkGManpMMWcfo5nmlx2ZoZ/vaMK88/UfFjqTTDh/qyvoyxp+Vk97xb7p7Ai9cZ++ybGAU9+1Yrr5sf024YVJEACJEACJEACJDAcBM7tL7khnKFZ/XFZVDIWuXnFiE9MRI/TiZqqChw9tA8ej0c/KSMrF8Ul45GcYoNX/Vd96gSqK4+jva2135kkqrFsNhuqqqr6bXMpVJhNMRifOh1VjuNodUbvXt30jAwsXLIMWTm5iI2NRXd3N/btKsfWTe+M7NdkNiNh7BQ4q0/C3dYcttasOz8Dxwfvo+X158PqLlTB6mWLccWShfjBQ79GZVWNfxqrli7CZfNm+/M/+eXvcKyi0p8PTBRnmzBzrBl/ftsdWDyk6ZikVFjzi9F17AN4e5xBY1vzRyH9mjvR/PIfVf2BoLrBZB648yZkZ9p1F/n36kvf+N5gug+obXxcHK6/agWmTBiL+Pg49PS4cOjocTz93EvoVv9ehsq0hPkYZZ2A5xofCa0aUP549wdYk3Y3trS/gg5PW1ifzm6gpcOLO1fEYN2W8/f+wh7MAhIgARIgARIgARIIIRA1ltqk5FRMmjobsVYrGutrlUJjxbiJpZg9b4l/ytm5BUhJTUNLcwPaW5sxeuwkXLZsDdLsmf42oQm73Y7p06eHFl9yeas5DqsK78DktLKoXvvMufPVx43RcLvdaG5qRHxCAuYsWISlV66O6nmf6+TM1jjYVtyAhIkzznWoYetf39iMtvYOdHY6gp755xdfwde+9X94beOmoPJImU9fZ4FbfbN6+o3zpxTFFY/VbC02n9IZaR7nWvb9Bx/Vaz5ZVX2uQ/Xbf/SoQiyYM0P922hBbX0DYpUFfMbUSfjypx+I2Gel7RYc7t6NZndDxPozFe7o3AgP3FiScn2/TZ9c70aCFbiW1tp+GbGCBEiABEiABEjg/BOIGkttd1cnNr/5ilZYjWUvXLIaYp21xsXD2d2F/bu3Y593m1GtFNx0LFq6GkWjxqG5sd5fPtISFrPPNdPl6UGSJRVpcZmocVRA8obEmCzITiiEw9WBZmedUazuJljNVnUpX0ElloC0y9sDj9dnBZf+XvUnrJH3tY1Vz3CppFeyMJvMsJhi4fT4rEJ5icW9z/OxD5xnelw2nO4udLhadd+B/ji0by/K33sXjQ2+MePjE3DvJz+N8RMnY8PfXx7oMP52KxbfgKyMfPxh7c/9ZaGJe27+Ag4f34t33hvc+Npl1WSCOSEJJoti1VQHUZw8zm54HB1BjxEXV3Ehdrc2hVliTeoDjinW935MyjoteRGvW7Hv9VLwD6aeF5uVD1djDbwueTdnJwV5OchIT9MW1Na29rBBxJ1WLI+Hjp1AV5cyyYVITIwZW8t36cstWmmAeL1ebTnsOcP8kpU39cRCE3Yc9sAZshThCTWOJT0T7s52eNQVm5WHngZlEQ5konhY7FkwxyfCpeo8XQEKtrJ+63fU61osjP1sQyy2Mn15piUjGz01ka3KAUsMSwoDt9uprmAWoQ2t6v2OHV2M9o4OVFRGVoDzsrOQnJyorLAnoJanxePxoqauAY8//Rze33vAP+w3/+XzsKv3mGlPR31jk798TNxU2GIysLbpMX+ZkYixWBFjUf+mdrUi0ZaL+OQsNFbuMqr99x6vE9s7NmJu8gq83PK0VnD9lb2Jt/d68Fn1z8FNi814gdbaUDzMkwAJkAAJkAAJDBOBqFFqnUoRkCtQGutrkGpL126ootTKH8uB4nb7lDqXq0+5C6wfKel7x38dDne7VmJFcRVxe114aO/Xdfqy3GsxK2OJTsuPTlcb/nT0Qe1mnJ1QgFvHfM5fJ+2Mtm9WP4/yhrd03SenfAf7m7fh1co/6PzolCm4pvg+rDv+GI6379dl420zsargdmytW4/Zmcu0kisVW2pfxnt1r+H2sV9AnDlB//EryrdIRcdBrD32qEoFvztdGeFHxfFjQaVdSknp7upSHzZ8Sl9QZT+ZpMQUdHT63CXzc0uQn1Pib2nUGXepKCoYq5SwrrA2/oJ+EmlX3oy4orFKG/JpHlqpTc/SyljLhhfgOFAOk7LAZt/zT1phMobxqt/zxnW/Q099tVbUMm78iFGFpOkL9CUFrW+/jM7d7/nrLGrs3H/8mvq6oBwslGLXvvMdtL/3hr9+IIkFc2bipmuvhCilhmzauhN/fP5vOltUkItP3Hs7EuL79u9u3laOZ9b+1WiO665cjuWL5/vzoe7H/oozJEpH++aw93j474ZmJsp9L1t3SyNi1AcDcR9ueO4x9QGhHnGjxiP9ylt8PHqf5WqsRePzv4On24GUsqVImnWZfxb26+/xp+ue+DHcHX0utYnTypC2Wo2lRN5P8+tr0a3clYdSrlm1DCsWLzCWBGdPDx757R9w9PhJ/RhxL/6Ssrra02w6L/Ux6l03t7bh2z98GI1NzfoKnNPJU9WYOG40UlKSgpTaQusY3ayq51hgc52ed8O3UThlpVZk7QWluqyrvQEbfvcxtNYdCWpf6Tyi9+Rmxuaitieysl/d5MUo5UZOIQESIAESIAESIIELRaDvL9sLNYN+nmtSf8zm5BXBraw9He19f3ya1B95BcVjMGHyDMxbdIXuffL44X5GGTnF9rgcZaHNUsrjq3j++KM42rZPL25K+jytpNY4TuC5Y4/gnZoXER+ThOuKfYpSQ1cVfn/oB3j2qM9Suadpi85LmaT7l/7/SC3LWoFqxzG8eOJxvFW9TinRfZa+BEuSUqab9BxPdR5BUdJ4jLedvfu3PSMTcUrBam0O32fa39y/8LHv4auf/TGK8pXC2SupKen45L3fwNc+9zNloczF1z7/M3zsnn+HKLeGlBRNVPU/xWf/8TtG0Znv6ve06aWnlBLVpayKWWj6q7JoKa+DpOl9Sp9Y/qS87vc/1XtixSKYvuYOPbaroRb1zzyCxrW/0fnOfTt0Xsoc+3cEPV8slZ2qTD9PPSN59mKtNAc1Ok1GLIC3XH+V/jj09rvb8YOf/xqvv70FccrlX0QCPn3q/jshytWbm7fiV0/+Sbm5NmqXV3FzNUT6/PzXT6F8j+9jxwC/Vxjd/fdJRb7fsUOnwpVaaSSKqaxVxKQssZIWdn4XbfWRy3FoNxr+8jjqnv452re9qay22Ui9/Grdp2PnJs1SykWaX3nWz9YdYkm35o1C2yblKaL2LMszbIt9Y+iOQ/CjIDcHV1y+QH24c+LPL/4dW7a/r9yHY/GRO2/2jy7vRhTa4ydP4bfPrIXD0aU+PsT460MT8mGipLhAxxwwFGOjTU5skf645PB0GEVh95SMEmx74Vs4tnOtstZmYObqr4S1qXdV6bJsi+9jWlgDVXCqwasV9ey0/v/NiNSPZSRAAiRAAiRAAiQwVASixlIbuiDZT5uQmISdW32WRKM+RgWUmjZjnpHFof270Kb214rEK+Vn2rRp/jpJSJCorKwslJUF7yWtqalBRUVFUNtoz4hiKkqqyIl2nxVpXtZKpVN48cap5yDuxKLsFiSNxajkSRAFU9yRG7trlKKbqPuJFVfy5yLi+vznow/3O8S6E7/qdT1uwx3KepsVX4CDLeX9tu+vQj5sXHvzrbr6lRfX9dcsrPzXf/gebr3uE8ri+J8qmI5TKwZf+fSP4Ojq0G7IDU3VeHbdL3Dtqnu0kutVLthTJ5ap/YkLlYvnSTzz/ENhY/ZXIMpsd8VhuOqrEJtdgO4Th9BTp9KZubqLtsq+8IS2OMYk27R1tqfuFGJzfEqC1+PWbstm5WYtIm62YvGNJFLX+uZfdVXn3u1ILlui3XMH6i577erlWvlY9/fXtdIqA1VW9/0uzJs1Qyu4Enxoa/lu/Zy/vPQKPvYPt2HZonl+Jba9o1MHKJo4tkS3UR7uZyWjcnwdD1ZGdtmVdQlbsc4KMyMtgZ9EhLVc4mIco/bkdx3Zpz8mGOw9yvqurw6fC7y4fvfHtuvofnS8v0WPmzi1TFvQdWaIfqxQCq3Ii6++gbe2bNfpwvwciLIrl7yHKRPH6g8OP/7Fb3W9uBN/8RP36XSkH/fdfqN+Xy+88kZYdZalAM2u02/J2PPGQziy/Vl9jZp+LZLtRWHjNLpqdVlWbAHgCKvWBSfrfR8l5CNFbXPkDxSRe7KUBEiABEiABEiABIaGQFQqtfmFJRgzfgpOHD2oIiCfDFqpuBq/vO5prfAWj56AcZNKtVJ35OBe/Qdhj3LZCxQJOCTRSEPLjYjKgW2jOd2j9rEaCm3gPBOVm68c3XHb2M8HFuu0PS4Xla6ht2IfbNkZ9iyjQJRo2UsrYszX2M9rtBno/cY771bvORFb3tqIhjrfH9cD6VtZdRQ//MVXccPV92PuzOW6S13DKfz4l1/zu7Dv2P22UtI24Z8+/l1luc1RVsoYvaf2xVefHMgj+toopVRE9rfqPbA6rX4HA46ISVMusvGjJ+p2gT9EGTP6BJb3l3ZW932Ekf2jIoM55kf2XYq8q6yEkaS4ME8Xjxs9Cl/4+H1BTdJsfRbtoIpzyDT3GvizlIWvvTpcGfL2bivwqv9/jajF8hHA2Bcre5nt1/8DLGkZQbMw6oMKz5DpPnHQ38LVXK8+UOT780ORsKf7XIrL9xzwD3fkWIVWaPPzsrVSa1Xu1s0tLf56cS0O3XJhVF6zcqn6EDNO77td/+Zmo9h/b/e0IDe22J+PlDhW3vehqKe7Xf3KxoU1SzQn67J2d9+8QhulJ/s+TtQoN2QKCZAACZAACZAACVwIAlGn1Gbl5KN01gJ9nM++3dv6ZeLo7MCBPTtQoBTg/KLREKVWjn8pLw+2CBYWFiJOuVOGlvc7cJRWnO4YnoYuZXk85nMvDpy+oVwGlg00bY0J/wPX6CuW2v7ErazFoWJSAaYGK2tuvBmZ2TnYvXM7dqrAUYMRcSO++bqPI82WoS21ZuXCKYrrv3/xEbyklNat5RuUS+1KrF52q/pDPlZ99HCjRylQi+auVvsTZ6r9pQ+j4tQAPwYY+7yNu0w0IC1WP1Fouw7vRceud1WAp1qkrVQWtuJxyno7mFWJ4tzHVqzzkUSs24aEK0S+PoFtjLZyN9pLMKLDKkBUoMjxMUMt+ys8WDbdrINFHY2g1AY9z1huAFvb8uu1Qtu2Zb3a/3pA75HNuutz/n24Qf3PkPEGHokT8IzAboHcDFaB9QNJB47h/wUw1qbeaaC7sa9t3/s0xl+ysEwfpVRTV4+HHn/KKA661/ScwJi4KZAAcLL/PpKIImuIXk/4o5AZ6/vQUdPT///zhVm+jgcr/QsxhuWdBEiABEiABEiABIaFwOC1jfM4LbuKPCpH+DSoAFHl294545PMan9tjDrWQvamXarS4WpBqtUOseSKEht4BTLxeH0WxURLZIubRD2WfbuGjE6ebCSH/X7FmmtVROsS5Vq+D2+/vn7Qz7/rJqXYKMXkZ7/6NxW9dzfa21vw3z/5LE5VH8WHrrpP76kV1+MTlYfwnR99Wrsl7z+4Q+0T/Q+lVFhw103hVu9BT6K3Q7w6e1bm0rz+Lyqq7kltcbTmhVvQvMqjQMSc6LOM9XYf9O1fPvMz/OvnH8aXP/mjsL51an+syPw508PqpOCE2sspUlyQpwJtOYIuCVo0WJH9uCJiiYwke3oDRI3NO7t/hqzqjFkJINWhAma51DFfEgHZrCKlh4phDT8Xtnb1UUS4ynXPzf8c+gh/vrmlVVn9zfocWX+hSjSo449EAvcmjy0p0mXGGb8SZTolOVm5iPuUxLElxf6gUrqh+jF3ZqnyQFiJpuYW/O/PH/N/iDDqjXtNj8/DxR4Tmb3R7kx3cWMWqXX5xovUPicN6FK/HipAM4UESIAESIAESIAELgiBqLHUJiYlo2zhcv1HWq1yORbrqyH1tVUqAq5D1zfUVaOlqUEHDypQ50+K22ht9TGj6SV331L7d6wsuE3vXd1W/7py+a1W+2knokRFL35WRUA2xOnpVhYbtwraNBN1jkp17E89Grqr1Z5bn7WmUx29k6UiJU+zL1T7bxMwJrXU6DqsdzmTdtzESXApJaqjox0Lliz1P3/Lmxv7/SPe30gl/vehLymrffAGwE5HOx598r+V1T5B133zh58Ia1Opfo++/6CK4KzaDJXIPk9RYlPmLtN7QnVwp94jewKfIe614lqbMG6q3p/rUsqaq7Eu7GigwD6DTT//8uuYPGGc2ku8DLkqaJS4Ic+cNkkFy0rEE396Hu/u2KUVJolsnKWO89m4aauydqdg8fw5ej/tG2/7LObinmxRQYoyM3zuzKOLC5GSpAI5tbSpPcl9+zglkJTXez3WXLEUcWrNshf3vZ27/NOuqPOiXb2mBZPNeLDPE9Zff6ZET9UJWAtGI14xUw9CyvwrInaRYFwiKQtX6SBQEsjLeep4xLb9FcpxVgMRiSQtiutnPnKXcmffoZXZA4eO6jN7Z09XEcWV27CcMyv7aPNysvWHg1M1vvlt3l6O5ZfNxze+/Bns2LUPC8pmBD1yVGE+bv/wNbJU7P3gMNaosQx5d/uuIPYHunboQFEzkxbjlZZnjGaDvs9MvAwnnYfR5emM2DdHuY7bU0zYtM8TsZ6FJEACJEACJEACJDAcBKJGqU1QFirDQjG5dE7Q2rdt2aCVWqmXqMeBUn3qBPap82tHvkQ2g8gxPKmxdszNXqmP2zE4VHUeM5L++xunnsWSvBuwLP9GXbaxai3eb3xbp9erOjmuZ1neh3X+aNteyLE+cnZtqEhgpUgiLoxeU+R5RmofqSw337eX0aLO85wxZ25Qk63vKItcgAtuUGVAJlChPXpiv1JefXt8pYlRZ9yl7NDRPThZdUSSWgLrjLJ+76JhGBKY7i1zqGjGiZNmIWnmIn2J1dBZeVQrY6EexK0bX0LqZatV9N41unfokT5yjE+YRHhmWJvegtr6Bjz15xdw64euxvzZ0/UlVRIJWUTe308ffQIfv/c2lE6eoC8pl7NX39rStxXgk/fd7v9/VepvvGaV3JRS24pv/qDPDV7GW/u39Vi1dBGuU0GqJB+o1Eqfp95w46NXx2DOeDO2HQxZn7E2uRu/czrtYy5ux+lX3Ya0K3y/s+62Zn0GsD6bVgbvFTnbViJJJ0yYgbRVN+nSuid/Crey4Bu/y/25cxtjnKneaPfB4WM6yNbMqZNx87Wr9TE73/nRI6iqrcPLr7+FK5ct1h8VpH23cnl+9Ik/Gl2xTn10kI8Nk8aNgbgYy/uyp6XpmADSSM4WNrzLL5s3299PEk3NrUFKrUQ9frf9NcxPWoX1rX8OckGO9P900GC9mWLrBNgtOVhb/1ikal32wOoY/Wv80AuRXZz77cgKEiABEiABEiABEhhCAqaMjAzl+agisKpAN+npPsvLEI4/5EOJu3G8cjMU6XJ0qj+4T//HVEJCAlJTUyHRjgciS9aMRmtri+LhcwcdSJ/oaGNCujryx2KKVVbYOu2OfDbzEhfkFmXFFasuZegISHRjk7IAi7tsNEhWhh221BRUKSuhuBqHSrKyvObnZqOltT1IWQptNxT53/+LFXUtXnz+ocG7OMvzjfNrJTp0tIscwzOqsEBbrUVpjSTy8U7apSQl4d//+VM4eOR4v3tnI/U3ypLMKfhy3k/xfNNj2N650Sge8P2ujC8iOcaGR2r/M2Kf2Bjg6a9bseOwB9/6/en/HY44AAtJgARIgARIgASiksDh/c0oGWdT2zx9W6LOZpK7N7ecTbewPrNXDGxr3kWn1IatdIgLLl6ldohBcDgSGCYChZkmZKSaUH4kxFI7TM+PlsekqY8MckyPuDBLdPZVyxZBIlZL4K739/ZFTR7MfDMtuehRwdta3JEV6NONlWXJh8PTjnaP70ik0LZK70aZsrDvOe5Be58zRGgz5kmABEiABEiABC4yAhejUhs17scX2bvmdEmABIaIgJxzapx1OkRDXpTDiFN1gQqqddsNV+v5i7v2m5u3nbVCK4PUu6r1WGfzo87lCxzWX1/llY4tBy7tDxH9sWE5CZAACZAACZDA8BKgUju8vPk0EiABEohIoKW1DV/+r+8jXh1BZrXGorUt+t2pIy6EhSRAAiRAAiRAAiQwzASo1A4zcD6OBEiABE5HoEudty0XhQRIgARIgARIgARIYGAEBnZOxcDGYisSIAESIAESIAESIAESIAESIAESGFYCVGqHFTcfRgIkQAIkQAIkQAIkQAIkQAIkMJQE6H4cQrOxMTqOXAmZFrMkQAIkQAIkQAIkQAIkQAIkQAIRCNBSGwEKi0iABEiABEiABEiABEiABEiABC4OAlRqL473xFmSAAmQAAmQAAmQAAmQAAmQAAlEIEClNgIUFpEACZAACZAACZAACZAACZAACVwcBKJmT63ZHIOikrHIzStGfGIiepxO1FRV4OihffB4PGE0rdY4lM5aAJerB+Xb3gmrNwoS1Vg2mw1VVVVGEe8kQAIkQAIkQAIkQAIkQAIkQAIjhEDUWGqTklMxaepsxFqtaKyvRWysFeMmlmL2vCURUU+dMQ+Z2XnIzi2IWG8U2u12TJ8+3cjyTgIkQAIkQAIkQAIkQAIkQAIkMIIIRI2ltrurE5vffAUtzQ1+vAuXrEZGVi6scfFwdnf5yw1ltrOjHfEJCf5yJkiABEiABEiABEiABEiABEiABC4tAlFjqXU6u4MUWnkNjfU1+m3Exsb630pMjAXTldvxkYN74ehs95czQQIkQAIkQAIkQAIkQAIkQAIkcOkRiBqlNhS9yWRCTl4R3C4XOtrb/NUTpszQ6cMf7PaXMUECJEACJEACJEACJEACJEACJHBpEoga9+NQ/LKfNiExCTu3vuWvSrWlo7hkPHa892bE4FHx8fGYNm2av70kJEhUVlYWysrKgsprampQUVERVMYMCZAACZAACZAACZAACZAACZDAxUUgKpXa/MISjBk/BSeOHlQRkE9qomK5nTHnMjQ21KK2ujIiZa/Xi56enqA6t9utFeDQ8kgRlYM6MkMCJEACJEACJEACJEACJEACJBD1BKJOqc3KyddH9chxPvt2b/MDjItPQGJSsg4MtXTV9bo8Li4BouxKfvfOd9FQV43y8nJ/H0kUFhYiLi4urDyoETMkQAIkQAIkQAIkQAIkQAIkQAIXJYGoUmrtGdn6CJ8GFSAq9OxZl7LAypm1gSIWXVF2q04eR1dnR2AV0yRAAiRAAiRAAiRAAiRAAiRAApcAgahRasUKW7ZwOcSFuFa5HOcXjfbjr6+tQneXAx/sC7bCyh5bOdc2tNzfkQkSIAESIAESIAESIAESIAESIIERTSBqlNqExGTtSiy0J5fOCYK+bcsGrdQGFaqMKMAUEiABEiABEiABEiABEiABEiCBS5dA1Ci1sh/25XVPD+pNiLJ7JmloaMDOnTvP1Iz1JEACJEACJEACJEACJEACJEACFyGBqFFqzxc7h8MBuSgkQAIkQAIkQAIkQAIkQAIkQAIjj4B55C2JKyIBEiABEiABEiABEiABEiABErhUCFCpvVTeNNdJAiRAAiRAAiRAAiRAAiRAAiOQAJXaEfhSuSQSIAESIAESIAESIAESIAESuFQIUKm9VN4010kCJEACJEACJEACJEACJEACI5AAldoR+FK5JBIgARIgARIgARIgARIgARK4VAhQqb1U3jTXSQIkQAIkQAIkQAIkQAIkQAIjkACV2hH4UrkkEiABEiABEiABEiABEiABErhUCFCpHeCbNsdlwhSTMMDWEZqZzDDHZ8NsTYtQGf1FSYkJyMvOuiATtafZkG5LPadnWywWPX+LJSZsHCmT8c1mU1hdtBRkZ2ZgzKgifY0qzI+KaZkUrl99MRYfvTqcaVRMkJMgARIgARIgARIgARK4JAhYomWVZnMMikrGIjevGPGJiehxOlFTVYGjh/bB4/HoadozszFm3JSwKZdvewc9Pc6w8qEqEGXWNvsH6KpcB8eJPw162KTxn4A1Yx6UVgyvqwPN731q0GOcawdR3BbNnYUDh46hpq5+0MPdfN1qzJg6CV/8j/8ZdN9z7fDlz3wE7R2d+PYPHz7roS5fMAfXXbkcDz3+FA4eOR40zupli3HFkoX4wUO/RmVVTVBdtGQeuPMmZGfa9XTk/4cvfeN7F3xqty2NQUaKCa/t8P3/ecEnxAmQAAmQAAmQAAmQAAlckgT+PzckzOsTm2oSAAAAAElFTkSuQmCC" - }, - "image.png": { - "image/png": "iVBORw0KGgoAAAANSUhEUgAABzkAAAFYCAYAAADA/EFNAAABWmlDQ1BJQ0MgUHJvZmlsZQAAKJF1kE9LAlEUxY9mCSnYoqWLgRAMLMR00dKGEMHFYEr/FjHOTBro9JoZqWjRF2jTJjctatMnCNwU1K59URH0AQraFMymZLrPqUaLLhzej8PhvsMF/AGZsXoAQEO3jGJuRlhYXBKCT/AhihAiGJMVk2UlqUARfL/9Y99SmuZ6gu+Kx44PX5/3W62h85vZxrL/b75vhlXNVOj9ICUUZliAL04sbVqM8xbxqEGliPc4V10+4lxx+bSbKRVF4iviEaUmq8T3fGelx6/2cKPeVL468PZhTS/PcZ8URQEi0phGjpRB6Z9supsVsQ6GbRhYQxU1WBCQJYehDo04Dx0KJpEgTiFJyvAb/76d5+280OoN+irveeUwcLZC9VTPiz0CkSRwuctkQ/65qM8OmKtTKZdDbWDwwHHe5oHgONC5c5z3tuN0ToCBB+DC/gTm/mIG6OCHqAAAAFZlWElmTU0AKgAAAAgAAYdpAAQAAAABAAAAGgAAAAAAA5KGAAcAAAASAAAARKACAAQAAAABAAAHOaADAAQAAAABAAABWAAAAABBU0NJSQAAAFNjcmVlbnNob3R1wHLiAAAB12lUWHRYTUw6Y29tLmFkb2JlLnhtcAAAAAAAPHg6eG1wbWV0YSB4bWxuczp4PSJhZG9iZTpuczptZXRhLyIgeDp4bXB0az0iWE1QIENvcmUgNi4wLjAiPgogICA8cmRmOlJERiB4bWxuczpyZGY9Imh0dHA6Ly93d3cudzMub3JnLzE5OTkvMDIvMjItcmRmLXN5bnRheC1ucyMiPgogICAgICA8cmRmOkRlc2NyaXB0aW9uIHJkZjphYm91dD0iIgogICAgICAgICAgICB4bWxuczpleGlmPSJodHRwOi8vbnMuYWRvYmUuY29tL2V4aWYvMS4wLyI+CiAgICAgICAgIDxleGlmOlBpeGVsWURpbWVuc2lvbj4zNDQ8L2V4aWY6UGl4ZWxZRGltZW5zaW9uPgogICAgICAgICA8ZXhpZjpQaXhlbFhEaW1lbnNpb24+MTg0OTwvZXhpZjpQaXhlbFhEaW1lbnNpb24+CiAgICAgICAgIDxleGlmOlVzZXJDb21tZW50PlNjcmVlbnNob3Q8L2V4aWY6VXNlckNvbW1lbnQ+CiAgICAgIDwvcmRmOkRlc2NyaXB0aW9uPgogICA8L3JkZjpSREY+CjwveDp4bXBtZXRhPgqxUQUAAABAAElEQVR4AeydBbhVxfrGR0CQEgkJFUEaOxBUJJRQUexWTAz02l69+r92d+u1uxW7UbC7C1EBwQJFQRRs//Obc77NOosda++z9yne73nOWWuvNflOrJl55/tmsY4dO/7jJEJACAgBISAEhIAQEAJCQAgIASEgBISAEBACQkAICAEhIASEgBAQAkJACAiBWoJAvVqSTiVTCAgBISAEhIAQEAJCQAgIASEgBISAEBACQkAICAEhIASEgBAQAkJACAgBIRAQaNC4cWNBIQSEgBAQAkJACAgBISAEhIAQEAJCQAgIASEgBISAEBACQkAICAEhIASEgBCoNQg0mDNnTq1JrBIqBApFoEWLFk51vVD05E8IZEeA9tVg6C3ZHemtEBACQmARQODPcbtqvLEIlHNtyqLGwLWptOp2WlUX63b5KndCoDoQUL9SHagrTiGQHwJqp/nhJddCQAgUhkCDwrzJlxAQAkJACAiBBQjMfWibBT90JwSEgBBYRBGQhZRFtOCVbSEgBISAEBACQkAICAEhIASEgBAQAkKgWhDQmZzVArsiFQJCQAgIASEgBISAEBACQkAICAEhIASEgBAQAkJACAgBISAEhIAQEAJCoFAERHIWipz8CQEhIASEgBAQAkJACAgBISAEhIAQEAJCQAgIASEgBISAEBACQkAICAEhUC0IiOSsFtgVqRAQAkJACAgBISAEhIAQEAJCQAgIASEgBISAEBACQkAICAEhIASEgBAQAoUiIJKzUOTkTwgIASEgBISAEBACQkAICAEhIASEgBAQAkJACAgBISAEhIAQEAJCQAgIgWpBQCRntcCuSIWAEBACQkAICAEhIASEgBAQAkJACAgBISAEhIAQEAJCQAgIASEgBISAECgUAZGchSInf0JACAgBISAEhIAQEAJCQAgIASEgBISAEBACQkAICAEhIASEgBAQAkJACFQLAiI5qwV2RSoEhIAQEAJCQAgIASEgBISAEBACQkAICAEhIASEgBAQAkJACAgBISAEhEChCDQo1KP8CQEhIASEgBAQAkJACAgBISAEhIAQEAJCQAgIASEgBISAEBACQmBRQ2D//fd3H374ofvoo4/cCSec4Dp06FABgm+//dZdfPHF7tNPP63wXD8KQ2DppZd2W221lVtllVVc+/bt0wbywgsvuIsuuijtu9r2sHv37u64445zjRs3zivpc+bMCfXxq6++ystfbXYskrM2l57SXi0ItBsxJMTbduMNU/HPfPwZN+PRp1O/dSMEhEBhCLQZPjh4bD18UCqAWU8+675/ckLqt26EgBAQAosCAhpvLAqlXLvyqDpZu8qrLqdWdbEul67yJgSqBwH1K9WDu2IVArUdgffff98dfPDB7tJLL3X/+c9/XOvWrUOWmjRp4s444ww3derUQDadcsop7pNPPilZdnfeeWe34ooruvPPP9/98MMPJYsnXcAQj//973/dMccc4+bNm5fOSVGeEQ84Qhhfe+21btasWS4a9+677x7I5scee6wo8WUKpEWLFm7u3Lnu77//zuTELbbYYq5evXrur7/+yugmyYv99tvP3XPPPe7tt99eyDn5JR1jx45d6N2AAQPc3nvv7U4++eSF3tXVBzJXW1dLVvkqGQKQmxCav3w2JRUHz5p2XyH1WzdCQAgUhgDkJoTmvM+npgLgWZOunVO/dSMEhIAQWBQQ0HhjUSjl2pVH1cnaVV51ObWqi3W5dJU3IVA9CKhfqR7cFasQqG0IrLDCCm6XXXZxBx54YPhbffXVA9l2yCGHuK5du7rp06eHvy+//DJk7fbbb3dPPvmkO/74413v3r1Lkt3ddtvNbbvttoHkhARs1apVSeLJFOjiiy/uOnbsGIi9TG6K8Xz06NFBa/a8885z77zzTsAZTVkEvOfPn+9mz54dyqMY8cXDWGKJJdyee+4ZCNazzjorlHfcDb+pI2effbY77bTT0r3O61n9+vXd999/n6pXVr+4/vLLL4HkjD6z+x9//DGQrHlFlsAx5H3nzp0TuKx6JzWC5KQTGDVqlEPFe8kll3TLLLOM22uvvVy7du2qHpFaECMYgdVaa61VC1Jbt5JoRGaXg0e7pt0qkprNunepdGbH7Li+u/Wc3dxNZ44KYe259TrulrN3q3S4xQjgfyfu4I7cc8NiBFWUMKLpWbbdUm7sxaPdHlv1K0rY1RnIEo0auOZNGzmu6aRRw7L3jRstnu51rX5mRGbHMbsvRGrau8pmsG2rZm70Nuu4i47ZyvVZqaNr2rihu/H0nd1um/epbNB1yv/K3Tu4ey7Yw206aMVany/ycOMZO7uN+vdy7ds0d31W7rhQnlou2Tg8b7h4/QrvaGe4b9OyaYXn+f6werbLZum/24s3qO9uPXtX95/RZZYC8g0/H/drrrhcyBP5SvfXaZmW+QSXt9tDdh3ozjpiZGJ/S5T3eUtk6PMaNqwf+szGS+TXJzLBZKdtNmE37MYbb5zNScnelXq8UWjCl1pqKbf99tuHcWipJumFpk3+SotAKetkfC5Y2pwkC53Foi233DKZY7mqUgRKVRdHjhzpRowYUaV5qarIevToEdZXmjat3HimqtJb2XjWWWedsAiJhkNtEsrpgAMOWMjUYW3KQ21Na6n6lZqKB4vmm266qdtnn33csGHDQjJrSh/YrFmz0F9horEmSDw9aqc1oVSqLw1rr712IK9WXXXVoKGHlh5///zzT0iUXeMpvOmmm9y4ceOC2dGVVlop/rpSvxmzMmd99tln3ddffx0IseogOiuViQSe6bcwUfvggw8mcF18J5Q9Zocp+99//z2U+5lnnukgXiH+EEjQPfbYI9QR6kXbtm2Ln5BqDJF8YpIZDdGaKOlX0fNMaaNGjdwmm2ziUNH+/PPP8/LNQHvHHXcMKr6wzXQI7DjAhjUfkxkzZuQVXikdZ8rnsssu66js48ePd9g8LqakixPVd/746L/55pvFjE5hZUHABr6YpkXQ5GS3X7Fk2+Gru502Xcv9+vuf7oNPvw7Brt5zWbd8h9IuOCdNf8/ObR2LzTVFounp0WnpQEKst/oK7ob7Xq0pSSwoHYeOGuw6tG3hfv/zL/fvs+9fKIwTD9zENfHE3I8/zXMnXlpaEwwLRV7CB0ZiYpoWmf/5Fy5qsrYYUUMQ33zWLq6+Nxkx95ff3F/etMS6q3d2y7Zr4fyWs2JEUekwVu+1rNt50zXd5Xe86KZ+tcDEyHYbreZ4938XPVrpOOIBpItz5e7t3VKe+Ou3yvLukWc/inupNb8h7A4dNTCU99OvTHKH+PtNBvR2Iw+4xs3/7Y9UPs799xYOt/+54GH3xgfTU88P232Q27Bfd3fmNU+7cS9PSj3P9yZVzzJ4bL1UU9eudXPXaKXS9rEdll7SnZ2DYPxs2vdu/5PuzpDSyj+GlFzLE62tWjRxP8zJbcrmyD03cC2923nzf3fHXVKxz1u8QT13ku8TIafn//q7++/FFd9nSy1jTBY/OduCgXpcdthhh7Dz8thjj42/KvnvUo83KpMBMAO7b775xv3xx4I2VJkw5bfmI1DKOpluLljViAwdOjTsgn711bIxZIMGDdxyyy2nOl7VBZEgvlLWRcj2YvRr8fqUIFsld8LmcdZXGjZsGHb9FytCtFdYC3nkkUeKFWSlw2HxeMiQIe63335zn332WaXDK1UA6daQ0Pxo2bJlwJTvrKRqEChlv0IOStUnVKb9bb755kHjC42nn3/+OQBdrD6wsqXGIjr9FWueNeEMw3h61E4rW8K12z+E4v333+9uvfXWVEYwC8p355JLLnEffPBB6rnd0N/z/YUzQNtx3333dWh9FkOM4ITUJOxOnTq5008/3f3f//1fMOvKWY5Vbbq2GPlKFwZzBjgStBerUvgusyFkjTXWcHfddVcgWa+++mp37733up9++ils/oX8ZCwE2Yy5Xkz3oqA2ZsyYqkxqSeNi3QRtZMhmtFhrohRlNY1KxmASteB8Sc7ll18+4ILqdk0n7DLlE81T8v/ee++VhOSMYztlyhR3xRVXBBXsmlip6mKaVrn4tETZYoDcbpMhgQDN94zOdT1Bh+xxzC3u65nFJcsTJb4WOxr/2qfuy//e5qZ8OasW56Ji0ht6za41e3d0b328gHBZYbnWgeCs6LL2/+p57sIEQ7pcQYRCfEKAFnJG5792Xj8QnMdf+rh76e0pIYpj9x0arvY7XbxV+WzzDVZyaNr95jc7RGW7jVZ3zZo0ij4q2n26OO949G331odfuk894VWb5cL/bBWSf8iZ97k///rbzfn51/C7RfPGKZKz1wptA8HJi7atmof3/IM4G7R2V/eT91MZgpOw+nqyGHnhrcnhGv/37fc/uT2OvT1sXoi/K+Zv8n/u9eNTQR46apAn+J278KayzQW8mDT1u9T7Uty88/FXQau236qd3GPPf5wzihbNlwhu0NTkXIvo7thdR/YJ5YSDGbPKFmhyBlju4PXXX3e77rqru/nmm8NGu5NOOinlFVM/nJ+Cpuedd96Zel4VN1Ux3ig0HxA/EJyM9e+4445Cg5G/WoZAqetkTZgLsmjBIq+RnH/++ae76KKLsp6zU8uKsU4kt9R1sVggxetTscKtieFw9hcL/jWJ5OzWrVuA6sorrwybF2oibqQp3RrSE0884d54442SmdmrqVhUZ7qqol8pVZ9QmfYHGcJGgMsuu6w64a+VcaudVm2x9djgENe6cz83a+qrbtL4i0Lk6Z7xYt09b6vgrtgpZS7avn37sPYfDRvrNqzRo0kZFzZPHXnkkanHhME4sxgSJTg//vjjQHISLm0bohOiDfKzrhCdEIpT/fmmbPBAK7aqBEujKOMdeuihCyniccYq5bvNNtsEC6XMkSE/0eJEGa6uCAQn9Yj1gBNPPDG1Oaam5S9FcqJCC5nGoagfffRR2KEdTSzMNe8pWLQrsX1Mw6GBoy6MdO7c2bGDAY1OdgTlEjqC1VZbLTjjIwtoL730UlpvdAQMoHv16hV2IdCATWsSVWEOfX3llVdSuy/JT8+ePcOhvjNnzkwbZrqH+CEfxDdt2rSABe4y5ZNdkZgrQGwn1fPPPx9+Z0szDvBHusEbDDEB9tZbbzlLb6Y4mYRTFuxqMtvThId70g8Zy7svvvgiNTln10i/fv0CHixQ4Y5yhJjN1sFaGjnglgbapk2bsLg1adKk4I/6QFomTpzovvtuwcIoB/9SVu+++27Y2UD6aqvYAfRJ048ZW/5+/nSy++XTMiIll98DdhrgunVqE5ztOGJNN+P7ue7Wh99I662pJzpGDFzRa8J0dO9M/NI9+txHYREex/hdxmsBXnnni+4Xr/WCrNStg9to/V7uiRcmug8/S7YjFI3NEYNWcuus1tl94bXJrr335RBW/B9xjdxg5aBtCtE44dVPA5EQdbdqj2Xcxl5zqnnTJdybH053Dz7zvvu73JQD7hrUr+cGrt3NDfZ/LMA/9eJE996kMk1WCydXelj8Jh3PeE2tdyZ+lcrzjfe/5oZ7E5Wr9lzGjfdpe9KHHZV6vp2vv1ZXN2y9nkGDFi1QCCa0qjJphBqe19zzshu+Xi/X1y/UT5o60z3g8/XdD2WL7Ltt0dfvbqnnrh/7SjQ6t/c263qNsl/dXY8vfGB0BYflP4b371mB5NzMl0ldkzbDB+eVJYhO/jizM3puZ7ZAILT22GJtN7hvN0+QOLe2N1O7pDcJ/LhvEz09wQVpgvaaCe7W9XW/Xr3FfJ35xL3+wbTwqkUzb3piy77uXV8/J7y2YGc4pm6X9O8uu/3FCgSMhRe9buzb4tqe8KLuvfXRl+6hCR+G1/jf04dN/UO296TmJ75eTf92thu6Tg/Xcskmnvj8w2Hq82lflz/4tKwtZ0orYXRdvo3bzPcV9zz5ruu/5gpuNd8OaB/3PPleSGemOMFlq6GruEaLN3CTvljQr3fz4VEn0QaEqHrMu0O7zgQN1Nlzf3XTvvnRbeZNxKIpO3act/AQwdbc2pXv5EG7rO/Jvymuue/bIBXpB+5/+n33xdc/Bmdbbriyo9+79eGKlgtGedzxf9MDr1twFa5beH+Yfias6d+UjUnmzJ0f3CzZrJH7trzID9ttUKgXPihPcjZLhbGnN3+N1m80/FwY7LlV31Bm9EnreS3hjyfPDP6pZ+BhecIM7p5b9w1jrv95rd01ei/ntYo7uct9HUKSYrlG72XdEF8/0FKmLr0/6ZuA50vvTK2gkWqZorwoXwQTuWhJUsfsGc9X7Nou1LNH/Ldlc9+vYuL3/Buf9Xj9FPDh+9Oj89Ju4uQZ7v5nPkh9f/CL4H/ouj3c0h7L196b5h72msBRYnKir9cImOQiOdv5uBmXIpR152VbpTazcI9ZZZPPpy9ow/Ys15XNdUZ0MhbizIytttoqmJf597//HSYoucIo5vuqGG9Ex4PskGcxmLEaY95s41YWY808LeNIxvvsVOasj2z+wMfGkowdGfcz3meBCGnevHnQJCAtTBLZyPe3byuIjeVZ8CUMNOtwk04zh/E46cNEEONf5glRyZXGqFvuLe7XXnstYNSlS5cwbv7www9Tu4dZtGQnK+mLCuPlX3/9NcyHos9r432p62SmuSB1ZM0110zVMcMOzFksou5F63KuuQ31jLioJ1999VWYe1FG1BfKywh86jWWhVhAYR7DTnHmOCbsyOY59WPy5MmhLmKuyoSwmJ/SLlZeeeXQ97GhIr7jnHkvczHyQHzMnTOJ6mIZMqWui1H80drp27evQ2OA8qeszdpUtnkvbqkf6eoT4VPe9GWd/VoDfS79GespUcEN1proczh/iTCpT1HJNuc3d8zZqYO0pUz1K99+0cK2KxjRdyO0HRYf+Z5k6/PRzgIj2iwm9WjLhoHV9Vx9PmsdrP8QFmtOhGFaKpippX0hrM3MnTs3rFvxG39gC/6sg4At702s/dJewQ78GSfYc/JHvNQFNkTwm7zSlrlnXSVaVnwfSAPfT9ZvWJ+x89nwg18kuoZEudFX0W/QRyGMg0gzaUepgHoTtXaWFLcQWOSf5QuNUcqSuse6FN9QROs8EbDKbwtZ56FtVKZPgMik/PnW2BofycnU/hZOdcUn9Gt8X+nnGPtGv3sVXZb9yjROYx2T9kA7jiq6UK8Q6nBSIU30rXyjGQfaemjcP3Udd5nWrKNtBbwYL/KNjUqufgC3udITb6fW52Va17X4ObOQdozGLP0LGHEEGfdRDM09Vwt7UV6PheBs3Xmd8DdryquexHzF9Rh8SBSm1D3uSin0/4wJMG1P/aJP5nt27bXXBlIrHjffE6wDRYV2k+vIlKj7TPdxgjPujm/IqaeeGjTv6hLR+cADDwTzsHz34U+qQhhLMb6Jfnuj8UJoQrpipZQrv+uSMF+CMGecUJMJTjAPJOfw4cMrMMwMDhlc2gIECyCcv4MwsYSQGzhwYNipwCDSzoZkkNu/f/8weUxCcjJRRZUa4ePNokY6bU4G4Khz8zGhU+E3quCoCfOh52NGenh/3333hfeco0RBxBceQmQZ/rHQRXosDvLFAOCWW24Jg+V0+WSxxvLAYJWP1gsvvBBiyJZmHDAwYfcyaedjS76Ig0Wgu+++O2OcDEbMj5GcmAsmrQjpZ3DB4OCaa64Jv/lQ4wfMGahYHlGlZpfjrFnpNeAsjZQrYeCPTpnO+tJLLw2DLcJl8B7VdqB8+HinK8+QyFr0j8FsLsF0LZqb0Qk4Gp2TP70ml9fwfsshnlBouHi4Hzl45bDIn47k5OzJm88aFYhBiML11ljB7bt9fzfq6JvdVzNmhwX5LYes6jq2b+kOO3OsbxuLuXOP2jKYmYXwSyIsznO+JWfI+SgC0bn5hqu4xXxYUYG4PHbf4eER7gZ4spAzRbc79Drflv0DLycdNMJt0Ld7ys0gT2SieTPqPzd704J/hEX2O8/fM5iaJQzfBNwWPq6nXproTrmibAE0SXpaNGvsyHfjJRoGEmdgn67h94b9egTyibD7r9HFHbHHhm6jfS4P6eHf1afs5Lp7U7cIbiAt5//2e0hXJpLTwh7Yp1swt0g5QAaP2ryvN/F4p/v482+DCVTIUEhVygWhTHb3JNbbnthKQnKidQaZRDlAWDfwE+Wuyy8dSGSI4boijbt2ypkVyEw0N6OEKBqd866YmtMvDvr6swdHDOod2gflzH3rpZoEYqed19z7/sdfQjgQTxcfu5VDYxZ31McNPOF59xPvuivveim0y6Hr9QjmTp974/NQzyGJIC6ffuXT0D9mS9A1J+8QSBrrfwes1SWQhgedNjaQm/E0YqJzjd5/enOp3UJa6CNwA/EIcZgtraRjh41XD6ZWh3jCibyRH7TnIHAPP/uBjHFCeO233Xpu1pxf3B2PlRHyB+zU3209dNVU9ghjV08y7n7MbYHk4vsFKfiHN7OMBqThN9xvICB/E6ek32y0So8OgUjjvEyIOvMHSXrYWQ8EMpdNGpCLUZJzkG/ju3vi2gjoVMIiNztuskYI77r7FvR9s38qIznpM5Auvqwhgym/Iet0D/XCgkDDdZ7vpyDykFwYgDFnblr5khfaLRKtZ5jFveT/tgllcu3YV0KbHr3tOiEtF9/yvC+nZFj+d79hgbgnfOKirj7lTeoO8+WNOeao2V3cxAWyHfnYk5VR2W3ztcNZnZsM7B2+Nbyb503BUkZH7jk4pA/CFu3UbT0Zv9d/b0+1IWsP+AEH6glluf/J94TfPP/+h7L21sqbQ84lq5STmIwPGev1WmHpFMnJhgPE8DbiP1eY8fdMjhgzYnKIReXBgwe7I444Iown425L/bsqxhs2HuzTp09Y4AI/FldYBMo2bu3cuXNqrsAiFGNuFnMZ72fzB2Y2lgRbJkcsPDHHYMxs8wvSwRiV8SjjUn5THowxWQCGXOIZ9ywonH/++ani2GijjRz5QXDDWJo8seDAmJk2lSuNqcDKbyxu5jxs9KQOMv7F5BzmidjYR/r5Y9zOAjdCOplXQbJmIhbKo6gVl1LXyUxzQTCn7DH3FJ1LbLDBBqH8ITWsLuea27BAuN122wW8qR+UI/OU66+/PpQrcxz6F+om98wdp3qSk7ggLCFCEOZ5aHkj1AfmgMyL2blvRAl+eEdYCHWPMB9//PFUPnCz3nrrhQUQ0kP6mXtTr9KJ6mIZKqWui4Y9C/8HH3xw2MDAM/ociPEbbrgh57yXhc9M9clMlkF2WP1h/k79ifYfmDUzN9RL6gsLemywQHLN+XFDnbKzRaljrBHE12YK6RcJOyrUY/BCyDdrDywCZurzccN3ALG2OGjQoIAB/brV9Wx9PusY++23X1g7gRxlDWX99dcPayesCxEHzxDuwZbN+RAy+++/fwpb2i99NRoXRi6ANemy9gvZR/8Tbde8p1z4zhAfhC3lybN111035IV+gzT861//CutR9h68nnnmGffyyy+H/iPdGhLP6PsgeiBECZfvF+tsxE25QUpBspoWSxLcAiCxf+SLPozFW4SwqSvki3U2vtVa5yk7oqgy6zzUQ8ox/o1J0iegPQSZT1lAkKG0YGWfqf3Finmhn7Qh0gQJzx/39C9T/XcvLtnGaXz3aAfUR9YFaWt8X2lXbBBLKihHYAaS+kdbIYzoZgELJ9eadbq2AkaQg48++mgIJkk/kCQ98XZqfR7tJd26LpFT/vQJtDdry3z7+c0Y3Pohy69dLWzKaVFdjzUsuJZpalZUJIi+L/Se9kV/mESYp0D4MM/gG8I8gLkkZjyrSqg3zFEgL+MbO6NpgOjEDaZrWZ+3DUFRN7Xt/rnnngv9IdqT9I3kifKTlAYBIzjp26qa4IRv5Kgc+vAooU0fPGrUqLCeEN1Qg/sGTPwgxPioGUm10047hcUCBjgM1gf7wSgdMTaGIbdoHFtvvXVqlxm7yQ466KAwCDRiNAm8t912W5g4cOA1i0u2ayzul0E6iykTJkxwL774YtgpweCWCes555wTBq7stoMoJYPkiQ/A2LFjw0Q4Hl6633zMGECwIMEhtkwujPRkAEK46fIJPuDHRxf8+I2Qp2xptg6UjznYk1bSTAEymGDAkSlOdopEhd1+DEiZgIEpCzpM3vkgQmI+9thjKefEAfHJDgQGEBwuzuAEc8GZhDQSJgtKdJJMRvjIYsefdLOQtILXssWdfbD5DQHL4kRdk8mXXJNWQxNTtYWe0Tl89OXu8uO3DxqIG+xxSUbILj9+u0DUHHvBQ8Hs4fprdnGnHTrSL5hv67Y++Jqg/TnUkwpreU01yIwNvYYPJNn5N4x3s2aXLSxnDLz8xZmHbR78oCF69rXjggbZdafu7AnEBR8ONB3/s8+wQFTu7s3rzpw11x3szR5uPWw1d8IBm7gTLn00aFZCcELy7Xfinf4D9Kf7v/038ppa3YJG46W3PufOOHxkIDgfefZDd851TwdznFedtKPXrOzlXn3vi0ASJklPtjyNPOAq9/sff7rTPU7gQvzPvv6Z28MTMhCcn3rC6ODT7vFu/gqkLJhC1OQSzis88JS7vebU1wFnzso8/+it3Cb7XuFuefCNkDfOWD3X5wvZ2ZMfyI0PJBv0Ey7aXZsMQBPvHTe4nOiy5yGwOvhv+hU3ptXQNFO1hWQZ4gcNusuP39aTWZPC+YqE077Nkr6vr5cyyXr06CGB4ITw4gxGNIhvO2eU23b4al6buYyMwowr2nrbewLxV0+AQXBCrpxx9bisSevvNyRw9uczXgvz9KvGBbPDN56+s+vdpV3QYEQzFE2060/dKdTPU698KhXezB/mup28lvZJlz+RMnd64oEb50wrmnIIROBpPrwOPr/XnLJD0GxGiy9TnEu3bBZwMbOltAkITvqQo857yJtUne+O239YqJ9H7jHYYf4XstJ/AsLfAafc49vV9+6ovTcMhNtOXsPzBO8mnfT32o4mB58+Nmg+Qs5C+kGoYcJ1sjdDTVtt07JpikzjbE2IttOvTI875CWahO9+8nUFbVPSjqDhiXDmZhjf3PKcJwy7ho0LPN/Glzmk63VjX+WnS4JBv9U6Bbfzf/vTHelJZMhovotWz8CT8z2P2WeIT/s/7pgLF5z/uWzbJVOmapNgCeGIFu9XM+a4f516b9COP7ocbxLxYrk55pCgDP84bxV57f1pFVx06VimlYH2P2fD0jcu1XyJUB5//Pm3O8iXEyQ758Tut/16fnNLf78p5cmQN9rDV97c+gGe1IQgPufIkeEs2YGe0H/WbwxAfvP9McKmlFxim1DQiF2pW3u/SaAsbWwGogxp18t3WCrkf1q5tm6uMNO9Z1GWiephhx3mnnrqqWohONOlqxTjDYuHCcvtt/v2lXDciqUVFooOP/zwsHgFTkg+410WcdiMyMI0k3MIIxa2r7rqqqDlwkI1Y8xhw4ZVGJfSjs4999xACjFuNa0Gxs8sMENwoonCXIKdsxCRjG0Zn7OYnGseYWNywyZ6ZUEM8onFexaSmSPtsssu7sILLwwWZBizQyiYeSrbcEi8dVGKXSeTzgWzYZltbgMBQz1jEYRyhOhh3sQ8lnpx0003uTPPPNOhuY2mFYRTOiEOzFARDotbLOYaecok+/LLL095YxGAyTjtBY27PffcM9RFyBLqMouaLMgQDgu61FfqECRGpk2nBK66mII43BS7LlroLERDMLHhmPEB5c6Gb8oNq1HZ5r3MxTPVJzQumN9jIh0tTjY6s9bAwuj//ve/ED3rAKxB2EZu6sTee+8d+llIiCRzftYJIEKpq/StEG4QeptttpllMVwr0y9aQPSDpJ95P/mOCnU92ufzjn6ZDSJsMKDfZY2JNQXWcaKLVNn6fPp72piRk7RNCBLWNVi7Ou+888IaEX1zNE2GrX33sKAFeYiGDX5Mm5Tyh4iESKJ9mhAn6x4sJhuebHy47rrrwveH+sH6C1pmfC9xA+ny8MMPB+KXdB5wwAGBkOX7QBmnW0Oy+OxKuVEPWAPjO0P6qDeQXVP9NzBq2SAbbhZe/EofifYZ61/UT75xYEeZsJkkW33XOk8czfS/C+0TOMOP9Ukj6Shf6jFjIAjubO0vfUrKnrJGR5rY0MfarvU/cT9Jxmm0Q/oovrOMweh7+D7aGDEeZrrfjKnIm7VptDUhd6OSZM2a8ShthbZLG6bN0lb4vtK/0Pck6QeSpCeaNrsnD7TJdOu6jE2xFAOmE8rXtBmHkx7bKGLhpLsSttZjXdDgNI3OSRMuqqDNGZ6v0C8FH+ZsTesz9TDLDdZi+PYnEeZObIaiv4eQp6/n+1yVwvzpqKOOCuOUXPHiFjOjjGmKJYw16D+ShMm4BhKSdBRLnn766dCWmAfSVzJG5vslKT4CnB3LdwdrFWwWSypsMLPNWEn9xN0xTmJuTR8aJTnZwGJz7uj4kc1m9UgsAkFHx8kfg3qEAQ5Cp8ofA3waMLtMIBejgQWHJfoHqcrHksEdwiSUDydpMnMkpJnBMgNVBpkM+LLtaIgnlY8eeWKAh4ADi14IWor5SpI0W5gMfukcyBcFR77wn1Ro2AgLBUxoGJCDD4RkPJyoeRMqKZgxaMgl1A86JdLJh5m02u5D6gGDYqsvXKknVVU/cqW9mO9nPv5MIDi7HDzacX5D9K/LQaOLGdVCYUFWYrLytfe/SBEdnO/2/qSvwuI/WpvIoWeMDSTdKQdv6gmYFd1HXrPw/qffWyi8TA96dmkbNAfPvPopX5f+CcTG0eeVtQvzgxYj5jYvve25YMIQbcYLb5oQtH0wDYtgQhHZ/6S7gqbXr57kPOGSR71Jz+eD2Vrerdi1vft53m/urGvGhbg4++6gU+/hlV8wL/OfJD3BQ5p/N3lCEfOUaI1e7uNFMLWIoGGEHHjyXSG/EJuQxyzoJ5H7x70XCE7cYiYXU7yUEaZRX3x7cjB/i7aZCSQJ2lBvfTTdHmW9QvKCf5+Vy4iIgV5T1jfAQNJl9ViLX8568tlAcHYcs7vjnM7oH88qI+uUk2lv+HIyGbDWCuGWskP7ECISTb9Lb33eNfNlicYsZph9VXdrl5fDbY+8Fc7LHOU1kg/ceUAgmdA4zCWQTpvsd1UgOAkXAnW6N+uKWNsd4OsIEiedVuu5bPnzL8I1aVrbtW4eiCYIKOoS5JMRl03KNy2ki3P9clxe/6AMK8zJ0vf/69SxgVSinZ5aTi728iQtYmTlNff6szI8mYd7zLAimPnNJGZu9OjzH/Z91YzgD+3RX3/7w7VvvWTwNtETXIi5RUMTU7v3erO7c33/kU7sDMynXvqkwusf5pRtvOGcx46eHINkfu4Nb1rca0vT9gkX2cUTs5yLersntZEkGFicnG9pZn7BwerZCsu18trvQ4OWJeStaVpipncJrwVq5laTYLn3Nv0CVhDKYED6T/PkuY8uPLdyDonP8A/SEHn13bJ6Zc74zoDTBT4fYEAeDvZmkhmbXHb7C26mN6dOmh9/fmLQQl2xvA7sv8N6If6jz3s4fB9oQzfcX2aqCqsDJhDQyPcJNt508OZqEQh50kGdRsN54NpdfJ3+O2wIIF0/ezPglREID3ZXs5mLhUN251a3lHq8waKmEZzkNZ9xaxSbfPyx8GMLySyKM1aEDGJMiWAJhUXT+Nh1/PjxwR9jcyMT2b2M2KICi2uEjRu05h566KGUWcB80hgCjfzjCAozmwZe4MZiNYtnEBXEaWnBGwvD5AHSta5JqetkoXhlm9tQz+gj2PBpmmzMD1lMzWeewpyHcKivzEkRdu7zh9Yp8yATyp9FaYTFZLSxWHilvtOPEQ51iEUZhAUA5qDZCE7cqS6CQpmUsi5SRsx7mSPbugjPbL5cyLyXxT0W4CCN6DcQM1dL3aBOQF6xsZr6CVmHUCduuOGGsOmDMJLM+aN1HoITYU3DzKSGB/5fZfpFCyPXNdrn45YN8xCvYItAGiMQOVHJ1udbW2O9gX6YRVbIHs6/yiRgi/Za9LtHf8Amb7C3NQ38o50GCRklOHlOu7e1JVsjwkyn9fW2+MYmdwRNNtq1uSWdkL6khTiTCuXJN3KCX3+hHvLNgahFrD5YWNlwMzfxK3WczUcsILKOZGFD4CKF1Pd4HLXldyn7lTgGSfoEqydsloGUp/zpD2hHVSFJxml84yD1acMoodA+WZNMKrRhvoe0LdNkZMxlx39ZOEnWrNmIRjvjm0r7Ze2StHBeMPU8ST+QND2Wrvg127ou69b0ybamzVptPlhpPdaPu8Zf7CA3w1/52ZxWBpiwxawtYiZreZZUrO9O6p5+GUKdcWB1CX1CUsnHbZIw2fTK3Nn6qUx+IDjZSMimomIL3y02gPEtt3ZV7DgUXhn/Bg70r2x8Svpn8/vKYMiGFbg+5vlRYa7PczYORoW60ICPF3L00UdH34V7I/cIgB0t7CRjhwwDbgalNmhbyGORHzAoRVCxjgs7Llh0YMAHQcluSyo7g7V8hd2FML/Ex0TUJFfDNXfRa5I0454PMGk3sYUUPrBJhUEFg1L+okLlswm0PedZVKh4ueKiQ4QEjgq/re5AlqIxyi4pOnkYdfLFRK4uyIzHnnZGYHLOJiZpk5pMKmb++5WTcmhoPnfzIQsFvbI3j8pZlpB6EI7/3strC3mTp0ecff9CbjM9gLhs4rVr0G6MysQpkA8LnnAOHEIc/EUF/wgaNxCHdgYezyBD73z0LW7LFsH9Qnk8ru9+/DksnHfp2Ca4SZKeEGCaf1ETmRYPZALS3puChdSAfI0K2mpojOUSiLGocN4pmqKYgBzniZWXPAGNJi3nltKHQH4+/vzHUS9Z72lDk76Y6c0ztvPnhnYJ/qd7rVjIn7okEJtNxnQOWcIsLSZp0drMJfM/r0jM5HLPeZTIy+9MDVf+ca4t8vybkwPhzpoDGrr3XbJXeB7916xJWb2mP0TTc4Q35Qm5tO+Jd4VJZ9RtuntI0l1HrhXOIYyaGw5txJOGCJq7SDSN/EZTjc0ARsCzOSBXWjF1TDyQ5VHBTC+mkDn3EkkXp+Hyoq/DSCtPKmHSl7ZpQrsmHPs+GgH5gD//0sS08KLnndo7u3bs0DIQy3FTo796bcglyj+D73zyVXDOOZAv+LLazZup5WzJq+/JPHHB5DAS7QP4Pauc5ISkO2L3MisVF93yHK/CZghITjQkuUK22oQgCQacRYl7tHWjYngu582NI5gK5nxLEyMAOaMVSYJlS19POUvTzl7GH4Tkn378YyZ5eZZN6JvQtpwf6VMgPqlb8Tpo2p2cX8pfVNAKRkgTfm85a5fo63AftQTQo3OZhvGU6bMWchd9EL5HnigF0yn+bOif5/3utf0bun28li/vOOvTyvnLGQvwjIaR5J7d52effbbD5A0LsiwSsujAQs1JJ52UJIiiuanK8UbcFFjScWs8s0n98U2LjlNtkyLj9rjEd7VHx6BmZokFQsTGwNGxNM8Zm5okTaO5j15ZlI4KRAGLbcw/WJAjHnaZEkf41nsiwxbuo/5q631V1slCMco2t0FbDomXoy2mJo3TwokTRZAckF/UQ3tnxJKFTfrwz0IPbYA+BjORaPYxZ8UfBIb5N3/xazwPuFddXCEO00K/OVIkH2ERh3Ixoe9ivmwLoIXMe62/Y0NEdFOExYHmkllqitcD1gZsfcD6u2hfShjROT99ExKvL2iZ2jveV6ZfxH8uiff5uCd+NL0gdo2s5LmNJblHsvX5ECrUe9Zt+IOUxBIXG2CIM51YvsEgKoY17dMWqjMtylEvosLYJKqVEi8T1pLIK2QhGlvxPEbDynZPvYhrF7GRAtKG+hCVbLhF3UXv4/0V+eAPYg0ppL5Hw6/p99X1jUvSJ1A/+VaxIeHAAw8M5cIGCBZ9bbNNKfG1NOYap/FNY4MXmzQgfXJt2Imm2dqmtUV7F++/bN0x25p1urZCu0WbCIEERbL1A9b350pPCCj2j/4nOha1ftvWWrnG46b/ytRvRYOnv4m2b97x23Cp6+00isWkGLkZfffy9Tu7zU6anJYEjbpLd894TpIcASwynHzyyYHoxFw1dTQuRnCykQhNUkntRABtf+bmfItuvPHG1Ji0KnLDhjTbfBWNj3WMdM9x34CBHAm+//6KRAidsB2qykeGBSAGaewY4wrhibp9VU3k+eCwK9uEgTGDx6lTp9qjoGnKD94xWI2a70g5ynDDhxmijgEDg2c+znzYTQU2g7esj5OkOWsACV8ywGZ3aFwoQwbAlRUG5XRQ0bAI2z7IPIdo5iNLmXBlQGbvKxt/dfv/5VN/+LnX4ExCbEbTytkNxRQ7N3D6tz+6+55asHjXxC8Cs+BvWkDEyfmTSH1PcqCdxtmQSQQSkj/T8jI/aI6xeG2CJheChug0by7QhLR890MZEQIpA2GUSYgHEjYeF+7r+3o0b/5vIS1J0pMpjmzPSWfLzk3C+ZtR87RoCSURFvSjAomJmFng6+57JZCcO2/Wxy/Il7m83j/LRx71ZnwhObcdvkbw9pQ3H1nXBGITojPJ2ZzRvHNGZz7SedlWgSCOkkIQN5Q9WmucZ4g84dvKS29PDffRf+9MLFsYgTzknEmEegqxlEvaerOppx86IpCCnOWJBh8k42mHjHDffjc35X2F8jRGtRNpe808IYeWo0lXMyeaJa2blmssm7ag+W3jTdF+HyEr08XJ+ZcQqqQRLUy+AbM9qRkVSD9IVCPrICs5BxLi02SdcvOtr8Q0Be09Z1jS/jF3HRXMxKJp+fV3ZcTVdG+GlHEzGoAH7TIgaN2efd0zaQfTFs5y3jQwgjnTqFjf1WmZVoFMfOGtKUHTHDe/eBINE6ijt1nHf+/+djeUn+WZFAM0T62fjsZJPSP947zGN+dlcpbm6OPvTDlZ258Zizz/ZtlCbC4sy/rjxUL/mQrE31A3IRxtQ0f0Xfye/opwpnhTwFFZt1zjOV5mLb176jqmluNC+6Hvp56At5n4jbrD5LBJr3IzyhOnlmno2vP4tVunNiHMub4eMnGa4etJ86ZtgjbnD7PneS3rz9zh3twwMilHWPGw7TfWP84444xg7geCE2EDH+YnOY+dMc0JJ5xgzkt+re7xRqHj1kL82eIw56oYcQnAjC8zLTKnKwAWe9ONgeNuC0kjYTDXiYr9Jl6EBT0zpWOL2DyrK1LddTJKhIApbTIfsbqEpkh8MT+fcKy8Kf9oOFYf4gRItrDREkPrC7KLOTWLP5isw2Q2WjGZxOKy9/bb0qa6aMhUvOY7H0PbJy48Q+sGKWTea2XEImr0rDr6OxbF6QNtgZC6mkmSzPktrnhdjW8eIY5C+8VM6cv2nHxRz9HihHQACzC183Kz+Y2+I39oskGOQHZiLhCzZWzs5rudTqx9WpsxN/bb+gl7XozrlltuGSwNQJZwri9rTJhjh+DNRygjSNK40DdanYy/y+d3uvpO2PaNLqS+5xN/dbutrm+ctdNsfQLYYHUAawGsVVp9R4sZE/7WZ5QKQ6sDucZpkIu2SYNNP/mYJ8zUNuP9VZI1a9pK3F8Um0xxRfuBTG6yhRuNI9s9mwdatWpVwQn9YpJxzaK+HjtrqifPw1/FtTQ0OjFJGxWIznw0OM2vaeXbb12zIwBHBHEZJTqjPozghJfBQlJ8Q2LUbW27Z+zGGgLzT8YwbDiYGuGlLD+dO3cO7/PZ+GF+a9KVvhVrV2wIP/XUU0O5G1dYk9JpaWlAYbB7EOBtYkVHy7kGNllnAsaHBTMC/FGoZBDCM0py2gfCAi/WlbSxM4idS7ZLjt2HMMn2cWeCyNkH7GLh44rpMUyXmPtcaSGPCOquZs6IBplOMuUzOgBNkuZ0YWd6lilO3DN4RusWDOxcUz6YDKLzrXyUOeVPRY4KE3EzvURa2rVrV2GSz4SN8oAoxn+0XkTDqa330Qlys+5lBKLlBQLUBE1PhAFzseUDr6XJQjkaLJzRaLKm10br7TWIjKgb4M2aohn08jtTgpbW0aOHhnsIiCTyo1+w5gw5yD7uke02KiPZzD/aYZtvuEoo62haNh7QOyyy427i5BleA62lG+7PjjOSlUX4c4/aMpgYvOouv5nAa03G48K9z2Iws0s4SdKDu3zldX8OHRpFF/vzTDmTE8L12P2GBzOihqWFiRnaKDnG8008ifTg+AXaymb+9t1yMgzyl/yZyVqInG/KSRsLN9cVwgCyGJKLc0Xf9RptnDNY1yRKWMa1OCFATSBEEbuGHwn+YQ52yaZLeG2wBUQL3jDLyaYB5P1J34TrUp7MsfMM6Q83G7RiIPgof7T/rjxhO+d8/XzSa+tCdo4cvJJ7aMKHwW+mf2geEtb/7nzJPfBMWZ3B5Cry0eQFC5oQT198/UOFYMxM7sfe7LRJkrSuueJywTkmrU0wzwox+cmUBZra6eJE23Oq15xDIDo5+3KF8rMQLawTDtgo3D484SNnZGVcGxONRPqstz4u01C0DRkWhhFqy7Uv03C054fvPjjg9WA5Vjz/xW96gORcy+cL0hPzpdkEopR02xjB3PKbNA3s0yVcMclqMufn+W659i3cUr6sHhr/YYqwTYKBnWOajmCknlGuZ/lzXjsv0zKcL4q2qOWBs1MhVSGMk2CJ6WFIaIh7yhNimToOaY68HtMyt/xFr+uvuUL4GS8z03iOmnXG4Xdek7eTT/vbvn9jUw2CZi2an594gpFnpIONLdZ+cMMmm6W9Znz0GdjjNh437qOCxjJiZDeELAQ8ZXj1PS+Hd9Yf5gorOI79Y7MeZxL95z//cffcU2Ym3ZxAQBjRySJP9Fwvc1Oqa3WNNwodtxbqj/HqgAEDwjgCU0MmLN7FiS17l+7KGJjFbY7UsM2NLLYx6SRcxqdJ04h2qJlRtLiYD7FAbWLmcW3OBOEFQWHaWUziS7FgbvFXx7U66qQtNDK3MVKI+QdzUHuXBAvmuQMHDnSrr756IFXMD/WDso5u8jXtYHMTvRIO9ZVytrLnPfNHNnXGNaOjfqP35AFtErQ53njjjfDHwjVndVH3LWzVxShqC+6roi5C+qDFZmXBOgn1LqpNl2TeG61PhMW3i7FgtL9DE485NXUIrR/cUB/QjDKh/tK/cX5skjm/aUDRd1kemJszT49K0n4x6ifbfbo6G3Vv8aNxaRtB7FnUXa57yE0IBzQvwQPTZJwXZRph6fyzHgK29N9m8hx31m/b+kk6v4U+o++ij0HrwWTDDTe02wrX6BpShRf+B30LdZC+w0gn6gN1yco67ifT7/imddzxvYREsz6M9S++wdEF/yT1PVOcteF5VfQr4JBvn0C5sMZHXcd8K398K+gjll566QraNLnaXyHlkHScZufgkT6+k/RZEKNJxNYqM7VNC4NvcK41a8Zi4MI6qI0TaCtsLnjiiSdCf5GrH0iaHktXPlcI7c6dO4eNcZiBpj3uuOOOCwVB29Z6bEVYMmlvpnteCMFJbHVFQacicqX9xTc4SnTahmH6I84sRWmM93WJ4EQJDtPc8ExslOaccBQCMVVtGzz4pmOtZeTIkUHzPm5StbSlUprQ4YfYXIPp4VNOOcUdf/zxqTFmaWIsPNQGTLAw9cHOOnaWMlnnPCI+EJh/peJCXDEAYlDIgIcdc4gN9tmZxi4vyEV20mEyBNX7YgkfTHbDYceZQTEdPx9PJiGoRvOB2H777cNOSM5KYfLAxxaik91PSYR8QdpuscUWYcLJwBTzq1HJlE/DgYErH1U+WrnSHA032326OPk4R8XKkI8k5CI7QilDPo6cb5SPHHbYYQFXmPooQWymZagfnHnK4BeNVxM0OXEPZsRv543Y+7p8bbvxhg5TSGh6QnKWguAEPzQaX//gC9d3lU7u2lN3duNe/iQscnPu5vzffne3PvSGwyTgCQduEkywHnfxI97MaVd3ov997r+3dPuduEBzKFt53PX4227Mjuu7m88c5Rf6P3BtPKk2rFxzzfy98u7UYIZ28w1WDiYK0XJb32uPruEJiLc9oYG/mx58LWgyHrPPsEC2/uxJ1hGDVgqaUh9+WkbY3Prwm+4wT2hYXCyQb7x+77AAfrs/+xBJkh5LVz7XK+960Q3wZ2aySD/uun85T3147mqxYLKyQYMFmgKXHbedW6XHMu7Eyx4LZ29aHCt588AXHbONe+PDaSGfbf1ZcZgLhoAwecRrYu62Rd/w87qxr9jjRFcLB7J62Hq93NvlpixTnhdEk3pUF29aDx8USE3Iz3lXTM2b4ASTVX35+c9GBW1IM8tpGpKcoYgpYMxBHzdmeNBIG75ej0DCP+bNDGO+86qTtvdtrKE79sJHQj3fsF93t7snMHORnJ9h/nn9Xm4HT2z6ZDjOsRzqNfqQ196bFq5m8nNZr4G42+Z93N1PvBvMiNp5nYPW7uamefOkj3gTnbnSivldtAchwn70Z4yaQDghr3+QOU6IUL6xhgvuOd+RsyvvOHc399ybn7vVPJ5dPdn0pTefjOYrhB3yzsSKZl7QpvzJn5VIXcYNGoyEe/DpZRpzmHZG0Ii99exd3fhXPwvtcZUeHYJG5L0RjfWZXvPaznI86Yongr9s/zDDWm+xBe046hbyE3Lw5fJ+zN6hkUjeef8/vwkjKrkw2HroqsH5m7F2avXsw8/K+ryTLn/C93e7eg3Ewf4sUCwe/BM2LqCliPQr137NhiXuKOMh63R3D1+xj8McMBtKTCsek765pI83rY28GDHfzO9OaOT6jRXxjR6Y4N1zq77uljN3cfd5k8SYuh3q4//Lp/+JFz/Ba6gnmOxlI8CzPm+YQsa0OZs77i8nrNmAw6aNZ18vy3vwmOEfWsaIaWnyneHM57c//spRHxo2rO+1UT2Z7QnTaD3PENxCjxnDHHTQQWFSstBL/+DNN98ME5SaRFiVcrxR6Li1UH8szjKmXH/99cPYmXEj8wgWuthQGSUW05WPPWPMzTwGs8M2BjbzsU8//XRwliSNkF7Ej+kbxrQmEE/MJ6ZMmRLmP5is5AzI6FicujJs2LDghSM+FiUpVZ1kwZ0JNQuUzEMha1g8zVeYx7LwyfzEFu6Zx0KIGNFCmBBMPBs6dGiYR0YX+HlPONTXvn37hnkS7yFIOCeN8k8qfGOY0zJnYjGEhVjaAGLnMKouJkWzorti1kU2ubAuQjtnbQOJbuDNNe9NV584xoU6wxFA3LMZmTk1xJWZU+RKXd1jjz2CGwhQCHq0BFhrSTLnh5jgu0U/yBoJaSHMuCZSkn6xIsLpfxEfVpzog2kLZvY17trMNJJn1gpYMymkTZMvSB7O1wRHIzWM0I3Ha79Zn4L4pWxZK2JzDL/pH+Lt3fxU5kq49CkbbbRR2NRAGdBfRIXvChJdQ4q+555ygtgaPXp02PAB2QmG1Ac7BzTuJ91vCLMxY8aExWbORTWhT9prr73Cug4L0xzdRL3n22qSq76bu7p4LVa/UkifAMHJ94L2z5oea3t8E/k2Eh6StP0VUjZJxmnURchHvmd8U2mbfNNon0mIDeoa4z3WYa1tdvZEIOOxqFjfl23NmrVq+iHaCmmBaCB91HHrH5L0A0nSE01b0nsIIM4wHD58eBhrUJ6MBeLkmtZjkyIqdzUBAb7tRnTyPUY4r5MxDhqcfAvritB26ZM5A5zjEdnIRN80YcKE8H3lKArktNNOC9YbIAKZ09YViRKdptFZivFTZfFqwCSSQzwZPNlAk46WjwQfAYQJPwQau2AQPkYMDhl0mbBYhH8KljCTFiZhIXa18KJX4oJkJXwqFoJ5jrvuuitUHtIO4clhzADPQMzs1/OBzDTYjsZhO9TYvcaA1AaOMPXRtKXLJx9wBqkM8EkfFT1XmqNxR+8trujHLh5nnEAEb8yzsAhjE2XwYaElV96JLxqXxR9NE+/BB+KUQQLYMPGzCZm5Jc8M4NGmrcsCkcmA1wSCc/LF17hVLj6tZASnxXWkP18TYo2FXohIhHPyjjjrvnB/xmEjgwnCU//3RCA4nvHmEXfYXQPp4wAAQABJREFUeA2v6dnebTJgRffY8x8Fd9n+3f7Im15jp1XQwNxlZJ/gFH/DPdFmwgL4Hsfe6q44YXu3/ppdHdqjCOdSkkYETcajznnAnfivTdymntxEWIyG7Hvx7bIFxPvGvevQGtt+kzWdxYU5yeMueSSlYZckPZASSSVax/f0eUBzdMN+PQKhdOP9r7qTDxrhICxNou7tGdcHn3k/kLYQu3RjEA2Hnn5v1Ikj7UZy3uHvk8iZ14yr4OxhryXInwlmdg+JxWPv6sIVLc3WruxbQ374Pf2KG13Pc08oiOAkjL7lZNprXnvXxJ5Fz6zc78S7vWbv1intW8oek5ho+110zFaBjLrq7pdTJCHED9qcEDcvvT3Fgl7o+qAvv6HeHWY6/7XLgNA2IWkwY/tK+ZmZtCnC27Bft3Dm5H3jyr6/kFmQiZznuN926waSkwiypZX3mFOe5jUeo7J6r7KzdF8qJ7bSxbmOJ3mRqLnSw896wF3qceGcXMg8cOH8SMhexAizKAZoUnL+rZ2JSdtHou2pd5e24fcFNz3nz3kc6HYcsUZoS59MmekOO6usHwme/D/On4TkJF2mZWrv0l3pF1dcrJ1Lp4X9p8caYvWCG5+t4BWSE4FsjZshzoXB6r2WCX4pr6ik6ll53fv2+7mBGN7Yk95jdujv7n3q3UC4TpxctliRBEvCP+Pqcb4e/en73y6B4PzIk6gQ2xCISQi/7t4ULP2WaQUTJsQv2rZGyPLMhA0p1FfOooXYR9BwPfGyx1OanYf7Mrv0v9u4rr6eQIIjmKk9+ryHwj3/9t1unXB/ZYxETjmI3ES1bHkMdmdf+0zKxe+//+XPnH4g9TvfGyZd7LrMJtFFvmzuSvWuKscb+Yxbo+04H39RnBhbYp5z1113DYv4jB8RiJ6odl3UT/Te0gDxxA5Zzozq379/cMJcgDGwjZeTpDE6Fo7Gw1yHRV/IV+JkQdF2Kps7LJ0YyYm547ospaiTVpZ2NfzuvvvusGAJiY1QnpA2cXfm3q68t/Lk/rrrrgvEEgQTpAbPqBNGguMPrRN2XDPXgXx54IGKfQvhXXPNNaG+YjkI4on5EHOeXMS2pYUrJgoJe8SIEeGPuKmvaJnYIqy5511UVBejaLiwsbQU8zH6FLR5bN2DRehHHnlkobPUqEOZ5r3p6hObx6m/rE2wiI+gTRk9U4jN2rihv4GEQyAzWKtBksz5qU833HBDqKvWr0J6Ulep/yZJ+kVzm+1K/0cbRUOZBc5Maw/klTUN+tNNN900tEOIG9Z3crVp4jc3jz32WDhPFDKFPwSMWAfKJhx7BLZoX7PeQ3gszhm22fwW8o7vGIQMWh78oQDAGpWdC0iY6daQLJ8WJ2QR62Bs8GcTBsImeCxQcM0l8fDiv6nr1HHTMmUNiT4qTlBlq++50lCb3pfiG0f+C+kTwJx+gPrDeifCNyTaZyRtf8Fzmn/x+hB1wrco2zgNS3vUG/ol2zTE+ixkOmvHKKMkEcgC3NMv0jb5toIXdd6EOHKtWbMBje/x4MGD3ZAhQ4JXNpGg9EKYSJJ+IEl6suEWIvL/zI1900nLJZdcEvot8so8hDVVCKGomL/oM8LQemwUEd3XJATQUoboRMMPwSwzv6uK4GRDKhaaEL67aJCyyYH+kjOMiyHGfdAnxok9NkbQjiFAGd8zTqEfYTxWLGEOxBgA0+VxYfML33GUAuNCn8rYo1hCX3rOOec4zkfGigYWsWqaLOZ3CPplrjKBKKQyZBowsbuLXYAM/tMJu1FwQ8dsCw3p3NkzPoZmj96e5boy8ST8pP7IUz5pYfBLHJnySPosn+xCjAp+bUdO9Hm+aY76tftMcdp7u5JfdiqbORN7nvQKiYnYx5XFJzoJVLFJA3anGWSkE9t5zIAmG37p/Jb6GekuZprajRhSgeg0k7VRcyelzhOmCiG84mZUM8WLNqKRjZnczPfaTxfdPCH1enlvnvCbmT8tpNWTcuBvWBjH3OSXnoSInscXdcM5d028BpxpK0Xf2T1mBzF5mC0/SdJj4eW6DuzTzW0zbLVg+vd5r52GtF6qqRt78WiP61y37aHXpYJouHj9QEzxAHJ5p03Xcv869R6HCWHS9NWMOWkx4t0tZ+0WTO/un1CTNhVpLbqhfRXa56TLZpvhgx0anCZmsjZq1tbeleKKWdqm/s/Om8wVB9qfRiDG3WIC9Y5H3w6PIdwwXQppmUnog9HINpOg5g5NT7Q64+Rbvmm18KLXTHFG3XBPW2/nNwB8NTP9GCDuPv472o549/iV+3lCbp7b6d83hw00y3rtwK+/mxO0G6N+yfu9F+0ZNnBsc8j1WfsI87f9Rqu7fbdf1x1zwSMpUtreVeZaWQwqE7f5xUQy5XDt2FdT32q0Xy84ektv0vrrShF/Fke2K9q+M2f9vFBdND9ghEYyJLuNJXi39zb93E4j1nRPvTwpmO4193XtipZFbR9vFDpuLdQf40sWy5h/2GJQIfWCMTDzEDNTli6MbGlk/GwTUnb/s0hm5ySigZMpfXwD2Z2PudxcC+3p0lTqZ7V9DEzdYM4Vn3flixv1jONOsrVP5nLUgWjfFY+HbybhZJovx91n+s2cmrDS1VfVxUyoVXxeyvkYfQnrIpmsUyWZ92aqT7RJ1jLi5rGjucMNcWfqE5PM+TGzSxrS1bFoXPF+Ec0ss9wVdRe9Z0HtxRdfTD0iPaTVyITUi9gNdZ42DfFq/W3MSaKfti5Be86EUaaAiB9ss7XzTH7zfU4dogyyWYXgPfkB02xCOeEmW73J5p84olgdddRRgcxkIwjlR32pTH3PFncp39Wmb1yhfQJ1FgI6Ux2x9seGg7jWdhx7NiKYZnX8Xabf1B3SkGkclM4fGwrQRs0mbFCAzEWII9c3GnfkNduaNW5oK/RF2cYNufqBpOkhviSCFjrKNJjYtj6ZDS0oqrAubqYu6SMR65+0HpsE3ep1Q7med955wax8kpSweYENcwceeGAS53m5QSuaegXJVtWCqX9IPuLOxBmUIk1mljoeNopvE7yWZV0QxqRoqufq3+N5ZYyE5qn1J/H3hf4mPfShbGCradIgmiA+mpk+nLhjQJVtYsigiQ8JmTXTLtHw4/dUOttlHX+X6bd9EDK9jz/nA5hPWvgYZssj4Vs+43FlGtTnm+Z4uNnijLvNVn5xt+l+Z6v85DtdZ8XuAD7a7ExFozUXfunirW3PIDOrktBMh08SbaaoP8zcjvDnSGYTv3+gAsmJNmYugdjMlRbOA811JiiEbS5Jkp5cYdh7TCCu7s0prubNKU712kZ/+7xjHpFx5X1PV9RGxuxnOsGEcKa8HzdmI9ffa1kh511fnB1E6dJQF59BZlYVoZkOP8x18pdUNhu8olutZ9mO+7gfzmI0khMCPxuJj1/64DjByfO4+VCeIfmmtcxXxf+Z4qzoyoVNDIUSnIQVbUdoBTbwZqE/8aZwEdIQJ3/RBt1jy75eU3yFYIr1klufz4lfCMz/e+a1TwPJ2d+fPWnmee1dZa70d5XBoDJxm1/OWx2wVhdvWnl5r50/MWhwbuDNAaPRfrI3h1tq4UzUbAJGnCccFawP7Og19tHG5GxSSXIEqmO8Uei4tVB/jC9nz85er5IglmseQxjZ0phtwT1T+thVa+e6PfXUU0mSWevdVHWdrCyZaIBTz3LNUTLN5SwMrnyvipGmbBt2VRejiGe+L2VdZN0jHZmUz7w3U33KVQ/JcS43Seb8STcHxPtFju3JtX5CO4iSnEnSQ77wlytvuMslmdYlcvnjfTHab5J4cAMxlUsy1ZO4v3g5xd/n+g1mmSTT9zOf+p4p7Nr2vJT9SqayztUmctVZa392pFc2zNlEky/JWcg4DYt4Uc3ldGlCY9hIziTfaMLIVFej4SdpK7kwTZqeaLzZ7vnmo30OIYNVENbM2VBCPKYlhn/6yEyCW63HZkKn+p5zpMEFF1wQNPmSpII6fPLJJydxmrcbtAr5qw7BIgmbZqpa2GTKX10WxqNRLf7qzivpqYkEJ7hUIDmLBRQfDOwQ1wSpSWmpCXjkmwZ2V0EUZxM+1AxgIDgxnSKpmQhce+/Ljj9JGQJo6e1/0p3u2H2HhfPlYDc5O+7Wh9/wJkEXmIeN44WbOXPnu19ykGCD+3YP53teeNME9ylnMkrqLALHXfxYnc1bqTK2gjc9i7nT8d5EbyZBO3G7jVYL5OrYce+5B8rPdczkPvr8+x9/cVfc8eJCxGnUTW29P/2qce6MwzYNxPoBO/X3k2HnidfZ7ob7Xw+Y1sR8NVq8gbvNm+y+35/nKRECtQEBFhz5y6YFQD5YxGMRm13LVWWWqTbgpzQWDwHVxeJhWYyQFoV5L6baq9tcezHKSmFkR4B1Hs57zCaLQn3Plv/a9g4zgjVFatKCfE3ABDKXDUyYQmcjCYQ3ZCemLbONH7UeWxNKL3caOLc7enZ3bh9yIQSEQCkQqGCuthQRKEwhUBMQKLYZk5qQJ6VBCNQUBGhfxTRXW1PypXQIgZqOAGbLp33zo98FnHnXb03PQ11LX7HN1dY1fJSfqkdAY+Cqx1wxpkdAdTE9LnoqBIRA4QioXykcO/kUAlWFgNppVSGteITAoo1ASTQ5F21IlXshIASEgBAQAkJACJQegUzmsksfs2IQAkJACAgBISAEhIAQEAJCQAgIASEgBISAEBAC1Y9AvepPglIgBISAEBACQkAICAEhIASEgBAQAkJACAgBISAEhIAQEAJCQAgIASEgBISAEEiOgEjO5FjJpRAQAkJACAgBISAEhIAQEAJCQAgIASEgBISAEBACQkAICAEhIASEgBAQAjUAAZGcNaAQlAQhIASEgBAQAkJACAgBISAEhIAQEAJCQAgIASEgBISAEBACQkAICAEhIASSIyCSMzlWcikEhIAQEAJCQAgIASEgBISAEBACQkAICAEhIASEgBAQAkJACAgBISAEhEANQEAkZw0oBCVBCAgBISAEhIAQEAJCQAgIASEgBISAEBACQkAICAEhIASEgBAQAkJACAiB5AiI5EyOlVwKASEgBISAEBACQkAICAEhIASEgBAQAkJACAgBISAEhIAQEAJCQAgIASFQAxBYrEePHv/UgHQoCUJACAgBIVCLEZg/f34tTr2SLgSEgBAoDgKNGzcuTkAKRQgIASEgBISAEBACQkAICAEhIASEgBAQAkIgJwINtDCdEyM5EAJCQAgIASEgBISAEBACORHQuDonRHIgBISAEBACQkAICAEhIASEgBAQAkJACAiBoiEgc7VFg1IBCQEhIASEgBAQAkJACAgBISAEhIAQEAJCQAgIASEgBISAEBACQkAICAEhUBUIiOSsCpQVhxAQAkJACAgBISAEhIAQEAJCQAgIASEgBISAEBACQkAICAEhIASEgBAQAkVDQCRn0aBUQEJACAgBISAEhIAQEAJCQAgIASEgBISAEBACQkAICAEhIASEgBAQAkJACFQFAiI5qwJlxSEEhIAQEAJCQAgIASEgBISAEBACQkAICAEhIASEgBAQAkJACAgBISAEhEDREBDJWTQoFZAQEAJCQAgIASEgBISAEBACQkAICAEhIASEgBAQAkJACAgBISAEhIAQEAJVgUCDqohEcQgBIVB5BNoMHxwCaT18UCqwWU8+675/ckLqt26EgBAQAkJACAgBISAEhIAQEAJCQAgIASEgBISAEBACQkAICAEhsCggUCc0Obt16+aOPPJI17lz57zLrHnz5m655ZbL218uD61bt3bHHHOMGzJkSC6nOd9vtdVWbsyYMTnd1VQHHTt2dM2aNcsreZUp07wiqoTj3Xff3Y0aNSpnCD179nT16lW+qUFuQmjO+3xqKk6eNenaOfW7kJsGDRq43XbbzR111FFuhx12CEEkzVsh8dUFP9tuu23Aa/HFF6/V2SmkbdbqDCvxQkAICAEhIASEgBAQAkJACAgBISAEhIAQEAJCQAgIASFQZxCoPPOSBortt9/ebbzxxmnelOZRu3btHKTiUkstlXcEnTp1cnvttZdjsb+Ysswyy7gll1zS9erVq9LBdunSxS277LKVDicewKBBgwK5FX9e7N+rr766Gz16tGvatGnioCtTpokjqaRDSPXll18+ayj169d3Q4cOddttt51bbLHFsrrN9tKIzI5jdl+I1LR32fxne7fHHnu43r17Owi7uXPnBqdJ8pYtzFK9y1RnS9nnpIuzR48ermXLlgX1OaXCppBwC2mbhcQjP0JACAgBISAEhIAQEAJCQAgIASEgBISAEBACQkAICAEhIASKjUBJSM5VVlnFrbnmmsVOa0nC++CDD9xDDz3kIHqKSSS+//777uKLL3b/+9//SpLuYgRKOUFulVoefvhhN3XqVLf33nu7Jk2alDq6GhX+X3/95a699tpAwhdKdBqJiWna+Z9/4bgWUzp06OD++OMPd9ppp7lHH320mEEXPaxMdbaUfU66OM877zx3/vnnu++++67oeazKABfltlmVOCsuISAEhIAQEAJCQAgIASEgBISAEBACQkAICAEhIASEgBAoPgL1W7RocWIxg91iiy2CViQabGgyYgrTiAAIrr59+7oNN9zQtW3b1s2ePdvNnz8/Ff2wYcOCdhSmTdEExc2UKVPC+1atWrkBAwa49ddfPxBGM2fODMQML9GmQ7Pqo48+cl27dg3hQ1h+//337tdff02Fn+nm22+/dT/99FMw1fn555+ntNkyuU/yvGHDhm7w4MEhfvJJGvn99ddfu3XWWcehHYYJU+KOCtp+K664ottoo40cZk5nzJjh0LZq3Lixe+aZZ4LTESNGuCWWWMKBgcmqq64asJ00aZI9Cn4Mb0zyoqX3888/h/eEj0lYtPfAG83JL774Iryj7CB2MLULnmBIHkzWWmstt/LKK4fwhg8fHghtSN1s8sknn7j27du7DTbYwEEsQ6plEyvTDz/8MIURhGz//v2D3x9//DF4RxOXerPSSiuFdNpzXmZKpz2fNWtWqCv9+vVzc+bMCX/RNFE+4EAeqU+4mTdvXsoJ5fn333+7559/PvUs3c2ff/7pwGe99dZzpPfjjz9O5yzts57nnuBarL16+IPstL+oY4hPpP2OW7iGrVpWMGcbdZfunvZKmv7555/QXqkP1Kt0eaPOgRXtl7ZN+6IcwWnkyJHB7LO1V+JiowP1b9q0aQ4MkgjtnHpHOVNnwfyXX34JXtPVWdJAe0ATO12fkynNBEib2nTTTUO9sXrUpk0b9+WXX4ZyxU26OGkn1Ivu3bs7+guTXP1b0npn4XGNppE2uskmm4R46a9M65a2T59CuqI4g3+fPn1ctE+Ihm33+bZN86erEBACQkAICAEhIASEgBAQAkJACAgBISAEhIAQEAJCQAgIgepEoEGxI4fUgKiD3OS+UaNGDqJq6aWXdoccckggIiBUMOMKWXLnnXe6d955JyQD4o93+EUgHJ5++ulAVnEGHmJ+IcvQkvzqq6/Cc/5tttlmQVPQ3EAqoW31ww8/pNxkuiENEFZ77rmnu+666wIZmcltkueYZoV4IP8QP5Bw/IaQgAwhjZB2kEwnnnhiKsj99tsvkE48wM0aa6zhfv/999R7biB6IWKixOK6667rMDGKVioCdoceemgFvCGO0Nx66aWXUmnDLeUEOfjcc88F7P/9738HEov4KUuILfChrBDCgbAcOHBgcB8lVoKDNP8I64EHHnCbb755MA+MdmOU4E7jpcKj1VZbLZDQEF5PPvlkeLfTTjsFPM0hpA6Y3HbbbeFRpnTac3CE1COPkLaQRKZ5C3EHDphANhzI79133+3eeustizLxFaKYekX92nrrrd3YsWNDuNkCaDN8cLbXC70zApQzO6Pndi7kMPKAsiev/HGPCVZI6LhgDvqwww6rUJ8gAC+44AIHWYw2KPUPEvjll18OGxRos5CUlHsSgdzfddddQ3mAORsXaMM33XSTmzhxYto6+9lnn4V0p+tzcqUZojbeJmmnmBe+7LLLQt9ibZj0R9sJ6YKEfeKJJ0LWkvRvSepdHCdLI/WTzQhWFyEvaQfjx493EMOkkw0M9JcmnOVL27Q+wZ7Hr5Vtm/Hw9FsICAEhIASEgBAQAkJACAgBISAEhIAQEAJCQAgIASEgBIRAVSBQr9iR/N///V9YWEfLiPu77rorRLH//vsHguT22293xx57bCBHMOXJWXpRE6YQnC+88II77rjjgrlXFvm32WabECaECn7vv//+QK5h/jMq+D3rrLPc8ccf7957770Q32CvbZdU8AMhAxEFaVMqOfXUU92JntiEoIEEhcBAIEHQKEPz9eSTTw75QFMMN/nKmDFjQv4h5cDs0ksvDSQuWm8QQieddFKKyKWczj333BDFqFGjAsH5+uuvu//+97/ulFNOCSQx2qQQriaE8c033zjyQlkllQcffNBN9aZrOQcVLbskAjG8ww47BM21c845J5CjaMXxHM1Yyps/tGLRsOO5SaZ08hyimDyeffbZgSBCe9QIdsg2CE4IYfDBDWQzxF0h5UF6fvvtN3f99dcHAnrLLbcM5WDpTHdt3LVTuscVnkFmfv/khArndLYePqiCm2w/yBv5QjOQ+xtuuCGtc9ovROjNN98c6hNXfu+7777BPflCqxPNSLQPMf+MXHPNNeGa5B8kMmm5/PLLQxykhXKCdETS1VnKn3RD5qXrc7Kl2dJEeq+88soQDuZ6iZO0ZIrT/EWvSfu3XPUuGmb0HoLz8ccfD7hgKpf8osEMwUl/CVEZbZ9oYFOXoxshouGluy+kbaYLR8+EgBAQAkJACAgBISAEhIAQEAJCQAgIASEgBISAEBACQkAIVAUCRSc50yUaMgsiE8IOIhHBJOZTTz0VCIXouZBogj3yyCNhER93EIAQAyzwm3nWV1991d1xxx1BYww3Jq+88kowqxrVXlpmmWXsdaIrpACal/mQo4kCLneE5hXaiJA5dv4hhB2CJhuCNiFajuQD7T/I4HwE0sbwNq1DNF6vvvrqgDmmdDMJZj+JG01DNFspDwggJEoe8pu0mSlRficVyhLSBu3MXII234477hjKFYIT3BBIVwSsINf4M0LNSOPgwP/LlM5bb7015BEt1rfffjvUMwu3c7lWIlpwEEi4GTduXHCDGeFCBaITkn7ttdcOZGc+4Uy/4kb3yZEnVfjjGRqc+RCb+cSJW0hdyuvTTz8NJqF5hmloNF/ZhACRSLmwgQGTsUceeWTQCAUvtDyTCmUJ+T99+vTghU0AtAG0S/OVJGm2MGnvEO+UM6aHaW+QhEkln/6NMLPVu0xxsvHh2WefDa8x0WtkLJqnYARhD+FpGwfQUkbMxHX4keBfPm0zQXByIgSEgBAQAkJACAgBISAEhIAQEAJCQAgIASEgBISAEBACQqBkCDQoWciRgCGqECMv7BUkBgKh8Oabb4b76JmHPOjSpUt4Hj9X7t133w3Po/+i51tiuhGSDtIlH0FrjPMXr7rqqny8JXYLGWGCJiRipCMmLyEsohhAvKCh1rx5c/OW85oJb0gp/jIJZDIEKdpxUUHLD+KHMwFNSFeS807NvV3RLkNblLJ644037HHGq2mnQWyDjQlkLILGa1yiWriZ0snzKM5m9hiSyHAg3DPOOCMefKiTRtYv9DLHAwi73XffPZgatbNqc3gJr2c9+WwwQdtxzO4VtDaT+K2sGyN1qVfp8EADFpKQs0Zpp7iDFM6XYAMbNGipZxCnlANi13zykSTNZi45Xg7UC2uTSeLM1N7S9W/Z6l22uOJt0vpDyHiIWQhQsEMbHJO19KmUQfQs3Wzh8y7ftpkrPL0XAkJACAgBISAEhIAQEAJCQAgIASEgBISAEBACQkAICAEhUEoEqoTkhCRDomZp+W3EHSReJrF3LVq0CGZcM7njOQRCZQSCE1INjUfOEqxqQRsOjbm4pCNc4uRt9DfkBpIurHjY0d/gBzGczhwrpBNaiJURI1GIB222JBqqpAf3nP8IQQuZhkBEkc74eYOQlHEyPXjI45/VI+JGq9gEjMEBMq8QgcTbZ599Ark7YcKEnEFAbDYZ0zm4wywtZ3SitZlL5n+emcjO5Tfde2u/aBBy3qYJWEN0G1kPGWma07RX/vJpR5zZS11HsxKtb+Ll/FLT3rV4k1yTpBlzxMUQi6uQ/i1p/Gw+iIr1naZJzbnHbAKg/wI/zpp97bXXol6y3ufbNimnaLnQFqP9Q/x31sj1UggIASEgBISAEBACQkAICAEhIASEgBAQAkJACAgBISAEhEABCNQrwE8iLyyam0BOQRz16tXLHoUrJjuRTz75JFzT/bN36667buo1ZApn4HGuY7EEgnPNNdcMBGc+2k/Fip9w0NYib5igNEGrLU5wQL61adPGnIRr9Pe0adNSeEe14DgH8ogjjggESNRzlNSEsIGMixKkECeEUxny0EgU4r3lllsqaGVG0xK/v+eee4K5WZ7vvffermnTpsEJeUQg2Dg3kz+0PSFOo3kOjgr4Bw7UWcz9WvgQSYWKEZxoLCfVcITYNA3OfOLljM5iirVfcDUsuPIcMs3Ias7Opd4899xzgQwePXp04mRQrtRDNHzZZABGdp6kkc7RwKJ11p6n63Nypdn8JrmmixN/hk8h/Vu6eNPFw1m90fz169cveIUMNoF8x2TthhtuGOouZ3UmkXzbZvv27YNZ4aOPPjoET9pOOOGE0LfwAM3WE0880R188MFJopcbISAEhIAQEAJCQAgIASEgBISAEBACQkAICAEhIASEgBAQAgUhsICJLMh7ek8//PCDa9u2rdt+++2DGVoW4jGviAlJtLUgLzA3CimApiaaR5kEf7jhvMo99tgjnD23yiqrhPA5R7EYAsHJuZiYqK0ugpN8oN3HeZI77bRT0PZDMwsiOE7aoakJqTlmzBj3wQcfhLMt40QohAeYHXbYYeEcVDTsOPuU/HF+JQI5g2letAvR0IOAg6DafPPNgz80wSCfwAYii3eFiJEo5OOmm25KTHASFwTX5MmTg3lXtDkPPPBAx9mcYEU9gPjE7C11DiIc7Ty0L82cZyHpxQ/mP0eOHBnOl4Q8RYMTU6DkBczzESM4qa+YEs1HooRlXIsTAtQEQhSxa/hRpH+UAedxQl4ddNBBDlPRtG82BaDNB1advdlU6glE/WOPPRbKgTNchwwZkijPaCRSxyDQRowYETREOVcyXvfT1Vmyma7PyZXmpPBkitP8g0+h/ZuFYVcIymHDhrl33nnH3XnnnfY4EMCHH354aKO0Zdo2WrRR4p0zUGkTmKplQ0LUvHMqoNhNIW3TSGe7sukCyfQ7FqV+CgEhIASEgBAQAkJACAgBISAEhIAQEAJCQAgIASEgBISAECgKAiXR5GSxnfPu0AAcNGhQSOgNN9zgOKMOcoRFfAhPzF9eeOGFqcXxdDliAf2iiy5ys2bNCiQLpAlnV0JgoOWXS2zhPZM7iJk+ffoE7TEz85rJbT7PbeE/iR9LIwTR2LFjAzmBphakGmmCwInK9ddfHwgOzkKEEGrdurWbOXNmBRxvvvnmQLyg2QVmEJyEdcUVV6SCgpzC7CtEJ+EgkJ3jx48PGnqDBw8OJCtkynXXXRfKK+U5j5utttoqkISkKQnxki5oSE2IJAhDSGA0/ggPE5lgtckmmwTzqKQ/qQZbNB4rAys3NBXBB7OcEE9ggZu777471MWo32z3mLiFiIW0euqpp7I5zftd6+GDXOOunRxXpDIEp+U7UyKoc2xWgIQEa9oNmw8uv/zy4GW33XYL+Nx4443hNzhBgFL3MFubRO69995gLnnAgAGhj6C+Rs9NJYx0dZbn6fqcXGnGXyaJ4pEpzqjfQvu3eL2zeO25xUF/h3lgNmRAcHLmMG052p7oA3iOJN2QUEjbnDFjhjv++OPd2WefHeKCUOX3+eefH37Tzx933HHukksuCb/1TwgIASEgBISAEBACQkAICAEhIASEgBAQAkJACAgBISAEhEApEFjMa1RW7iDLLKmCIGIR3hbuzSlaiBB38ef2PtMVwgjS7rvvvsvkJO/npBFtxXwIzm233TZrPBBv8bMis3pI8xKNREiiOMkTdUq6SX+utEMK4yZKiETDgTxBi840PO0d5BQEZ/SsPXuXz5UygxCLh59PGNncosXKeYgQ4aUQcIB0srMX840Dk8MQQ5UVNDk7jtk9FQyk5vQrbnQ9zz3BfXLkSannpb5howJnbSatF2wiQNMzm0DwQywj1BfqXba6n6nOZupz8k1zurRmijPuttD+zcJBu9LaKnXn0EMPDaaY77///kDy0y/YWZzmhytar5iNResY0jGJlLptJkmD3AgBISAEhIAQEAJCQAgIASEgBISAEBACQkAICAEhIASEgBAoBIGSmKu1hLAYn07Q4CxEIOKKSXCSBtKYKZ2Z0ogWWzaBEKssyZnEbC5ERzqyI562XJhBKKUTiKxiSFwTtRhhRsNAa5i/UkllcSgGwUneIDUxUWuam5CebYYPDs9Klfd04aIxmI+ss846QVs4mx9MrBrJmaS+ZKqzmdpyvmlOl9ZMccbdFtq/WThGcNrv6DXThoaBAwe6vn37BrO2E7zWc1JJgnXSsOROCAgBISAEhIAQEAJCQAgIASEgBISAEBACQkAICAEhIASEQFUiUFJNzqrMiOISAkJACNQ1BDDPzDm0mMx9/vnnM2bviCOOcM2bN3ecxRs9yzOjB70QAkJACAgBISAEhIAQEAJCQAgIASEgBISAEBACQkAICAEhUMsREMlZywtQyRcCQkAICAEhIASEgBAQAkJACAgBISAEhIAQEAJCQAgIASEgBISAEBACixoC9Ra1DCu/QkAICAEhIASEgBAQAkJACAgBISAEhIAQEAJCQAgIASEgBISAEBACQkAI1G4ERHLW7vJT6oWAEBACQkAICAEhIASEgBAQAkJACAgBISAEhIAQEAJCQAgIASEgBITAIoeASM5FrsiVYSEgBISAEBACQkAICAEhIASEgBAQAkJACAgBISAEhIAQEAJCQAgIASFQuxFoULuTX3Wpb9SoUdVFppiEgBAQAkJACAgBISAEhIAQqNUI/Dj7Z9e9R1fXoH79gvMxdcpkt9hiixXsvyo8/vPPPzU+jVWBg+IQAkJACAgBISAEhIAQEAJCQAgsqgjM/Xm+69mzu2vQoHDKsV6BU9/CY1xUS0v5FgJCQAgIASEgBISAEBACQkAIJEBg/fXWcU2aNkngMr2T666d7CARkZpGdlq60qdcT4WAEBACQkAICAEhIASEgBAQAkJgUUJgPT//bVqJ+e+zE54rCK7FOnbsWDZrLsj7ouPJNDl/++23RSfTyqkQEAJCQAgIASEgBISAEBACBSHATtZmTZcomJxk/jF//vwQtxGcdi0oQUX0ZASnXevV0ykoRYRXQQkBISAEhIAQEAJCQAgIASEgBGoVApWd/5LZzp07F5RnaXIWBJs85YPA4o3qu0ZNFk95+WXOb+6fvyty642aLu4Wb1hmyutv/26edyMpDQL1F68XsP71lz8KjmAxrztOmf4274+FyjJpoPUb+HQs0cD9+ftf4S+pP7kTAkJACAgBISAEhMCigoCRiOQXgpPf1U10Wpq42v2iUh7KZ/UgoPlk9eCeKVbNJzMho+dCQAgIASEgBISAEBAC1YFAnSE5l156abfXXnu5tm3bunvuuce9/PLLJcOzZYemrkXbpm7quzNd2xVauAaL13dfT/qhZPHV9oCX6dnKrTR4+VQ2Jtz0gZs3uyKJufIGy7t2XZYKbv7642/3xBVvp9zX1htIwBZtm7hZX851f/35d43JRu/1l3PLrdjaPX5Z4RhT79fatKt77taP3M+zyjQMkmaQSTF+2yy/ZPAy7YPv3QfPfJHUu9wJASEgBISAEBACQmCRQeDvv/+uQGpWN9FppKYRnHatX4lzR2tSYTZs2Mh17trLNWnW3E39fKKb/cP3JUme5pP5war5pOaT0Rqj+WQUDd0LASEgBISAEBACQkAI1AmS89hjj3WrrrpqqjQ7depUUpKza58OrkHDeoHkXHFAR/fdtJ9EcqbQX/jmi/e+c9M//N516NHKrTas88IO/JO3HpnsFvNWrlYZ0sm179oyrZva9rDlMs3cmiO6uOdu/tD9/OOvNSf5BR7gG81AZYJot8JSgeB854kpbva3v0iLMwqs7oWAEBACQkAICAEhEEHASM6oOdjqIjrTEZykz55Hkl0rb3uuuHogOC3xM7/5smQkp+aThnKyq+aTmk9Ga4rmk1E0dC8EhIAQEAJCQAgIASFQJw5P6d27t/vss8/cfffdVyUl2nq55u67qT85zOY0WaqR++6LOYnjZddhvfqLuSWXbuKvZffNWjdO+WfRAjf+UkHsuT0MbrzJUEx+oi3I76jY++gz7svCrhh4WToq+o/7y/abtDZdagm3VLumAZN0bv/+6x/391+ZtRlZHMFN3IxtPKwG3qQt+W3YuCI/nym/+Adv/pIIOMfdYpqVP5Oy8MrwarJko4XSglvSY+Fwb38WBuVm7+0ZV55bXFY/wHfJNo0rmPyN+uEec7+hHnj/6cRwSxdnOvfpnuGXeku9zya0iea+ToNlVPAPDmiBYqJ2xuTZwdztH7/9FXUW7omD+kS+JEJACAgBISAEhIAQWFQR+Ouvv5wRiTWJTCQtYfzuSU7SWBekw7Kd3FfTJrv3336l5NnRfLIixJpPVpzbaj6p+WTFFqJfQkAICAEhIASEgBAQAtkQqDiazuayBr874IAD3Ny5c92AAQNKlkqIm3V36J4Kv2f/ZR1/SJ+R3dz8ub+78de/n3qf7obzB4ftu1og8pi4/P7rn+4fT+xB5KDR9tJdEwNRtd4OvdyHE6Y5dqyarDS4o1t+laXdU1e+4yCFNhqzhvvpu3mBdDI35gcyafh+q3vy9Sf3xkOf2WvXrutSwUwoz2ZOKSNmLU04ij5Pecpx02rZ5q7vlt08YbeAXJs1fa5785HPi6qhx8QXk7dgYPK916AlHohR8Pjs9W/cpJe/ttep66DdVnY//zDfvf7AAixSL2M33dZu77qvs4x79OI3U2/W276X86s47sU7J4Zn/bbu6Rp5khXS1gjqrz/5waGZiHRedWnXe2DHcM+//jv2Tt2Pu/pd9/v8P93aW3YPxCXl6YMOAnE7dJ/VgobwR89Od9QD4oEYhKREvpn0Y4jHFrkgWfts0c01a7lEeM+/j56b7qa+MzP1u3u/Dq57v2XCb7DiTNR8ZelOLXw975oiYOfM+GWhINp0XNKttVnXkF5eYnb49Qc/dT989XNwC26Y5jKhzJBp73/nPhg/Ldw3aeHz48MwXHn45cez3HtPTQ3v9U8ICAEhIASEgBAQAosSAqbJyRWTsDYGjG8mqypMjNwkPiNfudYFeX78I/6IiT9dy1YL5hvFzFdTP14fNGqlVJCaT5ZBoflk2YZnzSed03wy1T3oRggIASEgBISAEBACQiAPBOoEyQnBWWr57Zc/3NuPTHXtui3pOnRv6cmbzzxx1ME1bt7QvTfui0DoJE3DN5/+6H785udA2n372Y9uptcKXXVop0B6zfbkEYRpp9XapkhOCFHOUERjNKr1hlbdlLdmeP9z3EqDOobwIC/x/+VHs1zHldsEcgytOaSTJ98gntBCTSeFLZb840m579zXE2e53z352t6fq7miT0uPdZdxEHXFEs5hgeAEg89e+8Yt07N1yA/k3cQXvgznQjJBjgsEIWUUJYzjbnL9hmA1ItLcQnp/+/ls974/S7Lz6u18elq5rzwGEMvTPfYzfDm07dwiYPHa/Z+6eeXE4h+/lpUFJCSmbNss3yLkiXCX7d06BA/pZwIBDpn76avf+HjaepO/LYN7iD/S1Xfr7m4J74YzLefMnOe69e3gVvQEK6Q5f2hDghH3H3uclu3V2i3v60U2rVqL265ol661WZdQ995/+gsHEdmrnOA3N0s0W9z13aq7+2X2r55k/TIQzyt7UrqvJ3PHXf1eILzf8oQ05QFZ3cqb8n3+to+C9z99vTEh7SwAvXzPJ+4Xb+IXjdBmrRYQuOZOVyEgBISAEBACQkAILAoIGMnJOB2CsbDxevGRMrKT9NUVkhOCs5Ty68+/O+YFy/kxv+aTUaQ1n9R80jnNJ6NtQvdCQAgIASEgBISAEBAC+SCwQP0uH1+LoFvIwR++/DmQhhCUEE+NGi/uTW7OCfc8SyqY6YQgQ7jO9L+RRk0bhisEGJp5pp2HeU80JaPaeTiEzIS4mvXl3JQmHCQWMvX/2XsPODmOMu+/NmhX2pW0QVrlVbQl2bIc5JxzNjZgGxwIJt4R7+W4O16O97j08v7heOG9gzvSgQEDh49sYxNsnMA5yrack3KWVmElbda/vjVbM7291TM9u7PSrvQrfUbT011d9fS3qmu76tdP1dMZTz460YQq60XKm5Erl23KvgHOfsQuroUPHe9iA156TmS0ghSTk260IiSeiohrpQzNR2TeqGbtzpZ1u5ynK/kg/hI2Wwb1k2vc9hTrsXratYe5svJ2bFm1w/GEQdLHnVzEf0/f8YazxXuPeu9DRGVEzTYrjBPabDnxm49/+546APtZR+XeFEeEbt2yx3qd9l2/86nfcs2tWU/RGYsmunQb7bTJeHKuXLbZlt9Og4D68sMZT9bm3jiez9N3LDcta1udGEpd9qG6ZlQiDzgxbezEWeNd/XvlkbVuitk3nsoI6z4NvumYE168f43ZZe3fva3dvPr4Ondekz2f0L670zGAT3dXT5YJHs0+4M3KMbyUKV/q9mAEap+uvkVABERABERABERgJBLwYiK2++fI4XAd3paofcPBruFsA8/g9LmYoUX9yVxJqT+5KzsbkfqT6k/m7gxtiYAIiIAIiIAIiIAIpCVwQHhypr3YwcQbU5cRIFk/Zc1LW8w4u0Yi3ny7n213QtPuHemnAKWD22OFHALbiDoEvNwIq5/fbA47fYaZaUUvvCFnWQ9GhCG8BKMB0coHvPgINb127kQss8IjIhqCp/cSjAtG5M8bxQMNTHfLFKV45kVDVLiK7h/ods34KieceVaks9VeP4ImHo1MkTvber8i+iEC4uU6ceZ45wXIFK07Nu0xR180x701nWRDdIrapDh+PyIe7Ah4LxIqe8vP/SjwHzYhTmIzQuLosVXO9mV3Z6Zt9acj9HnvXc6hTGFBwMuRQBp8ogFvSAJ11E1R22sj+1rWt2bLCwF98bmz2B0Mj/7yFee5yUG8QX2A/WTrtevDuAmZ/KgL8YANaQMC6jEXz3XTLSN0Mm3TCuvZynqtCiIgAiIgAiIgAiJwsBGIiolcO7/3tzdnyKaDrVwGcr3+mVj9yb701J9Uf5Iaof5k3/tCv0RABERABERABERABNITkMiZktUp18zPxpxpvQr5EBAjF5wyzfzuP57KHi+0gVwTnf7UbyPWERC1NlgPz+bDJ7qpWRHrXntifeZg0v+95xrnT5mJhOfnEWfPdEIfQimikZ82NSmZYvcfdtoMJ5gxjelm6y2JKHfGOxY54bHYtArGz+N3jOhGaJw+1nomjrPrQO50AmhVTaW7bgZjmNKV9SrzBV8W0TiVoypsmeS8DTnW1StMR+MVO+CE+Iw4iQBdWz/aiZEI6KlDr+73oF0rdKddczQaEDZdCGiDZZE6gojIdMdJodN6WSLox0PoWvFMvfNbT8ejWkE/YES/WJkdTOW8de0zZqYVqvFKZm3TyYc0mIft9LUKIiACIiACIiACInCwEeAZ1ouKw/Hah7t9w4nZWe86ImuO+pNZFEb9yRyLUB8rd7T/lvqT/ZmoP9mfifaIgAiIgAiIgAiIwIFOII9sdKBfenHXd/8PXzTLn7JTvVrx6O4bnzGspYk3H9v3fG9ZcYmliE2HBc/OJZdmPONWPpNbp9Gf3hDxnqyblJmqNSpiskYk9h5xzizn0Uea8UAep759ofv4qV3jcfL9nnJIvZuyddVzm82eHR1mlJ1+iTUwQ4FpWwl4WyYF0sAm1oGMBq6L87y3K8cQNPEYRZhEjGO63blLJttrNualh9YavBQbpox1U9kSH/GYtVWTPsTp7sysD+nXgSQ//9Y1x4sJft1LpmANBeoPwjNrbTYvmmDr1Lasd6iPz7m83UxgbVamMN5tGRHw1iVgq/MIxiu49+M9H1nX0p/nItv/6qfkphLGMzaJB/tJx3uqNkzNeevGPXd3bN7jpqbFVm+D/y52YI58X7Hrrt570zJDJ5W84vXBX4u+RUAEREAEREAEROBgIFDs89S+YDIcbdoX1z3QPO7+zjPmtcfWqz8ZA6j+ZAxI5Kf6k5n+bbFtjfqTkUqkTREQAREQAREQARE4CAj0VZJG6AUvXLjQXHfddeaMM85wV7B48WL3+5hjjinZFbXv6jJj7ZScrBnS1tppxltRkfUn2eYhutSBtQjxikTg2b5hl1t/M54HYuKiM5sNax76KUcRNn1AZPIiEWLnupdb/KHsN2t91tn1M/lU147K7k+7wdqSrIXZNKvO2XHc5YcknspamnTU8H5lqtPG6eP6xfVrlR553mw33ayfknXls5td3OMuO8QwxRPHWWd0tRVXfaBsWMcEm7bZNSwRxhApmco2bUCsIyw4ZbrL55iL5qY9tV+8XVbEJMy3aeGN64XoaES8bRFv3Zqrz/QXoYl77KVznS1L7DSuBARlAnUEofSIc2aa+SdNc2In9eXI82Zlp5Jd9XymPhx14Rxnw1EXzO4jFLuECvzH2kGU2yEnTjXT5jeaecdPcWUdPY3roI6dfNUC5+VcU1ftbDjhLYeaJJE3er7fRpAnD+o218InI7Zmpgb28fQtAiIgAiIgAiIgAiIgAqUkUDt2nJnWPMdMnjrDJTth4mT3e3xdQ0myabN9xnFNY9SfjNFUfzIGJPJT/cl6o/5kpEJoUwREQAREQAREQAREIEgg7GIWjDp8d5577rnm9NNPzxo4b948w2fOnDnmqafSTyObTSBho2FqrXnlkbWm0norIkxtjq2RmXBa/92ROVEzbyVmpvNEJIqGlXYtwkNOmGqWB7w4icc6nDPtNLSzetdjZMrYPb3ekj4d1jOctqDRiZ3R9Sz98T7z5mZ3pt947fH1ps6uf3n8FRlxE5v4RD0uo6k9+ZvXzfyTp7t1PBHO4tP84p344gNrnEfm1PkNdh3S7eaxW141a1/eauotf6Z3nWCnoyVsfGO78/jz6TNdLteKly2ImYYVMbXFCp5pA8LhKrtW5ozDJ7hzuRbvyZhLwyYeKcPc/r5beFG++tg6dy0nvPlQd/Cubz9j2nfnRHGuC4EaL9PoGqs+JQQ+hNsT35qZLnn1C1vM2oiQ/fAvXzaIn9QTPgTWb13dK27iKfqS5bng1OkGG6hjCLljG5K9aX3e/htvTsqAMmZdUwLTAUdFaux8BFsumedEV38uImy8XvtjoW/smnnExOwh6sNz96xMgzt7jjZEQAREQAREQAREQAREoFgCk6bMMPMPOyp7GoInnxWvv2R2bO//smg2YhEbE+xLnupP9gWm/mRfHtFf6k8a91Kv+pPRWqFtERABERABERABERCBOIGy5ubmvspaPIZ+OwLV1RlRqL094523L7Aca6eqZcrV33/9KTdtaDTPSz5+rBP4XrXTejKFKUKcn6I0Gg8RlHU5Wbdxm/UIHaow2nre9dipT/E+HcqAx2NtfbUTcxHzhiogZCPUDoWXbtRm1uI8812LzMt2el0E0Wg47brDHdMHf/KiqbVl3GHFUcTQUMBevB/dtL0Bz2K8WsdY78pdW9usYDiwW541YmqtCImQjpdwUqiuGWVG2Wl22+30wUn2Jp3L/lHVFYb6xPTGAzk/X9o6JgIiIAIiIAIiIAL7isDOVvtiWe1ou1Z92YCypP+xfv16U1lZaSoqKtx3eXm54UOaA013QMbYk3iG5NPT0+M+XV1dpru7265V32UaGkrj7ThQ23RemID6k/25qD+p/mT/WqE9IiACIiACIiACIiACgyUw2P4v+c+ePXtAZhwQnpwDuvJhfBJrY060U9BOnldvVth1NEPipTeftxr92ox+H9+sI8mbwoedNsO9/TiUAif5+fU22R7KgPdn6HpLnScC6lCKqEzhylSsTDNLWLms/5qr0WviLd58AVvzccGLt7V3Dc986eQ7xqBWqxVJCwU8VaPeqoXix48jbHa2Z6YNjh/TbxEQAREQAREQAREQAREQgfwE1J9M5qP+ZJiN+pNhLtorAiIgAiIgAiIgAiIw/AlI5ByGZXS0XT8RkZKpWl+4f02yhXk88ubYaV2ZxhYPT6YaVRheBOqn1Jol1lO3o63LPHHba0EP2L1W0FUQAREQAREQAREQAREQAREQgWIIqD9ZDK2RGVf9yZFZbrJaBERABERABERABESg9AQ0XW1KpvtjutqUpimaCIiACIiACIiACIiACIjAMCMw2Ol6NF3tMCtQmSMCIiACIiACIiACIiACIiACIhAkMNj+L4kOdLra8qBF2ikCIiACIiACIiACIiACIiACIiACIiACIiACIiACIiACIiACIiACIiACw5SApqstsmC8R2eRpym6CIiACIiACIiACIiACIjAQURg955OU1VdbcrLyg6iq9alioAIiIAIiIAIiIAIiIAIiIAIiMC+IyBPzn3HWjmJgAiIgAiIgAiIgAiIgAiIgAiIgAiIgAiIgAiIgAiIgAiIgAiIgAiUgIA8OVNCbG9vTxlT0URABERABERABERABERABA52At3dXabD9iHK5Ml5sFcFXb8IiIAIiIAIiIAIiIAIiIAIiMAQEZAn5xCBVbIiIAIiIAIiIAIiIAIiIAIiIAIiIAIiIAIiIAIiIAIiIAIiIAIiIAJDQ0CenEPDVamKgAiIgAiIgAiIgAiIgAiIgAiIgAiIgAiIgAiIgAiIgAiIgAiIgAgUILB8+fICMcKHJXKGuQT3VlVWmPLyMtPW0eWOj66qND09e01HV3c2fnRfuZ2aqnpUpens7jZd3T0uTmVFuRlVUWHT6DR77R7SrCgvN3vs7/0ZaqpHmb3WoP1tx/5kQN6Uz/TG8VkztuzcbVrbOrK/tWFMXU212d3e5er1SOAx2t6D463NlOPu9tLdZ/W1o93lb9vVtk8xhK5n4rgaUzu6ytnR1dNj1mzZsU9tOhgyo50eO3qU2bmnw/TQWCrkJTB9wnhTaZkRdtl7b7NtS6Mhzd/CQn9PK+zf46rKSvc3uNvWe59me2eXyigKW9siIAIiIALDhoD6k8OmKIbMEPUnC6NVfzLDSP3JwnXlQIqh/mRxpan+ZHG8FFsEREAEDnYCI17kLC+vMM2z55kpU2ea0TU1prOjw2xYt8q88eoLVoDMCIulKuQvvvtC02CFjXd95RdWmCwz3/rzy83G7bvMX33/9y4LRM3ovuMOmWY+evGJ5t5ly82Ndz/p4nzgvGPNyQuazZdufdA8vXy9+eK7LjANY8e4NNPa+U/XnGPIKyn8+28fMeu3tSYdDu7/1/debFZs2mY+97M/9jveaO1bOH2iefL1dabNDh7vj3DS/BnmsmMX9Mv6sVfXmFsee7Hf/oHumFo/1vzztedkT//Fwy+YXz36Qvb3cNwoRfnwwH3iodPNK+u2mk07diVeJmLal99zkfnJA8vMbU+8nBhvOBwYUzXKfObKM8zMpjpnDvX3X297qCjTZk+qN/Dl3Hj4W5t2lX1h4X9897fxQ0PyO9/1fOTiE8y8KY0uX16oeO9//GpIbChVomnqWynqdRp70+Zz3pFzzfVnHGn+5qY7im5f09hRKM4nLz/FtFhB/ca7Mn9LiH/EzMnmmlOPMM+t2mh+fP+zhZLYp8f/2f6dYpCP8Nr6reYff3Kv2/b/FfpbmObv6bHz+v6NfScGBLoAAEAASURBVP+5S8wpC2dm/776vPQtAiIgAiIgAoUI7Ks+pfqT6k8Wqov743ja5+F8tqV5vud89SdzFNWfzLEoditNfStFvU5jV9p81J9MQzMXR/3JHAttiYAIiIAIFCaQGYEsHG/YxqgdO94sXLTEjKqqMls3bzSjRlWZQxYsNktOOGOf2+x1x3wCpDcqK1H6k/yBFN+jKq03aO+Ht5sQcfxvvgcSVmzcZt7Y0BI89cjZk82fX3i8mWwFwP0VeIjl2sZZjzyud8L4Gve7oiJLsiSmrbIecO//2i3mk9/LCNclSXSIEylF+YyxXsmU8emHz8xrLV7LCPvFiuh5Ex2ig6csbHZ15Qf3PW0+/aM/mO/d81TROb3lxMPMxy45qejzhuKEfNfzv392n6u3y1ZuHIqsS55mmvpWinqdxvC0+eCJSN3fX97uhzc3mcNnNGUv6dCpE8xfX3GKawuH4wsHH/zGra5O+pkPsobHNrIteOxvof+Z5u+p6U2kzJ8Uy0M/RUAEREAERKAQgeHSp/R/ytL8/Uv6G1roWjke7TuqP5klmQZdwTjqT6o/Ga0k6k9GaZRuW/3J4lmqP5mHmfqTeeDokAiIgAiMDAIj3pOzvW23efhPd5rt27ZkiZ98xoVmQtMUU1U92nS079upJLNGDOHGp3/4h2zqX3jn+aZpfK351A/uzO7zG3ibjrLT4bb3Tq97iB0U37mnvY9ARQeazvTnf/knN12tP5dvLyzirUbgQZLpAwnxgWumu53VVG/Wtew08ek7mZaJgEA2rXGcmzI0HsdFyPPfAy+uNHyOnDXZ/NUVp5rfPvmyufWxl7Jn+GvleqY1jHOeQ2PHVNvpJaucTT4i9uPpxjSKeOmt2LS9n2iBnR1dhT1Wk66Z6YhhyhSpTFfM1KFTrEDMVKk7LP9o4FlqhhWqKSc8abvt9Mc+FOJWTPlMqqt19QSRJuqpSf7VkXKttlM/+jLutByi9sB4V3uHrWt3uGmavZ3Rb64drsRbu3Vn9JCbmpkdg6kHPsFC+TCt9PGHTHdT6v7phRXutM6u9J7dfioxGBM8E+aYDnkzF6rXvLE80Qrzy+3LBKHzXSYJ/3lb8l0P5dTdQ3nlv8ak+ubvn3iZu7xtZS7W5sHUt2LqddL1gLKU9w98lr6xzn2i90S0yJLaA+L4dofpzedMbjCrNm9390H0/GK2ucd487vd3qN/awV82vVoKFTfsIf7gfrCwGa1bX94yYXWB+9LPrTxTCVGO5o0/XG+fPwU7T0u1ah12hYBERABERCB4UfgYOtTqj+p/iR3YTHP3YN5vvd3vPqTloT6k7465P0eTH0rpl6rP6n+ZN6KqIMiIAIiIAIjhsCIFzk7OtoNn2jYunmDGV/XYL06Rx2QImf0WvNtnzS/2fzZBcc5MfDSY+e7KXaJ//OHns9O8fqtD12eFQNeWru5z3S1vHV4+fG5KWIZVPfhL278rWlp3eOmzf3YJScapg30YaUVDv/Pz/9odveuM/q/rzvX1FoRtMsO8DPdL4HpFf/ll/eXbPj7jMNnm/ecc4wT5eg8bd6x20wYN8aKjWUGkes/73zC5ct0wnhkMTjvQ7FT0iIQfPJNp5gFdgpfH15as9l84Vf3OwH145ee6MRY71WEQICQsNeu4/ftPzzp7OE8RKsPWe9JP6UjosBXbn/YLLXTGBMKcUtTPjV2ytavvP+SbBmTLuXy+V/8yQlusyc1mH+85mx2u3DxkkMNH8IPrQfkHU+/5rbpZPxfO12zD6Hpai865hBz7WmLHXPikQ/1gPpAKHQ9LlKK/9Lkg6jsA2VOeOK1tebfLN804e+uPtOJ9j6uTwPhBw81H3gL/t/ed0livUb8/PRbT7diUabec96tdnrln9l7MG2A22Cvh7zy1bfx1r4v33CRvW92uelYEbuos//H5s2LAJ+9+e5U5paivqWp14Wuh+OF6lvafC6x98M1tl77EJ+ulhcrCrWB1B8E7uaJda4dRii9/YmXiqoHPn/q1GevPssJlP/rv+5y7XD0WKH6xpqu2POgfWnk6LlTDWVGeGXdFvPPP73PXHf6kYaplJhO/ajZU9yxDXb683/51QPZFyRKUa9dwvpPBERABERABIYJAfUpwwWh/qT6k6V4vqd2qT+Z6ZOqPxlua/zeUtS3tP28fP1j7FF/MlMq8fEL9Sd9bdW3CIiACIjAcCJQUVdX9w/DyaDB2oKwdPiRx1vxrdy89PzSwSbX5/zO7m7ngfP8qk3uDTy87x5/da1Zab1yXLDKAPuefGOtG9BG1MNr7bHX1pgtVlgjtHV2u3XVnl6x3nn2kSZTxb6w2qY5gHD+UfOsgFiVFS2jScy0A+rHWfERMe6VtVvMD//4tHndeuvgZceAO+EJu9bgn55fYU47bKYdLG/LCnAcW249Cx94aZVpbWu3a3I2Gdb6/OWjL5q7nn3dXY/V7MwFRx9iLrTiFul9ywqJeC4eZqdUZJ1RRCUCNk6wouLqLdvNd+56ygmMxFlrvT6TPITciYH/mDKXNdeet7xestfkwxwr1h0zZ6r5xcPPO5ENr1I8PeF/vGXwK2s3gQdePK4Y4P+5jbvAXtcSO9D/kLvODp+c4cHtkiXzbblsNi9aATMaWGd1sfUoZa3V79+71ImXx1nBknSfWbHBnGLXXJ1ivUn/7y0PmKOsTVz7l+0arEfYcxA57rb88L5FSGu1ZXHj3U+ZR15ZbRY1T7LTxc42d1phsdMKnoW4pSmfSutZOX/aBPODe582P33wObPC1lUe5vn85slXbNl2mIdt3lz/mYtmu2v65p2PuzKmnnuvNTz5nnp9vbs+1kddZkVqRBEfEOH+0q4ZSHrftmsGIoossmW8xF7/75561UUrdD0+rXzfafJh/cz7nl9uDp3a6Dx5P/Pju9z1PGqvs93ef2kCAs999r5onjjeCphjzGesmES9v2Ppq1nxvtD1IH593npac39SL7l3pluBijV5X7Z1N+pRm8+mYq6HuscAQnyd2kL1DU9APG/PWTzXMXvOlv3nrj/XvcTwv358t/X6S8etFPUtTb0udD2lun8olzWWy2O2nedemGu9MLk/qec+pGkDaXfq7Qse9yx7w9WFxbMmOQHx9/bewNY04YoTFroXIs61ZcTfGcplfUtu7eW09Y2XKt5kX16hLdq6c4/5yYPLzIP2/jd2ztdnV25wdnGdeO7zcsgm6/29ZO4055nO37u0+fhruuy4BaZ1T4e577nlfpf7Lvi3MMXfU/839kn7t2aTfbGF9n6rXbf0Ket1G59toE/m+iECIiAC+4hAh305qsq2p/7Ft4Fk29bWZsrtzBL+Q1rRz0DSHOw5vLjHp8fOCOC/x4wZM9hkh9X5Q9WnVH9S/UkquvqT6k9SD9SfhELfoP5keExN/Un1J/veKfolAiIgAsOTQCn6vwO9soEt4DjQ3PbBeazHOaam1jy7NJ3HVjEm3fXM604o4hw8nfBm81NhRvchfhEQeoiDl58Py+wgMvvwNCSQJmLbUAaEzc9ZjzrEEgQnbx95IjK+sbElI2YxV0ckML0qx7daj03Chm273G/2efHrnMVz3DE89rg2PBERxBDR4uFLtzzo4txkPQQJCJGlDvdY9lwn4W4rKCC0MkjhvSXZv8te1zfueNzFu9EKcoTzrBCbJjBNKqIo4sDvlr7iprrF2xGRCPHVB/JA8Fxu2TLYjncm00GOH1PlovCQSrj5/mVumtrVluntT7zsvLxOPHSGO+b/S+KWpnxYPxCvTWxh3boV1p6MHdUuebxHKU+mGSZs270nW8YIBj5Q3tQTBHlCrKqYc63nF4GyfeTl1e4+ecHWe8TuqBcicZKuh2OFQpp8eKGAa4J7lx18Y5vP9t19Pb7z5UWd5xwYE3waeAHHQ9L1UE+YLvlx+5LD47YeUkd+9Mdn3OkX2pcD0oZSXE+a+vbYq2vM/dbrmc72P117jq2r1eZLVpzfFRH0CtlcivqWpl6nuR5va1L5pMmHNIhH3ac9D4W0beD23W3m+/csdffi3c++4ZLCI7KYwJvNfhre6PqcpFFsfePe/+ub7nB/D7hn/+tPmbrp7fmvPz1rxd01VgR9znmoz2gc7w4Vm49PL/5d6G+h/xvr/16F/p76fbz0QqCd4+8rswwoiIAIiIAIiMBgCAxVn1L9SfUn1Z9UfzLeNiX1V0r13K3+ZP92R/1JY9SfzI3Zqj8Zb5X0WwREQARGHoERP11tFPm0GbPN3EMPNyvfeMVsWLc6euig3n74Zbx0hibUWe8kxJvomn2sN3eoXf8Tj58e3D1tII6fvpbjBDyFSh3arcDa3rueJiKXF+rwzGztznhfITz64AXoydb7LU1g/UxCo50K9/PvOL/PKbzJ7oNfG5H8eWObwDZvJhJ8Oh88/1j3O/pfVPgoBbe/uPSkPtMJ+7zoYHvb/L6Bfnshc9nKjdkknrfenjw4cz3rewWiwV5P2nyyRgzxRr7rYd1EAqJ1XLieXJ+uvpXK/LT1jemU8VJutvUc8X4gHub7or6lvZ585VMqtmnbQLx3ffDe/3h/FxNoYz5vp/n+xGUnu2lleaHDzxJQbH17OeKJHbLhqd6XRTi2w74g4MXVYvMJpa19IiACIiACIjCcCahP2b901J+0a6yrP9mvYqg/2Q9J0Tvy9VeG03N32v6X+pNFVwGj/mSO2b4eJ8nlrC0REAEREIGRTqD0KtN+ItI0eZpZfMxJVtxcZV5Y9sR+smJ4Zvva+pyoNxQW4ilZKHR29Z+SERG01AGd0WuNdiKt7JqfURuj294lsc++PEb5FPGI/dUjL/SJaSfsyv72gqe3hQNe8PWR8I78yLdu8z+z316kZcdgueH5yHqpTId7x9LXzCo7ZfBHLjrBTUk5BPg9zt5ryZRvlMFgr8dD6ltz+ufj4w31d77r8dft1z+N2pJ2itLoOYPdTlPfmOoWD07C4pmTXHnmanVhC/ZlfUtzPfnKp/DVpI+Rpv3gBQwffPvgf6f9ZkpWhGemDv+rK061n1PMp3/4B3d6sfXNe2Un5R19cYW2zV9jsfkkpa/9IiACIiACIjAcCahPGS4V9SftTDaRzlN023eA+uwLY3R71Z/MA8ceKtTPK9XzfaF88ltZuqP5rme4PXen6X+pPzmwupGm/VB/cmBsdZYIiIAIiMDBQeCAmK62ccIks+SEM8yWzRvM0088eHCU3D68Sv/gzZpy8cC0gEzJOTrilck0tHgtxkW9+Ln763d0mtyF0yY6M7ynobeJ6WYRIqY2jPW73DfTyhJmNdU5z1S8U/2nmDXgEBsrysvMuJrq7Pk+HToPxYR85cP6mVzHN37/mFtDExtZozUemNaVUF8zsPWUPD+8AH1Y1NzkNll7tVRhX+Xj7WVKT8opOt2xP1bomylOCTPt/eDL1n+XyoM2bgMiGLbypnk0pKlvFXa9r89cdYab4pdpdafadWXfedbR0WQKbpeyvuWr12mup6CxvRHy5ZMmjf3RBjIt69I31ts1XsebS4+d78zcV/Wt2HzwAm206xIriIAIiIAIiMBwJ6A+5dCVUL7nrf3xLDXYK1V/Uv3JtHVI/Un1JwvVlf3RBqo/WahUdFwEREAERGCkERjxImdN7Vhz3MlnOyFno52idlrzHDN95lz3qR49MMFmpBXiQO2tswLbIVMa3Qchp6a6KvI7VzUQFAjXnb7YnHDodHOYnYLUv/nIujKEv7v6LOcxiHcR0xo+aj0HSxmYquWSJfPNSfObXbKLmie533wXG2rtFJEfu+REc6IVAN/fO13sH+zUnNFAZ2TV5h3muEOm2XwOdWuMIuSyn3XqYPDJy09x07EyNe+7zz7avOecY6JJ5N3+5cMvuDr7D28/21x+/EIz3U4Petphs8znrjvXrWOZ9+TYwXzl89gra9xbx1eedLiz+VNvOa2fAEZybv1Ke22IVGcfMcddl/fo4zjTxFJX/JQ5k+oyv2dasZdwZy+/d1lR7MxFs831ZxxpFloxlbVLk9YydCcW+d++yseb5UXtP7vgOHOkFXDnWQZpA9N9Mv3Q2089wtUN2B01e4qrN5T1UATW1CR84k0nu3vV25umvn3k4hNMXc1o82+3PWx+v/RVV8/Ps57AR1ub04ZS1Tfyy1ev01xPWpvz5UMacyY1uLrPW8kEypF7oWl85ve+agNd5pH/vm5fXEAsf9spiwy27av6Vmw+tJcN9gUZ2gTWavYcI5eiTREQAREQARHY7wTUpxxYEag/qf6krznqT3oSfb/Vn1R/Uv3JvveE+pN9eeiXCIiACIhAaQj0dfcpTZr7NJUxNWOzU8cctrjv+oZPPHKfaW/bs0/tGY6ZJU2NeN6R88wVJyzMmsw6fJ9921nu9//+2X3GryG3ctN2c+9zy83pVpj56MUnuuOf+O7v3FpwDPAvsN6QCIasxUd4fUOLuem+p902/5F/dCrX7IEiNk6wg+OXHbcgewYiI5+nl683z9m1H/20P/7bRcQhsneOl6hX6Wbr7XacncKVAXfCTx5Yll0z0u3o/e87dz3pxMtrTlvs9vz9zfcYvJi+ecfjzlvumDlTnWjFQa7xtide7j2TqWmzm5FJbHP7Nu/cbf7frx8yH7bC0lUnH+4+HEUU67ResIS03PKVzz3LljvREXZ8EEXghTjci8blxX/fu+cp844zj8qKtT+wZehFRQSw6BvLZx0x2/DBxnd/9Zdm4/Zd5qZ7l5p32vPfd+4Sl2ZrW4f54q0PZNNPez3ZEwIbafIJnDbgXbfbMmVdUeof62rSef/gN2516RW6HqrAP/30PvNXVgxHOOZDoAz+0PtygNtRwv+493775Cvm7MVzzEdnnGiWb9xmPnvz3aZQfTt14Ux3T9xr6wtvdRIQ0RCqP27v649/5zeG8iwUSlXfyCdfvS50PZxfqHyIQ8iXD8dpE3kJxIcP2+meCWusV/enf/QHk6YNJH60DeI3IdpOZPYk/8/9yjX5sMd6kX/rzifc9NO8cPGpH9xZVH3rjqTl0+Q7mkd0v98utl4ztTcvSVxw1Dxz4dGHmFsfe9H87KHnfXL6FgEREAEREIFhQUB9yvzFkPR8oP6k+pPRmqP+ZJRGZlv9SfUn1Z/se1+oP9mXh36JgAiIgAiUhkBZc3NzbtS0NGkqlYOQAN6bzRPrnFi4K4UYsr8Q3fTxt5p7lr1hEPBmWnt5s5KpdQcSRlVUmGmN49z0nutbWk1375SvxabVOHaM86BDuEHkHIrAlMJ8/HSvQ5EHaSIGzZhQZ6gDXM9QhX2VT6nsr7Hewwg9O2z5IrLvz3Ag1Tc47ovrSVNew6kN3Ff1bV/lk4a/4oiACIjAcCSwk2UdrDd7mrW2kuxvaWkxlZWVpsI+d/JdbqeX50Oag0k3Kb98+xG6+PTYZ14+XV1dptu+vMV3Q0NDvlN1TAQKEhhOz1L5jFV/sjUfnkEf21f9vH2Vz6CB9CYwnJ6790X/a1+NX4B3X1xPmnownNrAfVXf9lU+afgrjgiIgAiIwOAJlKL/O1ArJHIOlJzOG5EEfKf0u3c/NSLtl9EisD8InLyg2bzn7PzTMd9iPfR4U1lBBERABERABEQgQ6AUnTyJnKpNIjC8CKg/ObzKQ9aMDALqT46McpKVIiACIiACIjAYAqXo/145bmDOaCN+utrBgNe5ByeB0LSRBycJXbUIpCPANMFPr1ifNzLTtyqIgAiIgAiIgAiIgAiIwIFOQP3JA72EdX2lJqD+ZKmJKj0REAEREAEREIEoAXlyRmloWwREQAREQAREQAREQAREQARKQKAUb7LKk7MEBaEkREAEREAEREAEREAEREAEREAEhpRAKfq/A/XkLB/SK1PiIiACIiACIiACIiACIiACIiACIiACIiACIiACIiACIiACIiACIiACIlBiApqutsRAlZwIiIAIiIAIiIAIiIAIiIAIiIAIiIAIiIAIiIAIiIAIiIAIiIAIiEA6Aj/fWZEuYiyWPDljQPRTBERABERABERABERABERABERABERABERABERABERABERABERABERgeBOQyDm8y0fWiYAIiIAIiIAIiIAIiIAIiIAIiIAIiIAIiIAIiIAIiIAIiIAIiIAIxAhI5IwB0U8REAEREAEREAEREAEREAEREAEREAEREAEREAEREAEREAEREAEREIHhTUAi5/AuH1knAiIgAiIgAiIgAiIgAiIgAiIgAiIgAiIgAiIgAiIgAiIgAiIgAiIQI1AZ+z3ifpaVl5uFhx9t6hsnmurqMWb7tq1m3ZoVZtOGNaa7u3vEXY8MFgEREAEREAEREAEREAEREAER2HcE1Kfcd6yVkwiIgAiIgAiIgAiIgAiIgAiUksCI9+SssCJn8+xDTWdHp9m0cZ2pqR1rjjr2FHPsSWeVkpPSEgEREAEREAEREAEREAEREAEROAAJqE95ABaqLkkEREAEREAEREAEREAEROCgIDDiPTm7urrMnbf/xOzduzdbYMedfLaZMHGyqaoebTra27L7tSECIiACIiACIiACIiACIiACIiACUQLqU0ZpaFsEREAEREAEREAEREAEREAERg6BEe/JCeqowMnvrq5Ovszenh73rf9EQAREQAREQAREQAREQAREQAREIImA+pRJZLRfBERABERABERABERABERABIYvgRHvyenR1tVPMHX1jWZC02QzacoMs3H9GtPZ2eEP61sEREAEREAEREAEREAEREAEREAEEgmoT5mIRgdEQAREQAREQAREQAREQAREYFgSOGBEzmnNs81MuzYnobOj3bzw7BPDEriMEgEREAEREAEREAEREAEREAERGH4E1KccfmUii0RABERABERABERABERABEQgH4Gy5ubm3GKW+WKOgGPl5eXWk3OKWXTk8WZUVZW567c/Nz2asnYElJxMFAEREAEREAEREAEREIEDi8DO1j1mbO1oU1ZWNuALa2lpMZWVlaaiosJ909/hQ5qDSXcgBjGdKx/6V3xYx7K7u9t9NzQ0DCTJYXmO+pTDslhklAiIgAiIgAiIgAiIgAiIwDAmUIr+70Av74BYk9NfPJ3tTRvWmldeetZ2/iuc4OmP6VsEREAEREAEREAEREAEREAEREAE8hFQnzIfHR0TAREQAREQAREQAREQAREQgeFF4IASOT3a6urRbnNUVbXfpW8REAEREAEREAEREAEREAEREAERSEVAfcpUmBRJBERABERABERABERABERABPYrgRG/JueUaTPNlGnNZt2alaajvc15b845ZKHp6uy0+1bsV7jKXAREQAREQAREQAREQAREQAREYHgTUJ9yeJePrBMBERABERABERABERABERCBJAIjXuTs6uo0TZOnmclTm7PX2NnRbp5+8iGzV+txZploQwREQAREQAREQAREQAREQAREoD8B9Sn7M9EeERABERABERABERABERABERgJBMqam5v3jgRDC9k4evQYw/S0CJxtbXsKRddxERABERABERABERABERABERgyAjtb95ixtaNNWVnZgPNoaWkxlZWVpqKiwn2Xl5cbPqQ5mHQHYtDevXsNH9as5NPV1WW6u7vdd0NDw0CSHHbnqE857IpEBomACIiACIiACIiACIiACIwAAqXo/w70Mke8J6e/cIRNiZuehr5FQAREQAREQAREQAREQAREQASKIaA+ZTG0FFcEREAEREAEREAEREAEREAE9j+B8v1vgiwQAREQAREQAREQAREQAREQAREQAREQAREQAREQAREQAREQAREQAREQgfQEJHKmZ6WYIiACIiACIiACIiACIiACIiACIiACIiACIiACIiACIiACIiACIiACw4CARM5hUAgyQQREQAREQAREQAREQAREQAREQAREQAREQAREQAREQAREQAREQAREID0BiZzpWSmmCIiACIiACIiACIiACIiACIiACIiACIiACIiACIiACIiACIiACIjAMCAgkXMYFIJMEAEREAEREAEREAEREAEREAEREAEREAEREAEREAEREAEREAEREAERSE+gMn1UxQwRqKmpMVOmTDF79+41O3fuNJs3bw5Fc3HGjBnjjq1Zs8Z0dHT0i1dRUWFmzZrl0mpvbzdr167tF4cdDQ0Npr6+3h3btGmTaW1t7RevrKzMzJw505SXZ3TsN954o18cdtTW1ppJkya5Yzt27DBbtmwJxps6daoZPXq0O7Z69WrT2dnZL15lZaXLExZtbW1m3bp1/eKwo7Gx0dTV1bljGzduNLt27eoXD/tnz57t9pPe8uXL+8Vhx9ixY01TU5M7tn37drN169ZgvGnTppnq6mp3bNWqVaarq6tfvFGjRpnm5mbHf8+ePWb9+vX94rBj4sSJZty4ce7Yhg0bzO7du/vFw/45c+a4tHp6esyKFSv6xWEH6ZAeYdu2baalpcVtR/8jLeyvqqpyu1euXGm6u7ujUdw2x2fMmOHyxCZsCwV4wY3ANXKt8RC1n7zIMxTGjx9vJkyY4A5hO9cQD6Q1ffp0A18CZUmZxgP1i+vkGHWCuhEK1FfqLYE6Rl2Lh6j9lDVlHgrUQ+ojgbrPPRAPpAVX6jch6V7i/uY+wX7uSe7NUJg8ebKh3SBwj3OvxwP37Wxb/0mLtoI2IxRoB2gPCLQ9tEHxgP3Ua9oXQpL9asty5NSW5VhE7yW1ZWrLcjXDGLVlORp6Lsux0HNZjgXPZQ0N9tlm6mT7t75tUM9luVRLs0V/g5D0fFqaXJRKnMAxp2X6LPH9+i0CIiACIiACIiACIiACIiACI53Ay89vMfPmN5iKyoH7VT51f3g8vRCbgedYKOWD4HgaUYABYj8QiGCBqJFP4AQbx0MCJ2kxkBYVNUICJwKJFzXIM0nUQCjCNkKSwEmeiLgIOKSF2JJP4CQtRJuQwElaCEpRgTYkcGI/Ai3xyRNRLB44xkCaF2iTBE7ieYGWtBBoBypwkhaCHsIeAREuJHBivx88ShIFSAuB0wu0+QRO7EegxX7EuoEKnOQZF2hDAqcX2LjGJIGTtODgBdokgZO0vECL/YilfMcD11dI4CRPL9CSBgJtSOAkTwRmQpLASVoInF6gRRwPCZyk5QVa8kwaDESgLSRwkqcXaEmLeySfwIn93GshgZO0uI+iAm1I4MR+L9CSZ+heIh+1ZVDIBC9w8kttmdqy3mrhXhhSW5ahobbM1wrjnlP0XJarF3ouy9WN3Itnxr5MFn7xjHspzXNZLlVtiYAIiIAIiIAIiIAIiIAIiIAIiIAIxAnIkzNOJMVvBiUQNbwHJ0JjyIMTgYHBC8RExCI860KiRnxQPUnUQJRhMA3hDFEmJGrgrcVALGnmE6gQLRE4ET5IJ+TBif2ISgggpIWoFBJovf2kxfUlCbSIMnywn/xCAi32IyrxjUAV8iCEPzYhGJEn4lTIgxP7icO1Yj+iUkigjXpwIpqFPDhJC9spA+ynvEMCLXYjKhE/n/3UCdhiPwJtyIOTNCgj6hr2wzUk0OYG0vY6r8yQBydpUXcQJrEfL8OQQIv9COQwzmc/A5nUbdLC/pAHJ2lhPwIm9lOv+Y4HjlPmsMCmkAcn9iPoIQyTJ3FCAi15IpATqKuI2vHAtZEOAidpYTvXEA+kxT0OX+wmLeLHQ9wDNeTBif3kBzfSwv6QQEueXiDPZz/lCA/soe6EBFrSQnilfpMnAjmMo0FtWZSGce0m9QdOasvUlvnawb2ktixDQ22ZrxUZgVPPZRkeei7L1Qu2os9lXV2d7m8+jKKhmOey6HnaPjAIdNp6oSACIiACIiACIiACIiACIiACBxKBnp5u02n1nB7Tt/+b5hpHVWZmgEwTNxRHImeISp59XhQo5LXFoCgiRCFRwwtsZMmgekjgZCAkKmokeZ0hNiLKkKb3AAuJGoh+XqBF4AwJtNiPKIMYh9iFKBMSaL39aCdJogD2+4FAxJYkgRb74co39icJVAicDDgj8CQJtNiPCEdc7Ef4Cwm00YEoRKeQByr2e4EW+5MEWuxGYCZv7A9NkUr9gSniK/YnCbSkgQhKWWE/wmtIoI0KhElT7PqBNMrA2x8SaLEfsZH4+eynTmMb9icJtNjPNSIAYj9c+Y6HqP1JU+xiD/cS9wD2U19DAi32IzDDOJ9A6KcIxn4EzkICLXYjMJN3PMQFzkICLWkggoYEWu4l7CcktQVcGxy8QIvAGRJoYcE9Qv3GftoVrjca1JZFaRjXbmamq1ZbprYsVzfUluVY+LaYNlRtmZ7LfM3gb4meyzwN417s8i9u8beeF/rG1maWe/Cxin0uCz2n+7T0PfIJjCqvMjWV40xb927T3t1/CYmRf4WluYLymsxSGz27+y/TUpoc+qdSXjXa7OVfR/+lJfrHzr+nrKralFfbF1d39n+xMv+ZI+No2agqUz7Gvti90y5dEnupcjheQWVDkymz/VVCT/uekpRL+egxpszWmZ5dO83e7ky/dyjyGRY8bf+8vHqM6Wmzy/ZEyrusvMJUNuam5e5u3W7jDG27RhtaWT7K7OnqvwTSsGAlIwZNoLKywoyzY2jb7dhlT0/fl7YHkvjkpomm1S6PtGt337pZ6nwGYlux54weXW0a7PjQTns9rbv6L6MVSq+iwjqD2LHeFuss0tY2+L9voTy0TwREQAT2B4EKK3z8w/7IeKTmieiEEIdggFAU8tpiUDQqcCaJGl5gg0U+gdALnAwqIsiEvLYQSLyogUCFqBQSNbzAybEkD1TsjwqcDK6EvM6i9ucTCL3AidiC/SEPVOyPCrSISiGBNs1AGgP0UYET/iGB1ttPPoXsR+SEP6JSyAMV+6MCbUisZiDQC5ykBYeQByr2RwVOhLOQQOsFQsoS+0MeqJSl90AlT/JLsj8q0CbZ7wVO0qIehjxQsT8qcCIwhwRaBEIGArGfgcCQByr2ew9U8kRgDgm08I8KtEkCuRc4vf0hgTNuP1xDAi33EsywP8kD1bcFXhRIEmipi9hPHaGsQ/wZFPUCJ/YjbiYJnPCnfvi2gPjxoLYsR8S3Bewp1BZQH9WWqS3L1R7jXuZQW5YhorYsVzP0XJZjcTA/l3V0dNkXjird33eIDOS5jGd6ngH8h2eF6CdHOv0Wz4aE0HNEmlR4dubDM5D/5rniQAof+MAHzA033OCu79VXX028tNl2DXWerWFRKEydmVlTnrhV5aPN1XM/Ys6YeoU5asKpprF6knll+9OFktgvx6ub51kBq8aJN/vFAJvpxCvfZ2oOP9bsfvbRfWbCpHd/wlRNm232vDT4cqk/9y2m7rSLTOuT95fc/lET7UvOk6aZ7m1bSp522gTHHX+mqT//rWb380+avZ0daU/bb/Ga3vlxU7PoWFunlpiqydPNnheXDtiWqikzTOMV7zbjTjjL1C4+3gmmXZvXu/RKmc+ADSzixIra8Wb07EMzYrX1xEgKtUccbxovu960vbLMicQ+HqLuxKve77jCdq/1Wu9Yt9IfHpLvN816jzl9yuXm8U13D0n6pUq0afR0M3lMs9nWMbB1xkplR6nSmTe72cyfO9usWbehVEkmpnPxOWeYG659i3n2hVfMztbBidm1NWPM333yQ4bv517s+7e9lPkkXkyJDmD/pz76fnPZBWeZU084xsyZOcM88uQzqVJfMG+2+fgH3mHHNLrNa8uH9v5MZZAiiYAIHFAEWja3mfrG0bbvWrwnZ4V9WYqwfmW6lzbi4OTJGSeS5zcCm/eATBI4GchhEBxRA4EBUSbktYUAgSjGIAWD6qEpXr2ogWCKSIEgExqMYCANUYw0EUgQZZJEDeynY50kcHr7EbOwH1GmkP0cZwAmHrz98PD2hwRaBkWxn2/ESOyPDxTAKa3ACS/EROxH4IRvPMAKgYqA/SGBEPujAi2CXkigxW5EJcoB+2HBgE80YL8XOLm2fAInAjPXiv1JHrRRD0LsTxIIsZ+BLESZJIEW+xHIKXsvtofs9wKntz8kcMIA+xnooi7CPyTQprXfC7TYj0AbEjixn3rNwGGSQAX/uMCZZD8Cubcf/pRDPHiBEE75BE4v0GI/bUHIA5W6iP3Ut3xtAfbDlnuJdiAk0Pq2AL5wp16QdzyoLcsRibbFasvUlvmaobbMk8iIMmrLMjz8c42eyzLT9eq5LHefpH2uGchzWS4Xbe0rAosWLTLnnnuuy84vI5CU94knnuied0PPW0nnsH9B/TFm4uhp5o/rbjWrd71qvTgH1pnPl0epjtWd+2bTvaPFbPnFjaVKckSk02mFqs5N/fu4AzGevshQhbHHnWEQotf/5/83VFkccOlu/M4XjbGDb5Pe9YlBX1vtktPcSwAtv/+p6d7eYvBe9KGU+fg0h/K7euY8M/6MS0zXz79jqP9JAY/k7h3bTE/My7lr60az4TtfsDzszE/XfSTp9JLu39y2zlSUDf9hzRMmnW9mjV1gvvb8p0t6/fsrsUvPP9PMmjEttbA2GDs3b7XjcFbc3B3zvBxImvna4lLmMxDbijnntBOXmMaGOnPHvQ+aF15+bdDibzF5K64IiIAIDFcCw/9pYJiQi4oCCISIN/GASIQo4wVORJmQqMFACKISg2X5BtVJp9BAGgIPogxpIlAhyoQ62Qhs5IkoU0jg9PYnCbRp7fceqNiDIJNP4ERowH5EmZBAW8xAGmIcAg/2hwRO7EdU4gGH8gkJnAhm2M/Arrc/SeD0Ai15YX9IoE0jcDKo7gVa7Edghkk8ILBhPwH70wqcIfvhjv3kjf2wKCRwUo4hD1RvP2WF/UketDmBML/9cYGTehsP2I/AzL2Xz37qNPcJdSvJAzUqasAd/lxHPOTs3+tEV+65ePCeGtQhRNIkgRb7uS+Jn09sx/5CAidtAXF8WwD/kECrtixXWmrLciyoP2rLMjzUluXqhdqyHAue2fRcluOh57Ici6F+LsvlpK19QYD+wV/+5V+6FxK550sdKstGmTLbnswbv9h07+0yL2573GXRZbejgekXCV09nabWTmdbX91kNuxZ5X77eNUVY6xQOtVsa99kdnXt9LutdlNuXD72u6Gqyay3542prDGjK2pMi42bNjAFKcENClub/W/b2clOx+nTqhhXZyrG1TtRMOTJV+bW2LEewLZfyNSzlXWNmbjW0ysa3LEG+8xuRdWkqV0r7fGe9jYzZFPXIkjaz9bbftRnKk5vp+Ng+xR79/aYUU3TTNfWDe66/HH/zXSeTN3ZuXGt35X9ZlpPwt6It1xZRaVLE759gmU/asJkK8pVmK4ttq/W+wJjme3/2Mpk99uPDdnysdvxMihV+biMUv7n7QvaMrbOiWjxYyTNdbjpXi0HN92r7ad6hi5Nu8YTHoKF6oG75oR8HHcwx15MTnlpLprnXTWl2ZaLnXlpzXK3P3pNafOh7Ec12ZfR9+w2Xdu3Zs1w9cT2E6NpctDlHbgPsyfGN7h/7cfXHXeYfbCkDrJtbTB8bCB9f33xvInbtvIV9+lXV+255EH5FArlo2tM5YRJee/1/GmU2bauzDy04bf9oiF60m7VVNi2xk5nu7V9g6mvmmjae9rstLaZMYUye++Msu1x595OG6/WjK9qtG3satOzt78Ha1Jb6zPO115zzM7FYIXYzH1aVV7tTmMq7M6e/mMNPs1839OnTjYTrMC1fNVas2Nn3zGSMWNGuzEAvPRmzphqRtvxhldeX9FnjKfK3lPz5sx054Y8MZkCFQGTZ9/Xl68y7ZExkWrbZyy3051yjEB+BMaQ4lOfFsrHnVjgP6ZWffzpZe7T3d23bWQMaNSoSjuO0mYa6sab8ePGmhWrA+2trQtzZ81w9m2P8fLZ58vHx+G7sb7OzJg2xWzYtMV+NkcPue2xtTXWq3K69XDdaLZuy73wEI1I+dWPH2dWrllXtDjp+R9x2Hw7ttVj7nvoMZd0fNxn6qQmM6lpglm/cXPQzqg9bHuWlGF0PDDN9cTT0m8REAER2F8EJHKmJI+o5AXCfAJnIVGDQfWmpklO1EgSqPxAmhc1kjw4o6IGAg+iTPyPG5cXFTgRuogXD/xRQ9CjM4+wkyTQMpDDQDgDn0kCIfZHBU68zkICJwIP18g39sM1JNAiWiJkeQ9CxMt4YFAaUSwqcCIaxQP2kxY24hUYEgi9/VGBM8l+hDNnv32w2rhpY1CgjQqc+QRC8iMu/JMEWuxHFOOhPcl+yibuKZAkcGI/9QhWiHUhgTbqwZnPfi/QIhBif0ig9YOilMuuXa0uz3gZefu5Bupzkgcq9xL2U/b57KdOFxI4YYD92OcFzkL253vZAduj9oc8UDNtQZN7oORegn/0gRIulDP2+7YgyYPT20/9wG7upZBAG20L8tnPvaS2jP6+2rLo/am2LEdDbVmOhdqyHAs9l+VY6Lksx8I/1/C3ledcnmsG+lyWS1VbQ0Xg/e+3Uy3a58Gvfe1r5iMfKb0n0lWzP2rqqiZkzf/gYf/ktl/fscz8ZtUPsvvffeinzZ7uVitqdplJY6a7/YiiX3/+M/b5sNxcPON6M3f8Edn4m9vWml8s/6bp6G4zh9cfb86a9lY7WN/jBM8dnS1m3Kh6J2i8YEXVu9b8NHtevo3JN3wyK6Ahsk1+71+76B2r3zBbb/8vt40oOcFO1VkxPjMFMjuZ+nP7fbe74/6/pus/agWcXU4AGdU01e1GyNrw7S+4bQSrhkuuNRVjx/tTTOeG1WbLr76f/Y3ANekdHzfltRnxuWONteO2jB3ZSCXY4DozoqyxU22uMltvvalPqhzHwzMjPNqBfis2tS59yLQ+dm823vjTL3LT67oddvCfa4+GiW/7oBOUNv3oq9ndk9//KbP7hafMjj/+Jrtv3InnmNqjTqJTkNln04I9ghpTpDJVrQ++fBClNtz4Rbe7VOXj80j7PWb+kabu7DdZcXKN2fLL77nTKGOmOMUmH1qffKAPN4Q1rmOPnQZ19KxD7RqXGUHI14WJV33AlNm1TW2nO7EepMnH5z+Yb8+bNJgu2P/efu9tRU1xPO7k80ztkSdmTUG8p96zvmm1ZVB/wZV96gXT7I7vnfq49bH7sufl2xh/yvmmZtFxZv03P5eN1nTNh53Iu+nH/2HGWW/g2mNOzR5rvPyd2e1NP/yK6bbrjBKoi+NOyni583vzzV/vI8qyr1BAuG689Nps+RG/fdVrpuU3Nxc6tc/xt8z+oJleO9ft822jj3DJzHeamdZrEhGXgMjZWG1f+Lf/7l7zM0M7OGfsYeaSme+y08dudgIo8Wgzb1v5XbOy9WV+FmxrXST7X772+so5HzZN1mvfB9/md/S0m2+98Fm/O9X3ScceZa687AI7Fmfbnd7w0ONLzU9v/b37hTj5uU//hXnp1TfMHCvqITISEOS+8NVvu+3rrrzMHHfUIrfNf3usqPWV//xhVgi7/qo3mWOPPDx7nI3nrafgd370czdW8VcfeY8VWHPtPfkReL75m3/6ktvmv0L5ZCPm2XjTBWeZs0/L3Rtf+vr3+kyPe729lqMWLXDCJqIsAY/Pr3335uz1NE+fYj72vuvdmAvH46Iw+wrlQxzS+eA73+amueU3IcoVsfej773OTJ3clDlo/1+3YZP5f9+8KTvGefpJx7q8GHv14a4/Pmxu/0O6+5hzPv0XH3Birj/f839jxWrz1e/8yNn3D3/9ETde6+N02DG1//zBT+3UtKv8rj7fsPuoZdRtX3j4wle+bVq273DidaHr6ZOIfoiACIjAMCCQa12HgTHD2QTEh3wCoRcFEBYYvAiJGggQiC0saM1xhIiQqBEXCENT1CKsIcowuIjAg6gUEjWiAmEaD07SSCNwYn/Igy0kCiTZ7wVOb39IoI3aD/98AidiEAIP/EkzHhiwQKDFxiSBh2OIU2kETuz3AiHCcUigxSbyRDzMJxCSH9eK/fDPZz/CF/aH+EcH0uCJQB4aSKPeePsR2LA/5EGbRiD0Xk8IINifJNByHBaEfPZzL3mBEPuJGw/Y7wVO7OdeitvvBcK0Aif3J2I7/LmOePACD/thSp7x4PljP/dSkv3kBX8ecL39IYGZtoB4XFsagRP7k9oCb7/aMt44zb2sobYs87KJ2jI7QGUHAuIva3BPxYPashwRtWU5Fnouy7HwAqeeyzIDpPwt59mmFM9lOcraGgoCM2bMMOecc4658847g8sClCLP21Z/15T1lJvzZ1zjBt3/+7V/c8m2dfcVwdjJoDwD4Y9tusus273cHN5wgot7ZOMpTuDcuGeNeXjj78yihhOtZ+gR5swpV5g71/y3i8N/j2660zTXHuqEANKYPGaGWVh/bGqRc/NPvmlFzgoz4S03OJFj2x0/d2lHBbv6cy53Aueel581ba8+Z8ZZMWXMwqOdaNH2+otZW9hA3ECAY13KTisejjns6Mxx27dpvPxdptyKV3teesbsevphG9cu33HYkj7n4/mF2IWIVLvkVFM1fY4ZPe9w0/ba833iDfbHll/YMrLP6I1XvMsm1XcJEp82Qu3u558w7ctfMXVnXWbGWnt2Pf2Q2Wun76yaPtsJnExduuOB39vtJaZ69nwnhvrz03zDsfbok920oK2P32c9HzfY3ydlPey2/e6nTgQcf/rFbl3JzT/LiBh7uzqyyZekfLKppdvgerGpY+2KjDcsp/kytqLlzkfvNZ3rV1mx7BzHjXgI1tEw5tAj3NSvux6+y02JiojoQ956UGQ+Ps2BfLv7w4poE658r+my66Fuv+sWl0x0utpC6boytgInYvDOR+6x3pxT7dqeZ1vB/xqz+b+/YdreeNHsefkZey8cY9rfeMl5PY4/9ULTuWWDFYfTCyOF7Ni19GErLD9n76fDzNhjTzfb7vyF6WrJvBjfHRHo97yw1JXrmAVHOtE0fHfkz437BaEbUZPrqJo03Xl05j+r/9E/2LZuTOVYc+60q+yLIxP7RUDg/PWKG80FM651bSni5bnTrjZHTzjdiZz+hPGjGq036O9sW9tmTptymbm4+Z3mm0583GvStrWkldRe377ye24N5rOmvcVMGTPL3Pzav7qsi/XixDPv6ssvcuMCDzz6lHnYiptLrFhZZ70X42HBIXOc2PeH+x4ybXZcY1Zz5kWZc08/yQmcGzdvNbffea+ZbddxPOuU482Hbni7+Ycv/odLhnGQBx97yjy+9Dk3bnn5hWebw+fPMwh0f3zocfPN7//Evgg02rz9zRebKU0Tzb/9Z+blnLa2XLuTJp+4zaHf9zzwqHnhldftmpNLnJhpB09D0cykiROc0DureZo54ZjF5i2XnGu+8f3M38L3XvtWK/hVuml1N1qx95LzzuiXRqF8WFfuw++51orGVU7wvfPeB820KZPMycf3/g2zKX7g+qucwLnsxVcM5XOKPbbYelte99ZLzU0/ybQNF597uum0Hrb/+cOfmW3bd5rjjl5UtCfnf9z4YzuWUW3eefXlznv1K9/+obuenTtzzxDr7XXeZ9mtXLPeHL5gnhNW33f9leZvP5epe1EArK36oRuusc+oXeZf/v07TuDkeJrriaajbREQAREYDgQkcqYshcEKnAhsDJ4y8MOgOqJSSNRAHCGeFzWSBEJEMQYXEcMQZUICpxeouMQkgTDuwYlAiOgSD9jvRRlEJ+yPC7RRgbCQ/WkEWm8/+eQTCBk4ig6kJdmP2IUIhf0hgTlqP4IlAhX5xgMCm7efvBCVQgKtF6gK2Z9G4GRQHf7Yn1QXvf3w8PYTNx68/QzIevtDAq233wu01I14QBjBfuzzAm2SKAB/bMSmJIEwLnCG7Kfew5+8uZfgHxc4sRP7iZfGfuq3FzhD9iNAwx/hlDpB/Y8HyiZuf0ig9aKAtz8kMJOPt9/fS9THeCANrtHbD4uQQIv98M9nP20B9pMv7UnSyxpqy3KlkFbUUFuWY6a2LMdCbVmOhdqyHAs9l+VY+OcanjP8c81Iey7Dq6KurjTPZTky2hoqAp/61Kfc8+B3v/tdc8QRR/TLZu7cue65K3qA56ajjjqqX19s6dKlwRcgWzu32UHOTjtNYbubFhEPo3zh52983Wyxa84RvHfREQ3Ws8+GXy7/hpvukP1/dtg/uylwoyLncy2PuON4Oy2z27s6tzvvpoqyCjtVbv8pGV2ikf/8tJl7mRbTipNdLf1f8KuaNtv0WC+v7ffc6s7s+s1muxbfR03NEcebuMhJhC23fN9N7cl2++rX+bIee/NN+Wj7sqEVK7ff+2u3j7xC52+1wghCYveeVoNXH56MpRY5s9dpr9uqc86e+H942+340+/c7t3PP2lYFxMPws4Na5z4w4GWO3/mrhUvtckf+J82pXBa8bT9b8Qmwuaff9tdM9vb78nwYbt7l+2n2nHtvR2ZF7KydnOwN5SifHxaab7xSMTbr33FK6bldz/JnjJ69oLeMn7BCsMvuf07HrzTTHjzDaZ28fH9RE6mUN1089ey58fLOKkeFJtPNoMBbHgREOFlb9ue4P1RKFlXxox12LqEZ3P7yledSM4aq4i5PW27nahfNXWWqb/wKlcPiNfyazuVcglDj61D7rNrhkuV6aJD9cnFsV7MTNFLKK5Gu1Psywxj3BS5HfaFBe7lNupDb53IxEj3/07blvLZbT3e68ua+p3U3r3HrGh9yWxsW21f8Jhplu980W03jc4Ifv6EFa0vmic23+N+sk7yIvsyyQzbZq7e9ZpJ29b6tELtdattd+2da9ddztynhdp8n1b8+7ILz+JdAfPrO+4xf3r4CXd4zfqN8WjuN+Mff/8v/549dv8jT7rts049wemEP7nlt/bvUJdZuuwFM29Ws5vWts5On7p9x07zs1/f4eLW1tiXshvrzd33P2re9bbL3XSviJysW2nsjMrt7RlRc+XqzN+nbGZ2I00+0fhJ2627dptX31hpFsybk4kCgED43d1/Mni08sFLdeKEBheLqVa5rk1btpr//tVv3b5G64V66gnH9EmlUD7HH73YME0s0/5+2wqUBKbFJT8CHrOz7RS1u+yaoXfe96Dbd9efHjbz5852AjE7cHSpti95bLFjaq8tX2nHqPaa3971Jxe3mP+4FkJHR6dLI84fG770te/acbcy02THr5avXOOuHyE4HmbZ6YwvOOsU+9zTbj5vPX3xgiWkuZ54WvotAiIgAsOBgETOlKUQEjUGIgogeoREGcQHBAYGchA1EDSSBE5EjajAGRI1GFRHlCGQDnnGQ2ggDdEoHqICJ6ITomqSQFtoIMqLAtiPwJYk0DJgELWfePHg+RcSOBlUh5kXCGEREmjhz6eYgTTsShI4EZXIh7IMCYQI3vAq5MEZFQUY3CtkfyFPAVhQDpR1kv2I7fCnnKk/+ezHPoRB4oQ8UL1AyGCltz9elnGBkLSSBELs9wIhLEICbdR++CcJhPD39sMin8Dp7Q+1BdhPWl4gJL8k++FK2XOcPEMCbfRlB9JKagvIk/sT7jDL1xbQxuRrC4oVONWWZbzp1ZZlPCDVlmVaNbVlfVt3tWU5Hnouy7E4mJ7Lduy066tZQYvnn9CLW9EXz/I9l+XoaWuoCFxxxRVuxpEvf/nL/foJPk+e2eLP/Twr8ywa3x/va/g0ivnG08cLnNHzWKNzT9euPuu5bbZC6NSaWXYQPDeNIed39a751tnd7taeI51Rdk247u7+L7VG80izXT6m1nnodVgvNB9YRxMRpsKuhRgPTijd0n9QvnLiZBeVKUrzBQQfRBECayASyuzA8/4IHdYT0QdvS3lVZm26yvF2gN32Af1+4nW3bHEiqD8nzXeF9XZzPHuvOc050TilKp9omoW23dS6NlKUD+dU9k6ri6cgn2iosOuzxgOevkkhXz0oNp+kPPbVfsoY5WrCle/rlyXrueLlSl3a+usfmKZrP2LK7D3HWrE97f1nreqXwDDdseuZh52nL9NhU7/bXnvOtD5xf791fgdrvl9bkym/u+2g7SrbAABAAElEQVSH0GnXOGa9zmhAzPRhjd1G5GQNZPYXamtZl9eHpPbaHx/s98TGjHD36JPPFkxqnV2HMRRq7JSqtrq5qUnjx2fa6ViftSLn4sMONddf+SY73pKZ6tbHG2Nf9E8b0uSTNq008R5bmvvbwfS7o3qng51h174k4NHow3PW0zIucvpjSd8zp091hx6P5BONy9qnBIThT/zZu6OHuH1dYI3U5atW2/U6Z5gv/v1fO49JxOr7HnysT/xS/GB6XqYrjgfES6au9WHhoZnpnnfYcSkvcHIszfX4NPQtAiIgAsOJQN+/8MPJsmFuixc1GLSiU4vAkCQQelEmn6jhBU46yvlEDdIqJHAitBAPUYa0EFLiIa3AyUAUg9eIMl7gDIkyxOEavEAbetM+LnDCLOSB6u1HlCEOn3jAfq4RAc17nYU8OP1AWtT+kECL7d5+8ss3EMWAVD6B1g/qYjP8Q/anFTi5Pq6T64UpZRkfNKGc4U++XqAN2U+9IR725xtI83XRC7RcQzxgP3Z5gZBrTBI4icf9gsCWZD95evtJK0kgJK2oQBsSOEmLePnsRySFhbcfu0ICJ/d33P44C98WUG+9wByyHzGSPMnbtwUh+4nDJ19b4O2PCpz57M/XFnj71ZZlShb2vi2g7qstyww8qS3LtMVqy4x7sUJtWaa9iD7X+Jk1Qi+b+OeafG2xnstyf139i3++LR7Jz2XbtrfaZ8Ht9rmrNXeBvVtpn8v6nagdQ0Lg1FNPdemyDicf2nvCWWedZRYtWmQ+/vGPmxUrVriPO9D738KFC81zzz0X7AdG4w1ke0dH/z6cT4f7pFDgWZh/mcB3ZjvNuYXSjh6PCqvR/fFt1hjMGwpc014rJvcLEVHXH/PXF+8z+eOl+N5rX17wIcc4syf+2+2NFRe2RXexFmU8BNOJR0rxu1Tl47mSZRLb3c89bqpnzHNTrnaset1NR5oxMVP3EOhYz7RPsC8PxAPTmCaF/PWguHyS8vD701yzjzvQ766tG62H8039TveCPgeqps1yYijbeKuyJmtRwSstkZPKbH9+r529Z18HPJ/xbkYQZ7pp1gKtnrPQTc9bSlty90+mTri0Qxwid6L3tvbfnBOtA/nsy9de5zsv/bHMdaSxh7Ugk0LLth3my9/4Xr/DeACy1icCJ9+//v095pnnX3bjUJ/62PtSc/AJ58vHxynVN56IodATKm87dlZs8HWJ5/hQ8O3hE888b371mz/0iRK14avf/pE51nqasrbqbDuF8BUXnWMQUH/w08xMCH1OHOCPC88+1QmceMDeff8jzuP0g++82rDuZrzuUEbrNm5y3qaXnn+mncL4Ppdr2usZoIk6TQREQASGjIBEzgGgpdOL8OFFAQSSQgInohODNCFRg7QYyEHUIK1Cg+qFBtIYfOQPMPmFBCpvvxcIyTNJIPQDmd7+kMAZtz8ksEUHAskL20IDgQhdUfuJFw9xgTOf/diGIAdT0kqyn3w5Rloh+/2b9oUETsqRDw8QpBXi7+1HYIMB8ZIEQlgQH4GQtEICLXGi9ocEtvhAGizib5zDGdtJD/vxkgx5EEYFTuwnrZD93B9R+4nnH5h8mZIPZcQAMPcGLJLsJx71iONJ9pMf10AgrZD9CISkhUCIMEi8JIGQ9LhfYM8nbj/3WWODbQvsNCje/qS2gLSi9ofaAuLwIR/sCrUFUfvhDouQ/TCN2k+8ePBtgdqyDBnqBfXHt8WhtkBtWa4WqS3LsVBblmPBltqyHA/fFuu5zL7h3juzxsH0XMbf6e6u9n4DS8U8l4X+fudqmLZKReCBBx5wz14+PZ6N5s2b557/mHp2OIXWru1u/bcq65HJmp2EJjvNYpf1Uop6FpXMZuutxBST8eDW5rTPrNH1EiusF2OZXf+smHUJOzdnvGxYh7F9+cvxbIr6/f7rPmOmTMpMpfmlb3zS7GnrP0tRUQkOIHL39q1m1ITJbipdf20V9X2nCkQkdR6fvemPZs3OWOixL0dUjKtz7PN57uE5azv/psyun8o0rz6Uqnx8ev/zo1+1/aJK+4Jxm/mXr/0Pv7vPd+uTD5hdSx9yXocNl11vNv3wK85DzwubcClaoOuTQ/4fxeYDo4ra8cFEGxsmmw+/+x/dsZVrXjU3/fT/BuOl2ZmUT7ed6rliXL2bDtrevMGk8HStO/MyN31s19ZNdiro45xIyNS2aQNe1ASmd6ZOltlpM5kOtzsmcrq6ZOOxZuZgwt52OzWrvZ7KWL33aeLBueP+37tP4+XvNFVTZ7q1Zr2dPt6++J5eO88s3fInlxVTexNa2jOe4qVsa7v3dply+1JG2unCnSGR/zZtbrHTjzaaE489csDef7v3tJlxY2ttu2inJ7bTpcbDFLvuJx6cTz/3kmGdSsIl5/Zfw5L9eCbS/6E/GB/XKJQP5++LsGZd5mUJ74lJnovsGpXFhhV2St5Tjj/GCZSPPPlMv9M5Tpg6aaKbsrZfhMiOJ55+zvBhOtkv/N0njfemjEQZ1OaRixa4puSbN/23Hd/MeBpPn5LxaI0n/OhTz9rpdR8w//g3HzPnnHaSWfbCK04ULeZ64mnqtwiIgAjsTwLhV1H2p0XDPG8natiBcARCRCKEiHyiBoKEFwjjf/y5VAbVEagQNRCVkkQNBgwZEGGwhDyTBEIG6BEuGBAJiTIcY7pMBpq8/WkFzpD9pBW1f7CiAPbDmGvE/njwogz248FJvHz2FxpIY0pZBiARNeAfsh9hE/5pBE5Y5LOfh0CYIbClETix3wucIYGWtLCfY9gfEgij9lNXqRshD1quEf5pBM5C9jMwRFpeoCXPkECL/cTNZ78fCIwKhCGBFvvhj/1MKRsSOL1AS5qFBE5vvxc4k+wfO26se7CHf762oJD9XmCjzudrC4jn7YdrksCJ/fnaArVlfVsXtWU5HtQdtWUZHmrLcvWCdp92Vm2Z9ajonQ1Az2XG/Z3h75KeyzL3Svy5LPS8VexzWe4u1NZQErjlllvM5z//+ezn5ptvdtkhcN54441DmXXRaT+79SF3zpVzPmzmjltk3jTrvaayfJR5dUf/wdeiEw+c0L1jm6kYX29YP7Bq+mxTGZlelHU1EUTqz3urGT33MNN46XUuhd3PZAbIA8n124WwiQg02npz1Z/3FjOqaaoZfciibFr9Tsizw3YDBhWY4nXU5Onug3BYbl+wjP5Ok/juZzPXXn/BVVkmCJDRgPce6Y8/9QKDuDvulPOjh9126+N/dN8Trv6AqTnsGMel7pwrbJoL+8T1a0NyjLUcR03KrTlYivLpk1mKH92tO8z2+253a3DWn/9Wd4YrYzvd8LgTzzHjz7jEiW3VMw8xDRe/3YyZf2SKVNNFKTYf1n0trx1nxlv+cEWk9wFBqlQhKR/KGC/eiVd/0HJY7MTx2mNOsWuVvttlTb2ZYEVAXl7Yatfh3Hb3LYb1YFmfsxghsnNjRoQZf/pFptoK6v4+jV+fn2J53MnnubrrPEgjkbg3uR88p8qmKZnfVqiNBsT2TlvHq+csyHhsWrbeW7nhwqtNzaLjXDtCHUB4RdyMekdH0wpt095Nsets8hldYafNtt6Yud81oVMS980et9CcOOkCc8zEM8yC+mPdiyOrd73u4peyrfVrcZ4//Roza+wCt05oolGBA7daz0p08Musx93b33yxm/b0LZecZ95x1ZsCscO7WCeStSH/1yf+3Jx5yvHO4+/NF59rPvWx97sTEAUZ81twyGxz5OHzDcfOPu2EYGIbN2eWw8JLcMmRh9tz5mTjFconG7HAxiFzZpqFNt2JEzL1a45d95Lfk5smFjgzcxjvVLwVmeoXThedc7o5cUn/9qZQPkxT22Zf7p83e6b50A3XmEPnzjKnn3Ss+csP3eAygtlry1eZaVMmmb/44DstuwXmsPnzzA3XvNm859pMG1hvX4rHI/bk44420yY3mbNPPdE9Q2+1s32UMiBU8nfw6ssvclMPf9LaSJknBcTur3/3x+7wn7/77VnRutD1JKWn/SIgAiKwPwnIk7MI+ogniGIInPwhQ4gICWwMBDLgU0jg9AMhmIAoExLYSIN4xQykIfwhloa8zrDfC5xJ9nOcgUzyJh1EnpDA6QVC8tm0aVNQYGMwFPu9QIgoU0igxX4Eqrj9CDbefgaNsD/kQYj98PcCJ/aHBEJvP+IV/EMCIfaTlrcf20IDVogCfBCOkgSqqMBMGqQVsp/6Bf9CAmdTU5MTCL39IYENu739hQTOqEAYEtvjAi3XGRLYvCiA/bCnLOMCIXUe/l7ghH/Ifuo99hcaVI8LnCH7sYe6yP1ZSOAkPa43n8AJf98WYH+oLcB+0ipkP9cIfwL3Uqgt8PaTJvbDP3QvIXpTF7Gf+y3EX22ZQ539z7cFassy3txqyzJVQ21Z9hZxzyBqyzI89FyWqxd6LsuxYGuonsv65qJf+4pA6Nl1X+Wdy6e/pw3Hnt36sJlWM8ccWneUuWTmu1z0DXtWmT+uu8Vt+6n1/PS07HT7epOL97HcSXn+2/HH3xgEu7HHneFiIZy13J4ZFN1+z68NnljRtRZ3L3vctC1/qX+K4ctx8bbc8n3TePG1bvpKprAkuPUI3VZmetQyRvgLhBRR8qaAl9zYJadl41Q2TrKC0w3u91Y7pWh2rcmAF5RTIGzMjvWrza5nHjG1R55onMhnjUL4c+sv9qbc+th9TrSsOeJ4t6ft9RecqNR72H3tefkZ58mJuIww6ILtt+554aloNOc5iRiFSEc5IBhtuPGLLk6pyqdPhsEf2crljmI7tlTPOtSJuKy3uuVX33NljGDLh4Dn4O7nnnDbff6z1xkK1N1C9aCYfCgnPCUph5rFJxg8UVsfu9dlnbuPQpbE9+Wvm0n5RMu47uzLs4lShwgI14iZLb//qXsRgH1bf/1DM/Ftf2Ya3/SO1FO8cj+2r3jFOGHZiox4UjpPXxKMBKYJ3vPiUic8e4F604++6uov0dy9YMc7fKg/9y1us6tlk9n8k2/53e57hxW6x592kRl30rnu95Zf3OimKob3+IjnMt6stDH+/umTSMKPhqpJ5qq5H+lz1P/2Xpl9yy+5fPDaPL4pY2P33m5z+8rv2XQz8Qu1tX0M6D2n777cryc332tmWK/ReXWLzSF1Rzox9VsvfDYXocAWouKPf3GbedsVFzuhzot1Dzzatz0gmb0J98+91jtzYkO9Odl6JTJVqg8bNuXW8LzjvgfNhWedagW6TNm+viKzjmT878Ztd9znhFaEP0RCxgv/5p++5JJMk4/PO983giLjFj689dLMyyAt23eYf/7S1/uNF/p40e9v//BnTnhEiCVsbbEzITTU9RmfSpPPv9upZv/MioAInHwIayPTAn/nRz83H3zX1W4aWsRNAn+PHn0q8/IRNWqiHfO5+vILs8e22ev43o9/6X6X6r+7/viw8zg94ZjFhg/enIjX0+36pL4MM7Ub+zJbXMfv77nfisCnmQ+84yrz9e/dbApdT6nsVToiIAIiUEoCZc3Nzb6NK2W6B2RakydPdgIhgtnGjRuDAlWxAid/tEkrJLAxkMbgO0JVPlEDcYRBaQabvMAZ75iTz6RJk5z9PIAgpIQEtmIETgaASXfDhg1BgSpqP3khyiQJhFwD9nuB0P/B9RUJ8RD74YsXH6JSkv0IRghC+QRaPxBFPvAPCWxxgTafwFnIfq6NPLEfBtgfEgiLFTjz2U+9QdTjOtIInDDGLgS2OH/shz8CWz77Q6JASGAmLa6Vegr/kEAYtx/+IQ9OyhthD/uTBEIEP/hjP8JgkkAbFQi9QBuyP9oWkGfIfvKCP/dBvil2iQM37E9qC6jPtAWlEDi5p6L2k2foXlJb5lufjNeWb4vVlqkty9UM49pFtWUZImrLcjVDz2U5FqEXz0Ivzh2oz2U7W/eYsbWj3fNy/LmGF5FCz8X+xS3/XMY6kDzH8CzGN/v58AzOZyBh1qxZ7jTSLibwfMiH5zc+lCXPSXxj98EYZsyYYdavXx98ITTO45jTmtyuzsh6jvE4xfzGm2lC9VSzvcP2K7p3F3NqyePiAcnUqniC+SkvB5JJedVoKzo1GIQPPNZGcsBzjek63fqSCaIDzPbavkmPnQI2X3DTfto2wHltJqSV7/xSlU++PNIec2Vc3+hENsS2oQr7Kp9S2U8Zl1WOMl12uuOhmrYVJmV2bGAouafhUT56jBOXmdq5p21PmlNKHgcveF4SuXXFjWajfUlk3Kh6s7l9vf0b119gH05tLSCYtrZu/FjD2pt4KxYbeHZA9Kq2U9OuWb/Rjkv1X9Ny7qwZTsQLHUubX5p80qY12HjN06fYMY92s3lry6CSGltbY6ZaT8wtW7eZkBdmlR23mTFtsumyz0ZrLVum9Y0Gym5CY71hzczQ83A07mC2x9vZxsZZWynfwYRC1zOYtHWuCIjAgUngtRdbzOxDrEZVWXw/dZR9DiI8dX/y2tL5qEnkzEcncmzKlClOoCqFwMlgeSGBEFGDAR8vcCI+hQZC3EBaHZUnWeDkMqL2I0qGBDZEDQYpyRuhi8GX0B/eNPYj7GA/AlsxogD5hgRa7EfgwR5EmZD9xQykMSjNQxeDEiGBKmo/x9MInEkCIQNRiErYj0iHKBayP63AmRGrsd8k2g93yolv7EfUCwmE8YG0NAIn9oc8CKnTpMcAXBqBkEEy+IcEtvhAYFqBEzExJNDCnzSxm3IqZD91H5E8n8BJPeVeCtlfSoETnpR5IfujAm2SB2e8LRiswJmmLVBblvtDQpujtizHQ21ZjkX8ZQ21Zfm90dWW5eoOW2na4uhzjZ7L9t1zmRc5+Rs+0OcynoEkcvat8yP1V6lFzpHKYX/YXXfmpc5LNF/eeMj5NR3zxdMxERguBFSvB14SUZFzZWvA83zgSevMPATq7LStn/kfH8wTwzhh7t++9YO8cQ60g5/95IfsS3E1iZeFaPq3n/vXxOM6IAIiIALDhcD+FDk1XW3KWoBo4UWNkEDFce9B6L22kgRCL7AleUB6UYMBKfLKJ3A6D8ICAufUqXZdEzu4gmBTSOAk70ICp7c/SSD0ooa3P58HJ8KM9+AMCZwUD6JA1P6QQOUFTuwv5MFJXMSGdevWBQUqPxDItx8IDAmEeM96D07KKDQo7UUNxEYv0IbsL0bgRIxG4Eyyn7wQmCmHQgJn1AMyZL8XaEnTC7RJ9vspUgsJnNhPwP7QvUReDARiPx6o+QRO7wGJ8FrIfl4SIF7oZYG4QJskcHqBygu0Ifupq/5lAWzC/lBbQBzKHcaIjSFvYu4NBFrqItyT7E8rcPq2QG1ZRhRQW+ZuRTcTgNqyDAvqhNqyDAu1ZRkO/K/nshwLtvRcluPByxqFnsuqSvhclstZWyIgAsUQ6Niwxq4JWJ33lB67ZqSCCIwkAqrXAy+tHtPXw27gKenMYgh02Jf+l69am/eU1WvX5z1+IB5kDUwE4KTQaZ09FERABERABPITkCdnfj7Zo3PmzDFr164NeoAxEOhFpXyiBsKNFzUQGxGgQl5nCBFe1ED8CAlszoOzwBS1GD9t2jQnECJqICqFBCoEWi8q5RM4ucZCogADgQx+YT8CEKJMIfsRQZMEzunTpztvRARa7A8JVAwuYb8XOPFiC3ngRe1PEggR1ryohMCJeBmyPyRwwjge0tiP6Irghf2sn4hIGLI/4/WUEWipiyGBDe7E45v6hf0hgS3qwZkkECLQUn+8QIuoHeJPnUDgL2Q/XDMDgWVmzZo1wbpIXtjvBdok+6NeT14gjN9LiIfcS16g5Z4L2R8XOCmDEH8vcMIlyf5oW4BoSd0O8ae8vUCbz374U5bYjf2huojASXkiiObz4IQF9zqc1JapLfNtldoyT8K4v29qyzI81Jbl6gVtq57LcjzSPNfouSzHa/eeDnPIvNnuWXygz2X8becZi7rIN883fHge4TOQoOlqB0Jt8OfIk3PwDJWCCIiACIiACIiACIiACIjA8CRQCk/OuU8P7GUXeXKmrBOIGiGBJDMQOMkOOlQ4TyxEjZBAkkbgZMACUYMBDC9qhAQS77XFYAdeYnidhQQ2L1BxiYgaIfsRPRD/SMsLtEn2ew/IpClG/UAg9iOmIt6E7I8KtIUETgQeL8qEBB4v0JK3F2hD9nON3v4kgRO7EbL49gJtyP60ogBr9CDWUTbwD9nPQCCCF/Z7D9SQ/TlPgTKXVkjg9AIt9nuBNmQ/gpj34EzyQKXOMJBJmtgDs5D9MEUUwP58Ai0CJ2WVTyD0Ai325xsIJD8vECLQIibGBU7sp/5jPwyosyH7EWi9QIi4zCd0L3mvFexfvXp18F5CTKWeYX8hgdO/7JAkcJKPtx+7kwROOFAfaTsKCZy0VQS1ZROzbYHasv7e6KH6r7bM3TruP7VlORYhb/R4W6y2LMeLLT2X5XgcLM9lteV2TT67tkgpnsty9LQ10gn49WZG+nXIfhEQAREQAREQAREQAREQARHwBMrLK8woOy5eUVnud+2zb4mcKVGHBEJEDQY8EXgQNRCMQgKV99pisC/Jg5NjDCQjkCBqMPgeEqgQpxB5nKhhF83OJ3B6UWPlyvCi1hxHPMN+BM58Ai1iCjZ6USA+kIk9iGLYDyvihVh4rzPie4E2nhZF4j0F2E6yH9HM24/Aif2hAXoG0rwHKmJdSCCEAYOP2I9ASzmF7PcCLfZ7gTZkP2XpBVpEsVBZInBiG3lTjvAI2c81eoE2yYMTu/E04ZvrQzwL2e8FWuynvsItZH9zc3NWoEUUC9mPTYj32I/AicgWsj+NBydipBeYGQhEvAzZHxVokzxQqTPeftKAWch+6oQXmAsJnF6gTRI4KWuuE/5eoA3ZHxVokwRObz9pYTd1NmQ/96QXmLGfMgjxp15wr3P/rlq1Kij2qi2DeiaoLfMkMt9qy3I81JblWKgty7HQc1mOhZ7Lciz8c9nadRvtc3FmuvnQc0Ha57JcytoSAREQAREQAREQAREQAREQAREQARGIEpDIGaVRxDaiBuIBA+KIGgguIYEBEYUBsHwCJ9nOnDnTiUWIGYgyoYEQL2qQJ4LStu3bggJVxlMg47WVJBAiaiAqkZYXaEP2I2IVEji5NkQlxC4EWuwPpRUdCETQQ5QJCWxRgXPFihVBFog2DDhjvxdoQ3nGBU4EtHggDQbysR+BFlEplBYCJyIb8RE4ESZD9ntRgHzgHypLPxBIWgiNgxE4sRtmfCPQIjCH7GcgDfsprzQCJ9eGKBay3wu02A+HwQicDARSZ7EfgRaBOWQ/tnMN2J9P4OReIk3SQJQM2e8FWuz3Am2oLLlHCgmcCLS0BdhP/UK8DNmPKEAdwv58AidTyJEWdiMwh+z3Ai32I3DCP2R/GoFTbVmuRVBblmPBltqyHI80AqfashwvttSW5XjouSzH4mB7Luvq6nbPNaG/0Wmfy3L0tDXSCXR2dY70S5D9IiACIiACIiACIiACIiACIhAk0NPTbVhHuMcMbFmVYKIpd0rkTAkqGg1RA1GJAXFEDUSZ0OAFokZU4ERMDIXZs2c74QwxA1EplBaiBoIjeXqvs1A8BtIKeXAiahCPtBBoEVxCacUFTuKGAgOZiC0ItIhKobQQShF8yRNBZjACJwIt4g1pwRTBK5RnmoE00kAUw34EWkSlUFpeoCV+WoFz+fLlQbGL8kE8Iy0EWgTHUJ5pPDixG4GZbwRaBOZQWl6gJc80AifljMAcEusQ/RjwJy3vQRvKM40ogJiHkIL9CLQIzKG0GAgsRuAkDewPpYVAC1vs9x60oXgZgbPGxjOJU9QiamA/aSHQIjCH0kKgjQqclHsoeFEA7gjkobQQaKnb5JlPoOUeoawISR6casv6loLashyPqMCptqzwesJqy3J1hy21ZTkeei7LsTgYn8t4ThpbW+3+ZudIGPdMkPbFM56bFURABERABERABERABERABERABERABMIEJHKGuSTuRdRAVEJ8QNRAlAkF77XFMe+1FYo32wqciBWkhygTCl7U4BgCJ15/oZDxFKh2h5I8OBE1GLwmPwRaRJlQ8FPscsxPsRuKN2fOHLcbgZY8Q8ELtBxjoCZpsAbhGAGWkOTByXHi/f/snQecHMWd7/+bkzZoV6ucBUhCQoCEJHIWyeRkMMGcA37O9vmCfb7nC757fj7f+c7n54QxBoczNgaDCQZjTM4ChECBqIyk1QbtalebV6++1fuf6e2tnpndnUXCrtrP7PR0V1f9+l/VNTX17X8V+oGuaHMFAC35YlvKyOXByXnoJy0ALSDIFRTQckw9UF3xsCv2JcRBAQW0xAHQUjdcgYFAyh39gEvqmitQf9APoAUwuwJwjfpIUEDrike9pn4TNmzYYNONxlNAy35AHYDZFYCIwET0A44BmNHAMQbC0Q+gJZ4rqKcDxxTQuuKpNzTH0O8KCmg5xsAj6bkCgDbw4IwHnIBZ8kQ/10c5uYJ6oHJMPVBd8RSwcYz64woKaDkG4KQ8XUE9ODkWBzh9WzbQcr4tS9rDt2VJW/i2LGkL35YlbeH7ZUlb+H5Z0hZsDe6X7RsYwXwaTr9sUCJ+h7eAt4C3gLeAt4C3gLeAt4C3gLeAt4C3gLeAt4C1gIecQ6gIeGoANQhxUANwo15nwA8gistri3jqQUi8OCjDQBrAhTjqdRaVTFp4nQGgiAfUcK3hp1CD8+MALWmp1xlpxQFa4gFleMfrLA7QAhoZJCYt9Tpz6QfKAACJFzfFKwNpDL4T4gAtetSDlrSAuC7ASbyZBhAS1GvOfoj8A3ACHElLPWgjUawNAMzoIx62cHlAcn0AWgKA0wVo0aWAmbQAtC7ASTyFMqkALR6opEda6kHr0o8uAC3xAGy8RwP1i+vkUFtbqxPQoksBM2kA/uIAp+qPA7SkpR60pAVg5h6IBuJRL6jfxIu7l4CW1DPixAFa0lLATDzAKwA2GgCcM/vrTxygJS31oCUtgCRgNRqIp9M9E+/tt9+ORrGfAZzc58RRD9poRNJSQEs8wDf2jQbfliUtgs18WxbYA1v4tixpC9+WJW3h27Jkm+H7ZUlb+H5Z0ha0n9qvyXa/LJmL3/pTtEBBbqGU5pdLR+9e6ewdvKzGn+I1D+eackvH2NP69rpnQxlOmunOyS00v635M+vqjjTkFBZJblGx9O5pHmlSB+T5OQWFkltSZq5vt9gfiwekyqSo/LFmVhwztkPo62zPSrnkFpdIjqkzfW17ZF9vj017NPKxCe/vf+a3cG5RifR1mJm+zG9ODTm5eZJfXasfpbe12cQZ3XaNNjQ/t0Dae9yzpiXE+I2sWIAxl9rqsdLQtFu6HOMMWckkJpGy0hIzO0aZ7NzlflA95rRBuyfUjpNWMx7Xtndg3czPz5Nyk36zGbPp60vW60EJ7McdFeVmhr/qqoSCzdt2OMd+ExH8hreAt4C3wJ+RBTzkzLCwgQIMhBPSAU4gIZArDmoASIAypIkHpAsQMliiXmepoAZpARGJS55AJRfUoDMSeJ2h3+2BSp4KaEkLQOuaYpc8dYrUVPrV6wz9AE6XByppAWUAaOQJVHIB2rAHKtDP5YGKfvWgJS285lxT7JIntiB+Kv3qqYF+XfcwWl1IC/AEwCTPuDUgw54OQNdUgBOwR1oAZhegJU+ti3EDaVybetCiH8DJNUQDaQH+0EeeAHLeo4HrCwBn4EHr8kAlT53imDS4RhegDd9LqQCnetCiP86DFv3oon6QZ9wUr9SvTAEndiMt6pgL0Ib1pwKcYUAb50GLfgAz92cqb2ju7zDgdHmgkhaAlvsO/QByF6AN6/dt2YHblunDJpSlb8uC6dp9Wyb2u9K3ZcE3lG/Lkt/UtP8Har/Mt2VBOY2kX5Ysab812hZYeMRy084GU/1rXnU735HNG17Xj1l7L8wtlotnfUzGFU+2aW7Ys1bu3XxL1tLPZkJF0+ZIX1eHdO90z7qSzbzi0qo5/xqRvHzZ9fNvx0XJ+v7aqz8t3fU7pfG3Pxlx2pUnnyfFMw6WHT/82ojTiiZQMG6i5I6pkM6N2a+n0bziPo9ZfLyUHXGM1P30W/Jugug4Pen211z6YQHIEbrrtknDb26228P5VzhxqlSedpHkmTIgND96r7SvX2W3s5mPTXCU/+WVVUjh5OnSYerSvu7BD/pq9mULjpLyY1dI/a3fk57m5CxjeVU1UnPJhzWatK58TFpfeDzxeTQ2zpl+rUwunSXfW/vl0Ug+a2nWFk+RMQWVQlu/v8PiRYeacbJ2Wf/mhiFLWTjvYLn28vPll3f+Tp59cfWQzx/JCR+68mKZOX2KfOEf/m3YyQBK//bTH7bauYZwOPPk4+W0E4+W//jezbJtu3vGuHD8/bG94qRj5bhlRyay/u8f/kw2btl/380JIX7DW8BbwFvgALCAh5wZFoJCJaCAa1pNBi/U04FBaaCMy2uLQTmgDFAjFaAaKtQAkABlXFAjCTjjp9VkgCysHyjj8kBFP1CGd/S7pqjFFoCWdB6opAGU4VrRD5RxAVoAFoN3DHDHeaCiH0DLNWD/OECr+omfSj+AE3hMWngPuqbYJS3iANDQD2AmzWhQTwf0x3mgooeBQMAYaaHfBWgpS+yPjVPpB9RhW/QDmF2AE/2UEQCTtNBP3tGgHqjoj5siGP0AZsAkaQBlXIAW/eqNS1kDVaOBayMdgCn60c41RAP6AX/YF/3cl8SPhqQH6j4L7dEWDejH4xW7oR+I6wK06KcuErjXXFMEo59yJD30UHdcHqjoB1ZQv9FPWtg4HEgrCmjjACf2ot6iH8DsArTaFpCHb8sO7LaM9oz649sy35Zpm+DbMrWE2D5UeGYN3y87cPtlvi0T22fLZr8seSf4rWxbYIKBFYQ9eKP1B/qIqcJMM7MHfTj6ckMJc6uOtIDzse2/la1tbxovTuMRdYCGytMulN6WJmm446YDVOHoyOqu3yHdu7ZnJXH69KMVxhx1ogCiRwOgjpbm/Z1u3Y++IZKbI+Ov/fyIpZQZwJtbUipND9wmvc1N1ntRE81mPprmaL4XTZ8jFSeeIz23/8gAfveyRuSPR3Jvy27z8MNAL+eexjrZ+aOvG3uY/vsHPjmaUhNp13dsl7ycA39Yc9n4FTJjzFz57tovJbTvr43Lzz/LeCu2yte+dcP+kjC8fLPQjKZqi+sbm2RPa5sFwMMTOPpn3XHvg3LP7x+R0088xgLZ0c/R5+At4C3gLfDescCB3xs4QGwJfIjz2uLHr3ptARiAMi6oAWAAyvAO4AEquaCGAk4GuAGNLqgBIAGiABP5UQ2UcUGNMCDkOHlGA/qBgwxEoR8o4wK06AbKkDf64wYVFXCiP25aTdIAynCt6AfKuABtGBBmAjjRD2B2AVr0A5hVfxygUsBJWuh3eaCSBhCRQWf0A5hdgFYBIbZAv8sDFftje+oQaZGfy4OWskQ/8VMBNh1IQ38coMUW6EcfutFF3tEQ1h/ngYoeAC1gkjQA5C5Aq/rpWKbSr4AT/XGAFv0AZuoH+gHkxI8GhQLYH00uD1TKEv3YDf3cby5Ai34AMyEOEGIL9HNvoicO0KIfwEya6Oe+RGM4hAEnx6gTLkCLfgAz9Rb9xHEBWvICMPu2LAAkvi0Laptvy5J3nW/LBtrCt2WBPWiLfb8sWTd8vyxpC+3XpOqXGcRpvp+DhzWy0S9L5u63RssCdcZb8ZWXnsk4+eXLl9u+l6sf7UqEaRXNRI8yp+Iw6d3XI+t3r7TResx2OBCP0NPXLWVmOtuqolrZ2W6WJDGfNRTllRhQOkl2d+6Stp7kkgi5ObmSn1NgALvpoxfWyg5zXkl+qRTnGRBj4mYamIKUYAeFTR9XP5tOa2I6Tk0rr7xS8sqrLBR0eYDl5HM9ZupX01dl6tn8yuogbk/yekjLHhs7zkLVuKld883xPjMz0ah5DAIkzavxnp8PmIpTr9XawfTz9+3rk4LaydLTuNNelx7Xd6bzZOrO7rrBv7/Vi3BfX/L3S47xVCVN7DsgGNsX1EwwxjEPGTfsSOSVY35PGHdEsz8A8YnyMSdHyyBb5TNAV5oPqs+pZUylhWjRYyTJddjpXo0d7HSv/F7qt6FN07Sr+0y9SVcP7DXH5GPtjpkjD5imuaQBh9XehROnmXKpk65tG+3x8DVlmg9lX1A7Ufra9w7wjLT1xPzWC6dJJjZvx31oBbj+cf+aF/dfIrAPW1IH2TYa8JYmkL5eXzRv4nZsfsO+BtVVcy55UD7pQm5xqeTXjE95r6dOI8dw6hx5eudAbzzOAXrSbpXmmbbGTGfb2LlTqgrHSWdfh5nWNpjymvaxwLST3fu6TbwyqSisNm3sVunbl7wnNf+4tlaPp2qvtc3P4141oTC3yL4zFXZ3X7y3rI3k+Fdo7od5B8+Slj1tsmmrezxxxlSWUiqQtzZuNmMSyfakuLgoaM9NE5dnyrGkpNjm0NvTO6ypZ4vNWNLMaZNjPULROmfWdKO11ekZiR600o96e+MW6XQsE1Q+pkymT5kkb7y9yWGNzHZRF2bPmGrGSDot3HWdlZeXKytfftW+wjYjLnbqM3acPXOabNhk6oi592aY6x6KJq6VNKJT/JI240E9pgwIuebhixlTpwjXjYcmtgsHxnKwU3f4Xg5F4FqxO/noWDNpFpjv4Kh905UPyaarb6Gs/aa3gLeAt8B+t4CHnBkWQSpAyEAgkCEV1GAgRKEMgAeoFIUyfCFlMpAGICE/oAxfiEAZF9QAUAHFCKkAIXANyIOeOK8z9CuUQT9QyQVlMgGcqh8og36gjAvQKmBLpz8MaOM8aFU/eaM/DjAr4OTa4gAnaShgRj/gjDSjQfXTuYgDnAAG1c/gSBygZVAR+xM/ri5SfxRwoj8V4FTAjH4AM+/RoIAQ/XGAEz0AWq4B/QBOF6BFP4Bf9ccB8jDgRL/LAxX7K2BGdxyg5V7SaR3TAU4FzNxLLkCLftKiA54p4ATQujxQqYsKmOPaAsoC+6v+dIATu2H/OECLftoC6gh1Me5hB9+WBXcBdvJtWbJF8G1Z0ha+LUvawrdlSVtov8b3yxicGfjg3J97v4w2Q2emGGm/LFnj/NZoW6DQrJ3YbTyUdIAwm/ldMedzdrBd07x+/j/bzbdbXpX7tvxUd8sHD/6StPe2GqjZI+NLptj9QFGmZGRw/uypV8nsioWJ+PUd78gdG38gXb0dcmjVUjl58sVmsL7PQIBcaelukvKCKgs01hmo+tC22xLnpdqYcN0XEgANyDbhQ39to3dt3SCN9/6P3QZK1lzwQcmrSK4RxlSdTNkZDrVXfcoAnDYLQApqJ9lDgKydN37dbgOsxp5zZWLKT3Z279wqDXfeYo/zD8A1/urPSG5Zud3Xtc3ouCfQkYiUhQ2uM4CyZuaW7VsGTVfLcTw8A/BowIX53dW66mlpff6RRO4VJ5wlpYcuCT6b31JceziMu/z6QdPvTvjI38redS9Jy2P3JaKWLz9Vyg4/2ly8oRIEkxa2B6hVG7szVa0GLR+g1M6bjKeiCdkqH80j0/eSQxZJ5SnnDZgKljKuPvcqq0nTaX3xyQF2A6xxHe1vvGqn92UtU4LWhXGXflRyzP1pBi5i60Em+Wj+I3lXe5NGwfjJifuj+ZF7pP21lzNOuvyY06Vs0fJEfOA99Z71TYvMFMdVZ1wyoF6ULlgiFcefJa0vPmFs92jivFQbFWZq2VIzxeyOH/xrIlrtFZ+w9WnXL74j5cYbuOzI4xLHqpkeuj/s+tl/S69ZZ5RAXSw/+rT+IzJoutrEgRQbgOvq912ZKD+idm55S5ruuzXFWYMPXTTzeplSNtse0LZRY50z/RqZbrwmgbgEIGd10QQes5A/bvu10A7OGjNfmOp2d1d9ok2mzbxn849lc+vr9rx0ba2NZP6laq8vmfUJqe2flpz42uZ39XXKDeu+okmkfWe9yC9++qNSPbYyEZff/3/zz/+R+HzMUUfIJeeusH0xdjImdOtv7jPgbo2N869f+mwAOc0n0uEzYauZmvWbZorWoYTjly+W9194tj0FoPabe/8wYPraD1xyrhx1+IJEku0GMDK1qq6nedWl58kSM21uOKx9/S350c9vT3z3XnfFhbLo0Lk2imn6pMM4bQw1TJsyUT794ausownnRqEh+84742Q55fjkPRierraqoly+8lefoOm1zTBjpvQN6Pvj9fmP3/hOQi9pxYUvf+5j5gH3fPniV7+ZiAJ4/ZTR9vTKVXLbbx+QpUcslCsuOidRRkRs2t0i/3XDT2xeiRNTbBy+YN6g6YT/wkzzu2DuQfKXXwm+bzk9XflkUt9SyPCHvAW8BbwF9osFPOTM0OypoADAiw5GHNTQAQ7eASRAJeJHQ6aAEyAJjAOQAJVcXmcMSgNICBwHSkYDA1HqgYqeOA9UdANlGNBU/S5AO1QooPpdgDYMeNDv8oAEmCmgRX+cByr6Acyqn7RcgFYBJ9eWCeBEP1AJm0RDGBACzSjzaEB/GHCi3+WBin4AJx0phaXRQZcw4FT9pBcN2ID6Sl1DP4CZ92jIVL8CTmAj+bkAJ3UR+3O96HfVRfRHAWecfgYL0YduALML0CrgpJzTAU7yJQ0GYl2AE/3Yn/slHSBUD844D1Tsj37SpN6g39UWcC8BhdEfBzipD9hfB9XjPGjJi7QyAZy+LePHy9ABJ3UR+/u2rMrWZ9+WBdNt0xbHQQ1tC3xbFnhW+7Ys+Bb2/bJkb4S2+E+hX5aX3y29xktmr5mNIa5fk0m/LGkZvzXaFpg8dabwIjQ17pLVLz4tHca7Klvhro0/lALjybNi6hV20P2Xb33LJt3ROxCCsZNBeQbCn9/1kGzfu1EOHbvMxl1UfawFnHXt2+SZuvtlwdjlxjN0oZw08QJ5cNsvbRz+PbfrQZlWdrAFAaQxoWSqzKtakjHkrP/VDwwlM7MHXXSdhRy7f3+7TTsM7KpOPd8CzvbXX5GON9fYdfpK5h1hoUXH2+sTWtgAbgDggDPdBh6WzD8iOG7u9+rzr5VcA6/aX1stbS8/Y+KaGYvmLx5wPp5fwC4gUtni46RwyiwpnnOodLy1dkC8kX5ouOPHFqhWX3CtSWrgUhKaNqB279oXzDqYb0jlyefKGKOn7eWnZZ+B44VTZlrAydSlLU8+YLYXS9HMQwZ7aGpiMe/YkXUumRa0deWjdn3QsiOOTnjY7b7/NgECVpxwthROmCL1v77RprSvJ/nbLivlE6MvbjfXi6audzYF3rBE1DI2evc894h079hiYNmp1m7EA1iHQ8nBC+3Ur23PPGSnRAUiakhZD4aYj6Y5nHd7fxiIVnPJh6Rnd4M0P3SXTaa3tTnj5GwZG8DJuqB7nn3YeHNOkvJlpxjgf4XU//L70rFhvbS/vtrcC0dK54bXrNdjxXFnSnfDzowBZyZi2lY9Y8DyGnM/zZcxS06Q3Q/eIT1N9cH1hAB9+7pVtlxL5i6y0NR9d6TOkfsF+A7U5DoKx0+xHp2pzxp89A+mrSvJHyOnTb5UKo2XZjQAOO/edJOcMfVK25YCL0+bfJkcUXOChZwav6Kg2niD3m/a2g45fuK5cva0a+QHFj7uk0zbWtKKa6/v3Xyz8d4sNg+eXCQTS2bIrW/9l816qF6cF551mgWTjz/zgjz29EqpHVctxy9LtpETasfJZeefaUHg7x563PQ9+uS8FSfLlRe/z3patrbtlW9+/xYzJpMrn/rQB6TNrMn541t/Y7U0twz0FrQ70/ybPHG8/PHxZ6TVpAMkPP/MUxKQ87QTjraAs66+Ue598BGzjuZUOfnYpfLx695voSBJMxby1PMvycpVa8w4V549/9BD5sgJRy+x17fo0EMs4AQk3nX/H+21sh5ndBwsjUxhHc8846HM+qF1uxrknNNPHHTKw08+J+veeNusdblYDl9goCpEMxLe2bHTeFa+Y9fDBNSuff1tOeW4ZTL3oFmy3pybLrz86no51qylefDsGQkP0FONnQgPGTsSuLbXzDqpj5kybmnZY/Ucs/QIueay8+W7P/6FjTOcf/SpwyGT8klX38Lp+W1vAW8Bb4EDxQIecg6zJMIDUQxkpgOcDGQyAA5UckENBnIAKXyxxU1RC9TQaUEZVAfKuAAneSmUAdq4AGFYP3rQz2BsNADYFMqgPw7K6EAUUCZuilr0qweqQgGXfgAV+vkyjtMfBZwAWvKNBgAP+rkO1U95hUN4IE31Y9toYFBapwVFf5wHrcJqzkd/poAzTr8CZvSTFhrDAf1hD844QKv6AWh0KuMAbVg/gI0yjwbsHwWcLkCL/RUwU9boj3ZM0Z8p4NSBQNVPOUSDAkLywf4u/dRFADOQXAGnC9ByL6Gf+HGwnXsJ/ekAJ3UwrJ+2wAVow/rTAc6wfq41GlQ/5YV+F2AOtwW+LTNPKJu2mDLXtgB4GQ2+LUtahLoVfVjDt2Vmmj3zPZMKcIbbAtpi35Yl22LfllXbfqLvlw1si9+r/bJNm7dJq+mfumamyLRflmxx/dZoW6Bux1YDo+vN9I19MsmAzppxE2TpMafKEw/fO6j/Olwte7qD9T67DbxkWkQ8jFKF2zd8TxrMmnME9S5aODYYGP3Nxu/b6Q7Z/7H5X7VT4IYh55qmZ+1xvJ1eNdtt3c3WuykvJ89MlTvw95BLQ09z8HsIewAne5oGT3VbOHmm9Bkvr+aHf2uT6Lmv3qzF9ykpXbhUopCTCA133WKn9mS7c2swMFw84xDJLS6xsLL5kbs5ZPNynd9owAggsbe9VfDqw5Mx25AzcZ32N9fAwWErzvzD267l8fvtx71rXxTWxcSDsNtMd4zHHKHpwV/ba8VLbcJHv2iQizstG9nxD9hEqL/9RnvNbDc/HNiH7d4289vdsPF9XR18HLXysYln+A+PRLz9Oje9IU33/ypxVvHMuf1lvM6A4dfs/panHpSaC6+TssOWDoKcTKG669bvJs6PlnFcPRhqPokMhrGhENA0DrKvo91p/3TJ2jI251OX8Gzu3PymheSssQrM7evYa6F+4aQZUnXmpbYeEK/pbjOVchZDn6lD9tU21abKGryJ+yCUj41jvJiZopcwtBodJMQ0zpRvl3lggXu5g/rQXyeCGJn9py3ltdd4vFfl1A46qbO3XTa1viZ1HVvNAx7TZeOe9Xa7tjjwjNcTNrWulxfqH7YfxxmPywXmYZKpps3c2vaWZNrWalqu9rrVtLvmzjXrLgf3abo2X9OKvo8ZU2p34e3Y0LTbvsJw7YKzTrHHf//IU3aaUz4AEfFQPPqow+UPjz6dmDK2r88sxdXdI5u3Bt8t9sQh/ntzw2a558FH7VnHmPTHmZnmNJxs4J+p1vKru35np1Vd9eo6mTNjmkyfOkkqjWdkswF4v7779zZ6WWmJ1FRXyR+feM56IOLdCMQ96Zil9vjNt94pGzZvlRdXr5V//0fjZR8Bdpqn631MWanNb1dDo/zyzmBa4+qxVRZUhuMDgLmeuXNmBbsdeby89jVZveZ1e+7L5v3ZF162kHOc0Z5JePCxpy3kPNWUh05ze8jsmdaztLEpeDACj1teTBELxH5+1auy9MjDZEJtTSZZZBwnk/JJV98yzsxH9BbwFvAWeBct4CHnMIwdhQIMXDAYFQ0KNRRwMpDpghphwMngMPGigUH1KOB0DQQCqIBiDDzHAaqwfgWcLv0AKgZiVX8coAWwAQWASuh3QQEGctRTg8HcOECLftJCI/pdgFD1Yw/0x3mgKuDkHcCTSj82A2owKB03kKYetAA24gAdowFAhX46X3H6hwIFFNCqfhegDQPOVPoV0KKfMuI9GtCvgBlo6QKEqh+wQX2O89qi3qCfskc/abkAbSaAk3sJ/ehTwJlKP9eFfso8GhRwhvVTVtGAfuoF8RWWxgHaTAAn+qnf1Bvs74Ia4bYglX7upTDgdOnXtkD1p7qX0Ebd8m2Zb8v0PvBtmVoimDrat2WBPbQt9m1Z4IHq+2VBvfD9smR7EX3wjL5KT3fHoEE5BZx87xMnVb/M5QGazNFvZdMCr6x6NpHcti0b5KijT5Yas05eeeVYadndKLNnz7b90UQks0F/7PDDDx/Ur1u1apXzwdbwuem28fRRwBmOyxqd7T1tA9ZzqzcgdFLpDFPXzPSp/YHze/rXfOvu7bRrz3EIT9Le3sEPx+l5mb7nlpRZD70u44WmgXU0gTB5Zi3EaLCgtGHww5P5BiYTmKI0VQD4AEUIrIFIyDG/EfZH6DKeiBpUS25hsL5dfsVY6wmk+4nX29RgIaiek8l7nvF2s/bsv+ZMzgnHyVb5hNNMt22n1jWRwvbhnPz+aXXxFOQVDnlmfdZowNM3LqSqB0PNJy6Pd2s/ZWxuWuMN+uFBWbKeK16u0KLGu38qtVd+UnLMPcdasX2d7YPiv1d2tK1+xnr6Mh029bvjrTXS+sITg9b5Hen16NqaTPnda16EbrOmMet1hgMwU8M2sw3kZA1k9qdra+0auv0nx7XXmvZI3//w2DNy2PxD5GPXXm76DV12PU6mOAV4EsbVmHbHBDwqo2HS+MEQOBpnqJ+BrRrqG3dLbU3yPi4160zCCZmKNRqmm+ljXzGQ87D5B8tVl5xn1w4NxykxYzCEyspyC0oBnBp2m/PGVlbox7TvUycF3y2bt+1IxF2z/o1BkDNxMMVGV1d3Yrpc+m3t/WNprEuaSQDsMvXsQWaNUgLTx+LBCsjUwNS4n73+GgtmdR/vjOdkM2RSPunqWzb1+LS8BbwFvAWyZYHstpbZUnUAp8PgBT9m00EBwBqDXzoQGOepoYBKAeFIACeD0sAWvgSBHgCeKJTRgSir3yxuDdyMA5zEAfQAqBh8cQHasH4AG/GiQQEnMEsBpwvQop+BZCBaHOBBP3AqHeBEN/oVcGJXlwetAjbslAoQkh/XSocmDtCiHyiGxnSAEEiFHgauXF5P6Kcs0Y+t0ukHHlKOroEw10CaC9Ay0Ib9qeNocgFCBZzopz4AxbjWaFD9DIirfhegVfsrYHbpJw3sj33Rjf0ph2hAP/bPRH8YcLr0c99if2zHvYT9XYCWtiBTwKn64wYy9V7iulI97KCAk3sJe8UBTsoyVVvg27KBNUjtr22Bb8t8W0YN8W1Z8j5RwOnbsswBJ7by/bKgDv259svoQ48pCwbs9G4aar/MtY65puXfR9cCO97ZYiFnWdkYCznpy0Z/D9E/pE8f3R/9DTYcpS1dg2eW0XTox6ULaOAvCLwH25mcmy7t8PEwWA3vj26zxmDKkOaa9hk7DwohqKvH9PqyUQaaZvR9X093YlfSxsGu6Ge7N1JcaAvvYi3KaHCmE42UwedslY/alSzjbLt3zUopmjrHTrnateVtOx1pIDGoewA61jMdECKzLHGMaUzjQup6MLR84vLQ/Zlcs8Yd7ntPY53xcP7JoNMV6HOgcPIMC0PZxluVNVmHFEx9i4Yc8zt3n2NWpGi8bH/G8xnvZoA4002zFmjRrHl2et5s5pW8f0LX7rJD6E5Ub2t9R0+4DqTSl6q9TnVepse2vrNDvvy1b8nZp55gAeEhc2bK333uevnSv/yn8coM2iPuy698/duDkhzOWpaDEons6DBrbGpwtQcAvW9+/2aNknhnmlymzAVw8n73Aw/L6rWv23GLv/30h5P27i827K/ph8slkWCKjT5XeZuxuuEENKgOK02rVbghT5Pwcy+tljNPOd5Mw3uIHL98iY39xyeSD1ddd8VFFnA++tTz8oLxXAVg/8MXPmFskibh0GEdswrXWzxDoyFV+RA3k/oWTdN/9hbwFvAW2N8W8JBzCCXAFwVwJBPASRxACYMbQBmX15YCHiTEAUIgBYBHASFQIw4Q6kAa0CYOymQCCAFrCjjJK5V+oBJf9gA24kVDGHACpuL0A6jQD0RTb1DtRGiawEMAjwLCOA/O8EAaKMYX2QAAQABJREFU+uMALYAKEKSALU5/JoBT9aMxDlApoA0DQuJGQ3RQHf0uQBvWHwc4FRCiD0CI/V2AE8CD/dFIXaT+RANlg3YFhNjfpZ96T/0hbwBcKv3kif1Ji1c0RPVTRnH6FdBmop/7kfwyAZzojwJadIbbAuwfpx9bMNCtbYEL0GJ/9BPi9NMWYH/KPRXgJC/yJD7Xh37t7NoMzD/flqklgnfaV9+WBbbwbVmybvi2LGmLMOD0bZnvl2nN8P0ytUTwPlr9soG5+E/vpgXGjZ9os2vfG8z4sWnTJuEVDvPmzZM1a9Y4HzoLx8vmdmtPs13/rdB4ZLJmJ6HWTLPYY7yUwp5FWctzX59ZL7NkUHJ2bU7zOzC8XmKe8WLMMeufDWVdwu76wMuGdRg7N74+KJ+h7PjIB74sE8cHU2n+x/e/IO0dg2drGUp6w4nba6b5LaiZYKfS1WvLqxo43SCQ1Hp89mdQzJqdkdDX1ip55ZXW9qk89/CcNT/iJMesn8o0oBqyVT6a3hc/9W3zWz3f/A7pkH/77ud094D31heflLZVT1uvw7HnXiW7fvbf1kNPwSZ2GTKgG5BD6g9DzQcb5ZW5PcOqx06QT3zwn2yGm7e9KT+57d9TZ57iaFw+vWaq57zyKjsdtLl5nSng6Vp50rl2+tges05w6cKjLCRkattMA17UBKZ3pk6ylivT4fZGIKetSyYea2aOJOzrNDNemevJj9R7TRMPzpYnHrCv6vOvkcJJ0+1as6pT470b71PK5siqhsdtVkztTWjqDDzFs9nW9u7rkVzzUEam04VbIZF/gMXf3PcH+8Jjk2lHly0+TJ549kVh/ctx1WOlsnyMvLNz8GxW4aQYZysuGvxgRTjOSLb3tndI+Zgy0/6aaZDN1LjRMNF4lhYWFsjLa14T1sMknHPaiQOiNe4233NjK2WWWYfz7U2BN2dlxdDq5bbtwcMS06dMSqS9YO6cxPa7vfHoUyvljJOPt1PxTp862ZZZu7GVhinG87RlT6tdg5R9rLOKnVyQmvImTJ40PjE9MZ+xOWGa8Zh9xkypS5g6OfBotR/Mv3Tlo/FS1TeN49+9BbwFvAUOJAt4yDmE0gAwALwUygA2okEBYRhwuqAGAyGACGADcMQF2FyA0+W1pZ4CAEWgE2m5oIbq12kpgSnRENafCnCiH0BFiAOcqh+Akw5wKpRBfxyUQT+vXuOBis1c+hVw8q76o09Wo1kBleoH/kUD9swEcI4xT3dXm+k5uF40YX8XoCUt8gVYot8FCFU/5UBZk1acfuxvAbPpADbtjtcfBpwMTkcD5YP9gZjox/7RoAOZqh97xQFC0grrdwFaypF46McWvKIhU8AJoCItNMbVRa4N+1NvsSf5pdJP3hzH/qn0p2oLolAAm7naAvQrYEa/y/4KmNGfCeAM63cBWm0LUukPtwWpoIZvy5I1l3uNukhb4NuypDe9b8sCb3Rti2lXXA9r+LYseS/pwxq+LRP7fUq7Qr9S+zWuB+d8vyxZf/7U+mXJK/Nbo2mB2vGTZeKU6YL3Zp+Z2nCi8ZyaMGmaaa/NmnjNg/vZo6klXdqvND4tJ026UC6Z9Ql5tu73sqB6ueTnFsj63S+kO3VYx3tbdluQyfqBTEPa19oiul4n62qyfmDV6RebNTjXSfnyU20ee1cHA9eZZAjYBAIVG2+uqtMvkraXnxHATuncw6Xx3v/JJIlEnKF4vCROCm0wxWteRVWwx/y2yDW/yQomBGv4WYBmHs5MF/a+8pwUz54vVWdcKnueeUhK5x9pAaSpWIlT8d4DOFUcd4Z0170j5ceuSBzTjdaVj0nlKedJzWUflbYXHrdwqvSwZXZNy/B6pbo2ZOWpF0j7ay+bqUw7TJrBFMLZKB/Vk+l7r6kfzY/ea7VXrbjYrs1py9jcS9QPgG+78eYDpJUuWGKmK10n7a+vzjT5lPGGmg92LDvyWKkw9qdud9fvFNajJACkshXi8tEyHnfZ9QYOP2WnYS6cPkeKZxwsDXfeYutNjYGAPLzQaNbhBHaPN0CQ9Tl3/fz/2bVhM9HYXRd4z1accJa0vvSUjDHek66gUyyXH3O65OQX2DVB7ZS5/ZELag0sMvcFDzMQ8s103jlmPd0+8yBI2FMb2N5t6njRrLnWY5NjncazF4g59szLzHq8G6TLtB3c59wH7A97R/dnF/tGezeuKABXxXlm2mzjjTnRrLtJ2N01+GFteyDm38zyebJ8/BnmgZEOmVu1xD44srXtbRs7m21tsBbnYbJiyhWybvdK6TBrhu5s3xyjavDuKy9+nx07ef6lV+xvzcOMNyBh09Z37Ptv739Y5h88Rz7z0Wvk2RdX2zUsZ5n1LY9fvli+9+NbE9PaErnFjHMwveyl554hr7+9yR5TIGgTG+G/hx5/xk6b+/ef/1/yqFlfc/O27XL4oXNl7kGz5OvfvtGuDcoYy9yDZlqvxtlmvc7jlh05IFfgJ1O74t14/x+fsOuKMt4THWcbcFLkA16jeCwCf6++9DxhWt3lixdFYonNJ9+MF42rCdp+wGq5Wc+zqXmPc/xmUAIZ7gBW7qjbJZQLgTVTw2G7OTZl4gRbZuzH6zMuvLxmvbHFeRYOF5lxS9YVZerbrf1gd/FhhxpvzJ2yYN5BBmgPnFI3XfmQZ7r6FqfL7/cW8BbwFtifFvCQM0PrA0h4AQUYoHQBtqFCAb6kgS2kFw0KCBn0ZDCLOAxuRQODpugKA04X1CAOYAP9wJZ0+smLeK6BNEAX6QFoicMrGtDPoBwATaFMnH7ioR9NpIXGcCAf4pAv19bY1JgSEIYBZ5x+0iNd7OoCbBkDTnN92CIMOF36iRMGhC7AyQAm8dAPFMAWLsCpgAobESdOP9dI/VDAnApwoh/ARnrRjiP1lLQYQKUzis1SAcIw4IzTT3rkQ1rkGw0MbGOLTKEAEFABp0s/aaEfPVyjSz+D6sRDfyrASRxe5ENacfq5RtLE7sRzQQ00kZa2BcSLBq6NtGgLVH/cww7Ew3bUL9JyAVrV79uy4GEH7OHbMrFtNbbwbZlYmMS95NsyMz2aaU98Wxa0ytwb3CO+XxbMBkC98P2yoG6Mdr8s2i/wn0fHAn0GIkyeOtO+NIc9Bu69vPJJ4x038LeJHh/998EeMOT5SuMzMrl0lhxcebicM/1aK2Nn+xZ5bPtddts1TaPd159ctK9sT0rxr+Wx+yywG3PUiTYW4Kzp3l/Y7eaH7xY8scJrLe591Qzgb3xtcIruy7HxGu66RarPvtJOX8kUloQwXEFzjnmlCxlESZkEXnJjFicHlvOrx0vNhdfZcxrNlKKJtSYd3knmx4GN17Vjq7StflbKFi0XIB/7AX92/cX+3Fuff1QARqULl9o9AGLAaDgA/vDkBC5XnHhOcMjUxfZ1AwfG8ZxkOtPi2fNsOQCMdt70DRs/W+UT1uXeTlQuexjt1IkiA+vw0GW91YY7b7ZlDPTlRcBzcO8aB5yPuecyqQdDyYdyskDdlAMAGU/U1ucfCbQlpnq2H9P8S1034/IJl3HlKecn8qAOEQDXwOCmB26zDwKwr/Hun8m4yz8m1eddnfEUr9yPnZvekKLpB1nIiCel9fQlwVBgmuD29auk5JBFQd01x3b9/Nu2/hLN3gtmbEBD1WkX2c2epl1S/6sbdLd9bzGgu+L4s6T86NPs54Y7brJTFWPvipDnMt6stDF6/wxIJObD2MLxcunsTw44qp/VKzPZDhItvnzw2lxaG2js3dcr926+ORE/XVtLyskQnwdxXqx/RKYar9E5lYfJQZWLLEy9Yd1Xkqen2WLK0cMXzJVlRx5mY/I7/6nnXpIt/etN1tU3yC/uuEcuv+BsOeHoJfZFRNbv7DZxw+HWO38n173/QjnWgEVeTE36ze/fEo4Su61jXa6pYPWkRwygHDe2So5ZeqRccFbw4AvHdu5KAujfP/qUnHnycRZicgxvzVnTp9oxFj6vM2t+vvDyGlly+AK59LwzbPUAWrKe5FDCjT/7tV3ncvGi4HulsSnwENXrIK2PX3eFHQ/QdC9+X/DQSVNzi3z7hz+zu2l79LuTc3V7n+u7QBNyvD9pyiy4nn2DIOddv3tIPnTlxaL5Ay55MR4UDeR/1/1/lBUnHSvnGa9ePgM58Qx9/JkXLDS+7Pwzzfhpn/EYbZDx45KzCWRSPunqW1SP/+wt4C3gLXAgWCBn2rRpqb+NDwSVB4CGWbNmWRV4WcUBQga/FGoAb1xeWwwIMRjCFxUQAkClX5B6mRzDswvAA9QgrThASJ7poAZpAVPIB/0uwBYGtAo40+lHlwuwMRDI4Fc6/QBQbIF+BZwuQKv6Fcq49AMGsUU6Twfy4wVUSqWfPClLBcxxgJA8AaKALmwR1Q88IS0GRdGP/V2ATT04w4DTBWjD+knLBdjQo4PSqfSjifRUP/Ux3NmjPob1W8BsytylPwxoOU5aLsCJvciTdNPpzwRwkh71DdvziuqnnLE/dQ395BkHCElLAWc6/diGtFxtwVCgALZQ/eQZbQvC+hUwp9OfCnDqoHQq/dgAW/i2LFh3z7dl1JaBbYFvy8TeI74tC+oG/QvflgW24HuL9tP3y4L1bLHFn3u/bE9ru4ytCmZsSNevjOuX0T+gr8DvA97pG/CiL8VrOGHGjBn2tOjUq+nSop/Ci+8BXvRN6F/xTnm/1wN2LSktM/bNk472vaYvG0zxmOq63v/+98s999zj7F9Gz1t4dL+HYPTAMD/jzVRjvJmajedSR+/gh2GHmeywTrMekAbI4QmmU14OJ6HcwmIDncYK4KNvb+twkjhgzmGdTabrtOtLmvvFFYCY+4x3T5+ZAjZVsNN+mjbAem3GpJXq/GyVT6o8Mj1my7iq2kI2YNtohXcrn2zpp4zxnsRLerSmbcUmOea33mjaPRN75BrvT2AnUzv3dQyeaSqTNEYaZ3b5AvuQyG833SR15iGR8oIqqe/cYb7jBt+rB0pbW2TGzaaY6UmZRjTVlLR4Lo6tqrDToTa37BmpqYZ9Pn0UpmAtMlOubttRZ3VHE5ttvBq5lvAan+E4xcVFMm3yRANBt1hgFz42lG2mb21v7zTenIMfKh9KOu9G3MkTas0UtcbRxczYNtyQn58nk0w6CsFd6aQrn0zrmyttv89bwFvgz9cCb61vkpkHGe6VP7zfqVhu7pqGYRnQQ84MzQbkZJ1CF2BjMAuQwkBOqmkdBwBO8+W6u3kw4OTHNWvzqQdkJoAT0ALgYYAhGtBFvjoo7dI/VMCJRgZcAGxRKMMADPoZ6AOwAYLSAcJU+kmLAVT0Y38XYBsqIOTLHLu6ACGDR9gM/UBe4qXTHwc4KQvVr4BtJPoZPKIs0+knTwbS0I/9XR6EDKSRngI2rgGN0cA6hcSlbsUBQuo9ICgbgBDgiv3Rj27sn4l+F+DETtginX7ywhbp9IcBYaZtAfeJS38YCui9RB0Ph3BbADDG/q6HHdCPtkwG1ak/3LOZ6sf+6R52aPJtma0/1F3flgVT1KZ7WMO3Zck7PdoW+7bMt2XUDt8vS94j7/V+WdveTpk1c5rt1w+3X+YhZ7I+HIhbU6dOlR07djh/h0X1ZhtyRtP3n+MtUHnS+6yXaHyMwENO13RMFc8f8xY4UCzg6/XwSyIMOTe3OjzPh5/0e/LMyopy+fLnrk+pHVD5rRt+mjLOu3XwK1/4uIwxU8rGhR4ztvV3//pfcYeztv+9ZresXbhPyFvAW8BbIMYC+xNy+ulqYwolunvXrl1OwKaAk0HddIATwAAEBBwwGB4FhEANoBLQQqGGC7AN8BQwT2bFAU4FPFxLHCDUgTTVz0CKC2rgpQGYUf0uwKlQJhP9pJcJFGAAWKGMCxCqft7VAzXOAxL7oxFYhP2jgWtTwJbKAxIAzSC9ekBi/zhASFwFtC4PvEwBLflhf/RTli79DARS5kDHdANpYa+bOMA5fvx4C3sVkLv0hwEnx6k/Lg9OIBz6AY/cSy7YrgOZqj8V4Azrd0EBypZ7iXuFssFmLkBIXpkCznT6FdBSpgpoXfcS6aj+OMCpgBb9Cphd+hXQZgI4uZcIvi3zbZmtCOafb8vUEoOnqPVtWY2dOt23Zb5flrxLgge3fL8ssEim/bLS0jxzL2WnXxYuC7994Fhg69ZgWskDR5FX4rJA185tklMwcF2yaLw+s2akD94C7yUL+Ho9/NLqk8EPeA8/tff+mV3moeqNW4L1PeOuhmltD5Tw1sYtAmCMC9EpeuPijXT/e81uI71ef763gLeAt8CBbAHvyTmC0gFqAFIUEKb0eqrEVTcJOKNeW0CNCRMmWMAJ1ABEuABn2GsrndcQA1Gku3PnTucUSoARoJjqB/6lAoRAQOIAqKL6gW9AMQWc6Hd5sAFtAF7pACd2ZQA+lX7AJvoVcGL/TPTHAWbVTxpAMZf+TKEAaREXQIv9XYAKuwNV0a+A0KWfgTQFtOjC/lFATtmQJ9AulX7qhAJm4GAqwIl+yrmuri4j/dg/FeCkjqQCnJS5Ak6u0wUI0Y89AKJACMrSBZi5lxRwkqfL/uSF/bkPUk2xSxzyRT+2cMF26rMCZuoN94lLfyaAkyYprJ8807UF1AnsEefNrYA2lX7flgVfBr4tG/il6NuypD30YQ3flol9aCXdwxpYzrdlyfrDd4TvlwX2oO7og3/64Fm0XxNui1P1aw70ftmu+iYZX1udcmaKdP0yvt/p99DX4x3b8KKPzGs4wU9XOxyrjfwc78k5chv6FLwFvAW8BbwFvAW8BbwFvAW8BbwFDkwLeE/OA7NcUqoKA06FGi5AxSAOgxcMTACBgDJRQEhGEydOtIAHYAOIcAE2ACLAhbyBGuk8OBn4YPokF+BR/QA2AMpIACf5MJAJNFJA69I/HMAZp18BrerPBHDGAcKwfiAdUMwFqIYykMa1EtDvAlToVsBJ+cQBwqingAtwMtCF/YGmmehngCwV4NRBaQW0Lv3kxYAt5QCgjdMfhQIuQKiAljR1INNl/0wBJ/cS94oCWpf+4QJOlzcr9lRAiO6RAs6wfgC5615CP7bF/qkAJ2VEvaWOxz3soG0B9vdtmW/LbMPV/w/A6duywBi+LUvWjEwf1vBtWdJmYcAZ16/Rtlj7Nb5fFvQrM+nXYDse2qJv43rwaX+2Zb29DbLLPLjVbR6giwbtV6brl0XP85+9BbwFvAW8BbwFvAW8BbwFvAW8BbwFvAW8BbwFkhbw09UmbZHxFoMRDJgwEAXUAJ6NBHBOnjzZAiqgDINfLsATBZxxXlthD8hUA2mqH6iBfpcHXvRJe2CKC9BOmjTJ6mdgCZDi0h8FnOh3DUSF9W/fvt0JCAE76OcdgJWJfuIA2KKeAsAf1Q+gBTCn0k/ZZzKQRrrvvPOOE1Chm+vkHcDJQKbL/go4gYCA1zj9DCQr4MT+rrrIQBqD9OkG0gCc1DUC9ncBNur9cAFn1P4AWvSTJrqxv0t/GHAyiBnnwamD6uRD/XfpV0DLoKgC2jgPyLAHJ3Gj+ikbbKb6KSeX/kyhAHURgEk+2N9VFzmO/dFPnYhrCxRwYmPqhethB9+WDWz2tS3wbZnYNpZ227dlYttO7mHupbi22Ldlg+8l35YFNgn3a3y/LOnB+efSL2tra5WS4oJBHpdD6ZfxPe+Dt4C3gLeAt4C3gLeAt4C3gLeAt4C3gLeAt4C3gNsCHnK67RK7F6gBSAEwKJRxASoGRHUqrlQenABOAAlQAyjmAiQMFOL1B5AANJJeHCDUQWkG0lwebKQBlEE/AIUBW5d+tKt+IFwc4JwyZYqFdcBPoIxLvwJabAecSgU4VX8c4EQ3gJN3ABb6XYAqDGh1IM0FaLE/sBF7YjOXfjRhf9WfylOAa00HBbA/5aCA1qU/E8BJJVX9pJEOcKIfQBs3RS26qGvo37ZtmxOwYSvsj34FtC79AFUFhHFQgHzQT1lSB9HvqosKONGP7Xm5ypL7Ev0E7iUXIOReY8AZ/UBL6rZLP+XNACTgAvDqApwcA4qhn3qTSj/1kTyp+9jfpV8BG/qxv6suKqAlLQAnbYFLvwtwugCtb8uwdhB8W6aWCACnb8sCe/i2LFkvaIt9WxbYw/fLkvXC98uStmAr2i8L+usFAyIp4My0XzbgZP/BW8BbwFvAW8BbwFvAW8BbwFvAW8BbwFvAW8BbYIAFPOQcYI7UH4AaCmUAEEAxF2AAcAKpGLxIBziBFoQtW7Y4AQ/HFcoo1HABToUagCMFnC6ooVAGAASUcekHbqKf600HOBXQAmVcgIqBwNpxtXY9Up1W06U/7OkQBzgBOwpl0A98culnEJYX+gGc5Bu1BTafOnVqAtACxVz6GejHtpQlgJbydAEqwJ8C2jgPTgYC0c91ADjjAC22pwxUv8uDE/3Tpk2zgA17YjOX/jCgBa4B2Vz6AZwKNVIBzqh+V1mGp3WMA4Rqf2xCGaLfVZbhgcBMACf1f+vWrU5ACKBVwAygpW649AM4FdDG6ScfoBj6sXtcW0A62IP6kwngJN24toB7TQGzAto4/Qpouce51mj9920ZNTAZKEvflgX28G1Zsl74tixpC9+WJW3h+2VJW/h+WdIWbI1Wv2xgLv6Tt4C3gLeAt4C3gLeAt4C3gLeAt4C3gLeAt4C3QNgCHnKGrZFiG/gAFGNAB6gBlHEBBh0IBCIANeLW4ASWFhUFgHPz5s1OwMOgO1AGQALUAMq4ABUQjnzRGAc40cNAPvoV0Lr0K6AlvgLaKCDBTAoF2AbKuAAVA4EMmKMfUAcwdemPAk7XFKOkgc3QD+DkOl36gYMKOBXQuvQr4OQYUMyl3wJa4/VH3upB69KfCRRAN4CZd64PeObSj/Yw4IwDtDqQhh6gpEt/FNCOBHAC89CPLVLpVw9U6g8Q1+UBSZ2ZPn26tQU2QL/LFgBa6jZpAWjTeXBS/+MAZ1i/AmZXnmGvrTjAiX7sT1lid6C2Ky1AI8AU/WhP58GZCnACaAHM2B9oiW1ddZH8uIdJKw5wcsy3ZZRiEHxbppbIbIpa35Yl7cWWb8uS9lBvdN+Wif3u8v2yoG74flnyHhluvyyZgt/yFvAW8BbwFvAW8BbwFvAW8BbwFvAW8BbwFvjTtcDte/KGdXEecmZoNgYyAQwKZVyAgQEthRoAJcCGC7AB69SDMxXgZMAQQAIoioMamQBOLhEog36FMi79wBH0M0AJ4ATKuPSHocCmTZucgAdAC5RBP4AT/a60ooDTNcUuetBPWgBaALNLPwNpQCriAzgBzK48FXBiF/S70gJwApjJE9AIYHallQngJA3yVP0AWleeAE4gIfpTeaAq4EQ/9ceVFgNpaCNP7IA9XPoz8eCk3lDmpKWA2ZUn2rkG9FPecR6oCgXQAyB3pQXgpG6QJ/WQ+ujSTx2jrMgzDnACZVQ/9Qv458qTukMdIq1UgHPGjBn2XiIN8nSlBeBUQEs7QHvg0p8pFKDNwBYATrS58swEcFJnfFuGFYLg2zK1RGaAkzro27KkzXxblrSFb8uStvD9sqQtfL8saYts9suSqfotbwFvAW8BbwFvAW8BbwFvAW8BbwFvAW8BbwFvAQ85M6wDDO4CFoBKLlihUIPkgBqpACcAkBAHOPE6A2oQFGq48gRqhD0FiOsKs2bNsrsBtEAlV1oKaImogNaVFlAArzJCHODkuOpXQOvKk4FA7AZUAly6ACf5zJw5kzcLaPH6c6UFoAVSERTQ2g+RfwzQY1/Cxo0bnbAIAA08IwDq4gAnEC7dFLVcG1CMgAdwnH4GAoGEBAW09kPkn3oQsnvDhg1OWyigJQ6AdiSAk3rPQD4BwInXosv+wE1eBAW09kPknwI2dmN/V1o6EEgcnSLYFS8TwAmgxWYEPFABzK60sD1lQFBAaz9E/lGW2IQ0qP+utBTQciqAdiSAUwEtaSmgdeVJ3eceIABxue9cgXuJOunbssAb3bdlQS3xbVnybvFtWdIWvi1L2sL3y5K2YIvvEgIPzsX1a3y/zJrI/ivuf3CODyPtlyVT9Vt/KhYoyC2U0vxy6ejdK5297X8ql5X168gtHWPT7NvbmvW04xLMLSyWffx1dcZFyXh/TmGR5JpZnHr3NGd8znspYk5BoeSWlJnr2y3mB9IBLz1/bK3kmN+JhL7O9qyUS26xefDW1Jm+NrNUTm+PTXs08rEJ7+9/5vdwblGJ9HWY8adQeefk5kl+dW1CXW9rs4kzuu0abWh+boG097h//ybE+I2sWCCvoFjGjJ0qrU1bpbe7IytpZjORsqrJpkr2yd7mHcNOtqi0SorKqqVl19vDSqOodKzV0NU+8vY+1fVkM59hXegQT8rJyZWK2tnS09Uubbu3DfFsH91bwFvAWyC9BTzkTG+jRAygjCswEIjXHEG9zlzx1NOBY3GAE6ihUAaoAZRxBQCnQhmdltIVD8CpUAMo4wqARga5CQAZXq4AuNR161IBTkAiAeiKNlcAcCqU4RrjAOfs2bPt6QBabOYKAFrSIwA4AcyuoICWfjhl6fKG4/rCgBavOVfAXuRLANC6ptjlmAJmBgIBzK6AHShPAkCSOuQKCmjRHwc4AbTUM4J60LrSUg9UjgEuAZjRQL3RgUw8aBnIdAX11OAYgBMw6QpJryeRt992dxgBtAqY1YPWlZZ6oHIMXeiLBmCkAmYFtNE4fAZqKGAGcJKvK6gHJ5AR+7sCgBZtBPWgdcVTQMsx6oVrPVUArQJm6hf1zBXUg5Zj6oHqikdZKqD1bZlvy7SO+LZMLSH2O1UflvFtmW/LtGb4fplaInj3/bKkPTLpl1F/Jk6YaPviI+2XJXP2W6NpgarqcTJrzjypqKqWXkD+lg2y4c11sVnSv4pb+iL2JHOgMLdYLp71MRlXHDzYumHPWrl38y2pTtlvx4qmzZG+rg7p3un+LfBuCKs5/xqRvHzZ9fNvvxvZ2Txqr/60dNfvlMbf/mTEeVaefJ4UzzhYdvzwayNOK5pAwTgze9KYCunc+Hr00Lv2eczi46XsiGOk7qffkncTRA/3Amsu/bAA5Ajddduk4Tc32+3h/CucOFUqT7tI8kwZEJofvVfa16+y29nMxyY4yv/yyiqkcPJ06TB1aV/34N/Xmn3ZgqOk/NgVUn/r96SnuVF3S15VjdRc8uHE59aVj0nrC48nPo/GxjnTr5XJpbPke2u/PBrJZy3N2uIpMqagUmjr93eYvvBs6WrfLTveenrIUqbOO1WWXfQv8vxd/yAbX757yOeP9gln/K9fSWdbk9z37fOGndWxl39TaqYtkl9/9ahhpXHu538nexo2y++/f/mwzg+flOp6splPOM/R2D7x6u/K+FnLTH84V3q62+U3XztuNLLxaXoLeAv8mVvAQ84MK0Ac1ABwAjUAZvp0djRJYBFxAFDEAyoBvaKBgRCgBhAlDmqQFlADMEZaDMS6vLaAGQpLieeCGqSlgJY81essqot4QBkAIGnxQ961BiGeDgz4kFYcoCUtBpEBhKQFVHJ5oCqgIi3iuQAtaakHLXHQ7wKcxAP84bWl+nmPBq4PEEqecYCWtACS5EsaQCUXoEX/TDPoQVpxgJa01IOWtNDuApzEA7xiX+LFeRMroCVP6oQL0JIWQJhyJy0gtAvQhvUD4CjzaCAt9dQgLeC4C3ASD7sC7YjnKkvSBnBSTuiPGwgkLaAMMJG0AOQuQBvV7wK0pKUetKQFIHcBTuJRr0mTeK57Cf1o4j5BfxygJS0AM9dKWoDLOMAJVCWtOEBLWup1RloAcuwWDeieNnVa4mGHOP2+LUtazrdlSVuE7yXflvm2TGuGb8vUEmLbVt8vC+xBvfD9smTdoF+WbzwetF8zkn5ZMlW/NZoWqJ0wWRYvO1G6jeferrrtdv31iWbAPxXkXL58uf094/ptl0rr3KojLeB8bPtvZWvbm8aL03hEHaCh8rQLpbelSRruuOkAVTg6srrrd0j3LvdDhkPNkfZxtMKYo04UQPRoANTR0ry/06370TdEcs3vsms/P2IpZQbw5paUStMDt0lvc5Pgvaghm/lomqP5XjR9jlSceI703P4jA/jdD9uTPx7JvS27zcMPAx+U7mmsk50/+rqxh3mI/gOfHE2pibTrO7ZLXs6BP6y5bPwKmTFmrnx37ZcS2vfXxpLz/l469uyS3/2/C/eXhAM73xE21wDO3TtH/6GTdyufkRbWmOppMmH20VK38XlZ88j3pbtz8JjVSPPw53sLeAt4C2CBA783cICWEz9UdFpQHbwAMkQDA8QKZRggBsq4vM7CgBOo4fLaIs9MoIauocg7ebqgEmnptKDo12lBXfoVypAWulw/4oECQFXSApq5PFDJk4FAwBJQJg7QohuoRPxU+oEy2Fb1uzxQsb8CZtKKA8wAUAWcQEuXBypphQcy4wAt+hUwx3lwcm2ZDASSpwJm9APrsF00RAGtayCNtMKAOQ7Qol89CNEfBzgzAbTkqYAZ/aRFeUWDeqByTKc4jsYhrTBgjgO06FcPzpECWtJCP/Ub/S5vXMpSpzhGP6CRuh0N6A8D5jhAG9afCnBmAmhJC0Celx+0BS5vaPT7tixZWr4tS9qC+uPbssAevi1L1gvfliVtQfvp+2WBPbCF75cl64b2yzZtfsc8DLfXQrDk0WCLeymTfln0PP959Cwwf+ES8ztmrzz58O/M751umxF1O5uBaRXNRI8yp+Iw6d3XI+t3r7TJ95jtcCAeoaevW8rMdLZVRbWys32L/azxivJKDCidJLs7d0lbT3ImklzjKZGfU2A9JsYW1soOc15JfqkU5xkQY+JmGpiClGBtYOqrfjY/RhLTcWpaeeWVkldeZaGgywMsJ5/rMVO/mt8WTD2bX1kdxO23s6Zjj40dZ6Fq3NSu+eZ4X2fH6HkMUubm1XjPzwdMxakarR3M7wKmRCyonSw9jTvtdelxfWc6T6bu7K57R3cl3tWLcF9fb3Kf8VQlTew7IBjbF9SYmWKM52FPg1l6o/9h6RzzgLRxRzT7zcuERPmY7WgZZKt8bEYZ/lN9Ti1jKi1Eix4jaa7DTvdq7GCnezW/w9SGNk3JMTboNsdS1wN7zTH5WLtjZsfv0gwvL2HvwonTTLnUSde2jfbU8DVlmk+OKfuC2onSZ74vwp6Rtp6Y/ng4TTKxZe24D60A1z/uX/PSumOjsA9bUgfZNhrwliaQvtanaN7E7dj8hn0NqqvmXPKgfNKF3OJSya8Zn/JeT51GjuHUOfL0zt8Nigb0pN0qzTNtjZnOtrFzp1QVjpPOvg4zrW0AWPAoKzDtZPe+bhOvTCoKq00bu1X69iXvSU04rq3V46naa23z87hXTSjMLbLvTIXd3RfvLWsjRf6huXbGEunc2yTNdW+aogjaDNtu9MclTvWUhZJfWCK7Nr5giij53VJQxFJRQblTtwqLA+/j3t6uYU09W1o5USrHHyR1G54zMx8MvhamUx03/QjZveP1QdOT5uUH3y/h85gKl3sfzbZ8jF6AGNdSM3VRrOcpU6CWlNcaHc9HLJb8mNTymtEyuE0uLqsxdlsgO821DDdY2xr7/uGGDwRteSihbF5PqnxCWdryHTdjsfXabdiyepAm7D1+5lHSvqfelNH68KmJbeJMPOhYA8XrpXHbq4PSSER0bFDGefnFMnvJJfbousdvlJa6twbUyWzWAzJhet+xk+ZLS/2GYU837LgUv8tbwFvgPWIBDzmHUVB0mIAC6by2GCBWqAEgAcq4vM6Sg+rJdQ+jshgICUMNgKrL6wxYCpThPRVg02k1AWZxHqjoV0BLWuh3Adqk/ngPVPTrQCC2iPM6Q7eFMiZvAFUcVGIgDfiK/jhAi34FtOgHKrm85gCc6TxQ0a+AFv1xgBb9wFLip9IP4MS26I/zoFX9ADT0xwFmHUgDsMV5oKKHgTQ8L9EfB2jRr4A5lX4AJ3Ub/Xigujxo0Q9gRh/6AczkHQ1cH2WugDMO0AI4yVf1uzxo0a9QhroaB2h1imD0A8ddHrTo5x6nfqDfBZhpC8KANs4DFftjL8od/Vyjy4MW/QqY4wAnaYU9aPFAdXnQkhb6uT/R7wLMvi0bWBt9W5a0B/XHt2WBPXxblqwXvi0baAvfLwvswXeJ75cl60a4X0Zfiu98bBQOQ+mXhc/z26NngTHlFVJSWiZrXn7e9Ju6Tf+p0PTlu2z/NJu5XjHnc3awXdO8fv4/2823W16V+7b8VHfLBw/+krT3thqo2SPjS6bY/UBRpmRkgPPsqVfJ7IqFifj1He/IHRt/IF29HXJo1VI5efLFZrC+z0CAXGnpbpLygioLNNYZqPrQttsS56XamHDdFxIADcg24UN/baN3bd0gjff+j90GStZc8EHJq6hKJMVUnUzZGQ61V33KAJw2C0AKaoOlNRjM3nnj1200gNXYc65MTPnJzu6dW6XhzlsSyQC4xl/9GcktC5YM6dpmdNwT6EhEysIG1xlAWZGu7VsGTVfLcTw8A/BowIX5PdG66mlpff6RRO4VJ5wlpYcuCT6b32hceziMu/z6QdPvTvjI38redS9Jy2P3JaKWLz9Vyg4/2lCn/jbEpIXtAWrVxu5MVatBywcotfOmb9jd2SofzSPT95JDFknlKecNmAqWMq4+9yoLuTWd1hefHGA3wBrX0f7Gq3Z6X9YyJWhdGHfpRyXHrG1qflDF1oNM8tH8R/Ku9iaNgvGTE/dH8yP3SPtrL2ecdPkxp0vZouWJ+Ez3S71nfdMiM8Vx1RmXDKgXpQuWSMXxZ0nri08Y2z2aOC/VRoWZWrbUTDG74wf/mohWe8UnLOTd9YvvSLnxBi47Mjl9ZDXTQ/eHXT/7b+k164wSqIvlR5/Wf8QsVROZrjZxIMUG4Lr6fVcmyo+onVvekqb7bk1x1uBDF828XqaUzbYHtG3UWOdMv0amG69JIC4ByFldNIHHLOSP234ttIOzxswXprrd3VWfaJNpM+/Z/GPZ3Bp44aVrazW/VO31JbM+IbX905ITX9v8rr5OuWHdVzSJtO+Am1P+4scGGhXauHubt0tp5STZ8NKdsvLu4Htk9uKLZfE5X0pMxQzAfv63/yibVgft8QV/84j9/iCBsqopwmdC0/b18ocffsBuZ/rvsNM+I8Vjamx0ICvT12o+2O3kD95oAaemxxqMD914jQG0u+2ucz5zj3luo0Du+sYpGkUu/tJTsm39w/LUr74gUw89XY6+5P9a+FY1cZ6NwxqgL/3u67Jh1V32c0FRmaz42C8t2GIHwDS3fxpqG8H8A+SefN2NFsbqPgDxQzdenQCzx1z2DZk6X+u1gc8dw/M0vPjvnrbXRD7kEZ6uNlvXQ9qp8uE413zStd8XtRv7+gzIvusbp5r1MINZI5Zd+FWZseh9HLKhu2OP/PHHf5EAg7l5hXLWJ2+39UTjYN87/o/5PsowLLvwX2w5avSTrvmB3UTDb/7v8XY7G/WAhMZOPlROvOo7UlhSadPlH6Dzge9ekvjsN7wFvAX+9C3gIecQyzgMBQAkcV5bDIoCZRj0ATDEQQ0FbMjoNE+kAoKiQaEGkA1AApRxAU4G6IFKvAN4SAtwFA7ozxRwAmWIi/44QKv6ySduil30MxAI5EQ/UMY1rSa6gTIMrqM/borRTAbSSAP9wGgGmOIAbXggKm6KXfSjnWtAP4DWNUUw+gHMlH0qwJYJ4HTp5zqiIaw/DnCiB/2AMcoS/a4pgtEPbOR6U+kPA864KYLRD8QFAKIbwEze0ZAJ4EQ/dZ98SQPAHKcfKEMdBxC66g/XRjrcm5Ql+l2AE/0AcuyLfgAz8aMhE8CJfgAz5Y5+ALML0HIvoZ/AvZSqLSA99ACX4wAnbQFpop+0aK/CwbdlYWuYHwOhhx18W+bbMq0dvi1TS5ixWN+WJYzBdwnfqb5fxrh7ZoDT1a+hrxEN4X7Nn0K/rK2tVcaUmQH5UBhqv4x+gw+jb4ESA+sIYyoqZcX7LrMDpazJuWb1c7J92+asCbhr4w+lwHjyrJh6hR10/+Vb37Jpd/QOhGDsZFCegfDndz0k2/dulEPHLrNxF1UfawFnXfs2eabuflkwdrnxDF0oJ028QB7c9ksbh3/P7XpQppUdbEEAaUwomSrzqpZkDDnrf2UGJM2Acc1F11nIsfv3t9u0w8Cu6tTzLeBsf/0V6XhzjV2nr2TeERZadLw90DMEuAGAA850G3hYMv+IQKtpR6rPv1ZyDbxqf221tL38jPHSq5HS+YuD4/3/8fwCdgGRyhYfJ4VTZknxnEOl4621A+KN9EPDHT82kDPfQMRrTVIDf0tr2oDavWtfMOtgviGVJ58rY4yetpefln1m+s7CKTMt4GTq0pYnHzDbi6Vo5iGDPTQ1sZh37Mg6l0wL2rryUbs+aNkRRyc87Hbff5sAAStOOFsKJ0yR+l/faFPaF/Koykr5xOiL2831oqnrnU2BNywRtYyN3j3PPSLdO7YYWHaqtRvxANbhUHLwQjv1a9szD9kpUYGIGlLWgyHmo2kO593eHwai1VzyIenZ3SDNDwXgJTxdbbp0bRkbwMm6oHuefdh4c06S8mWnGOB/hdT/8vvSsWG9tL++2twLR0rnhtes12PFcWdKd8POjAFnOg0cb1v1jAHLa8z9NF/GLDlBdj94h/Q01dtTe0OAvn3dKluuJXMXWWjqvjtS58j9AnwHanIdheOnWI/O1GcNPvoH09aV5I+R0yZfKpXGSzMaAJx3b7pJzph6pW1LgZenTb5Mjqg5wUJOjV9RUG28Qe83bW2HHD/xXDl72jXyAwsf90mmbS1pxbXX926+2a7BfPLki2RiyQy59a3/slkP1YvzuCv+0wDOArsO5m4DJRet+Kxegn3Hm3HJuX9vPB/bZM3D3zW//Xtk0emfkaUX/JPsePMp6/35hx9ebZr0fAsgWZPzqV/9lT23vaVuQFqZfCgqGytvPnerdLQ1yqEnXS9Hnf8PsmXNgxamLTj54xZwtjZukVcf/o4ctPT95vORZi3Pf5XHf/7JTJJPxKmccIisf/Jmq3/R6Z+VRWd8PgE5l5z7vy3grN+ySt56/jY5/Iy/TIBXTeD4K79lAec7rz0ib668TeYsuVSmzDtFlhrI98yv/1amzD/VAs6O1gZ5+fffNFovN+txHj4kj0XN6+GbP2yWKSiRE67+ju4a9D7S6yHBdPlwzQDO3TteM9PDfs9eyxFn/pXp1wTD//OO+wsLOPc0bJRXHvq2vd5Djr5aTrz6e3LPf55pNR9x5hcs4KSMX3/251JeM0MOOur9g64n1Y6X7v83ee3pn8jBy68U1oF97jd/L3saNw/LaziV3SxUv/YG6/G7/Y3HZe1jP5QqU29mm7L2wVvAW+DPywIecg6xvNWDMxXgZCAHCAGMAzAAZVxeWwzkqAdbqkF19doCkMRBDQAVUIZ3AA9QyQU1MgGcqp+46GdwxeWBGtafaiBKPR3QHwdoAQzoJ2/yAiq5AK0CTgAPoBRgGg2kAcSirBhAQ/9wB9IYiFJAi/44QIt+oBLx0e8CVAwEKuBEP6DaNcUu+hXQohtA7tKvgJByxv6A3GiIDqSh3wVo0Q9gZuA2Tj/H0I829APXXPqpg8RBn+qnHkUD5QMURj/QkuuMBvQr4CQN9LsAJ/pJa6iA0+WBin4ALfUb/diVso+GsP64KXbRr4AT/QBmF+AkL/QTUgFOAC3poScO0GpbgE3QT1tAeUVDpm0Z9vdtGY4MSW9635b5tix8P4XbAt+W+bZM64a2xbzzver7Zb5fRt0YTr9M65R/H10LFBWX2AxmzDpENm14XVpbmmXO3AWyaPGx0rzb9D8NsJ49e7bth4WV8Dvt8MMPH9RXX7VqlbP/uKc78GLp7uu00yLiYZQq3L7he9Jg1pwjqHfRwrGBJ8VvNpq1rcx0h+z/2Pyv2ilww5BzTdOz9jjeTq+a7bbuZuvdlJdjljFwTMkY1aHTZu4zfXXgZE/TYOBeOHmm9Bkvr+aHf2tP77mv3qzF9ykpXbhUopCTCA133WKn9mS7c+vbvBmPvUMk19gfWNn8yN12H3m5zm80YASQ2NveKnj14cmYbciZuE77gGC/B6VVlfyHt13L4/fbHXvXviisi4kHYffObRb+cKDpwV/ba8VLbcJHv5jwKkumknoL2ESov/1Ge81sNz8c2Ift3rYWQ6cMhu3q4OOolY9NPMN/eCTi7de56Q1puv9XibOKZ87tL+N1Bgy/Zve3PPWg1Fx4nZQdtnQQ5MQDbdet302cHy3juHow1HwSGQxjQyGgGbSQfR3tTvunS9aWsTmfuoRnc+fmNy0kZ41VYG6fmT4bqF84aYZUnXmprQfEa7rbTKWcxdBn6pB9tU21qbIGb+I+COVj4xgvZqboJbjvjtAJjk2mcaZ8u8wDC9zLHdSH/jrhiB67i7aU117j8V6VUzsoXmdvu2xqfU3qOraaBzymy8Y96+12bXHwULGesKl1vbxQ/7D9OM54XC4wD5NMNW3m1ra3JNO2VtNytdetpt01d65Zdzm4T9O1+ZpW+J2pVkvKx0urAUR4TBLKxk4x8CjpfXn4ir+0+9c+doPUb33Zbr+18tcy99gPGthzsax7/EeJKUn3mfYfr0imHx1uaHpnrQCxCFUTDjYeeytk2oIV1ptz5hHn2f1/+OFVdrrZLWt+L5d8+Rk7Nao9MIR/TLn7ykP/bc/AU7W8Znri7EkHH2/r0sM//pDdh7foqR+6OXGcqVYBll3tzbLWTJVKWP/kj836kMuEcwmHLL/avj99218LsHTzq7+TS//+eftghj0whH8JezLteEwYyfVokqnywdOXa8Yz88EbrtRTZPsbTyS25x57rdneZzyAv2q8WTtlrymf2umL7TTH1LP2PXVSVFZt479joGFb0zb7ApYPJXS0mnFw82o3678SmsyUuC27gu/9oaRD3FR2m3nE+QZwltrpip/4RQD/sdHbL94x1Gx8fG8Bb4H3uAU85BxCATLQD8gCvsV5cAKogALAoFRQAwAEVALKAD2AetGgngLWa6sn3msLmKFQhoE0oEwUapDPUAAn+gEkQBkXoA3rZ1CXwbtoYCBHPR2AAgAllwcq+gGcvJMX+l2AVgEnx7A/2qKBwUQFzOgHMGOTaEC/QiX0xwHCMOAE6Lk8UAFU2J+80Y8tXIBWASf6sYML0JIGgJayQn8coNVBdfJJBzi5BuwfB2jRr4AZ/XGAOVPAqYAZu2eiPxUUUA9UBZwuQIt+Bcwd7Ub/Dve9FPXgjAOcCmhVP3lHA+XD/Yv94wAnbQH6yVfbAq41GqiL6Od+T9UWRPW7PFC5h9CPTdAPOKbso2EobVlYvwvQhtuCVPr1YY1e35ZZaMw959sysQ+j0Bb7tkzsfevbsqC18m1ZstXmu0QflvH9soEPnv259MuStcFvjaYF8Nok7Nr5jqx/9UW73WUG/o9ceoJMmDRNNry5zv6+ivYL+S6nrxXdH/0tYBMc4j8ApgLO8Kms0dne0zZgPbd6A0Inlc4wvy1zE1E5v8e8CN29nXbtObbxJO3tHdwn5dhQQm5JmR0I7jJeaBpYRxMIk2fWQowGC0obBj/UmD/OrDdpAlOUpgoAH6AIgTUQCTmm77s/QpfxRNSgWnILA6/t/IqxdhpQ3U+83qYGC0H1nEze84y3m7Vn/zVnck44TrbKJ5xmum07ta6JFLYP5+T3T6uLpyCvcMgz67NGA56+cSFVPRhqPnF5vFv7KWO8XGsu+fCgLFnPFS9X00mWxrt/KrVXflJyzD3HWrF9ne2D4r9XdrStfsZ6+jIdNvW746010vrCE8E6rFm8CF1bkym/e82L0G3WOGa9znAAZmrYZraBnKyBzP50bW14Lcy49lrTHsn72MnBPVO/JYCXpIXHWhhyjqkOwPPhKz4/KCvWzcx22LXphUSSO99+1kJOzYfpUnu6zHeUWU9TQ6sBZRXjZtnvqLDd9Hjc+/Y3Hkscamvaaj0KdQdrde4NeaE2bF1tDiX9i2umHGajMoXp6R/5mZ7W/x7EK6kYb88BcGrY27LTTAU8UT9m9X0k15OJkLGTF9houza/FBu9oLjcHMuRU6770aA4rEu6bX2drH/iJuvxyhSwlGXD1lflhXv/xcLOQSe9CztS2a26/5o3rb7nXVDis/AW8BY4kC0w8Bv+QFa6n7WFoQCACngWDQo4gQIMRMV5nQGoGOAGasQBwjDg5IczQMM1LSUwA6jEO4AKqBQHNXRQHf1xgFABrQ6kuaAG+hXKpNNPeuiJ80BFN1BGASdQJgposXMYcGKHOECoXmeqH5tEg+oH/AKoMgWcLkCLfgAn+rEV+hnsCAfyCQPOVPoZyASgAagoI96jQWE1+9Ef5wGpU+wy6BI3EAigwv7AVfRji+igDPqp08RL5cGJDcL6uUcoh2gIA0KgMXU2GriXgLO8rP7GJqcHKvqxP/HT6ec+QT/3kgtwoj8TQJup/iigjQOc3Jc8EMBxV12kLQgDTrTHAU70YxNtC6IDbtjZt2XJ2qZtQSZtsW/LGIPxbVmy9ohtq/VhB9+WFdt+jW/LAljt+2XBnULfwvfLAluoB2eiXxPz4JyrXxZud/z26FmAZUMIjfVJz8rdBkwRiktK7fumTZuEVzjMmzdP1qxZ4+ynhuMNZ7ula/CMNZoO38npAn16/oLAe7Cdybnp0g4fD4PV8P7oNmsMpgxprmlfP4gekEYI6up+vb7obxo9no33fWbdVg1JGwd7op/t3khxoS28i7Uoo8GZTjRSBp+zVT5qV7KMs+3eNSulaOocO+Vq15a37XSkgcSg7gHoWM90QHDMOMM0pnEhdT0YWj5xeej+TK5Z4w73vaexzng4/2TQ6Qr0OVA4eYaFoWzjrcqarEMKpr5FQ475jt7n+K0ejZftz3g+490MEGe6adYCLZo1z07Pm828kvdP6NpddgjdibqGp76jJ1wHUulL1V6nOi+TY3397Q1ToWrIC23rPuDh3f9xun5MvA93jclEAq4NR3s9EF6GW7jBCUTbEMCoKzD9roaB6ce3Q9H4m1+5T1Y98O+6274zQ0EQgvpBO6npZ1rmAxLM8MNIriezLPR6UtufNV3xtI0GXTO1afs6uevfTpaFp3xCJpvpfSfMXi5nf+ouu5YmXsDZClmpB4m+TfIhr2zp8+l4C3gLvLcs4FuBDMsLEEEDnA3ACZRhsCMOsLkApwtqANiASgyIAHiARS6oAWAL648DnEAZ4iqgJc1oAPCgH43od3lwcoxBnEyggA4Eqn4XoAXwKKBNBQjJD/0KCOP0kxYaGZR2QSXKBv3YAz0AQhfg1IEoBZzY3wVo0Y/NgJ+UYxygpSwBUKrfBWgV9tLxQn8mgBMoRtxoCOsHsMUBWgWc6Mf+2CMasAH2p36gP86DVgEb52cMBRgINFOERQOASgGtAkIXYMaDkHqWDnBif9LE7nGAVvXz+4g6EQdoFXDqvcS9Eg3kpYBWYXW0k6dtgeqPA5y0BcQJ68+kLRjpwxq+LQtKVe3Pu2/Lkt70vi2LPKzh27JEW+zbMt8v0+9E+g2+XxZYI5N+mdrNv2ffAq3Go4hQVT0ukXhFpfHIM6HTTEV5IIXWnmYpzis167wVJWTVmmkWe4yXkg7SJg5kY8MMnDPFZDTYtTlNpzi8XmKe8WLMMWu+DWVdwu76YEYg1mEcafjIB74sX/7s9+yrpNh4mu6H0Nts4LT5rcZUuhryqmp0074DSa0XX//eYtbsjIQ+8/snr7zSaftwVDxnzY9byTHrp4ZDtspH0/zip75t7frXH/9P3TXovfXFJ42nofGYMvVi7LlX2bpAJAWbBTVmVizjmTrghf4shaHmg43yytxwpXrshERduubSL4xIYVw+vWaq57zyKjsd9ACbhLx38XStPOlcO30s0/aWLjxKiqYfNCQ9eFETtE6ylivT4UaDrUtmJ2tmjiTs43uEOX0AAEAASURBVKERUwfyI/Ve08SDs+WJB6Tulv+Uru2bbTwX6Nf4o/k+pWxOInmm9iY0dQae4tlsa3v39UiuAWlMFz7UAHAiVE8NPBPZnnzICbwlAusrAuqKy2vN+pW7B7xYn3NAMG16ftHI2kemN9UwYc4xdrN55xv2vdNMD8v0oWFwOWbsVLNeZ/I7qs+sHRx4FAapzDj8XE0u4/fe7nYzjW9yquJx048w5ybhXuO2V2xaFcaTNWqTro4We2zvbh66MN7UZopXDUzZuj9CuuvJRFPjtrU2Wu2MZPlEz+tqb7Frl/IetUs4Lp64TEl873+dLa8//VNbv2YdcUE4yoi3s1EPGo2XKWHGoveNWI9PwFvAW+C9bQEPOYdQfgCeTKAAEMjltcVADlAGiKaAxwU1AGwAFwAbUCwTwAm4dEENBYTkg/5UgJO4DErHeaBG9bsAW6aAk4EcBZzYCrvG6VdAmCngRL8LcAKoSAuNAKpU+oFU6EkFONEP3EM/sMsFaAFslLkCThcgxNNBASeADf1xgJO0AJxx+qOeAgwkuwAtMAz95K32dwFa1a+A0KVfASf2RXecB+qYsjHW/txycYBQATP3AICQ/FyANqwfQIj9swU4Y/X3PywQ6I9vC8KAE/1xgJOyxAM1nX5tC1JBAeJwT1Hv4wCtehOj37dlA9viVG1Buoc1fFtGjQqCb8vUEsG6e7Rjvi1jnDfHTl3v27Kgfvh+WfI++XPolzHgqG0B/cqR9suS1vNb2bZAlxmUb2yok/ETp8rMOfNk3PhJMvdQBkxF6nYkp2PNdr7DSe+VxqftaZfM+oTMLl8g5834kOTnFsibLUzVl/3Q27Jb8irMw7BmjcjCKTMlPzS9KOtqAkSqTr9YimfPl+r3fcAK2Lv6uYyFdG58XYBAxcabq+r0i6SgdpIUH7QgkVbGCZmI5itnRIEpXgsmTLEvwGGueYAt/DmTxPe+Elx71RmXJmwSBZB475F+xXFnCHC3/NgVg5JuXfmY3Vdz2UeldP6R1i6Vp15g0pw3IK6uDckx1nIsGD8lcTwb5ZNILMON3tYWaX70XrsGZ9WKi+1ZtozNdMPly0+VihPPsbANUDf27PdLySGLMkw5fbSh5sO6r7ll5VJh7I9dgfQaAFLZCnH5UMbAvXGXXW/scJgAgcuOPNasVfpBmzX1pub8a+zDC41mHc7df7xLWA+W9TmHAiK76wLv2YoTzpIiA9T1Po1en06xXH7M6bbuWg/SUCTuTe4HtVN+7cTgswG14cCam92mjhfNmht4bBrbKsQce+ZlUrrgKNuOUAcAr0DYsHd0OC3XNu3dRLPOJq/iPGBdTuhzqeuU2H0zy+fJ8vFnyJHjTpS5VUuky6yXvLUtWDcwm22trsW5YsoVMmPMXLtOaKyoyAFgU3Pdm1JaMUFWXP8/suzCr8rMCGx6+UEePthn16Q88qy/sesrHnLMNXLOZ+6x63eGk2zfUy/FZTWy+JwvydT5p0nVxIFtSjhu3DbTmh513ldk0emflSlzT7YAk7U3CRtfutO+r/jYL2TWkRfKaR/+ieTmFZg1E5PfCwplj77063ba3YWnfNyeM5R/W9f90YK30z7yU5lz1GVy7OXfHHB6rwGpTKtbNeEQq4FrZS3OYy77hon7Hzbua0//xL4fa/bNWXKpnP7R/xn0wMiARGM+ML3tRAN7eZkEpMBAZP2cmzfYU9+VTLrr4Zx0+fT1BtecX1gmZ37idpm+8CxbxnhhFhQFDy+wLimazvnsvXLI0VcJcPiIM//KxlddSy/4J1l6/j9K7YwlAsSeMu9Ue6ihHxxrvJG+Z6MeME0tHrK1M5fISdf8QMbPWioHL7vSluVI9fnzvQW8Bd5bFvDT1WZYXnGAMDpFbRzUABAqVALaAFJcUIaBECAJUImBEPKNBvXgBPQANUjLNS2oerBxfioPQvJj0E2hkgvQMhDFACXXC6AiTxegJS2uAeAXpx8oADjgnbyAei7AqfoV0BIvGnQqNPXgTAU4sT8QDf0uWA38RD8v1e8ChOjGFpQD+rGFC3BiB+KhH/u7AKHqx74AZuK4AC3XR1roj6uLUcBJWnGAUPUD2NLpV0BLeUZDFHDGAVr0Y39sHAfYovrJL5V+8lb9LkCL/aln6fRjC+7PVICW+wP9DNZTltgsGrg3qDvUW72XXICTvMiTsk/XFqBfAXPcww7E0bYA+7vagkz1k1a4LYjT79uyoPR9W5a8C3xblrSFb8uStqDN1LbYt2Vivx9oPwm+X1Zmv1e5X/6U+2V8T1RU9E+9P8J+WfLO8lujZYGXX3hKlh5zSgJu0odfu3qlqJfnaOUbn24w7Vz0+CuNz8jk0llycOXhcs70a+3hne1b5LHtd9lt1zSNdl9/ctHfcNH0o59bHrtPAHZjjjrRHgKcNd37C7vd/PDdUm0gTHitxb2vrpSOja9Fk2H8PTY03HWLVJ99pZ2+kiksCXY9wv4z0JxjXulCBlFSJoGX3JjFxyfi5FePN8DpOvu50Uwpmlhrss+hpT/zrh1bpW31s1K2aLlYyGf2A/7Cnputzz9qoWXpwqU27Y6311molMjYbLS/vtp6cgKXAYM2mJl12te9FI4mbauettOZAukoB4DRzpu+YeNkq3wGZOj8kKhc9ija0VI042ALcVlvteHOm20ZA2x5EfAc3LvmBbs94F9iKskBe+3v6nT1YCj5UE54SlIOpYctEzxRW59/xGaavI8GanB/ctSHUMS4fMJlXHnK+YkzqEMEwDUws+mB2+yDAOxrvPtnMu7yj0n1eVdnPMUr92PnpjesByiQEU9K6+lLgqHANMHt61dZ8KyAetfPv23rL9HsvWB+z2uoOu0iu9nTtEvqf3WD7rbvLQZ0Vxx/lpQffZr93HDHTdajF3tXhDyX8WaljTGFO+D8VB/GFo6XS2d/ckAU/byq4XG7f2D5xaeN1+bS2kBj775euXfzzeb8IH66tnaAgFQNnIn4Yv0jMtV4jc6pPEwOqlxkYeoN674yMIkUnx79yfUG1P3UAslKA+12bVxpYM4yCxc5bU/9Rnnuzq8Y8Pi/5aBlV9gX+1lPsbd74BJIK+/+Jwv6AIO88BR1TV3K+dGgswWwFiYAkwDUfvaOvzNF2Gc/r33shwacLbawCRBK2NOwycT5st3mH9PHnlg7R6YdusK+uJ7amUcljpMmITmtbOJQYuPF+74mNVMXCWsy8urp2mvGfnoSOoj45K2fkxPMupLEA24GYZ9sWPVbu7n9jSdkk5nOdsZh58ji9/2d2bdPuownatjLtP+klG/zT/iIzF4cPNRBxNLKSTZftp/4xWetjdge6fWky4e1WoNr/q655sNk+cX/h2xNHej4/+y9B5wcxZm//25OWmm1q1UOK4kggRAZkXMwmGADDoDBGLB95+zL9/Hd/X/ny+c7+3y+cyQ6G3AgGh/GRBtMFBiBCEI5rLTKm5P+9VTrne7tre7p3Z0VSKraz+z0TFe/9fa3qmtq6pm32mrDNlGZRNbOPeZyOfzcMEp9x6a32G0TSyNPP+RsA9ODfglgvOzZO2TruiBSVPMN5VnbR/SYQrQD7D5863Vy6lVft20OyEnSyOJoeX7bK+AV2LcVKJoxY0byJ/6+fe4jPrusgDMKCIEagIg4lGEiEECiUANAlQ9wAtjIBxyLJwWEvA8sIl884T+wRQEhefIBzjQog+9RQOjyXwEhzwo4XVBGAWGa/zqprv4nAc4oIGQijXxxwAx8w3/KBViihQtwApPIh/8AIGy5AC12mMjkCzm2XIAQ/9Gf9gFgI18+wIlPSYBZ/dcI1DRACKBN8596xDd0wneX/1kBJ9AMWwo40Sw+ucIkJ/7TbrP4r4ATWy7AHPUfXV2AEBv4BXREd/K5Imjj/rsAZ9T/rIBT9Xf5jxY86CfQ3uU/dUge9R8tkvoCzlMBLfniyfdloSLohK6+Lws08X1Z2DbifYHvy4Ifa/i+LLh1AOMDPy4L7sHpx2UEaAXjyu072mTSxAb7OT7ccRnjEz6nGWvwjG0efF7xGE6aNWuWPSx+f8l8thi/8WB8yIMxDGMVnvns3FdSuVnKscyu1tKWOiHJ+U6fPt3evsM1novrseD4gdFO8f1DfU00U0PFFNne3SKdfe1DPbyg+YmAZGlVIsF0ycvhFFBcXmmgkxkDG/BBxNrenIhcY7lOe3/JBGiHZrvMd/n+7vR7nNllP00fYKM2E2ylaVWo+kkrI+s+W8d15numid4Fto1W2lPlFMp/6riotEx6zXLHurxsoWyrHTQpMt8hR1N3LSvtubiyysJllnbuf5uWAycKnh+J3L3yZtlofiRSW1YnLV0bBgAyPYd3VF9rIvB2GZA376SPyIIzPymLH/iSvPF08KMT9XdM/Qwb8bezZaV07Nyobxf8uaLazN80zpGWVS84dSOasd7Axe0bXpfOtsE/Eseh2glN0t2+3SybOni+MqvDNXVTpaKmXrasDZYtdR1XUmYCLabMt1B4m/GHiMdoIspx/NT50rLyBTO+iS3vG824B7aznE8WN/Scgb/bNgz+4RGrjdRNPtguLcx+IoajiSWH2W8jiXcvRRzdX8jtQrQD/KFNjpt0gLRtXStt29YV0kVvyyvgFciowLKlW6XpgDopKR3e91SKefmpwUFWWYr3kDOLSo48TDQADjTqicnOJEDIl36ACoCKiQrXl2BsManOhAG2XIAwGsGZNpHGpDRlMgFCeTziKQo4gTJp/uMbQA6fsBUHtNgG6FEu+7DlAoRDBZxM3GDLBdii/usSu0mAEC3Uf+yhcTRRDueYz/844EQLF6ClHikzzf8o4MznP75xvoAuyoz7Tz2TB0BI2+Ic802ksR9bLkCL7zyYxMKWC7ANBXBiS/3HXhxwRv1PA5zAPGxxHRTCfzRTQIgWLsCJppTJ9U47JF/c/2hfgP+cI5P+8URZlFnovoB2T5lJgFP9x3ce8RT1P19fgK1C++/7soE/NqEufV/m+zKuU643Hvn6Yt+XBb2a78sG9u5+XBbq8XaOy1asXCOVFdwaYPC4gHEl12++cQ2f3YyjaOM8M27iwTiTx3CSh5zDUW3kxxQaco7co/3HwrjT3m2jRNPOmAg5vadjWj6/zyvwTlHAt+vh10QUcq5qHQyAhm95dI4kanLqQafJipfukbETZhvIea2UmGi7u//jLBt5ONJSuQ/l+Z8OohuTbG1vfl0euumapN375Pvv/twvLThLOjnuM/qLfxt4f9SkvPvK+yd94Ct2Cdu083nih5+WjSueScvi93kFvAL7qAJvJ+T0y9UOo1ExycDkEb9UV6gxEsCpE1HAK6LEXIBwOICTyXIXINSJQPxPgxrcQ3F8fQgImWRJA5zqvwuwZQWcTETxSAOETPCgmS7xmgUKAOrQIg4IqX5sAbM4N/RP8p/JZo3gRIskwKn+Y8sFCLMCTgA6ZSogpMy4/+jEBJn1vzcAzC7/s06kUR7+k/DfBdvVf6AdYBD9XYAw6j/a84gDQibp0J+8CmiTACG+5ZsIRAtgdZr/QDqFAviNri7/o4CTPEn+Ywv/tS9I8p98WQEhOmXpC9IAJzpQl1zv6r8VJvLP92URMcxmvC92XUu+Lws1074gX18c7QuSfqzh+7JQV7Z8Xxbq4fuyUAs/Lgu1oC/eG8ZlfE739XYNgpFDGZfxGe6TV8ArMDIFupvXmnsCVqQa6Tf3jPTJK7A3KeDb9fBrq1+C5VCHb2HPHknU3ZSDTpGpB59mC2b50ad//jcFAZwYxN7mNS+mntS29UtT9++LO7mnZ1VtY+Kp9ZtlXPe3RDsprahOPe2kyN3Ug/xOr4BXwCswQgV8JOcQBQTKTJgwwQI2oAwgIh/gBBQBSFwRnNhiApi0adMmJ2BTwMmEDpMlTHa4orYAGkwGAi4AT0wmx6ES+ygTQAWUwX9n1JABnHXj6yyUyeI/5XCfy5FCAfVfAVvcfwWcef03AJfJLybhFXC6AG1jY6OF1ZSD/i5AFYUa7Ed/F+CkPMAYGqOFCxDiP/ozuYUNztMF2GgT1Cf+03Y4hzT/gZ+U6fLfTqSNN5EClekRkEyq4z9tPMl//AEEYVMjUF3+Y4e6VP85BxegRX8AiQJml//UdVbAqf5Tl64fCyjgzOI/+lNf1Df65/MfzVx9QdT/tGhuhe3AnjT/yUebRHeuc1dfgPY88D+pL/B92cDOX/ti35cFEYS+Lwvah+/LwuvE92WhFn5cFmrhx2WhFmzpuFLHZRuaW2RMjVkeMBJxOdRx2QsvvGA/zxlfojef3zywGbU70JP0Vz6SM12f0drrIzlHS1lv1yvgFfAK7B8KsBwn0YPxpUX3j7P3Z+kV8Ap4BbwC73QFfCTnO72GdvvHRIJCGQAhUMMFCIE2QBmAShZAiPmNGzc6ARU2FGoAUAAWLsAWBZxJgJAJEfzPBwit/7sjOIE7PFyAFlvAuDRAGJ0IHKn/UUCLBujvAmxEqGYFnPjPRFQa4ER/ziMf4AQqoTF+uQAbE1MKmAFTIwWcEydOtIAWQIj/LsBmJ9IMvMR/ADTAjrYbT1HAmQTY1P+hAkKugTggpHydCMT/JECo/nMdpPkfBYRcSy7YHgW0tBv0dwFCoEYWwIn+XCtcG0n+c61lieDM4j8a0H70xw5pgBP/uV7Ig/7xHwv4vmzgFeD7slAP+k7flwV6xPsC35flj0b3fVl4LflxWaiFH5eFWui4ZijjsvBov+UV8Ap4BbwCXgGvwP6swEjuXbk/6+bP3SvgFfAKeAX2fQX8crVDqONJkyZZQKhQwwU4NdIBIAHoyhfBCWxobm5OBJxxqJEFcFKuC2oAZfAP/wFZLkAItAHKAISY0E0DnExakfDfBdiYwMF/nkcKOIGH+M/kkAJml/9ZJ9IUEKITUCzJfwWc6r8LELqgQFx/gBMgBf8LEcEZ9T8JcGoEKvoroHX5HwecLkAI4FT/AYNAPRcg1AhU8gNUaUOuCFSuJdoa8BP9XdcSWqF/FsBJuVxLSYBT/UcTBcwu/+NQwxXBSZvXvkABs8v/QgJOrkftC2j3qYBz3EDA6QLM6r/vy0LY7vuyIIIzDjh9X+b7Mt+X0TsEyfVjEz8u8+MyWsdojst2Nz//5BXwCngFvAJeAa+AV8Ar4BXwCngFvAJeAa+AQwEPOR2iuN6aMmWKBVRADUCKC7AxEQiUAUikLUsJrFAos2HDBidgwwZQCUBFWUSdZZ1Ic0GNyZMnW/+BGkBJF+CJA84kQItfwESg0vr1652ASicC8R8AhP8uwBaNdACcAdjik+qUA5QBeuE/+rv8Hwrg5FxJ6O8CVPjNeXIeAM4k/wGcgDEgLLDR5T/78B/AhgbkS/MfIJe2RC228vlPWbQz/AdwAsVc+rsAZ1x/AC2Td9ikDaYBTvRQ/5MAJ22Ra4Vy0N91LVFWFHDiP3UfT+ThWkJj2oVruduo/+iO/q5rKSvgVP+5zriWXP7TVjWCkzYB8HX5Tx3ptZT0Ywf0RH/tC9Df5T9wKh7B6eoLfF8WtiLfl4Va+L4s1II+xfdlgR6+LwvbhR+XhVr4cVmoBVujPS4bWJp/5RXwCngFvAJeAa+AV8Ar4BXwCngFvAJeAa9AVAEPOaNqpGwDXQAGQBkXoNKoM4BEGuBkUh1AxQRREuDEBhMmTKgBUIAyLkAF1ADMAHGAcJTrghpTp061gARAmwQ4NVKDsoFTQBlXBF7U/yTAid9AGZ4BiEAZl/8uwOnyHygD4Onr7bOauQAPmuqkNNF3QEKX//jFuaL/unXrnIAKMMh5qv/5ACf6JwFOysF/bCpgdvkP6AKKYQv/ebj8p13Q1khJ/qMV8Az/FdC6ABvlKSBM8h94CNTDf+oQkOjyPw4FkvxX2K7+u64lBbT4r4DW5T+AE92igNMFaNV//B4p4KQu8Y9yaP8u/6kf9OdaAnAmAVoFnPjPdemKJqY9UOfor4DWdS3RD9AfkJ/yuIZd15L2Bb4vCyI4tS/2fVl4P+GkvsD3Zbbbzf3zfVlOCtvfaV/s+zI/LtOW4cdlqoRIeQHHZaFVv+UV8Ap4BbwCXgGvgFfAK+AV8Ap4BbwCXgGvAAp4yDmEdgBUcgEeoAZQTAEnkMEFqBRqKOB0RRACKQApAB6gBlDJBXiiUVtpgHPatGkWEAI1mMh3+Q/0UyijgNblP+eoUWdJUAANmPzFfwW0Lv+zAs7p06dbwIM/69avc8JSJtIAXgpo0wCnQo0kQIjfCpipHyb8Xf4DVKkDAFUSFKBpob8CTjRzASrrf32DlJQGgDPJf/xSQLt27VonYKMsBcxAMwCzy/8sEZy0U6CYAk6gvMv/KKDFdx4uwKZQALtr1qxxtkWNoFXASdt2+e+K4IwDTupGATN+M/nu8l8BLdcecB9A6/JfAWea/wBQ7QsAnPjvupa0L4gCzjT/uW7pC1z+Azhpj1kApwJa35f5vkw/+nxfpkqI/XzTH5v4vsz3Zdoy/LhMlQie/bgs1CPLuIz2M9GMnxlLjXRcFpbst7wCXgGvgFfAK+AV8Ap4BbwCXgGvgFfAK+AVUAU85FQl8jwDZVyAQaEGkxgatZUGNaKA0wU1gGLYAmoAZVyARwEngASgmhTBqYCNcvDfZUujzigTO0AZF+AB3CggTAKc2ACK8QygxX+XFlHAqYA2rgXVwUQasIt9QD2X/wpo0YLoNfRw+Z8lghNICsjCfwAtUMnlP1AAsESZQETq3eX/jBkzLHjFH6CSy380BXhhC7gGZHP5z0QadUX7SQKcaAVIxH8FtPn8TwO06I8m2KDOXf4DOAGO+J8PCnCtpAFCJgA5T/zXiUCX/9EIVOqIaE+X/rR//MfvJP8BnNjD/6yAc/Xq1c6+AEBLO8N/fEoCnNEIVI16ivuPTuo//Q6A2aW/Ak78zxLByXXl+zLfl9EOSL4vC3Tgv+/LQi18XxZqQd/qx2WhHn5cFmqRdVw2pqTcjAtKCzIuC0v3W14Br4BXwCvgFfAKeAW8Al4Br4BXwCvgFfAKqAIecqoSeZ5dgJOJQIUyQA2AlwtQAbGAKWmAk31AMQAJZQFlXIAnDjUAY3FAwqkwKYd/pJUrVzptAZ3wn0k8jTpz+Z8lghMbTH7hP4AWKOPyPwpogUCASZf/2AJ6pfkP9AMqUTaANg1wKqBNiuDEb53IBNDiv0sLBbSUSX1Trst/6lIBLVDMpQWAFm2xpUsEu8qkjvJFcALzFDADaIFnLltADc6B9pYGOGfOnJkDtEAxl/9xQDuSCE60UsAMoAVeuvwHSNKG8D8NcM6aNcu2RfwGCrv8d0ENV11GIziTACdtVQEzgBZtXf4DOLmG8T8JcNLm0Z82Cdikzbr8dwFal/+6RC1lrlq1yglLfV9muxr7z/dloRZs+b4s1CNLNLrvy0K92PJ9WaiHH5eFWjB221/GZWvXNZtxcbAyi2tckHVcFqrnt/Y1BcqKy6W6tFY6+9qlq69jXzu9gp1PcfUYa6u/vbVgNvMZKi43t6jgz1zDI01F5RVSXFEpfTu3j9TUO/L4orJyKa6qMee3TcyX43ekj1GnSsc3SpH5rkXq7+ooSL0UV5ofJJs2099m5gf6eq3t0SjHGn67/5n5i+KKKunvbB9Q30XFJVJa35jzrq/VrJDUObr9Gn1oabG5TVJvW67cfXGjcswEGVM/I3dqW9ctMbdz6s69Hs2NsY1zpLN1s3R3FK7/qqmbalwukrZta0fTdSmrGCPV4ybLjk1vma6pv2Bl4T/22rdvKJhNl6E9VY6rbP+eV8Ar4BXY2xTwkHOYNQbUAH4wIQ7UALi4AEMccJLXlYAy2AJqAGVcEyFADSAJsAKgNxLACdRgwpYyAbRAGZf/WQAn/jCRiS0ALVDG5T9wB0hF/qyAc8WKFU5bcUALcHT5n2UiDb+ZyOcZQAtgdvkPXGMyCv+zAE7qGcDssgWgBV5iSyNoXf5nAZzAMKAw/gNo8d9lC7g5FMCJDaCYy3+gK9riv0bQusrMAgUAtEz+4j+AFsDssjVUwInfQEmX/0yu0rbxXyNoXWUGgJMIWrG2XD92AGoAEvEfQAu8dNnKCjibmpqsLcAmgNnlP4CWvgX/NYLWVSZ+ca2QkgCn78usPPYfevq+LNRDASfv+L5sci6anuuSz4p48n3ZQEV8XxbqkQVw+nFZqBefp/vKuKx39/3kw7MLt7KOy8Ij/NZoKjDeTMzPPehQZxErl78um5rXOffR1/G54Fpxw3nA7jfLiyvl0tkflwmVTPSKLN/5ity36rbde99ZTxUz5kp/d6f0NI/uZHTaWTdcfLWYe3vIph98LS1bQfc1fujT0tPSLFvu/u6I7Y47/SKpnHWgbPjOv4zYVtxA2QTznX7MWOla8Xp81x57Peaok6XmiBNk4/e+KnsSRA/3BBsuv14AcqSejWtl889vtdvD+Vc+ebqMO+u9UmLqgLT90fukY+liu13IcqzBUf5XUjNWyqfOlE7Tlnb1DB7ravE1hx4jtSeeIy0//ob0bt+ib0tJXYM0XHZ97nXrs49J63OP516PxsYFM6+RqdWz5RuvfGE0zBfMZmPlNBlTNs729cMxesipN8jcY96fO/Q3N18rm9e8lHs9WhsV1XVy3h/fKctf+IU8e88XC1bMmdfdKsUlZXLXl84omE2XoSPe9WfSdPjFcv9/X1RQoHruH90uXW1b5f6vXeQqdtB7gOLDz/m8jJ96qJSWV0tP5w5567mfypJHvzUob/SNoZYTPdZvewW8Al6B/U2B4v3thAtxvkANhTJAjSQo44IarvJnz56dgxpJUAmooVCGZTUBGy6okWUiDaihUAbomgRlooAWcMa5upJOZPLlPgkqATgVyqQB2mgEZxLgZCJQATOANgkwRwFtUgQnUEMBMwArCSoBOBUwpwHaKBRYvny5E1ABnSZPnmIBFYAzCTBHAW3SErVMBCqUYdKdfK52wUSaAuY0QIstJupJSfoHgHay9R/AmQSYo4A2CQoAaHUiE0BLPbn8zxrpoBGc2EiCMlFAC+CkPl1lhoA2GXCilQJmAG0SYM4KaPVaAmwm+Q+gVcBMP8D15PJfI1CpyyTA6fsy1AmT6u/7sjCCE3V8XxZG0/u+LFs0vV5Lvi/LtrKGH5eF/fC+Ni7budO9YslQxmWhOn5rNBWg7RWbcWn0MXbceGlonOwcZ6kvixYtyq2eo+9leT647kgLOB9bf7f88M0vyyPrfpblsLclz7iz3iNjTzrvbSn77Sy0p2WD9Gxyw+2h+kX7Gq005phTZfw5l42W+X3S7sabviTNN/1bKsjLeuI1BvAWV1XL1l/dIS23f1s6l72SO7SQ5eSMjuJGxcy5Mu7MS6R0XH1qKUQk9+3YZn78MDDKuXfLRqvrph/+b+rxhdzZ0rlemjtWF9LkqNg6buI5cv4M82ONYaYXfvnv8vN/PVmWPnHzMC0M97DR67uG69HeeNy8kz4ikw84Sfr7umVny3KpqB4vh5z2cTnm4v9vbzwd77NXwCvgFXhHKuAjOYdYLUANoAxQAegH1HAloAZgj3y6rGY8n07k8L5OBMbz8FoBJ7Y06iyeD1tADSbKyJe0RCpQAyhDHgAngNaVAHpEjpIPCOoCnJTZ1NRkDyfqDJDiShqBii2NOovnwxbgFf/IlwR7AZyAXPIAOPEtnrCF/+hGPs4RABVP5AMwk0ehRjwPrzUClXx638Z4PmzhF+2DfAAqnuMJwMl5sq+1NYigjefBFoAWmEU+2hgAMJ7I12T0Jw+Ak8l3V9IIVPIBxACT8YQt2gXQkXwATp7jCcBJO2Pfzp2tFnDG82ALCAdMJB/g0hX1BKAFSpKH8wPQupJGOpAPIAkYjifKVFhKPqCMK+ET8JI86IC9eMIWgJZzJR9+uSI40QooTB7aF+fpSgBa6oB8ukRwPB9lYotn8qG/K9Em8I08GkEbz4cNzpG2Rj7ahSu6wPdloXJo1uT7MisIWvi+LGgbaOH7svA68X1ZqIUfl4Va+HFZqIV+lvDZW8hxWViC3xpNBbZs3ihP//ahAUUsOvlsGVNULJs3ub8vDcic8QXLKpqFHmXu2MOkb1evLN32rD2y12xHE/lIvf09UmOWs62raLQT+bzWVFFSZUDpFNnWtUnaesPxcbHxubSozIwri2V8eaNsMACgqrRaKksMiDF5syaWICXRts0vckVfmy+uueU41VZJ7Tgpqa0zUNCsKOOIACsq5XzM0q/mR7EsPQtEsXl7w/PBlt03foIBKFsTlxAtNfv7uzpHL2KQ8zWPLff+YMBSnHquVgfz3ZelCssap0rvFrOKizmveGI5T5bu7Nk4+DuCRhHu6u/LHVZkIlXtcopG3wHJaF/WMMmIY25lsdmseLO7rCJ+mGrqmLoh5erHbMfroFD1YwvK+E/9c/oyZpyJkjXn4morpt3Z5V6NDna5VzM/oBpam2aJy12m3eRrB/acE8qxuiOz6a+Hm1Tv8skzTL1slO61K6yp6DllLYe6LzM/qOjvaB8QGWnbCd/PYzrZsh3XYeK5cP2ah7Ydm4/30JI2yLbxgWhpEvb1/OJlk7dz1Rv2QV8QT5RB/eRLxZXVUtowMfVaT7dhfphirtMnm385KFtJUantt6pLTF9jlrPd0tUsdeUTpKu/0yxrGyx5Tf9YZvrJnl09Ul1SI2PL600fa1ZR2hVek2o4qa/V/Wn9tfb5JVyrJpUXV9hnlsLu6U+OlrWZIv/oG3q72/MuUVtSVikTm46RzrYtsnVdCNzVFOfdMH2hVI5pkJbVL5plaFt0V+6ZPBNmHik9Xa3SsWNj7v3hbLDc6vgp82WHAXssGetK46ceIt3t252RlvhSP22BiX6skk0rnjNNbnBfi80s5WjZRFJil/PTlKUcojGrahtl4/Jn9LDMz6v+cL+89rvbZPvGN+0x5VXj5JI//43MXHC+PHv33w+wM5JyBhjyL7wCXgGvwH6mQDCK2c9OerinCxQIoIZYqOECnHwJ1KgzJjmAGsC4eIouxQUgBIrFE7Y0agtbAE4gVTxhC/AB1ACWAmVcUAOAGAW0LsBJmRp1hi38dy2xqxGE5E/zPzoRCOAEEsYTtoAyTJRRJlAGm/EEwFXAqRGo8Tz4oxG02AIwuwAtZQLYSEmAFlsAWiJQ0V8jaONlYksBM2UmRbNyfgo4NQI1bosyKQ/dsAXEdQFaymxqarKHU9cuwIktAC164L9G0MbLxJYCZsoEMJM/nqKAk3u40jbiiTIV0GKLNuYCtFH/AYguwIkt4CDtEX80gjZeJrYUylCm61riGPxXwAkoJQI1nihToQa2uMZdgBbAqe2H/S7AiS0ALf0B/lMeusUT/itgpkwX4MQW/kcBpwvQYgv/yYst/HIBWt+XhbWAZgqYfV/m+zJtGVxzvi8L1PB9mbYK5rz9uCxUw0zU+XFZTg4+S5pGaVyWK8Rv7FEFKk1kVp2BaSvees05Lh6uMx+c+zk72a7Hf2z+F+3mWztelvtXf0/flg8f+NfS0ddqIGevTKyaZt8HirIkI5Ox50+/SuaMXZDL39K5Tn624lvS3dcph9QdK6dPvdRM1vcbCFAsO3q2Sm1ZnQUarxqo+tDaO3LHpW1MuvZPcwANyDbpuj+32bvXLJct9/3QbgMlGy75sJSMrcuZYqlOluyMpsarPmUATpuFLGWNU+wuQFbzjf9mtwFW4y+4IrfkJ2/2NK+Rzb+4ze7nH4Br4oc+I8U1tfa97rXGj3sDP3KZCrDBeQZQVqR7/epBy9WyH0AbgEcDLsyYu3Xxk9L6zCO50see8i6pPuTo4LX5HsC5R9OE939s0PK7k274S2l/9QXZ8dj9uay1i86UmsOP5wMoZwvtAWr1RneWqtWk9QOUar75S/btQtWPlpH1ueqghTLujIsGLAVLHddfeJUF2Wqn9fnfDtANsMZ5dLzxsl3el3uZkrQtTLj8o1Jk7m1qvsAntoMs5Wj5I3lWvbFRNnFq7vrY/si90vHai5lN155wttQsXJTLz3K/tHvub1phljiuO/eyAe2i+tCjZezJ75LW558w2j2aOy5tY6xZWrbaLDG74Vv/lMvW+MFPWMi76Uf/K7UmGrjmyJNy++pZHnp32vT9/5Y+c59REm2x9vizdu+RQcvV5nakbACu6999Ra7+yNq1eplsvf/HKUcN3vXepo/JtJo5dof2jZrrgplXy8wxB9s+j/eAnPUV5ofC5u83a+8U+sHZY+YLS91u627J9cn0mfeuukVWtQZLP+fra7W8tP76stmfkMbdy5KTX/v87v4u+farf6cmCvJ82FmflnknXWtsBf1FX0+nPPaDT0jLqmD55KbDL7KRg5yXpvbt6+WhG68xUDT48TfA8Yxrbza8u9xm6dg5eM5Hj017xs6pV/2vAPM0ATp/9fXL9KX53UapXPIXj0h5ZbDU87YNS+XX3/mQ+cwN4Pmcoy6Voy7469zS0gD5Z+7+f7LypfDzJUs5uQLNxkEnXG2Xjd25eYU88L+X2l35yimrqJFzPv4TC1I5gHuhFu9e7toayPBvw7InB+Ti/qbdHTukrDL4PGNnIcoZUIh/4RXwCngF9jMFPOTMWOEhFAiizlyAkwkOoAxgA8AAhHBBDQAJUIZnAJUrApKJNF1WE0CSFLUVhRpM0OOXC2pEASfQzAU4sYXvnAP+A2VcgBa/dYnONP8BtEwSYwv/XYATW0AZAC3+A2VcgJaJNI1ABVq6IjjxH6AE2KPMJEBLmcBeNEYroGQ8sQ/QCHDEFoAZSBtP2AI8ATDxH1jHczxFIx0AtMDXeMJ/gB5gFRv47wK0GoHH8UmRAvivEbT4j++cQzzhP+APfSkTWEr+eKJ+NIKTNuECnPivEbTY4hxdgFavJcpI818jaPGHtkMbiif8xy/at8LeOKBFi6j/XJMuwIn/1DftFv9pYy5AG/U/KQKVMrmOaI/4D2B2RaDiP4AZm/if1BbjgDYJcHK90W/gP9e4C9Cq/+iE/74vC+5n6/sy35dp/+L7MlUigHq+Lwv0oF/347KwbfhxWagFn6uMK0lp45rhjsvCkvzWnlRgZtOBtrjVK94oaLF3rfiOlJlInnOmf9BOuv9k2Vet/c6+gRCMN5mUZyL8mU0Pyfr2FXLI+ONs3oX1J1rAubFjrTy18QE5dPwiExm6QE6bfIk8uPYnNg//nt70oMyoOdCCAGxMqpou8+qOzgw5W2439wozE7kN773WQo5t//dTazsK7OrOvNgCzo7X/yCdby6x9+mrmneEhRadby3N+cIGcAMAB5zpMfCwav4RwX7Tv9ZffI0UG3jV8dpL0vbiUyZvg1TPP2rA8UR+AbuASDVHnSTl02ZL5dxDBiwPOuCAYb7Y/LNbLFCtv+QaY2HwDz8xC6htf+U5cx/MN2Tc6RfKGONP24tPyi6zfGf5tCYLOPu2m+8vv/2V2T5KKpoOsjB0KC6hI/e5ZFnQ1mcftfcHrTni+FyE3bYH7hAg4NhTzpfySdOk5c4brfldZgJeU0HqR41lfOZ88al73cogGpbjtI6NvzuffkR6Nqw2sOxMqxv5ANbRVHXgAkG/tqceskuiAhE1pbaDIZajNofzbK8PA5MaLrtOerdtlu0P3WXN9LUO/s6dZN/WsQGc3Bd05+8ftu2q9rgzDPD/oLT85JvSuXypdLz+krkWjpSu5a/ZqEeWju7Z3JwZcCaVHX2/bfFTBiwvMdfTfBlz9Cmy7cGfSe/W4AfBfRFA3/HqYluvVQcvtNDUfXVELQ/e5noBvgM1OY/yiWY1LBPROdT0a9PXVZWOkbOmXi7jTJRmPBGles/Km+Xc6VfYvhR4edbU98kRDadYyKn5x5bVm2jQB0xf2yknT77QLin7LQsfd0nWvhZbSf31fatuNdGbleaHJ++VyVWz5MfL/ssWPZQoTvU17blu8sEGcH7ERHu2yR8e+prUmejJ2UdcLCd94Cu5+14CD5uXPSVvPP1DAV4ecMz7Zc7Rl8miy/5ZHv3ux635kz7wZQM4y+w9OHe2rJAFZ34yrVjnPiDq6dd820Zfrn/jcXnlse9I3aSDTFmXD8hfWl5jIzyfv++fZf4pN0jd5HnmvqOXy5vP3C5EMx594d+YaMs2WfLw182cSq8sPPszcuwlfy8b3vyddLVvtT/4yVKOFkoZC874hGxrfl1+/e0r7dtZyjn6wr+1gLNl9WJZ9swdcvi5f2IjYdXucJ7HTTzAAuCdm1fmDh+NcnLG/YZXwCvgFdgPFPCQM2MlE+lDAgq4oraYFNWJQABDEtRgIgQowzOALSkCj4k04BmABDjighoAEqAMeZmgB8q4oEZ0IgrolAQ1dFlQ/E8CtPgNlKHsNECoEaj4nwRosQGUAeDgP1DGBWij/gP9kgAtQIk6UP9dgBb/AczUV5r/GoGK/0lLBOO/Alr8R1ee4wnAphGcSRGo+KOAFv+BcK4IWmAetphszTeRpoA2aYlgtMB/ACx+064pO56i/idFoKIF/ucDtPiP/qQkQIgW0YlAAKcL0OI/1wjtg7rEf+ormlyA0wVo8R/ATL2jBXlcgBb/ge0k9if1BQpo0TMJ0OI/gBmb+A8gdwHaOOB0AVr8BzBz3eE/gBl944mydCI2a1+G/y5Ai/++LwsURn/flwVa+L4svOp8XxZqQV/s+7JQj+i4xo/L/LhMW0bWcZnm98+jpwB91oxZB8hOA5fa28JVOObMmWPHi9GSGfMdfvjhg76DLV682Pm9YGdP8KPJHgMvWRaRCKO09NPl35DN5p5zJI0uWjDeRPaZ9PMV37TLHfL+x+f/g10CNwo5l2z9vd1PtNPLZrutZ7uNbiopKjFL5Q4e81ujkX+924MVhHaZ8TVwsnfr4Iie8qlN0m+ivLY/fLc9svf+Fmm88lNSveBYiUNOMmy+6za7tCfbXWve4slE7B0kxZVVFlZuf+Qe+x5luY7fYsAIILGvo1WI6iOSMXoPRHvwCP/lztN+r9gdQRmzSbTdjscfsO+2v/K8cF9MIgh7mtda+MOOrQ/eac+VKLVJH/2rXFRZzFTiS2ATqeWnN9pzZnv7w4E+bPe1mR+AGja+q7uTl6NWP9Z4xn9EJBLt17XyDdn6wO25oyqbDt5dx68aMPyafX/H7x6UhvdcKzWHHTsIchKxtenHX88dH6/jpHYw1HJyBQxjQyGg+QInuzo7nPrnM2vrmB+0m7ZEZHPXqjctJK+YMdfoVS39ne0W6pdPmSV1511u2wH5tt5jllIuYOo3bcg+2oLvuSwXnbsOIuXYPCaKmSV6Se6rI3KAY5NlnKnfbvODBa7lTtrD7jbhyJ74Fn0pj3YT8V5X1DgoX1dfh6xsfU02dq4xP/CYKSt2LrXbjZXBXIQesLJ1qTzX8rB9OcFEXB5qfkwy3fSZa9qWSda+Vm25+utW0++aK1e6TJQ9KV+fbzMN418QwSkWcAIJSeMNNAR+8ti24TUbAUkUJEva1jY0yYoX75GmIy6SsROCiFjuE1lVO1EAb8/e80Vro2b8VAMe32+3s/5rMnCVJWFZ1vWJH33WHrZl7cvy1vOD7z39yK3XG2C5zS6Le8ZHbhYiM0mHn/Mn9vmVx74tLWtetNvLnr1TDj7xwwaWXiqvPn6T8T17OYec9jEhknXzmj/Iw7d8JBctmqWcKQeebNvsw7dcZ/1o27ZWzrzuVrs9nH9A4FOv/oY5dJc89dO/ypkodDk5w37DK+AV8ArsJwp4yJmxojXqKQ1qAHkADEAlFxQAMABlmMQAUGHLBTWyAE5sADXICyAByrigRtaJNOAgD/wHargiUPEfKMOEvvofl49JAQWcAB50cC2xi/9AOCY98R8o4wK0GgEJvGIi0AU48QffmWTAf8pL8h8ow8QzZSUtkaqAU/1Hj3hS/wGA+A9g5jmeFBDif1IEKv4DmNV/ALML0FKX6n8SIER/ACHa4j+A2RWBiv9AGfTFb3RFu3iK+p8UgYr/CjixkQRo8V8BbZL/USiA/8DNJMAJoMUmdYn/5I8n/Ecz9E+KQMV/BZxogf6uCFr1nzKyAk60d0Wgci3hP8/4DyB3AVqFAuxLikDFfwWc+I/++BdP+A9gHmpfluS/78sChbUv8H2ZWXXN92W5y873ZTkp7I9yfF8W6kFfrCtTpAFOPy4LNGNcszePy5gCHjOmcOOysCX5rdFUYMJE84NUM0Zb9cobA4phrBkf7zNGY/wbfz/+HW+AoYwviPRRwBk9hHt0dvS2DbifW4sBoVOqZ9nIFs3L8b277/nW09dl7z3HPiJJ+/raNduwn4uramyEXreJQtPUt3O7hTUl5l6I8WRB6ebBq9mUTjD3mzSJJUrTEsAHKELiHoikItOnvh2p20QialJfisvNMqomlY4db5cB1fd5r2/rZgtB2c6aSky0m9Vz9zlnPU7zFap+1F6WZ7u0rskY1YfjSncvq0ukII9oKjH3Z40nIn2TUlo7GGo5SWXsqfepY3PRmmjQ6wcVyf1ciXIFom6553vSeMUnpchcc9wrtr+rY1D+veWNtpeespG+LIdN++5ctkRan3ti0H1+R3o+em9NlvzuMw9Sj7mnMffrjCZgpqa1ZhvIyT2QeT9fX6vLqnJ8Un+ttkf7uaYugLdrXnkoV9SmVc8HkHNSADmrxk6Ss66/zYLMXCazoUvTjp8yz769dd2S3O51rz06ZMhZP/VQe/zKl+7N2XFtEHUK4CQRJUkiupM0pj4A6Yef83n7OvqPKEhS1nLIC+AkbV7zUg5w8jpLOdwPtD1yb1JsACiHm8664ftSWdNggPR/W/isdgpdjtr1z14Br4BXYH9RYOAn/P5y1sM4z7SJqGjUVhLUYFILqMQzgAco44IaWQEnUAaYyBfqpKgzABZQiZQWAclEWj5Ai98KZdL8V8CpUCYJcCqgBfAAZbAZTwrYmCRA/zTACSRkgiEJ0OK/QhnKAirFJx+iE2n4nwRoAVNR/9Gf84inqP/5AKcCZvRKApwKmJPaogtwugAt/itgxm8Ac3xihnNhUhpAiE75AGcU0LoiUGmL6M/EP/4n/VhAIzgVcLoArfqPvvgPYHYBWq4lNMP/JMAJoKLtUC4aADiT/MdWFv+5NvEf312AFv8VMNMW8d8FaLNAAfzn2mUCGP+5llyAFv2pS9oI+5OiuX1fFlzF6OT7srBH831ZqIXvy0ItfF8WakFf7MdlgR782IExjR+XMW9dZH5MVm7HjHzO86OhkYzLwhbnt0ZbgVmzD7bjx/UAhkjivu/xe7/PmzdPlixZ4hy/Rw4d1uaO7iCS0nUw7StfYgzMX5B4DrazHJvPdnR/9P5u0ffj29xjMDXlOaddjh9kmpu1DTKp5xf/rjco4wje2NUb/rg11DgwGH9t341VF75F3+JelPHktBPPlOF1oepHdaXIJG3blzwrFdPnCkuudq9+yy5HGrgYtD0AHfczHZAcP1RlGdOklN4OhlZOUhn6fpZz1rzDfe7dstFEOH930OEK9NlRPnWWhaFsE63KPVmHlEx7i6ci8510l2MOI56v0K+JfCa6GSDOctPcC7Ri9jy7PG8hywqvn8i5u3SIXIkscUvSZ7udp1+yB5h/af215tkjzxF/w/MINDjxfV+ygPP1p34gq/5wv7RtXSvv/vwvzQkH/WgU2qqvRUO89yTHqfb5+p5+E5UcT9Fj8Oee/zw7nkV6OoMVFrKWg4E1r/xaJsw8Ug46/kpZu/Sh3H1K2Ze3HEe74bjhpFPMfUqByW8+/WNZ+ttbB5hI6lcHZPIvvAJeAa+AVyBRgcHfChKz7t878kEBIEsWwAngSYIaQwWcCgixGU9MSgM1SECbNEAYBZyuqC0mdYEyTGhSlitqji8ACgWYyAEQAoziCRtRQJgUdRYHbGn+M5EG4GHiyBVBi/8AWiYh1X8XYI5GCqCDC9DiPxOZ+AegSoqgZb8uUQtgo87jSaOemAzE/6QIVJ1UJ7/C6vgACP3jEZxJE2noT/tQ/12AVvVHJ/wHhMaT+g8YU0DoArRx/5OupSyAE1gNoFX/kwCtAk6F7dRTPEUBJxqgvwtwUpYCTvTPB2i1L3ABTvyPAk78dwFariXKVP+5TuIpCjjxPykCVf2njWQBnOq/qy9Q/3n2fZnvy7RNal/g+zJz67LIctt8FtIPuH6s4fsybT3mF9uRH2v4viwAhH5cFgDCfWFcxnikzyzLlwY4s4zLwivGb422AuXmvpANjZOk2USS9bmg2mg7kMF+a+92qSypNvd5q8jlbjTLLPaaKCXXJHUu03A3zEQzS0zGk703p5n8jd4vscREMRaVlMpQ7kvY07LBmuY+jCNNN1z5BfnCZ79hH1WVQUTQSG0O9fg+lvk1426W0tVUUtegm/YZSGqj+Ha/W8k9O2Op3yyVXFI7zql9NCvLl5oBiOEUJdG3pVD1o0b/6lNfs7r++R9/Rd8a9Nz6/G9NpOH3oQYy/sKrbFsgk4LNsoZJwZKrJjoViGcfDtAxyHDGN4ZaDhqV1Ix1Wq8fPynXlq6+/E+debK+mVROn1nquaS2zi4HndNjty5qm0jXcaddaJePZdne6gXHSMXMIJJN8+R7JoqapG2Se7myHG482bZk3uSemSNJu7rM/JRpA6Wxdq82ieDc8cSvZONtX5Hu9atsPhfo1/yj+TytZm7OPEt7k7Z2BXMfhexr+3b1SrGBiSwXPpK0c/MKezhL0EZT69bV9uWMQ87JvT1h1lF2e+uGpfa5zsC1ztYWefH//lO2rn9VKmsnmFULwr6dJW1J9dPCvnjKQafa94byb8uaICp/1sJ3D+WwAXk5T4BnZW2jjfYk4lMf3J+TNJRyXvr1V+WR224wzXKXnHLl/9gle7GRpZy+ng4Dh8MlkSfMPMIcGf2ZCpbyp+Mv+xeZPPcEWfXyL+WFB/590AGFKmeQYf+GV8Ar4BXYTxTwkHOYFc1EpkY9AQWYyHRBDQAPUIZnhUouqMFEDpFufOimAUIAm0ZtJUENAJVGzSUBTvU/y0Sa+g/UAMq4os7wCZAIlEnzn/IAOArFsBlPCnuBMvifBAijkQJMIicBTo2gTfKfcnQiTf1PA5z4rxOx1Gk8KWDj/XyAUKEAQNK1xC6AKgqY0R8foykr4GRSPQ6Yh+u/AsKo/y7Aif8KmAFs1GUSoMW3fFAgDpiph3hSQEg5+JQGODUCFf1d/nMt4X8UMMfL02sp6r+rL1D90UT7Aq6DeMJ/7QuSlqhVKKARqEmANu5/EmD2fVlYC74vC7XwfVmohe/LQi18XxZqoT988uOyYLlqPy4L2kZ0XNbfb8b1CRGcei3R1zKeSVrZJGxxfmtPKDBjVjDhvXrFm3uiuGGV8YctT9rjLpv9CZlTe6hcNOs6KS0ukzd3sIRe4VOfuTdpydg64f6B5dOapDSyvCj31QSI1J19qVTOmS/1777SOtD+0tOZHela8boFcpUmmqvu7PdKWeMUqTzg0JytzIZMRvO1bkSJJV7LJk2zD8BhsfkOH32dxXj7H4Jzrzv38pwmcQBJ9B72x550rgB3a08MwYSW0frsY3az4X0fler5R1pdxp15ibEZLCmp+fTekOzjXo5lE4NlK9lfiPrRcrI+97XukO2P3mfvwVl3zqX2MFvHZrnh2kVnythTL7CwDVA3/vwPSNVBC7OazptvqOVw39fimloZa/RHVyC9JoBUoVJSOdQxcG/C+z5mdDhMgMA1R55o7lX6YVs07abh4qvN9+d+s2TtD2Tbb+4S7gfL/TmHAiJ7NgbRs2NPeZdUGKCu12n8/HSJ5doTzrZt10aQRjJxbXI9qE6ljZOD1wbURhP33OwxbbzCRMXbiE2jrULM8ee9T6oPPcb2I7QBwCsQNhodHbXl2qa/m2zus8mjsoQfMxRFXle7Dkl8r6l2niyaeK4cOeFUObjuaOnu7zJL1Qb3Cy5kX6v34jyWUTwqAABAAElEQVRn2gdl1piD7X1CE51K2UFEIu1hwRmfkINPuCa3DOvSJ26xRy0461PC/TkBanWTDpTuDjNP2fyG3be9+U2pHNMgBxz7AfN4v5z+4RsHlAREbN++3i7huujSf5JDT/9jmX3EJQPyZHnBMrU9XW3S2HS0nHb1t2Ti7GPlwOOukLM/+sMsh9s8Lz7Ijyl22XtfHvmuv7Dg9aATrpYLPnOv1IwP+rihlsO9RoGd3C/0tKu/mbmcNa/+xgLXs274nlm6931y4vu/nPk8NOMhp31cZhx6nvQaYNqxc5MsPOdzuYdGrxaiHC3PP3sFvAJegf1RAb9c7TBqHajBRI4CwjTAqb/OBvAAJV1QQyfVgTL80jspApKIRfIyEQLUwGY8MVHSOKHRQhkAiQvwxP1PikBlUheoBKClLCZfXIAW0AKIA76lRUCiF/4DeFL9N7bwEf+BevEEcIpOpCVFcOI/+jOJBCxN8x+Qi//UZVIEJFoAoPCfOnIBWvajBRNcaf5TlwoI0Z+88YT/+KX+U5dxwDxwIi3Q3+U/NtCf9oHf6O8CnPgP1MMu0NjVflR/9Z/yXP4D2NCfSWD0x5YL0ALYooAwKeoJ/dV/9HcBTtoX+pPwPykCEv0pFxv4nwQ40R+gqLDUBWgVEFI3+O4CnFxDCmjRH7+S/Ed/yknzn7rkutO+AH3jCf3RQv13XUvxvsD3Zb4v03bk+zJVIli62/dlgR6+LwvbBZ9tflwW6KHjAvRgnMjnquuHZ/vjuIyxVl9vpx1Xha3HLD04hHGZa1wXteW3C6vAzKYDpcdEUm3ZPPg7SGFLymItssxiJPsftjwlU6tny4HjDpcLZl5j9zR3rJbH1t9lt3UJPyaINdn3dr+Mj2c1T9LzjsfuF4DdmGOCiB7A2db7fmSzb3/4Hqk3ECZ6r8X2l5+VzhVBRNAAm6E7A97mxea7bpP686+wy1eyhCXJ3o/QbhEUZpZ3NY98KUOWVBNEyY056uRcntL6iQY4XWtfbzFLiubuNWl+wDAo7S68e8MaaXvp91KzcJFYyGfeB/xFIzdbn3nUQsvqBcdaM51vmagqA4mjqeP1l2wkJ3AZMGiT+b7a8eoL0WzStvhJu5wpkI56ABg13/wlm6dQ9TOgQOeLXOOye/EdXypmHWghLvdb3fyLW20dA2x5kIgcbF/ynN0e8C/2o17dl6UdDKUc6olISeqh+rDjhEjU1mcescWF15GWnvbsaA+R7EnlROt43BkX546gDZEA18DMrb+6I4jMNe9tuef7MuH9H5f6iz6UeYlXrseulW/YCFAgI5GUNtLXlhL+Y5ngjqWLLXhWQL3pB1+z7Zdc9low8zSa6s56r93s3bpJWm7/tr5tn3cY0D325HdJ7fFn2debf3azjehF77GRyGWiWeljzEU+4Pi0F+PLJ8rlcz45IIu+Xrz5cfv+wPpLtk3U5rGNgY99u/rkvlW3muOD/Pn62gEORPrbge8Hr55veUSmm6jRueMOkwPGLbQw9duv/p0ra+p7AM4X/+/LcsipH7WQjNcrXrxHtm98U1559FtyyGkfk8PO+oy10dvdLo//8NM5e0RwnviB/5Qjz/9L+15Xm5kTMo/ikrJcnid+9Fk509y3c+aC8+17bdvWCvf7pJysibwP33qdnHrV1y3gBHKSFLayzbWc9lm0s2WFPP2Lv5NjLvpbOeC4D9oHx3Efz76eINAgSzlaLbtM3ZJef/J7QrRrw/SFcuCiK+WN3/8wbznP3/8vNj/3AOWBrkSTDkWTCaY8EpGzwOloWvLIN805dUohyona9dteAa+AV2B/U6BoxowZyZ/4+5saGc4X+MMkDpABqMHEg2tZx+hEoAJOF9QAVABSSAAG4FM86UQaeZksoUwX1GBSmolYoAbQCagUHzjEoUY+wMmEFGUlAVoFVPn8zwI4o/4r4HH5j/5ZJtKASln9p5wkwKkTUfiH/kmAlv3UJZN9+J8ECPFdASH6uyYCAVT4TzsCsKG/CzBjh3z4jy0e8RT1XwGnC9ACCGk/+E+bdgFC9kX9py2mAU7Kxn9suQCtAsJ8/nOOUcDpArT4j/608ST/uTbwPx/gpCzKxH/OD/1d/qM/bRt4i/ZJgJM82KQvSALM2hfQx2CHMuMJ/7GlgBP9XYCWshTK4D/6uwAzWmDP92Vi2wSakdL6YvTK92MN35eFLdf3ZaEW9Ce+Lwv08H1Z2C78uCzUgi0dV+4r47LVa0xERE3lAMg51HHZ4sWL7dieMRjXDm2GB+MFHsNJs2bNsofF7y+Zzxb1woMxBQ/GpowheObzcX9M06dPt7fycI3T43osOH5gtFN8/1BfE83UUDFFtne3SGff4B+8DdXeSPITAcnSqkSC6ZKXw7FXXF5poJMZmxrwQcTa3pyIXGO5Tnt/yQRoh2a7zPfL/u7BqxtFz90u+2n6ABu1mWArmj++Xaj6idsdzmtbx3X1FrIB20Yr7alyCuU/dVxUWia9ZrljXV62ULbVDpoUmfmF0dRdy0p7Lq6ssnCZpZ37Owf/cD/t2ELtIwqeH4ncvfJm2Wh+JFJbVictXRuc4Oqd1NfmO//iYnOf+OmHmaVdzQ/ODCh0pXEmwrPXRFq2bVvn2m3fGz/1EHPvy53SumV1Yp4sOyqqx8u4SQfY+3+mlZdma0z9DKkeN9mcz0oTBen+AdKeKKembqpU1NTLlrXBcrxpPo9k354qZyQ++mO9Al4Br0CSAsuWbpWmA+qkpHR431Ox+/JTg9lGUnnR9z3kjKqRZzsKOPkiC9TIBzgBhEANF+DUiRyKTZpUj04E5gOcTJ6SX6GMC2owAQHYSPMfMIgtBYRp/gOVFFABXOIJQDsUKKCAkDLj/jOhg+/qP+W5AKH6DyBU/V0RtAAqoAbloH+S/2gBtAAMkscVQauAEB/xCUCFLtHEPrRQwImtJEBImUyCZfW/UIATH2nTLsBG3eA/7RY90/xXwAaAoy5dEz/UI+fJ5Bj6JwFa8iggpEwXoAX6USbXaBb/uR6xlQQIKZO2y34X4KRe0YIH/hcCcObzP9oX5PMfW9oXoD8+RpPvy6JqBJPqvi8LNPF9Wdg2otHovi+rsP2d9sX0K64fm2Tpi31fFrYx+mI+R3RckzSu1HGNH5eZ+4mZz2Y+o/eWcdnO1o4BkHOogJNx2fPPP+8hZ3jZ7NVbhYace7UYe9j5cae920aJphVLhJze0zEtn9/nFXinKODb9fBrIgo5V7U6Is+Hb3qfPfKkD3xFJpl7SqalJ0zk6MYVz6Rl2af2VdVOlPM/fXfqOW1vfl0eumlg9GbqAX6nV8Ar4BXYixV4OyGnX652CA1HJ6IUamQBnICUJMDJJA0TXOThEU9MBJKHSWeFGkCveGKiR6EMPmErDgijE2n4T540QJhvIk0jCPGFSTmX/1kBJ+eHtpwv/rsAp/pPuQCzJP+ZlMYW/jMpTT4X4GRCkXzqvwuwDWUiDf2BgApL0wCn+p8GODWCEy2S/KdMBcwu/7NOpDEpHfWfMuMpK+BkAhxdKZvzw5YLcJKHh/qPbvGEDfzSSXXqMglwko+JQHRI8p88nKsC2jTAGfU/DgjxU/3nOsOvpL6AfOo/frmgANA4n/9ZoQB9AWXSdrm+KTPJf64B35eZZaB2R0NTr++kviwKNXxfFiy3rVCDdp3WF2hfnNQXcI3k+7GG78u4IoLE55HvywIt/LhMWwX3vQsAbb5xme/LQs2GOy4LLfgtr4BXYLgKdDevNfcErEg9vN/cM9Inr8DepIBv18OvrX4Z+CPg4Vvaf47cvOZFKa2oTj3hzrbBq1GlHrCX72SZWXRJS9vWL03b7fd5BbwCXgGvQIEU8JGcGYUEQgAFgBpEdrkAIROB5AO0ASOBHy6owYQQE4ZAGfLwiKf4RBqTtVkBpwtqENlFuezDlsv/6ESURhC6AC068MB/bLkAG/5TJpPSaEC+pAhIhTIKaOP+M5GGruo/+icBQmxFAWeS/+TDLrZcgC0KONP8B5phi/NVwOkCzGjBpDrADy2S/Oc8aUfsp124ACfloX+a/1FACAygzCQooP5Tjzzi/lPP+M+54j+aJQFCbGXxn3wATmy5AGHUf9oNWrj8R1NsATUUUMUBM/vQVQEnWiT5Tz7K5vqgTBegJQ/6p/kf7QvSlqiN+k95nIPLf/TXHzvgf1JfgBZZ/fd9mdh69H1Z8Onj+7LwU1gBp+/LxPbn9HmMa3xfNvCHZ2l9MZoxjkga19Da6Nd1XIMtPy7bN8dlGsmp4wL6l6GOyxgrMc5kPMMz4zIejAN5DCf55WqHo9rIj/GRnCPX0FvwCngFvAJeAa+AV8Ar4BXwCngF3pkK+EjOd2a9DPCKiSiFGq6JKJ28yAI4o5PqLsCmUAZACKRLmkgDemAr30QayzAyga1QwwXYAIMAEp7zAU60YHIlCRAq4GQiR/3PBzjRAcATB5xUggI29lFmPv816skFODlH/E8DhPjPBCX+5wOc6E9+9T8OCCkH/akr9d8F2DQCNcukuvrPfRZdgFABLTaHOpHm8l8BWyEAJ7riPykf4FT/0wAn+nO9kIc6iANCC2jrDWwfU2OBMWW6AKFCjXyAEC0Ak5SD/q6+QAEt/qdBAXTgof6nAU76AoB3Ul/AfgWctAlsuQBt1H+0cPnv+zLbPO0/35eFWvi+LNSCLd+XhXr4vizUwo/LQi2i40o/LguW2NVxDZ/lrh9uRX9swuc4j/i4LFTYb3kFvAJeAa+AV8Ar4BXwCngFvAJeAa+AV8ArgAJ+udohtINNmzY5ARtQAHiggBDg4orgBMgo1GCCwwVlAB5AMQWcgIh8gFChhgsQYgsowyQJUMYFCBVqqP/45gKEUf+TAJX6r4Azi/8KCF3+NzY25gAt/rsAIX4z4cxzlok0wFcSIARqoJkCTvxPmohCD4Aik1Ccg8t/bDFpxb4k/5n0wv98gJM81CWwIcl//KEt4n8a4MQO/nO+SRNplIP+TNoCzCjTBQjxH8CWxX/aP4lryQXY1H+dCER/17UU9V8BZ3wiMAplFNC6/EcrtM0KONV/17WEDfTH/3yAE/25XrjeuIZdgFb7AgAn+rv6gqyAU/sCyvF9WdgX+76sNvdjGd+X+b7MdtDmn+/LVAmx/bT2xYyNsoxr/LjMj8u0BRUXB6tJFGJcpjb9s1fAK+AV8Ap4BbwCXgGvgFfAK+AV8Ap4BbwCoQIecoZapG5t3LjRCdh0IhDAo1AjCRACZoAaOqnughpAJQAJUCNpIg2ooYBNJ9JcUVsKqDgxoIYLEOI3UIbnLBGcaf6zT/1HA6CMCxACzYBiAK00wDlx4kQLe9EJ/V2ACrCJ/9RDPsCJ/go4XYAN/5nIRH+dyHT5D7RU/dOggPoPfEP/JP8VsKn/riVqyUO5+J8ECBXQoglgkPaTBAiBjeQHENKG4oCQNoP/TMopoHX5j1b4lg9wUkf4D3ikLl2AkPaA/viP7mn+K6BNApxx/9HMBQiHAjiz+M954r/2BS79o1FPCjjj+itgxj8FzC7/hwI4ue5Ivi8bDDjjfbHvy2xTyf3zfVlOCvt5k6Uv8H1ZoJnvy8K2w5Yfl4V6MA7cH8Zl1dWlZlxQVZBxWaie3/IKeAW8Al4Br4BXwCvgFfAKeAW8Al4Br4BXQBXwkFOVyPPsAoSANSasFHACZZIAp0ZwkgfAFp9UZyJw0qRJFrABNYAyLsAG1AAqAYSyAE7sbtiwwQnY8J+J2KEATsCly3/gGxPhCmgLBTjxf/369U5Ahd8KaKkfgJELEDKRhv5RwBnXP+o/dYj+LkDF5Db2NAIyKYKTuqSuKKe5udnpPzAM/RXQJvlPfetEIH65ACFQBv0VcKJ/kv9RQEgbckWgqv/AN6CYC7BR1wqY8Qng6NJfAScaJwFO9ORaUv9HCjgnT56cA7Rp/qMt+tOm8d/1YwHqSKEGdenqC7ge1X8FtK6+gHaI/tRXEuCkK0J/BZz47+oLFNDm6wui/qf1Bb4vCz4Eon0B7dn3Zb4v0+GB78tUCbGfqb4vC/Tw47KwXfhxWaiFjss2bmJsGtx6YiTjstBy+lZlZbUZ11eZcWpZasbW1i67v6FhsjNfb2+PGUd2mPFHu3O/f9Mr4BXwCngFvAJeAa+AV8Ar4BXwCngFvALvFAU85BxmTSjUYEInH9SIA8541BYuTJkyxQIegBMgxTURMpyJtCRACNgBivEMwAIquQAVk5jqP5P9wKw4IAREApUAVEAioEyS/0OJ4EwDnPgNlOFZI1Bd/rsiBdL8x0YS4NQI1CyAEwBFQn8XoKLdDBdwxv0HygDF0F8BrQuwxQFtEuBUQEg5QDGX/5QVBZwAOxcgjEMBFyBkIhD/0YR2g/4u/wG9UUALYE66lgCw7ONacvnPfvTnOlZA6/KfPNQ7bTEJcNIeuJbUf64Tl/9ZASd9QdR/17VE+0Jb/AfQElGc5L8C2iTA6fsye6naf74vC7VgS2E7274vC6LR9ccavi/L/2MN35dx5QSJ8Yp+lvhx2eAIzvi4JtoX7+3jMl0NwzVGzTou03aU73nMmHFmLFKVL1um/UBSfbS2bs90jM/kFfAKeAW8Al4Br4BXwCvgFfAKeAW8Al6Bt0MBDzmHoTpQg8lfAJtCGdfkRRRqaASnC8pMmzbNAhL2MfnlAiQKNSgbOEXUmSsCL8tEGlBDAScACCjj8t8FOF3+T5061fqPP4AUl/8AWqCM+g+UcfmPX+RlgmvdunVOQIXu6M95AGjx3wV4ohGcGgHpmkhT/7EByHL5z+QkUX/4D1xLi+CkrvB/7dq1TtgLDOM88R9AS9tw+e+K4HT5z0QyNqlDALPL//hEWpL/AE4AGwn9XYCNsmhn+K8RtC7/XYAz7j/AAP+pU/zGf1dbBHBSnwDRtCVqdVKdcriWXP4DaKOAMwnQKuDER9qFa7le/EEz7QvS/M8S9URbxD/8R39XXVI/UcCZJQI1CXD6vmzgB4D2Bb4vCwGn78vEXm/0oVHA6fuy9Gh035eFfYsfl4Va7I/jMsZJVZVldlwYKiF2hQj04HM47dYHjDH4nM+XNIIzX76h7geaEtXpIzqHqlz2/GXF5VJdWiudfe3S1deR/cD9LGdxdXDbhf721j125sXlZkzOX3cQ+TySgovKK6S4olL6du6bPxooKiuX4qoac37bxHyRGYlUe+TY0vGNUmS+x5H6TdR6Ieql2CxNXmTaTH+bWbWrr9faHo1yrOG3+5/5flxsPh/6ifaP1HeRuQ91aX1jzrs+8yOZ/s7R7dfoQ0uLzbxQb1uuXL+xfypQVFQsYxvnSG93h7RtW7tPiFBTN9VcYv3Svn3DkM+nuKRcKsfUS8eOjdbGkA34A7wCXgGvwF6mgIecQ6wwoAYghUkJAArwwwV4hgI4ASRMmALFXIBHo84oW5fVdAFCJtIUECZFCuA3EyY8AziBMi7/o4ATCEe0mwtwTp8+3cIu9gFlXP4roMX/NEAL+FNAmAQ4AWsATut/R6eN+nP5z8SRLvGaFIFK1QOYsYmeaObyXyNo8R84yGSTSwv8oq7SoAB1zXnifxqgBXDqpHoSoI36jwaALJf/GoGK/0yk8XD5T7sAsOH/mjVrnIANwMl5Ygvoh7autpgFcFIO+qMFfuO/qy4V0AIY8gFO/CdxLbkAIfvRH/+ZeKRtJ/mPblHA6YIaTOTjP2Ul9QUKaLGVtkStAjb8R39XXeI/1zn+c01iz+V/4wTTF4wJfiyArq7lhrHh+zLUDpLvy1SJAHD6vizQw/dlYbvwfVmohR+XhVr4cVmoBVs6rtRxWfAZPXDp2KGOywaW4H5VqAhOl3Vs7y+Qk+jVKdNmyZTps8xYq1Q2rFsl69askK6USfqmpiY7bnONYV166nvlxZVy6eyPy4TKqfat5TtfkftW3aa731HPFTPmSn93p/Q0v32Txg0XXy1i6mTTD762x7Rp/NCnpaelWbbc/d0Rlznu9IukctaBsuE7/zJiW3EDZRMmS/GYsdK14vX4rj32esxRJ0vNESfIxu99VfYkiB7uCTZcfr0A5Eg9G9fK5p/fareH86988nQZd9Z7pcTUAWn7o/dJx9LFdruQ5ViDo/yvpGaslE+dKZ2mLe0yS60npZpDj5HaE8+Rlh9/Q3q3b8llK6lrkIbLrs+9bn32MWl97vHc69HYuGDmNTK1erZ845UvjIb5gtlsrJwmY8rGCX39/pJmLjhfuju2yYZlT476KZ/6oa/LxNnHmbmsYunt6ZCf/8tJo17mnijg3D+6Xbratsr9X7toyMUdetrHZN7J18mD375Stm1YOuTj/QFeAa+AV2BvU8BDziHUGJBCoQxQA3jgAgyuicA4IKFYbAGNSKtWrXICHibSFMoAOIEyLkAVjxRwLdEJ1FAoo4DW5b8CWs6X8gCTLv+BAgpogTKuL/dAS4Uy2AHKuPznHBXQJgFOYJJCGc6veWOzU38FtPgPhEM3l/8zZszIAVqgmMt/fCKiD+3yAU4FtEkRnEwETpk8xXw/L7HQCcDs0j8KaNMA58yZMy1gwwaaufxnIo1JevU/DXAq1EgCnNQ1IBRbAE58c/kfBbScIzAxSX/qFL8BzGn+U5dZACfgdPXq1U5AGAW0+JQGaLmGsaURnHH/2Uf7V0CL/y4tALToof5zDbjav0Y9pfUFAE4FzABO/HfZshGotcESuwo44/7jj+/LbNdr//m+LNSCNub7skAP35eF7cL3ZaEWflwWauHHZaEWbI3WuGxgKe5X+e7BGT+qvn68+dGbe9n/eN6h2o4fvze9XnDkIplkgMWm5nXS0d4mB85bKHMOOEQe+fVd0mfGq660aNGixB9duvLrewfXHWkB52Pr75Y1bW+aKM537v1Px531HunbsVU2/+xmdX+/eO5pMT8g3bS+IOfKd4fRSmOOOVUA0aMBUEfL57fb7sabviRSXCQTr/n8iF2pMYC3uKpatv7qDunbblbbiizxXchyRuxoBgMVM+fK2FMvkN6f3mQAf3LkGJGvfTvMD6djUc69WzZK803/ZvQYI41XfjJDiSPP0tK5XkqK3vnTmsdNPEdmjTlYvv7KX4/8pPcSC0df9DfSuXOT/PJ/3jOqHo+pnyGT5hwvG1c8I0se+ab0dO25iP9RPbERGm/dukY62zZb0DxCU/5wr4BXwCuwVyjwzh8NvENk5IsJUAzAQ4QVUMkFGIAjCjUAeoCxOGDglKKAc+XKlU5AolADIAHUyAo4XVFb2GAiH/8BtEAZl/8ATvznfLMATs4FQOsCPDoRSNmAxpEATvxGM54BtMAbl/8ATiAh/mcBnNQNUMzlvwJa/FdA66rLLFCAiUD8x5YFtCYC2OU/vnMO+J8FcGIDKOnyXwEtZdIO0d/lP+AyH+AE0ALisEX7Al66/Kft0IbwPw1wzprFL+RLrN/477IFoAXYUaZGoLr8B3xzrVBmEuAE0JIPWwpoXWUChPMBTto8E5n4D5gFartsAQWwR5kAWs7B5X80gjPpxw4AWuoJWwpoXWWiF+WiRRLgZJ/vy6jFICng5JXvy/IDTt+X7W44u598Xxbq4fuyUIv4D8/8uMyPy2gdwx2XhS2rMFuMA/7oj24wP+TaJLfc8l3nGKYwJe1dVirMUpMKOJ9/+jHrPKBz7kGHSt34CbJ5U/KE/1DOlGUVzUKPMnfsYdK3q1eWbnvWHt5rtqOJfKTe/h6pMcvZ1lU0SnPHavta81WUmHvMV06RbV2bpK13p75t2E2xlBaxTHKxjC9vlA3muKrSaqksMSDG5M2aWIKURJsxg1DR16bR5JbjVFslteOkpLbOQkFXBFiRiZI161rKLjN2ZunZ0nH1Qd7eHjVhn+0+ozdQNWkJ0VKzv7+rc/QiBjlf89hy7w8GLMWpjlodzI9MWUKwrHGq9G5ptuel+/WZ5TxZurNn4zp9K/esUYS7+vvC90ykKjbRd0Ay2pc1TDJ1YL57bN6QK6vIfL804Yi2bsifqx+zHa+DQtXPAL/yvFD/nL6YewgD0eL7MMl52OVejQ52uVfzPVQ1tDalyGjQY/altwN7zgnlWN2RObLUap7TGbRb9S6fPMPUi7llzNoVNk/0nLKWU2TqvqxxsvR3tA+IjLTtxHznjNqkEFu24zq0Drj+cf2aB9dfLvEeWtIG2TY+EC1Nwr6eX7xs8nauesM+BrVVcyxlUD/5UnFltZQ2TEy91tNtFJm+rkiebP7loGxAT/qt6hLT15jlbLd0NUtd+QTp6u80y9oGAIz+scz0kz27eky+GhlbXm/6WDMvsSu8JtVwUl+r+9P6a+3zS7hWTSovDoIcWAq7pz85WlZtu57rJs+TmvFTZfPql6SztWVAlpIys3JV0zEGbm2RresGRo2WV441VdYrjbOOkpZVL5jtPmmYfphsXP5MzkZZRY2ds+jr6ZRJc4+X1i2r7UMzoBtlsN/2V2aHvtfbHfxYp6yCH1wH7Ys2TLmkvr5ue5x9sftfRfV4mTDzCBNp+JpZYnZwXxnNG98uKS03TbZS5hx9md316uM3yo6Ny+w5xvPWTmiSsRNmy6YVz0l35474butjrzmnfuNj/bQFgg7oUlpebe1xvvHEcrD4oFCV8643ehabc9608nmzbO7gHy+hhasc1ZIyWHK3qrZxQL3Ey873uri4VFa+eK99UOfRpLqhQ/U4s5rbmAmyZe3L0Sz2vLmGerraZPzUQ6S7fbtzCWDqGb1Ky6ustvGy8AMNVSPaVGfrZlvfAwr0L7wCXgGvQAEU8JAzo4hNTU12oATUAMq4YIVCDT4MNOrMlS8L4ARqAGWwBdQAeLls2agtA4PIB7h0TaRxikzE2g8pA2iBMi5bCmjJBxDLF8GJ3RUrVpgP/dgXMfM+0Akogy2NOnOVmSWCExtAJZ4BtABmly3gmgJOBbT4GE8awcn7+O+yBfQDXlKmRtC68mUBnMAwysQWgJZ6ctkCbkYBJ+W6kkYKsA9A7rIFoEVbykwDtNQReUlJEZxADUAQtgC0wDNXmWgfBZzUuyspFMAGUMlli4lAJokpUyNoXfm4RqgrUhLgBNByzWGL64PoTJctAG0UcHLduVKT6QuAjYBlynTZUkBLmWmAFijAtUJKApwAWvJhC0ALPHaVqctqko86Iq8r4T95fF8mtl2jL8n3ZfkBp+/LBl5Rvi8L9fB9WaiFH5eFWvhxWahFIcdlodXhbTGGuOmm2+Szn/2UXH/9tXLzzbc5fyw3POt771G9uyfl9Zkz0e1uM34vVPrg3M/ZyXa197H5X7Sbb+14We5f/T19Wz584F9LR1+rgZq9MrFqmn0fKMqSjEwqnj/9KpkzdkEuf0vnOvnZim9Jd1+nHFJ3rJw+9VIzWd9vgeeOnq1SW2Z+RGn+XjVQ9aG1d+SOS9uYdO2f5gAakG3SdX9us3evWS5b7vuh3QZKNlzyYSkZW5czxVKdLNkZTY1XfcoAHLO6i/kuXdY4xe4CZDXf+G92G2A1/oIrckt+8mZP8xrZ/Ivb7H7+AbgmfugzUlxTa9/rXmv8uDfwI5epABucZwBlRbrXrx60XC37ifAMwKMBF+a7cOviJ6X1mUdypY895V1SfcjRwWtzzXHu0TTh/R8btPzupBv+UtpffUF2PHZ/LmvtojOl5vDjoQg5W2gPUKs3urNUrSatH6BU881fsm8Xqn60jKzPVQctlHFnXDRgKVjquP7CqyzkVjutz/92gG6ANc6j442X7fK+3MuUpG1hwuUflSJzb1PTaSW2gyzlaPkjeVa9sVE2cWru+tj+yL3S8dqLmU3XnnC21CxclMvPcr+0e+5vWmGWOK4797IB7aL60KNl7MnvktbnnzDaPZo7Lm1jrFlattosMbvhW/+Uy9b4wU9YyLvpR/8rtSYauObIcHnPepaH3p02ff+/pc/cZ5REW6w9/qzde2TQcrW5HSkbgOv6d1+Rqz+ydq1eJlvv/3HKUYN3vbfpYzKtZo7doX2j5rpg5tUy00RN0ueRgJz1FZP4mYX8Zu2dth+cPWa+sNTttu6WXJ9Mn3nvqltkVWuw9HO+vlbLS+uvL5v9CWncvSw5+bXP7+7vkm+/+ndqItPznKMulSMv+CszFxFO4771/M/kuXv/0R5/2FmflnknXWu2g/MGzD32g08YoLlYqsZOkgs/BxDmnrlFBub12DkFgBfQ6d6vnGde98sFn7nXQExzCyYz36HlbG9+Q379nass7Jt+yNly/GX/Ks/e80VZ/sIvjC2REz/wZZl60KlyxxePsq8v+YtH7OcUL2rqpgmvSVvXLzV2rrTbwL7Tr71Rxk08wL7m3/aNb8pDN37IrJyQDf4e955/FPzRdNrV37KbwMWf/+vJdpt7Wp55/W1SWdOg2WTda4/Kb38SRnEDJ/Gx2SyrO2HmkRbiknlHy3IBwu4y4Pue/zwnd7xunP7hb1vAd+c/HCOL3vuPMvOwC3SXfV7/xuPy2x9/3urKG2nl/Orrl1mwes7Hf2I0m2qPRweA6VDTwrM/Kwef+OHcYfHlalU3wCaAkkQbePR7H5cdm96yr8//1C8suASEK6Rmydtff+dDufOhPR51wV/nlv7mBxPP3P3/ZOVL4ef/Acd9QA4/909tW2k64uJcu3jzmZ/IC78MPv9tgf6fV8Ar4BUogALhp2MBjO3rJoB5gAhXUqjBPgAnD1cCtuikelIEJ/vJxyQEoAIo40quqC1Xvjlz5lhbCmVceRTQsg/ACZhxJWAX0IiUBAUAtEx44j+gCCjjSkAsYBbABfDnWmKX42bPnm1tEUELiHMlBbTsA3ACxlwJ2Ai0Iy1fvtzajecDOgHP8B9QB2B2JSAik1b4n7RELfuYCMcWgJZ8rqQTgezTCFRXPo0gZN9bbwUDkHg+oB/wkjIBpdhzJQCtAsIkwAnMo0xsAWgBzK6kEajs0whUVz60wCYJ/V0JTfGNMgG01KcrcY4KCJMAp0IZbNG+aGeupBGo7NMIVFe+pqYmW9/Y4/p1JQW07NMIWlc+2hjXCikJcCpgpjwALfDSlTQClX26xK4rH9cSyfdlAeD0fVnQSnxfFujAf9+XhVr4vizUwo/LQi3Y8uOyUI8s47LKAo7LwpJHttXcvFG++tX/yYHOm266db8HnSxHu3rlmzLdLNfYSTSVgZ6z586XttYdstNEFRYq3bXiO1JmInnOmf5BO+n+k2VftaY7+wZCMN5kUp6J8Gc2PSTr21fIIeOPs3kX1p9oAefGjrXy1MYH5NDxi0xk6AI5bfIl8uDan9g8/Ht604Myo+ZACwKwMalqusyrOzoz5Gy53UwYmwnWhvdeayHHtv/7qbUdBXZ1Z15sAWfH63+QzjeX2Pv0Vc07wkKLzreW5nxhA7gBgAPO9Bh4WDX/iGC/+b5Uf/E1UmzgVcdrL0nbi0+ZvA1SPT+YMFcjRH4Bu4BINUedJOXTZkvl3EOkc9krmqUgz5t/dosFqvWXXGPsAQQGJ0Bt+yvPmftgviHjTr9Qxhh/2l58UnaZ5TvLpzVZwMnSpTt++yuzfZRUNB00OEJzsNkB76Aj97lkWdDWZx+19wetOeL4XITdtgfuECDg2FPOl/JJ06Tlzhvt8bsigKAg9TPAq/wvOF986l63MoiG5RCtY+PvzqcfkZ4Nqw0sO9PqRj6AdTRVHbjALv3a9tRDdklUIKKm1HYwxHLU5nCe7fVhYFHDZddJ7zYz//DQXdZMdLnafHZtHRvAyX1Bd/7+YfsDgNrjzjDA/4PS8pNvSufypdLx+kvmWjhSupa/ZqMex550nvRsbs4MOPP5wP62xU8ZsLzEXE/zZczRp8i2B38mvVuDOYS+CKDveHWxrdeqgxdaaOq+OtJL5HoBvgM1OY/yidNsRGf6UYP3/tr0dVWlY+SsqZfLOBOlGU8AzntW3iznTr/C9qXAy7Omvk+OaDjFQk7NP7as3kSDPmD62k45efKFcv6Mq+VbFj7ukqx9LbaS+uv7Vt1qojcrzQ9P3iuTq2bJj5f9ly16qFGcwMCjL/yChZPLnr1d3nr+5waqnW8j/jBYN/lgAzg/YqIH2+QPD31N6qbMl9kGKp30ga/IXV86w5bJPyImN695SeYe834LtNa/+YQcfMI1Nmpzw5u/s/kAn23b1lo780+5QcZNOlAOPeMT5vV/5+xEN5jziiZAWLGJCj79wzfapVJ/d/uf2d0dO8J5wZOv+KoFnOtee0TefPYOmXv05TJt3hly7Hv+QZ668y+j5hK3X3jg3+W1J78rBy66Qrj/59M//xvZucWsMheJujzx/f9hASfnBnxbeM5nZerBpwmADkAcTZPmnmBh36uPm+Wau3aaKNeFUlFTb5bCXWS6MBMJbSBwNBEZ2rEjmKvtMWB12XN32sjJktIKU87nZMqBp8gBx31Q3vj9D6OHGa0Hl0OGoy/8Wws4W1YvlmXP3GHg4J+YKMsQzg4wkvLitd99Vzjfuce8bzcEdl+ptQ2zLCDnPAGQR5z35/LY9/84Z7m0vMaC3ufv+2ehHRBBPPeYy+XNZ2630aZHX/g3NtJzycNftwB84dmfkWMv+Xtbdlf7wHHT7CPfYyH2609+X2onzJLervZcOX7DK+AV8AoUSgEPOTMqCWQA6rkSgJNJYvJo1Fk8Hx/8QBmgBvmAGq4lRpl0BySSkqAGtjTqDFtJUIN8TU1N1hZQIwnKADgBjtjSqDN7UOQftoAyTPSRD1uuCM4sE4HY0qgzbCVFoJJPoUwSoCUP/gN8saURtBHX7Sb5AMfoSz7qkud4AprlA7TY0kgNbAD+AIDxRD71X6PmXHkAtOiBLY2gdeWjXQC9yJcECIGW+QAtfilgxhbgFQAbT8DIpt3tJwnQYksBLbYAkq4IVPLpEqm0myT/AZz5AC22FMpQJoAWAB5PAE6gKikJ0GJLI2ixBRB2RaCSj4lMNMF/2o8rAQXyAVpsKWCmTAAt7SOeqGvKJCUBWmxpBC22AMyuCFTyoQXPaf77viysBd+XhVrQbnxfFuiBFr4vC7XwfVmohR+XhVr4cVmgBf+5n+XkScEPz5J+OEe/kmVcFlotzFYUdN5ww0dMdOctZjwyeJm+wpS2d1hZtfx1mTxlhsw+YL51mAiGF58LJn15gx+Ocq1HE+P4ww8/fNBYevHixc7x3c6e4IekPQZesiwiEUZp6afLvyGbzT3nSBpdtGD88fb1z1eYe4+Z5Q55/+Pz/8EugRuFnEu2/t7uJ9rpZbPd1rPdRjeVFJlbRjiWZLRGI/96t2+xr3aZsS9wsnfr4B9+lk9tkn4T5bX94btt3t77W8y9+D4l1QuOlTjkJMPmu26zS3uy3bUm+MFm5ayDpNgsFwys3P7IPeyyZbmO32LACCCxr6NViOojkrHQkDN3nua8DZ2z/sT/EW234/EH7Nvtrzwv3BeTCMKe5rUW/rBj64N32nMlSm3SR//KWHLbitvW18AmUstPb7TnzPb2hwN92O5r22HolMGw3Z28HLX6scYz/iMikWi/rpVvyNYHbs8dVdl08O46ftWA4dfs+zt+96A0vOdaqTns2EGQk4igTT/+eu74eB0ntYOhlpMrYBgbCgHNl3PZ1dnh1D+fWVvH5njaEpHNXavetJCce6wCc/s72y3UL58yS+rOu9y2A/JtvecH+UwPaX+/aUP20RbMQ7FcdO46iFiyeUwUM0v0kobWogNDLONM/XabHyxwLXfSHna3iSBHtv/0pTzaTcR7XVHjoIO6+jpkZetrsrFzjfmBx0xZsXOp3W6sDCLj9YCVrUvluZaH7csJJuLyUPNjkummz1zTtkyy9rVqy9Vft5p+11y55r7LwXWar89XW/FnovNQ/KUHvypvPP0juxtgqSmI4BQLJoFQpPEGSgE/eXS1B589a159SHgAOXle/sLPLeQcMz6oU7X3m5s/YoBfi6xd+ohc9oWnZNbCCxIhpx6jz0T8kYiABDjGl0JluduGGeZzs2O7vGKWmCUt/e0tBiYeZ8DgyfZ1ln/4x6PD3PeTtNWUq5GIejznzrKsj//wU/atbc2vyXl/fKeFj3HISbu858thxCY6HrjoSnu/z8amo42/O+XUD33d1MFXZPWSX0lZZa1sWBaMEQCBpPKqccI9Ql/73W024pXI0DjkdJXDsZw7+x6+5TpeWtB85nW32u2h/AMwcn9S4GyQ3Fcq9y9FAx6zFr7b+h0v55Fbr7dtB0B9xkdutkvXkufwc/7EZn3lsW9Ly5oX7fayZ++0EaRzjr5UAMXRtHPzSvm/b74/+pbf9gp4BbwCBVfAQ86MkrqgBpMSuvwU4ECXBY2bBIwwEQhAA9YBxVxQAwDH5CmwQpcFjduiTJ1Io0ygjAtqaAQbx1OmC3BiSyM11H9XBKr6D6DFFlCM53gCCgDisIX/rghU9Z8JMPIRNedaYhf/NYKQslwRtNgCygAIsZUEaPEf8Ie+2AKKkT+eNAKVffjkikDFFuVRLvk4R841nhSwUZfUNSArnvAfHahPbCUBWsoEvAK98D9piVSNQMWW3ncyXia2ALTUO/mIDHQB2qj/AERXBCr+M7EDZMNWEqClTAAzNpPqEj81AhVbtGlXBCq2mAjkusMW/rsAbdR/9rsiUPEfQAvkpMwkQEuZtGueKTPpWsJ/rnNs6RLHLv0BtOTFFoDfBWgVcGpf4IpAxX985xwoMwnQ4jf9CvnT/Pd9WVhbvi8LtYheS74v832Ztgz6Fd+XBWrQt/pxWaiFH5fpVRLcuoHbEPIZ3dHR6VwZhGspy7gstFrYrSjo/OhHr5PvfOfm/RZ0ci2fcOp5wtK0Lz71sLlnVq/MX3CUnHjau+SxX99j6rDNjqPi4zbql8/H+PuM4UaaAJgKOKO2uEdnR2/bgPu5tRgQOqWaH7QFK6aQn+N7zcNu93XZe8+xTSRpX9/IoyiKq2rMnLu5nYiJQtPEfTSBMCXmXojxZEHp5jCSR/eXTphkN1miNC0BfIAiJO6BSCrafdsB+2IP/us2kYia1Jfi8uAWFKVjxzO7n/ORfH1bN1sIqsdkeS4x0W5Wz93nnOWYaJ5C1U/UZr5tu7SuyRTVh2NKdy+rS6Qgj2gqMfdnjScifZNSWjsYajlJZeyp96ljrqGGy64fVCT3cyXKlba05Z7vSeMVn5Qic81xr9j+ro5B+feWN9peespG+rIcNu27c9kSaX3uiUH3+R3p+ei9NVnyu888SD3mHsfcrzOagJma1pptICf3QOb9fH1tNLIvqb9W2yN9BpyRli8OIobj9lgWlrTmlYdyuzatej6AnJMOlublv7fv93Z3SE9ncFuhXnO/Rd1mKVVN3JdS7/XJdk/nztySpZpnJM8N0w6zhwMEz77h+zFTI//sVIPcbxIwzH06NQFBuW8k96GMJ5bLjafVL//KRDj+mYn+PN3MZ5Wb5Wvr7D1Aua8mae3SAJAThXqcWbK21Cz1G0261Gv0PVc57Oe+lu2RaFcibk0HED20oNsrXgx/NMM9M4lAjSaighWOE11KIrqTpO3x8HM+b19H/0WXINb31y79jW76Z6+AV8ArMGoKDPyEH7Vi9j3DfBEGCkShBpAnnpggBsrkgxo6qZ4GNZgIUagBrADKuKLOACRAMfLzpTsJEAK6mKTky3kSoMX/3ESm+XX3uvVuQBv337WsJv5o1Bn+A2Vc9w3Ef6AYGjNhkAQImUhDW/wngta1xC7+U0cATLQAdlF2PLGfMtEfwOkCtPjPRCZgEhtEzbkALf5rNC7+u5bY5dw00gH/8d21xC7+E9mIvvgPbCR/PEUjUNE0H6DFf/K4AC3+A8VIaRGcGoGKPwBa2lA84b8CZvU/PumDFgpo2QfgdC0RjP46EYj/1JEL0OK/RkAm+Y8t/FfAzLXrikDFfwXM+J9Ulwpo8Z9r0rXELrbwPx+gVf+xxfm5ACf+awQt+qf1BehP2fifdC35vixsub4vC7XwfVmohe/LBmrh+7JAD/piPy4LtOCz3I/LwutEx2UrV60zY8X2xB9u6Q/n0sZlodXsWwsXLjBRh7MzH7BixUoTjXiYXHPNVeYend/NfNy+lLG+YaL57lQiy15fIps3BdGVr778vBx/yjkyaeoMWbFsqf2hW/zHbvPmzZMlS5Y4f3Q6Un12dA/+bqk2uebyJcaS/AWJ52A7y7H5bEf3R8Fq9P34NvcYTE15zon7eQ5KEair+/T8OP/RSrt6w1VkQo2D0uKv7bux6sK36FvcizKenHbimTK8LlT9qK4UmaRt+5JnpWL6XGHJ1e7Vb9nlSAMXg7oA0HE/0wHJfK+LJ5YxTUrp7WBo5SSVoe9nOWfNO9zn3i0bTYTz4H5XgT52y6fOsjCUbaJVuSfrkJLjWihihSvHak5DsjuMzEQ+E90MEGe5ae4FWjF7nl2edxjmEg8Jr59IP+DSIXIlarS1PmM82gYSCzM70vrrtOOy7tNrLq8/kX40PI+YBrt1CDTavS/aIaU4RaQhKdqvxMFeyuF2l8LhVX+4Xxb/6j8GZGflgEIl1YwfEgxKsaVn2e+Cj51tm82Pnjqk0URkAmXbzfK046fMM1GXJ1mTLLfLvUsBnDy/9OB/yZqlD1lgSMRopHnlXHCVw86cv7mco7sB2NRky47J1G9+sBRP0XqnHu/5z7PjWXLgPLqjZdUL0Zd+2yvgFfAKjIoC4U89R8X8vmmUgUUcCuSDGgCGpKiz+KR6EtRgIo0HEyFAGRfgJFoRqMHkNIAnCWpkAZzYUECL/+s3uKPOAIRAPT4YgX5JgDM+EeiKQMV/oBITymn+xyfSXBGo+A+gZaIJ2IiunEc8RQFn0j1Q8QdACxhD/yRAi//AUiY+8T8JisUBpwvQ4r8CWvxPArQ6kYb+aOoCnPivgBYNkgAt/lOXtHEAmyuCUwEhE3NokRSBiv8KaPP5T5vF/6Sl3PBfJwLxPwnQ4r8CWgBumv/oof67AC3+K6DFfxdgRicFnMDGpHugqv9cd/ifBGjpCxTQ4r8rAjUKOLUvcAFa1R9N8J+2aAevkQvA92URMcym78tCPXxfFmqh1xLXp+/Lgr7Y92XmNnW7AacflwUTgH5cFvYZ0XFZj1ni0/XDraGMy0LL2bfor6iTrI/ychNyahKfg/trqqiqtqdeXBJ+PeY6J1WapVTfSam1d7tUllSb+7yF9dVollnsNVFKOnlcUH/NRCZLTMaTvTenGb9H75dYYqIYi8y92IZyX8KeluCe89yHcaTphiu/8P+z9x5wchRn3v+zOWmzVjmsEEIoIDIiJ5FNMNFgDPY54DvH89357vze+/re8/+96PfOr+2zMWBjcMQ4nIlnjDHRJhokQIGsLO1qpVXY1ebVv741+8z09lb39OzOCoGr9jM7Pd3VVb9+qrqmpr79VMnfffZG+6ooT3mcjDXNXM8fYJpf8xuBqXQ1FNU16qZ9B5JaL76hveWs2RkKg53Gs6a61mn7YFQ8Z82XkhQYSB8M+SofTfNvP/V1a9fP/9lXdNeI947nf2c8DY1nlqkX9Rdea+sCkRRsljROTk25arxTgXj25RhIH5Fwwh255oONiqpqnKk31E9O16XrrvhLZ5ykO6PyGTBTPRdV19npoNP2GLKLpo2na+1pF6amcDZTOlcuPkbKZh2shxO940VN0DrJWq5MhxsOti6ZnayZOZawr8d4uZk6UByq95omHpy7n3hAWm//ivRuWW/juUC/xh/P9+lVc9PJM7U3ob0n5Smez7Z2YF+/FJqHMpgufDShY/t6exprG7pCR/sGu3vmwrPThyfOPspuM41rLqHQeCxW1KQ87NlmWlamfCXoe/20hekkWf/TGcx3R3HZyHZ4x6aXbPQas84onoLBl6bvTC/Hnan1MvdJbVOmjPEyBEZ2d0Y/RBTOBk/Q6kaz1rLxDH32ri+a9UbNmOUhp1ndA2YNZK4D0Lv5lUftGqGd7ZvsGqHhdLJ9HjAwtaI6M/XyxFlHmFNC5DFbIvvp+J7tay3oLjd6g+XHNp6yPngLeAt4C7wdFvCenDlaPSkUYFAUiMJAIIOiDHC4vM4UsCEDqBEFOHVazQHjTbmj3e11xoAGUI/BafUAc0GNpIATqATMRT9QCWgXDqqffKIAJwM5qh/AEwVo0Q/Uw3bodwEe7B8cSANORQFOPE0AUOgHKvEeDsGBqDjAqYAW/QBtF6BFP1CP640ChOhXwAmgQr8LcFKG6Ecfdkc/eYcD16eAMA5wKqBV/S4PWvSTFgM6Ufo5hn4FnHifujxQ0Q8gp34k1R8HOIOAFsDs8qBFP4AcG8cBQvXgxP5RHrTo514iTfQD7okfDOQTBJzoR1s4UJ+xP/WWOkgc9IUDtkI/geuLagvQT3roifKgDesnrbAHMPqTPKzh27JMSfm2LGML35ZlbMFWsC32bZlvy7R28B3i+2Upa/Bd8sfYL6NvNqEqNYWl1gu+S3Lpl7keXtO0ot6fe+554ZUk0Mf93Oc+Ja+//uYfrRcndmofmv507rxFdspaAPX8hQwwiqx781X7fqD8e2nHk3La1PfK5XM+IU+3/loWNSyV4sISWbPzD+MicWD3TgsyWT+QaUgHO3aLrtfJupqsH1h31mVmDc7VUr30TKth74vPJNbSs/ZVAQKVG2+uurMulc4VTwlgp3L+4bLjvh8lToeIpns7psAUr0U1dak0zO+eQtM/L5mcmgbSArQEXkZ7X3pGyg9aIHXnXCF7nnpIKhccmQKQgXPx3gM41Zx0jvS1bpbqEzNgQi+g47nHpPaMi6Txyo9J5x8eF2Bw5WHH2TUtg+uV6tqQtWdeIl2vrDBTmXabNDfZZPJRPqon6fuAqR+7Hr3Paq87+zK7NqctYzPdMPUD4NtlvPkAaZWLjjbTla6WrldfTJp8bLxc88GOVUeeKDXG/tTtvrYWYT1KAkAqXyEqHy3jiVfeIJ3Lf2+nOC6dNVfKZ8+T7b+83dabxouvsw8v7DDrcDJN7aSps+z6nNt++J/C2rBJQl9rynu25pTzpOOF38sE4z3pCjr1cvUJZ0mBmW+dqYHtlLlDkUuaplqgzsMMhOKmKVJgHgIZ3Gum8w54auPt12fqeNmc+dZjk2M9xrMX2Fp/7pVmPd63pNe0Hdzn3AfsD3pHD2UX+UZ7N7HMaDGhvAiIViBTzLqbhJ29I3+P2wMR/5qrD5Wlk86R3sFumV9n1l0c7DFT1b5pY+ezrU2txXmYnD39alm98znpNmuGtnSlwGWEtGG7V/zmKzL1kJPlsGWfsVBt7Qt3yYxFZ9vpU5/+xd/Jmie+a8Ha4mWfkqKSsqFpaufZdS93tbyWhpbDEo35wFqQq8yajfNP/KCNtW7FvfZ955bUOqCzFp8r7ZtXmWlcT5MSB8gkcteeNgMHZ8tRF3xBWt96RjoM/GO9TsDgtnV/kKbZR8uyj3zPrl850N8jzUdcYsHZ7+8c20MFVujQvx1GY8O0RXLa9TfJxpUPysLTP26PhNfJDJ4T3m5582lpmL5YmLq39a1nZe8u0xbXTpWWN5+yUfWaJs89QaYvONN4fR5l1jy9MpxM1s8bV/9Wmg+/SJZ99Puydvndsuj0P8t6jivCpOZjDYgtTk8pO9Gsf1peVW+9UMNrlrrOT7JvhVmXlDVEqSfUxXXGK5f1Rw8+9n3y6Pc/LoBeH7wFvAW8Bfa3BTzkzMHio4ECABKgmAtqALAUUMUBQoUaACqgjMtrKzyQBpRxQQ0FnAASBmJdU+wyEKWAE/1AGaBXOAT1xwHCIOAEypBvOKBfASe2Qr8L0CrgRD92cOkH8KCfQWf0A5h5D4dcASeACv0uwAmgYiCTgSv0uwCVCwq4AK3qRx92R78L0OqgOuWM/V2DYOhh8AowSRrYK0o/9gdiRunnGPYPAs44QItN0I8ul34AG1AY/WhyeTpQF9GvgJB7yQVoyYu0sHG3WfeKaZXDQQEtwJR7KQrQUhcZiOVdyAf0QgAAQABJREFU9UcBZtWfFHCi3wVoKWvSImQDnKof27s8UNENYFb9AHIXoM0VcPq2bPjDGr4tq7b3CXUr6mET35ZlWiHflmVsQVusD5tov8a3ZZNsO+37ZeX2YR/6f3H9Sn3w7I+lX5a5e/K/pYCzvX2nfPObNzv7y/nP9cBMscsM0i9/7gmZc/BCOfzoE9MiX129wvTNOtOf9+9GYIrBQMYv7XhKplXOkXm1h8sFs663R1q6NshjW1JrtbmmabT7hpIL/8YKJO3c3P3Y/RbYTTjmVHsccNZ+34/t9q6H75EGA2GCay3ufdkM4K9NDYQPS9B9OTbK9rtul4bzr7HTVzKFJSEIV9BcYF7ZQoIosUngJTfhqJPTcYobJknjez9kP+8wU4qm15ocdGgZyrx360bpfPFpqVqyVIB8eLQB/oKemx3PPioAo8rFx9q0AcSA0WAA/OHJCVyuOfWC1CHzu6lr9fBp/zqXP2mnMy0/6FBbDgCjllu/bOPnq3yCutzb6cplD6OdOlFmYB0euqy3uv2Xt9kyBvryIuA5uHelA86b63SFJPUgl3woJwvUTTkAkPFE7Xj2EZt15j5yKQnvc9SHQJSofIJlXHvGxekzqEMEwDUwuP2Bn9oHAdi3454fyMSrPi4NF30g8RSv3I89616zHqBARjwpracvCQYC0wR3rVkuFYcsSdVdc2zbD79u6y/R7L1g+nEa6pZdajf727dJ25036277vtuA7pqTz5Pq45fZz9t/cav16MXeNQHPZbxZaWO4T5KG+tJJcsVBnxwWXT8v3/643T+8/KLTxmvz2KaUxoF9A3Lf+tvM+an42draYQKGzhm+L/Pp+bZHZIbxGp1be5gcXLvEwtSbV38xEyHL1p62tfLML78ox1z0v2SOgYG8CG88d6d9ZwrUVY/eJAtPu8GCUHb29+6Vx3/0aXtc/+0z16ge/8Bo/T4IThMLhCyvapBjLv57e9qOzSvl5Ye/abfxtHz9mTssxDv6wv9pvfbQVj2xWbNIvz93zz/ICVd+2cYF+rVvWS2/ueVae/x3d/y5nHLtN6RxxhIbJ3XSPrPm6N3p83Pd0OsKnvf7O//KgNTbBfDHi7Bx1YPy1gu/DEaz29jGFTasfEAWnPIRA3VX28NbXnvcXNNVsuW1J9LRVz9+iyw89QY58cr/a/cxPav1xHTU66h8nr//n609gLK8KD+8Il3Xlc7YsXHqdTdaWKyHjjz/b+wmcPa+r15gamr0/aDnUC+0bui+4HuwPh583NXCi8A6ngN9I8eOdZrjYBp+21vAW8BbIN8WKDBTO2Zv4fKd6zs0PUALIAsoA2ADWIQDA5lACOIqFHBBDQCVQiUGclxTvAKowoDTNRAI4AHK8A6gAiqFoQzwRwFnnH4GpdXrDP1RXmdB/QAqQEo4oD8MOF2AFt0KZQBULa1uKINNiYd+7BAFOLE/1wqgigLM6FcoxqBiHCDkGnQgzQVo0a+eGpQ1tkBjMOQKOAFQ6I8CzAoI6Xhgf5d+6iLa0/p3GMBspj0KBwAbdqXs0e8CzAoIswFOwJoCZvRHAeagfmwaBzi5B+IALfqxP9ebVH+UByf6JzYaD9qKcnsvRQFm6hf3L/anTlNO4YAe7iUAM/cS9dUFaNFPWtwvUW1BGApkA7SkSVsQpd+3ZZnS8m1Zxha+LcvYwrdlGVv4tixjC98vy9iCfo3vl2XsEezXBPtlezq6rCcn9hptv2zVqlX2XOofadAn4EWavAiNjakHpTKKsm8p4Nxh+oc33nhLLODcvj01nagOetHP5cXvDR524Z0+z7sllJj1EUvLyqXLeEmF+/Tha2SZB/rO4d9e4Xh8Xnz8kIeg6+Ao9uHN1Gi8mXYZz6Xugb2jSCF/p1gPSAPk8ATTKS9Hk3phabmBTmbGEgM+knqpjSaf/XEO028yXaddXzL021DzB2LuM7+ZBntHzvKicXi3036aNsB6bUakFYwf3s5X+YTTHc1nW8Z1DRayAdvGK+yvfPKlnzLGexIvaZ1eNl9pazrYpMCMXYyn3TWvuPdC4/0J7GRq58Hurrio43bsoOpF9iGRu9fdKq3mIZHqkjpp6+FB++HjOAg4kNpa9OAdWVE9SXa2vGo9NdmngalYG2YcZqYQbRdAVK7hks8/bDwW++Xer5wrjTOXGI88s7b4ntYRyTCNbe3kg60354iDOewoKik3a1wuMHn2GS9P49VvvCXHIzD9bo0BsW0bVhgIF9/ejiV/vBnxnA2ud5lrelV106TMQOYdm17O9dS3Jf6Ehpl2Kt89beucdeVtEeUz9RbwFnjbLPDGmnZpPrjOrE08+ulVXn5q56j0e0/OhGZTKKBQwwU4gUTqdaZQIwpwAmUYoIgChAo1GDDgR3OU1xaD0go4yQuo4fqRnXQgSgEngAooAygJBwZysulPCjiBMUAxBpRVv8vrLKn+JIBT9TMwFAc4hwHCCA9U9GN/yh5Ahf3DgyHko1PUcizK6wkboB99cYBTYTXlEgcIR+jPAjjRDyyljgeD6k8CONEPNKLecI9wH4RDEBDG6edeAnCSRpQHLXlhfwb9ovTrvYQ26lYc4OQaFXACLl0eqEH9YwWc6Acwc78EB0WDNgvq596OApy0BVa/qZPcS1H6fVuWsa62BXFtsW/LMvbStoB7zrdlYh+m0YcdfFvm2zK9U3y/TC1h1v4yfSPfL0vZYwTgpF+ZsF+WsWj+thRwbt++Q771rW87+2v5y+2dlxJT1fJKEljz/O0KrMGZy3SH46kTrzCXZ1iueQL7BrdtyfW0rPFrT3uP9RKNi4iHnK7pGBcv6TFAVbb0ksKm/p0jH65OqoN4+SqfXPKMimvL2EzRO95hf+WTr+sYTRnnWq8tTM8C1PN1PXHpADYHuw+c6Sx5SCTuQZEDqa3Frnu2r7Mvl43x/MOLcKwB2Nu2fnlkMsBIpqsdawA4hvWe9L6vCFO/xoUnjIdq69pn46IMO8b6nKk1OoftzvuH8LWMJoPOnZuFVzAAtc//dLyX6y4DvR/6zvXB0/bLdseODcLLB28BbwFvgbfbAh5yJiwBQATwB0AVBzizeW0xqM4AMQPnUYOiDLgDqLIBTgAbg0cMqCnUcAFOBWyqP8oDMgw4STMcADzoRyP6XR6EuUIB9AOogDJR+oE3DKoDeFxTvAII0Y8+AGGUB2dQP4AKKBkO6GfwRz0ggWJcazgEAa3qDwNazgHUJdVP/QAQUkZcRzign7oIbIjTPwJwOvQD2NDFICSADfu7AK3q59qwP/YIhyCgVcDp0q+wmvPjAGEugFP1RwFm9GcDnNRB4mAT6n0UoFX9ei+52gIGMqmL2hZQX6kf4UBZY3/iU7+wfxgwB9sC1uONA5zop06qfhegDbcFLv3YE/ur/igPVN+WZUpU2wLflol9YIX679sy89S3ubd9W5a6T3xblmkv2Aq3xb5flupXxvVrfL9seB0ayyf6kH/6px81/Y7tFnC6+gtjSd+f6y1wIFqgt2WTFJh16uIC6w/64C3wTrKAr9ejL61BcU9NOvoU3x1nAknf7rB94wopLquMldHdObYHP2ITPwAPAoOxS1zYuWVN3GF/zFvAW8Bb4F1vAT9dbcIinjNnjgUMUQNRCgUAO1FQA0AF1FDACWAIQyUGAkmLF8AvyoMzDDjR5fKaA/AEvW6i9CcFnEH9UVBG9TNogn4GrcIhqB8AhC7XIEtQfxLACWDD/i5AC6BCPzaOAmwuwOnSDwwDKgH30E9ZugAtsJE8KWdsEQUIFdAq4OQ9HNBPWSrgxP7hgH7Swm7UB/JzAdog4IzTT1kqIEwCOLE7ZekCnAzqYgv0Rz0skBQKAFDQpYAT+4cBM/lgf9WPLbiGcAgDzjj92J8Qpx/7KyCkLgKQwyEIOOMAM/Ynvbi2IKhf76WotqCxEf37fFsWaot9W+bbMu7R4MMavi0b+bCGb8t8v4z7xPfLsEIqJOmXdXT2yKyZU22/frT9MvoS9I/o4/FOP5YX/RxehFynq506dYqFnK6+d+rqhv//Y5uudvjV5+9TvqerzZ8yn5K3gLeAt4C3gLeAt4C3gLeAt4C3gLfA2Czgp6sdm/32y9nAERcgVCgD1MgGOIEtxAeauQAnAxVADcAMwIZBDRdgAxACPniPgxoKeDBQFCAEEpEWAzXo5xqjACHx0A/gIZ7L64w4DIAplHHpB7CpfgZNScs1yKL6yScKEKp+AHI2wIn9GSCKAlQKmFU/9o8ChOgHLql+F+BUQBWnP+iBGgc4qV/oR2NUXVTASVwFzC79ADb0kzfHsX+cfgW0LkAYhgLYLApwBvVT/8MB/dgM+6OftKIG1UkrqD8MOEmbtHjF6acMsYV6cGILl340kSf3KHWReOHAvUFa2QAndZV41F3uD9IKP+ygbQH6uTbypN6GQy6AM6VfTFq+LcP+vi0TW++xhW/LRgJO35b5toz2Vtti3y9Lffv4flnmWzhpv6zCrPE9YUJ++mWZ3Me+tWVLao3NsafkU/AW8BbwFvAW8BbwFvAW8BbwFvAW8BbwFvAWeHst4KerTWj/KKgBOFBAyKAo0DEcgBrE00F14rmgBnF0II38XIBQPSB5BwCRlstrSwei0EJaQJJwUECo+omXFHC69DNYTr4AM3S59IcBJ/FcgBO4Q3oE4kTpx2bZACcDUaQFRFPY6wK0pBUEbC5AiH7iAQU4HqefeOSDXaMAIbpUP/FcHpx2IK1+OOB06SetbPoVcAb1uwAnafGinLnGKP1cI2lSb4jn0o8m0gLQUo7ECwfKhrSyAULyIh6Ak/pFWi79xFHAiV2zAcI4r60g4CS/KP1co+onz6i2gHhBwOkCtMRRwEl+2fSTF/Gi2gLSY7A+Sj9tEzbTtoB4UfqJ59uyDCAMtsW+LUs9bOLbMt+WaRvv2zK1hKRnFmAP90hUvwabaVtMPN8vyzz49E7sl+3c1WEeVkqtp+3Sn7RflqlJfstbwFvAW8BbwFvAW8BbwFvAW8BbwFvAW8BbwFsgaAEPOYPWyGE7CAUAC9mgAFADUEE8F9QAHAAIgUoMarkAYRBwxkEN4AgvoEbUQJrqB7Al8eBEP6CLQTkX4GQaUmAQ10aeroEc9DN4F4QCLiiDdoUyePy5ABt6sJnqx66ugUAFnFwv6RDPpZ+00K+A1qU/CDgVMLughg7qUp2wRZx+BreyeXCSXlFxkbU99ncBTuzPtaKfPKM8IEkrCDhd+rEFZaCA1gXYgh6c3V2pKYLjACcQUwGnSz95oh89lFGUfuIlBZxx+rEBaWXz4OSexBYAWnS5BqW5NuzPoDT6sX8UIMT+Qf2utoC0srUFQf3aFrg8UEmHPNGPLpd+bQvQ79uyAluWvi1LfRlSd6j/vi1LTdGJPXxbJvZ717dlqXvE98tSduC/75dlbMF3rvbLdrQz+wl91JEPQboAp6tflknZb3kLeAt4C3gLeAt4C3gLeAt4C3gLeAt4C3gLeAuELeAhZ9giCT4r1ACwAQUAcS7AxnFAigJOAIMLarDOH4PqwDfWhnMBtvBAGsAiChAqlIkChEANBl9UP2m59AM9GMgMAk6XftJS/eSZTb8CQpd+8gPMAGiz6WdwCLBDPBdgA5phC64X2wMbw4CT4sb+xOXaSMsF2IKAk+sDeLkGotBPnuinLF2AEHtis6SAU/VzDWH95KMDaQDOOP1oSwI4sT8B/S7YDqQjT2xiAW272wOVOoEtuF+wF/Z3AU7sT11T/S5AiK2SAM5UXcyuPxfAqfqxv0s/eSrgxP4u/dxr2B/bUSdIi+sNB9LC/uRDWi775wI4tS3gHnfBdt+WDS+BVP1JtcXY37dlvi2jhvi2LHOf+LYsYwvfL8vYQvuVvl+WmuKY7xJ98Gzv3i4Z6E+tn5mxWGY2gCT9MvpQPngLeAt4C3gLeAt4C3gLeAt4C3gLeAt4C3gLeAu4LeAhp9sukXt5Ohsow0AOkIuBcBcg1IHAIOB0QY2mpiYLSIAa27ZtcwI2hRq8A1DiACeABI3ocgE2oAb6AVRxgDYp4FT9wLco/ToQiP5sgJPBZPRHAUIG0lR/EsCJ/RVwugDtpEmTLOxVwJwNcKp+F+AEnKEf8IgtXIBKBwKxv3rQugAt6VCWcYCTSor9qWtcGzZzAbakgDaJfgW0lCm6qWcuD0KFAuhXwOkCtJQl+rk3ovRzrykgxKZxgJBBRWN+aW1tdQIqBbTo577lXnLpx/a8uF+Iw73kApzYH32qP64tyAY4sQX6CdQfF2DjHmLwlHfywrYu/cBNygD92ha49JOnb8usye29RLvn2zKxDxT4tixVL3xblrID/7Vf49sysW0w35m+Xya2n+L7ZZn7JNwv6+vrlbLS8kwEs5Vrv2zYyf6Dt4C3gLeAt4C3gLeAt4C3gLeAt4C3gLeAt4C3wDALeMg5zBzxH4BXQDGFAoAIF6BiIJDBr6SAk3S3bt3qBFQMoDF4lHQgDaihHnguqIF+BZzEc+lPCjhJi7jkA1RyATZ0K5RRQBjnwamA0wUIuTYGj1Q/8MalH1AE5EkCOBVqROkPA1qAVxzgRH8UoAL4qX7AFPZ3ASrVr4AQwBYGhNTUyZMnpwEn+l2ADVthfwal4zxQ1esA/VGAUPXnA3CiXwEzgBabufRzr3EvoZ86AdRzPSyAfoUyLS0tzocFqA/cS6o/DnDW1RoPVDNFsALOsP2DbQF64vQroI3z4ERXCtAWSJR+bMB1KqCl/rvuJeq+AlriYLdwWxDUT332bZlvy7gnCfqwg2/LMh6c2hZHzQbg27JU3eG/b8sytgi2xb5f5vtlWjNG0y/Tc/Pxfu21V9sH4+6446f5SM6n4S3gLeAt4C3gLeAt4C3gLeAt4C3gLeAt4C3wtlvAQ84cimDKlCkWsCnUcAG20QDOLVu2OAEPUEMBJwAIYOECbEkG0oAaQDEGVxRquABbLoCTayUAaF2ACsAJ1OM61APVpR8IBKAKAs4wlOEY+gE8cfoBRaTHoHScB6cCQvIBKrn0kxf2Rz+ANhfAGdYPoGUgnDQBU3GAU/UD9ABjLg9U6iIAkHzyDThd3qzYU/UroHUBtiReT9QZ1Q88xP6ue4m6mgRwUkbUW+p4FCBU/dRJ8sL+Lv3AQe4nyisKcKp+9FE22N+ln/IBSgJX4zxQg1Ag6mEH0uBeQr+2BS79wbZAAWcY0Ab1+7YsA9uxy4HUlmlb7NuylNcT9xJtcS4Pa/i2zLdl3Ne+X4YVUuHt6Jf5tkytP/q2LJPC2LfoK/Hy4cCxQElhqVQWV0v3wF7pGeg6cIQdYEoKKydYRYN7O/abskLjhb2Pv96eMedZUFomhWXlMrBn15jTOhATKCgplcIKM7vQnp1ifqAeiBKHaSqub5IC83uPMNhjphXPQ7kUlldIgakzg53mAdOB1LIk45HPsAt5uz6YsZnCsgoZ7DbrTQfKu6CwSIobmtKqBjrMckHd49uu0YYWF5ZIV39nOt9340b5BDPm0TAzfWntm1ea6fB705/Hc6Om6SDp7jAPWHflr/2qqptmJBdI585N4yldSsomSGXtFNm97U1TVQfzlhf6SW/vrq2J0iwqKZcJ9TOko32jDPR1O88pKi6V+mmL0sc6dmwwdm9Lf87XRmFhsVRPbLba+3r233dqvvT7dLwFvAW8BaIs4CFnlGVC+6dNm2YBFVADkOIChOp1BpAATgGpXIAKWKFQJgpwkgZQiUFdoAZQxgUIg1CDOAwAhwEblzJ16lSrH6iBfhcg0YFABtXxWAESuvSr1wqDJJs3b3YCHnQHAWcUoAXoAZaCXkNh/eSDfgbnsEGU/lwG0igrAvZ3ASryUsAJoEU/tguHoNcTsItB9bB+rg2op/qJ57J/GNBmA5xx+hXQUo8U0Lr0Aw7IF41R+gF+QGH0oxuvP5d+AGd9Xb31gKTuR3k9UZYAQuyE/V33EsexP/oVarj0K+BEP/XC5U1MfVb95IV+172UFHBqWwA8BIq59IcBZ5QHarAtiAOc6OeeUkAbpT/swekCnKrft2UZwHkgtmW0LUkAp2/LUq2yb8sy306+LcvYwvfLMrZ4u/plvi1LlcFY+mWZUvRb422BUgOi5i88QurMIP2AgRTbWjbL66+8NKJvH9TR3NwsGzdudP5OCMYLb5cWlstlcz4uE8sZ6BV5a88quW/97eFoB8TnsplzZbC3W/paxncwOu5iGy++TsyPDNn2w6/HRcvrsaYPfFr62lpkx93fG3O6tadfJOWz58nWW/55zGmFEyiZOEUKJ9RIz9pXw4f22+cJR50sVUecIK3f/6rsTxA92gtsvOIjApAj9LVuku3/dZvdHs2/0ikzpHbZpVJkyoCw69H7pGvNcrudz3xsguP8r6iqRkqnzZJuU5f2menWo0LVomOk+sSzpe2OG6V/1450tKK6Rmm8/CPpzx3PPSYdf3g8/Xk8Ni6Ydb1Mq5wjN676u/FIPm9pNpVPlwkltbatH02iC0/9qMw95qr0qb+99UOyfeOL6c/jtVFWWSfn/tnP5K0XfinP3fOlvGVz5odvk8KiErnry2fkLU1XQkec91fSfPjFcv/XLsorUD3nT++Uns52uf/rF7myHbFvxqFnynGX/h959q6/l7Ur7hlxnB11Uw6VMz70nfSxN567U56//1/Sn/O1MWnOsXLKtd+QVY/eJCvNywdvAW8Bb4F3iwUK3y0XMt7XAeABGERBGQbSAC4MSuu0mi5ACNQAJjKoHgU4FcoAeIAaUVDGBThdUGP69OkWUKEHkOICVGhikBigpdNquvQDOLnWOCiAbqAM73GANuzBGQVo0c/gHJArSj+Ak4E09APXeLn0owuAhv5NmzY5ASd5cZ3oB5oBj12AjfwUEFJGLsBJPkAl0gRMxenHHugHLkcBZutNbJ4SJUTpp65Sz6hHaIoCtJQ3dosDnBwDSqr+KMCMHawHpJniNRvgZKBP9bsAoQ4Eop86gUely/4uwBkGzNgTm6Gfeg/IdQFCAK0CwjgPTsoS+5IPgN+ln/qFbZPo17aAeuHyJg62BUkBbZwHp7YFvi1LAU7fltlb0badvi1L2cK3ZSk78N+3ZRlbBNti3y8T8f2yTN1I0i8rzWO/LJOz38q3Beizn3DquTJt5hzZazyxBs3vpoPmLZQlR50Qm9XSpUtt3zA2kuPg/LojLeB8bMvd8qPX/0Me2fwLR6wDY1ftsvdKzUnnHhhi9qOKvrat0rdtc15ypH6NV5hwzKlSf/bl45X8uzLd1u98WVq+86+xIC/phVcZwFtYUSntD/xU2u68WbrfWJU+NZ/5pBMdx42yWXOl9sxLpLi2ITYXPF8Hdu80Dz8M93Lu39Fq7brtR9+IPT+fB9u6t0hL14Z8JjkuaR036Ww5f6Z5WGOU4YX//jf5r385WdY8cesoUxjtaePXdo1W0bv1PKA1ZfzAjVe8Wy/RX5e3gLeAt8C4WsB7cuZgXqCSC5AwEAhUAqgAOIEkLsAW9NqKApykAUhhQA2oAZRxAR6AEi8glEKNMODh0mbMmGEBD1ADKOPSr4CWvAGc6HfB0iQenOgGivGuA4Eu/UEPTiCia91A9M+cOdPCRuyJfldaQUAL3ASyufQDOBVqUJYuQAXYZMAK/UAn4KWrLAGcOsUucaIALfYnTXRT5i79gEYFzAo4XfrtQNoQoOWJcResBuZxnehXQBulX6FGlAcnP8YZyEQ/9SZKP+koYE4COEl3w4YNzroIQKSeoV8BrUt/ENCqB2e4/nNvcC+hH1sBEl32tx6oQ4A5G+BUQBuln+MKmKkT3Jsu/QBa7IYtFHCG9XM/ci+pfq7TpR84y/0UbAtc9UcBJ/n4tmxS+mGTKG906qBvy2iFU8G3ZWqJzMwIvi0bvganb8t8v0zvEt8vU0sYxzPzXR5+cM7VLwg+OBfVL8uk6rfGwwINE82yGAZUvPnaKnltTco7ZslRJ8rU6bNk9cvPS2+Pe3q5XLUwraKZ6FHm1hwmA/v6Zc3O52wS/WY7GIhH6B/skyoznW1dWZMdyOezhrIiM/NJ+VTZ2WMetuzfo7ulsKBQigtKTD+zUOpLm2SrAQAVxZVSXmRAjImbNDAFKYHvO9PRFP1sfmilp+PUtIqqa6Wous5AwS1OcFRQzPWYqV/NbyKmngWi2Lj9meshLXusfqIBKGZGpIgpRIvN8UFTHuPmMcj1mteOe384bCpOvVZrB/PblKkKS5qmSf+OFntdelzfmc6TqTv7WkeCUvUi3Dc4oNHN9KnFNk3sOywY25c0TjbGKZL+7VvTeRWYvqpxR7RlQ/x0+ZjtsBdevspnmK4sH1SfU8uEWuMla67F4S3IddjpXo0d7HSv/BYdsqFN00xxuc/Um2z1wF5zRD7W7pg5MNVqlssZcVjtXTplpikXM1PTprU2TvCakuZD2Zc0TZHBrr3DPCNtPTHfI8E0ycTm7bgPrQDXP+5f8+L+Swf2YUvqINtGA97SBNLX6wvnTdzu9a/Z14i6as4lD8onWygsr5Tixkmx93p8GgWmrSuQJ1v+e0S0ooJi225VFpm2xkxnu6OnRepKJ0rPYLeZ1jY1PSftY4lpJ/v29UllUZXUlDaYNnajDO7L3JOacFRbq8fj2mtt84u4V00oLSyz70yF3TcY7S1rIwX+0d709+7NOkUt06JOaj5Gujt3SPvmDHDXpLjuxhlLpHxCo7RtWOGcDpU4E2cdKUxl2rW7VU8d1TvTutZPXSC7296yU8a6EqmftlB69+5yelqipWH6YikurZBta/9gqlygDgcSS5KPRi8uxWmj0F6f7kuSD9P2VlQ3Setbz+ppo3pn+tzaSQebdJ4ZUZ6UMa9sgelmaybOsTbp7d7tjF5aXiMTZx9lphneKds3vJj6fnHG5NYvNS+zNJgp83xO6xuRnd/tLeAt4C0wLhbwkDOhWYEaLsAA1GDwAsCgUMMFGAAf6rUFLAIAhgNpACIYEFEo4xoI0ano+MEJRAFMhgEJaeugNH33qGmUFNCStwJal36uUQFhFBRAN/pJC4AIlHHpVw9U4mUDnIAGrg39rrQU0JIWdogDnFwrNosCnOQFFCMtyodBJleeQQ/UOMA5a9YsW5akQZ6utHQgkDwBtEBOl/0BnNQ19EcBTmAYUIa0ALTod6UVBLRxA2kAZsoU3ZS5S7960JIn2rkGV57oKjfr0KA/ChACaLlO0gLQYltXWgBOBbRRgFPrP/q5b7nnXPpJRwGhAlrXvaQenKS7fv16Z1sAoAUwox9AS9126VcPVGwRBQU4pm2BAmaXfgW0xFdA69JPWtiX4Nsy35bZimD++bZMLSHWq5220bdlYj2SfFuWqhvUB22Lfb8s9eCZ75el6kbSftmEojIpMmAiH/2yTIvlt8bDAlVDU01u35ZZX2tby0YLOSca+LB549q8ZHv13D+3g+2a2A0LvmQ339z9sty/4fu6Wz447wvSNdBhIGe/TKqYbvcDRZmSkcHY82dcKwfVLE7Hb+veLL9Ye5P0DnTLwrpj5fRpl5nB+kELPHf3tUt1SZ0FGqsNVH1o00/T58VtTP7QX6YBGpBt8oc/b6P3bnxLdtz3I7sNlGy85INSVFOXToqpOpmyMxiarv2UAThmWQ/TLy9pmmoPAbJavv2vdhtgVX/BNekpP9nZZ+y//Ze32+P8A3BN+sBnpLCq2u7r3WR03JvSkY6Uhw2uMwVlRXq3bBgxXS3HAbQp8GjAhYFNHcuflI5nH0nnXnPKeVK58OjUZ/NblmsPholX3TBi+t3JH/0b2bv6Bdn92P3pqNVLz5Sqw483Fz/kTWXSwvYAtQZjd6aq1aDlA5RqufXLdne+ykfzSPpeccgSqT3jomFTwVLGDRdea0G2ptPx/O+G2Q2wxnV0vfaynd6XtUwJWhcmXvExKTC/Kc0Pu8h6kCQfzX8s72pv0iiZNC19f+x65F7pemVF4qSrTzhLqpYsTccH3lPvWd+0zExxXHfO5cPqReWio6Xm5POk4/knjO0eTZ8Xt1FjppatNFPMbr3pH9PRmq7+hIW82378Dak23sBVR56UPtbA9NBDYdsPviYDxrudQF2sPn7Z0BEZMV1t+kDMBuC64T3XpMuPqD0b3pD2+++IOWvkoUubb5DpVQfZA9o2aqwLZl0nsybMt20e+4CcDWWTecxCfrvpZ0I7OGfCAmGq2529bek2mTbz3vXflfUdqamfs7W1ml9ce335nE9I09C05MTXNr93sEduXv1FTSIv74ct+7QcetKHTFqp9oK1Hx/74SekbX1q+uTmwy+SYy7+e/sdohnu3bVFHvr29QaKbre7AI5nfOhWC73Y0bUn+YMxmibvpHOqmRK1tKI2vRvQ+cA3L09/LjRQ/ZK/fkSAcYSdW9fIb275QBqyHXTUZXLUBV9ITy0NkH/27v8t617MfL8kySedodk45ITr5PCzPyd7tq+VX33jMnsoWz4lZVVy9sd/Iql1RE3zY9ZCLRya7jqYdpLtw5Z9xgJm4gITmb42eD3Z0kDDmR+5XcqrGtNRN7/yqPzuJ59Lf8aep13/LTv9re4cHOg1UwOf6QSoQOQz/uRW+3DJr755WeJ1RjVt/+4t4C3gLXCgWMBDzoQl4QKcQA2FMgBOoIwLMCTx4ARSAMUYUANqAJVcgATAyUAs8bMBToUaa9eudaYFNNOBTAAnUMalH8CpgDYKcKIbKMY7A4FAJZd+ACcD6+jPBjiBdoQo/UBLBcwATuzh0s81KqCNApzAMKAw+gG0wCeXfrRzDejPBjh1IBCo5EoLTdQN8gQOAqlc+qljCmijACd5KWAG0AL/XHlSd6hD6I8DnLNnz7aAkzSi9FMn0E9aAE4goUu/BZxmil0TLRJwUtYKmBkIRL8rLQAnYI884wBnc3OztStgEJu5bAGgBTiSFtq5Blee6OJeIUQBTu41BcwATmzrSivswelaQ5R8sD/1gnaHOuvSjx2wB/qpO9QhV57UC9oqwrp165yw17dl1jz2H3b3bVnGHnwv+bYsZQ/flmXqhW/LMrbw/bKMLXy/LGML7Zdt3MQyEamZWVzf5Un7ZZmU/dZ4WaC/P+V5VDbU5yOfMuNplHpPLRVhP4zx311rb5ES48lz9oyr7aD7T974qk2xe2A4BGMng/IMhD+77SHZsnetLKw/zsZd0nCiBZytXZvkqdZfyaL6pcYzdLGcNuUSeXDTT2wc/j2z7UGZWTXPggDSmFwxQw6tOzox5Gy706zVZQZyGy/9kIUcO3/9c5t2ENjVnXmxBZxdr74k3a+vtOv0VRx6hIUW3W+uSWthA7gBgAPO9Bl4WLHgiNRx05dtuPh6KTTwquuVF6VzxVMmbqNULjhq2Pl4fgG7gEhVR50kpdPnSPnchcOmBx12wig/bP/Fdy1QbbjkepOCeVrYEQC1e1f9wayD+ZrUnn6hTDB6Olc8KfvM/V46vdkCzoFd7bL7dw+Y7aOkrPkQC0MdSUXuwo6sc8m0oB3PPWrXB6064vi0h93OX/1UgIA1p5wvpZOnS9vPvm3T2mcG4DXkpXw0sYTvXC+aejevS3nDcp6WsdG755lHpG/rBgPLzrR2Ix7AOhgq5i0W7Nf51EN2SlQgoobYepBjPprmaN7t/WFgUuPlH5b+ndtl10N32WQGOnYlTs6WsQGcrAu65+mH7QMA1cedYYD/1dL2k29J91trpOvVF829cKT0vPWK9Xpk6ui+7S2JAWcSMZ3LnzJgeaW5nxbIhKNPkZ0P/kL629tS1xMA9F2rl9tyrZi/xEJT990RnyP3C/AdqMl1lE6abj06488aefQ3pq2rKJ4gy6ZdIbXGSzMc8FK9Z92tcs6Ma2xbCrxcNu1KOaLxFAs5NX5NSYPxBv2VaWu75eQpF9opZW+y8HGfJG1rSSuqvb5v/W3Ge7PcPHhyqUypmC13vPH/bNa5eHGq1rj3uinzDeD8EwOxOuWlh74udcZ7cs4RF8tJ7/tKet1LoFrLG0/Ja8/8yMLLg4+5Sg46+nJZevk/yaPf+7hN/qT3/YcBnCV2Dc49bWtl8ZmfjMvWeQw4fPr1N1vvyy2vPS6rHrtF6iYfYvIaPg1rcWmV9fB8/r5/kgWnfNRCubnHXCGvP3un4DV59IX/03gWdsrKh79pxkP6ZclZn5FjL/kH2fr676Vnb7tpVpLloyLJY/EZn5CdLa/Kb25+v92dJJ+jL/xfFnC2bVgubzz7Uzn8nL9Ig0pNO+l7WVW9vP7MHdbTduFpN1jovGHlg2aK/Ey7HZfWiVf9Xws4sQFwdMnZn5Vp808TQO2bz6emvT/5mq9aW+7c+oqsfORGM0Y0KEec+1dmfGnk8H/T7KPltOu+ZcBtt5km90oPOOOM7495C3gLHPAWGNnKHfCSDwyBQA3gB4ABqBEFOHUgENWAPwCOKzQbKENaQA2gjAtWADUUcCrUcKUFrMsGOIEaDNiSpwJaV1oKaDkWBThJAyjDO4AWKOPSz0CgAk4FtK48dYpajr311lvOtIBOwD/yVEDrSksBLceiACdQg4F80gLQcp0u/cDNujoArXlqcWiKXVeeCgU4BqB1pQXgBL6SpwJaV1oKaDkWBTgBtNiMtAC01DNXntheAacCWleeCjhJAyjmSgvAiW3JUwGtKy3qGIOehCgPTgYCqbOkxf0BYHblqQOBpKWAlu1waB4CnAwmAiVdaQE4w4A2nA6fkwBOAC0gEf1AyyjAqYCWdLnGKMA5Z84cmxaAFpu59OOBqoBTAS3phkMSwOnbsozVKEPflmXs4duyjC18W5axhW/LMrbw/bKMLXy/LGOLYL+sv3/Afudnjma2kvbLMmck2/rgBz9g+iUpT7nwGfRjCXPmzA4fsp+3bdsut9xyq/PYu33nrvaUF8vM5nmyfVuLFJv+3czZB9vLLh3yJjvooIPsb7GgLWgHDj/8cPsbIrh/+fLlzpk/9vTttNH6DLxkWkQ8jOLCz9+6UbabNecI6l20uN549pnwX2u/Zac7ZP/HF/x/dgrcIORc2f60PY6308tmu7Nvl/VuKiowM7U4pmS0iQb+9e/aYT/tY1pMAyf720d69JROa5ZB4+W16+G7bdz++9uk6f2fksrFx0oYchJh+12326k92e7Z+CZvxmPvECk0D0SyluGuR+6x+8jLdf4OA0YAiQNdHYJXH56MwTUQ7clj/Je+TnPd6hEVThJvu92P/8ru3rvqeWFdTDwI+1o2WfjDgfYHf2avFS+1yR/7W4NczI/IHAKwidD282/ba2Z718Mp+7A90LlbxLDxfb3dfBy38rGJJ/yHRyLefj3rXpP2X92ZPqu8ef5QGa82YPgVu3/37x+Uxvd+SKoOO3YE5MRja9sd30yfHy7jqHqQaz7pDEaxoRDQ/FiTfd1dTvtnS9aWsTmfuoRnc8/61y0kL5s519irUga791qoXzp1ttSde4WtB8Rrv8dMpZzHMGjqkH11zrCpMl10+j4I5GPjGC9mpugl5FajUwkxjTPl22seWOBe7qY+DNWJVIxk/2lLee01Hu91BU0jTuoZ6JJ1Ha9Ia/dG84DHLFm7Z43dbipPecbrCes61sgf2h62Hycaj8tF5mGSGabN3Nj5hiRtazUtV3vdYdpdc+dKj/GyJ2Rr822kUfxLeXCKBZxAQkL9lEMN7JpvXwAvoBgvprStbmyWtSvukeYjLjLTnqY8Yssq6810rJOMl+M6ee6eL9k0quqnyVwDQ3MJzQauMiUs07o+8ePP2lN3bHo5DeGCaT1y20cMsNxpp8XFmxDPTMLhZ/+FfV/12M3StnGF3X7juZ/J/BM/aGDpZbL68e8Y7cnzASjiybp940vy8Hf/xNy2tO/J8pk672RbZx/+7oftOZ07N8mZH77Nbuf6jymEX/jVv9nT6ibPkxkLz5aZi85O7M1JeTI97eM/+pRNY2fLK3Lun/1MDj7uamtfpp1tnHm49HXvkQdvviYtb8trT6S3daNh+mGy4NSP2SlqH/jG5WlvXj3u370FvAW8Bd5pFvCQcxQlBhQAyhAAFXiUuQKAkx++QAriuAAng+pADQJQAyjjCkAN0iMAOPE6CwfSAsqgjzwBVK6nxgGcwA+Cep2F0+IzEIh8SQso45piN6gfwAmUcQXswMAoAcAJGAsH0kIX0Ig8owAhA2lcJyEO0ALhgFmkBfhzrcFJns0GihEAnIBEV1BPDdJqa0tNERyOR1rUC/V6AtC6AtAPQEuIA7QATmAieQJe0RcOAFqgDIHrA+S6gnrQmqQskCffcEA/sJTBOfKM0q+AlvPjAK16oJIWuqgf4UBegBQC9YtycgX1oCWtKECLftLCJsSj/riCAlqOZQO01DXSol64vLmpq9iMoIDWfgj9o+5Th0gLCOoCnFoXeee+5f51BQW0HFMPWlc87hHudfLkvnRNd+vbsozlsLu2xb4t821ZpmaIba9pt7mXfFvm2zKtG75fppYwgML3y9LGCPfL9uzZLROqUtP1pyOZjVz6ZTzMlEtYvnyFvPFGCh6Fz1u69FjTx9gnzz77XPiQ/ezqnzgjvgt3dnbslnVvviKzD5ovZ5x7qb3CzqEpGvuG1g2kLxXuz9Jno48Y3s93xlgDnj4KOINpsUZnV3/nsPXc2gwInVrJQ6eF6aic3z+05lvfQI9de46DeJIODOxNxxvtRmFFlaEc5iFR44WmgXU0gTBFZi3EcLCg1KxdGA7FZj1UAlOUxgWAD1CEwBqIhALzu/ftCL3GE1GDaiksTc38UlxTzzyEaY3EGzAQHQiaSygy3m7WnkPXnMu5xM1X+eSSr51a15wQtA/nFw9Nq4unIK9gKDLrs4YDnr5RIa4e5JpPVB77az9lzD3UePlHRmTJeq54uVKXdtzzfWm65pNSYO451ood7HE/OD8ikQNwR+eLT1lPX6bDpn53v7FSOv7wRGod1jzq1bU1mfJ7wLwIfWZNY9brDAZgpoZNZhvIyRrI7M/W1ioo4/yo9lrTHu/3qrrU+N7GVQ+ls9q2/vkU5Jw830wF+4pU1EyWZR+53YLMdCSzARgj1E891L63b15p3/nHVKi5Qs6GaYvs+etevDedjmsDr1MAJwEvSQLenYQJDakxFqaWDQfWsyQkzYe4AE7C9o3D16ZMkg/rge4NrE1KGubGtOnl+m/buj+kT2l582kLOfV60gciNljL0zQYsrs1U2d3b3vTermWT0h9v9QP2X7b+hciUsnsnnLwifZD9542DzgzZvFb3gLeAu9gCwz/hn8HX8j+kg7UAGTxwzUKajBYjtcZA2D88AXKuAYN1IOQtKKgBmnptJrEAcpEAU48TYAWxAPK8B4OHAckkmcUoCVPoAz5kgZQxgVodSCHtNTrLJwfaWEH0iMttEcBTqAM9iVelAcb0IZ45BkFaMkTIAzMIi0AswvQor/ZAE7SUg9al3711CAtBpoAe+FAWugCcBIvClYzEEg5kWcUoEU/gBmYSFoAZhegDepnYMUFOElLPWhJC0DuApykRb0AOhIvCrApoCUO+vFoDQfyBDATl3iASxegJS8ALbZQD1pXWikP2jqbFoCcfMMB/dyXvJNnHOAEHpNnFKBFP3EoK9ICMIcHrsifsgZwkpZ60IZ1kRaAljpEWtiLehsO6FZYGqWftBTQEgf9lGc4EA/AzL1CPOpFFKD1bVnKethf66Jvy3xbpvcU95Jvy1LW8G2Z1grGIn2/LGMNsd81vl+WsgjfJc1D/cp89suC9k6yvWLFS5HRmptn2z77E0/8PjLOH/OBNStfkC2b1ktdQ6N07e2U7q69csKp59pt7EL/ONxHPvTQQ2XlypXO/t1Ybbm7d2Q/T9OkLcoW6KPylwq8p7aTnJst7eDxIFgN7g9vs8ZgbMhyTaznOSIEoK4e0+vj+scr7OvPPLyZsXEqt/BnuzdUXGgL7mItynBwphOOlOBzvspH7UqWUbbdu/I5KZsxV5hytXfDm3Y60pTEVFkA6FjPdFgwDw+EA9OYRoX4epBbPlF56P4k16xxR/vev6PVeDh/b8TpCvQ5UDpttoWhbOOtypqsOQXHvVDAg+WOh6hzSncUkfF8xrsZIM5006wFWjbnUDs97yiSizwlc/8E2gGXHQJ3onpb6zuJB+tAZGbmQFx7HXde3o8F2tHMdaRscOKVX7aA89WnfijrX7pfOts3yXs+99/mIlMPxwShreoqGMXak2r7bG3PoHkgJhyC56Dnnn8/KxzFeCmmxoOS5kMCG1f9RibOOlIOOf79smnNQ+l1SjmWNR9HveG8UYVA+ej5LrvrseB7ut11pGFcTYeipso6Sb1lPdZdra/L1HmnCOu5Ms2xD94C3gLeAgeCBS6vHtk3TKIr86hnkth/5HHUa4svF6AZ8CkcGODQ6aeIFwU1ADxADeIzqB7+wUy6fDEBNQBeBKCG62lu0gBqKJSJghrqtYUuoKXLA5W0ALTqgRoFaNUDD43od0E9jimgJc8oQEuegD+FMgBa0gwHjgcBLfA1HEgLoKoeqFGAVgEb5wOAXB6o6FdAi/4oQEtaQcBMWsClcFBPB9LSKY7DcdAPoMVuxIsCtOTZbAbSCAykuTxQ0a+AlrSiAC1pBQGza4pX0gJaKqBFvwtwop/6qoA5CtAG7Q/gzAZo0R8FaEmLeqGAOepeUg9U0gL0AkzDAf1ADQXMUYCWvPAaJS0AJyA0HLCZAlriRQFa9AMbeY8DnGhCm+p3AU70A2gVMEcBWt+WZUoLu1OWlJdvy3xbpjXDt2VqiVRfxLdlKXvQTvh+WaZu+H5ZxhZ8lzSPU78sk4vf2h8W2GXW1lv35qvSunWTTJs5x2bZvn3kNK37Q0tUHh39u6S8qNKs81aWjtJkplnsN15KSQdL0ycm2TCDp0wxGQ52bU7Txw2ul1hkvBgLiooll3UJ+9pSv6lZh3Gs4aPv/zv5u8/eaF8V5SmPoLGmmev5A0zza74vmEpXQ1FdakYj/QwktV58QzvKmw/RQ+n3wc4OKaquddo+Hcls4DlrBhUMpygK7pZ8lY8m+ref+rq16+f/7Cu6a8R7x/O/M56GP4AaSP2F19q6QCQFmyWN5mFT45k67OUAHSMSTrgj13ywUVFVjTP1hvrJ6bp03RV/6YyTdGdUPgPGW7yous5OBz3MJgHvXTxda0+70E4fy7S9lYuPkbJZKU+2pPnjRU3QOslarkyHGw62LpmdrJk5lrCvx0zNaupAcajea5p4cO5+4gFpvf0r0rtlvY3nAv0afzzfp1fNTSfP1N6E9p7UOFM+29qBff1SaGAi04WPJezZvtaezrSlwdDRvsF+nGmmP9UwcfZRdrN96xr7Xmc8Nbs72mTFr/9d2reslvLqiWZq9kzbjrcnoWF6pi2eesipdl8u/3ZsfNlGn73kPbmcNiwu1wnwLK9ust6eeHzqi/U5Cbnk8+JvviqP3P5RO5Zyyvv/007ZSxpJ8hno6zJwODMl8sRZR5gzg4+pkFKy0DQrVSbEnjz3BHvSrpbXhp3c08kDTvuMN+usYfu7dvPwxz6pbcrUWbxAWWuz255jbLJplT2naajshyUQ+rB2+d3yuzs+Z+3KdMfBcg9F9R+9BbwFvAXeERbwkDNhMYWhgGtaTQZFdSCQwXIgkMvrDECiXnMAqihAGPTaAhC6oAaDKuppAqxDl8vrjIGobF5b6FdAi34Ap8vrDP3qNRenH1AH8ALcoN8FaNGvXnPoB8q4vM7CA2nZAK3qd3nQoh/AzGAlgC0OcAIc0Q/gdHnQqn70oRtYR97hEAac2QAtaUQBWgVs5IH+OMCpHrTY3uVBS1oAcgA4+l0ewNgJ/Qo4ozxQsYUCWtXv8qDlXso2xS51UacIxv7UfZcHLfrRRZrod3kAo189UBUQugAt+hXQkhZ1zOVBS14pwJmaItgFOLUt4H7CFgBOlwct+tUDOO5eUkCLLaI8UFU/cdEPYKZ+hINvyzIWwf6+LUvZw7dlmXrh27KMLXxblrGFAk76XNqv8f2y+JlBqD/64BzfhVEPztEW+35Zqq5hi3C/LFML/dZ4W2DWnENkyrSZUm+miTxkweEy23xu2brRPNw69qld86n9pR1P2uQun/MJOah6kVw0+8NSXFgir+9mCr38h4HdO6Wopk5YP7B0erMUB6YXZV1NgEjdWZdJ+UELpOE977cC9r74TGIhPWtftUCu3Hhz1Z11qZQ0TZXygxel00qckIlouv1jCkzxWjLZLJ9iXoDDQvMbL/g5SeJ7X0pde905V6RtEgaQeO+Rfs1J5whwt/rEDJjQPDqee8xuNl75MalccKS1S+2Zl5g0U1NKajxdG5JjrOVYMik1bSXH81E+mk/S9wEz9fOuR++za3DWnX2ZPc2WsbmPqpeeKTWnXmBhG6Cu/vz3ScUhS5ImnTVervmw7mthVbXUGPtjVyC9BoBUvkJUPpQxcG/ilTcYOxwmQOCqI080a5V+0GZNvWm8+Dr78MIOsw7nzt/eJawHy/qcuYDIvtaU92zNKedJmQHqep+Gr0+nXq4+4Sxbd60HaSAS9yb3g9qpuGlK6rMBtcHAmpt9po6XzZmf8tg0tlWIWX/ulVK56BjbjlAHAK9A2KB3dDAt1zbt3RSzziav8iIeZjAzGaU/V7pOidzXXH2oLJ10jhw58VSZX3e09A72mKlq37Tx89nW6lqcZ0+/WmZPmG/XCY0UFXMAj0QeZll8xidk/gnXp6dhXfPEd+1Zi5d9SgBWx1/+z8Kaj71du0Qh2q6W16V8QqMcfOz7zOsqOf2D3x6WExAR7z6mcF162T/KotP/TOYcccmwOEk+ME1tX0+nNDUfLaddd5NMmnOszDvuGjnrYz9KcrqNs+JBHqbYZ9e+PPK8v7YA7pATrpMLPnOvVNWn2rhc82GtUWAn64Wedt23EuezcfVvLXBd9tHvm6l7r5QTr/qPxNcRjtgwfZEcc9EXZclZn5Xp80+XwQGz5NfKXw+LNtDfK507Nxv7HWPjHXTUZVJannoYY4dZ07OkvFpOu/4mmXv0FXLqdTfac197OmXbwYFeYUpcpv099xM/l1mLz5MZC5bJ+Z+6S0rKRj68QF169Psft2mcZtLSqYuHCfIfvAW8BbwF3iEW8NPVJiwoBl8AJFHrBiqUAXIykMPAlwtwAhgYvGAQI86DLQg4o6alJA0gFlADQAIUc0GNICCMmmJXBzIBSwplXIAT/UAlBoHjAFsSwIl+oBgACv1AJd7DIQgIo6bYRQ+2x3MRwANUitIPVOJ64/TjwamAM8oDFf1AMfShG6hE3uEQ1I8mF+BEP0CMfEkDCOcCtMBI9DPYCoBzeUBybeqBSlmiPwpwMlhL/UA/gJz44ZAUcDKQSbmjn4FM1xTHqp88uJeiAKF6oKIHuOwCnNRF9JMmZYl+Bp6DIQg4OcY9GQU4uZe479BPGbkALXnxgAKhu7vL5hnMj23bFtTU2vJEP4DZBTjRD+DnHf3YgjYmGNAfBJxRHqjaFgT1uwAt+vVhB9+W+bZM65pvy9QSZk0a0xb7tixlD9+WZepFGHD6fllqbXS+s3y/LFm/jH4N/Yx89MsyNdNv5dsCdfWNMnX67HSyAM4X//D79Of9vzG8X6j5v7TjKZlWOUfm1R4uF8y63u5u6dogj225y27rFH4MEGuw+4Y+hvubGifqffdj9wvAbsIxp9oogLP2+35st3c9fI80GAgTXGtx78vPSffalEfQsDQzcobt5sP2u26XhvOvsdNXMoUlwa5HaLfMlZj2piDUTx46NOwtQZRh8cMf8JKbcNTJ6d3FDZMMcPqQ/bzDTCmaXmvSrG07Igxl3mvqTeeLT0vVkqViIZ/ZD/gLem52PPuohZaVi4+1yXS/abyqDCQOhq5XX7SenMBlwKAN5vdM1+rha611Ln/STmcKpKMcAEYtt37ZRs9X+QR1ubfTlcseRjtaymbPsxCX9Va3//I2W4qs4GYAAEAASURBVMYAW14EPAf3rsysUWd38i/0m073J6kHueRDOeEpSTlUHnac4Ina8ewjNrvMfaS5x7076kMgelQ+wTKuPePi9BnUIQLgGpjZ/sBPU565Zt+Oe34gE6/6uDRc9IHEU7xyP/ase816gAIZ8aS0nr42l8w/pgnuWrPcgmcF1Nt++HVbf4ll7wUz1qChbtmldrO/fZu03Xmz7rbvuw3orjn5PKk+fpn9vP0Xt1qPXuxdE/BcxpuVNsbc5MPOj/tQXzpJrjjok8Oi6Ofl2x+3+4eXX3TaeG0e25TSOLBvQO5bf5s5PxU/W1s7TECgvR2+P/Xp+bZHZIbxGp1be5gcXLvEwtSbV3/RFTV2H1Bqxa//Qxae+jFZcvafG7OZpXpW3GOnHV316E2y8LQbzNSjn7Fp9Pfulcd/9Ol0enhwnvi+f5cjz/8buw+PQV6FRSXpOE/8+LNyplm3c9bi8+2+zp2bhPU+ySdpIO7Dt31YTr32mxZwAjkJClvZ5l6O+y7a07ZWnvnlFw0Q/F9y8HFX2xfnsY7nQF9qbeYk+Wix7DNlS3j1ye8L3q6NM5bIvKXvF+Bgtnyev/+fbXzWAOWFXfEmzdUm5M/annOOfC+bZobZAXn6F//Dmc5z93xJjrrgf8j8Ez9o43bs2CCta5+V39/5V3Zd1UnNxwovwsZVD8pbL/zSbvPvd3f8uZxibN844zADq//J7h/o67aa+aB3g9qfcln5yE0Gav+pnHzN19PQ057o/3kLeAt4C7yDLFBg4J22ce8g2ftf6pw5cyLX4LQDgQYOAqkAJFFQA8AAlFGoEQVlFHAyEALUcHkKKNRQwAlUckGNIGCLApwM6gI3gYTZ9ANlyDsOKingzKY/CDiz6QdQRU2xGwac2N8FmLE/gJn4cVBJASf6GcgkvXCgDNGvgDMKMOsUr+hnIDAJ4KS8XYAWGIl+6htlHQUIw4DT5YGKfgCtAs4owEz9Ik/0o4lyCgfqA3VfASeA2QVoyQtAroA2m37qYhSgRX8QcKKf+OEQ1B8FOMP6gaAuQBvUHwcIFdCiJwrQUhexP+/URQA59S0YcgGcQBkFnJSRC9CiH0BOiGoLfFuWKQHs79uyjD18W5axRbAtSNIW+7Ys+cMavi1L1TPfL8vcb7TF7+R+WUdnt0ydMsl8509MA85c+2X0Q+mrUC9457uaF7bhRWhsnJIxWszWBz5wjdXx4x/fGRNr5KHt21PTieqgJP1CXrRv9F94py/4bgjl5RVSYqZy7DRQimvMFnh4LOpBx/C5i48f7u0UPp7rZ7yZGsumyq7eNukeeHu9TfGAZGpVPMF0ystcr4f4haXlBjqZmVAM+MBj7Z0c8Fxjuk67vmREXcJm+8zvusHe7thLtdN+mjbAem1GpBWXQL7KJy6PpMdsGdc1WMgGbBuvsL/yyZd+yrig2MxOZKY71ull85W2poNNCsxvwvG0u+YV915o2llgJ1M7D5oHh9+OgBc8D4ncve5WaTUPiVSX1Elbz1YncDqQ2tpstmLq0gYDt3r2mgetDSh0hVrj4dlvPC3xFowK9dMWmrUv9whwbSyhrLJeaicfbNf/jMsvLg88Sytrp5jrWSdde1qdUfdHPlV106SsqsFMCZuajtcpJMFOtNY0HWTWBX3BWd8SJCEVNZOlZmKztG1YYaCv+/ujqKRc6qcusFBWpyJOkraP4y3gLeAtMBYLvLGmXZoPrjOe4aOfXmX+ypHLyyXR5D05k1jJxImCAgw4ADUUcDJw4fLaCkINAARQJvzDmYEKBZwciwKcAB4dCASQAGVcgFOn6OQS4560TwI4GdQFypA3+vkx79KvUCCJfgAU+qMApw6qM6CSDXByDQywRAFO9APFGBxS/frkklaBXAbSeBoffdgd/VxHOAT1xwFO9UDFmzIOcAKYqW9RdZEBrySAk7qIfgCt6nd50CogxE5xgBP95EsaUYCTvLA/GtEP4A8Hl36XByr6AcyUKfoBx5R9OHAvYTP0ZwOcQf3oCwf0k1Y2/UkBZ1A/bUEYcJI/9idPvZewbThQn9XrjDpIHBfgRD+wmjpOXeT+DQfflmUsgp18W5axh2/LMrbwbVnGFuG22LdlqYdNfL8sNbOG75elZnYoNbCM72m+5+nTuABn0n5Z5u7zW+NpAWbq4JU0uJaNSHruWOOxBmdL1/qxJpOX8/EKc3mG5Zo4sG9w28jfCbmmE45fe9p7rJdoeH/wMx5yuqZjcP9otwFV2dJLCpv6zVqxYwn5Kp+xaNBzbRm3RsMVjTfW9/2Vz1h16vmjKeNc67WF6VmAuuoZz3fA5mD3pvHMIqe0eUgk7kGRA6mtzXZheBgCz+JC0KMyKl67mRY1HE5631fS60iGj+nnJ4znKB6HGoCtrW9lPuv+XN4Brdlg6/7IB0gbBrUV1ZPk/E/fHXs5u1pelYe+c306DlqZUnYsgfU5U2t0RqcC/MxWF6LP9ke8BbwFvAXeeRbwkDNhmbmgAMAjDDhd02oCY4AaDGIAUIBiLqihgJNjcYAToAoAAfAAxVxQg0FpAAkBQMXgYzgANRRwAqiiAG0QcKIfqBQHOLPpZ7BH9QNluI5wUMCjgC3KAxL9vNAfBTgZlMb+AKE4/Uk8BShD9CvgBDC7ACf6gUoK2CjzcEBPWL/LgxP9AGbKS2Ep6QaDAtrgVGjZBtKoN9n0U87ZACf3ADbA/ugLB4UCqt9VF4OAE2AZ5cGpA4HUSdXvArQKONGfBHCin3vJpZ+yVkAbBQi1LaBuqP6otoAyUv3UCxegBbCRZxzg5IEDADPXin7uJRegVf3Ukai2QPUHH9aI0u/bslQN14dNfFsmtm31bVmqXvi2bPg3gG/LMvbw/bKMLf6Y+mWFRT0yYKYj6zAzs4ylX5ax3ti21qx5xfZNx5aKP9tb4J1ngd6WTWZNwLJY4YMH2NqrsWL9QW8BYwFfr0dfDQZl+CxKo0/pj+fM7RtXSHFZZewFd3eO7YGM2MQPwIOAROwSF3ZuWRN32B/zFvAW8BbwFsiTBfx0taM0JAOZDOomgQLqNQeAACq5oAyADZAF1AAuAFzCgUF18mPQUAGnC2ow6K5QDMATBwizTVHLQJRCGfKKgjKALuBHNv1AIKAM+qO8zjiOfmwcpx/tCjijAK0OpAHHAFQuwKyAUPUD2AB24aCAMwg1XIAZ/QAq0gVWuwAnwC+oPwrQMiiK/bPpx/7Ey+YpoIAZ3VGAOaifukidDQcALfqDgNMFaNGPXam7CkupI8GAnShHtKGfsnR5cAIGiUOaCjhdgFkH1QHB2D9KP/cS9102wEld5HrRz70UBswKCNGmgDNKf5K2IKgf+1NO4aCAM5v+YFsQBzh9W5axsG/LMrYItgW+LfNtmdYM2mLflqWs4ftlWitS69kG+zW+X5bql61dt0kmVJWbvv3IKRmD/cq4fhl9RPoh9B15p9/Bi/4TL0JtbaM5lllTK1MyY9/q7+8z/bJUX4Q+EC/6crzo99B3451+lQ/xFsj3dLXxufmj3gLeAt4C3gLeAt4C3gLeAt4C3gLeAvvPAn662v1n67zkxMBCEigAYAN88A5gA1bEAU4GDcYKOBmUBioxEBIFeFQ/g1EMSjB4QtxwCAJO1U/8cAhCgThAyOAH+hTQRgFC9KMx6aB61EAaMAz7KyAEdjEQEw4KCBmsyaYfaITuKA9aABX6LeDcbQBn20gPztEATgCVSz/5qP58AE70A/VIN9+AE/35AJzAduzvApzqjUsZRwFCBgiDgJP6T/0OB8qagXziqzeoC3BqW6D2jwKc2hagP2lbkA1wci/F6de2AP0u2K5tAfbg3uZewm7h4NuyjEVoT3xblrKHb8sy9YI2M9eHNXxblvJGp932bVmqX+n7Zal7Svs174Z+WU9Ptwz0d6dhpLYaSQEn/TK+57OFnp6ucYOcpO2Dt4C3gLeAt4C3gLeAt4C3gLeAt4C3gLeAt8CBagE/XW2OJQMU0CfVs0EBBsIVcAJlXIBTB3KAJwAG10BGUk8BACJQJgg4XVAG/UkG0oAyeGwo4HTp10Fd8okChKoffQBCrpHB3XBgIIc80R8FqHIZVFf9AEJgkQvQqn4G0rA/r3AIQo1sgBP7U0eiAGGu+slb9bsArQI2HQiM0o8tgHbYHfszoBwODDQTj8F6ytIF2AB+1B3qLZCRtNAXDuRFWpQ9gI20wvoVCnCfcAztUYCQOEBrhQJR+rF/Nv2kpR6QueiPArTYA/2k5QKEQQ9U9GMLF6DVtgBbYgeXN7faPxsU4F7D/sTnYQHyjGoLqEO+LcMLJuVN7NsysbMF+LYs1ar5tizTuvu2LGML7dfQb+H7iPba1a/x/bKMzfTBM+qR9mv+GPpl9Bvx5AyGIOBM0i/bsGFD8HTndreZZhNPzrKyCufx0e4EcJK2D94C3gLeAt4C3gLeAt4C3gLeAt4C3gLeAt4CB6oFPOTMoWSAJ7kAwiDgdEENHVRHAoAHSBIOSQfSwoCQATcX1ADwKNQgP5cHJwNRxEM/A1FRgJZ0GAgnH9JyATb0A1tyAZwKeFz6sT/5AlzJE4AWDuGBNPS7BtJIC235AJwKCAGcqj+sC8CJXYFZcfoZVCceg2BcX5T++rp6qW+ot/qxhQsQugbSGHALh6B+ypE8w0EBbS6Ak/qFtjDgJG3sz3XmAgjR5QKcaKIsuUej9AP8yC8b4KSuEo+6i37yDOsnH+JwDUn187AAtnC1BUHASRxe4YB+rlEH1Ynj8kANAk6gK/FcgBbtvLg3iONqC8IenNjCpd+3ZZnSCrbF2hb4tsy3ZWFA6Nsy35bRatBn4LvE98tSbSjfSb5flrJFsF+W2pP9f0fHLvOd3mdB51inriUdDziz29zH8BbwFvAW8BbwFvAW8BbwFvAW8BbwFvAWePst4CFnDmXAwAsDUQo1xgoFGNgCljDY6QKECjWAFnGeAgyqkxbxgRqk54IaOpCGfuJEAULiKeAEfrg8OBmIIh6BOC79QcCJfuK5PB0YyFH9QAHiuaAA9gcGKZSJ0k889RTgOl36ya/OQEIFtNkAYZwHp+oHAmKHKP3kiX70oCvKA5J46Of6SMsFaInDC/2k5fIgTAo40URaQf3h24Jj2JVrVUAbpZ945K2A06WfONQh6inX6NKfCxRAP4PFpMUrHNBPHPQD6bBZFCAkXlB/GHCSNnFy0a+A0wVoaVNIj7YgSr+2Bdzr6CdelH5sy72ngNOlnzi+LUvVEt+WZe4W35ZlbKEenMG2wLdlFbbdof3xbZnvl/Gdy3eJ75el2g2+x3mNR78s0zJl38LrMonn5ezZs21i69aty56oj+Et4C3gLeAt4C3gLeAt4C3gLeAt4C3gLeAtcABbwEPOhIXD2nYM5ABlmPrRBdiSej0xqM6LASLScgE2oAZekkkBJ1CDdIBsYcDJJZIW+gEecfoZoAkCTpfXFnEAJECZKP1hwAlUSgo4w/rJB/0MwKt+F2ALenAqIIwGnHVGv5h1Lrc7AZvqZ6A7CeCkvLA9rzCgDepnkDwXwOnSr4CKcsX+LkAYBJzoZ1Da5cFpAaeBvUBA4rj0U0+xP4AtG6BFW1IogJ3Q73pYICngpB5yLwX1Y5dg4FhYfxQgpG6jH5tiCxfUIC3y1bYgm/5sgFPbAuqFqy1AP3ZVwBkFaPVhh2yA07dlmdrh27KMLRRw+rZM7NTevi1L1Y1gW+zbMt8v0xYj2K/x/TKx39H0Cwjj0S9Tu/t3bwFvAW8BbwFvAW8BbwFvAW8BbwFvAW8BbwFvgZEW8JBzpE2cexgABsq0tbU5AacOBAIIGQgERLgAIUCDgRAFnC5ApVAGwKZeZy5AGIQaCjhdXltNTU0WkABl0O8ChEFAy3GAl0s/UAAwhn7SculXQAt0xNuDAR8XYMOm2EMH1bmGMOCkMIAyXCvXFqVfp9ilHFR/FCBEPwN0UfqBRIAs1U9ZJtEPFAvrJx/sD6zONhCIbdEfB2gZeFf927ZtcwJCBbToR3eUftKxgLA4BTixvwvQYn/0A/woSxcgDE6xG+fBiV3Jl4D9XYBQAS11knqP/iivIe4l7hfiuPQroEU/9SFKP8eTAE5skUtbgP44rydr/xj9XBt5Yl/V72oL0E9aCjipi662IFf9vi1LQQ1tC3xb5tsy23iZf74tU0uk1rP1bVnKHr5flqkXvl+WsUU++2WZVP3Wu8UCJYWlUllcLd0De6VnoOvdcll5v47Cygk2zcG9I5cqyXtmQwkWlpbLPv56e8acRUFpmRSWlcvAnl1jTutATKCgpFQKK8zv3T07xfygPBAlDtNUXN8kBeZ3FmHQrD2cj3IpLK+QAlNnBjv3yL6Bfpv2eORjE367/5mxoEKzBvQgazYHyrugsEiKG5rS6gbMNOqD3ePbrtGGFheWSFd/Zzpfv+EtkE8LTKiqlGoz3rKldVtksjXVE2RiQ136+PpNW50PzKcjjHKjvLxM6s14WosZSxsc3H9trea7x4wVd3QmW6u9qKhQJpnxv3bjQNDdPfbv0VGazJ/mLeAt8EdkAQ85cyjs1tZWJyAETDHgmRRwAi4YLAcQhqESx4BiCjgBQS7AlstAGlAG+AYUiwKc6A8CwijAqYA2ClAFoUwSwMnAD0AGQOWCMpMmTUoDWvS7AJsC2qSAEPAVBQgBroCgJFADKEZ8IBZlGQacVC30A6C4tij95AW8zKafMqIs4/RjT9VPvaGeuQChAk7V7wLMAFrVD+CkzF32p64m8XpSKEC63Esub2gAJ/qTAM7goLrrXgoC5r6+lP4oQJgL4CTdlpYW572Efm0LyAv7u+4ltCugjWoLKGdtCwCc2D9KP/YPAk6XByppKaD1bVnKGx0b+7YsM124b8t8W6ZdIt+WqSXEPkijbTHtOW2G75dNSPcrXf0C3y/L1J9CM+BLv4C+0lj7ZZlU/dZoLcD3/oxZc6WhabK0tW6RjeveGJEUx6fPnCOF5jdZ69aN8uZrq0b8Xhtx0ih2lBaWy2VzPi4Ty6fZs9/as0ruW3/7KFIa/1PKZs6Vwd5u6WvZNP6ZReTQePF1pkEulm0//HpEjPzvbvrAp6WvrUV23P29MSdee/pFUj57nmy95Z/HnFY4gZKJU6RwQo30rH01fGi/fZ5w1MlSdcQJ0vr9r8r+BNGjvcDGKz4iADlCX+sm2f5ft9nt0fwrnTJDapddKkWmDAi7Hr1PutYst9v5zMcmOM7/iqpqpHTaLOk2dWlfX29kblWLjpHqE8+WtjtulP5dO9LxiuoapfHyj6Q/dzz3mHT84fH05/HYuGDW9TKtco7cuOrvxiP5vKXZVD5dJpTUCm39uyHMbZ5poF69PP38i++Gy4m9hqsuOU8WHzpP/uKL/xoZ7+zTTpSTjjsyffxrt/xA1m7I/3fmpecvk2OPPEz+z1e+JTvax/+hmarKCvncxz8oDfWpGUvWrt8kX/v2D9LXGbcxb85sueH6q+SBh39nXk/ERfXHHBY4aslCM/7aJWtef8tx1O/yFvAWcFnAQ06XVRz7gBqugRyFMrxzHI+ybFBDB9XDgJMf3kAlBocUaoxlIE0BFZcD1HDpV0Ab1E/e4QAEAowFoUBYP4BT9etAoAuwAVrU6ywOcE6ePNkOCpEP9ncBHmzF4BH6s3lwBgGhC7ApYCZNdFNOcfrVAxXA5gK0qh/4if1d+hVwoj/Og5NrVP1RgBA9DMRSpugeC+Ck/NGPPgW0Lv0KOAFscR6cgEvAfBwgVECLfh0IdN1LwEEFhNxvUYB5uP5W56A0+hVwop/66AKESfRThsRDP7aKA5zcS9Q34pBv+F7CTtxL2B89AHJXW6AeqEkAJ3EJvi3zbZmtCOaftsW+LctMUevbMrHfp74tS90lvl+mrUXqXfs1vl+W8uZO0i+rqio2/YJUv3Ks/bLhpeE/5WqBqdNnyaIlxxlOlvr5O2geQAxDzua5h8r8hUfIrnYzC01Xpxw8/zCprKqWl154KjK75uZm2bhxo7P/GHmSOTC/7kgLOB/bcrds7HzdeHEm84yIS3O8jtUue68M7G6X7b+4dbyyOCDT7WvbKn3btuRFG3378QoTjjlVANHjAVDHS/PbnW7rd74sUmh+b13/uTFLqTKAt7CiUtof+KkM7GoXvBc15DMfTXM838vMQx41p14g/T//jgH8WyOzwvN1YLeZxSrk5dy/o1VavvOvxh4TpOn9n4w8P58H2rq3SFHBgT+sedyks2X2hPnyzVVfyOflv21pvefs02T2jGl/FJAziZF/cd+Dcu+vH5GzTj1Blp16fJJT3hFxTl56lAWcv37k97L61TdkT4f3mN5fBXfVxefJrj0d8s9fvXl/Zenz8RZ4x1ug8B1/BfvpAlyAEKihUCkOygS9tgBnwCwX1JgyZUoaKgGyXFBjQtUEC2UYiMX7LmpaSgWc/KDasmVLJOBU/Qpl4gAnUEY9IMP6GQhUqKRQxgUIgx6oSQCn6ncBNmCSDsQqYHbp1yleVb/L/hxT/aTBdbr0M6AFFMP+eD1FeaBSlgqVtm7d6gScCmi5DgAtwM6lPww4Xd64qp80AYNR+pN4cHJLTZ06NStgBsApYFZAGwcIqSNRHpBAFgXk2J37JApwcj8RPw5wqn4AM3m67iUAp+rPBmh1IJOydNmf+sC9hP2TtAXoV8Dp8gCm/qAPwByln/qlHrSA3ihAiy7uO+wf1Rb4tizzReLbsowt2PJtWcYe+rCDb8vEPqjEwya+LRPx/bLMPeL7ZRlbaL+Me6TPeMOMtV+WSdlvjdYCk4y31S7jcfT0E79xJsFvjoMPWSx7zMD9U088KC88+4QBnXtl2oxmKTWgOiosXbrUPuAWdTy8n2kVSwvLZG7NYTKwr1/W7HxOOvp2SlcIchKPF6HKTGc7veqg9GdNs6yowu7neDAUFhTaPDg+pWKWOVQgFcVmaYayzDSSwfhR20xBal8AOtOPTH82HpXhUFRdazzAZts44WN8LiguMa/UeUw9Wzp1lt0XjmuPTW8W0osKxfUTRaevjYozpv1D17vj3h/KnqceGpGUtQNegCZeyaTp6esKR2Q6T3udDnvhRaiehHpeAfGMnUcEs6+kaaqUTJ4xLC/siRY9J10+7AuFfJVPKNnYj2l9oVhWC+Xv0EnU4DUx3WvJpGnpFGyapi4RstWDuHz2DQ7IPvMgqRmUSaed64bau3TKTOnf3iq9m9ZawBn0gEyaD2WPR2hxbcMwGbaeOOxk83bUq2EnBz9w/w7df+nd7BvyZtX7G29pgl6bLYv0CUMb5rzu9a/Jtp/cKIPmYZBwwK77+kc+NB+OV1heKaVZ7vXwOcM/FxhOXShPtvy3/HLtcAgA9KT9rCmpl4ayyfa0ulIzW1dxatprdhQMtZO804ZOrZxt0kt59w7PRySqrdV4ce01x2jzi0w+BLZ5Mc3uaMP0qZNlycJDhClSw6Giotz0z1PXMWvGVDlkbrN90DwYr9SMXSw4xMxaYNJxBaYmnX/wHBunzIx5BgOfyYPfQwS2eXFOOGTLJxw/+LnQPISQyqdAys142aFGTzgwHWpYH9dO34vAcdJgulnO53u+tqZaZkybEk4q8eeZ06fInNkzRsRnfLTHjMP10a7EBLUJ6cSFhrpaU8bzZXLTxLho9hg2cNmf8l00/2CpnpB62D1rQoEIWs6LFxxixqQG5dEnn5XW7cbBwIxlB8PUSU1y+KJDE+nkPMqGMqEsgoEyOmzBPOG6RxvQMu8g0w8xaVN/eIVDVD5J6pumpWUYdf/oNRKfusu9Wl+b8vTXNOLsRlliI9N1kyJzn7HNi3zDYdLERms3Gz980Hwmf71HsC0eyezzwVvg3WqBVOv/br26cbwuoAZQBjjQ3dVtoYwLULkApwtqTJs2zf5ABmoAUlyAx0KNxgb7xZAUcG7evNkJeBRq8A5ABCq5ABVAj4FMOjEM0LgAIV8iQCUGt0gDKOPSD2gBytDooz8KEKqnAOlu2rTJCRvJC/tTDgBOgJFLvwLOOP0cYyCfNClDALNLvwJO9AOUojw4SavCPM1JwP4uWAoMAz6hXwGnS78LcLoAs+pHN/pddRHASXky8KaA1lUXKUsAJvkAxaL0M+CP/lwAp+thAfSgn7pIXtQzl37qIfcT8eMAJ/cS9uXauJdc+hXQoj8OcCogpC6Slks/9YE6a9sCM0Uw91KUfvVAjQOcqj+uLVBAS97UQ8qT+OEQ1E9Zuh4WwAa+LUtZzrdlw2uQb8sy9ggDTldb4NuyjL3Y8m1Zxh60sfThaGN8vyy1tvgfS7+M72b6Na4+XtJ+WaYm+a2xWODl5U87+0qaZnWt6SObftXmjWvtrmlmytryof78pMnTZOP6NzXqmN6vnvvnwmC7hhsWfMluvrn7Zbl/w/d1t3xw3hcM+OyQ/sF+mVQx3e4HijIlI4Py58+4Vg6qWZyO39a9WX6x9ibpHeiWhXXHyunTLpPBfYMWAuzua5fqkjozXlYgqw1UfWjTT9PnxW1M/tBfpgFaSeNkmfzhz9vovRvfkh33/chuAxsbL/mgFNVk1iJjqk6m7AyGpms/ZYEIAARgR2DdwpZvp6b/A1jVX3BNespPjve1bJTtv7ydTRuANJM+8BkpNN61hN5NRse9KR12R57+cZ1AWULvlg0jpqvlOB6e2MT8SDaLOg5Kx/InpePZR+w5/Ks55TypXHh06rP5TRWGQROvumHE9LuTP/o3snf1C7L7sfvT6VQvPVOqDjdeQeb7wwaTFrYHqDUYuzNVrQYtHyBby63GU9GEfJWP5pH0veKQJVJ7xkXDpoKljBsuvHYYoO54/nfD7AZU4zq6XnvZTu/LWqYErQsTr/iYFPDQgWlbo+pBknySXkdcPLU3cQCx+nnXI/dK1ysr4k4ddqz6hLOkasnS9D6m+6Xes75pmZniuO6cy4fVi8pFR0vNyedJx/NPGNs9mj4vbqPGTC1baaaY3XrTP6ajNV39CQt5t/34G1JtvIGrjjwpfayB6aGHwrYffE0GzDqjBOpi9fHLho7IiOlq0wdiNgDXDe+5Jl1+RO3Z8Ia0339HzFkjD13afIN9yIMj2jZqrAtmXSezjNckbR5hR0+LhZ2ssfvbTT+z7eCcCQuEqW539ral22TazHvXf1fWd7xqz8vW1tpI5l9ce335nE9I09C05MTXNr93sEduXv1FTSLR+/FHHy6XX3iOhXd6wpPPLZef3v2A/Qgc+ccvfFZeMdNbAuIUirRs2y7/+vVv2zjvv/xCOebwRXq6dJm1EplatWVbm9137RUXydFmmsxgWGU8+L7zw5/b8aG/+uSfSGN9pr0nPwL9nL/+0r+nT8uWTzpixMaShYfK9VddLJu2tKRhbK8Zq/uv+36T9h79wBUXG8A2f9g0sl/8y09YnX//b/8pZ558vJy/7BT7mT44a0lWmQfJaU65pm//4GcRubt3//1ffcJCUo4CNP/fTd9P2819xvC9eL+iSZtzruem790pb63bmI4I/LzhuquMzor0vmD5pXcObZx+0nFy8blnSGvbDvmXr91i955y/NFy0Tmnp2EvOx967Cm57zfJ2gvif+GzHxsG0bWc0fr17/zQ6vvfn/+kHZsjPoHrueX7P5U31m5I7Qj9x/P3Ux+5VgbMQyb/+rVvS/uu3RbeferD75epkzMPYW1p2SZfuel7zr5zKEn7EWhHvVRAig7g4M7de+Qfv3KTjQMEjMsnSX0joST1+obrrpS5zbPk+ZdWDbuXbrztDtm8tVWy2Q1bU18JTBOstt9o7oX/uPG21H4DLD97w3XDAPbKNa/Ld370c3tc/1Fn95oxSn6PML00AWj9+X9I9RE0nn/3Fni3WMBDzlGUJGCBwV/gAF5brdtanQ0wQIYXAznqwemCSjNmmA6IATwcY/DLBUjCUCOJB2fUQBq6gTK8Az2iBl+SAE7MN336dKufhhOQ4tLP4B7AjkHgOECbBHBiqyDgjAK0QcAJ+AMmhgEhXx4MxJImHTNAlku/Alr0Y3terrJMQYEK23Fh6ioXLFVASz1CUxSgTQI4g/rRDWB26VdAi/5sgBNASAAwu/RzHPujH8CJfhdgc0GBsP25N7A/dZG80B81EJgL4CQf6r9LP4AT+Kf6AaZx+rEx9cIFCLEnUBj9wFTqmUt/ENDGAU7uJeqH6neVJW0BtkW/AlqX/iSAkzR8W2aru/3n27KMLXxblrGFb8sytvBtWcYWvl+WsYXvl2VsEe6XdZhpvSorjAebjmgNRc2lX0a/zYexW8DVVwqmWm68igidHbtNv67UTG17jAWe04wnZ9nQsWD80W7ftfYW48FTJmfPuNoOuv/kja/apLoHRnpE4YHEQPiz2x6SLXvXysL642zcJQ0nWsDZ2rVJnmr9lSyqX2o8QxfLaVMukQc3/SQt7ZltD8rMqnkWBJDG5IoZcmjd0YkhZ9udZnDQeHo1XvohCzl2/jo1eBYEdnVnXmwBZ9erL0n36yvtOn0Vhx5hoUX3m2vSWtgAbgDggDN9Bh5WLDgiddzcHw0XXy+FBl51vfKidK54ysQ1a9kuOGrY+Xh+AbuASFVHnWS8wAyInrtQut/I7xp323/xXev11nDJ9SZ/t6cfoHbvqj+YdTBfk9rTL5QJRk/niidln5m+E+80ACdTl+7+3QNm+ygpaz7EwtBhF5TlA3ZknUumBe147lG7PmjVEWaAfMizb+evfipAwJpTzpfSydOl7WcpiLGvvzedcl7KJ51asg2uF029m9cZCP3D1Elaxkbvnmcekb6tGwwsO9PajXgA62ComLfY2q/TeNIyJWrQmzO2HuSYTzDPXLft/WEgWuPlH5b+ndtl10N32SSC09VmS9OW8f/P3pnAx3HU+f5vSZZky7JlyfIdW7aTOE5i577v+yAHuQghB4EQWO7dZdllHyz7dvfxWJa3y7KwhDMEAksIBAhJuELi3PfhHE6cy7fjS7Z8yNYtv/pW6z/TalX19Ehjx3Hq7894eqarq379r+qaUn37X20AJ88F3fr4fHsDQO2Rpxjg/15p/vm3pX3JIml79XlzLRwiHUtesctGjz7uLOnasDYz4Cykgf3bFjxmwPJCcz3NkVGHnSCb7v6VdLdE0KsnFq3Z9vICW68jZs+z0NR9daSXyPUCfAdqch6VJhq6omF8+kGOvX82fR2RmadNvlTGxG4c0aQAzjuW3ShnTr3C9rXAy9MmXyYHN5xgIaemGz283kSD/sH0te1y/MTz5Jy9rpbvWPi4Q7L2teTl66/vWn6TidysNjeeXGQi66fLLW/8py26qzd/naqWtHcivy4zy1fyW/bwE8/KYwZuHmpg5RhHNCdRmCwr+uf7H5V2M0cxfa/oRpnTTjjaAk6A2F133ydN06bKycceIR+99nL531/9b1s8cxqPPPmsPLVgoZlvKLcAbX8T9Qk4e+DRp+Q7P7rVrDhVLZe/+xyZaKIMv/696Oac9vb8+WQpJ+1c4/smTxwv9z74mLSaZxMC7gB6ac8BZbyVnHN66PFnZNaMaTLZgDSgMBF4c/aZFS8m0/YIMw/GsrQzDUA++MA58oErLsqBxUIZTDHngV86OjotbETDkYfMk+ved4l84cvROIBowo994AoDpysthL37vkeE8z/miL7fykQhPAcUiAs4+49v35Tby3dd3T3yPQNxN23eKocffEDRy8z+940/MwCySq6+7AIbhajP4dy6NT9WWWPg+f0PPyHLV62R/WfPsvVz3ZWXyP/6UtTGc4LMBs9w/ei17zVzld3yb9/8gQWc7L/+ykst4Hxx0Wu2XR9rznWuiR5938Xvkh/fGvWp8Xxc25ddcJYFnMtWvin3P/KUXHj2KTkYremzlpPW3opp16YZyqFz59gbDh57+nkL47vNtYsV8tt/fPtH9kYGoOw20+5/eMuv7XGbt+SjaGl7ROguem2xPPXcQuv7A/bbW445/GDbxu0Bff8RRcocJW3/tcXLBR8HCx7YUz0QIGeRNQvUAMrwzgAAKOP6oxkgw2QgEEehRvLHlqIBnAAS9vme58JEGsCCvIjaAsq4ABvgibT8sPsAJ1ADKIN+C2gNlPHp5w7zOKB16d9rr70sbEEPUMwFeACcTBKTF4CTyRqXfgAnAAr9vghOfMXkO/oV0Lr0A2hVPxDXBTjV//iEPPCZSz+AE+CI/kKAEwCIfh/gZCKQ80Q/kUAAWpd+AK0ukeoDtHH96AYwu/STD/mpfurA5X+NxkX/ihUrnLBUAS36FdC69OMvXSKVa4RzTbYfyqH9kxcwD5Do0q+RDuin7XANuPRzXaIPw/8uQEj9cC1RZhZAi0YFnEn96AGKkVcaoFUoQHquXcCkS78CNvTjf5cvuD64liiTfOhbXHlxjho15IvgJI8sfRn6Q19GrZi7l0NfFjnC/B/6spwrbJ8f+rK8P0JflvdFGJflffFOHZf1mrvVTYxP3hFmq9hxWb+Dw4ed5gGenYqxvPCcuYebsV2HLFr4rF2utsqMH0tlW83StFiXgZe9O3pshFFa3rctuUE2mGfOYRpddOBYE9ln7NdLv23y6bTff2TOv9glcOOQc2HL43Y/S92+aLa3dW220U3lZknGHlN2Ies2y/tiO8zfecDJ7pb1Aw6pnNwkvSbKa/P839p93b9rNs/i+4SMPPAISUJOEmy4/Ud2aU+2O1ZG0bHV0/eVsuoRFlZuvu8OdtmyXMdvNGAEkNjT1ipE9RHJWGrImTtPc952vTirqP9/RNttefAP9svtLz0jPBeTCMKutass/GFHy92/tOdKlNqE6z9nkEsUmdE/J/8nYBPWfNv37TmzvXl+5B+2e7ZtMXTK1E9nOx93Wv3YzDP+R0Qi0X4dy16Tlj/cmjuquml2Xx2/bMDwK/b7LY/cLQ3vvlZq5h4xAHKyzOv6W76VOz5Zx752UGw5uQIGsaEQ0PyRKzva25z+L5StrWNzPG2JyOaO5a9bSM4zVoG5ve3bLdSvnDRd6s661LYD0rXc0QePCxWQcX+vaUP2tS1ahpNn8Oaug1geNo2JYmaJXqy4Fh1lxDLO1G+nuWGBa7md9tDXJqIU2f6nL+W13US81w1rHHBQR0+bLGt9Rda1rzQ3eEyTpVsX2e3G6gj46QHLWhfJ083z7cdxJuLyAHMzyVTTZ67c9oZk7Ws1L1d/3Wr6XXPlmucuR9cpUaWDsfPOOtn8zSFyx5/my4OPPW2zWGXglsuYHyCSUQ3IhxH1Z5qb3Hr77+2yqgtefFlmTd9LWNaWZVw3m8i3X97xJ5uWSMKG+jq596EnbEQlYA/I2bzR3HhlfhqAddjyldHvk/3Q91+WcuLp07ZfX7Jc7rz7fpvkmMMPMtFo9WnJnfvufehx85veZSHnvQ8+LoeaSNVpUybZeUzXnIszE/PlPQa24kteM43fxo9jjm2YmY8pjPtPNYATI5pS64Nlc4GfvKjLIw6ea5cWfW3xslyUKeAOOJW0s0453qQ/UJateFMAkDpXBZiuMjeTbDDzZm8sXW61/f6eB5OHF/y83ixNi+E3zi9Zz8C3f//WD+35N5q5v6XLVwnHsHxq0qab9nXmycea+ecO+VcTUazP9STSuGnaFAvy7r7/EXsYPt53ZpMA1rMagJXz//p3b7aH0Eb/+i/enzu8mHLS2lux7frRJxfIL++MrqfnFi7K6SnkN6KXMfzeaaBw0vfsmzxxgpkPb5fvmshZbNXqdfJ3n7xOeIaqq73ccNPPZcnylTYt132w4IE91QMBchZRs0AKncgEagAPXIAhDjWAEEAZ/dGJF0deTBRjy5Ytc8IuoAaTZJQN1EgDnAo1fIATqKFQBkALvHHpT0agUq5LP4BTAS1QxgW7koA2DXAqoPUBTmCkQhkALfDMpZ+JNM4BQAXgdC2xi8+nTZuWA7RAMZd+F9Rw+SIf9eQHnPhKATOAFnjp0g+QpA2hPw1wTp8+3cIudOMzl/4koMX/Lv3oUkDrA5y0VQXMQEt869IP4ARMot8HONX/tEkGlrRZl/74RCDagcwu/RHgBDCbgfby5U5ACABFP9cSgBbA7NIPRKTcNMDJPto/+oGp9AUu/XFAy7ULYHbp57pUQOvrC6gfADn6FdC69GeJ4CymL+N6In3oy/rfbBL6suhmmdCXRb8loS+jV49Wdgh9WeQLxm5hXBb5IozLIj/w/2DGZfmjw9bO9EB3d5fNfryJiJs0ZZp5dufddizIlzoJOnPmTHvjYFwHY72DDjrI3vAW/37BggW54+LfF7MNwFTAGT+O58e1dW+zAFO/bzYglGfKsbyiGsd390ULdfV0SNeO6ByJJO1JPANUjynmvWxEjV1GtdNEoan1bDVjXQNhykeN0a9y7xaUbhg4KV8xLnouHEuUphnAByiC8QxEbFjf39L2wy78r9NEIqqplrLKCIZXjB5rlwHV70nX07LBQlA9Jst7uYl2s/7sO+csx8TTlKp+4nkW2rZL65pEcf9wTEXfsrpECvKKW3niOZTsI9LXZ2ntoNhyfGXsqu+pY/6AbbjkugFFVtQ32qhJ88ejbLzjZmm84uMyzFxzRMf2drQNSP92+WLb84/ZSF+Ww6Z9t7+xUFqffsj2G6U8B24iwVjyu8e8sK5es4yleV5n3ICZaqvMNpCzzjy/mO8L9bU7zPK2ar7+WvcP9V2XmnzimRcKZrV6XRSFm0w40izZyXwJS4YmbZpZJvUFAzl5LuKVl5xv5in736BFFGNWy1JO1rxYVlateeMmaTSP7yrWgGssL4sR2cpyphg6t2zNR8fZL1P+e/Hl13J73zRLqvJM1Alm7mj1uoE3AOUS9m2w7Cj23MLoJg+2F5tlXQGck01UJ5AT8Io9tSD9t5A0AE5s6YpV/eaXuk0E59IVK2WGidL96j9+1kZMAsXvf+RJm76U/33StCPX80mBiupjyttvn5m2WJ7nqYCTL4DrGED9rz6Sh5J8B4zPakS+bjJL36qtfHNNP58UU05aeyu2XT/Yd3OB6tL3rH7T9Ml3IjO5juPXOctNswyt6zm9tAkFnMm8wufggT3NA/1/4fe0syvh+QA1gGJM9gM1gEouWMEfukAq0gM1sgDOpUuXOmELUAMoQ15ADaCMq8wsE2noBsrwDqAFKrnyAq4xGUWZlFcIcOJioIwLtgBogTLkpVFnrjJJUwhwMoEMFEY/gBao5MpLAS1lZgGc5AEUc+lHE74lL42gdZUZAc5obX9fBCeAFpCFfgAtgNmVF74vBnCiGyjp0s/kKsAL/RpB6yoTwEldYT7ACaAFJKIfqAG8dOVF248DTmCiy5qammxegEHKdOXFRCDAEf0aQetKhy6uFcwHOAG0pCMvAC3w2JVXEnCS1mUAZnzBpBd17soLUArwpUyA2FAAJ9CAeiIvfErbdpWZBXCSR+jL8rWqN2vwTejLoucJmybijUYPfVm+7bDVFPqynEOy3KwR+rKcu+xvSBiX5f2hN57x2xbGZf3HZXkvha2d6YEOE4mFzdh7jnn+5huyyUCp2r7nTOo+xq3JlUIYgzMeTH7vGqcVq39LZxRJ4TqO8VwhQwP/IuM92s5ybKG84/vjYDX+fXKbZwymWoFz4nmeAywGdXWfnl8p6kDzTL7v6IPifJ/3cZQq+dl+m6gutMW/0iVooxxS8oknyLhdqvpRv1Ksz7fbFz4lVVNnCUuudq5YbJcjjWRGbQ9Ax/NM+5m5rpLGMqY+S28HxZXjK0O/z3LOmnaw790b15kI5x8POFyBPjsqJ0+3MJRtolV5JmtRZtpb0oaZv+939IGf5L6d+ZnIZ6KbAeIsN82zQKtm7GeX5y1lufnrMHbuLj/ErkSNttZ39MTbQJq+tP467bjs+6LzyKKHZxr6rGXTln5Lm2o6IvPKy8ss4OT9jj/Ol+dfetUGBRAhlqVczYv3tHLi6QptAyjVkv1O8jPpKsy8YaeNwtejov5K0/byu9jXDoo9J9dPFPkVY84y+/LQNss8UyEDlhJde+IxR8jzL7/a77me3/j+T+Uws5Qxz3BtMksVX3j2qRag3vyL3xbKNvP+s045zgJOIh+JlCXilGdR8tzN5DnSFgDBRGfyXNK7+iJztR6efv4l+c3v/tyv7OL8usO2Xc0gKj//C1tMOWntjfyztmuqVJ9zq7p4L8Zv8ePi23o+rvao++Lp42A5/n3YDh7YEz0QIGfGWp0xY4ZNyR+xQBmXAXeAJBiAEzDjsngEpw9wMhEIlMGAGkAZlynUYJ8vgpN9TU1NvNk/wIEyLgOuAWUwjdpypYtDgSVLluQGCfG0QCegDAagBcq4TAEt+3wRnPxIAZUwAC3pXAbgBLJhCmhd6XQijX3odxnQD3iJbTV3tJGfyxTQss8HOAG0lIkBaKknlwE4eWEKaF3pNIKTfbQflwFo0YYB16hPl0WANh1wAjWocwxAC2B2Gb6nDjCNQHWloy0ycOMHGKjkMgAtbQPjOuJ6clkWwAmg5ZrDALQAZpdpBCr7NALVlY6+gDbJRBcTsS4DcHJtYgBOXi7LAgUAtKTDgK5oc5kCWvZRR5yry0JflvdK6Mvyvgh9Wd4XoS/L+yL0ZXlfhHFZ3hdhXJb3BVu7elzWv/TwqVQe2Gqee4ixxDDL1GINjdHfApv7nk3HuDU5dt1vv/1k4cKF9u81e9Au+K+1e7N9/lulicjkmZ1Yo1lmsdtEKcUji0omxUQrscRk0uyzOc14Pv68xHITxTis3DwKpJUlGrNZV3M0Nuc5jB1LX812kCfVh973eZk4Pvq75d+//Rlpa3ffcOk5vCRf95hlfoc3TLBL6eq5ldf1X8IPSGojPvtKrG4yz+xMWO+2VimvNY+/Mb5Pi9wjctb8cSXDzPNTWQZUrVT1o/l97hPfMBPJFebv8Xb5t2/9pX7d7731mYfN8x0ftVGHY8+7Utb/5L9shJ6CTfxSNKDrV0L6h2LLwUflNaOdmdaPnSAfe/8/2X3LV70uP/7F/3Omy/Klr5wes9RzeW2dXQ7aXLzOrIh0HXPSeXb52O6N681S0IdbSMjStlmNKGqM5Z1pkzzLleVwexKQ07Ylk45nZg7FdnS0Q5akItHuNU8iOLc89Ef7qr/gaqmcNM0+a1Z1arpd8T6lZpYs2PCgLYqlvbGWjmjurZR9bc+ObikzN2VkXS7cCon9t765xUYxHnXYvEFH5W03y1vyHL82M6fDUphJm2ie+0kEJwBtvnnWInbuaScmk9nPRIcxHmSuSFc70ISFytF0Q33X6Eye9/iGiYokIrCqqrJfFOFQy4gfP3f/fYUITowITGxdc/95Np53ik2eNN5GWdoP5r8NJgoVAHjQAbNzyw2jG9PlSZeZpX+PPeIQCyjTnjvKMSxbXG76/M996kMWLv7jV77Z77yfNs9p5MVyul/5h8/koik5thQ2z5wHXdZ3fvxzG0FInlPMEqoue+LZF+Tu+x+Wf/rbT8qpxx8tRMQCRTlfbNL4cXbJWtexWb4DTNaaAAnaI3OM+NVs5qxU5ZSiXRfjN86l2rTnpG0y89P4nutVjWf2cnNCAJrqkfD+TvVA4VtE3qmeSZw3HUwhqAEkIR1AwwU46XSBFbrEqy9qiIk00pEXgNMFNcgLqEG0G+mAGgCopJGOpZVIwx3GaYCWiV3S6bKarryARQxkSAdg4z1pAE7gE/sAnC5Aiy4gEDCLdIA/AGDSSAeUIQ2AMw3QAghJ5wO05AXUADqSLg1wAmhJQwTq+uaBgJa8FAqQDvCKvqQB85j8Ig3n5wK05KURqKTzAVrSaQQe6RYvXpwszn4GcAIvSUMEqgtwkpcCTtLh1+Qd6GSmgJY0tC8XoCUvjUAlHfVNvSeNdPiCd9L5/E+bwLekAdC6ACd5UEdcK6SjXScH15SvgJY0QD8XoCUv2j43KZDOB2hJ12QALcZd+8lJLrvD/KcRqORFP+ACnOTFNQLAJB2wlP4laeznmiMNgNMFaMmLvgcYQTrSuAAn6fRaCn1Z9DzY0JeJvR5DXxZdeVwjoS/L90KhL8v7IozL8r6I/5aEcVm2cdmIEaUbl+VrImwV64EKs5zZ5L1m2BfH1owabbcbx0c3lfIszuZ1q82EYLlMmLSXBZz77DfXjH+326jOYsvbmelf2Piozf6SGR+TmbUHyPnTPygVZcPl9S3P75RiewwALjdRrTw/sHJKk1TElhfluZoAkbrTL5bqmXOk/l3vsxq2Px9NkGcRBNgEAlWbaK660y+S4Y3mMRp7H5DLK0semsb8lA/JWOJ1uFmymBfgsMz8rRH/nCXz7S9E51535qU5nwAg40b0HvmPPu5MAe7WHntGfLfdbn3qAfvecNn1MnLOIdYvY0690OS5X7+0+mxI9vEsx+Hjo5sjSVSK+ulXWIYPPa1bZPP9d9lncNadcbE9wtaxuZZqjzpVRp94roVtVdP2lrHnXC4j9p2XIddsSYoth+e+ltXUymjjf/wKpFcDSJXKfOVQx0Txjrvsw8YPcy0crznkWPOs0vfbomk3DQYCcvPCRvMczk333i48D5bncxYDIrtM34aNPuFsqTJAXa9T+2XsP11iufaY023btRGksf1cm1wP6qcKcyOI/WxAbdyA7V2mjVfNmB1FbBrfarTy2LMus8+tpR+hDQBegZvx6Oh4Xq5t+ruJ5jmbvKrLa0wSM7eR+zzSdYj3u6ba/eSo8WfKIeNOlNl1h9kbR1Zui+ZZStnX6rM4z5jyXpk+arZ9TqhXlGPHb01kpflTX84zkXCXv/scuxzpReeeLldder4jtfsrnndYUVEuX/irv5CTjj3CRuK9+5zTzLP8PmQPALYxpzJ77yaZZ4Ae+045/khnZgr3iN7jGZez956RS1eonFzCIW7wHEjssgvOliMOmSufuv6qIeaYfvhp5rmavD74vostLCZilvmXuPHsRb4DDp9inoGqy8re88BjNtm7Tj9JeD7n1ZddIJMmjLdwT8Epy9SynO6spmny0WvfK/vMnC4nHH2Y/PVHr40XkdvmGZh3/Ok++xzPv7j2cvt9nXm2KpG3xxx+sH0G6SnHHWXn9DZuyn7jUa6AlA1AJb+3+J4ljj9jNNK2fAZUv+GHP7O7/+L9l9t5OtoacHqyAcaf/vDVps3Nljkm2vPa975bPnBF9Nvhyy/+/WPPPG+1/O/Pfty22Q9ddWl8t23TpSinFO26GL+xvC83JVx63pnWN1PMssZqK95cLSOqq+RjH7jCgnGtf56bGyx44J3sgRDJmbH2fVCDyR5dFpQfMx/UAHYBlZgoIy+gkg9qKOD0RW1RpkadkRdQxgU1FLBxipTlApzkBRwBmKLfB2jJC6gEdKFM8uI9aXHA6YtApUyNOiMPIK4L0ALYgGIYP4AuwElewCkFzD5Ai36gEoBZfZEckFCORqCyzxeBSpkKaNEPVHIB2rh+AKIPcBJBq4DZB2jRT7sAyqQBKo1ART+A1hWBSl7oB4aiH/DnArRx/b4IVHwBoAUMkBf6XYCTMoF15Il+FyAkL41ARb8P0JIXUZ6cK2UCXl2AFl8BhU1W0mHu7vIBTrRzDuSFv3z6AeSUnaa/ZmQUgYp+H6AlD6ASbY0yaRcuQKsRqOTF9eEDnLQd2hB5EQHsWmKXMvEFPk7VbwAzbYMyQ1+Wv1kj9GX5vjj0ZaEv47cSC31Z5Af+p28N47LIH/gijMvybaOiYnjuxq2hjsvyuYatwXhghIFXcw8+Knfo6DFj7edWE1G0fl20ysrzzzwqRxx7ai5dp4lGevKRe3PH7PqN/pOnWv4LGx+TySNnyD5jDpJzp11jv17btkIeWH273dYl70wolR4SLana95FxXjG25YHfCcBu1OEn2sMAZy13RZOVm+ffIURixZ+1uP3Fp6R96SsDi0gpdsPtP5L6c66wy1eyhCXW+eayXB5oHpZBd4YkuTxdG0TJjTr0+NyuivrxBjj+iKYbAABAAElEQVRdaz9vNEuK5p416YiCsn90mJSda1bKtucfl5p5R4mFfEYU4M8+f7Ev59Yn77fQcuSBR9hv2he/bKFS32771vbq8zaSE7gMGLRmxvttL0eRxpqWyElgFJCOegAYrb3xq3Z3qepHy/K/5xqXTYJ2tFRN38dCXJ63uuE3N9k6Btjywogc3L7wabvd7z9zni7L0g6KKYd6IlKSehg590ghErX1yfts0fnryKUk+V1K4zZJfeXE63jMKRfkMqUNYYBrYGbLH39hbwTgu413/ETGvecjUn/+VZmXeOV67Fj2moWKQEYiKW2kLxnGjGWC2xYtsOBZAfX6n37Dtl+S2WvB/F2pVnfaRXazu2W9NN/6Xf3avm8xoHv08WdL7dGn2c8bfnWjXaoYf4+ORS4TzUofo9dPv0w8H8ZWjpdLZ3683179rFGZ/evPXz9EbR7RGGnsMc/xvGv5TSbfKH2hvrafgFh/2//76NMzzffJVBM1OmvMXNl7zDwLU7/78hddSZ3fARV/9qs75T0XniNHHTrPvkj48BP9+wO+2+G5fu4z0ZnjxtbJMSZakCVM1eLLav7p/kfkrJOPM6ApqtvFy6LnOyZ/N+780/0WtALk9p4xzc5n/O0//7vNMks5WrbvnbkNLG3ZUqIdiWydPnWKXHHRudK6bbuFhJqnarZL1PZ9qd/ZvD1+0uP1XY/Z0rrNLrfK920mKvYH/3ObJsm9k/b2P9wrZ5x0rJx/1il2XuVJAy9ZrvWP8x+WM41vAdUYkajf/8kv+x37TbPU7EcMBARw8sIUgrKtLXlH328QviY6lGVpTzzmcBuFO87MD112wVkkt5cVz6u86We/tp9L9R/QliVxjzRwmRfPgwSSA+LUXzmtfT/MnMcf5z8kZ596vFxvQOQNN90iP/jpbfLhay6z+oGbGMmfeDb7TVssrTzRRIPut/dM6wOulfq++T0930LlZGlvpWjXWfymmm/5ze/l2svfLcceeYh98azR//j2j+xu6hMwzLXHCwOwuyKA+/eFNmn4L3hgj/XAMDNxr33PHnuSO+vEmMjRZTXpFPW5jcnyADtAGYUaPiijUVvk5YMaTCoCZZhAIh1Qhgn4pAF4gEpo9EEx9hGpAdQgL6CMK+oM/UAZAC15od8FZTTSgbyArq4IVPQDZQCrpPNBGfQDlTDKKgRoyQsowytp6Acw41/0A5V4T5oCWvICFLkiUNHPRCZ+I50PMOcBWxRBmwZoLeA0g5SWTdFzG5O60A9gVkBLXpQdN+pSAS37aBOuJYLRD2Cm3ZLOB5jj+gGgaYBWASdth2sgaegHMJMnfqcudeCjadGvgBZdgMYsgNYHmOP6fYAWXwAHFXACyJmATBr6Acy8o9+1RC36FdCin3xcEbSUGQe0PsBMXdP+8RN9gQvQkhfaFXD6ADO66QtIn6Y/9GX5mg99Wd4X8WsJwBn6stCX0TpCX5a/RvBFGJdF/uC3UG+c47cwjMuqpat7h0wyd6i3m+c9DnZcxviKvpjfc95pc7zwN6/BmN5E6LrpLC0/xiW8qF9ejNEZW/DOdbCnWFVVtZQZf7dtH/g3VvIcL7/8crnzzjudf48l0x54dP9op+T+Yj8TzdRQNUk2dzZLe8/2Yg8vaXoiIFlalUgwXfJyMAWUVVYb6DRWAB9ErL2djcg1luu0z5c014vL8NkOE7nTa5aATTO77KdpkzZq05NX2vGlqp+0MrLus3VcV28hG7BtZ9muKqdU+qnjYebGmG6z3PHOWrYVnwxjTmcn+j2LP8qqR1i4zNLOvX3PQ85yXCnTEAXPTSK/XXajrDM3idQOr5PmjjXmN27gtbo79bX4oLHB3OQ8epQQScizNIs1xg7AqCqzNO2qNevMGGXgimo87xEo5dqXtbws5WTNKy3dqJqRMtLcAK/RpWlph7pvQuM489zPMuu3weTFkqIsW9u6rS1VL+c0aUKjXeZ2MFGYtJGG+jrhmZmuudvBaHcdM7p2lNQarbSjoVglj5iaPEG6zZjyTZMXyyEXa7Q3/Ftr5jr/4TMfldcWL7MgNZ5PqcopdP3Ey3Rtl8pvRO6Ob2wQopo7zVxNsOCB3cEDbyxqkaa966S8YnB/p3IOsxduGNSpBMg5KLdFd+1nhQIaNcePC1DGFTWnk+pMHAAIXVFbOpEG1GBCwQc1ACRAMSZCmJT2AcIsgJM80A+AQj+wxRU1F9fvi0BN6vcBWvQDlUjvWwqNH7AsE2noV8CMbvS7fuQVcOJ/X9QWk0s6kYn/fYA2rt+3RC3nhn6AKZNETGABmZOGfgXM6AcwU3bc8IUCTvT7IlDRr4AZH6DfFQGMfgXkafoB7eSHHiYyffoVMKMfWMr5xg39WQAn+hUwox/A7IoARr8Ccvbjs6Thf64j6hP9PkCL/xUwp+nPAjjRr4AZ/QBm/Js0vdmBuiwEOIGc6PcBWvQrYEY/gIp844b/Q1+W90joy/K+CH1Z3hdcS6Evi/wR+rJ8u0iOa8K4LFoZhN95H+DkWnonjcuWLX9T6sbUOG98yjouC5Azf83tjluMmfm7zfX3RVJvqSFnMv/w2e+BMSe9y0aJ+lNEEXL6TMe0dGFf8MDu4oHQrgdfE3HIubzVEXk++KzDkSkeGGOgzOf/8sMpKcwzKg3k+vp3b05NU4qd173vErs0b1pe3735FxYUpqV5O+37ooF/AFSfARn/15f+07d7l36ftX6aN7TYyONHn1pg5xrPOPlYGVc/Vm665Tfy/Evh2t6llRYKCx4wHngrIWdYrnYQTTArFGAiBygDAAEwAGUGCziZCAHK8OKPaKCGa1lNAAkTsZSdFoGXFXACZQBQ6AfK8J60OCD0AU70a9QZ+pkIdEWgon/SxEkWcPoAG/6PA07gmiuCEx8AaNGHbt8ERFx/FsCp+l3Lglr9BjAz8enTHwecACr0uwAhgAH9QBfqEv2kT9pgACeA2QU40Q8Uw8dpgDAL4EQ/E5nkiX4A82ABJ3UJUKXd4n8ArQtwUhaAHOP8fBGQ6C8EONEPYOY9TX8WwKl9ATCRtoh+F+BUwIb+NMBJP1AIcKI73hcAewcLOFV/6Mui59SGvowWGkXz6c0aoS/LdrNG6MuitqPtJ/RlkT/4zQ3jsnzb2JPGZYwfmpvbBkRcJgFn2rgs75mwtTt6wLXCwe6o852uqXPtKvNMwKpUN/SaZ0YGCx54O3kgtOvB11avDJxXGXxu4cisHiDabOmKgTehx49nWc5dYUtWrDJzbZWpRW1t3bN+F3g2JaDZZ11mrm13saz1wy38UyaNt8+qRTtzXg8+9nQAnLtLRQYdwQO70AMhkrNIZycBp29ZSoUCQI1ogsMsI2SiypKmgIp8gWauCE4FnEysA3i4o9u1rCaAR6EMZZGXCyrFJ9J8S+wCSBTQot8HZeITUVkBpw/QAniAYpStgMcFZRRwMqmOfvyRtKR+H2AG4BKpRzlpgFOhBoAK/S5Ai378T92j3xdBmIQCLkCLfgXM+N8HmIFOgCz0+yI40YN+wB76AcwuQIt+8qK9ZdXvi+CkLaKf9gHMQz9tN2mqn3bqW6IW/QBJ/IZ+30Qg+qlLIHIhwKkRqL4ITvQrYPbp55rNCjgV0CrgxL9Jy9oXKKDFn/jftUQw+hUwo98FyENf1r8GQl+W90foy/K+CH1Z3hf0xaEvi/wRxmX5dsFvSRiX5f2h4xodly02y4SNqjHLAxo/qRU7LluwYIEdW9LuOJZxDi/yjOer+Wd5D8vVZvFS6dOESM7S+zTkGDwQPBA8EDwQPBA8EDxQbeYDK80SzFu2vr2Xug81GTzwdvdAiOR8m9QgEwm6rCOADdAI8EoagIqJQCY60gCnLtHJ8UAzQFDS4hNpABKghgtwMikNlGHyA8AD1EsDnFn0ow9AAhTjPWmR/uIAIVDJFYGKfqCM6scXQwWcqh8oRj0kLT4RNVTACSBBP/WF/12wOh7BCaACTrkAJ5PqAGYFhABm6j5pqp96Rj/pkhafSMMH+N8FOFV/IUCogBb9vghUhQLUKTAPXS7AybUEFM4COAHz6Od6w79JQz95cY36bhbg3DQCVfX7ACGAlvNAP9eSTz91jv60mx3oC/RmB64lF+CkraIf8+mnbWUBnPgd/XqzAPq53uMW+rK4N6RvueTQl+EV7QtCXya2D+BaCn2Z2N/m0JdF/UYYl+X7T35LigGcYVwWXUt641nWcVne42EreCB4IHggeCB4IHggeCB4IHggeCDpgXYzZ80rWPBA8MA71wNhudoi6j4eAZkGOIk6A2oABoEyLqgBoAKQMEGUBXACWXyAk0lpoBhQBgAEVHJBjaz6dSJTAadPfwSVxEDLbRYEJV3JRGA8AtIHONGvUCYN0GaZSMMHCpjRD+B0AVr8r1ApLQJSlwgGMqKfukoa+hUwA6iASj5ASz1RN4UAJxOB+B0o5gK0Cgg1UoDzTFoccKbpp6y4fhdsjwNC9KcBTgW06EeXC9Bm1a8RnAo4XYBW9dPefLA6rl8Bp2uJYGBGXL8P0HItcf3ifx/gBDLS/hXQUpcuQIt+8kKjry9Q/fhD+wIXoFXAybv2BS5Am7UvCH1ZdFWFvizfuyjUCH1Z5JPQl+XbRujL8r4I47K8L8K4LO+LwY7L8jmEreCB4IHggeCB4IHggeCB4IHggeCB4IHggeCB4IGkBwLkTHrE8xnABggCagAXfBGcQAEAggJOF9QAsJEX4ALABhRLWjxSAEgBYHNFcOpEGlADAARUckENBYREnQF3yC9pGoGqgNYXdcZ+9DPZjSZXBGESCgBoXRGcCjiZBFP9LkAb14//XfrJA//jXwAbdeQCnFn1JwGnSz+Tukz24zsAFf7Hx3HDT0TgKRTA/74ITgAteSrgdOlXQEUZ+L8Q4NRIARegpSwAMxNv7KcuXYBWIyCpG7T7AGFcP7pcgBb9cUDo009dUu9pgJO6jut3AWYFhGjj2kC7T78CTq5b2r8L0Mb10xZJlzQFnHH9vr4A/VwvPtiOftoi/kA//vcBTvQr4MSvvr4g9GVRjWXtC+I3a4S+LPRler3H+4K0vjj0ZZHHQl+mLSd6j49r+E1yjWvCuCzvMx0X83uoN269U8ZleS+EreCB4IHggeCB4IHggeCB4IHggeCB4IHggeCB4IGkBwLkTHrE8xkQAfxhImoogJNJdUAEkzW+SVGdCGRiHUiRBjgBNwo4gS0uqKGArRDgZCIWfQpoAW1JYz++QGMxgJO0SQOwoR84CWBL00869AMYeCVNASf6FHC69DMpjf/RDyhyAbYkoMX/vom0pH4XoFVApf736ScvBbT4wgc48T/g1Kc/HimQBjgpizKZROX8KNMFaFV/IcBJ+6FOgXlcIy7AqZO61J8PEKI/DgXwvyuCE/3UJenRT126AG1cfxrgxBdAdwWcafoL9QVcu3HA6dJPW6XMNP3aF+CPNMCJbtVPWdSlC9BqX1BIP+VxrWhf4AK06A99WdQThb4s3yPTF9MWQ18WLUsZ+rKobYS+LH+NsKV9sY4LfICT9kNfq32xa1zD/jAui/zr6ov3tHFZ/5YUPgUPBA8EDwQPBA8EDwQPBA8EDwQPBA8EDwQPBA8EyFlEGwBOpU1EFYIC7GfyF4gG4AEEJaEME4EAkqyAE7gBICQvF9QA8AAiCk2koYuJMibQOEcX1LCAsD4PCAEpSVP9lFvoTnvKVMCJfhegjesvJeAEdrn0UzdMKjIBmVU/gC1NP+fZ29MrLZtanBGEcSiA3/G/C3ACzahLAGeaftoO+osFnMmJQOqWvPBHFsAJ1EA/vkjTT77UJemS5gKcrgjUOOAEoJOXC9DG9eNXrrukcZMAdcTkKICQvFyAUyelOd53s4Pq176AMgsBTvT7ADP6eRUDONHv6gsi/eOM+h3W/2hLGsCb+lb95OXrC/BZ6Mui53mGvixqSaEvy19R2hfozQ5cb6EvC30ZLSQ+ruG3xNcX06+EcZnY35m387hs2LBoNYZSjcvyvUzYCh4IHggeCB4IHggeCB4IHggeCB4IHggeCB4IHsADAXJmbAelAJxM0jDxqYDTBWV0IgeowcSXLwKSdAo4SeeCGgp4OEUfIEwuhUZeqVCjotwCHtK5AG1Svy8CknTApTRAq/oph/KYDEwak+rkpROBQBlXpAMTzaQDyvgAFYCWNKRNA5wANtWfBjhJwzlY/UUATp9+JjzR6GuLnBtpAFSq3zepjjZ8p/pdgFP1007xvw8Qkq4Q4GRyj3Sqn3pKmkIB9KcBWuqavGi7Cjh9+plMZl+afnymgJN0LsBJPpQJYCYNr6ShX/2v+n2AU/XjU/Ly9QVx/a6+gD6AvHhPA7R5/WLKG/rNGpQZ+rIIcOKL0JeJ7U9o/9oX0K5DXxb6MvpMrpHQl0W/GDqu4VMYl70zxmWML0aNyo8rhzIuS447wufggeCB4IHggeCB4IHggeCB4IHggeCB4IHggeCBADkzt4E0qAF00aXEfICQST6gDICNiS0X1CBKDxgE4AQCuQBhHGowUYIuF5SJT6QRJeYChHHAmRbBmQSEPijDBHch/bqUGFCA8yMvF6DFX5wDhi/S9DOpjv4sgFMnFV2AFv8r4CSvtImouH5XBCr6eVEO/ncBQlfUkwsKJAEhPkvqV8CZRT/1RNlAM/Jy6ScN/qed4guXfnxAOuo0LYIzrp/yqIOkqX4FnJSZBgjRv2XLVpNXi4WYyfyoSybVVb8LEMb1UxbaXBGoeUA4zPrCpT8OOMmDvFz6OT/tCxRwugAtflUogC9c+ukLSMd7ob6AugQ2kFea/tCXifUTfg19WXRVhb4s37uEvizvi9CX5X0RxmV5X+i4MozLoghUfktaNm0145Toedq+cSXpCo3L8l4OW3uaB4aXVcrIilpp79kuHT1te9rplex8ykaOsnn1bm8tWZ6FMiqrrDbrn5h/nR2FkhbcP6yySsqqqqVn68Cbdgse/DZIMGx4pZSNqDHnZ/7OM3//7u5WMbZRhpkbhLHejraS1EtZ9QgZZtpM77atssP0+9jOKMdm/Fb/Z268LqsaIb3t2/vV97Cycqmob8yp62ndbNLs3H6NPrSibLi0dW/LlRs2ggf2BA+wGsjoxpnS3dkm2zatcp7S8KpRMnLMRGlvNY+72j7wRnznQW/Rl1nO5y2SFooNHgge2EM8ECI5B1mRQA1AClAAyAg8yAo4XVBDASf7yMsHOLNADSalASRADR/gVP1MRCmUcekHmgFISJ8GaHkeFGnRT5muiZxiASf6ec6iC7AxkYbPsk6koV8Bpw8wo18Bs0s/ZeHbOOB0AVrqCP9jaYAT/fhEAbMPcOJ/ICDgjDpIAk6iI8mLSWf0U6YLsKE/y0QaeaFfAa0LsCmgLQQ4ySeunzpI048/af8u/RrBGQHOLbY+XYA2i/5iACf68TG6XLCduqHMYvoC2jS+cPUFXEvAFNopdVmoL1BA67vZQfWTl0u/9gXF6Ne+wKUfX6A/9GVi+wv8H/qy6BmE8b4g9GVRNL32BaEvi6LR+Z0LfVkYl9Fn8luyJ4zLNmzk8QisMjJwkjfruGyQf6qEwxweYDw3ddosqW+cIM3rVsvKZW8MSFVpYFTTrP1kpInAXfrGItm0sXlAmvgXTU1NsnLlSudNg/F0ye3Ksmq5eMZHZFz1ZLtrydaX5K7lP0om2y0+V+01S3o726VrrXuSdVeIbLjganP3QIWs/+k3dkVxtozGqz4pXc1rZeNvfzzkMsecfL5UT99H1nzvy0POK5nB8HETpWzUaOlY+mpy1y77POrQ46Xm4GNk3c1fl10Jogd7gg2XXicAOaxr3SrZ8Oub7PZg/qucOFXGnHaRlJs6wDbff5e0LVpgt0tZjs1wJ/9XXjNaKidPk3bTlnZ0dXpLqzngcKk99gxpvuUG6d6cX6GpvK5BGi65Lndc61MPSOvTD+Y+74yNc6ddI5NHzpAbXvr8zsi+ZHk2Vk+RUcPHCH39O8WmHXiOdLZtkjVvPLpHnPKuPJ8Tr/qWjJ9xpJlHKJPurjb59ZeP6+fDyhFj5PTrfyI1dVPs9xtWPCf3/vAD/dIM9UNZeaXMOvxSWbv4MdmyfvGQsit0PkPKPBwcPBA8EDzQ54EAOQfRFIAagAgmJ5iMAx64AGE80iENCjQ2NtqJHKAGUM8F2IgUYMIHOMN+30SgAk7+iPcBQqCG6gdwot8F2BRwAhQBMpyDC2qgn3Nln09/VsAJhAOQMMG1fv16ZwRbHHCiH/jk0k8+TKqnAU6qP6nfBdjQXwzgzKJfASf+5zySFtevgNMFaKlLBZz436U/60SaAiq04H8XYAMykq4YwEkdMZnvApz4H8AG4ES/61rKCjjxBe02TT/XEPq5pigLbb5JdSAt1zt15NNPmarf1xeoftpuGtQgL+odP+F/V1+ggBb91HUh/fQFqt86JvZf6MtizjCbyb7A5f/Ql+V9pn1x6MvE3ggR+rJ82wh9Wd4XYVyW90V8XOO78YzUyb7YNa6h33k7jMvQ3lNZbse1eU+I/Rsi641njAGDDd0Dk6ZMkwPmHWk4WfTnb6/5uyUJOWfvf7AFnFrautUrC0LOo446yo7ZXDeraD6u99l1h1jA+cDq38rKba+bKE4TEbWb2pjT3i09W1pkw69u3E0V7hxZXc1rpGv96pJkzt+GO8tGHX6iAKJ3BkDdWZrf6nzX/eCrZvA2TMZf81dDllJjAG/ZiJHS8sdfSM9ms8qQiV5UK2U5mufOfK8yN4GMPvFc6b7tBwbwr/EWRURyzxazOlkiyrl74zpZ+4OvGH+Mksb3fdx7fCl3NLevlvJhu/+05pHjz5Dpo2bLt176+1Ke/m6d12Hnf0Hat66X33/z3bu1zqzidtX5jKrfSybMPFrWLX1SFt73benqGLiCwd5HvtcCzpce+J6sfu1B6diWv9kg6/kUSlc5YrQcfNbfyOKnb5On7/pSoeTe/VnOx3tw2BE8EDwQPFCEB8qKSBuSGg8ADJh8YXIlDcpkBZzjx4+3gAqosW7dOi/UAMoAlwoBTiaQFHC6IvAUaqBfAa0LEGYFnOgH4ADffFAGGKMTOarfFwFJuej3AU4FtOgHDALFfPoBVKT3AUIa9IQJE/rp902kqf60JXYVEPJHLHXp8j9QgMlffILuoQBO9Kv/Acz4zKW/GMCJ/1W/C3Am9QPYXIAW3ysgVMDpArRcS+hjYigL4MSnTIy6JpLwK9cd+teuXZsKaAGFAE787wOcXEsKOCnXBWjxP/rT+oKsgBNfKKAt1Begn7ouBDhVvw/Qhr6MqygyvZZCXyb2JgDav/YFoS+LbnYIfVn+echpN2uEvkx7lSiaO4zLIn/w+/ZOHJe5xrvFjsvyLSpsDcUD40201WYTcfT4Q3/2ZjNpynRZtXyxvPDsY940Q93BsoqVZVUya/Rc6dnRLYs2PSWtXZukLQE5SccLqzHL2U6pmZn7rBqqykfY79kftzIT+UEZ7J84YprZNUxGVJg+vCq/jGQ8vW+bJUjtC0Bn/j7LfTYRlUkrrx1jIsCm2zTJfXweVjHcvKLjWHq2ctI0+10yrd03pUnIz2cVY8eJLl/rSzOk7/vOd+OdP5Wtj90zICvrB6IATbrh46fkziuZkOU87Xk6/EUUoUYS6nHDSGf8PMDMd8MbJ8nwCVP7lYU/0aLH5OqH7xJWqvpJZJv6Macvkcpqof4dOkkaPyeWex0+Pop2tvs4Z9OWsELtIK2cHb09ssP8/Wn+wLN5DeY/9XflxL2ke8M66Vy11ALOeARk1nKoeyJCK8bU95Ni24nDT7ZsR7vqd3D8A9dv3/WX+5rv+qJZ9fomWhrTc7N1kTugb8Mc1778NVn/8xukt23gErH4dUd3V/KoAZ/LqkdKZYFrfcBB/b4YZjh1mTy69vfym6Xf7bcH6En/OXr4WKmvmmD31VWOM/1gtOw1XxAhRz/JO33opJHTTX5RdG+/zMwHX1+r6dL6a/ZRTrkpB2ObF8vsDtbqJu4nU+acKtWjxg3Ionx4tUza53gZO3n/Afsqq0dLReVIu394VY2QdvyMI/ql43vS4JeJex8rAKq48b3u1+/1O/3MEqqUNYx/po2xzYvyklY1cqxM2e8UA+zy13kyje9zeUWlzZf9LNlaP+VAX1LxlcP5ojdunA96iWTEijmfeD6u7bT60fOZedgl9tCXH/y+bFn3hmxrya+igO/RNmX2yWYOtltee+yn0rphubRtHbjqBO1k8r4nSnVNg0uKrQ/aCunipucP5MTQrHVYVjbw9z9+bHw7y/mQhlfcKE/LUS28U1cTZx0TTzpgm3Y0dc5pdpnfATvDF8EDwQN7vAey91B7vCsKnyATvkAxBZyACBfgKQZwAkDId/Xq1c4INmAG8CYONVwTJtzNrlAGWJQGZRRwAsXS9GsEpC+CUwEh8Aeo5IrAA+ahXwEtk8Qu/RrBqYDTBdgANoAI8lTA6dLPRBr+UMDJZKwrAlX1AzV8+vGVAuZCgJNy0e8DVOhh8lf1DxVwTpw40QI2zg39LtiLfgW0tAmAbxogRD95uSLYAJyqn7JoZy5AyCSmLkvpgwJcbfifiT704zOXfp0IpOy0SXXaGP7nWlqzZo0T9qr+LIBTAS11hN9cgFb7AvzJteTSz/WN/wvpx68KaH36uYaSfYHL//he9fv6gtCX9e/vtS8IfVkEOENfFrWP0Jflr5PQl+V9EcZleV+EcVneF2ztrHFZ/1LCp8F64MUFjzv/Hojn9+D8u6THjOvGxp4pF99fiu33zvpLYbJd7cNz/tluLt7yovxuxc36tbx/n7834LNVus0k5vgR0XJ0QFGWZGSy75ypV8rM0fkJ3eb2N+VXS78jnT3tsn/dEXLy5Iuld0evhQBbulqkdrhZPt/8e9lA1XtW/SJXTtrGhGs/kwNowxsmyIQPftYm71y5RDbe9T92G9jYcOH7pXx0XS4rlupkyc64NV75CQtEACAAO4znFq79/lfsNsBq7LlX5Jb85MuutStlw2/yS/gCacZf9Skpq4mgbucqo+POSIfNpET/cZ4K0jpXrxiwXC37ifDEJxYwmr8lWxc8Kq1P3pdTMPqEs2Xk/odFn83fykkYNO49Hx6w/O6ED/2dbH/5WdnywO9y+dQedarUHHS0Bar2S5MXvgeo1Ru/s1StmtYPkG3tjSZS0Vip6kfLyPo+Yt95MuaU8/stBUsd1593ZT9A3frMw/38BlTjPNpee9Eu78uzTDFtC+MuvV6GmWebmovZ2w6ylJP1PNLSqb9JA4jVz5vvu1PaXnku7dB++2qPOV1q5h2V+47lfmn3PN+0yixxXHfmJf3axcgDDpPRx58trc88ZHx3f+64tI3RZmnZkWaJ2TXf+VIuWeN7P2Yh7/qf/bfUmmjgmkPyy2HWszx0n63/yX9Jj3nOKEZbrD36tL49MmC52tyOlA3Adf27rsjVH0k7VrwhLb+7JeWogbsuavqwvcmDPdo3aqpzp10t00zUJH0etrFjrYWdPGP33lW/tP3gjFFzhKVuN3U25/pk+sw7l/9Qlre+ao8r1NfaROa/tP76khkfk8a+ZclJr31+Z2+HfPflL2oWmd5nHnqxHHLu53IAiIMWP/MrefrO/2OPn3vaJ2W/464129F593S1ywM//Zg0L18gI0ZPkPP+8vdmH2B/mPT2dNmbuAFMPM/xzq+dZT73yrmfutNALfN8WTMvpKBp89rX5M/fu9JCtan7ny5HX/Kv8tQd/yxLnv2NyUvk2Mv/w8K0X/zzofbzhX97n/2d4gPLqfIZa1m9yOTzPrsNNDv52u/LmPF728/8t3nd63LP968yv8Odue/SNo589/8R9Gxc9WIOcHIu99/8kdzyqoXKOeqi/yuT9j1Bnrz9H2Xpc3fY4k794E02v4d+9ikTJfmQ1U9bwHznY3cW+C+tfjhUz0ezOenq79jN7s7t8ut/Pd5un/OJ3/SD2+pb6nj+TR+0afY58gqZe/qn+8HDRQ/dKC/c+03N2pT1LzJ93rtyn7vat9rlblmWtrHpMNGySUA6TQt4fXH+t3LHpW1kOR/aW1n5cLn9q6fksrr47x+RVYvmyyO3fsbWL+1t05pFORhLu37291+RJQtuzx0D1D/xyv8WlvFV29K8RP74rUv0Y3gPHggeeAd4IEDOjJUMFJg0aZIFVEANH+DUiUCAVtoStRo1RL5vvvmmE5AANYAfvBO1BXBxAcI44AS2AOOSUWeUw+QLgI080O8CJIAWoEwWwAmAwgC0LsCjE4GDAZxJ/cA39JMnujlPl/444CTizwc4dSKKcoBKLv34SgEn0A9g5wKEpElCgaR+JgIBKYX0A6p1id20CFTaIgCTctIAJ1AMwKaA1qWfNNR7GuCkPdBm0a+A2eX/rFBg8uTJti0CD/G/C1bTvvAt+gGNvgjOLICQPFQ/dQ38c11LcUDoA5y0ee0LFDD79McBJ/Xpgu1x/b6bHVQ/15JGoBbSzzn6+gLVH/qyPGwPfZkbcIa+rNz2/fyWJG92oM2EvgwvRBb6MvVEPoKT3/4wLsvfeBbGZSPszUrFjsvyLStsDcUDrjFYMj8A586225d+z0TwVMkZU99rJ91//sbXbZHtPQMjoohAYiL8yfX3yOrtS2X/sUfatPPqj7WAc13bKnls3R/kgLFHmcjQA+WkiRfK3at+njuFJ9bfLXvV7GNBAHlMGDFV9qs7LDPkbL7VTLCaKJyGi661kGPTn26zeceBXd2pF1jA2fbqC9L++kL7nL4R+x1soUX74kU5LWwANwBwwJkuAw9HzDk42m/+Tq2/4BopM/Cq7ZXnZdtzj5m0DTJyTjRhrpkQ+QXsAiLVHHqciQKbIdWz9pf2N17SJCV53/CrH9qot/oLrzH5uSP9ALXbX3raPAfzNRlz8nkyyujZ9tyjssMs30l0GoCTpUu3PPxHs32oVDXtK2YgUZQ+/MhzLlkWtPWp++3zQWsOPjoXAbnpD78QIODoE86RyglTpPmX37f574gBgpLUT1GqTUSVOV80db65zEDon0ZHax0bvVufuE+61qwwsOxU6zfSAazjNmKfA63/tplIWpZEjUdzpraDIsuJl1nstr0+DCxquOSD0r1pg2y+J5pwjy9XWyhPW8cGcPJc0K2Pz7c3ANQeeYoB/u+V5p9/W9qXLJK2V58318Ih0rHkFbts9OjjzpKuDWbVooyAs5AG9m9b8JgBywvN9TRHRh12gmy6+1fS3RJFhvXEojXbXl5g63XE7HkWmrqvjvQSuV6A70BNzqPSRENXNIxPP8ix98+mryMy87TJl8qY2I0jmhTAeceyG+XMqVfYvhZ4edrky+TghhMs5NR0o4fXm2jQP5i+tl2On3ienLPX1fIdCx93SNa+lrx8/fVdy28ykZvV5saTi0xk/XS55Y3/tEV39WYDeaoTGHjYeZ+3cPKNp241cPPXMm3uOTKittEmqZs42wDOD0h35zZ54Z5vSN2kOTLj4AvkuMu/1g8gbVrzimxY+bx51uJ7LAhc/fpDMvuYa2TCrKNlzeuP2LwAn9s2rbL5zDnhQzJmwj5ywCkfM5//S+X0e2euMW5//t5V5qejQk5+//ftMzkfufVv7O62LetyyY6/4usWcL75yn3y+lO/kFmHXWojOo8w8O2xX/5dLl2WjdqG6Rb0NkydJ03mnA8+67PywE8+ag8tVM7DP/8rOf+v/ySHn/9FuzzstAPPtoATgAbgxLKcj02Y8l+W+nn2D/8mrzz6Y9nnqCuE538+8esvyNaNywWop3bfj66X4dW1cvTFX7bRq/oczvbWfCQnddXb3SEP/eyTgs8BlPH9tBO+27phqa3jhr0Okn2PvkpOvOoGC7t5vuc9P7jGRL/WyfFX/JdQRy8bSIoV82zOLOej51XofcyEfWXRwzdJx/YWmWcA7rwz/yoHOQHQJ1/zXRNhPMIu3csSvnUm/UzTpoIFDwQPvLM8ECBnxvpmIhPAwx/IQBkX4AFwAmVKBTiBYkyEADUAFi5ABeAELAGofBNpnKLqJw+gmEt/HHACaNMiOAFQDGZWrVrlBFTAGKAS+hXQuvQDgXQpN59+ykE/eQJ20O8CPIDG+rH15o6lcgvEmExzTUoDOAGEGIDZBaioayZs0Q/gBHi59GcBnNQNUAn9+D1NP/XJpGgWwIl+/O+qSwBtHHD6AG0ScLqWu0UPPkM/vgKQu/yvgJb0aRGcCgWAJ/jfpZ/6QRvXEoCT/FyTU/FJdV8EJHlwLal+2plLP9cRL/SnAc4pU6bYvoC2BZR06ef6yOnfEkXQFtKfBjhVP4AW/a62GAe0Cjhd7V/7gqx9mUbQuvRnvVkj9GVcrdyEn70v02h0+rHQl+Vv1gh9WejLoqspP64JfVn+Zo3dcVwW+rKoxZZyXKbXQHjf9R6YOXOmvRk0XjLj34MOOmjAeHDBggXO8dpWszQt1mXgZe+OHhthFM8vuX3bkhtkg3nmHKbRRQeOPdp+/vVS86wuM1HO9x+Z8y92Cdw45FzY8rjdz1K3L5rtbV2bbXRTuVmSsceUXci6zfK+2A4z5gVOdresH3BI5eQm6TVRXpvn/9bu6/5ds3kW3ydk5IFHSBJykmDD7T+yS3uy3bFyMW8mYm9fKaseYWHl5vuiSBrKch2/0YARQGJPW6sQ1UckY6khZ+48LZTsP3lvBZv/iLbb8uAf7MftLz0jPBeTCMKutass/GFHy92/tOdKlNqE6z9nkIs7L5uJ4z9gE9Z82/ftObO9eX7kH7Z7tm0xdMrUT2c0AZ7Tzc4+K0X9aF5Z3olIJNqvY9lr0vKHW3OHVDfN7qvjlw0YfsV+v+WRu6Xh3ddKzdwjBkBOlnldf0s+WihZx752UGw5OYGD2FAIaO46lh3tbc7ro1C2to7N8bQlIps7lr9uITnPWAXm9rZvt1C/ctJ0qTvrUtsOSNdyRx88LlRAxv29pg3Z17ap9giewetqTzaNiWJmiV6suBZtDzE3M5gbtU39dpobFriW22kPfW0iSpHtf/pSXttNxHvdsAj0xY/s6GmTZa2vyLr2leYGj2mydOsiu91YHUXGa9plrYvk6eb59uM4E3F5gLmZZKrpM1due0Oy9rWal6u/bjX9rrlyzXOXo+uUqNLBGGAHjz9/99fltSd+ZrMAWKpFEZxiodXrT0bX3lizDClwjVfH9ui3Z+XL9wgvICfvS579tYWco8ZGdar53XvjBywYW7XoPrnk848ZKHauF3LqMfpO1B22w/zOAOiItIwby5EC1jrbNstLJjIQW/TwD81zKI+0S+nG02bZ5rmVRLTyAt7pErtZyiF6df5N18lZH7tNTv/QT6SqZqwFvE/99p9yRRc6n1zClI1C9UNdAiJ5tZnnmGItxo9JqLh1wzK7r7urzfo36VuW2B1eNVJaN66U9UufNml6B0Rezj72GpPHDhON+y8marZDti/8kzROO9TC3RG1403562yd6XLIRMcmy7EiCvyX5XwKZJHbzbkoZCeiubZhWm4fYJtlfNctedKAXa4TE71t2hztIVjwQPDAO8sDAXJmrG8ACcAAKOMCJBp1BiApBAUUEPoiOAFrQAHgTBrUYOJIAaFCjWTUDac3depUC+uYCASkuPRrBCr6gZtANhcgQRcAqtBEGlCMvAC0QBkXIAFwagSkD3CqfnwB2EG/C/AooAUoFoICTDShf+XKlQMmJCgPwMl5oh/oh29d+rMATsoBiqEfvwPiXPotoDX+QH8hwIl+bMWKFc66RD/wCf0KaF36XYAz2X7QAxRDvwJal37aIe2R9IUAJ/ow/O9qi5wf8BL9RCL6ACf6abf4GL+6lksmDwAz+gG0AGaX/ngEaiHASV+AnwDMLv0KaCnbAtoWP6BV/T7AiW6uJdUPYHbpTwJOyk3WJT7XvqCYvswXgUobC30ZXjV37oa+LHKE+T/0ZTlX2Gj10JdF/gh9Wb5dsKV9cRiXRUu87unjssoSjsv6t6TwaVd7gGs2OfZjTMXYLPm9axxWrF4ApgLO+LE8P66te5sFmPp9swGhPFNOl9Tje47v7osW6urpkK4dXTY5kaQ9iWeAaj7FvJeNqOEOLuk0UWhqPVs3W1hTPiq/ZJzus6B0Qz6SR7+vGGeWfTXGEqVpBvABimA8AxEbZsblb4V1mkhENdVSVhn9jVYxeiyz+zmNpOtp2WAhqB6T5b3cRLtZf/adc5Zj4mlKVT/xPAtt26V1TaK4fzimom9ZXSIFecWtPPEcSvYR6euztHZQbDm+MnbV99Qx11DDJdcNKLLCLJtNlCttaeMdN0vjFR+XYeaaIzq2t6NtQPq3yxfbnn/MRvqyHDbtu/2NhdL69EO23yjlOXATCcaS3z3mhXX1dplnY/afAgVmqq0y20DOOvP8Yr4v1NcCkNR8/bXuH+q7grv4Ep3xPFlGFVv50j25r9cvfyaCnBNmy9olj9vvuzvbpKu9NdruML8jfdvx51L29nTmIv/YZilTln0tlTVMmWuzYmlRwGJ/Kz4+WJeZJZ+ujlYT9BDNN2UtB3D43J/+w0SA/o0F8Pf+4Nr+kkrwqVD9xIH1UIqjvppNJOa4vQ6WS77whGzfvEZeN1D8VfPsTjUiQQHmp1z7A/0q914/5QCzVOzA3+lcgrdoY/VrD+RK3tay0kDO6bnP9ZMPsNvLnr8z913YCB4IHnhneqD/L/w70weZzxoo4wIMQA2dyARwAmVcgDBL1BMTgUAlAAmAEyjjAlQKNYBKQDgf1Nhrr70s4EQPUMalH9ACMKJM9KcBToUavghOAC1QibyATkAZl/44oE0DnNOmTbOAhzwo05WX6scXukSwy/8awZkGOAFYCmgBnFkALecITHRNZuB/6hS/A7Vd+gG0AFP0A2g5B5d+XWIU/WmAU/WjCf2uvBTQkhdtjHNN6mcfE7HoZ+IGEOfS74Iayby4yDSCkHyXL1/ubItMdCpgBnDStl36aa+US14KOJNl4k8FzABa0rn0uwBtMi/0awQn2z799AUKmLkmAaYu/fEIVB/g5BpSwAyg9elXQMv5KqB16acuFdCGvix6HiztJ/Rl+ZtNQl9mVgNI3GziupZCX0YvGFnoy9QTYpeapz+mLw7jsmhciS/e6eOycrNcm964ONRxWb61ha23ygPLli0TXnHbb7/9ZOHChc7n2cfTDWZ7S2cUSek6ljFMIeM3jH+R8R5tZzm2UN7x/XGwGv8+uc0zBlOtwDnxPM8B1vectPj3en6u3/B4uqFs7+iOgDF55H0c5Zj8bL9NVBfa4l/xLMqkOfNJJsrwuVT1o36lSJ9vty98SqqmzhKWXO1csdguRxpJjNoegI7nmfYz83d+0ljG1Gfp7aC4cnxl6PdZzlnTDva9e+M6E+H84wGHK9BnR+Xk6RaGsk20Ks9kLcpMe0vaMDNvs8P8jbyrjchnopsB4iw3zbNAq2bsZ5fnLaWW/PUTO3eXH2JXokZb6zt64m0gTV9af512XNZ9es0V1BPrR/PnkfBBnx8iH/Xti3dIKaKIwsXi/UqFeYZnMaZwePkLv5MFf/x//Q5l5YBiDbCpZv3Udy7FlDNl9sk2i2FmifYJM4+SZUbbTrFC9VOCQuf/8IMyfe65MuPQi2zE7EFnfsZGaT5229/nct++ebV9zmrui74NjfhNfr+zPmu71vx9ML3LAHk1rdfc59zYpky/Cu/BA8ED71APhF4gY8WnQQ0mL5jISYMaWaKeyAOQwnsa1ABw8mKAU2giDUDFGManH2jJJCVlAjh9UIZzLBTBqYCWvNIALYCTiUD0FwKcgB5++IB6LkAF4EQ/eTGR5gPMFnCaZZBIB+BxLTEa158GaONL7KZBgenTp1vYi27KdOkHcALs0AXg9AHmLIBTATP+V0DrAmxZACeXBYAZ/wNofYAZ0Eh+6Ec755AcqJBXFihAhCf1hH4mAtMAJ36jTB/gpEwAM/oBtD7ADOCkPsmLtkMbcunnugQQYkxuuW4WUECLfgCt71qivRaK4EQPUBL9tFUfYOY64noiPeVxDbv0a9QQ+n19Add36MvwkLnbvO9mk9CXRf4IfVnkB/4PfVneF6Evy/sijMvyvgjjsrwvGJfV1ppnnhsIU4pxWT7nsPVO90Br92apLh9pnvMWRavgj0azzGK3iVJKTv6VxFcmWoklJpNmn81p/k6LPy+x3EQxDjNwv5jnEnY1r7FZ8xzGodqH3vd5+fynb7CvEdUm0vQtsB6W+TVjc5bSVSuva9BN+w4ktVF8fd9WN+3bbz8fereZiKRac/OMw/fxxCxfav6AEibn41aq+tE8P/eJb1i/fvajX9OvBry3PvOwiTQ0kVmmXYw970rbFkikYHN4w4RoyVUTnQrEsy/0l8iKLQcflde4I9Tqx07ItaWrL/3MkBT6yukxSz2X19bZ5aBz/ujzixZIpOuYk86zy8eybO/IAw+Xqml76+5M70RRY9omeZYry+EmzbYl8yXPzByK7egwS7OaNlCRaPeaJxGcWx76o6z70dekc/Vym84F+jX9znyfUjMrlz1Le2MtHVEkWyn72p4d3XY8wHLhg7HWDcvtYTMOebfz8NaWFfb7vfY/I7d/3PToucYse1qMseTpiNFRhL1d/tRE/nW2m+Wxjen72Mn757Lk+Z9OM78dFVUD++GNq16wyUeb54wC1eIvzd+ZX5FfZi2HZ5I2Nh0uK8yyrSyhe8SF/yQ1dZMHluY5n4EJB35TyvoZmPvAb4C0PL/zV1862j7HdeKsY3OJOtu2SPWoBnOuW/r5Pgk4e/ue70zanWWUEUWWRiVMP+i8oovauDJaBYKlioMFDwQPvLM9ECBnxvp3ASqgRhLKuABDNBFoJjnMHx++JWqBFDqRrFDGBagUapAXUMYHNTSCk3yXLl3ijCaLQw2FMi79GoFKmb6oJ/YpVFIo49KvE4GkT4s60wjOSP9Sp34ALdrIC8CMP1z6qSMbgVrmB5zAJPSTlwJml34FtKRLA7RalzQvoJIrL50IJC+NoHXpB3AqYPZFcAJlAFnkpYDZVWYc0BLB6YtAbWpqsoANPZTpyksBLWVqpIZLP1BAl6LzATYmAklHXgqYXWUqoCUdgNMVgYrPZ8yYYfWTB4DZlZcCWvLSCFqXfo3gpC0COF19AQCUeiKvtIlMgDZ+I50vghP96n8FzC79CmjJC8DsA7QawanXkkt/6MvwemT4M/Rl6g3J/S7xTejLQl+mLSP0ZeoJsTdtMTag7wjjsjAu05ah4zJ+ezvMZC9jLtdvedZxmeYb3gfvgQoTKTd5rxn2RS41o0bb7cbx+YnMmlG19rsJk6baghrMMqocM3qMWX50N7IXNj5q1Vwy42Mys/YAOX/6B6WibLi8vuX5naKyZ8smKR9dJzw/sHJKk1TElhfluZoAkbrTL5bqmXOk/l3vsxq2P/9EZi0dS18VIFC1ieaqO/0iGd44Sar3PiCXV+aMTEJzyQ3JWOJ1+IQp9mU6dgMYq/p9zpL59heic68789KcT5IAkug98h993JkC3K09Ng8mtIzWpx6wmw2XXS8j5xxi/TLm1AtNnvtpEvuuz4ZkH89yHD4+/8zBUtRPv8IyfOhp3SKb77/LPoOz7oyL7RG2js1yw7VHnSqjTzzXwjZA3dhzLpcR+87LkGu2JMWWw3Nfy2pqZbTxP34F0qtxg0qpzFcOdQzcG3fZh40f5goQuOaQY82zSt9vi6bdNFxwtb15YaN5Dueme2+3z4Pl+ZzFgMiudVH07OgTzpYqA9T1Ok2eny69XHvM6bbt2gjSWCKuTa4P9VNF48ToswG1cSPar8u08aoZs6OITeNbhZhjz7rMPreWfoQ2AHgFwsajo+N5ubbp7yaa52zyqi4Hog2LfR7pOsT7XVPtfnLU+DPlkHEnyuy6w6Szt8MsVbvYpi9lX6vP4jxjyntl+qjZ9jmhXlGOHc/9mZsLdsjc0z4lh1/wj3Y50oPP/qwcdfGXbOpFD/3Qvh942ieE5z8efcmXpW7CPhbabV77miPH9K9O/eBNMuPgC+XMj9xiEy57LloKdNPq6Dmg0w48S3g24vFXfN08A3IgyOSgtq3NUl3TIIee+/cydc5pZuncqO/qMWBr/bKnjb595bTrfmz3TdrneDnmsq/Kse/593RhRezNUg6a5p3xafsczMdu+5zcf/NfmBtGyoTzj0erpp1PFkmlrh9fmcDpsz76S1s3Y0z9zz72/VJWPtw8Z/TN3CE8/xR4fe6n75J9j75Sxk072C7Vy3NJ4wZw5lqeYADpnBM+JFPmnJqD3/F0Q9neumGp9fPRl35F9jnqfXLgKR8tOjuWqSXSs7HpMDnp6u/I+BlHyD5HXiGnX/8/RecVDggeCB54e3sgLFc7yPoj6gwogwGKiOhzGYATmIIBNQBQLpthoAwG1ADKuAyoAeTBAIRADZcp4GTfkiVLnOAPqAGUwQCcADuXARGBMhiAFgCYNCZwmgwUwwCcgFCXAWiZzMGI0gPsuUwBJ/sWL44GmMl0QD/gJQbgJD+XEZkG4MTQ5YrgZGISKIlxfpyny8bWjbVRc+zDX5TrsjjgxP8uQxPaMPxAfbqMc+RcMR/gBNDiM4z2RTtzGb4HMmMagepKR13iE4Df0qVLXUlsJCJtAwMQMrHrMo1AZZ8PcDIRSJvFAJzAS5fR9mlDmC6x60rHtUSbZDIxuaSYpqdNc21iAEJeLtOoLfalAU5AIgbgRJvLgAJcw5hGoLrSzZw5034NjKTOXUafQn4YvqcOXBaPQKUuXROsoS/Ley70ZXlfsBX6srw/Ql+W90Xoy/K+COOyvC/CuCzvi/i4jHE9v/n8viQt67gseVz4PDgPjDDwau7BR+UOBlzyudVEFK1fF439x0+cKvvOOSiXRqHossWvyJbN7rFiLvFO2djhzPWFjY/J5JEzZJ8xB8m5066xada2rZAHVt9ut13LNNrv+rJz3dTnLKjvyy0P/E4AdqMOP9F+Azhruetndnvz/Duk3kCY+LMWt7/4lLQvjSbC++XrPh2bZMPtP5L6c66wy1eyhCVmn0dot6LlUYeZv00KWYYkqVkQJTfq0ONzaSrqxxvgdK39vNEsKZp71mSvQ0tf4Z1rVsq25x+XmnlHiYV85nvAXzxys/XJ+y20HHngETbv9sUvW6iUK9hstL36vI3kBC4DBq2Zv2/aXn42nky2LXjULmcKpKMeAEZrb/yqTVOq+ulXoPNDrnHZvWhHS9X0fSzE5XmrG35zk61jgC0vjMjB7Qufttv9/vMsWUnbLdQOiimHeiJSknoYOfdIIRK19cn7rJT8ddRPmeeDoz3EUvrKidfxmFMuyB1BG8IA18DMlj/+wt4IwHcb7/iJjHvPR6T+/KsyL/HK9dix7DULFYGMRFLaSF8yjBnLBLctWmDBswLq9T/9hm2/JLPXgpknUKs77SK72d2yXppv/a5+bd+3GNA9+vizpfbo0+znDb+60Ub04u/RschlolnpY8zkQ7/j0z6MrRwvl878eL8k+nnBhgft9/3rz583UZtHNEYae8xzPO9afpM5PkpfqK/tJ6DvmP7f5T8903yfTDVRo7PGzJW9x8yzMPW7L38xn6DA1tbmpfLEb74oh5//DxY+AiCxN5661b5vXve6vHT/d2T/kz5sQShfdndulwf/55N2v/63w5yjRvwDsPT3IL5MLHCwuqbewlSO2/jmQnlx/rdsFoCv15+4RWYdfpkcdt4XzPxCt6CtdlyT3R//76k7/smCS9Lyaln9cm6J1Idv+Us54cr/loap82ya6LgdsmTBb+NZpG73r2N30rRygJgnX/Md6wOWeMV4NibneuApHzcA+f8K4FMt7Xw0je89a/3Ej9d6in9XcNtcR6Maptm6idLukO1b1sojv/ib3KGvPnqzjBo71dTJpcJStmpb1i/Wzdz7C/d+04LHDkWGjAAAQABJREFUA0/5mP3upQe+JwvvuyG3v5gN1/mwXPGJjbOECGRe65c+ZaNqNV9dHjnePnWfvpPv/Js+KCde+S0LOIGc2GDgvuYZ3oMHggfenh4YZuCC/xf/7XlOO101UAB4wIDABzWYzADKMAFGOh+UASY19QFCJkIAQUkjL4Ua5KXLgrrSKZQBZviibuL6fYCWMpnIpFzK9EGZuH4AogvQkpdOBJIXUMYFaEmnUEYBFemTxkQaE87s8wFa8gJiAbNI5wPMWfUroCUvXRY0qYsydVlQ9PsAIYATeElePkBLXhpBSzofoGUiTQEtgNMFaMkLuEmkCXnpEscu/bpEbZp+IlABtOTlA7SUqYA5TT+AUwEtgNMFaMkL7ZwDeWkEbVI/dUlevKfpp03gW/KiHboALWUqYCYv2jXXZ9KIQAXQkpcP0JIXE5m0IdL5ADO6qUvSAzhdgJZ9CmjJC7jpArSkUyiDfmCpK4Iz3heEvizfF4e+LPRleq1zLYW+LPIGvgh9Wd4XYVymV4nYm7HCuCzyR3Jc9sqrb8iomup+kJNrqZhx2YIFC+wy6uTNuInxAi/y4TUY07Gja6yRlh9jD16MLXgxNmJ8wTtjtXeiMfbn7yTXODHpjwOP7h/tlNxf7GeimRqqJsnmzmZp79le7OElTU8EJEurEgmmS14OpoCyymoDncYK4KN3e+tgsthtjiFyjeU67fMlzfXiMny2w9xk29vpvhFaj7HLfpo+wEZtevLStK73UtWPK+9iv7N1XFdvIRuwbWfZriqnVPqp42EVw6XbLHesy8uWKm/NB58MM3NZO9PvWlbae5l5jBCwk6Wde9vb0pLutH1EwXOTyG+X3SjrzE0itcPrpLljjfmNG3it7k59LQ6pbZguI2rHy6a1r9pIzbiTysoqpH7qXLMMaYuFj/F9WbYv/Ox8s7xpt9z5tbPM8xznybaWN02U47oBhxIJOGbC3tLy5ksD9hXzRfnwahlrlrvt7ekygNFE9fd0FnN45rS7qpxCgoZaP4Xy1/20kZqxUyw0BFq7DMhbN3G2VFSOtHA3/mxTV/qd+R2QvHP7Zttuh1JO1UjzaDTTLre1rOoXvTqUPMOxwQPBA8V54I1FLdK0d52UVwzu71RKm73QHQhWSEmI5CzkocR+lqUExPGHPVDDFbXFxAN/6DMBRjqgDAAhaUxWKCDhD2NX1BaTF0ANgCN5bd602Rm1RZlAGfQx2QAUI33SFGqoflcEKnkxkUm55IV+zjVp6AcqMdmBfh/gxA/kR5m6LGgyL8pkggxoRJnkRb5J0whU8sKnaEsaeQGYgXHkxTm6Imh1IopyWCLYpx9AS31SJkDMFYFKmQBmJp8o01eXuiwoeQFoXRGo5EV9A0PJizbmikCN6/dFoNJ+gGtMpql+VwQqeaGfsinTB9sBzEz4q35XBCp5AJhJS15M/Lj0K+DE/+j3AU60cw6USXn4LWno57rkfCnTNWnHPnwK4CQv/OACnOgnDXVFXuhyTVzlAKe5k7vdLEXHeSaNMmk7tCHKpL65sSBp6Ndo0DT9usQxeQFoXYAT/dQR1zp5Ab55T1roy/Iewf+hL4v8QfsJfVneF6Evi3wR+rJ8f4Evwrgs748wLsv7gt8S4KGOa3w3nhU7LsuXELZ2Rw+4/n7YVTp5BufatoE3yO6q8uPlEBXmigyLp8myDezrXb86S9Ki0ow56V02SjTtICLk9JmOaemy7gNUFcovK2zq3jS4yR7VWqr60fyG8m7ruC96eij5FDp2V5VTSEfW/YOp42LbtYXpBYB6Vr1DSQfY7G13r/41lHwHeyw3iaTdKLI79bWc49YNy+zLdb5EVjYv7x/t7UpX6Dtgb/PyBd5kwMihAk4y7+lqH6D3uMu/ZpZIPcZbNjseMhGq65Y+mZomvtNVTnz/YLeBzed8Mj36dLOB0ff84BpbRKnqp5DetDaix1LHRNcWazujfogGLoUB99ctyd4uSlFmyCN4IHhg9/FAgJxF1AVQABDB5AXQLA1wMoEBWPBBDQAPUIYJZQCbD4pp1FYOamwauFQSkypADSaagDE+KKOAE/1pgBYgCZRBvw/Qoh9fMNmXFvWkkQ7oB3C6ltVU/ehDvw/KcH5MvqMfwOkDtABOykU/aVyAFv26RGohwEl+6AcouQAn+hUwo98FmPGTTgSiH9DlApzkRXkKmGljLkCrgJDm6wOctC3qUQGzD9CSF/qBduh3AWb061J06PcBWvQDaBUwA/7Ql7QcIDQcO00/1xGQkLpEvwvQoh9Azjv6fdeSLhFMXZKPC9CiH6hBWvLyAdp+fYEBnC5Ai/8BtLzQ7wO06KZdU3ZaX4BPFdDSDl2AkzxIQ12pfvJMWj/9oS8LfVlfA6H9hL4scga+CH1Z5IvQl+V7UAWc/E6EcZnYcU0Yl0Xtg99yXZkibVwzmHFZvgWGreCB4IHBeqBz7SrzTMCq1MN7zTMjgwUPvJ08ENr14GurVwbeBDz43PacI4Fwb7VtWPmcVFSNTJXRvm1oN36kZl7ETuApetNs0+pFabvfdvveTvXztnNuEBw8EDwwJA+E5Wozui8OBYBmrqitrBOBAB6FMmmAcADgdDw3kEkVjTQBZvii/uKA07csJZO6GjXX020A7QZ31Bn6Fcqk6c8CONGvUXPox68uKBMHnL4ldtGvUXMAHiCiK4IW/QqYmYgCSiaNukQ/wBFARdScC9CiX6Pm0O0DzECnQku5oR8gSbno90XQol8Bs2+JWvTrRBr6fRG0Sf0uwBwHnEzqpgFOBbTo90XQ6rWEz9P0xwGnDzDjC/xPnvjfB5izAk6FGujnWnIBWtUP7EW/D3DG9fsALfoVMHMtoZ9844b/k4DTFYFKXWoEcFb9oS8LfZm2tWRfEPqy6GaT0JeV2Uj6QjebhL5MrySxN9yEcVnkjzAuM9EWrW12uVp8MdhxGeNZ+mjy4J0xHi/GB7wGY2G52sF4bejHlHq52qErCjkEDwQPBA8EDwQPBA8EDwQPBA8EDwQPlMYDYbna0vhxp+aiEZw+KMDEA1ADSMikKBDCtawmgAQowySF705vJizigNMXtUUeQA0AGoDHBzjjgDAL4FT9rmU10Q+U4Xx9gBD9CjgBbOh3AUImRdGPPgAPUMwFOOOAMCvgJGrOBTjRD2xkcsinn31ZACf6mcgEIKMf/+O7pMX10yZcS+zizzjgZELLFYFKWejHx2mAEP3klwY4k/oBzKSPG+WgnzpPA5y0RSbBabfUIfrRlzT0A8gxzs8HCJkI1En1NMAJIKdO8T95oTFu6M8CONGPv4CJ6KeOXIAzqd93s0MOcJqbBTa2uCNQ0Y1+6oGy0D8UwAlg5lzRz7Xk0w/gp5zQl4W+TK+VZF8Q+rLQl9E2+C0MfVl0lfBbEsZl2mP0fwZnGJft2nFZvhbCVvBA8EDwQPBA8EDwQPBA8EDwQPBA8EDwQPBA8AAeCMvVZmwHQIE0QKiAE8AA0HMBTgAJUAygAgACkLighk6kAZx8zw1kUhqoAYAC8ABleE9aHLCl6dcITvQDlXz6gTIAOV8EGxOBScDpWlZT9QM4gTGF9AOv0A+8SRp6AGKUi34AswvQ4n8AMxO3Pv3FAE4ALXmi3wdogU4KCNHkApy0B/yvgNAHaCmLvPBxGiBUQAtwJQKVV9IAbEn9LkAbB4S0CeBl0uKAkzaI/12AlrpGP5amXyMd0MO15FoiGP1cS7zjf6CMC9DG9fuWqI0DTvTjfxegRT+AGaMtugAnbVEBrep3LbEbB5yUhX4XoNUITs4N/7siOLmWALScK/qpIxfgVP2hLxN73Ya+zDZlC9mTfQH9aNJCX5b3SOjL8r4IfVneFzquCeMysePEMC6L2kYEyKOVQUoxLsu3uLAVPBA8EDwQPBA8EDwQPBA8EDwQPBA8EDwQPBA8gAcC5MzYDtIAoQLONKihgJMJQQAPUMwFNRRwsi8NcCrUAGYAZVxQQwEPp5h2p30WwMmkLhPhTOKhHyjjArRZACc+iOsHyrgArU6qK5RxAU4AFf4HLCmgdQFO9CtgLqS/0BK1qp+JTPwOuEyDAugvBDhVPxCLtpY09CuU8bVFF6D1AU7OkTwBbD79ADagMPoLAU7qXQGnSz++Qj8a2e8ChOyLA060+wCnQhnVz7WXNAWEei1xnSQtCWhJQ/tImupnsrKQfiZ2tS9w6acvQD/tCP206ySgpfykfh/gpDzSKuAkz6Shn7pEP22R6zdpANrQl0VewU+hL8u3kHhfHPqy0Jdpywh9mXpC7NgoPq4J47IwLqN1MK6prKzKrayRduNZlnFZvsWFreCB4IHggeCB4IHggeCB4IHggeCB4IHggeCB4AH1QICc6okC74WgAJCLqDNX1BYwickLACGABKjnghoKONkHHPFFQCYn0lxQg0lpoBIGoHIBQqBGsYAT/UAxF6AtBgoAXdDtmwhUwKOAzRcBCZThBeDxRdBSFlAJoIV+H2AGsBUDOFW/C9CiXwEhbcIXAYn/KZc8qG8XoFX91JcCBvwSNxcgdAFOJqVpPwo40eUCtLRF2g/1XArACWBGI/pdbbEY/dQR5wGMzKIf/7sAJ9cj/qfdAqvxvwtwci3F9bv6AvTTDgGO+NMHaONQQPW7AC2aKBP/0xekAU7qCv2kSesLAHdpfYECztCXFQc4Q18WPYMw9GVRjxz6svgvk9j+NfRlkU/CuCzfNnRc804Yl5Vta5funm5pNWORoYzL8t4LW8EDwQPBA8EDwQPBA8EDwQPBA8EDwQPBA8EDwQNxD5TFP4Tt7B7IGvWkgDMOZVxQA9AVnwh0AU6NINSoLcCNC2qwX6FMGtSIA840QAhUomyFMi5Ai35AokIZn34gEBN9CmV4T5rCXoUyLsCp/gfMKJThXJPGRFocMPsAbTGAU/X7AK0CQrSUCnAqIE/TD7ykbnyRAgo4FcoACF2AVv1fSD91CYxTQAtAThq+UsCcBmipR6vfPMOykH4FtPjfBWjRBKAFBGcBnFn0K2D2AVoFnFzbPsAZ7wu4bn2AVgEn+osBnC5Am7UvUMCpEaj4LWlx/doXhL4s9GVAimIAZ+jLouWS4zebhL4segaqjgtCX5ZtXBPGZWLHplxLu/O4rLfX/JZv3pIKOAuNy5K/x+Fz8EDwQPBA8EDwQPBA8EDwQPBA8EDwQPBA8EDwQN4DIZIz74vMWxq1xcQuk/wAPR8UYPIFuAQAYiLTBQUADIA4oAaAxAUImRjWZSl1ItAFOAFU5AWUAZBQZtLYlwScLv1Muqh+AFUh/QBOYCmvpDEZp/rR7Ys6U/34GP2AoKQl9eOvNMBJ2arfBWgVsKEf//v060Sa6ncBWgAV/gfQkpfL/1mhAJN2lEndc37khca4UY7q59zQTrlJiwNOJpDxvwtwoh8oWUh/EnDi36ShXwEz+qlLn37yQ3/LphZb78m8kvrxhUu/wmqOxw++CEjaP+dKHqRxAVoAIfqpL4Wlrgha8tK+AP/TbpMGIKQueacsynQBWr1ZQPsCn378xbWifYEPCmhfgH7XtRT6sv41pX1x6MuiCLzQl0XtI/Rl+esk9GV5X4RxWd4XYVyW90VyXMaYsae73Y6r8qnyNzsw1i40LnP9XRDPK2wHDwQPBA8EDwQPBA8EDwQPBA8EDwQPBA8ED7yTPRAgZ5G1DxQAMAAj0gAnkxakY0IQAOSDGgqogBpMYrgAGxNpABKgC5MlpHNBDaAH6eKA0wdl4vp9gLB+bARoVb8L0AJ3OE/KQbtLf1bACXQiL/T7ABX7SENaIFEa4MQXlM354f80/UAN8nIBQvIgLya68TvpqIekoYl0tBHycQFOnQjE/6rfBwiT+l2AVgGbQhmXfgAhPotPpLkALZookwk66tEF2AB+6n+NgHTpp62SjrYLYCMvF+BU/RZwGr+6AGEccAII8b8PcGbRT5lZACd5xQGnTz/XsAJml376AHwRB5wu/doX0K7wP+eZNJ1ULwQ42U+Z6EcT/nf1BaSJ9wWumx3iUEP7AhegVf2hL4sAIb4NfZnYfjP0ZdGVHPqyfI8W+rK8Lxgz8LsU74vDuGysHTPsCeOyjo52GV5Rna9ws1XsuGz58uX9jg8f9iwPDC+rlJEVtdLes106egY+F37POtvBn03ZyFH24N7tA1fuGXyu6UeWVVbLDv51Dlx5KP3IgXuHmefzllVVS8/WgTejDkz99vtm2PBKKRtRY87P3Oxs5gV2d6sY2yjDzLwC1tvRVpJ6KaseIcNMm+ndtlV2mGXKsZ1Rjs34rf7PjF3KqkZIb7tZySlW38PKyqWivjGnrqd1s0mzc/s1+tCKsuHS1j3wpuuckLCR2QP1Y8fYtBtb9oy+anTtKBlXX5c7/+Wr1jjnBUlQUVEutWYea7OZv2IljmDBA8EDwQPBA28vDwTIWUR9AX+YuGYyvxjAySSNCwowqUV+GGlcgHAwgBPQRX4uqMFks06kAT68E2kmHZMw7E/TT36UQ14uwDYUwOnSr1DGAsKNJoJz28A/dIGRpIvrdwFO0vAqBeDEp+TFZKUPUAE88JcCNvzqAoToVygAdCKdSz9paEPox/8uwBafVNdIAR/gRD9tnPJ4JS0OmAtFQJIXda/6XYCWNOgvFnC69HNNFtIP8MNnCgg5R18EJ+kUEJLOBThJQ7nox/9ZACF5FQKc5OXqC9DDOap+0vludiCd6iedSz9pQl8WtXLaIfUZ+jKxvw+0jdCXib2xCF+EvkzsTRpcI3rjVujLirvxLIzLwrhMx1SDGZfpseF96B7gt23qtFlS3zhBmtetlpXL3shlWmYm5/dqmiUTJ02TajMW7zKrfaxdvUKWvP7ygHFU7iCz0dTUJCtXrnSO1ePpktuVZdVy8YyPyLjqyXbXkq0vyV3Lf5RMtlt8rtprlvR2tkvX2lVvmZ6GC64WKa+Q9T/9xi7T0HjVJ6Wrea1s/O2Ph1zmmJPPl+rp+8ia7315yHklMxg+bqKUjRotHUtfTe7aZZ9HHXq81Bx8jKy7+euyK0H0YE+w4dLrBCCHda1bJRt+fZPdHsx/lROnypjTLpJyUwfY5vvvkrZFC+x2KcuxGe7k/8prRkvl5GnSbtrSjq5Ob2k1BxwutceeIc233CDdmzfm0pXXNUjDJdflPrc+9YC0Pv1g7vPO2Dh32jUyeeQMueGlz++M7EuWZ2P1FBk1fIzQ1+/O9unrr7ZzQl/8yq7ra3emP8446Vg57shDckX81/9n70zA7CiuQ31m3zSLZjTadwGSEBICAWLfd7OYzQazmHiBGDuOHccvTpznvJfESfwcx3acgLEx3mPMZmMWgzFmNzuIRUgghPZlRiONlhnNPnr1V8+5t6enum/PaEZgqDPfndu3u/rU6VPVdevW36fq+z+T1evc32VnnHisnHL8kfKNG34kGzY1ZM7xG94D3gPeA94Dfxoe8JBzEOXE1H3ALIUaLkAYjtoCYMUNBCrgBCoR8ecChGHACdhBlwtqAM0UauhAmgtqMEA5XICT/LgGBIiSZD/QTqd4jYuAVPuBO7xcgBP/c60AP/KMA4ToCgNOF2BWQMWDh+hyAcK0EZwKOIGACjhd9pMn9ltAa8oyzn7ShQfVkwCnQhmX/WkH0gBdlCX2U8dcgI1j+B/Ahv34LA4Q4v9c9qOLfBXQugBh2H6N4EwCnAxcYVec/fgV+4GMXKfL/lEVJgKyNohAxaekcwFarT9J9ocjINV+F+DE97xoC+LsB1jiMyJk8QHpXG0B14f/aTu4J/FFtC3gnkWXb8vwhFh/+bYs8IVvywI/8F+j0X1b1h9w+rYsO7OG75fl2+8S3y8L2g36BXyXjES/LNsy+a298cCESVNl3oIjDCcLfv72mofUwpCzwgCKOfMOldYWMwNGU6PU1o2V/WbPN/3Cenn+6Udis168eLFs2bJl0JBzds0hFnA+tuk3sr71LRPFOXBt+9hM9/GB6lM+KD07m2XrnTfv45zf2ey6mjZL15ZNw2IE/fyRklGHHS+A6JEAqCNl8zutt/EHXxfJz5OxV31+r02pMIA3v6xcmh+4TXp2mN+OJnpRZTjzUZ0j+V5iHgKpOv5s6b7jBwbwb47Niojknp3md2Ykyrl7W6M0/OBrxh+jpP4jn449fzgPNLVvkoK8d/+w5hFjT5Npo2bL9a//7XBevteVwwN33vug3PO7R+TU44+yADMpeZMJotjV0mrGiUY2+jjJBn/Me8B7wHvAe2DoHnj39waGfm3DemZ9fb0FVAADoGQc4GSQI1ekAxACwMOPHdbJcwEqhRoAQgbSyDMOEDKoQnqABmDDBTVYZ5GBKIANulyALbwGZ1IEJ/YrlImzH8gCSMkFOBlUD9vvgjL4CfsBOAC/OPvJC9vSAk70MijhAmwMbGM/PsHvwC6X/9V+BYT43wU4o/a7ABv2U3/SDKqTL4L/4+xHV64pasOAE3AWZz++UMCJ/132h6EAdZqydAFafIH9+An7XfcSZVhXWyelZcEalvjfBTipO1yDAk7sjwplQ57YB2TE/lyAUO13AU61n/sszv4o4MS3SYAT+7ErqS1Q+wcDOF32+7YsW0N8W5b1hW/Lsr7wbVnWF74ty/rC98uyvvD9sqwv2NIHh9geiX4Zer3svQfGmmirHSbiaMWyV2TxsacOUNhhpl18+vEHZcf2rZljRx1/htTVj5diM81op5l6eDiEaRXNRI8yq2q+9OzpluXbn7dqu812WEiHdPd2SYWZzrampF4a2tbZz5qupKDMgNIJsr1ji7R279Ldht3kS2FekfmtaZZZKa6Xzea8ssJyKS0wIMakTStMQYpwz5vOtuhn82MzMx2n6iqorJaCyhoLBV0RYHmFXI+Z+tX8lmPq2cLq2iBtd5eqsO/22OgxFqrGTe1aaI73mvIYsYhBrte8tt3z835Tcaqh1g/mN/WePb1SVD9Rurc12OvS4/rOdJ5M3dnVuFF3Zd41inBPb092n4lURSf+7SfG90V140wZFEj31s2ZvPIA9qaMKRskUz5mO1oGw1U+NqOU/9Q+py2jqi1Eix5DNddhp3s1frDTvZpxBfWh1Sl5xgdd5lhyPbDXHJOP9TtuDk21mvKyMsnU38Xjp5hyaZTODavtsfA1pc0nz5R9kWlrett294uMtPXE/JYN6yQTm7fjPrQGuP5x/5oX919G2IcvqYNsGxuIlkbQr9cXzZu07WtX2NeAumrOJQ/KJ5fkl5ZLoXmYhAco4u71ZB15pq3Lk6cafjsgGdCTdqu8wLQ1ZjrbbR0NUlM8Rjp62820tsFMYLSPRaad7NrTZdJVSFVxrWlj10vvnuw9qYrj2lo9ntRea5tfwL1qpDi/xL4zFXZXb3y0rE3U96+gIN+OERUY30+eME7eWLlamIa1clSFrN/YH0ZPGFsvY+vrZHNjkzRsacqowR+lpSX2gfXu7uw16n7GKnp6sm1PvnkI4ICZ02WrmbZ2y9ZstK4q5Lxpkycau4pk5eq1/c7VNLne6VsXFRWasZl2KTXjPwfMmibrzHSyzTt2Zk7NlQ92Tps8yfqCCM2du/rP9MaYU4e5tq5w3c9oz27g4+dffs2+wn4gBcfKzbhgVNDZ3t5/OvNRFeUyY+okEwnaKNu2Dxybiurwn70HvAe8B7wHhs8DQS9m+PS9ZzUBePiCBIq5AKEOBAJnOA6UcUENBtUZTAZqxA2E8GUPSAFQpQGcAEUFnC6oMXbsWAt4gDLY7wJUaQEn4Az76WzEAUK1H59gP1AmDhACqEiv9rsALVCGQWeuDZ/F2Z8WcOayXwEt9mM38MkF2BQKYD/l7QLM+An7AZgAvzj7FdCmAZzAavQ2NjY6AaECWuwH5uF/l/34nhcQkDQAtiigddnvAoSDgQLYj1B/XIBT7edeUvtd9xKAkzLAfgWEUfu5z7iX8C8RqHGAE/vRR9kr4HQBWsoyV1uA3dwnvFNX8W2c/Qpo4+xXQMv9iQ7qj+tewibqP/ZTD7mfXG1BGvt9W5b9GvNtWdYXrrbA1Rb7tizrM9+WZX3h27KsL9jy/bKsP9L0K32/LOsvvzV0D7y25Bln30g1dpqIJF5h2WamKq2qDvpXwwU5L531OTvYrvlcM/cf7ebbO1+T+9b9VHfLR/f/W2nraTFQs1vGlk2y+4GiTMnI4PxZky+XmVUHZdI3tW+UO1ffKJ097XJgzeFy4sQLzWB9rwWeO7uapbLIzBpi/pYZqPrQhtsy5yVtjLv6CxmABmQb97Ev2uSd61fJtnv/x24DJevO/6gUVGXXPGOqTqbsDEv95Z8xAKfVApCi+gn2ECCr4aav2W2A1eizL8tM+cnOrob1svXX2Sl8AVxjr/is5FcEvyU6Nxg77gnssEqG6R/XGUBZkU4zZXF0ulqOE+EZgEcDLsxv7JYlT0nLc49kLKg67kwpP3BR8NmMIXDtYRnzoWsGTL877hN/I7uXvSQ7H7svk7Ry8clScfCRhjr1RYIaXfgeoFZr/M5UtSpaPkCphptNpKKR4SofzSPte9kBC6T6pHP7TQVLGdeec7m1SfW0vPhkP78B1riOthWv2el9WcsU0bow5uJPSp556MDczLH1IE0+mv/evKu/0VE0dmLm/tjxyD3S9sbLqVVXHnWqVCxYnEkPvKfes75piZniuOb0i/rVi/J5i6Tq2DOl5cUnjO8ezZyXtFFlppYtN1PMbr7xq5lk9ZdeZyHvll/8t1SaaOCKQ47JHKtleug+2fKz/5Qes84oQl2sPPKUviPmwZ7IdLWZAwkbgOvaD1yWKT+SdqxbKc333ZJw1sBDF0y/RiZVzLQHtG3UVGdPvVKmmqhJ2jwEyFlbMo7HLOQPG2637eCMUXOFqW63dzZl2mTazHvW/lDWtgRTP+dqazW/pPb6ohnXSX3ftOSk1za/s7dDvrfsK6oi8f3kY4+Us045zo7V8JuspXW3VJjxDZqF199cKTf97HbzuUz+zxc/bcdGVFmnGf/4/k9vMxBynVkfvFD++Ut/KU1mbOJfv/19TSInHnOEnHv6ifLr3z4kjz0VPHQDcPza//5CRlfDlq12ClcdHznqsIVy0Tmn2TFNFDGGd8uv7jOAcGlGb5qNa668RGZNnyovvvq6LFpwYOaUG350i6x4e43kyufwhQfJpRecbcfG9OTm7TvlW9/7iY3I1H253rn+k47N3oPR6WoPnX+gXHbhBwaoAf6qL8vMw/mf+dhHZMK4+ky6TQ1b5Js3/sT54H8mkd/wHvAe8B7wHhg2D3jIOQhXNjQ0OAEbMIOnuHkHcAI1XFOkAiEUaijgjEIZBgIBEWGo4QJUgCL0hQGhC2qMGzcuAziBYq5BaRfUcNmvA1GAozhAhT1qP3ZznXH2awQngBCwlMZ+F2DDV/ifAeWkCFTS4DfsjwOEav9wAE6qFv5n0J9rw2cu+zmOb7GfqEz8oR3IcPUE1ingpC66YDsDgaQL2+8CbNRD/E99U8AZBcx0oNV+7Emyn7qI/UmAMI396FD78RXwz2U/tiugJQ1+i95L2M9AsgJO7HcBQgAn/k8LONG7efNm571EG4D9aQEn/o9rC6in2E/95n7cW8CJLgW0vi0LHtbwbVmwBme4LXY9rOHbsnBLLPYez9UW+7Ys6zPflmV9ofcS3zt85/p+2Xu/X8Y6j/Q/+S7XB+dc/Zo0/bL+Ncl/GqwHXL8zknTYfvCEKdJj+sCtLdkoyaRz0hy7a/X3pchE8pw2+VI76P7Lld+2p7X39Idg7GRQnoHw57Y8JJt2r5YDRx9h0y6oPdoCzsa2DfJ04/0yb/RiExl6kJww/nx5cMMvbRr+PbvlQZlSsb8FAegYVzZZ5tQsSg05m2690VAyU4cvuNpCju2/u8PqDgO7mpPPs4Cz7c1Xpf2tpXadvrI5Cy20aH97ecYWNoAbADjgTJeBh2VzFwbHTd+69ryrJN/Aq7Y3XpHWl582ac2MQHMP7Xc+kV/ALiBSxaHHSPGkGVI660BpXzm8a9xtvfOHBnIWGoh4lcnfrG3iEEDt7tdfMOtgrpDqE8+RUcae1pefkj0GlBdPmm4BJ1OX7nzyAbN9qJRMP2BghKZDb3gXfmSdS6YFbXn+Ubs+aMXCIzMRdtvvv02AgFXHnSXF4yZJ0+032dP3dGejw4alfMJGpdjmerGpc+OaIBqWc7SMjb27nn1EujavM7DsZOs30gGsw1K2/0F26tfWpx+yU6ICEVUS68Eg81GdQ3m394eBaHUXfUy6TQT4jofusmrC09Xm0mvL2ABO1gXd9czDJppzglQecZIB/pdK0y+/K+2rlkvbm6+Ye+EQ6Vj1ho16rDrmDOna2pAacOaygeOtS542YHmpuZ/myqhFx8n2B++U7uYgCrAnBOjbli2x5Vo2e4GFpu67IzlH7hfgO1CT6ygeO8lGdCafNfDo701bV1Y4Sk6ZeLFUmyjNqAA4715zs5w++TLblgIvT5l4iSysO85CTk1fVVRrokHvN21tuxw7/hw5a8qVcqOFj3skbVuLrrj2+t61PzLRm6XmwZMLZHzZNLll5bds1mmjONVO3p945kWZNWOqTDQg7annl8gkE9U5d/9ZmSSbDYx89MlnZa2Jhjxw9iwLLz9++UXyd1/9lgA816zfINOnBFGPTMuKsF4lfdInn30xo6ew0CxjZGDh3WaaV9aonDR+rJx/5slyxz2/k3H1Y+SS886QdjPW99uHHpcec+65p51oIeDyt1ZZAJtRlGLD3LJy6Py58oY59+kXXpGD582WbjN2liYfxn8477GnXzDjULvMtRwqRx2+UK685Dy5/oe/SJF7kORh47NlK96255O/GVjqd+6ry1ZI000msr9PjjtykSw8aI6Jos2u2/nJyy+2gPO15SuML1+So40d8+ceIB8xcPQntwZtg57v370HvAe8B7wHkj1wx66C5AQxRz3kjHFMdDdQwwWoFGowoKlRWy5ACAQi6ozBviSoAVRCJzqAMi5ACKjQQWmNgHT9cFdAxbUANVz2A8OAMgCeJEALBFJAiF3AxChUAtgAUrBfo85c9qNHAW0S4Bw/frwdFCIf/O8CVNjP4BH25wKc+A3/M6joAoQATrVfAa1rICpNBCc+V/vpNOJ/l/0MeilgU/vjACf2M+ASBzgV0OJ/8qKeuexnIE0BYRzgVPvxL3ULn7nsV0CL/wGN1Mdc9scBQnQAyLmXyCsJcIYjOMk3CmjD9iugddmvgBPfJQFa7CJtEuBUqMG7AlpXWxAGtHFtgR1YM20B/sd+/O+6l+waoqZtwXdJEZzUa+xHfFvm2zJbEcw/35apJ8Q+DKFtsW/LgodNfFtGAFO+fdjH98uCe0X7Nb5fFjzskKZfVlFRaPo1w9Mvy7ZYfmtfeID1OMvKK2TJ809ksps5c6btt2d2mA2+Sw8++OABfe4lS5Y4+8S7urbb07sMvGRaRCKMkuSOVTfIVrPmHKLRRQeNNpF9Rn61+rt2ukP2Xzv3n+wUuGHIubT5GXucaKfXzHZr1w4b3VSQV2Cmys1OV2iVOf51m+l9kT3mtwxwsrt5y4BUxROnS6+J8trx8G/sse77msxafJ+R8oMOlyjkJMHWu35sp/Zku2P927yZiL0DJL/UPAhgYOWOR+62+8jLdf42A0YAiT1tLUJUH5GMww05M9dprtvQOWtP9B/Rdjsfv9/u3v36i8K6mEQQdjVssPCHA80P3m6vlSi1cZ/8ktHk1hXVrZ+BTUjTHTfZa2Z7x8OBf9juaTVTOhpOsaeznY8jVj5Wecp/RCQS7dexZoU0339r5qzS6bP7yniZAcNv2P07//ig1H3waqmYf/gAyMkUqltuuT5zfrSM4+rBYPPJZDCEDYWAAJE97W1O/+dSa8vYnE9dIrK5Y+1bFpKzxiowt9dMow3UL54wTWrOuNjWA9I1350FLrnySHO819Qh+2qdbJMzhWzmPggpsGlMFDNT9CKDq9GBIqZxpnw7zQML3Mvt1Ie+OhGkSPeftpTXbhPxXpOXjZ7Tszt62mRNyxvS2L7ePOAxVVbvWm6360uDyHhNt6ZlubzQ9LD9OMZEXM4zD5NMNm3m+taVkratVV2u9rrFtLvmzjXrLgf3aa42X3W53v/wxDPmu6bLQs4/PP6MHGqiH6dOmmADH1rNOpLfuP6Hpu9qZhIz42Or126w08yOHVOXUfXAw0/KtVd9SM486Vi57e4HZHR1ldTWVMubK1ebMR/au6z81w9+bqeNfeX15fL1f/hfFj4COc8/8ySb6HeP/FGYHhb543Mv2UjIIw87WH7/6FN232D+PfXcErnd6EZeXrrcvhPliSTlQ+Qor2LGkcbUynNLXpPDD5lvAGn2mq2SHP+IjH1r1VqZPWtGkBLyGhKA7qq16+2e/QxkPnjeHDsV7c9uD9pj8p9upqilDB589I823UOPP22n+z3wgCyEDqn0m94D3gPeA94DI+ABDzlTOtUFCBkAVCgD4ATKuKAGQA+oxGBZHCAEakyYMCEDOAFZLkDFgAoDsUCZNIATvRs3bnQCKgbtAJxch9rvAlTkxw/4JPs5xuCXDgQCZVz2hwEn9sdFcKILgIZs2LDBCXgAQPgfwKOA1mV/NIKTtC5Aq4AZuyknl/34YXTNaLNchXm6LWaKWmymLAGY5LNp0yan/RxXwAzgBDi67CeNAlrqhSsal/qg9gPDsN9VF9NGCkycONECNuAhUMwF2LBfATNQIE0EahzgVPupi8DIJPsV0GoEpwtwqv0AWnzmsj8MaKmH2O96WIA6pgOZlKWrLaAOAhIVCgAvXf6PAk7XwwJafxRw4jNXXbSAti5oC9IAzqS2wLdleD0Q35apJ4J335Zl/UFbrBGcvi3LRtPT3vm2zPfLuFN8vyzbXmi/pqGR3wbBdPOufkHafllWs9/aFx6YOHm6zNz/QFm7aoU0bAoGNsmXfmK0HOmH0n+P7o/+1hiK3UT6KOAMn88anW3drf3Wc2syIHRC+TTzQJ6ZPrVPOL+7b823rp4Ou/Ych4gk7enZrcmG/J5fZh6gM781O00Umgpr6wFhCsxaiFGxoHRrY3S3FI4x600aYYrSJAH4AEUQ1kBE8sxvh3dCOk0koorakl9splE1Ulg12kYC6X729TRvtRCU7bRSYKLdrD/7rjnteZpuuMpH9aV5t1PrmoRh/3BeYd+0ukQK8gpLgVmfNSpE+sZJUj0YbD5xeeyr/ZQx91DdRR8fkCXruRLlCkTddvdPpf6yT0ueuedYK7a3o21A+j+VHa2vPG0jfZkOm/rdvnKptLzwxIB1fvf2enRtTab87jEvpMusccx6nWEBZqpsMNtATtZAZn+uttauodt3clx7rbqH4531H1lfEgG8EZ2JlJupUlmL8i8+frnMmBaAanug7x8QjrREPbYZHYcsmGsh5xknH2tTEJEZFr7rdF3M3t495px2KTPreSJj6kz7ZuS8MwLYaT/0/WM90KHI4yZCNSpp8qmpqpS/vOZKqTbvYaEPNhLCGqjXXPkh8/3ZLd/87o8zY4pTJ0+w2TFl8Oev/Wi/rM3t68V7wHvAe8B7YB95YGRa/31k/DuZDVADqMQ70INBPhegSgM4uY5JkyZZQIIOBk+jP5RJEwacQA1eLiijEZxAjThACNQAymA/0CzO/jSAk3yASuhMYz8RnwBOXi5ApZECXPP69eudgAeYGgacAC+X/9MATqAGA/nYj9+BYi7/K6DF/jSAE/vxvwtQ6UAgHTAGh7HfVZYuwBkdNMEefIb95AVgdtmvUVukT4rgVEBIPgByl/0ATvyv9qPPZX8YEFKvXYAQe/A/dREYif2usgwPBCYBTu4l6gd1Cyjpsh/AiW+xXwFtLvvjACc68D/2K6B12e8CnK76r/ZjTxLgpG6Tt0aguuzXCM4kwIndvi3jbmWMwbdlgSeC/wo4+eTbsuzDDr4tGwg4fVtWaPtkvl+WffDM98uCfhnfzTy45eoXpO2Xhdtlvz3yHqgfN1HmH3KkgZvrZNlrL/TLcM2aNcIrLHPmzJGlS5c6Z4kJpxvK9s7OIJLSdS59llxCX56/QHgPttOcm0t3+HgYrIb3R7dZYzBRclzTHvM7eYCEoK4e0+uL/mbS48Pxvqc7gAvoyvo40Bz9bPdGigvbwrtYizIqTj3RRCk+D1f5qF/JMs63u5c+LyWTZ9kpVzvXvW2nIw1MDOoegI71TPuJaSejwjSmcZJcDwaXT1weuj/NNWvaob53b2s0Ec4/GXC6An0OFE+cZmEo20SrsibroMRBWvLMb8A9fcBsULr2MjGRz0Q3A8SZbpq1QEtmzLHT8+6l6n6nZ++foE7Ygy4/hO5EjbbWd84J14F+GUQ+JLXXkaRD/mjb9L5r6DXveh9i4xknHWMBJxGJRHyuWb/RALlLZNrkif2u4QUT+Xjs4kPFRiQeONtGH5I2l4RdR75f+dp3BpwCeB2soLdhSzA1cvTcXPlcfekFFnA++sfn5IVXXpetzdvlH75wHc8NDLvg489fe5Vd7okoV6I2VbQcsOHX9/1ed9t3ysmL94D3gPeA98C+8YCHnEPwM2CBwV/egRpAGRdgCAPOpEiHKVOmWEDCICFQyTUQQtQWUAMgxCAakM01qJgGcAI1gDLYD3Ri8MVlfxrAifsmT55s7UdHnP0AWrU/DeCkExEHOIF5XCf2K6CNsx8wCcSkjFwRnOQDVMIn+B2Q5fI/evAH/s8FOAGYyLp165ywEQAHfMJ+bIoDnPgrGsGpHSibgfmH/UBJ7AdsMvjust9GoJqI4rSAE/343wVLuT7sR1caQIuNCgWi9lM2+B9fACMBzC77AZzcT6QHqMZNUauAkHyAMi77FdBiP3rSANo4wIkO/I/9SYAWwMkL+2kLyDfqC3zOvUT9VvtdvlBAS94ATux3tQVpACd2+7YMzwfi2zL1RBCN7tuywB/6sIlvy8S2Y74tC+qF75dl2wvfL8v6Itovo59UXlbcb4CR1IPpl9Hv9LJvPFBbN1YOPeJ42drUIC+/EEw5t29yHlwuLd077PpvxSYikzU7kXozzWK3iVIKRxYNTmtC6j29Zr3MsgEJ7Nqcps8dXi+xwEQx5hUUymDWJexq2mx1sw5jx+o3B+QzmB2f+MiXZfzYYCrNb3z3CyYCycznuo+lx0zzW1RnHoY20Yt6bQU1/adPBJLaiM8+20pZszMiva0tUlBpZoMyvk+K3CNy1vzIkDyzfirTgKoMV/movi995jvm9x+/2drl/13/Od3d773lxSfN+o5P2ajD0edcLlt+9p82Qk/BJn4ZNKDrl0Pyh8Hmg48KKqqcSmtHj5PrPvp/7bG1G96Sn9z27850aXbG5dNjpnouqKyx00Gbm9epikjX6hPOsdPHdm/bYqaCPsxCQqa2TStEUSNaJ1nLlelweyKQ09Ylk441M/dG9nSYqVnN9RRG6r3qJIJz5xMP2FfteVea6Xin2rVm1U5Nty/eJ1XMkiVbg0hGpvZGmjuCSPHhbGt79nRLvnkoI+104YO99gVmLUmq0I0/+aUZ2wumnp00PoiSD+t64OEn7NqTl190jnkwvFj+aIBoVBhnqB1dLduad5h7Pt9Giuoano1N22RMrZmprnKUbGwYOIV5VNdQP6fJhzVJiWC96/4/2GxYx7O42Dx47oCt6EMmThibmWbX7kj57xNXXCw1Znrf3zzwcGbqWj11zfrgwY0JY8f0g5963L97D3gPeA94D+wbD2Tns9k3+f3J58IXPiCFd6AG8MYF2DRqi8GOJKgB4AQ0ADWAYklQA0Ci02q6oAbgD4BDnnERnOQFlMF+AC1QyWU/QIkBGPIEgsZNRTd16lRrP/YAxVz260AgugC0SRGcDKpjfxzgBOYBZbAfQBsHmMOANg5wUhnV//gAn7ns1wha7E8CtNgFwMT+OMDJQCCAGfsBtHGAGcCpgJYyIq0Liqn/sTsOMCugxf4kQEu9wH5k7dq1TkDIceoZugC01G1X/UkDBfAT/scXwMg4wKwDgaQH6FGHXPWf+xL/JtmvgBb7kwAtEajUW/KMA5zoAIphP4A2DjBrBCq6NALVVZYK2NR+V11UQEveCmhdvgBwAkPJk3rBvR4V7PZtWdYrei/5tiwAnL4tC+qGb8uy94hvy7K+0IdNaIt9v8z3y7I1Q0S/S7Rf5vqOHkq/LJyH3x6aBwpNpNzEKTPsCw0Vo6rsdv3YiVZhecUoOeyok2x/u9FMUUvaSVNn2leJWS/y3SSvbnvKmnPRjOtkZuU8OXfax6Qwv0je2vnKiJjZs3O7FFTVCOsHFk+aLoWh6UVZVxMgUnPqhVI6c67UfuAj1obdrzyb2hbAJhCo1ERz1Zx6gRTVT5DS/eZldKVWZBKaru9eCVO8Fo0zD8CaF+Aw3/z2CX9Oo3z3q8G115x+ccYnAMiwEL2H/qpjThfgbuXRp4UP2+2W5x+z73WXfFLK5x5i/VJ98vlG55x+aXVtSI6xlmPR2Oyag8NRPv0yS/Ghp2Wn7Hj0XrsGZ81pF9ozbBmb6YYrF58sVcefbWFbydT9ZPRZH5ayAxak0JouyWDzYd3X/IpKqTL+x69AehWA1HBJXD6UMVG8Yy65xvhhvoXjFYccbdYq/ajNmnpTZyAgDy9sM+twbv/DXcJ6sKzPORgQ2dUYQJiq486UEgPU9T6NXp9OsVx51Km27toI0lAi7k3uB/VTYb2ZzYjPBtSGBdjeZep4yYzZQcSm8a1GK48+4xK7bi3tCHUA8ArcDEdHh3W5tmnvxpt1NnmVFphps000ZvZzueuU2H3TK+fI4rGnyyFjjpfZNYvsgyPrW9+26YezrdW1OE+bdKlMGzXbrhMaa9QQDry2bIVt/y4570yZP3d/+cKnrjbjdP3bHdQSgbixodFGQAJFH3ws+D6JZsnUt0cdtlD++rqP2UOsfYn85v6HTX0U+ewnr5QLzj7VRoqeeMwR8vd/9edSN7p/PbAnDPFfmnw2NW6RShNMQWQqr898PPj+cWXJWp+MwZx9yvFykrH38IUHZZIR1TpnvxlmKt7A/hlmfU0+A02RIxcdLHP3nynbd+w0/f4WOXT+gfY1Y+pke5w+38rV62Ti+LF2+twFJkJ2rlmL8+pLPyh/dlnQBtqE/p/3gPeA94D3wIh6wEdyDsK9DGYBZXgHagAPXLACwAkkBDDkApxAO2T16tVOcAPUACqhi4E0IIkrT9Io1IgDnEANQAr2A2iBNy5d2M41kGcawIkOoJhrIAebAC7oAk4BqVx5Av4U0MYBTgAtUAb7gTZAJZcuACeDseSZBDinTZtmARV2AyVd9gO6AF7oAnACCV15AjgV0MYBTsoakIj9AFrgpUsXgBOwR56kASa6ZPr06VYXkBGfuewH0DJIjy5s5xpceWKXRm1Rli7ABkDkOrEf6IpvXbrIjwE88qSMSOsS/I8u8qLOuuxHD/5AlwJOV57UCwW0TCPmAq8cp56RJz6lbrt0hafYjQOc2MNAJroAtLQFLvspR+oj6bl3uYddeXJfKqCNawsoHwXMAFraFpeuNBGc2O3bsmyt1EFp/OnbMt+Wac3wbZl6Iog6821Z4A/fL8vWC98vy/qCrekj1C/rn4v/NFQPlBl4NX/h4szpVdWj7ecWE1G0pXGjlBlQR38NmTt/USYdGy8886h0tGenput3cEQ/mJFkh7y67WmZWD5D9q8+WM6eepVN0dC2Th7bdJfddk3TaPf1qXP1Hx3ZZHbtfOw+AdiNOux4uw9w1nzvL+z2jofvFiKxwmst7n7teWlf/Ubm/MyG+3Ls4a13/Vhqz7rMTl/JFJaIXY/QbgXTo+Yxsp5DUiRJ1ECU3KhDj82kKawda4DT1fbzNjOlaGatSbNO3QDpy7xz83ppfeUZqViwWCzkM/sBf3b9xb6TWp571ELL8oMOt3va315moVJYZ9ubr9hITuAyYNCK+d3atuylcDIbOQmMAtJRDgCjhpu/btMMV/n0y9D5IVO57FFsx5aSaftbiMt6q1t//SNbxgBbXgiRg7uX9p8W2h4w1+kS6m6uejCYfCgnIiUph/L5RwiRqC3PPWKzzt5HLkui+xz1IZQkLp9wGVefdF7mDOoQArgGZjY/cJt9EIB92+7+mYz50LVSe+4Vqad45X7sWLPCQkUgI5GUNtIXhSFhmuC25UsseFZAveXn37H1l2T2XjC/I1VqTrnAbnY3b5GmW7+nu+37TgO6q449UyqPPMV+3nrnzXaqYvxdZUCrCtGstDHmh63uyvk+unisXDzz0/3S6WeNyuxffvG6ido8vD6wsWdPj9y79kdGb5A+V1vbz4C+c/rvy356sekRmWyiRmdVz5f9qhdYmPq9ZV/JJkjY0jbbTlHbl0738ZFxiIcee1oWHTxPjjhkvn0RzblhU4MQ7RhOS/qHTfTmFRefKxs3N5hxtYFTzDI+U2HG8S457wySWz33/f5Ru93YtFV+cec98qHzz5LjjlxkXxzo6OiULnPecEmafO767UPyMQMRL/xA8JBIS+tu4cW4Z1TwARGfp51wtJxr1hPl83NLgnWgP3X1pZnvf85TfaxL+k/fuEGmTBxv1RHJecUl52ZUEx36b//5ffv5Bz+/Q6656hKZPmWShZvspEo/+9LIPHyUMcJveA94D3gPeA9kPJBnBrrjv/EzyfwGP3qnm8EL3oEaQKVoZwEvAdfCA4GAPZcAGBRwrlq1yqkLqAFUIk+itoAyLgFqALOQOMAJ1AAqoQtASzqX/cBN7EeAKEAZlygU4Fic/QwEApXIEz3ocwngBpiIxAFOOirkiS4AbRxgBtDyQvAXfnOJAk58AFRy+QJAq4CZcgRSuYQy4lqROMDJQCBljv0AWux3Cb6nDBAgIjDLJdP7BtLo0AL1XPZTJ8KAFkjokjSAk7oKiMN+AC3wzyUASe4BJAnQzpgxw+oCRgKVXPYDOMeMATCbKWMMoOXlkjSAE4BIOuwHcGKbS4AagEkkCdCq/fwAoMxd9qOnrg7AbH6MGt8DmF2SBnACaCkn7KdOUDdcQnnjN4Q65orgRMd035Zl3Ofbsowr7PeNb8sCf/i2LFsvfFuW9YXvl2V94ftlWV+wxfcqfe1ov2xXS5uMqghmKRlqv4z+LP1IfM47+fDi+5zXUIR+MBJdXzKXLvo7vLhOXvSD6Mvxrv3vXDrea8fpx8XN5hG91oOOHL4oF3QTzVRXMkF2dDZJe4/7ocKoDSP1mQhIplYlEkynvBxKXvnFpQY6jRbABxFrf8pC5BrTddr1Jc394hJ8tsf8tu01U8AmiZ3207QBNmozRlfS+cNVPkl5pD1my7im1kI2YNtIyb7KZ7jsp4zzCs0SOma645GathWf5JnflSPp9zT+yDfR8cBOpnbufUceIBEbBc9DIr9Zc7M0modEKotqpKmDh+gH3qvvprY2l3+rzDSylRXlsmGze7yA84F4RD7+6JZfyyuvOx5I6ctkxrTJdsraHTvdY2pMWzu6pkqAfXFpctmb5niufCaOqzdT1HbKtu0j156ksZM0xYybTRwn3aZvtNGUQXd3dgrxtDp8Ou8B7wHvgT9lD6xc3izT96uRgsKh/U7l2l972j1+nssvPpIzl4f6jgM1EIUafbv7vQUDgXX2xz9AzAU4GYwAtgCNGCSIA1QMpAE1EKBGLsCJLsATADAqCjXYr4A2mobPCmjRpVFn0XTo4sc8gyykiwOEDJQD/xBAowtwokujztAFlAHARkUBLfu5PgCtSzSCFl3k5wKc5AlsZKCIdABalwA4AbSIRtBG06ELCMq1ogu78G9UdCCQ/UmAUyNo0UV5uwAneQJl8Anp8L9LgMb4FtEI2mg6dHGN1DV0AZip31FRQMv+JMAJoKUOoUsjaKO6yFNhuw4ERtPwWQcC2dYIWrbDgi7qGACQPIGNrghOBbScS1RpLsCJLtK4IlDJc7oZyMoSfm8AAEAASURBVORdAW3YJt0OAO0YY1cAaF2AEx3c4wBY8oyLIOT6aDMQAG0uwIkuBtviAOdg2zKNoNVr03fs921Z4A184dsyrRliB7ppj6mLvi0LHjbBO74t822Z3iW0GdPNdwni+2W+X2YrgvlHvUjTL9P0/v3d4QH6z++UsAZnQ9vadyr7fvkSFeaKDOuXKMUHYF/vFvfDlClOj01SfcIHbJRobAJzgAg5XdMxKV3aY4CqXPrSwqbu7e6HbdPaMlzlkza/pHS2jE309EjLvspnuK5jKGU82HptYXoOoD5c15OkB7DZ2+4e00k6b6SO8ZBI0oMi76a2NpcPWKOSl0uIMlxw4AFy9OELbeRlEuDk/FVrkr/fmrY1C6+wfOULnzIPd5WHd/XbBv793Ve/1W9frg+ufMLnjOTaoOF80mx3mvHAt3P4LY0en8Z7wHvAe8B7YPAe8JAzpc8YrI2DGgxK6LSagBsGMl2AEzAFlAG6kA4ow3tUNGqLPOOgBnkSdQbMQgdQxgU1yHO6GUhDVxygRReAFkiFLiLmXBGc6ALKAL1IFxeBp5EOpNFpQaPXSJ5EnQETSQeUcQHasP0agerSBVwDEqILKOMCnOgCygAdSRf39LoCTtIAGpMALYCTdABmF6AlL6Ae/ue4K4ITXwAEeKELwOwCnNgPYOaddC7AiS6NQCUNfnBFoJIOQEtZkQ67XICWsgaqYj/1yxXBiS58TxmgC39R7lHBbo1mTbJfAS1pqIeuCFTyZCCQe4V0AGYXoOVeI0/sB9BSz6KCLuo+9zC6gDIuwIn9+AKhLXDVH3QBaLk30UU74IpARRf2AzhJxwCZC9BqBCr2xwFa8iTqjHzRBQTlWqNCnloXB9OWuQAtunxbFngY//u2LOsL35ZlfeHbsmwr5NuyrC9oP6f7fpl1CL54r/fLDLo0/bIK2+fiO3pv+2XZmuS3vAe8Bwbjgc6GDWZNwJLEU3rNmpFevAf+lDzg6/XQS6tX3n8Rdmeferyw/mS7CRz47o9/OXTnJZzJ2pTVVcHMUq5kwzmlrUu/3+c94D3gPeA98P71gIecKcs+CQpEoYYLCgC7gEpAGXQBZVxQQ6O2FGq4orYYFApDmTioEY4gjIsUYIA+DaBFl0IZ7AbKMFgTFY1AVftdEajYr1AGXdjvArQK2MgD+10RnNifBtBiv0IZ8nRNMYou7Oc6sR9Q5wKc2K+AGV0AZhegDdu/t4AW+xUwJ8FqoCv1DPsBpS7Aif0KZbAf8OcCtGo/uri+OMCZBmpgvw5kYj+APCr4H0BLRBx5MhDoApzYTxquFfuxywVow4CT+uUCnOjC/lyAFvsVMCfZD9TAt9wbANo4wKmAGfsBzC5ACxQgT3wBtHRFoGI/gJl7gDzjAC32K2BOst+3Zdla6duyrC+0LWCPb8t8W6Y1g/bHt2WBN/CF75cFvvD9Mr1DgsjMoqLCTL9mb/tlWc1+y3vAe2CwHmCdQV5evAfeSx7w9Xropbl613L5r6V/M3QFf4JnXv/DX4y41T+/454Rz8Nn4D3gPeA94D3gPeDygIecLq849sVBGaAAUANYEQc1AAxAGQAmgAEo44IaCjiBFUlQQwfS0AHEckWdAXiASgiD0q6plBiI0mk1sZ+oMxegZYAb+4EuwCTsJ31UFApgPza5AC2+wH78hv1ARFfUGfYr4IkbVGdQUQEt9sRF0GI/A7HoxH6gEjaGRQEnIJRjcRGo2A+gBWZhP1DJBWjDgA1A6IrgxH7gFJAK++MiaLEf8Mq7wl7AV1iwH+hHOuyPi0BV+4GJ2E8ZuQBtWvuBg0BC7I+LoMVu/Ere2B9XF9NEoKIDwMy1Yj/gzwVoM4Cw10SgdrgjUPG/Ak7sj4ugxX4AM+mxH0AeFfyfJmoL+2kvuFewH/CKzqio/ZRlEqBVwKn2uyJosZ+2ABuT7PdtWbYUfFuW9UXatsC3ZYHPuM98W5atP74ty/qCe8n3ywJ/8L30fumXFRQGM060tu52PjiXtl+WrUl+y3vAe8B7wHvAe8B7wHvAe8B7wHvAe8B7wHvAeyDsgfzwB7+d3gMMZCoUAETEAU4GcjTqLAlqMKjO4FdS1BYDIWmgBoOKCmXiAKcCQp1WE/vjAGcUynAdUQE6kSf2JwFO7AdMAmUAnC5Ai/0KZdICTgCta4pg9X8YMJN3VPA/IA77kwCnAlq13wVo1X7yyAU40Uf9wfeUQVQYFGUgEJ0AqjhAOxjASb3F/jhAS14AZgTAFgdow1MEA2hdUwRjP+CVd+wnGtcFaNNAAcpSI2ipg3GAVu0nnyTAqYAW/wNoXVMEYzf1gryxPw7QpgGc6OBeUsAcB2ipqwr44wAnbUEaQIv93JekT7Lft2XZO8+3ZVlf+LYs6wvflmV94duyrC98vyzrC+1X8iAYfQzfLwsePAv6le6lD6g/4ZlN4vplWS/7Le8B7wHvAe8B7wHvAe8B7wHvAe8B7wHvAe8B74GoB3wkZ9QjKT6nBZwMijJ4waA5sI7BC1fUmUYNMRAC9HNNSxmGGgAeoIwraotBaaAS6eMAm9oPMGIgKg7QYr9GzWE3UAlQEhWuLwwI4yI4FdBif1wEKoAH+xksSwJsQJnwQJoL0GK/Alrsx69xgFbtB3RRTlFhUBeoBKDFB3trP3oAnPg/LgJV7ccnlCX2kz4qaQAn9uN//Ib9cRG05IUvqCMAXNcUtZRNmqgt6iL+5x37iVoEKIaFfNICTvwFTMT+uIFA7AfqIdgfN0WtAlrqQxygxW4eUKAc1H4XoA0DzrgpdvE/9ZVrVfvRGZVsWxBvP/e2Alq13wVosR9ATt7kRVm67E8DOPGBb8uC0sL/vi0LfKFQw7dlwbSUvi3Ltmi+Lcv6grbY98sCf2i/hvrxfumXcZ1bt7bbflW2Voj9bk7bLwuf57e9B7wHvAe8B7wHvAe8B7wHvAe8B7wHvAe8B7wH+nvAQ87+/sj5SQEh8EYjOF3rBjKQw8Avg54McABlXFBDAZXhm4mAE6jBC6gRF3UG4AHKADU0AswFNQBsaQCnQg3sBopxHVFJCzgBhIAxAE8coMV+oAwQIQlQYX8uwMmgImkYSMN+/E/eUaF8GHzET7kAZ9h+VwQqeeF/tT8OEIbtjwOc2E8Zqf2AYxegBbDhM7WfcoqKAk7yxQcAWlcEKnmhC3CRC3BSt7EnLgJV7adMqYvY7wK0g4ECwLhgsHCr1Rm9TuynLLlHKR8X4KRsFNCq/a4IVOzG/1wH9rsAM/lEASe+jQptAQOZpMV+ygidUdG2gP27d7fGPuwQBZxx9tNGkbfa7wLMUcDp27JsNHfcwxq+LQtqrgJObYt9W1Zu20/uM+5JV1tAW0zb6dsysd+Tvi0L7iW+S3y/LPAF/99r/TL6I6MqSrMXaLYG2y9z9Wf6KfQfvAe8B7wHvAe8B7wHvAe8B7wHvAe8B7wHvAfexx7wkHMQhR8GnACbuKitMOAEsDHY6QKcCngwobW1xYKgqDlAGR0IBFARdeaK2gLwAGUYOAFQMUDvghppBtIAOwzEAl0UcMbbnxsQYj8vtd8VgYr9QBmulwEh7I8DtDqoHreGKPYr4ATwxAFaBYT4KW6KWvypUANAhf/j7FfAif2uaFyNgFRAGDeVm9qvgBD7XYA2bD91IhfgxH4gFvZFhbLGfmzkuGtAzWW/a4pd7Mb/aj+A2QVoGegnzyQoEAWEcYBW7ecepXyS/A9wVMAZZ78CTu4l7HcB2rSAUAEn9xD+dwFO2gJ8gcTZH20LgEq5AKe2BVH7fVvW/w4I2mLfluEV2mLflgX1w7dl2fsk3Bb7tsz3y7RmKKD1/bLAIyPVL1N/+3fvAe8B7wHvAe8B7wHvAe8B7wHvAe8B7wHvAe+BgR7wkHOgT2L3KCAEyiRN8QrEYqCDgUCgjAtqcByoxwARgCopakgBIVAjCXACxwBULiijA1HAmyT70QGUYdAfu4EyLsCJ/QyEG/MNaHFP8apQRu2PA7QAKgbIGERV+7ExLNhPBF6agTQFtNiP/4F7UVH72Z8ECNMATuxXwKyw1AVosR/bAE5xgJNB9bD9cYBWAWHaCM5cgFMBM/a76iKAk3JUQJhkP2UEKAGwxQHasP1xUU/UB/xPWrUfnVGhrtaPCQA5ZUn9j0rU/rgI1DDUUPtdgJa2AJ/pvRQXAYm/sF+hQKz9Rhc2JrUF+B9/KKB1AU78jv+1LcD/UcCJb3xblq0h2hb4tkzsgy2+LQvqhrYFvi0T+93s27KgXtCvoR3Wfo3vl/l+mX6bhPs1Sf1K7iW+g7VfE/fgWbhfpnn49/emB4ryi6W8sFLae3ZLR8/Afu5786oHf1X55aPsSb27WwZ/8hDPyC8ulT38dQ5cYmKwKvOKSyS/pFR6du0Y7Kl/Eunzioolv6zCXN92MU8qv+ttLhxtxmHMdzrS29E2LOWSX1omeabO9Lbukj093Vb3SORjFb/T/8zv1vySMultNw9Ph8o7L79ACmvrM9b1tOwwaUa2XaMNLcwvkrbu1ky+fuP96YG8PLOsUv1M6e5sk9btG94TTqiomWhusV7ZvWNzquspKCqVUaMnS0vzeunpGjh7GEoKCs2Y78R5GX0t29ZJe8vAGeEyCYa4kZ9fKJVjplvbuzr23Xf3EM31p3kPeA+8BzzgIWfKQgRQKSAE8ADsoqKAkEFzhRpxgBNdQA1AhQvKuAbSXFADwAYUI28AFVDPBTUUEAJl0tivgNNlPwM52A94BPa6Igij9ucCnGq/C8oMFnAqoMUXLkCL/QqY4+xPG8FJXgpoGdQiTxegZUBUASeDopRBVMKAExgGOHMBWgVUnI/95BmV8FRo6MD/roE0tZ/0OijnArQKOKlbSYCQa1QogF2uCFQFhOSDH+IAIQPJpKUMk+ynLhYUFlj7uZei9qcFnNit9uOrOPu1LSAf/B9nfxooQFth7Tc/srm/XfeS2q+AE1+42gIFnNQjtd8FaNX+tG2Bb8v6Qw3flvm2TNtb35apJ8Q+2OXbssAfvl+WrRf07fhe9f2y/lPUDrZflvWo39pbD9Cnmjx1ltTWj5Omxk2yfs3KjMo8c2zOgQulpnaMmY2kTHZs3yabNqyRLQ0bnL+t9MTp06fL+vXrnbOWaBrXe3F+qVw441oZUxqsJb9q1+ty79ofu5K+4/tKpsyS3s526TK+eKek7rwrGZmVLT//zj4zof6Kv5CupgbZ9puf7HWe1SeeK6XT9pfN3//XvdYVVVA0Zrzkj6qSjtVvRg/ts8+jDj1WKhYeJY0//bbsSxA91Ausu/jjApBDuho3yNZf/chuD+Vf8fjJUn3KBVJgygDZ8ei90rZ8id0eznyswhH+V1BRJcUTp0q7qUt7ugY+KK7ZV8w7TCqPPk2abrlBunds091SUFMndRd9PPO55fnHpOWFxzOfR2Lj7KlXycTyGXLD618eCfXDprO+dJKMKqoW2vr3i0w96CzpbNsum1c+NeKXfPwV18vYGUeYMcp86e5qk1/96zEjnue+yOD0P79VOlqb5b7vnJsqu8lzTpYjLvhnee6uf5DVL9/tPKdm/Bw56eofZI6tfP5WefG+f8t8Hq6NsTMOl+Mu/295/dEbZal5efEe8B7wHhhpD3jImdLDgCyFMgxyRyU8lRtgkDSuqC0AGwM+QMA4QMUP8HCkQNKgOrqAGgBOYIsLaihgA2oAqHhFJQxocwFOfIGNcYCQawPwAFN0iloAWlTCA4Ecx34XoFXApva7AGG/gbQ2E4Ha7I5AZVAanwFO0RMHCPE/9utAFP6NCoN26KLsFXBG7ScfdPFSQOiynzLEZ/hEAacL0GI//kcv5egCbC7AmdZ+F6AN209dpNyjEga0ADbscgFafIr9SBzgVMCcC3ACCPE/6YF+lGUUcKr/qUMaAemyH0CI/3lX+12AVu0nH/yf1BZwrysgdLUF2I8vwm1B1P5wW4D95BcHOKNtgct+bQt8WyY2wta3ZcGd7NuywA/8921Z1hfar/Ftmdg+D9+FtKFp+jW+Xyb24Tu+lyzg9P0y28egXzPYfmW0X5a9Q/3WYD0wYdJUmbfgCMPJgp+/vebBvTDkLDC/baZM31+2NTXKzh3bpWZ0nRy86Ghp3rZFnn3yodjsFi9ebB9Ydf0Giz3JHJhdc4gFnI9t+o2sb33LRHEOXE4i6fx9eaz6lA9Kz85m2Xrnzfsy23c8r66mzdK1ZdOw2MFvkpGSUYcdL4DokQCoI2XzO6238QdfN1/ueTL2qs/vtSkVBvDml5VL8wO3Sc+OZiF6UWU481GdI/leYh4CqTr+bOm+4wcG8MdHjhGR3LNzu3n4oX+Uc/e2Rmn4wdeMP8xD5R/59EiamtHd1L5JCvLe/cOaR4w9TaaNmi3Xv/63Gdvf6xuLzv17ad+1RX77Xx8c0UsdVTtFxs08UhpXPydLH/mu+KjBZHdvXf+K/OrfjpXy6vFyxqduT07sj3oPeA94D/wJeSD/T8jWd9xUAEMc1GAgB2iRFnAq4HFBDWDLUAbSXFCDQTkG8hXK7A3gVMAGeIkDhGkBpw6qMxCogNM1OIAv8C3243sXIAwDTgsIDeB0RaBiP7qwHz+4AGfY/rQDUUCnOECL/7mGJECLD0iDT5IApwK24QCcCggZxFZAGAW03HDYpfbjfxcgjEIB0sUBTvyPkCYO0JJmMIATm9AVHQjET9hOGXBtcfZrBCeAWQGny37uSQW0aQEneboAJ9AgDDixP9oWuOxPApxchz7s4GoLFHCq/7EtKtQH/O/bMhMskPJhDd+WZWuRb8uyvuDhC9+WBf7wbVm2XrDl+2VZf7wf+mX6sBLXmtSvTNsvy3rPbw3WA2NNtNUOE3H0zBO/d57K75AH771Vnn/6YVn68rPy5CO/la0mim+0mXqx2EwzOlzCtIrF+SUyq2q+9OzpluXbn5eWru3SFoGcpOOFVJjpbCdVzMx8VltKCsrsfo6HJd9EspAHx8eXTTWH8qSssEJGl2SnkQynj9tmClL7AtCZ30+ZzyaiMioFldUmAmyaTRM9xue8wiLzCs5j6tniCVPtvmhae2zSdEFfnBSONjMi9U1fG5dmr/b3Xe+2e34uu54eCLitH4gCNOmKxk7KXFc0T6bztNfp8BdRhBpJqOflkc74eYCYfUX1E6Ro3OR+eeFPbNFzMuXDvogMV/lE1CZ+zNgXSWVtofwddpI0fE1M91o0Noh2tse4ZlOXkFz1ICmfPb09ssfc8+YHmNU1lH/q7+LxU6R7a6N0blhtAWc4AjJtPpQ9EaGF1cFvZbXH1hOHn2zejnql5w145/7tu/8yx9jXF82q9zfR0ohemy2LzAl9G+a89rUrZMsvb5DetoEPguPXPd1d0bMGfM4vLZfiHPf6gJP67cgznDpfnmr4rfx69ff6HQF60n5WFZmxpJJx9lhN8RjTDgbTXrODiD/aSd5pQyeUTzP6gujefsrMh7i2VtMltdccI58Ckw/CNi+m2R2qEIk3ae7JUjpqzAAVTFc6Yf9jzXSkBw44VlxaJYXF5fZ4UUmFkJZou7CwnzT4Zfx+RwsAMSzs1+O6X/fp56IS08abvPL4M3WMbV7kF5WS8tEyac5JwrSsgxWmXUXvzEUX2VOXPX6T7GxcKa3NA2cdYNpU8iG9S9ifXxCUSe2kgww0XWx9wLW47EYH6Tmuwva4WUdZ/+Ijl8TlE07LlLuaf3j/YLeBmNQF/BSV7s7dZlrf3A9X5fIbermmibNPlDFTF1qfRfMKf9Yyo86kEa2n9dMW2TrCedRZLSt0qE62uWbKz4v3gPfA+9MDA3+hvD/9kPOqAQIuQBiGAjqtpgtqMLjBwBYDn4A69LmgjA6KatRWXAQk8IYB5SSooYCHiyO/OEBIOoUawJY4QEg6Bv7xA68olGEghzRcK/ajKy6CkHTYz/VhWxzgxGfkgy4XYIsCTnS57AcQokvtJ11UOIb/AVAaqZFkP3kDneLsRxdgiXImjcv+wUABfIaP0eWqiwplsJ+BNHwGtIsKZY2usP0uwBm2H10uwIb9pFNAiG2uCFT8gP/VftJFRaEA9ulAYJL93Hv4FF1x9lPuCjhd9rsiOF2AE9t5MViPL1z+x378iv1JEZyUD+lIr/bHtQVqP3m62gIFtAo48YULcKax37dl2Rrp27KsL9gKtwXUMd+W+baMeuHbMrwQCN+BtOu+X9Y/gpP+MG3G+7lfVmrWaKuoGJ5+mdY3/z40D7y25BlnfzGsLfrbprtvoH6P6csPl1w663PCYLvKNXP/0W6+vfM1uW/dT3W3fHT/vzXgs0W6e7tlbNkkux8oypSMDPKdNflymVmVHchrat8od66+UTp72uXAmsPlxIkXSq9ZxwsIsLOrWSqLTD/W/C0zUPWhDbdl8knaGHf1FzIArahunIz72Bdt8s71q2Tbvf9jt4GNded/VAqqajKqmKqTKTvDUn/5ZywQAYAA7BDWLWy46Wt2G2A1+uzLMlN+srOrYb1s/XV2Cl8gzdgrPiv5FQHU7dxg7LgnsMMqGaZ/XKeCtM5N6wZMV8txIjzxiQWMpn60LHlKWp57JGNB1XFnSvmBi4LP5rdsFAaN+dA1A6bfHfeJv5Hdy16SnY/dl9FTufhkqTj4SAtU7U5+FxvfA9Rqjd+ZqlZFywfI1nCziVQ0Mlzlo3mkfS87YIFUn3Ruv6lgKePacy7vB6hbXnyyn9+AalxH24rX7PS+rGWKaF0Yc/EnJY+HDswDrHH1IE0+aa8jKZ36mzSAWP2845F7pO2Nl5NO7Xes8qhTpWLB4sw+pvul3rO+aYmZ4rjm9Iv61YvyeYuk6tgzpeXFJ4zvHs2cl7RRZaaWLTdTzG6+8auZZPWXXmch75Zf/LdUmmjgikOy03vWMj10n2z52X9Kj1lnFKEuVh55St8RGTBdbeZAwgbguvYDl2XKj6Qd61ZK8323JJw18NAF06+xD3lwRNtGTXX21CtlqomapM1DtnU0WNjJGrt/2HC7bQdnjJorTHW7vbMp0ybTZt6z9oeytuVNe16uttYmMv+S2uuLZlwn9X3TkpNe2/zO3g753rKvqIpU7zMPvVAOOftLptnJDuO+/eKd8sI9/2zPn3/KX8icY64228F1sybjYz+/TprWLpGyqnFyzud+a44B9vOkt6fLjrMBiNpbtso93zzDfO6Vsz97j4F6Zn1ZM+6k+exoWCG///7lZlyrWyYfeKocedG/yfN3/6OseunXRpfI0R/+D5l4wPFy2z8eaj+f/78eycCuippJwmekedNyo+cjdhswduLVN0n12P3sZ/7taHxLHrrpCunp7szsS9o44oP/bO3RNCdcGUyJCrwjUhEBnp788R9LaUWdJpONbzwqT/4yG8UNnMTGBjOt7piph2Sg5s6mVQKE3bOnR+7+xmmZ83XjxI9+zwK12//pMFlspoidOv9sPWTfN614XJ685fPWr+xIyueB6y8yxyvktGt/mQG++CFfH0Topzn3h/mnfNZA8OCaKVemr13zSv/v5SQtafxGGZ5w1XcF6K7S29Mpd339ZCdABT6e9Gc32+/++6+/MNU6o+f+1YOmPPgeCOo0dZXrIp8//PBj0rzxddF6sG3DaxnASbpHf3qt7Nzytprm370HvAfeBx7Ifju+Dy52by7RBTWiUAAQEQc4FWoAGtHlghqsZ6WAkChDF2BjII0B5zAgdEEN8gNsIKzz5xqUVvvtVGJmil3sdw1EYZPaj+1x9hOZlst+8tKBQAWcLvt1UB378YXL/sEAztE1BtCadRsZbKMMooMYQA3sV8BJni7AplFbYUDoArTYj//JB10uwKb2U6bUG/yfBhDi/6j9AE61Py3gxKfoctmPLgW0cfYPBXByjS7YrvYr4CSdy/8cx7e5ACf3EoCQ+wz70wLCXIATXS77AZb4LC3gxH5tC1yAFl0KOPfWfu43yhJAG2e/tgW57A+3BWq/b8uyD2v4tsy3Zb4t41s7K74ty/rC98uyvuD77f3SL9vWvNP0s7psfyuuX0PdoE+Y1C/Les9vDdUDrv6WS1e1WVOuuqZW6sy6nUR/Nm7eYB4gSzfg6tIX3XfX6u+bCJ4SOW3ypXbQ/Zcrv22TtPe0RpPa4wyEP7flIdm0e7UcOPoIm2ZB7dEWcDa2bZCnG++XeaMXm8jQg+SE8efLgxt+mdHz7JYHZUrF/hYEoGNc2WSZU7MoNeRsutUMGJsB1roLrraQY/vv7rC6w8Cu5uTzLOBse/NVaX9rqV2nr2zOQgst2t9enrGFDeAGAA4402XgYdnchcFx00etPe8qyTfwqu2NV6T15adN2jopnxsMmKsSIr+AXUCkikOPMVFgM6R01oHSvvJ1TTIs71vv/KGNeqs9/yqjzx3pB6jd/foLZh3MFVJ94jkyytjT+vJTssdM30l0GoCTqUt3PvmA2T5USqYfIOaHyaDsw4+sc8m0oC3PP2rXB61YeGQmAnL7/bcJELDquLOkeNwkabr9Jqt/TwgQDEv5DMpqE0ljrhebOjeuMRD658HZWsbG3l3PPiJdm9cZWHay9RvpANZhKdv/IOu/VhNJy5So4WjOxHowyHzCeQ52294fZuC97qKPSfd28xvxobusivB0tbl02jI2gJN1QXc987B9AKDyiJMM8L9Umn75XWlftVza3nzF3AuHSMeqN+y00VXHnCFdWxtSA85cNnC8dcnTBiwvNffTXBm16DjZ/uCd0t3cZE/tCUVrti1bYsu1bPYCC03dd0dyjtwvwHegJtdRbKKhC+vGJp/kOPp709YRmXnKxIulOvTgiCYFcN695mY5ffJlti0FXp4y8RJZWHechZyarqqo1kSD3i+dve1y7Phz5KwpV8qNFj7ukbRtLbqIGHW11/eu/ZGJ3Cw1D55cYCLrp8ktK79ls+7qHdz3CjBw0TlftnCSNRTffvFXBqqdJWWV9VZfzfjZBnD+mYFLrfLqQ9+RmglzZcbC8+SYD3/TQKeTbBr+bd/8hjBd6azDPmQB0Ka3npDZR11lIhCPlM1v/dGmA3y2bt9g9cw97hNSPW5/mXfSdebzf2b0hDcYZwjL779/hfnqKJQTP3qTXZPzj7f+tT3ctrMxk+zYy75tAefGNx6Rt56/TWYtuthGWh7+wX+Sp2//m0y6pI2X7v9/8sZTP5H9F18mrP/57K/+XnZtWyvAXZWjP/TvFnBybUC+Baf9pYk6PEEAxgDisBCFCRxb9riZrrljl9RNXiAlFbWZqEpgYViqxsyQtp0NdleXAasrX7hd1rxsIHFhicnncyaK8jjZ74hLZcUz/R/GceWDkkXn/G8LOJvWLZGVz90mB5/+VxlQGc43zXZJxWh569lbpL11mxx4wjVy2Hn/IOuWPmjhYJrz0/iNMgRwUqeWPnKDhbkLz/jrDBwP50Mk5glXftcA7HZ54IZLUgFOPR9o/cI9X5XFF/6LFJaUyzN3/p3Z/qrsd/iHLbzVdJV10yzwp9ymm7q/8IwvymM/+5Qe9u/eA94D7wMPeMg5xEJWqAH0AkwBD+IAIbCL9AAlwIDrR7YCTo6ha28AJxCIASQ6G0mAk8FHtT8OcKInbH8c4Kyvr7eAEPvJ0zWQE450SAM4sX/Lli1OQAiUwX504vc4QKj2hwFnHJQBcAL88L/L/rSAUwd1qVrY7wJsDGap/WkAJwPnCgijgBNAS/0BUAFZkgBhmoE0BYTkQ1m67AdwYj8RhPgKeOwCtNQdAFuS/RwL24//XQ8LaNSQAk7qYty9RLnnsp/7JGx/EuDEx9jlgu0uqJHLfgWELvu5l4CJ1FP872oLXBGcLvsVcGJ/XFvg27LslwBtjm/Lsv7wbVnWF74ty/oi3Bb7tizdg2e+X5atP++3ftmWJtZPJ5q1LeuEvi36bWn6ZQNO9DtG1AMTp0yXqWZtTqTLwJVlr76QyW/mzJn2YbvMDrNBnT744IMHLNWwZMkS54OEu8zUtEiXgZe9JjqECKMkuWPVDbLVrDmHaHTRQaOPtJ9/tdqsPWYGytl/7dx/slPghiHn0uZn7HGmun3NbLd27bDRTQVmSsYek3cu6TbT+yJEsgInu5u3DDileOJ06TVRXjse/o091n1fk1mL7zNSftDhEoWcJNh614/t1J5sd6wPIixKpx0g+SbqGVi545G7OWTzcp2/zYARQGJPW4sQ1Uck43BDzsx1WijZf/DeGmf+EW238/H77cfdr78orItJBGFXwwYLfzjQ/ODt9lqJUhv3yS8Z5OLWZZU4/gGbkKY7brLXzPaOhwP/sN3TutPQKVM+ncGAfsZuDvbJcJSP6krzTkQi0X4da1ZI8/23Zk4pnT67r4yXGTD8ht2/848PSt0Hr5aK+YcPgJxM87rllusz50fLOK4eDDafTAZD2FAIaH50yh7Txrv8n0utLWNzPnWJyOaOtW9ZSM4aq8Dc3vbdFuoXT5gmNWdcbOsB6Zrv7oPHuTJIebzX1CH7ap1sz2ANXtf12DQmipkpepHB1Wh7inmYocy0KT3SaR5Y4F5upz701YkgRbr/tKW8dpuI95q8APSFz+zoaZM1LW9IY/t684DHVFm9a7ndri8NIuM17ZqW5fJC08P24xgTcTnPPEwy2bSZ61tXStq2VnW52usW0+6aO9esuxzcp7nafNUVfV9w6l+aXXnyyoPflhXP/sIeBi6pBBGcYsHkW88F995oA6CAn7w6dgffPeuXPSS8gJy8r3rpVxZyjhodlKnq+8PNf2aAX5NsWP6IXPTlp2XagrNjIaeeo+/bNy+3m0RAAhyJsAsL07/WTTHfm2075HUzxSyy/MkfGph4hJ1eNZw2aRv7eLWZdT+RZpNvNHKPa+9s3ymP/89nbJrtDW/YdSiBj1HISb28+z+yEZv4cf/FHzF2HSn10xcZe3fJ8Vdcb8rgmwYYPiBFpZWyeWUAhl+891+s/uKyajvF7xt//LGNeCUyNAo5XflwMlPLcuxhE6GIAJpP/tiP7PZg/xHhCARGagyknnzgaTJl3mmpozlz+Q0QThl2te+SB793Wca8TSueyGzrRu2k+TL3+E/atVIf+O+LDHjdqodSve9ofFvWvna/HH7+/5FdTavt9mHnfkXKTXRyWFiPlTLlNW3BBwZMtRxO67e9B7wH3pse8JBzCOUK1GAgHMAGWAB+JAFOoEwS4Bw7dqwFhEANoJgLsCnU0KnQgEpxUUP82AZqxAFCoAZQCfsBU8APF6DSgagwoI0CQtyH/QzUAGzi7CcvBsyBe0mAkzQAHmBDY2OjE7DhT7Ufv+P/XPZrBGca+12AarCAM8l+fID9lGkSoNUpXhUQAtiigFOhDP4H0FKWLvvTDqRhF/5H8L8LsCmgxX7yAqq6AFsYCiggjNpPPeVewr/U51z2hwGnKwJVASH5xNkfBbS57A8Dzqj92hZgPz7AfldbMFgooPbHtQXcJ+G2wOX/KOB0RROr/b4ts1Xet2WBG+x/BZy+LQvWUNSHNXxbFky3TVucBnD6tiyY7tn3y4LGJdyvfL/0y/ge7+0xa++Zfm1YBtMvw1de9p0HgJpvLH3JRHKOl3kLDpfjTvmAPPTbO+zDZ/zWif7+4rcFfdLo/mifcShXAMBUwBk+n/Xj2rpbLcDU/U0GhLKmXHidK87v7osW6urpkK49XTY5kaQ9kTVAVc9g3vPLKsyYe550mig0lZ5dZsYcA2EKRlXrrsy7BaVbs5E8eqBwTDBQyRSlSQLwAYogrIGI5JnfVe+EdJpIRBW1Jb84WG+usGq0IY97MjaSrqd5q4Wgek6a9wIT7Wb92XfNac4Jpxmu8gnrzLVtp9Y1icL+4ZzCvml1iRTkFZaCyDqUHCPSN06S6sFg84nLY1/tp4y5h+ou+viALAvNesBEuVKXtt39U6m/7NOSZ+45omN7OwY+ODNAwbt0R+srT9tIX6bDpn63r1wqLS88YduN4TSZh0gQpvzuMS+kq7fLrI3ZfwgUmKmywWwDOWvM+sXsz9XWhiP74tpr1b2377o25qolQcRwVB/TwiLrX38oc2jL2hcDyDlutjSsesbu7+5sM2CqJdjuMN8jfdvhtSWZChR4iLANyGJq0uGSOgO9EIDgqZ/4WUTtUOKDIyr6PrI+I2CYdTpVgKBMu+taz5TpcqOy7rUHTETgX9s1JwvMGpwl5TV2DdDuvmjRDcsDQM56n0eYKWsLzVS/YXH5zZUP5xQWl8nuULQrEbemAQirS729ZU32Aa2Gt5+xkDM8NXCSojR+Gz1xnlWxZe1LSarsMdZ2Rdp3mbGyQQJOziP6E+k1AFijdAHo0bVSV7+cfQioq6PFRtTaE/0/7wHvgfeNB/p/w79vLnvoFwoUAOoBeAALQD0XYAMUAXlyAc5x48ZZwMMP4YaGBiegIi8FhEAnoEz0hzRXRKQA+SrgdEXgKdRAZxLgRA+DugBOBlcAbK6oM7WfH/hAJRdgU8CJL9IATuyPA5zYA8gC8GD/3gLO8ePHW9jLtSXZj2+xH1CEP1yADUAIzGIgi7J0AUJ0kA77gWFAMRegwvc6qE55438XoMX/+FftdwE2AJxGCmA/wH2o9iugxX7KGv+77KfuM5hJfSMN+UYHe/AT9lMXsYd7yWW/DgTiO/wQZz/1grQI/ncBQrWfd47nApzYTxm57KeealuggNZlf1rAqQ8LJNmP37UtUPtdbQHlrYPqcfb7tsxWlcw/35ZlXGHbKN+WBf7wbVm2Xvi2LOsL3y/L+sL3y7K+YCvaL7NrOpYU9Es02H5Zv5P9h33iAfrcWxo2yoo3XpWDDj7CAk8+r1mzxr7CRsyZM0eWLl3q7PeH0w1le2dnEEnpOjcKzl1p6HvzFwjvwXaac1364vaFwWpcGvazxmCimN8GScJ6ngPErDkaFb2+6G+PaLq9+bynb71WdGR9HGiMfrZ7I5eGbeFdrEUZFaeeaKIUn4erfNSvZBnn291Ln5eSybOEKVc7171tpyMNTAzqHoCO9Uz7ifkdHhWmMY2T5HowuHzi8tD9aa5Z0w71vXtbo4lw/smA0xXoc6B44jQLQ9kmWpU1WQclpr5FJc/8tt5jxrP2tRD5THQzQJzpplkLtGTGHDs973Dakr1/Qtfu8kPoTtRoa33HnnAdSLIvqb1OOi/tMb3nctoTakez1xHxQZ8fAh/1HQs3SAlGEWmIhNuVKNhLON0eUji89tX7ZMkD/94v+XCuga0+40GCARKZepbjLvgIlOvuapN6E5EJlN1tpqcdPWGOibo8xqpkul3WLgVw8v7Kg9+S9csfsoDtjE/dDmMdIK58SJSxd8AZQ9jhuGb1ey5tGTscOkyoad/pQb3JWR9N6t07NlnfMn0v68YynfKgpF/1DfIPqnB/5wI2Vew19D+sh/y794D3wHvYAwN/FbyHL3ZvLw2ooYMXCmVcgDM8EJgUwamD6nwxbNq0yQkIgRoKxZKghk6FBrhQQJj5cuq78LD9gJEkQAskASolAU4AoUKlzZs3O+1POxAIuFFAi/0uQMi14TN0JgHmtJECEyZMyAmYAYj4HyimgDYJEOLjOMDJQKBCMQXMLkAI3GRgnfRJgFPtZyAG/7sAGwNpCsWSAK1GQGI/ulz+pz6QDv8n2Y/tCsgVcLoALfYroMVnLvupX9Rt/J8LcHLfYT/3UhzgxP8KmJMArQJmACHlHr2XuGejgDzJfnyXFPWkgFPbgjj7FfArYE4CnNwv3ONxgNa3ZdlvBN+WZX2hD2v4tiwbwUlb7Nuy7HrIvi3z/TJtMXy/TD0RvI9Uv6x/Lv7TvvRAiVkjEiky6wi+m6Sle4eUFpSbdd6ydtWbaRa7TZRS2kHMQV2PGdRkismo2LU5zUhjeL3EAhPFmGfWYhvMuoRdTZutatZh3Fv5xEe+LF/+yxvsq6w0ePhxb3UO9vwepvk1vxWYSlelwKz1GhYgqY3i69tZypqdEeltNZEoldVO34eTEjlrfgRJnlk/NSzDVT6q80uf+Y716xc/9U3dNeC95cUnTaShicwy9WL0OZfbukAiBZtFdeOCKVdNdCoQz76wf5hksPngo4IKd4Ra7ehxmbp05cVf2CsL4/LpMVM9F1TW2OmgM/7o84tmSKRr9QnnBFM4mymdyw86TEqm7qeHU70TRY1onWQtV6bDjYqtS2Yna2bujezpMJFXpg4URuq96iSCc+cTD0jjj78pnZvW2nQu0K/pR/J9UsWsjHqm9kaaO4JI8eFsa3v2dEu+eSiD6cKHIi1b19rTZhzyQefpLc3r7P4pZlpSlTHTDrWbTOM6GMk3EYtlfVOBss20rEz5iuj76IkHZlSy/qdTzHdHYcnAdnjbhldt8iqzzijT6IZfqt+pb5A7g/Uy90h1fbaMiWYERrJWZVohErSyzqy1bCJDn7vrK2a90SKZeMAJ1u4eswYy1wHo3fjGo3aN0NbmDXaN0LT6NV2Pgam6xir7xkxdaP4PjdTVTw3KHj2sAYrsaFhh3/Vfh/XBHjOt61TdZd/T+G3bhmAt7Pq+OtZPQeTD6iW/kSdv+bz1F9Mq107a++/6SBb+o/eA94D3gPWAh5wpKwLwgcELAA+QCygTBziBMgyKMhDIKykCEr0bNmxwAh5gDPBDo84YZHVBDQWcDEoDNQBULiij9qMDkOgCbIBGACf2A2jjIjgV8OC+jRs3xtoPlMF+bALYuQChC3BG7efasB+fYHec/QBOtR9Ai/+TABv5AMVcgIqyZsAfQDUYwOkCVAwE4jPsp95QTi7/K6AlfRLgnDhxogWE2A+UdNXFcARtEuBUqEFdRJfLfuoDUEwBIfa76iJwUAFhEhSYNGmSvZcU0LrsV0CL/6mHcRG01DGNOot7WAAdei9R1sBLl/0KaPG/Ak5X/cH/1A/u7Tj/A2ip29oWcD+52oIw4OReckVDcw+p/RyPs5+6r/5X+6P3km/L+jf6vi3L+kPbAgWcrrbAt2VZf7Hl27KsP3xblvWF75dlfeH7ZVlfDLVfltXgt/bGA4UmUm7ilBn2hZ6KUVV2u37sRKt2/MSpsvCwY2TchCky2kwTud/s+TLrgHkmgqNLNm1YszdZD/u5r257yuq8aMZ1MrNynpw77WNSmF8kb+18ZdjzQmHPzu1SUFUjrB9YPGm6FIamF2VdTYBIzakXSunMuVL7gY9YG3a/8mxqWzpWvylAoFITzVVz6gVSVG9+c+83L6MrtSKT0Pyc2SthiteicZPsC3CYb367hT+nUb771eDaa06/OOOTKIAkeg/9VcecLsDdyqOzYELzaHn+MbtZd8knpXzuIdYv1Sefb3TO0ST2XdeG5BhrORaNDaat5OBwlE+/zFJ86GnZKTsevdeuwVlz2oX2DFvGZrrhysUnS9XxZ1vYBqgbfdaHpeyABSm0pksy2HxY9zW/olKqjP/xK5BeBSA1XBKXD2UM3BtzyTXGD/MFCFxxyNFmrdKP2qypN3XnXWkfXthm1uHc/oe77HqwrM85GBDZ1RhEz1Ydd6aUGKCu92n0+nTq5cqjTrV110aQhhJxb3I/qJ8KzbTe9rMBtWEh2q/L1PGSGbODiE3jW4WYo8+4xK5bSztCHQC8AmHD0dFhXa5t2rvxZp1NXqUFQDTzAHLmc7nrlNh90yvnyOKxp8shY46X2TVm3cXeDjNV7ds2/XC2tboW52mTLpVpo2bbdUJjjXIcePn3PFywx0TCfVYOO+8fZMyUhbLwzC/K4gu/alMvf+KH9v2gUz4jgKQjL/pXuxYj615G4ZZD/YBdrAU5Y+H5cvq1t9hja16+x75v3xSsAzr1oDNk5qEXyrGXfVuKHCCTxG1metLSijo59Oy/lclzTzFT5wZtF2CQ6VRrxh0gp3z8J/YY61EedcnX5egPfcPmM1z/tpm1KYG0J1x1o8xadLEcf+UNVnV0ncyk/JjulalRe3vMOOqq50xk4mYb1alrj/LONQETJ8092U5vO/voq5JUOo+tX/YH8x2WL6d84qdmzdRLjC/+w5kuzc7aSfOEdStZy3XS7BOt7euW/q7fqdjcun2jWW/0MJuO8tTpdXP5jWmMKcPC4go547o7DNQ905bjWZ+5y9SHgQ9J8ADWoz+91uZ/gikD1vT04j3gPeA9MNwe8NPVpvQoA5mABiAFIMUFSBRqMAgMXAPKuABJOIITwOkCPAo1gDMKNVyAMDqQ5oo64xLVfnQAZVz2A4rQh/0AGV4u+xUKAEvWr1/vhHXAMK4TwMNAOcDFBXjSAE7ywX58gd0AZpf9CmixPxfgLC0NnkbG/y7YCMBiwBb7AbQAO5f9LigQhUoAA6AY9pMX9rvKUgcCsT8X4MQ+JM5+BtKAf9hPnUBfnP34TQGnC7BhD4AZ+6mrAGaX/cA1ICHpcwFO6gd+wn5XWWI/vsV+BbQu+9MATnRQZ7EfwBlnP7bzorwUELrq/+TJk21bwDGgpMt+BbTkrRGoLvujUMAF27Gbe4l3ygfA7PK/Ak7sJ02utgB7fFsWTFft2zLzpKi53zQamjaKdtu3Zb4t822Z/aq1/3y/LOsL3y/L+oItffCJ7X3RLyMfL4P3QJmBV/MXLs6cWFU92n5uMRFFWxo3mr5Vl9SPm2ghpybqMhFVL7/4lJmdLZgeTffvu/fQHG2hTF/d9rRMLJ8h+1cfLGdPDQZSG9rWyWObgrXaXNM02n196qLf7yHVzs2dj90nALtRhx1vjwPOmu/9hd3e8fDdUmsgTHitxd2vPS/tq4OB8H4K3Zdjk2y968dSe9ZldvpKprBE7HqEdiuYxi/P/HbIJSmSJKogSm7Uocdm0hTWjjXA6Wr7eZuZUjSz1mSvw5a+zDs3r5fWV56RigWLxUI+sx/wF47cbHnuUQstyw863Opuf3uZhUqZjM1G25uv2EhO4DJg0Iqpi23L+q+B1rrkKTudKZCOcgAYNdz8dZt8uMonyDzpf6Zy2UTYji0l0/a3EJf1Vrf++ke2jAG2vBAiB3cvza4dZ3fyL+aeo+7mqgeDyYdyIlKSciiff4QQidry3CPWjOx9ZD/m+OeoD6Ez4vIJl3H1SedlzqAOIYBrYGbzA7fZBwHYt+3un8mYD10rtedekXqKV+7HjjUrLFQEMhJJaSN9URgSpgluW77EgmcF1Ft+/h1bf0lm7wXzW1Ol5pQL7GZ38xZpuvV7utu+7zSgu+rYM6XyyFPs56133mwjevF3lQGtKkSz0saYHx66K+f76OKxcvHMT/dLp5+XbH3c7u9ffvG6ido8vD6wsces83fv2h+Z84P0udrafgb0ndN/X/bTi02PyGQTNTqrer7sV73AwtTvLftKNkGOrV1Nq+XZX3/FgKv/beEjABJZ+fyt9p0pUF9/9EY58IRrLAhlZ3fnbnn8f/7CHtd/rGWoEf/AaP0+CH/PAb9KK2otTOW8bRuXymsPX29VEGn51rO3WAi36Jy/N7dqt2Bb5Zjp9nj43/N3/18LLgF2vJo3LZPff/9ym+TJWz4nx13+31I3eYFNE5y3R1aZqL+hil5X+Pw/3vrXBqT+WMZOP9y+OLb+9Qdl1Uu/Diez2/jGJeuWPiBzj/u4NG9cZg9vWvG4uZ4PyaYVT2SSL3v8+3Lg8dfI0Zf8u93XZNaqtJGYjnodl8+L9/2r9UetWe+SF+WHf13Xlck4sqFpWdtTo34p52fu/Dunnufv/kcDof9OZh/9UaupZds6aVz9nKTxW1CG1xub5xvY/i/2fNbMxGZE7zqtY8D2pY/cKPNO/HMDx7+TgZ42ccI/vSZzAdlrMNBUp87tf68nKPKHvAe8B97zHsibMmWKtj3v+YvdmwucMWOGaVD3WKjnAgwATgaJAQwadeYCJMAKAA7pGAhxAU5gBlAJWKRQxgVI0kKNqVOnWl3YQ54u+0dVjJK6MXU57QcWAdiwPw5wMhBIOuxXKOOyPwxoAU+uCFTKTO1HB1DJZT+gDn3YBWCOA7Q2mtVMPZWXnyfr1q1zAioFtNifFtDGQQEGAs09Zn2B3djv8kXYfmyPi0BlIA370Lt27VqnLygf6hm+wKcAO1ddDEMNwDdlpR0QvVfQAdTDF8A8oJjLfgW0pFfAHNWFToXtSfZzfwD/0AWoA5i67Adwct+RDru4V6J5Yjd58g5g5jpd9kcBLfdwVBf24wvuT4T646qLQAFswy4ALYDZZT/XSFrSUS9cgBNISpljP20F9cxlfxTQuqaoxWbqIjq5Nu5fl/2+LcNTgfi2TD1BZIRvy7Le8G1Z2Be+Lct6w/fLsr4I92vez/2yXS1tZlaHGplg+sV83w+lX0a/iu9u+gK8o4cX7TKvoci0adPsaawxORih/8CLfg0v+hH0S3in/r8XhAchmZ4WwNne3pbzkugb0r909amiJx90ZP9op+jxwX4mmqmuZILs6GyS9p7dgz19WNMTAcnUqkSC6ZSXQ8kgv7jUQKfRAvjo3Z1dX2sout7pc4hcY7pOu75kDLTDZ3tMH7+300zvmSB22k/TBtiozRhdCafLcJVPUh5pj9kyrqm1kA3YNlKyr/IZLvsp47zCIuk20x3r9LLDpVv14JM8M5Ywkn7XvJLe8007C+xkaufeFO1skq6hHiMKnodEfrPmZmk0D4lUFtVIU8dm8x1n4ElE3k1tLaZV1k0z05qOle0NbwqRmmFhKtZaA506djdb+Bg+lmb7/C8+bKL+uuWeb54hdVMWSGuzmWlqV+OAU5nGtnrcfgb8BdOWDkiQcgcRkqPNdLdESW7fbKL6TYTgSAjT71YZENu07mUBxI2UjDFrdwLzwutDDjavihoz5mcg87YNrw321H7pS8pHS1X9TAG4uup1v8QxH9L4TcsQKLt9s+MBpxjdfrf3gPfAe9MDK5c3y/T9TABU4dB+p+KV157ePiTn+EjOQbgNqOECDGGoARwBargACeCJtAxIxAHOMNQAegA1XICEgQTABrqSorYAhOhEB1DDZb+FGvUBoGUgKs7+NBGcACCgDIMvQDPgpct+gCRgCfuTACeDMAzqYDc+c9lP9BERoeQJIGQwyOV/CzgNACTPOMAJ1CAdugCc+NZlP/kB9tAVBzipWgpoGfjAfpcuBgLVfmznGlz2pwGcAFDKCftzDaSRL/bHAU6OKaAFcALiXPbjBwXM1B3qkMt+YCP2IQyqucoyDGhzAc5cU9TiAwW0AE5AqMt+6iH3E+kBqkmAk/qRZH8Y0OYCnNx3+DgOcFLvFdACOCknl/20A9iPLoB2EuDk/qRsfFuWO4LTt2W2qmf++bYs4wp7X/q2LPBHmmh035Zl6w5bvl+W9cf7oV9WYNYmHDd2nO3L7m2/LOs5vzWSHgBspoGbagO/r94pYQ3Ohra171T2/fIlKswVGdYvUYoPwL7eLZtSpBxckuoTPmCjRJPOIkJO13RMSpf2GKAql760sKl7+9a02TrTDVf5OJUPcqctYxM9PdKyr/IZrusYShkPtl5bmJ4DqA/X9STpAWz2tm9ISrJPj/GQSNKDIu+mthbH7Nq6xr5cTiKKDqi1twIUa1q7JFYNMHJvASfKAY5Re4/58Dcz60jGGfCEiVAl4jCtsM5ksNZk2jOGli56LUPRwhSyvMIC1D7rL5KjXHcY6P3QD67KnAboZkrZvZE0fnOVYa48h3I9uXT6494D3gPeAx5ypqwDq1evdoIboAbwEgEuAElcgCcN4GQgECgDrABqAGVcujRqizyBcOTrEh2UNkzDQiWXLqArg5RIEqBNAziBqUAZ7AfQAmVceQJkAEsIgBOY5RIAJ+AJsEPUoksXoIioOQS4tjeAU6EG9gNogZeuPDUClXSkYdDKJdOnT7e+AOYBlVy6AHVEVCLAzb0BnAA4QCgCoMW3rjzJLww4SesS/M81AmgZwHHpUkDL+fg+CXDmAoQKaMkTn1K3XXlqBCrpuEcoq6hwjPrPO4AWwOzSpYCW83MBTuoHQlvggo0KaMmTOg1wdOWZBgpklWy4AAADt0lEQVSgA8DMO4AWEOrSpYAWu7A/CXByfyK+LcsNOH1bZqtK5t9035ZlfMF3nG/LAnf4tixTLexDZ/TNEN8v8/0yrRm0FQWFwcN1w9EvU73+3XvAe2DwHuhs2GDWBAwetow7u9esGenFe+BPyQO+Xg+9tHrFPTXp0DW+N87UqUbfyavZuv5lKSwpTzShvXXvHvxIVP4uPAhIxC9Jsn3T8qTD76pj77XreVc51xvjPfA+9oCfrnYvCh+ooVAJqAFUcgkDgcAsJC6CE5jBlLgIUCPuqWAG0YBsCBAFMOkSjRTg2Ntvv+1KYqfN5Sl6BDjCwJxLALTARAS7sC8qwEgGwhEALdfpEgAnLyRpIFAjOEkXZz+AFviKANeAPC4hDWmRuAhOADN5IgBaoJJL8L0OZCYBWnyBTwBTq1atcqmyPlVADtwkCtIl1DHqGhI3RS0ADiiGAP2Afy4hYlQBcxKgpS5SJ4F5QDGXUKcVkAM4ebkkTQQnA4EAfoSBQAC5SwCcgEmENHGAdubMmTYNgDluKjYArQJyfE8ZuAS7FGrgCxfgBNBynQiAFt+6hPzIF4mL4OSY2g+gpc66hHKkPBHqPveAS6gXCmipiy5Y6tuyrOd8W5b1BVu+Lcv6w7dlWV/4tizrC98vy/rC98uyvtB+2dp1G6Wutjq2X5CmX0b/iodv6KvyzvcUL/ppvIYi2ueN6yPF6aQPwev/t3d3Kw3EUBDH+yi+//v1ql7Irzq0hrNsFC8KTqDUj+kQZ0Mazr9ndRby8EE4Zy3POd8fvbY/v1z++na1zbQJNIEm0ASaQBNoAk2gCTSBJvAqCfR2ta9yJX4wj0ABXZLX6ww4FR7SdaYgADwBgOugC+AENSbASZOuM16gzAQ46UAZRRC6I0ClAxXgpAFoJ8DJSyET4KQDZX4LOHml64xXus6mLHKLVLojQJhCGk06aCcvEI6WDniV7zp2AKf5K2R68AKYpw5UOoB5F3DySgftOi9eIKi1RmddKCKtw7U+A5y80kHLy/WeOlDp0sG5Azh5pYN2nRcvawwApDu6RapC4Bng5JUOWl4A8wQ46d6+YPsO4OSVDtpp/gAzwEkHME+A0+/PAKd5KWQCnLxA0Ol/cNJlL3CtjwCnvYAfr3TQTvM3L/nSKWR6Xkf3skciO4DTNepe9sjM+4N9ytrqXta9LCuje1mSuNwhVM9ln3lYF//tXHa7vd8/lOVvfx6+3z2XPb+uXzeBJtAEmkATaAJNoAk0gSbQBJpAE2gC3xP4AN2FSEjfdarcAAAAAElFTkSuQmCC" - } - }, - "cell_type": "markdown", - "metadata": {}, - "source": [ - "### Resulting Diffs\n", - "\n", - "- ```flex_decoding.py```: Update imports from .flex_attention to .flex_utils\n", - "\n", - "![image-2.png](attachment:image-2.png)\n", - "\n", - "- ```flex_attention.py```: Adds imports from .flex_utils\n", - "\n", - "![image.png](attachment:image.png)\n", - "\n", - "- ```flex_utils.py```: Move shared symbols for flex_decoding and flex_attention\n", - "\n", - "![image-3.png](attachment:image-3.png)" - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "## Conclusion\n", - "\n", - "Using the Codegen SDK, we can:\n", - "1. Automatically detect import cycles in large codebases\n", - "2. Visualize them to understand their structure\n", - "3. Identify problematic patterns like mixed static/dynamic imports\n", - "4. Automatically refactor code to fix these issues\n", - "\n", - "This helps maintain a healthy codebase by preventing import-related bugs before they occur in production." - ] - } - ], - "metadata": { - "kernelspec": { - "display_name": ".venv", - "language": "python", - "name": "python3" - }, - "language_info": { - "codemirror_mode": { - "name": "ipython", - "version": 3 - }, - "file_extension": ".py", - "mimetype": "text/x-python", - "name": "python", - "nbconvert_exporter": "python", - "pygments_lexer": "ipython3", - "version": "3.13.0" - } - }, - "nbformat": 4, - "nbformat_minor": 2 -} diff --git a/examples/removing_import_loops_in_pytorch/utils.py b/examples/removing_import_loops_in_pytorch/utils.py deleted file mode 100644 index 1aac631..0000000 --- a/examples/removing_import_loops_in_pytorch/utils.py +++ /dev/null @@ -1,65 +0,0 @@ -def visualize_graph(graph): - """ - Visualize SCC using Graphviz with a strictly enforced circular layout - """ - import pygraphviz as pgv - - # Create a new pygraphviz graph directly (instead of converting) - A = pgv.AGraph(strict=False, directed=True) - - # Set graph attributes for strict circular layout - A.graph_attr.update( - { - "layout": "circo", - "root": "circle", - "splines": "curved", - "overlap": "false", - "sep": "+25,25", - "pad": "0.5", - "ranksep": "2.0", - "nodesep": "0.8", - "mindist": "2.0", - "start": "regular", - "ordering": "out", - "concentrate": "false", - "ratio": "1.0", - } - ) - - # Set node attributes for consistent sizing - A.node_attr.update({"shape": "circle", "fixedsize": "true", "width": "1.5", "height": "1.5", "style": "filled", "fillcolor": "lightblue", "fontsize": "11", "fontname": "Arial"}) - - # Set default edge attributes - A.edge_attr.update({"penwidth": "1.5", "arrowsize": "0.8", "len": "2.0", "weight": "1", "dir": "forward"}) - - # Add nodes first - for node in graph.nodes(): - short_name = node.split("/")[-1] - A.add_node(node, label=short_name) - - # Add edges with their attributes - for u, v, key, data in graph.edges(data=True, keys=True): - # Create a unique key for this edge - edge_key = f"{u}_{v}_{key}" - - # Set edge attributes based on the data - edge_attrs = { - "key": edge_key, # Ensure unique edge - "color": "red" if data.get("color") == "red" else "#666666", - "style": "dashed" if data.get("color") == "red" else "solid", - "label": "dynamic" if data.get("color") == "red" else "", - "fontcolor": "red" if data.get("color") == "red" else "#666666", - "fontsize": "10", - } - - A.add_edge(u, v, **edge_attrs) - - # Force circo layout with specific settings - A.layout(prog="circo") - - # Save with a larger size - A.draw("import_cycle.png", format="png", prog="circo", args="-Gsize=12,12!") - - from IPython.display import Image - - return Image("import_cycle.png") diff --git a/examples/sqlalchemy_1.6_to_2.0/README.md b/examples/sqlalchemy_1.6_to_2.0/README.md deleted file mode 100644 index 7a8fce7..0000000 --- a/examples/sqlalchemy_1.6_to_2.0/README.md +++ /dev/null @@ -1,94 +0,0 @@ -# SQLAlchemy 1.6 to 2.0 Migration Example - -[![Documentation](https://img.shields.io/badge/docs-docs.codegen.com-blue)](https://docs.codegen.com/tutorials/sqlalchemy-1.6-to-2.0) - -This example demonstrates how to use Codegen to automatically migrate SQLAlchemy 1.6 code to the new 2.0-style query interface. For a complete walkthrough, check out our [tutorial](https://docs.codegen.com/tutorials/sqlalchemy-1.6-to-2.0). - -## How the Migration Script Works - -The migration script handles four key transformations: - -1. **Convert Query to Select** - ```python - # From: - session.query(User).filter_by(name='john').all() - - # To: - session.execute( - select(User).where(User.name == 'john') - ).scalars().all() - ``` - - Replaces legacy `query()` syntax with modern `select()` statements - - Updates filter conditions to use explicit comparison operators - - Adds proper `execute()` and `scalars()` chain - -2. **Update Session Execution** - ```python - # From: - users = session.query(User).all() - first_user = session.query(User).first() - - # To: - users = session.execute(select(User)).scalars().all() - first_user = session.execute(select(User)).scalars().first() - ``` - - Modernizes session query methods with `execute()` pattern - - Adds proper result handling with `scalars()` - - Updates common operations like `all()`, `first()`, `one()` - -3. **Modernize ORM Relationships** - ```python - # From: - class User(Base): - addresses = relationship("Address", backref="user") - - # To: - class User(Base): - addresses = relationship("Address", back_populates="user", use_list=True) - class Address(Base): - user = relationship("User", back_populates="addresses") - ``` - - Replaces deprecated `backref` with explicit `back_populates` - - Creates bidirectional relationship definitions - - Adds `use_list` parameter for collection relationships - -4. **Add Type Annotations** - ```python - # From: - class User(Base): - __tablename__ = "users" - id = Column(Integer, primary_key=True) - name = Column(String) - addresses = relationship("Address") - - # To: - class User(Base): - __tablename__ = "users" - id: Mapped[int] = mapped_column(primary_key=True) - name: Mapped[str] = mapped_column() - addresses: Mapped[List["Address"]] = relationship() - ``` - - Introduces `Mapped[]` type wrappers for all columns - - Converts `Column()` to `mapped_column()` - - Handles nullable fields with `Optional[]` types - -## Running the Migration - -```bash -# Install Codegen -pip install codegen - -# Run the migration -python run.py -``` - -## Learn More - -- [Full Tutorial](https://docs.codegen.com/tutorials/sqlalchemy-1.6-to-2.0) -- [SQLAlchemy Documentation](https://docs.sqlalchemy.org/en/20/) -- [What's New in SQLAlchemy 2.0](https://docs.sqlalchemy.org/en/20/changelog/migration_20.html) -- [Codegen Documentation](https://docs.codegen.com) - -## Contributing - -Feel free to submit issues and enhancement requests! diff --git a/examples/sqlalchemy_1.6_to_2.0/input_repo/database.py b/examples/sqlalchemy_1.6_to_2.0/input_repo/database.py deleted file mode 100644 index c07234d..0000000 --- a/examples/sqlalchemy_1.6_to_2.0/input_repo/database.py +++ /dev/null @@ -1,11 +0,0 @@ -# database.py -from sqlalchemy import create_engine -from sqlalchemy.ext.declarative import declarative_base -from sqlalchemy.orm import sessionmaker - -SQLALCHEMY_DATABASE_URL = "postgresql://user:password@localhost/dbname" # Change to your database URL - -engine = create_engine(SQLALCHEMY_DATABASE_URL) -SessionLocal = sessionmaker(autocommit=False, autoflush=False, bind=engine) - -Base = declarative_base() diff --git a/examples/sqlalchemy_1.6_to_2.0/input_repo/main.py b/examples/sqlalchemy_1.6_to_2.0/input_repo/main.py deleted file mode 100644 index 1bbbc4b..0000000 --- a/examples/sqlalchemy_1.6_to_2.0/input_repo/main.py +++ /dev/null @@ -1,109 +0,0 @@ -# main.py -from fastapi import FastAPI, Depends, HTTPException -from sqlalchemy.orm import Session -import models -import schemas -from database import SessionLocal, engine -from typing import List - -# Initialize the app and create database tables -app = FastAPI() -models.Base.metadata.create_all(bind=engine) - -# Dependency for the database session -def get_db(): - db = SessionLocal() - try: - yield db - finally: - db.close() - -# Utility Functions -def get_book_or_404(book_id: int, db: Session): - book = db.query(models.Book).filter(models.Book.id == book_id).first() - if not book: - raise HTTPException(status_code=404, detail="Book not found") - return book - -# CRUD Operations - -@app.post("/books/", response_model=schemas.Book) -def create_book(book: schemas.BookCreate, db: Session = Depends(get_db)): - db_book = models.Book(**book.dict()) - db.add(db_book) - db.commit() - db.refresh(db_book) - return db_book - -@app.get("/books/", response_model=List[schemas.Book]) -def read_books(skip: int = 0, limit: int = 10, db: Session = Depends(get_db)): - books = db.query(models.Book).offset(skip).limit(limit).all() - return books - -@app.get("/books/{book_id}", response_model=schemas.Book) -def read_book(book_id: int, db: Session = Depends(get_db)): - book = db.query(models.Book).filter(models.Book.id == book_id).first() - if book is None: - raise HTTPException(status_code=404, detail="Book not found") - return book - -@app.put("/books/{book_id}", response_model=schemas.Book) -def update_book(book_id: int, book: schemas.BookCreate, db: Session = Depends(get_db)): - db_book = db.query(models.Book).filter(models.Book.id == book_id).first() - if db_book is None: - raise HTTPException(status_code=404, detail="Book not found") - for key, value in book.dict().items(): - setattr(db_book, key, value) - db.commit() - db.refresh(db_book) - return db_book - -@app.delete("/books/{book_id}", response_model=schemas.Book) -def delete_book(book_id: int, db: Session = Depends(get_db)): - db_book = db.query(models.Book).filter(models.Book.id == book_id).first() - if db_book is None: - raise HTTPException(status_code=404, detail="Book not found") - db.delete(db_book) - db.commit() - return db_book - -@app.post("/publishers/", response_model=schemas.Publisher) -def create_publisher(publisher: schemas.PublisherCreate, db: Session = Depends(get_db)): - db_publisher = models.Publisher(**publisher.dict()) - db.add(db_publisher) - db.commit() - db.refresh(db_publisher) - return db_publisher - -@app.get("/publishers/", response_model=List[schemas.Publisher]) -def read_publishers(skip: int = 0, limit: int = 10, db: Session = Depends(get_db)): - publishers = db.query(models.Publisher).offset(skip).limit(limit).all() - return publishers - -@app.get("/publishers/{publisher_id}", response_model=schemas.Publisher) -def read_publisher(publisher_id: int, db: Session = Depends(get_db)): - publisher = db.query(models.Publisher).filter(models.Publisher.id == publisher_id).first() - if not publisher: - raise HTTPException(status_code=404, detail="Publisher not found") - return publisher - -@app.put("/publishers/{publisher_id}", response_model=schemas.Publisher) -def update_publisher(publisher_id: int, publisher: schemas.PublisherCreate, db: Session = Depends(get_db)): - db_publisher = db.query(models.Publisher).filter(models.Publisher.id == publisher_id).first() - if not db_publisher: - raise HTTPException(status_code=404, detail="Publisher not found") - for key, value in publisher.dict().items(): - setattr(db_publisher, key, value) - db.commit() - db.refresh(db_publisher) - return db_publisher - -@app.delete("/publishers/{publisher_id}", response_model=schemas.Publisher) -def delete_publisher(publisher_id: int, db: Session = Depends(get_db)): - db_publisher = db.query(models.Publisher).filter(models.Publisher.id == publisher_id).first() - if not db_publisher: - raise HTTPException(status_code=404, detail="Publisher not found") - db.delete(db_publisher) - db.commit() - return db_publisher - diff --git a/examples/sqlalchemy_1.6_to_2.0/input_repo/models.py b/examples/sqlalchemy_1.6_to_2.0/input_repo/models.py deleted file mode 100644 index 07ba9ca..0000000 --- a/examples/sqlalchemy_1.6_to_2.0/input_repo/models.py +++ /dev/null @@ -1,20 +0,0 @@ -from sqlalchemy import Column, Integer, String, ForeignKey -from sqlalchemy.orm import relationship -from database import Base - -class Publisher(Base): - __tablename__ = "publishers" - - id = Column(Integer, primary_key=True, index=True) - name = Column(String, unique=True, index=True) - books = relationship("Book", backref="publisher") - - -class Book(Base): - __tablename__ = "books" - - id = Column(Integer, primary_key=True, index=True) - title = Column(String, index=True) - author = Column(String, index=True) - description = Column(String) - publisher_id = Column(Integer, ForeignKey("publishers.id")) diff --git a/examples/sqlalchemy_1.6_to_2.0/input_repo/schemas.py b/examples/sqlalchemy_1.6_to_2.0/input_repo/schemas.py deleted file mode 100644 index daf4fb9..0000000 --- a/examples/sqlalchemy_1.6_to_2.0/input_repo/schemas.py +++ /dev/null @@ -1,31 +0,0 @@ -from pydantic import BaseModel -from typing import List, Optional - -class PublisherBase(BaseModel): - name: str - -class PublisherCreate(PublisherBase): - pass - -class Publisher(PublisherBase): - id: int - books: List["Book"] = [] - - class Config: - orm_mode = True - -class BookBase(BaseModel): - title: str - author: str - description: str - publisher_id: Optional[int] - -class BookCreate(BookBase): - pass - -class Book(BookBase): - id: int - publisher: Optional[Publisher] - - class Config: - orm_mode = True diff --git a/examples/sqlalchemy_1.6_to_2.0/run.py b/examples/sqlalchemy_1.6_to_2.0/run.py deleted file mode 100644 index 639dabd..0000000 --- a/examples/sqlalchemy_1.6_to_2.0/run.py +++ /dev/null @@ -1,105 +0,0 @@ -import codegen -from codegen import Codebase -from codegen.sdk.core.detached_symbols.function_call import FunctionCall -from codegen.sdk.core.expressions.chained_attribute import ChainedAttribute - - -@codegen.function("sqlalchemy-1.6-to-2.0") -def run(codebase: Codebase): - """ - Convert SQLAlchemy 1.6 codebases to 2.0. - """ - files_modified = 0 - functions_modified = 0 - - print("\nStarting SQLAlchemy 1.6 to 2.0 migration...") - - for file in codebase.files: - file_modified = False - print(f"\nProcessing file: {file.path}") - - # Step 1: Convert Query to Select - for call in file.function_calls: - if call.name == "query": - chain = call - while chain.parent and isinstance(chain.parent, ChainedAttribute): - chain = chain.parent - - original_code = chain.source - new_query = chain.source.replace("query(", "select(") - if "filter(" in new_query: - new_query = new_query.replace(".filter(", ".where(") - if "filter_by(" in new_query: - model = call.args[0].value - conditions = chain.source.split("filter_by(")[1].split(")")[0] - new_conditions = [f"{model}.{cond.strip().replace('=', ' == ')}" for cond in conditions.split(",")] - new_query = f".where({' & '.join(new_conditions)})" - if "execute" not in chain.parent.source: - new_query = f"execute({new_query}).scalars()" - - print(f"\nConverting query in {file.path}:\n") - print("Original code:") - print(original_code) - print("\nNew code:") - print(new_query) - print("-" * 50) - - chain.edit(new_query) - file_modified = True - functions_modified += 1 - - # Step 2: Modernize ORM Relationships - for cls in file.classes: - for attr in cls.attributes: - if isinstance(attr.value, FunctionCall) and attr.value.name == "relationship": - if "lazy=" not in attr.value.source: - original_rel = attr.value.source - new_rel = original_rel + ', lazy="select"' - if "backref" in new_rel: - new_rel = new_rel.replace("backref", "back_populates") - - print(f"\nUpdating relationship in class {cls.name}:\n") - print("Original code:") - print(original_rel) - print("\nNew code:") - print(new_rel) - print("-" * 50) - - attr.value.edit(new_rel) - file_modified = True - functions_modified += 1 - - # Step 3: Convert Column Definitions to Type Annotations - for cls in file.classes: - for attr in cls.attributes: - if "Column(" in attr.source: - original_attr = attr.source - new_attr = original_attr.replace("Column", "mapped_column") - type_hint = "Mapped" + original_attr.split("= Column")[1] - new_attr = f"{attr.name}: {type_hint}" - - print(f"\nUpdating column definition in class {cls.name}:\n") - print("Original code:") - print(original_attr) - print("\nNew code:") - print(new_attr) - print("-" * 50) - - attr.edit(new_attr) - file_modified = True - functions_modified += 1 - - if file_modified: - files_modified += 1 - - print("\nMigration complete:") - print(f"Files modified: {files_modified}") - print(f"Functions modified: {functions_modified}") - - -if __name__ == "__main__": - repo_path = "./input_repo" - print("Initializing codebase...") - codebase = Codebase(repo_path) - print("Running SQLAlchemy 1.6 to 2.0 codemod...") - run(codebase) diff --git a/examples/sqlalchemy_soft_delete/README.md b/examples/sqlalchemy_soft_delete/README.md deleted file mode 100644 index cccc0dc..0000000 --- a/examples/sqlalchemy_soft_delete/README.md +++ /dev/null @@ -1,153 +0,0 @@ -# SQLAlchemy Soft Delete Codemod - -This codemod automatically adds soft delete conditions to SQLAlchemy join queries in your codebase. It ensures that joins only include non-deleted records by adding appropriate `deleted_at` checks. - -## Overview - -The codemod analyzes your codebase and automatically adds soft delete conditions to SQLAlchemy join methods (`join`, `outerjoin`, `innerjoin`) for specified models. This helps prevent accidentally including soft-deleted records in query results. - -## How It Works - -The codemod processes your codebase in several steps: - -1. **Join Detection** - ```python - def should_process_join_call(call, soft_delete_models, join_methods): - if str(call.name) not in join_methods: - return False - - call_args = list(call.args) - if not call_args: - return False - - model_name = str(call_args[0].value) - return model_name in soft_delete_models - ``` - - Scans for SQLAlchemy join method calls (`join`, `outerjoin`, `innerjoin`) - - Identifies joins involving soft-deletable models - - Analyzes existing join conditions - -2. **Condition Addition** - ```python - def add_deleted_at_check(file, call, model_name): - call_args = list(call.args) - deleted_at_check = f"{model_name}.deleted_at.is_(None)" - - if len(call_args) == 1: - call_args.append(deleted_at_check) - return - - second_arg = call_args[1].value - if isinstance(second_arg, FunctionCall) and second_arg.name == "and_": - second_arg.args.append(deleted_at_check) - else: - call_args[1].edit(f"and_({second_arg.source}, {deleted_at_check})") - ``` - - Adds `deleted_at.is_(None)` checks to qualifying joins - - Handles different join condition patterns: - - Simple joins with no conditions - - Joins with existing conditions (combines using `and_`) - - Preserves existing conditions while adding soft delete checks - -3. **Import Management** - ```python - def ensure_and_import(file): - if not any("and_" in imp.name for imp in file.imports): - file.add_import_from_import_string("from sqlalchemy import and_") - ``` - - Automatically adds required SQLAlchemy imports (`and_`) - - Prevents duplicate imports - -## Configuration - -### Soft Delete Models - -The codemod processes joins for the following models: -```python -soft_delete_models = { - "User", - "Update", - "Proposal", - "Comment", - "Project", - "Team", - "SavedSession" -} -``` - -### Join Methods - -The codemod handles these SQLAlchemy join methods: -```python -join_methods = {"join", "outerjoin", "innerjoin"} -``` - -## Code Transformations - -### Simple Join with Model Reference -```python -# Before -query.join(Project, Session.project) - -# After -from sqlalchemy import and_ -query.join(Project, and_(Session.project, Project.deleted_at.is_(None))) -``` - -### Join with Column Equality -```python -# Before -query.join(Project, Session.project_id == Project.id) - -# After -from sqlalchemy import and_ -query.join(Project, and_(Session.project_id == Project.id, Project.deleted_at.is_(None))) -``` - -### Multiple Joins in Query Chain -```python -# Before -Session.query.join(Project, Session.project)\ - .join(Account, Project.account)\ - .outerjoin(Proposal, Session.proposal) - -# After -from sqlalchemy import and_ -Session.query.join(Project, and_(Session.project, Project.deleted_at.is_(None)))\ - .join(Account, Project.account)\ - .outerjoin(Proposal, and_(Session.proposal, Proposal.deleted_at.is_(None))) -``` - -## Graph Disable Mode - -This codemod includes support for running without the graph feature enabled. This is useful for the faster processing of large codebases and reduced memory usage. - -To run in no-graph mode: -```python -codebase = Codebase( - str(repo_path), - programming_language=ProgrammingLanguage.PYTHON, - config=CodebaseConfig( - feature_flags=GSFeatureFlags(disable_graph=True) - ) -) -``` - -## Running the Conversion - -```bash -# Install Codegen -pip install codegen - -# Run the conversion -python run.py -``` - -## Learn More - -- [SQLAlchemy Documentation](https://docs.sqlalchemy.org/en/20/) -- [Codegen Documentation](https://docs.codegen.com) - -## Contributing - -Feel free to submit issues and enhancement requests! diff --git a/examples/sqlalchemy_soft_delete/run.py b/examples/sqlalchemy_soft_delete/run.py deleted file mode 100644 index 3e2072e..0000000 --- a/examples/sqlalchemy_soft_delete/run.py +++ /dev/null @@ -1,106 +0,0 @@ -import codegen -from codegen import Codebase -from codegen.sdk.core.detached_symbols.function_call import FunctionCall -from codegen.sdk.enums import ProgrammingLanguage -import shutil -import subprocess -from pathlib import Path - - -def should_process_join_call(call, soft_delete_models, join_methods): - """Determine if a function call should be processed for soft delete conditions.""" - if str(call.name) not in join_methods: - return False - - call_args = list(call.args) - if not call_args: - return False - - model_name = str(call_args[0].value) - return model_name in soft_delete_models - - -def add_deleted_at_check(file, call, model_name): - """Add the deleted_at check to a join call.""" - call_args = list(call.args) - deleted_at_check = f"{model_name}.deleted_at.is_(None)" - - if len(call_args) == 1: - print(f"Adding deleted_at check to function call {call.source}") - call_args.append(deleted_at_check) - return - - second_arg = call_args[1].value - if second_arg.source == deleted_at_check: - print(f"Skipping {file.filepath} because the deleted_at check is already present") - return - - if isinstance(second_arg, FunctionCall) and second_arg.name == "and_": - if deleted_at_check in {str(x) for x in second_arg.args}: - print(f"Skipping {file.filepath} because the deleted_at check is already present") - return - print(f"Adding deleted_at check to and_ call in {file.filepath}") - second_arg.args.append(deleted_at_check) - else: - print(f"Adding deleted_at check to {file.filepath}") - call_args[1].edit(f"and_({second_arg.source}, {deleted_at_check})") - - ensure_and_import(file) - - -def ensure_and_import(file): - """Ensure the file has the necessary and_ import.""" - if not any("and_" in imp.name for imp in file.imports): - print(f"File {file.filepath} does not import and_. Adding import.") - file.add_import_from_import_string("from sqlalchemy import and_") - - -def clone_repo(repo_url: str, repo_path: Path) -> None: - """Clone a git repository to the specified path.""" - if repo_path.exists(): - shutil.rmtree(repo_path) - subprocess.run(["git", "clone", repo_url, str(repo_path)], check=True) - - -@codegen.function("sqlalchemy-soft-delete") -def process_soft_deletes(codebase): - """Process soft delete conditions for join methods in the codebase.""" - soft_delete_models = { - "User", - "Update", - "Proposal", - "Comment", - "Project", - "Team", - "SavedSession", - } - join_methods = {"join", "outerjoin", "innerjoin"} - - for file in codebase.files: - for call in file.function_calls: - if not should_process_join_call(call, soft_delete_models, join_methods): - continue - - model_name = str(list(call.args)[0].value) - print(f"Found join method for model {model_name} in file {file.filepath}") - add_deleted_at_check(file, call, model_name) - - codebase.commit() - print("commit") - print(codebase.get_diff()) - - -if __name__ == "__main__": - from codegen.sdk.core.codebase import Codebase - from codegen.sdk.codebase.config import CodebaseConfig, GSFeatureFlags - - repo_path = Path("/tmp/core") - repo_url = "https://github.com/hasgeek/funnel.git" - - try: - clone_repo(repo_url, repo_path) - subprocess.run(["git", "-C", str(repo_path), "checkout", "8454e15"], check=True) - codebase = Codebase(str(repo_path), programming_language=ProgrammingLanguage.PYTHON, config=CodebaseConfig(feature_flags=GSFeatureFlags(disable_graph=True))) - process_soft_deletes(codebase) - finally: - shutil.rmtree(repo_path) diff --git a/examples/sqlalchemy_type_annotations/README.md b/examples/sqlalchemy_type_annotations/README.md deleted file mode 100644 index 3f66a8d..0000000 --- a/examples/sqlalchemy_type_annotations/README.md +++ /dev/null @@ -1,148 +0,0 @@ -# Enhance SQLAlchemy Type Annotations - -This codemod demonstrates how to automatically add type annotations to SQLAlchemy models in your Python codebase. The migration script makes this process simple by handling all the tedious manual updates automatically. - -## How the Migration Script Works - -The script automates the entire migration process in a few key steps: - -1. **Model Detection and Analysis** - ```python - codebase = Codebase.from_repo("your/repo") - for file in codebase.files: - if "models" not in file.filepath: - continue - ``` - - Automatically identifies SQLAlchemy model files - - Analyzes model structure and relationships - - Determines required type annotations - -2. **Type Annotation Updates** - ```python - for column in model.columns: - if isinstance(column, Column): - column.edit(to_mapped_column(column)) - ``` - - Converts Column definitions to typed Mapped columns - - Handles nullable fields with Optional types - - Preserves existing column configurations - -3. **Relationship Transformations** - ```python - for rel in model.relationships: - if isinstance(rel, relationship): - rel.edit(to_typed_relationship(rel)) - ``` - - Updates relationship definitions with proper typing - - Converts backref to back_populates - - Adds List/Optional type wrappers as needed - -## Common Migration Patterns - -### Column Definitions -```python -# Before -id = Column(Integer, primary_key=True) -name = Column(String) - -# After -id: Mapped[int] = mapped_column(primary_key=True) -name: Mapped[str] = mapped_column() -``` - -### Nullable Fields -```python -# Before -description = Column(String, nullable=True) - -# After -description: Mapped[Optional[str]] = mapped_column(nullable=True) -``` - -### Relationships -```python -# Before -addresses = relationship("Address", backref="user") - -# After -addresses: Mapped[List["Address"]] = relationship(back_populates="user") -``` - -## Complete Example - -### Before Migration -```python -from sqlalchemy import Column, Integer, String, ForeignKey -from sqlalchemy.orm import relationship, backref -from database import Base - -class Publisher(Base): - __tablename__ = "publishers" - - id = Column(Integer, primary_key=True, index=True) - name = Column(String, unique=True, index=True) - books = relationship("Book", backref="publisher") - -class Book(Base): - __tablename__ = "books" - - id = Column(Integer, primary_key=True, index=True) - title = Column(String, index=True) - author = Column(String, index=True) - description = Column(String) - publisher_id = Column(Integer, ForeignKey("publishers.id")) -``` - -### After Migration -```python -from typing import List, Optional -from sqlalchemy import ForeignKey -from sqlalchemy.orm import Mapped, mapped_column, relationship -from database import Base - -class Publisher(Base): - __tablename__ = "publishers" - - id: Mapped[int] = mapped_column(primary_key=True, index=True) - name: Mapped[str] = mapped_column(unique=True, index=True) - books: Mapped[List["Book"]] = relationship( - "Book", - back_populates="publisher" - ) - -class Book(Base): - __tablename__ = "books" - - id: Mapped[int] = mapped_column(primary_key=True, index=True) - title: Mapped[str] = mapped_column(index=True) - author: Mapped[str] = mapped_column(index=True) - description: Mapped[Optional[str]] = mapped_column(nullable=True) - publisher_id: Mapped[Optional[int]] = mapped_column( - ForeignKey("publishers.id"), - nullable=True - ) - publisher: Mapped[Optional["Publisher"]] = relationship( - "Publisher", - back_populates="books" - ) -``` - -## Running the Migration - -```bash -# Install Codegen -pip install codegen - -# Run the migration -python run.py -``` - -## Learn More - -- [SQLAlchemy 2.0 Documentation](https://docs.sqlalchemy.org/en/20/) -- [SQLAlchemy Type Annotations Guide](https://docs.sqlalchemy.org/en/20/orm/typing.html) -- [Codegen Documentation](https://docs.codegen.com) - -## Contributing - -Feel free to submit issues and enhancement requests! diff --git a/examples/sqlalchemy_type_annotations/input_repo/README.md b/examples/sqlalchemy_type_annotations/input_repo/README.md deleted file mode 100644 index 4d59afa..0000000 --- a/examples/sqlalchemy_type_annotations/input_repo/README.md +++ /dev/null @@ -1,9 +0,0 @@ -# SQLAlchemy Type Notations Example - -A minimal repository for testing SQLAlchemy type annotations and database patterns. - -## Purpose - -- Test SQLAlchemy type annotations -- Experiment with database patterns -- Quick prototyping environment diff --git a/examples/sqlalchemy_type_annotations/input_repo/config/settings.py b/examples/sqlalchemy_type_annotations/input_repo/config/settings.py deleted file mode 100644 index 50f45b2..0000000 --- a/examples/sqlalchemy_type_annotations/input_repo/config/settings.py +++ /dev/null @@ -1,3 +0,0 @@ -import os - -DATABASE_URL = os.getenv("DATABASE_URL", "postgresql://user:pass@localhost:5432/db") diff --git a/examples/sqlalchemy_type_annotations/input_repo/database/connection.py b/examples/sqlalchemy_type_annotations/input_repo/database/connection.py deleted file mode 100644 index 9c5030a..0000000 --- a/examples/sqlalchemy_type_annotations/input_repo/database/connection.py +++ /dev/null @@ -1,6 +0,0 @@ -from sqlalchemy import create_engine -from sqlalchemy.orm import sessionmaker -from ..config.settings import DATABASE_URL - -engine = create_engine(DATABASE_URL) -SessionLocal = sessionmaker(autocommit=False, autoflush=False, bind=engine) diff --git a/examples/sqlalchemy_type_annotations/input_repo/models/base.py b/examples/sqlalchemy_type_annotations/input_repo/models/base.py deleted file mode 100644 index 557d80e..0000000 --- a/examples/sqlalchemy_type_annotations/input_repo/models/base.py +++ /dev/null @@ -1,9 +0,0 @@ -from sqlalchemy.ext.declarative import declarative_base -from sqlalchemy.orm import Session - -Base = declarative_base() - - -def get_db() -> Session: - # Placeholder for DB session creation - pass diff --git a/examples/sqlalchemy_type_annotations/input_repo/models/organization.py b/examples/sqlalchemy_type_annotations/input_repo/models/organization.py deleted file mode 100644 index 25da85c..0000000 --- a/examples/sqlalchemy_type_annotations/input_repo/models/organization.py +++ /dev/null @@ -1,19 +0,0 @@ - - -from sqlalchemy import Column, Integer, String, DateTime -from sqlalchemy.orm import relationship -from .base import Base - - -class Organization(Base): - __tablename__ = "organizations" - - id = Column(Integer, primary_key=True) - name = Column(String(200)) - xero_organization_id = Column(String(50), unique=True) - stripe_customer_id = Column(String(100)) - updated_at = Column(DateTime) - - # Relationships - users = relationship("User", back_populates="organization") - transactions = relationship("Transaction", back_populates="organization") diff --git a/examples/sqlalchemy_type_annotations/input_repo/models/transaction.py b/examples/sqlalchemy_type_annotations/input_repo/models/transaction.py deleted file mode 100644 index debebe2..0000000 --- a/examples/sqlalchemy_type_annotations/input_repo/models/transaction.py +++ /dev/null @@ -1,22 +0,0 @@ - - - -from sqlalchemy import Column, Integer, String, ForeignKey, Numeric, DateTime -from sqlalchemy.orm import relationship -from .base import Base - - -class Transaction(Base): - __tablename__ = "transactions" - - id = Column(Integer, primary_key=True) - amount = Column(Numeric(10, 2)) - description = Column(String(500)) - reference_id = Column(String(100)) - user_id = Column(Integer, ForeignKey("users.id")) - organization_id = Column(Integer, ForeignKey("organizations.id")) - created_at = Column(DateTime) - - # Relationships - user = relationship("User", back_populates="transactions") - organization = relationship("Organization", back_populates="transactions") diff --git a/examples/sqlalchemy_type_annotations/input_repo/models/user.py b/examples/sqlalchemy_type_annotations/input_repo/models/user.py deleted file mode 100644 index f7537ff..0000000 --- a/examples/sqlalchemy_type_annotations/input_repo/models/user.py +++ /dev/null @@ -1,18 +0,0 @@ - -from sqlalchemy import Column, Integer, String, ForeignKey, Boolean -from sqlalchemy.orm import relationship -from .base import Base - - -class User(Base): - __tablename__ = "users" - - id = Column(Integer, primary_key=True) - email = Column(String(255), unique=True) - username = Column(String(100)) - is_active = Column(Boolean, default=True) - organization_id = Column(Integer, ForeignKey("organizations.id")) - - # Relationships - organization = relationship("Organization", back_populates="users") - transactions = relationship("Transaction", back_populates="user") diff --git a/examples/sqlalchemy_type_annotations/run.py b/examples/sqlalchemy_type_annotations/run.py deleted file mode 100644 index 0bcc617..0000000 --- a/examples/sqlalchemy_type_annotations/run.py +++ /dev/null @@ -1,142 +0,0 @@ -import codegen - - -from codegen import Codebase -from codegen.sdk.core.detached_symbols.function_call import FunctionCall -import subprocess -import shutil -import os - - -def init_git_repo(repo_path: str) -> None: - """Initialize a git repository in the given path.""" - subprocess.run(["git", "init"], cwd=repo_path, check=True) - subprocess.run(["git", "add", "."], cwd=repo_path, check=True) - subprocess.run(["git", "commit", "-m", "Initial commit"], cwd=repo_path, check=True) - - -def cleanup_git_repo(repo_path: str) -> None: - """Remove the .git directory from the given path.""" - git_dir = os.path.join(repo_path, ".git") - if os.path.exists(git_dir): - shutil.rmtree(git_dir) - - -@codegen.function("sqlalchemy-type-annotations") -def run(codebase: Codebase): - """Add Mapped types to SQLAlchemy models in a codebase. - - This codemod: - 1. Finds all SQLAlchemy model classes - 2. Converts Column type annotations to Mapped types - 3. Adds necessary imports for the new type annotations - """ - # Define type mapping - column_type_to_mapped_type = { - "Integer": "Mapped[int]", - "Optional[Integer]": "Mapped[int | None]", - "Boolean": "Mapped[bool]", - "Optional[Boolean]": "Mapped[bool | None]", - "DateTime": "Mapped[datetime | None]", - "Optional[DateTime]": "Mapped[datetime | None]", - "String": "Mapped[str]", - "Optional[String]": "Mapped[str | None]", - "Numeric": "Mapped[Decimal]", - "Optional[Numeric]": "Mapped[Decimal | None]", - } - - # Track statistics - classes_modified = 0 - attributes_modified = 0 - - # Traverse the codebase classes - for cls in codebase.classes: - class_modified = False - original_source = cls.source # Store original source before modifications - - for attribute in cls.attributes: - if not attribute.assignment: - continue - - assignment_value = attribute.assignment.value - if not isinstance(assignment_value, FunctionCall): - continue - - if assignment_value.name != "Column": - continue - - db_column_call = assignment_value - - # Make sure we have at least one argument (the type) - if len(db_column_call.args) == 0: - continue - - # Check for nullable=True - is_nullable = any(x.name == "nullable" and x.value == "True" for x in db_column_call.args) - - # Extract the first argument for the column type - first_argument = db_column_call.args[0].source or "" - first_argument = first_argument.split("(")[0].strip() - - # If the type is namespaced (e.g. sa.Integer), get the last part - if "." in first_argument: - first_argument = first_argument.split(".")[-1] - - # If nullable, wrap the type in Optional[...] - if is_nullable: - first_argument = f"Optional[{first_argument}]" - - # Check if we have a corresponding mapped type - if first_argument not in column_type_to_mapped_type: - print(f"Skipping unmapped type: {first_argument}") - continue - - # Build the new mapped type annotation - new_type = column_type_to_mapped_type[first_argument] - - # Update the assignment type annotation - attribute.assignment.set_type_annotation(new_type) - attributes_modified += 1 - class_modified = True - - # Add necessary imports - if not cls.file.has_import("Mapped"): - cls.file.add_import_from_import_string("from sqlalchemy.orm import Mapped\n") - - if "Optional" in new_type and not cls.file.has_import("Optional"): - cls.file.add_import_from_import_string("from typing import Optional\n") - - if "Decimal" in new_type and not cls.file.has_import("Decimal"): - cls.file.add_import_from_import_string("from decimal import Decimal\n") - - if "datetime" in new_type and not cls.file.has_import("datetime"): - cls.file.add_import_from_import_string("from datetime import datetime\n") - - if class_modified: - classes_modified += 1 - # Print the diff for this class - print(f"\nModified class: {cls.name}") - print("Before:") - print(original_source) - print("\nAfter:") - print(cls.source) - print("-" * 80) - - print("\nModification complete:") - print(f"Classes modified: {classes_modified}") - print(f"Attributes modified: {attributes_modified}") - - -if __name__ == "__main__": - input_repo = "./input_repo" - print("Initializing git repository...") - init_git_repo(input_repo) - - print("Initializing codebase...") - codebase = Codebase(input_repo) - - print("Running codemod...") - run(codebase) - - print("Cleaning up git repository...") - cleanup_git_repo(input_repo) diff --git a/examples/unittest_to_pytest/README.md b/examples/unittest_to_pytest/README.md deleted file mode 100644 index ecf4e4a..0000000 --- a/examples/unittest_to_pytest/README.md +++ /dev/null @@ -1,103 +0,0 @@ -# Unittest to Pytest Migration Example - -This codemod demonstrates how to automatically migrate `unittest` test suites to `pytest` using Codegen. The migration script simplifies the process by handling all the tedious manual updates automatically. - -## How the Migration Script Works - -The script automates the entire migration process in a few key steps: - -1. **Convert Test Classes and Setup Methods** - ```python - # From: - class TestUsers(unittest.TestCase): - def setUp(self): - self.db = setup_test_db() - - def test_create_user(self): - user = self.db.create_user("test") - self.assertEqual(user.name, "test") - - # To: - @pytest.fixture - def db(): - db = setup_test_db() - yield db - - def test_create_user(db): - user = db.create_user("test") - assert user.name == "test" - ``` - - Converts `unittest.TestCase` classes to standalone functions - - Replaces `setUp` methods with `pytest` fixtures - -2. **Update Assertions** - ```python - # From: - def test_validation(self): - self.assertTrue(is_valid("test")) - self.assertEqual(count_items(), 0) - self.assertRaises(ValueError, parse_id, "invalid") - - # To: - def test_validation(): - assert is_valid("test") - assert count_items() == 0 - with pytest.raises(ValueError): - parse_id("invalid") - ``` - - Replaces `unittest` assertions with `pytest` assertions - - Uses `pytest.raises` for exception testing - -3. **Convert Test Discovery** - ```python - # From: - if __name__ == '__main__': - unittest.main() - - # To: - # Remove unittest.main() and rename files to test_*.py - ``` - - Removes `unittest.main()` calls - - Ensures files are named for `pytest` discovery - -4. **Modernize Fixtures** - ```python - # From: - @classmethod - def setUpClass(cls): - cls.conn = create_db() - - # To: - @pytest.fixture(scope="session") - def conn(): - return create_db() - ``` - - Converts class-level setup to session-scoped fixtures - -## Running the Migration - -```bash -# Install Codegen -pip install codegen - -# Run the migration -python run.py -``` - -The script will process all Python test files in the `repo-before` directory and apply the transformations in the correct order. - -## Understanding the Code - -- `run.py` - The migration script -- `input_repo/` - Sample `unittest` test suite to migrate - -## Learn More - -- [Full Tutorial](https://docs.codegen.com/tutorials/unittest-to-pytest) -- [pytest Documentation](https://docs.pytest.org/) -- [unittest Documentation](https://docs.python.org/3/library/unittest.html) -- [Codegen Documentation](https://docs.codegen.com) - -## Contributing - -Feel free to submit issues and enhancement requests! diff --git a/examples/unittest_to_pytest/input_repo/jj_classes/__init__.py b/examples/unittest_to_pytest/input_repo/jj_classes/__init__.py deleted file mode 100644 index e69de29..0000000 diff --git a/examples/unittest_to_pytest/input_repo/jj_classes/castle.py b/examples/unittest_to_pytest/input_repo/jj_classes/castle.py deleted file mode 100644 index 7812ab3..0000000 --- a/examples/unittest_to_pytest/input_repo/jj_classes/castle.py +++ /dev/null @@ -1,29 +0,0 @@ -# jj_classes/castle.py - - -class Castle: - """Defines the Castle class.""" - - def __init__(self, name): - """Initialize the castle.""" - if not name: - raise ValueError("Castle name cannot be empty.") - self._name = name - self._boss = "Bowser" - self._world = "Grass Land" - - def has_access(self, character): - """Check if a character has access to the castle.""" - return character.powerup == "Super Mushroom" - - @property - def name(self): - return self._name - - @property - def boss(self): - return self._boss - - @property - def world(self): - return self._world diff --git a/examples/unittest_to_pytest/input_repo/jj_classes/character.py b/examples/unittest_to_pytest/input_repo/jj_classes/character.py deleted file mode 100644 index 30edf8b..0000000 --- a/examples/unittest_to_pytest/input_repo/jj_classes/character.py +++ /dev/null @@ -1,24 +0,0 @@ -# jj_classes/character.py - - -class Character: - """Defines the Character class.""" - - def __init__(self, name): - """Initialize the character.""" - if not name: - raise ValueError("Character name cannot be empty.") - self._name = name - self._powerup = None - - @property - def name(self): - return self._name - - @property - def powerup(self): - return self._powerup - - @powerup.setter - def powerup(self, value): - self._powerup = value diff --git a/examples/unittest_to_pytest/input_repo/run_tests.py b/examples/unittest_to_pytest/input_repo/run_tests.py deleted file mode 100644 index 7417397..0000000 --- a/examples/unittest_to_pytest/input_repo/run_tests.py +++ /dev/null @@ -1,9 +0,0 @@ -# run_tests.py - -import unittest - -if __name__ == "__main__": - loader = unittest.TestLoader() - tests = loader.discover("tests") - test_runner = unittest.TextTestRunner() - test_runner.run(tests) diff --git a/examples/unittest_to_pytest/input_repo/tests/__init__.py b/examples/unittest_to_pytest/input_repo/tests/__init__.py deleted file mode 100644 index e69de29..0000000 diff --git a/examples/unittest_to_pytest/input_repo/tests/test_classes.py b/examples/unittest_to_pytest/input_repo/tests/test_classes.py deleted file mode 100644 index c8de599..0000000 --- a/examples/unittest_to_pytest/input_repo/tests/test_classes.py +++ /dev/null @@ -1,90 +0,0 @@ -# tests/test_classes.py - -import unittest -from unittest.mock import Mock -from jj_classes.castle import Castle -from jj_classes.character import Character - - -class TestCastle(unittest.TestCase): - """Tests for the Castle class.""" - - def setUp(self): - """Set up a test castle.""" - self.castle = Castle("Test Castle") - - def test_castle_name(self): - """Test that the castle name is set correctly.""" - self.assertEqual(self.castle.name, "Test Castle") - - def test_castle_boss(self): - """Test that the default boss is Bowser.""" - self.assertEqual(self.castle.boss, "Bowser") - - def test_castle_world(self): - """Test that the default world is Grass Land.""" - self.assertEqual(self.castle.world, "Grass Land") - - def test_has_access_granted(self): - """Test that access is granted for the correct powerup.""" - character = Mock(powerup="Super Mushroom") - self.assertTrue(self.castle.has_access(character)) - - def test_has_access_denied(self): - """Test that access is denied for an incorrect powerup.""" - character = Mock(powerup="Starman") - self.assertFalse(self.castle.has_access(character)) - - def test_empty_name_raises_error(self): - """Test that an empty castle name raises a ValueError.""" - with self.assertRaises(ValueError): - Castle("") - - -class TestCharacter(unittest.TestCase): - """Tests for the Character class.""" - - def setUp(self): - """Set up a test character.""" - self.character = Character("Mario") - - def test_character_name(self): - """Test that the character name is set correctly.""" - self.assertEqual(self.character.name, "Mario") - - def test_default_powerup(self): - """Test that the default powerup is None.""" - self.assertIsNone(self.character.powerup) - - def test_set_powerup(self): - """Test setting a powerup.""" - self.character.powerup = "Fire Flower" - self.assertEqual(self.character.powerup, "Fire Flower") - - def test_empty_name_raises_error(self): - """Test that an empty character name raises a ValueError.""" - with self.assertRaises(ValueError): - Character("") - - -class TestCastleAndCharacter(unittest.TestCase): - """Tests for the interaction between Castle and Character.""" - - def setUp(self): - """Set up a test castle and character.""" - self.castle = Castle("Test Castle") - self.character = Character("Mario") - - def test_character_has_access(self): - """Test that a character with the correct powerup has access.""" - self.character.powerup = "Super Mushroom" - self.assertTrue(self.castle.has_access(self.character)) - - def test_character_denied_access(self): - """Test that a character with the wrong powerup is denied access.""" - self.character.powerup = "Starman" - self.assertFalse(self.castle.has_access(self.character)) - - -if __name__ == "__main__": - unittest.main() diff --git a/examples/unittest_to_pytest/run.py b/examples/unittest_to_pytest/run.py deleted file mode 100644 index b4e32a5..0000000 --- a/examples/unittest_to_pytest/run.py +++ /dev/null @@ -1,81 +0,0 @@ -import codegen -from codegen import Codebase - -# Initialize codebase - -# Define the target directory -TARGET_DIR = "input_repo/tests" - - -def remove_unittest_inheritance(file): - """Removes inheritance from unittest.TestCase for classes in a file""" - print(f"🔍 Checking file: {file.filepath}") - # Iterate through all classes in the file - for cls in file.classes: - # Check if the class inherits from unittest.TestCase - if any(base.source == "unittest.TestCase" for base in cls.parent_class_names): - # Remove the inheritance - cls.parent_class_names[0].remove() - print(f"🔧 Removed unittest.TestCase inheritance from: {cls.name}") - - -def convert_to_pytest_fixtures(file): - """Converts unittest setUp methods to pytest fixtures and updates test methods""" - print(f"🔍 Processing file: {file.filepath}") - - if not any(imp.name == "pytest" for imp in file.imports): - file.add_import_from_import_string("import pytest") - print(f"➕ Added pytest import to {file.filepath}") - - for cls in file.classes: - setup_method = cls.get_method("setUp") - if setup_method: - fixture_name = f"setup_{cls.name.lower()}" - fixture_body = "\n".join([line.replace("self.", "") for line in setup_method.body.split("\n")]) - fixture_code = f""" -@pytest.fixture -def {fixture_name}(): -{fixture_body.strip()} -""" - - model_class = "Character" if "Character" in cls.name else "Castle" - - for method in cls.methods: - if method.name == "setUp": - method.insert_before(fixture_code) - print(f"🔧 Created fixture {fixture_name} for class {cls.name}") - elif method.name.startswith("test_"): - new_signature = f"def {method.name}({fixture_name}, {model_class}):" - method_body = "\n".join([line.replace("self.", "") for line in method.source.split("\n")[1:]]) - method.edit(f"{new_signature}\n{method_body}") - print(f"🔄 Updated test method {method.name} signature and removed self references") - setup_method.remove() - print(f"🗑️ Removed setUp method from class {cls.name}") - - -@codegen.function("unittest-to-pytest") -def run(codebase: Codebase): - """Main function to run the unittest to pytest conversion""" - print("🚀 Starting unittest to pytest conversion...") - - # Step 1: Remove unittest.TestCase inheritance - print("\n📝 Step 1: Removing unittest.TestCase inheritance...") - for file in codebase.files: - if TARGET_DIR in file.filepath: - remove_unittest_inheritance(file) - - # Step 2: Convert setUp methods to pytest fixtures - print("\n📝 Step 2: Converting setUp methods to pytest fixtures...") - for file in codebase.files: - if TARGET_DIR in file.filepath: - convert_to_pytest_fixtures(file) - - # Commit changes - print("\n💾 Committing changes...") - codebase.commit() - print("✅ Conversion completed successfully!") - - -if __name__ == "__main__": - codebase = Codebase("./") - run(codebase) diff --git a/examples/usesuspensequery_to_usesuspensequeries/README.md b/examples/usesuspensequery_to_usesuspensequeries/README.md deleted file mode 100644 index 0ff7114..0000000 --- a/examples/usesuspensequery_to_usesuspensequeries/README.md +++ /dev/null @@ -1,107 +0,0 @@ -# Transform useSuspenseQuery to useSuspenseQueries - -This example demonstrates how to use Codegen to automatically convert multiple `useSuspenseQuery` calls to a single `useSuspenseQueries` call in React codebases. The migration script makes this process simple by handling all the tedious manual updates automatically. - -> [!NOTE] -> View example transformations created by this codemod on the `deepfence/ThreatMapper` repository [here](codegen.sh/codemod/a433152e-5e8d-4319-8043-19ff2b418869/public/diff). - -## How the Migration Script Works - -The script automates the entire migration process in a few key steps: - -1. **File Detection** - ```python - for file in codebase.files: - if "useSuspenseQuery" not in file.source: - continue - ``` - - Automatically identifies files using `useSuspenseQuery` - - Skips irrelevant files to avoid unnecessary processing - - Uses Codegen's intelligent code analysis engine - -2. **Import Management** - ```python - import_str = "import { useQuery, useSuspenseQueries } from '@tanstack/react-query'" - file.add_import_from_import_string(import_str) - ``` - - Uses Codegen's import analysis to add required imports - - Preserves existing import structure - - Handles import deduplication automatically - -3. **Query Transformation** - ```python - # Convert multiple queries to single useSuspenseQueries call - new_query = f"const [{', '.join(results)}] = useSuspenseQueries({{queries: [{', '.join(queries)}]}})" - ``` - - Collects multiple `useSuspenseQuery` calls - - Combines them into a single `useSuspenseQueries` call - - Maintains variable naming and query configurations - -## Why This Makes Migration Easy - -1. **Zero Manual Updates** - - Codegen SDK handles all the file searching and updating - - No tedious copy-paste work - -2. **Consistent Changes** - - Ensures all transformations follow the same patterns - - Maintains code style consistency - -3. **Safe Transformations** - - Validates changes before applying them - - Easy to review and revert if needed - -## Common Migration Patterns - -### Multiple Query Calls -```typescript -// Before -const result1 = useSuspenseQuery(queryConfig1) -const result2 = useSuspenseQuery(queryConfig2) -const result3 = useSuspenseQuery(queryConfig3) - -// Automatically converted to: -const [result1, result2, result3] = useSuspenseQueries({ - queries: [queryConfig1, queryConfig2, queryConfig3] -}) -``` - -## Key Benefits to Note - -1. **Reduced Re-renders** - - Single query call instead of multiple separate calls - - Better React performance - -2. **Improved Code Readability** - - Cleaner, more consolidated query logic - - Easier to maintain and understand - -3. **Network Optimization** - - Batched query requests - - Better resource utilization - -## Running the Migration - -```bash -# Install Codegen -pip install codegen - -# Run the migration -python run.py -``` - -The script will: -1. Initialize the codebase -2. Find files containing `useSuspenseQuery` -3. Apply the transformations -4. Print detailed progress information - -## Learn More - -- [React Query Documentation](https://tanstack.com/query/latest) -- [useSuspenseQueries API](https://tanstack.com/query/latest/docs/react/reference/useSuspenseQueries) -- [Codegen Documentation](https://docs.codegen.com) - -## Contributing - -Feel free to submit issues and any enhancement requests! diff --git a/examples/usesuspensequery_to_usesuspensequeries/run.py b/examples/usesuspensequery_to_usesuspensequeries/run.py deleted file mode 100644 index c68174c..0000000 --- a/examples/usesuspensequery_to_usesuspensequeries/run.py +++ /dev/null @@ -1,87 +0,0 @@ -import codegen -from codegen import Codebase -from codegen.sdk.enums import ProgrammingLanguage -from codegen.sdk.core.detached_symbols.function_call import FunctionCall - - -@codegen.function("useSuspenseQuery-to-useSuspenseQueries") -def run(codebase: Codebase): - """Convert useSuspenseQuery calls to useSuspenseQueries in a React codebase. - - This codemod: - 1. Finds all files containing useSuspenseQuery - 2. Adds the necessary import statement - 3. Converts multiple useSuspenseQuery calls to a single useSuspenseQueries call - """ - # Import statement for useSuspenseQueries - import_str = "import { useQuery, useSuspenseQueries } from '@tanstack/react-query'" - - # Track statistics - files_modified = 0 - functions_modified = 0 - - # Iterate through all files in the codebase - for file in codebase.files: - if "useSuspenseQuery" not in file.source: - continue - - print(f"Processing {file.filepath}") - # Add the import statement - file.add_import_from_import_string(import_str) - file_modified = False - - # Iterate through all functions in the file - for function in file.functions: - if "useSuspenseQuery" not in function.source: - continue - - results = [] # Store left-hand side of assignments - queries = [] # Store query arguments - old_statements = [] # Track statements to replace - - # Find useSuspenseQuery assignments - for stmt in function.code_block.assignment_statements: - if not isinstance(stmt.right, FunctionCall): - continue - - fcall = stmt.right - if fcall.name != "useSuspenseQuery": - continue - - old_statements.append(stmt) - results.append(stmt.left.source) - queries.append(fcall.args[0].value.source) - - # Convert to useSuspenseQueries if needed - if old_statements: - new_query = f"const [{', '.join(results)}] = useSuspenseQueries({{queries: [{', '.join(queries)}]}})" - print(f"Converting useSuspenseQuery to useSuspenseQueries in {function.name}") - - # Print the diff - print("\nOriginal code:") - print("\n".join(stmt.source for stmt in old_statements)) - print("\nNew code:") - print(new_query) - print("-" * 50) - - # Replace old statements with new query - for stmt in old_statements: - stmt.edit(new_query) - - functions_modified += 1 - file_modified = True - - if file_modified: - files_modified += 1 - - print("\nModification complete:") - print(f"Files modified: {files_modified}") - print(f"Functions modified: {functions_modified}") - codebase.commit() - - -if __name__ == "__main__": - print("Initializing codebase...") - codebase = Codebase.from_repo("deepfence/ThreatMapper", programming_language=ProgrammingLanguage.TYPESCRIPT) - print("Running codemod...") - run(codebase) diff --git a/examples/visualize_codebases/README.md b/examples/visualize_codebases/README.md deleted file mode 100644 index 5b98b97..0000000 --- a/examples/visualize_codebases/README.md +++ /dev/null @@ -1,166 +0,0 @@ -# Codebase Relationship Visualizations - -This set of examples demonstrates four different approaches to visualizing code relationships using Codegen. Each visualization script creates a graph to help developers understand different aspects of code structure and dependencies. - -## Visualization Types - -### 1. Function Call Relationships (`call_trace.py`) -Traces downstream function call relationships from a target method. This visualization is particularly useful for understanding the flow of execution and identifying complex call chains that might need optimization or refactoring. - -> [!NOTE] -> View the graph-based visualization created by this script on the `PostHog/posthog` repository [here](https://www.codegen.sh/codemod/6a34b45d-c8ad-422e-95a8-46d4dc3ce2b0/public/diff). - -```python -def create_downstream_call_trace(src_func: Function, depth: int = 0): - """Creates call graph for parent function by recursively traversing all function calls""" - if MAX_DEPTH <= depth: - return - if isinstance(src_func, ExternalModule): - return - - for call in src_func.function_calls: - # Skip recursive calls - if call.name == src_func.name: - continue - - func = call.function_definition - if not func: - continue - - # Add node and edge to graph with metadata - G.add_node(func, name=func_name, color=COLOR_PALETTE.get(func.__class__.__name__)) - G.add_edge(src_func, func, **generate_edge_meta(call)) - - # Recurse for nested calls - if isinstance(func, Function): - create_downstream_call_trace(func, depth + 1) -``` - -### 2. Symbol Dependencies (`dependency_trace.py`) -Maps symbol dependencies throughout the codebase. This helps developers identify tightly coupled components and understand the impact of modifying shared dependencies, making it easier to plan architectural changes. - -> [!NOTE] -> View the graph-based visualization created by this script on the `PostHog/posthog` repository [here](codegen.sh/codemod/f6c63e40-cc20-4b91-a6c7-e5cbd736ce0d/public/diff). - -```python -def create_dependencies_visualization(symbol: Symbol, depth: int = 0): - """Creates a visualization of symbol dependencies in the codebase""" - if depth >= MAX_DEPTH: - return - - for dep in symbol.dependencies: - dep_symbol = None - if isinstance(dep, Symbol): - dep_symbol = dep - elif isinstance(dep, Import): - dep_symbol = dep.resolved_symbol if dep.resolved_symbol else None - - if dep_symbol: - G.add_node(dep_symbol, color=COLOR_PALETTE.get(dep_symbol.__class__.__name__, "#f694ff")) - G.add_edge(symbol, dep_symbol) - - if not isinstance(dep_symbol, Class): - create_dependencies_visualization(dep_symbol, depth + 1) -``` - -### 3. Function Blast Radius (`blast_radius.py`) -Shows the impact radius of potential changes. This visualization is invaluable for risk assessment before refactoring, as it reveals all the code paths that could be affected by modifying a particular function or symbol. - -> [!NOTE] -> View the graph-based visualization created by this script on the `PostHog/posthog` repository [here](codegen.sh/codemod/02f11ebe-6a3a-4687-b31d-2d6bc6a04f3c/public/diff). - -```python -def create_blast_radius_visualization(symbol: PySymbol, depth: int = 0): - """Recursively build a graph visualization showing how a symbol is used""" - if depth >= MAX_DEPTH: - return - - for usage in symbol.usages: - usage_symbol = usage.usage_symbol - - # Color code HTTP methods specially - if is_http_method(usage_symbol): - color = COLOR_PALETTE.get("HTTP_METHOD") - else: - color = COLOR_PALETTE.get(usage_symbol.__class__.__name__, "#f694ff") - - G.add_node(usage_symbol, color=color) - G.add_edge(symbol, usage_symbol, **generate_edge_meta(usage)) - - create_blast_radius_visualization(usage_symbol, depth + 1) -``` - -### 4. Class Method Relationships (`method_relationships.py`) -Creates a comprehensive view of class method interactions. This helps developers understand class cohesion, identify potential god classes, and spot opportunities for breaking down complex classes into smaller, more manageable components. - -> [!NOTE] -> View the graph-based visualization created by this script on the `modal-labs/modal-client` repository [here](https://www.codegen.sh/codemod/66e2e195-ceec-4935-876a-ed4cfc1731c7/public/diff). - -```python -def graph_class_methods(target_class: Class): - """Creates a graph visualization of all methods in a class and their call relationships""" - G.add_node(target_class, color=COLOR_PALETTE["StartClass"]) - - # Add all methods as nodes - for method in target_class.methods: - method_name = f"{target_class.name}.{method.name}" - G.add_node(method, name=method_name, color=COLOR_PALETTE["StartMethod"]) - visited.add(method) - G.add_edge(target_class, method) - - # Create call traces for each method - for method in target_class.methods: - create_downstream_call_trace(method) -``` - -## Common Features - -All visualizations share these characteristics: - -1. **Configurable Depth** - - MAX_DEPTH setting controls recursion - - Prevents infinite loops in circular references - -2. **Color Coding** - ```python - COLOR_PALETTE = { - "StartFunction": "#9cdcfe", # Entry point - "PyFunction": "#a277ff", # Regular functions - "PyClass": "#ffca85", # Classes - "ExternalModule": "#f694ff" # External calls - } - ``` - -3. **Edge Metadata** - - Tracks file paths - - Creates data object for visualization -## Running the Visualizations - -```bash -# Install dependencies -pip install codegen networkx - -# Run any visualization script -python call_trace.py # Function call relationships -python dependency_trace.py # Symbol dependencies -python blast_radius.py # Function blast radius -python method_relationships.py # Class method relationships -``` - -Each script will: -1. Initialize the codebase -2. Create the appropriate graph for the relationship -3. Generate visualization data - -## View Results - -After running a script, you'll get a graph object containing node and edge relationships. You can view an interactive visualization of the graph through the links above pointing to codegen.sh. - -## Learn More - -- [Codebase Visualization Documentation](https://docs.codegen.com/tutorials/codebase-visualization) -- [Codegen Documentation](https://docs.codegen.com) - -## Contributing - -Feel free to submit issues and any enhancement requests! diff --git a/examples/visualize_codebases/blast_radius.py b/examples/visualize_codebases/blast_radius.py deleted file mode 100644 index 1e4f06f..0000000 --- a/examples/visualize_codebases/blast_radius.py +++ /dev/null @@ -1,119 +0,0 @@ -import codegen -from codegen import Codebase -from codegen.sdk.enums import ProgrammingLanguage -import networkx as nx -from codegen.sdk.python.symbol import PySymbol -from codegen.sdk.python.function import PyFunction -from codegen.sdk.core.dataclasses.usage import Usage - -# Create a directed graph for visualizing relationships between code elements -G = nx.DiGraph() - -# Maximum depth to traverse in the call graph to prevent infinite recursion -MAX_DEPTH = 5 - -# Define colors for different types of nodes in the visualization -COLOR_PALETTE = { - "StartFunction": "#9cdcfe", # Starting function (light blue) - "PyFunction": "#a277ff", # Python functions (purple) - "PyClass": "#ffca85", # Python classes (orange) - "ExternalModule": "#f694ff", # External module imports (pink) - "HTTP_METHOD": "#ffca85", # HTTP method handlers (orange) -} - -# List of common HTTP method names to identify route handlers -HTTP_METHODS = ["get", "put", "patch", "post", "head", "delete"] - - -def generate_edge_meta(usage: Usage) -> dict: - """ - Generate metadata for graph edges based on a usage relationship. - - Args: - usage: A Usage object representing how a symbol is used - - Returns: - dict: Edge metadata including source location and symbol info - """ - return {"name": usage.match.source, "file_path": usage.match.filepath, "start_point": usage.match.start_point, "end_point": usage.match.end_point, "symbol_name": usage.match.__class__.__name__} - - -def is_http_method(symbol: PySymbol) -> bool: - """ - Check if a symbol represents an HTTP method handler. - - Args: - symbol: A Python symbol to check - - Returns: - bool: True if symbol is an HTTP method handler - """ - if isinstance(symbol, PyFunction) and symbol.is_method: - return symbol.name in HTTP_METHODS - return False - - -def create_blast_radius_visualization(symbol: PySymbol, depth: int = 0): - """ - Recursively build a graph visualization showing how a symbol is used. - Shows the "blast radius" - everything that would be affected by changes. - - Args: - symbol: Starting symbol to analyze - depth: Current recursion depth - """ - # Stop recursion if we hit max depth - if depth >= MAX_DEPTH: - return - - # Process each usage of the symbol - for usage in symbol.usages: - usage_symbol = usage.usage_symbol - - # Determine node color based on symbol type - if is_http_method(usage_symbol): - color = COLOR_PALETTE.get("HTTP_METHOD") - else: - color = COLOR_PALETTE.get(usage_symbol.__class__.__name__, "#f694ff") - - # Add node and edge to graph - G.add_node(usage_symbol, color=color) - G.add_edge(symbol, usage_symbol, **generate_edge_meta(usage)) - - # Recurse to process usages of this symbol - create_blast_radius_visualization(usage_symbol, depth + 1) - - -@codegen.function("visualize-function-blast-radius") -def run(codebase: Codebase): - """ - Generate a visualization showing the blast radius of changes to a function. - - This codemod: - 1. Identifies all usages of a target function - 2. Creates a graph showing how the function is used throughout the codebase - 3. Highlights HTTP method handlers and different types of code elements - """ - global G - G = nx.DiGraph() - - # Get the target function to analyze - target_func = codebase.get_function("export_asset") - - # Add starting function to graph with special color - G.add_node(target_func, color=COLOR_PALETTE.get("StartFunction")) - - # Build the visualization starting from target function - create_blast_radius_visualization(target_func) - - print(G) - print("Use codegen.sh to visualize the graph!") - - -if __name__ == "__main__": - print("Initializing codebase...") - codebase = Codebase.from_repo("codegen-oss/posthog", commit="b174f2221ea4ae50e715eb6a7e70e9a2b0760800", programming_language=ProgrammingLanguage.PYTHON) - print(f"Codebase with {len(codebase.files)} files and {len(codebase.functions)} functions.") - print("Creating graph...") - - run(codebase) diff --git a/examples/visualize_codebases/call_trace.py b/examples/visualize_codebases/call_trace.py deleted file mode 100644 index 6132a9f..0000000 --- a/examples/visualize_codebases/call_trace.py +++ /dev/null @@ -1,121 +0,0 @@ -import codegen -from codegen import Codebase -from codegen.sdk.enums import ProgrammingLanguage -import networkx as nx -from codegen.sdk.core.detached_symbols.function_call import FunctionCall -from codegen.sdk.core.function import Function -from codegen.sdk.core.external_module import ExternalModule -from codegen.sdk.core.class_definition import Class - -G = nx.DiGraph() - -IGNORE_EXTERNAL_MODULE_CALLS = True -IGNORE_CLASS_CALLS = False -MAX_DEPTH = 10 - -# Color scheme for different types of nodes in the visualization -# Each node type has a distinct color for better visual differentiation -COLOR_PALETTE = { - "StartFunction": "#9cdcfe", # Base purple - draws attention to the root node - "PyFunction": "#a277ff", # Mint green - complementary to purple - "PyClass": "#ffca85", # Warm peach - provides contrast - "ExternalModule": "#f694ff", # Light pink - analogous to base purple -} - - -def generate_edge_meta(call: FunctionCall) -> dict: - """Generate metadata for graph edges representing function calls - - Args: - call (FunctionCall): Object containing information about the function call - - Returns: - dict: Metadata including name, file path, and location information - """ - return {"name": call.name, "file_path": call.filepath, "start_point": call.start_point, "end_point": call.end_point, "symbol_name": "FunctionCall"} - - -def create_downstream_call_trace(src_func: Function, depth: int = 0): - """Creates call graph for parent function by recursively traversing all function calls - - This function builds a directed graph showing all downstream function calls, - up to MAX_DEPTH levels deep. Each node represents a function and edges - represent calls between functions. - - Args: - src_func (Function): The function for which a call graph will be created - depth (int): Current depth in the recursive traversal - """ - # Stop recursion if max depth reached - if MAX_DEPTH <= depth: - return - # Stop if the source is an external module - if isinstance(src_func, ExternalModule): - return - - # Examine each function call made by the source function - for call in src_func.function_calls: - # Skip recursive calls - if call.name == src_func.name: - continue - - # Get the function definition being called - func = call.function_definition - - # Skip if function definition not found - if not func: - continue - # Apply filtering based on configuration flags - if isinstance(func, ExternalModule) and IGNORE_EXTERNAL_MODULE_CALLS: - continue - if isinstance(func, Class) and IGNORE_CLASS_CALLS: - continue - - # Generate the display name for the function - # For methods, include the class name - if isinstance(func, (Class, ExternalModule)): - func_name = func.name - elif isinstance(func, Function): - func_name = f"{func.parent_class.name}.{func.name}" if func.is_method else func.name - - # Add node and edge to the graph with appropriate metadata - G.add_node(func, name=func_name, color=COLOR_PALETTE.get(func.__class__.__name__)) - G.add_edge(src_func, func, **generate_edge_meta(call)) - - # Recursively process called function if it's a regular function - if isinstance(func, Function): - create_downstream_call_trace(func, depth + 1) - - -@codegen.function("visualize-function-call-relationships") -def run(codebase: Codebase): - """Generate a visualization of function call relationships in a codebase. - - This codemod: - 1. Creates a directed graph of function calls starting from a target method - 2. Tracks relationships between functions, classes, and external modules - 3. Generates a visual representation of the call hierarchy - """ - global G - G = nx.DiGraph() - - target_class = codebase.get_class("SharingConfigurationViewSet") - target_method = target_class.get_method("patch") - - # Generate the call graph starting from the target method - create_downstream_call_trace(target_method) - - # Add the root node (target method) to the graph - G.add_node(target_method, name=f"{target_class.name}.{target_method.name}", color=COLOR_PALETTE.get("StartFunction")) - - print(G) - print("Use codegen.sh to visualize the graph!") - - -if __name__ == "__main__": - print("Initializing codebase...") - codebase = Codebase.from_repo("codegen-oss/posthog", commit="b174f2221ea4ae50e715eb6a7e70e9a2b0760800", programming_language=ProgrammingLanguage.PYTHON) - print(f"Codebase with {len(codebase.files)} files and {len(codebase.functions)} functions.") - print("Creating graph...") - - run(codebase) diff --git a/examples/visualize_codebases/dependency_trace.py b/examples/visualize_codebases/dependency_trace.py deleted file mode 100644 index 8604acf..0000000 --- a/examples/visualize_codebases/dependency_trace.py +++ /dev/null @@ -1,83 +0,0 @@ -import codegen -from codegen import Codebase -from codegen.sdk.enums import ProgrammingLanguage -import networkx as nx -from codegen.sdk.core.class_definition import Class -from codegen.sdk.core.symbol import Symbol -from codegen.sdk.core.import_resolution import Import - -G = nx.DiGraph() - -IGNORE_EXTERNAL_MODULE_CALLS = True -IGNORE_CLASS_CALLS = False -MAX_DEPTH = 10 - -COLOR_PALETTE = { - "StartFunction": "#9cdcfe", # Light blue for the starting function - "PyFunction": "#a277ff", # Purple for Python functions - "PyClass": "#ffca85", # Orange for Python classes - "ExternalModule": "#f694ff", # Pink for external module references -} - -# Dictionary to track visited nodes and prevent cycles -visited = {} - - -def create_dependencies_visualization(symbol: Symbol, depth: int = 0): - """Creates a visualization of symbol dependencies in the codebase - - Recursively traverses the dependency tree of a symbol (function, class, etc.) - and creates a directed graph representation. Dependencies can be either direct - symbol references or imports. - - Args: - symbol (Symbol): The starting symbol whose dependencies will be mapped - depth (int): Current depth in the recursive traversal - """ - if depth >= MAX_DEPTH: - return - - for dep in symbol.dependencies: - dep_symbol = None - - if isinstance(dep, Symbol): - dep_symbol = dep - elif isinstance(dep, Import): - dep_symbol = dep.resolved_symbol if dep.resolved_symbol else None - - if dep_symbol: - G.add_node(dep_symbol, color=COLOR_PALETTE.get(dep_symbol.__class__.__name__, "#f694ff")) - G.add_edge(symbol, dep_symbol) - - if not isinstance(dep_symbol, Class): - create_dependencies_visualization(dep_symbol, depth + 1) - - -@codegen.function("visualize-symbol-dependencies") -def run(codebase: Codebase): - """Generate a visualization of symbol dependencies in a codebase. - - This codemod: - 1. Creates a directed graph of symbol dependencies starting from a target function - 2. Tracks relationships between functions, classes, and imports - 3. Generates a visual representation of the dependency hierarchy - """ - global G - G = nx.DiGraph() - - target_func = codebase.get_function("get_query_runner") - G.add_node(target_func, color=COLOR_PALETTE.get("StartFunction")) - - create_dependencies_visualization(target_func) - - print(G) - print("Use codegen.sh to visualize the graph!") - - -if __name__ == "__main__": - print("Initializing codebase...") - codebase = Codebase.from_repo("codegen-oss/posthog", commit="b174f2221ea4ae50e715eb6a7e70e9a2b0760800", programming_language=ProgrammingLanguage.PYTHON) - print(f"Codebase with {len(codebase.files)} files and {len(codebase.functions)} functions.") - print("Creating graph...") - - run(codebase) diff --git a/examples/visualize_codebases/method_relationships.py b/examples/visualize_codebases/method_relationships.py deleted file mode 100644 index 7042bbb..0000000 --- a/examples/visualize_codebases/method_relationships.py +++ /dev/null @@ -1,107 +0,0 @@ -import codegen -from codegen import Codebase -from codegen.sdk.enums import ProgrammingLanguage -import networkx as nx -from codegen.sdk.core.detached_symbols.function_call import FunctionCall -from codegen.sdk.core.function import Function -from codegen.sdk.core.external_module import ExternalModule -from codegen.sdk.core.class_definition import Class - -G = nx.DiGraph() - -# Configuration Settings -IGNORE_EXTERNAL_MODULE_CALLS = False -IGNORE_CLASS_CALLS = True -MAX_DEPTH = 100 - -# Track visited nodes to prevent duplicate processing -visited = set() - -COLOR_PALETTE = { - "StartMethod": "#9cdcfe", # Light blue for root/entry point methods - "PyFunction": "#a277ff", # Purple for regular Python functions - "PyClass": "#ffca85", # Warm peach for class definitions - "ExternalModule": "#f694ff", # Pink for external module calls - "StartClass": "#FFE082", # Yellow for the starting class -} - - -def graph_class_methods(target_class: Class): - """Creates a graph visualization of all methods in a class and their call relationships""" - G.add_node(target_class, color=COLOR_PALETTE["StartClass"]) - - for method in target_class.methods: - method_name = f"{target_class.name}.{method.name}" - G.add_node(method, name=method_name, color=COLOR_PALETTE["StartMethod"]) - visited.add(method) - G.add_edge(target_class, method) - - for method in target_class.methods: - create_downstream_call_trace(method) - - -def generate_edge_meta(call: FunctionCall) -> dict: - """Generate metadata for graph edges representing function calls""" - return {"name": call.name, "file_path": call.filepath, "start_point": call.start_point, "end_point": call.end_point, "symbol_name": "FunctionCall"} - - -def create_downstream_call_trace(src_func: Function, depth: int = 0): - """Creates call graph for parent function by recursively traversing all function calls""" - if MAX_DEPTH <= depth or isinstance(src_func, ExternalModule): - return - - for call in src_func.function_calls: - if call.name == src_func.name: - continue - - func = call.function_definition - if not func: - continue - - if isinstance(func, ExternalModule) and IGNORE_EXTERNAL_MODULE_CALLS: - continue - if isinstance(func, Class) and IGNORE_CLASS_CALLS: - continue - - if isinstance(func, (Class, ExternalModule)): - func_name = func.name - elif isinstance(func, Function): - func_name = f"{func.parent_class.name}.{func.name}" if func.is_method else func.name - - if func not in visited: - G.add_node(func, name=func_name, color=COLOR_PALETTE.get(func.__class__.__name__, None)) - visited.add(func) - - G.add_edge(src_func, func, **generate_edge_meta(call)) - - if isinstance(func, Function): - create_downstream_call_trace(func, depth + 1) - - -@codegen.function("visualize-class-method-relationships") -def run(codebase: Codebase): - """Generate a visualization of method call relationships within a class. - - This codemod: - 1. Creates a directed graph with the target class as the root node - 2. Adds all class methods and their downstream function calls - 3. Generates a visual representation of the call hierarchy - """ - global G, visited - G = nx.DiGraph() - visited = set() - - target_class = codebase.get_class("_Client") - graph_class_methods(target_class) - - print(G) - print("Use codegen.sh to visualize the graph!") - - -if __name__ == "__main__": - print("Initializing codebase...") - codebase = Codebase.from_repo("codegen-oss/modal-client", commit="00bf226a1526f9d775d2d70fc7711406aaf42958", programming_language=ProgrammingLanguage.PYTHON) - print(f"Codebase with {len(codebase.files)} files and {len(codebase.functions)} functions.") - print("Creating graph...") - - run(codebase) diff --git a/uv.lock b/uv.lock index e02e92b..d20a1bb 100644 --- a/uv.lock +++ b/uv.lock @@ -1,4 +1,5 @@ version = 1 +revision = 1 requires-python = ">=3.12, <3.14" [[package]] @@ -30,16 +31,16 @@ wheels = [ [[package]] name = "anyio" -version = "4.8.0" +version = "4.9.0" source = { registry = "https://pypi.org/simple" } dependencies = [ { name = "idna" }, { name = "sniffio" }, { name = "typing-extensions", marker = "python_full_version < '3.13'" }, ] -sdist = { url = "https://files.pythonhosted.org/packages/a3/73/199a98fc2dae33535d6b8e8e6ec01f8c1d76c9adb096c6b7d64823038cde/anyio-4.8.0.tar.gz", hash = "sha256:1d9fe889df5212298c0c0723fa20479d1b94883a2df44bd3897aa91083316f7a", size = 181126 } +sdist = { url = "https://files.pythonhosted.org/packages/95/7d/4c1bd541d4dffa1b52bd83fb8527089e097a106fc90b467a7313b105f840/anyio-4.9.0.tar.gz", hash = "sha256:673c0c244e15788651a4ff38710fea9675823028a6f08a5eda409e0c9840a028", size = 190949 } wheels = [ - { url = "https://files.pythonhosted.org/packages/46/eb/e7f063ad1fec6b3178a3cd82d1a3c4de82cccf283fc42746168188e1cdd5/anyio-4.8.0-py3-none-any.whl", hash = "sha256:b5011f270ab5eb0abf13385f851315585cc37ef330dd88e27ec3d34d651fd47a", size = 96041 }, + { url = "https://files.pythonhosted.org/packages/a1/ee/48ca1a7c89ffec8b6a0c5d02b89c305671d5ffd8d3c94acf8b8c408575bb/anyio-4.9.0-py3-none-any.whl", hash = "sha256:9f76d541cad6e36af7beb62e978876f3b41e3e04f2c1fbf0884604c0a9c4d93c", size = 100916 }, ] [[package]] @@ -53,11 +54,11 @@ wheels = [ [[package]] name = "argcomplete" -version = "3.5.3" +version = "3.6.2" source = { registry = "https://pypi.org/simple" } -sdist = { url = "https://files.pythonhosted.org/packages/0c/be/6c23d80cb966fb8f83fb1ebfb988351ae6b0554d0c3a613ee4531c026597/argcomplete-3.5.3.tar.gz", hash = "sha256:c12bf50eded8aebb298c7b7da7a5ff3ee24dffd9f5281867dfe1424b58c55392", size = 72999 } +sdist = { url = "https://files.pythonhosted.org/packages/16/0f/861e168fc813c56a78b35f3c30d91c6757d1fd185af1110f1aec784b35d0/argcomplete-3.6.2.tar.gz", hash = "sha256:d0519b1bc867f5f4f4713c41ad0aba73a4a5f007449716b16f385f2166dc6adf", size = 73403 } wheels = [ - { url = "https://files.pythonhosted.org/packages/c4/08/2a4db06ec3d203124c967fc89295e85a202e5cbbcdc08fd6a64b65217d1e/argcomplete-3.5.3-py3-none-any.whl", hash = "sha256:2ab2c4a215c59fd6caaff41a869480a23e8f6a5f910b266c1808037f4e375b61", size = 43569 }, + { url = "https://files.pythonhosted.org/packages/31/da/e42d7a9d8dd33fa775f467e4028a47936da2f01e4b0e561f9ba0d74cb0ca/argcomplete-3.6.2-py3-none-any.whl", hash = "sha256:65b3133a29ad53fb42c48cf5114752c7ab66c1c38544fdf6460f450c09b42591", size = 43708 }, ] [[package]] @@ -126,29 +127,29 @@ wheels = [ [[package]] name = "async-lru" -version = "2.0.4" +version = "2.0.5" source = { registry = "https://pypi.org/simple" } -sdist = { url = "https://files.pythonhosted.org/packages/80/e2/2b4651eff771f6fd900d233e175ddc5e2be502c7eb62c0c42f975c6d36cd/async-lru-2.0.4.tar.gz", hash = "sha256:b8a59a5df60805ff63220b2a0c5b5393da5521b113cd5465a44eb037d81a5627", size = 10019 } +sdist = { url = "https://files.pythonhosted.org/packages/b2/4d/71ec4d3939dc755264f680f6c2b4906423a304c3d18e96853f0a595dfe97/async_lru-2.0.5.tar.gz", hash = "sha256:481d52ccdd27275f42c43a928b4a50c3bfb2d67af4e78b170e3e0bb39c66e5bb", size = 10380 } wheels = [ - { url = "https://files.pythonhosted.org/packages/fa/9f/3c3503693386c4b0f245eaf5ca6198e3b28879ca0a40bde6b0e319793453/async_lru-2.0.4-py3-none-any.whl", hash = "sha256:ff02944ce3c288c5be660c42dbcca0742b32c3b279d6dceda655190240b99224", size = 6111 }, + { url = "https://files.pythonhosted.org/packages/03/49/d10027df9fce941cb8184e78a02857af36360d33e1721df81c5ed2179a1a/async_lru-2.0.5-py3-none-any.whl", hash = "sha256:ab95404d8d2605310d345932697371a5f40def0487c03d6d0ad9138de52c9943", size = 6069 }, ] [[package]] name = "attrs" -version = "25.1.0" +version = "25.3.0" source = { registry = "https://pypi.org/simple" } -sdist = { url = "https://files.pythonhosted.org/packages/49/7c/fdf464bcc51d23881d110abd74b512a42b3d5d376a55a831b44c603ae17f/attrs-25.1.0.tar.gz", hash = "sha256:1c97078a80c814273a76b2a298a932eb681c87415c11dee0a6921de7f1b02c3e", size = 810562 } +sdist = { url = "https://files.pythonhosted.org/packages/5a/b0/1367933a8532ee6ff8d63537de4f1177af4bff9f3e829baf7331f595bb24/attrs-25.3.0.tar.gz", hash = "sha256:75d7cefc7fb576747b2c81b4442d4d4a1ce0900973527c011d1030fd3bf4af1b", size = 812032 } wheels = [ - { url = "https://files.pythonhosted.org/packages/fc/30/d4986a882011f9df997a55e6becd864812ccfcd821d64aac8570ee39f719/attrs-25.1.0-py3-none-any.whl", hash = "sha256:c75a69e28a550a7e93789579c22aa26b0f5b83b75dc4e08fe092980051e1090a", size = 63152 }, + { url = "https://files.pythonhosted.org/packages/77/06/bb80f5f86020c4551da315d78b3ab75e8228f89f0162f2c3a819e407941a/attrs-25.3.0-py3-none-any.whl", hash = "sha256:427318ce031701fea540783410126f03899a97ffc6f61596ad581ac2e40e3bc3", size = 63815 }, ] [[package]] name = "babel" -version = "2.16.0" +version = "2.17.0" source = { registry = "https://pypi.org/simple" } -sdist = { url = "https://files.pythonhosted.org/packages/2a/74/f1bc80f23eeba13393b7222b11d95ca3af2c1e28edca18af487137eefed9/babel-2.16.0.tar.gz", hash = "sha256:d1f3554ca26605fe173f3de0c65f750f5a42f924499bf134de6423582298e316", size = 9348104 } +sdist = { url = "https://files.pythonhosted.org/packages/7d/6b/d52e42361e1aa00709585ecc30b3f9684b3ab62530771402248b1b1d6240/babel-2.17.0.tar.gz", hash = "sha256:0c54cffb19f690cdcc52a3b50bcbf71e07a808d1c80d549f2459b9d2cf0afb9d", size = 9951852 } wheels = [ - { url = "https://files.pythonhosted.org/packages/ed/20/bc79bc575ba2e2a7f70e8a1155618bb1301eaa5132a8271373a6903f73f8/babel-2.16.0-py3-none-any.whl", hash = "sha256:368b5b98b37c06b7daf6696391c3240c938b37767d4584413e8438c5c435fa8b", size = 9587599 }, + { url = "https://files.pythonhosted.org/packages/b7/b8/3fe70c75fe32afc4bb507f75563d39bc5642255d1d94f1f23604725780bf/babel-2.17.0-py3-none-any.whl", hash = "sha256:4d0b53093fdfb4b21c92b5213dba5a1b23885afa8383709427046b21c366e5f2", size = 10182537 }, ] [[package]] @@ -162,19 +163,20 @@ wheels = [ [[package]] name = "beautifulsoup4" -version = "4.12.3" +version = "4.13.4" source = { registry = "https://pypi.org/simple" } dependencies = [ { name = "soupsieve" }, + { name = "typing-extensions" }, ] -sdist = { url = "https://files.pythonhosted.org/packages/b3/ca/824b1195773ce6166d388573fc106ce56d4a805bd7427b624e063596ec58/beautifulsoup4-4.12.3.tar.gz", hash = "sha256:74e3d1928edc070d21748185c46e3fb33490f22f52a3addee9aee0f4f7781051", size = 581181 } +sdist = { url = "https://files.pythonhosted.org/packages/d8/e4/0c4c39e18fd76d6a628d4dd8da40543d136ce2d1752bd6eeeab0791f4d6b/beautifulsoup4-4.13.4.tar.gz", hash = "sha256:dbb3c4e1ceae6aefebdaf2423247260cd062430a410e38c66f2baa50a8437195", size = 621067 } wheels = [ - { url = "https://files.pythonhosted.org/packages/b1/fe/e8c672695b37eecc5cbf43e1d0638d88d66ba3a44c4d321c796f4e59167f/beautifulsoup4-4.12.3-py3-none-any.whl", hash = "sha256:b80878c9f40111313e55da8ba20bdba06d8fa3969fc68304167741bbf9e082ed", size = 147925 }, + { url = "https://files.pythonhosted.org/packages/50/cd/30110dc0ffcf3b131156077b90e9f60ed75711223f306da4db08eff8403b/beautifulsoup4-4.13.4-py3-none-any.whl", hash = "sha256:9bbbb14bfde9d79f38b8cd5f8c7c85f4b8f2523190ebed90e950a8dea4cb1c4b", size = 187285 }, ] [[package]] name = "black" -version = "24.10.0" +version = "25.1.0" source = { registry = "https://pypi.org/simple" } dependencies = [ { name = "click" }, @@ -183,17 +185,17 @@ dependencies = [ { name = "pathspec" }, { name = "platformdirs" }, ] -sdist = { url = "https://files.pythonhosted.org/packages/d8/0d/cc2fb42b8c50d80143221515dd7e4766995bd07c56c9a3ed30baf080b6dc/black-24.10.0.tar.gz", hash = "sha256:846ea64c97afe3bc677b761787993be4991810ecc7a4a937816dd6bddedc4875", size = 645813 } +sdist = { url = "https://files.pythonhosted.org/packages/94/49/26a7b0f3f35da4b5a65f081943b7bcd22d7002f5f0fb8098ec1ff21cb6ef/black-25.1.0.tar.gz", hash = "sha256:33496d5cd1222ad73391352b4ae8da15253c5de89b93a80b3e2c8d9a19ec2666", size = 649449 } wheels = [ - { url = "https://files.pythonhosted.org/packages/90/04/bf74c71f592bcd761610bbf67e23e6a3cff824780761f536512437f1e655/black-24.10.0-cp312-cp312-macosx_10_13_x86_64.whl", hash = "sha256:b5e39e0fae001df40f95bd8cc36b9165c5e2ea88900167bddf258bacef9bbdc3", size = 1644256 }, - { url = "https://files.pythonhosted.org/packages/4c/ea/a77bab4cf1887f4b2e0bce5516ea0b3ff7d04ba96af21d65024629afedb6/black-24.10.0-cp312-cp312-macosx_11_0_arm64.whl", hash = "sha256:d37d422772111794b26757c5b55a3eade028aa3fde43121ab7b673d050949d65", size = 1448534 }, - { url = "https://files.pythonhosted.org/packages/4e/3e/443ef8bc1fbda78e61f79157f303893f3fddf19ca3c8989b163eb3469a12/black-24.10.0-cp312-cp312-manylinux_2_17_x86_64.manylinux2014_x86_64.manylinux_2_28_x86_64.whl", hash = "sha256:14b3502784f09ce2443830e3133dacf2c0110d45191ed470ecb04d0f5f6fcb0f", size = 1761892 }, - { url = "https://files.pythonhosted.org/packages/52/93/eac95ff229049a6901bc84fec6908a5124b8a0b7c26ea766b3b8a5debd22/black-24.10.0-cp312-cp312-win_amd64.whl", hash = "sha256:30d2c30dc5139211dda799758559d1b049f7f14c580c409d6ad925b74a4208a8", size = 1434796 }, - { url = "https://files.pythonhosted.org/packages/d0/a0/a993f58d4ecfba035e61fca4e9f64a2ecae838fc9f33ab798c62173ed75c/black-24.10.0-cp313-cp313-macosx_10_13_x86_64.whl", hash = "sha256:1cbacacb19e922a1d75ef2b6ccaefcd6e93a2c05ede32f06a21386a04cedb981", size = 1643986 }, - { url = "https://files.pythonhosted.org/packages/37/d5/602d0ef5dfcace3fb4f79c436762f130abd9ee8d950fa2abdbf8bbc555e0/black-24.10.0-cp313-cp313-macosx_11_0_arm64.whl", hash = "sha256:1f93102e0c5bb3907451063e08b9876dbeac810e7da5a8bfb7aeb5a9ef89066b", size = 1448085 }, - { url = "https://files.pythonhosted.org/packages/47/6d/a3a239e938960df1a662b93d6230d4f3e9b4a22982d060fc38c42f45a56b/black-24.10.0-cp313-cp313-manylinux_2_17_x86_64.manylinux2014_x86_64.manylinux_2_28_x86_64.whl", hash = "sha256:ddacb691cdcdf77b96f549cf9591701d8db36b2f19519373d60d31746068dbf2", size = 1760928 }, - { url = "https://files.pythonhosted.org/packages/dd/cf/af018e13b0eddfb434df4d9cd1b2b7892bab119f7a20123e93f6910982e8/black-24.10.0-cp313-cp313-win_amd64.whl", hash = "sha256:680359d932801c76d2e9c9068d05c6b107f2584b2a5b88831c83962eb9984c1b", size = 1436875 }, - { url = "https://files.pythonhosted.org/packages/8d/a7/4b27c50537ebca8bec139b872861f9d2bf501c5ec51fcf897cb924d9e264/black-24.10.0-py3-none-any.whl", hash = "sha256:3bb2b7a1f7b685f85b11fed1ef10f8a9148bceb49853e47a294a3dd963c1dd7d", size = 206898 }, + { url = "https://files.pythonhosted.org/packages/83/71/3fe4741df7adf015ad8dfa082dd36c94ca86bb21f25608eb247b4afb15b2/black-25.1.0-cp312-cp312-macosx_10_13_x86_64.whl", hash = "sha256:4b60580e829091e6f9238c848ea6750efed72140b91b048770b64e74fe04908b", size = 1650988 }, + { url = "https://files.pythonhosted.org/packages/13/f3/89aac8a83d73937ccd39bbe8fc6ac8860c11cfa0af5b1c96d081facac844/black-25.1.0-cp312-cp312-macosx_11_0_arm64.whl", hash = "sha256:1e2978f6df243b155ef5fa7e558a43037c3079093ed5d10fd84c43900f2d8ecc", size = 1453985 }, + { url = "https://files.pythonhosted.org/packages/6f/22/b99efca33f1f3a1d2552c714b1e1b5ae92efac6c43e790ad539a163d1754/black-25.1.0-cp312-cp312-manylinux_2_17_x86_64.manylinux2014_x86_64.manylinux_2_28_x86_64.whl", hash = "sha256:3b48735872ec535027d979e8dcb20bf4f70b5ac75a8ea99f127c106a7d7aba9f", size = 1783816 }, + { url = "https://files.pythonhosted.org/packages/18/7e/a27c3ad3822b6f2e0e00d63d58ff6299a99a5b3aee69fa77cd4b0076b261/black-25.1.0-cp312-cp312-win_amd64.whl", hash = "sha256:ea0213189960bda9cf99be5b8c8ce66bb054af5e9e861249cd23471bd7b0b3ba", size = 1440860 }, + { url = "https://files.pythonhosted.org/packages/98/87/0edf98916640efa5d0696e1abb0a8357b52e69e82322628f25bf14d263d1/black-25.1.0-cp313-cp313-macosx_10_13_x86_64.whl", hash = "sha256:8f0b18a02996a836cc9c9c78e5babec10930862827b1b724ddfe98ccf2f2fe4f", size = 1650673 }, + { url = "https://files.pythonhosted.org/packages/52/e5/f7bf17207cf87fa6e9b676576749c6b6ed0d70f179a3d812c997870291c3/black-25.1.0-cp313-cp313-macosx_11_0_arm64.whl", hash = "sha256:afebb7098bfbc70037a053b91ae8437c3857482d3a690fefc03e9ff7aa9a5fd3", size = 1453190 }, + { url = "https://files.pythonhosted.org/packages/e3/ee/adda3d46d4a9120772fae6de454c8495603c37c4c3b9c60f25b1ab6401fe/black-25.1.0-cp313-cp313-manylinux_2_17_x86_64.manylinux2014_x86_64.manylinux_2_28_x86_64.whl", hash = "sha256:030b9759066a4ee5e5aca28c3c77f9c64789cdd4de8ac1df642c40b708be6171", size = 1782926 }, + { url = "https://files.pythonhosted.org/packages/cc/64/94eb5f45dcb997d2082f097a3944cfc7fe87e071907f677e80788a2d7b7a/black-25.1.0-cp313-cp313-win_amd64.whl", hash = "sha256:a22f402b410566e2d1c950708c77ebf5ebd5d0d88a6a2e87c86d9fb48afa0d18", size = 1442613 }, + { url = "https://files.pythonhosted.org/packages/09/71/54e999902aed72baf26bca0d50781b01838251a462612966e9fc4891eadd/black-25.1.0-py3-none-any.whl", hash = "sha256:95e8176dae143ba9097f351d174fdaf0ccd29efb414b362ae3fd72bf0f710717", size = 207646 }, ] [[package]] @@ -215,11 +217,11 @@ css = [ [[package]] name = "certifi" -version = "2024.12.14" +version = "2025.1.31" source = { registry = "https://pypi.org/simple" } -sdist = { url = "https://files.pythonhosted.org/packages/0f/bd/1d41ee578ce09523c81a15426705dd20969f5abf006d1afe8aeff0dd776a/certifi-2024.12.14.tar.gz", hash = "sha256:b650d30f370c2b724812bee08008be0c4163b163ddaec3f2546c1caf65f191db", size = 166010 } +sdist = { url = "https://files.pythonhosted.org/packages/1c/ab/c9f1e32b7b1bf505bf26f0ef697775960db7932abeb7b516de930ba2705f/certifi-2025.1.31.tar.gz", hash = "sha256:3d5da6925056f6f18f119200434a4780a94263f10d1c21d032a6f6b2baa20651", size = 167577 } wheels = [ - { url = "https://files.pythonhosted.org/packages/a5/32/8f6669fc4798494966bf446c8c4a162e0b5d893dff088afddf76414f70e1/certifi-2024.12.14-py3-none-any.whl", hash = "sha256:1275f7a45be9464efc1173084eaa30f866fe2e47d389406136d332ed4967ec56", size = 164927 }, + { url = "https://files.pythonhosted.org/packages/38/fc/bce832fd4fd99766c04d1ee0eead6b0ec6486fb100ae5e74c1d91292b982/certifi-2025.1.31-py3-none-any.whl", hash = "sha256:ca78db4565a652026a4db2bcdf68f2fb589ea80d0be70e03929ed730746b84fe", size = 166393 }, ] [[package]] @@ -441,33 +443,37 @@ wheels = [ [[package]] name = "cryptography" -version = "44.0.0" +version = "44.0.2" source = { registry = "https://pypi.org/simple" } dependencies = [ { name = "cffi", marker = "platform_python_implementation != 'PyPy'" }, ] -sdist = { url = "https://files.pythonhosted.org/packages/91/4c/45dfa6829acffa344e3967d6006ee4ae8be57af746ae2eba1c431949b32c/cryptography-44.0.0.tar.gz", hash = "sha256:cd4e834f340b4293430701e772ec543b0fbe6c2dea510a5286fe0acabe153a02", size = 710657 } -wheels = [ - { url = "https://files.pythonhosted.org/packages/55/09/8cc67f9b84730ad330b3b72cf867150744bf07ff113cda21a15a1c6d2c7c/cryptography-44.0.0-cp37-abi3-macosx_10_9_universal2.whl", hash = "sha256:84111ad4ff3f6253820e6d3e58be2cc2a00adb29335d4cacb5ab4d4d34f2a123", size = 6541833 }, - { url = "https://files.pythonhosted.org/packages/7e/5b/3759e30a103144e29632e7cb72aec28cedc79e514b2ea8896bb17163c19b/cryptography-44.0.0-cp37-abi3-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:b15492a11f9e1b62ba9d73c210e2416724633167de94607ec6069ef724fad092", size = 3922710 }, - { url = "https://files.pythonhosted.org/packages/5f/58/3b14bf39f1a0cfd679e753e8647ada56cddbf5acebffe7db90e184c76168/cryptography-44.0.0-cp37-abi3-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:831c3c4d0774e488fdc83a1923b49b9957d33287de923d58ebd3cec47a0ae43f", size = 4137546 }, - { url = "https://files.pythonhosted.org/packages/98/65/13d9e76ca19b0ba5603d71ac8424b5694415b348e719db277b5edc985ff5/cryptography-44.0.0-cp37-abi3-manylinux_2_28_aarch64.whl", hash = "sha256:761817a3377ef15ac23cd7834715081791d4ec77f9297ee694ca1ee9c2c7e5eb", size = 3915420 }, - { url = "https://files.pythonhosted.org/packages/b1/07/40fe09ce96b91fc9276a9ad272832ead0fddedcba87f1190372af8e3039c/cryptography-44.0.0-cp37-abi3-manylinux_2_28_x86_64.whl", hash = "sha256:3c672a53c0fb4725a29c303be906d3c1fa99c32f58abe008a82705f9ee96f40b", size = 4154498 }, - { url = "https://files.pythonhosted.org/packages/75/ea/af65619c800ec0a7e4034207aec543acdf248d9bffba0533342d1bd435e1/cryptography-44.0.0-cp37-abi3-manylinux_2_34_aarch64.whl", hash = "sha256:4ac4c9f37eba52cb6fbeaf5b59c152ea976726b865bd4cf87883a7e7006cc543", size = 3932569 }, - { url = "https://files.pythonhosted.org/packages/c7/af/d1deb0c04d59612e3d5e54203159e284d3e7a6921e565bb0eeb6269bdd8a/cryptography-44.0.0-cp37-abi3-musllinux_1_2_aarch64.whl", hash = "sha256:ed3534eb1090483c96178fcb0f8893719d96d5274dfde98aa6add34614e97c8e", size = 4016721 }, - { url = "https://files.pythonhosted.org/packages/bd/69/7ca326c55698d0688db867795134bdfac87136b80ef373aaa42b225d6dd5/cryptography-44.0.0-cp37-abi3-musllinux_1_2_x86_64.whl", hash = "sha256:f3f6fdfa89ee2d9d496e2c087cebef9d4fcbb0ad63c40e821b39f74bf48d9c5e", size = 4240915 }, - { url = "https://files.pythonhosted.org/packages/ef/d4/cae11bf68c0f981e0413906c6dd03ae7fa864347ed5fac40021df1ef467c/cryptography-44.0.0-cp37-abi3-win32.whl", hash = "sha256:eb33480f1bad5b78233b0ad3e1b0be21e8ef1da745d8d2aecbb20671658b9053", size = 2757925 }, - { url = "https://files.pythonhosted.org/packages/64/b1/50d7739254d2002acae64eed4fc43b24ac0cc44bf0a0d388d1ca06ec5bb1/cryptography-44.0.0-cp37-abi3-win_amd64.whl", hash = "sha256:abc998e0c0eee3c8a1904221d3f67dcfa76422b23620173e28c11d3e626c21bd", size = 3202055 }, - { url = "https://files.pythonhosted.org/packages/11/18/61e52a3d28fc1514a43b0ac291177acd1b4de00e9301aaf7ef867076ff8a/cryptography-44.0.0-cp39-abi3-macosx_10_9_universal2.whl", hash = "sha256:660cb7312a08bc38be15b696462fa7cc7cd85c3ed9c576e81f4dc4d8b2b31591", size = 6542801 }, - { url = "https://files.pythonhosted.org/packages/1a/07/5f165b6c65696ef75601b781a280fc3b33f1e0cd6aa5a92d9fb96c410e97/cryptography-44.0.0-cp39-abi3-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:1923cb251c04be85eec9fda837661c67c1049063305d6be5721643c22dd4e2b7", size = 3922613 }, - { url = "https://files.pythonhosted.org/packages/28/34/6b3ac1d80fc174812486561cf25194338151780f27e438526f9c64e16869/cryptography-44.0.0-cp39-abi3-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:404fdc66ee5f83a1388be54300ae978b2efd538018de18556dde92575e05defc", size = 4137925 }, - { url = "https://files.pythonhosted.org/packages/d0/c7/c656eb08fd22255d21bc3129625ed9cd5ee305f33752ef2278711b3fa98b/cryptography-44.0.0-cp39-abi3-manylinux_2_28_aarch64.whl", hash = "sha256:c5eb858beed7835e5ad1faba59e865109f3e52b3783b9ac21e7e47dc5554e289", size = 3915417 }, - { url = "https://files.pythonhosted.org/packages/ef/82/72403624f197af0db6bac4e58153bc9ac0e6020e57234115db9596eee85d/cryptography-44.0.0-cp39-abi3-manylinux_2_28_x86_64.whl", hash = "sha256:f53c2c87e0fb4b0c00fa9571082a057e37690a8f12233306161c8f4b819960b7", size = 4155160 }, - { url = "https://files.pythonhosted.org/packages/a2/cd/2f3c440913d4329ade49b146d74f2e9766422e1732613f57097fea61f344/cryptography-44.0.0-cp39-abi3-manylinux_2_34_aarch64.whl", hash = "sha256:9e6fc8a08e116fb7c7dd1f040074c9d7b51d74a8ea40d4df2fc7aa08b76b9e6c", size = 3932331 }, - { url = "https://files.pythonhosted.org/packages/7f/df/8be88797f0a1cca6e255189a57bb49237402b1880d6e8721690c5603ac23/cryptography-44.0.0-cp39-abi3-musllinux_1_2_aarch64.whl", hash = "sha256:d2436114e46b36d00f8b72ff57e598978b37399d2786fd39793c36c6d5cb1c64", size = 4017372 }, - { url = "https://files.pythonhosted.org/packages/af/36/5ccc376f025a834e72b8e52e18746b927f34e4520487098e283a719c205e/cryptography-44.0.0-cp39-abi3-musllinux_1_2_x86_64.whl", hash = "sha256:a01956ddfa0a6790d594f5b34fc1bfa6098aca434696a03cfdbe469b8ed79285", size = 4239657 }, - { url = "https://files.pythonhosted.org/packages/46/b0/f4f7d0d0bcfbc8dd6296c1449be326d04217c57afb8b2594f017eed95533/cryptography-44.0.0-cp39-abi3-win32.whl", hash = "sha256:eca27345e1214d1b9f9490d200f9db5a874479be914199194e746c893788d417", size = 2758672 }, - { url = "https://files.pythonhosted.org/packages/97/9b/443270b9210f13f6ef240eff73fd32e02d381e7103969dc66ce8e89ee901/cryptography-44.0.0-cp39-abi3-win_amd64.whl", hash = "sha256:708ee5f1bafe76d041b53a4f95eb28cdeb8d18da17e597d46d7833ee59b97ede", size = 3202071 }, +sdist = { url = "https://files.pythonhosted.org/packages/cd/25/4ce80c78963834b8a9fd1cc1266be5ed8d1840785c0f2e1b73b8d128d505/cryptography-44.0.2.tar.gz", hash = "sha256:c63454aa261a0cf0c5b4718349629793e9e634993538db841165b3df74f37ec0", size = 710807 } +wheels = [ + { url = "https://files.pythonhosted.org/packages/92/ef/83e632cfa801b221570c5f58c0369db6fa6cef7d9ff859feab1aae1a8a0f/cryptography-44.0.2-cp37-abi3-macosx_10_9_universal2.whl", hash = "sha256:efcfe97d1b3c79e486554efddeb8f6f53a4cdd4cf6086642784fa31fc384e1d7", size = 6676361 }, + { url = "https://files.pythonhosted.org/packages/30/ec/7ea7c1e4c8fc8329506b46c6c4a52e2f20318425d48e0fe597977c71dbce/cryptography-44.0.2-cp37-abi3-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:29ecec49f3ba3f3849362854b7253a9f59799e3763b0c9d0826259a88efa02f1", size = 3952350 }, + { url = "https://files.pythonhosted.org/packages/27/61/72e3afdb3c5ac510330feba4fc1faa0fe62e070592d6ad00c40bb69165e5/cryptography-44.0.2-cp37-abi3-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:bc821e161ae88bfe8088d11bb39caf2916562e0a2dc7b6d56714a48b784ef0bb", size = 4166572 }, + { url = "https://files.pythonhosted.org/packages/26/e4/ba680f0b35ed4a07d87f9e98f3ebccb05091f3bf6b5a478b943253b3bbd5/cryptography-44.0.2-cp37-abi3-manylinux_2_28_aarch64.whl", hash = "sha256:3c00b6b757b32ce0f62c574b78b939afab9eecaf597c4d624caca4f9e71e7843", size = 3958124 }, + { url = "https://files.pythonhosted.org/packages/9c/e8/44ae3e68c8b6d1cbc59040288056df2ad7f7f03bbcaca6b503c737ab8e73/cryptography-44.0.2-cp37-abi3-manylinux_2_28_armv7l.manylinux_2_31_armv7l.whl", hash = "sha256:7bdcd82189759aba3816d1f729ce42ffded1ac304c151d0a8e89b9996ab863d5", size = 3678122 }, + { url = "https://files.pythonhosted.org/packages/27/7b/664ea5e0d1eab511a10e480baf1c5d3e681c7d91718f60e149cec09edf01/cryptography-44.0.2-cp37-abi3-manylinux_2_28_x86_64.whl", hash = "sha256:4973da6ca3db4405c54cd0b26d328be54c7747e89e284fcff166132eb7bccc9c", size = 4191831 }, + { url = "https://files.pythonhosted.org/packages/2a/07/79554a9c40eb11345e1861f46f845fa71c9e25bf66d132e123d9feb8e7f9/cryptography-44.0.2-cp37-abi3-manylinux_2_34_aarch64.whl", hash = "sha256:4e389622b6927d8133f314949a9812972711a111d577a5d1f4bee5e58736b80a", size = 3960583 }, + { url = "https://files.pythonhosted.org/packages/bb/6d/858e356a49a4f0b591bd6789d821427de18432212e137290b6d8a817e9bf/cryptography-44.0.2-cp37-abi3-manylinux_2_34_x86_64.whl", hash = "sha256:f514ef4cd14bb6fb484b4a60203e912cfcb64f2ab139e88c2274511514bf7308", size = 4191753 }, + { url = "https://files.pythonhosted.org/packages/b2/80/62df41ba4916067fa6b125aa8c14d7e9181773f0d5d0bd4dcef580d8b7c6/cryptography-44.0.2-cp37-abi3-musllinux_1_2_aarch64.whl", hash = "sha256:1bc312dfb7a6e5d66082c87c34c8a62176e684b6fe3d90fcfe1568de675e6688", size = 4079550 }, + { url = "https://files.pythonhosted.org/packages/f3/cd/2558cc08f7b1bb40683f99ff4327f8dcfc7de3affc669e9065e14824511b/cryptography-44.0.2-cp37-abi3-musllinux_1_2_x86_64.whl", hash = "sha256:3b721b8b4d948b218c88cb8c45a01793483821e709afe5f622861fc6182b20a7", size = 4298367 }, + { url = "https://files.pythonhosted.org/packages/71/59/94ccc74788945bc3bd4cf355d19867e8057ff5fdbcac781b1ff95b700fb1/cryptography-44.0.2-cp37-abi3-win32.whl", hash = "sha256:51e4de3af4ec3899d6d178a8c005226491c27c4ba84101bfb59c901e10ca9f79", size = 2772843 }, + { url = "https://files.pythonhosted.org/packages/ca/2c/0d0bbaf61ba05acb32f0841853cfa33ebb7a9ab3d9ed8bb004bd39f2da6a/cryptography-44.0.2-cp37-abi3-win_amd64.whl", hash = "sha256:c505d61b6176aaf982c5717ce04e87da5abc9a36a5b39ac03905c4aafe8de7aa", size = 3209057 }, + { url = "https://files.pythonhosted.org/packages/9e/be/7a26142e6d0f7683d8a382dd963745e65db895a79a280a30525ec92be890/cryptography-44.0.2-cp39-abi3-macosx_10_9_universal2.whl", hash = "sha256:8e0ddd63e6bf1161800592c71ac794d3fb8001f2caebe0966e77c5234fa9efc3", size = 6677789 }, + { url = "https://files.pythonhosted.org/packages/06/88/638865be7198a84a7713950b1db7343391c6066a20e614f8fa286eb178ed/cryptography-44.0.2-cp39-abi3-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:81276f0ea79a208d961c433a947029e1a15948966658cf6710bbabb60fcc2639", size = 3951919 }, + { url = "https://files.pythonhosted.org/packages/d7/fc/99fe639bcdf58561dfad1faa8a7369d1dc13f20acd78371bb97a01613585/cryptography-44.0.2-cp39-abi3-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:9a1e657c0f4ea2a23304ee3f964db058c9e9e635cc7019c4aa21c330755ef6fd", size = 4167812 }, + { url = "https://files.pythonhosted.org/packages/53/7b/aafe60210ec93d5d7f552592a28192e51d3c6b6be449e7fd0a91399b5d07/cryptography-44.0.2-cp39-abi3-manylinux_2_28_aarch64.whl", hash = "sha256:6210c05941994290f3f7f175a4a57dbbb2afd9273657614c506d5976db061181", size = 3958571 }, + { url = "https://files.pythonhosted.org/packages/16/32/051f7ce79ad5a6ef5e26a92b37f172ee2d6e1cce09931646eef8de1e9827/cryptography-44.0.2-cp39-abi3-manylinux_2_28_armv7l.manylinux_2_31_armv7l.whl", hash = "sha256:d1c3572526997b36f245a96a2b1713bf79ce99b271bbcf084beb6b9b075f29ea", size = 3679832 }, + { url = "https://files.pythonhosted.org/packages/78/2b/999b2a1e1ba2206f2d3bca267d68f350beb2b048a41ea827e08ce7260098/cryptography-44.0.2-cp39-abi3-manylinux_2_28_x86_64.whl", hash = "sha256:b042d2a275c8cee83a4b7ae30c45a15e6a4baa65a179a0ec2d78ebb90e4f6699", size = 4193719 }, + { url = "https://files.pythonhosted.org/packages/72/97/430e56e39a1356e8e8f10f723211a0e256e11895ef1a135f30d7d40f2540/cryptography-44.0.2-cp39-abi3-manylinux_2_34_aarch64.whl", hash = "sha256:d03806036b4f89e3b13b6218fefea8d5312e450935b1a2d55f0524e2ed7c59d9", size = 3960852 }, + { url = "https://files.pythonhosted.org/packages/89/33/c1cf182c152e1d262cac56850939530c05ca6c8d149aa0dcee490b417e99/cryptography-44.0.2-cp39-abi3-manylinux_2_34_x86_64.whl", hash = "sha256:c7362add18b416b69d58c910caa217f980c5ef39b23a38a0880dfd87bdf8cd23", size = 4193906 }, + { url = "https://files.pythonhosted.org/packages/e1/99/87cf26d4f125380dc674233971069bc28d19b07f7755b29861570e513650/cryptography-44.0.2-cp39-abi3-musllinux_1_2_aarch64.whl", hash = "sha256:8cadc6e3b5a1f144a039ea08a0bdb03a2a92e19c46be3285123d32029f40a922", size = 4081572 }, + { url = "https://files.pythonhosted.org/packages/b3/9f/6a3e0391957cc0c5f84aef9fbdd763035f2b52e998a53f99345e3ac69312/cryptography-44.0.2-cp39-abi3-musllinux_1_2_x86_64.whl", hash = "sha256:6f101b1f780f7fc613d040ca4bdf835c6ef3b00e9bd7125a4255ec574c7916e4", size = 4298631 }, + { url = "https://files.pythonhosted.org/packages/e2/a5/5bc097adb4b6d22a24dea53c51f37e480aaec3465285c253098642696423/cryptography-44.0.2-cp39-abi3-win32.whl", hash = "sha256:3dc62975e31617badc19a906481deacdeb80b4bb454394b4098e3f2525a488c5", size = 2773792 }, + { url = "https://files.pythonhosted.org/packages/33/cf/1f7649b8b9a3543e042d3f348e398a061923ac05b507f3f4d95f11938aa9/cryptography-44.0.2-cp39-abi3-win_amd64.whl", hash = "sha256:5f6f90b72d8ccadb9c6e311c775c8305381db88374c65fa1a68250aa8a9cb3a6", size = 3210957 }, ] [[package]] @@ -485,7 +491,7 @@ wheels = [ [[package]] name = "datamodel-code-generator" -version = "0.26.5" +version = "0.28.5" source = { registry = "https://pypi.org/simple" } dependencies = [ { name = "argcomplete" }, @@ -495,38 +501,38 @@ dependencies = [ { name = "isort" }, { name = "jinja2" }, { name = "packaging" }, - { name = "pydantic", extra = ["email"] }, + { name = "pydantic" }, { name = "pyyaml" }, ] -sdist = { url = "https://files.pythonhosted.org/packages/63/e4/53153452235a387112df40f67aaf24072d4b5e33aa7bb385004f4c4baf38/datamodel_code_generator-0.26.5.tar.gz", hash = "sha256:c4a94a7dbf7972129882732d9bcee44c9ae090f57c82edd58d237b9d48c40dd0", size = 92586 } +sdist = { url = "https://files.pythonhosted.org/packages/65/19/d9d922913b86e9df48bfd4f959f3b215cd16c9fd563b4d0b1b6b31d3703b/datamodel_code_generator-0.28.5.tar.gz", hash = "sha256:20e8b817d301d2d0bb15f436e81c97b25ad1c2ef922c99249c2444141ae15a6a", size = 444237 } wheels = [ - { url = "https://files.pythonhosted.org/packages/5a/d8/ead3e857d4048947fe92a731d6b1f257dcb267cc8b8918d3b72598c9b728/datamodel_code_generator-0.26.5-py3-none-any.whl", hash = "sha256:e32f986b9914a2b45093947043aa0192d704650be93151f78acf5c95676601ce", size = 114982 }, + { url = "https://files.pythonhosted.org/packages/1e/af/fdb43505db1accf89c4551eacedd3bc756b7bf57b190b87c29c75fee2555/datamodel_code_generator-0.28.5-py3-none-any.whl", hash = "sha256:f899c1da5af04b5d5b6e3edbd718c1bf3a00fc4b2fe8210cef609d93a9983e9e", size = 117290 }, ] [[package]] name = "debugpy" -version = "1.8.12" +version = "1.8.14" source = { registry = "https://pypi.org/simple" } -sdist = { url = "https://files.pythonhosted.org/packages/68/25/c74e337134edf55c4dfc9af579eccb45af2393c40960e2795a94351e8140/debugpy-1.8.12.tar.gz", hash = "sha256:646530b04f45c830ceae8e491ca1c9320a2d2f0efea3141487c82130aba70dce", size = 1641122 } +sdist = { url = "https://files.pythonhosted.org/packages/bd/75/087fe07d40f490a78782ff3b0a30e3968936854105487decdb33446d4b0e/debugpy-1.8.14.tar.gz", hash = "sha256:7cd287184318416850aa8b60ac90105837bb1e59531898c07569d197d2ed5322", size = 1641444 } wheels = [ - { url = "https://files.pythonhosted.org/packages/ba/e6/0f876ecfe5831ebe4762b19214364753c8bc2b357d28c5d739a1e88325c7/debugpy-1.8.12-cp312-cp312-macosx_14_0_universal2.whl", hash = "sha256:7e94b643b19e8feb5215fa508aee531387494bf668b2eca27fa769ea11d9f498", size = 2500846 }, - { url = "https://files.pythonhosted.org/packages/19/64/33f41653a701f3cd2cbff8b41ebaad59885b3428b5afd0d93d16012ecf17/debugpy-1.8.12-cp312-cp312-manylinux_2_5_x86_64.manylinux1_x86_64.manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:086b32e233e89a2740c1615c2f775c34ae951508b28b308681dbbb87bba97d06", size = 4222181 }, - { url = "https://files.pythonhosted.org/packages/32/a6/02646cfe50bfacc9b71321c47dc19a46e35f4e0aceea227b6d205e900e34/debugpy-1.8.12-cp312-cp312-win32.whl", hash = "sha256:2ae5df899732a6051b49ea2632a9ea67f929604fd2b036613a9f12bc3163b92d", size = 5227017 }, - { url = "https://files.pythonhosted.org/packages/da/a6/10056431b5c47103474312cf4a2ec1001f73e0b63b1216706d5fef2531eb/debugpy-1.8.12-cp312-cp312-win_amd64.whl", hash = "sha256:39dfbb6fa09f12fae32639e3286112fc35ae976114f1f3d37375f3130a820969", size = 5267555 }, - { url = "https://files.pythonhosted.org/packages/cf/4d/7c3896619a8791effd5d8c31f0834471fc8f8fb3047ec4f5fc69dd1393dd/debugpy-1.8.12-cp313-cp313-macosx_14_0_universal2.whl", hash = "sha256:696d8ae4dff4cbd06bf6b10d671e088b66669f110c7c4e18a44c43cf75ce966f", size = 2485246 }, - { url = "https://files.pythonhosted.org/packages/99/46/bc6dcfd7eb8cc969a5716d858e32485eb40c72c6a8dc88d1e3a4d5e95813/debugpy-1.8.12-cp313-cp313-manylinux_2_5_x86_64.manylinux1_x86_64.manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:898fba72b81a654e74412a67c7e0a81e89723cfe2a3ea6fcd3feaa3395138ca9", size = 4218616 }, - { url = "https://files.pythonhosted.org/packages/03/dd/d7fcdf0381a9b8094da1f6a1c9f19fed493a4f8576a2682349b3a8b20ec7/debugpy-1.8.12-cp313-cp313-win32.whl", hash = "sha256:22a11c493c70413a01ed03f01c3c3a2fc4478fc6ee186e340487b2edcd6f4180", size = 5226540 }, - { url = "https://files.pythonhosted.org/packages/25/bd/ecb98f5b5fc7ea0bfbb3c355bc1dd57c198a28780beadd1e19915bf7b4d9/debugpy-1.8.12-cp313-cp313-win_amd64.whl", hash = "sha256:fdb3c6d342825ea10b90e43d7f20f01535a72b3a1997850c0c3cefa5c27a4a2c", size = 5267134 }, - { url = "https://files.pythonhosted.org/packages/38/c4/5120ad36405c3008f451f94b8f92ef1805b1e516f6ff870f331ccb3c4cc0/debugpy-1.8.12-py2.py3-none-any.whl", hash = "sha256:274b6a2040349b5c9864e475284bce5bb062e63dce368a394b8cc865ae3b00c6", size = 5229490 }, + { url = "https://files.pythonhosted.org/packages/d9/2a/ac2df0eda4898f29c46eb6713a5148e6f8b2b389c8ec9e425a4a1d67bf07/debugpy-1.8.14-cp312-cp312-macosx_14_0_universal2.whl", hash = "sha256:8899c17920d089cfa23e6005ad9f22582fd86f144b23acb9feeda59e84405b84", size = 2501268 }, + { url = "https://files.pythonhosted.org/packages/10/53/0a0cb5d79dd9f7039169f8bf94a144ad3efa52cc519940b3b7dde23bcb89/debugpy-1.8.14-cp312-cp312-manylinux_2_5_x86_64.manylinux1_x86_64.manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:f6bb5c0dcf80ad5dbc7b7d6eac484e2af34bdacdf81df09b6a3e62792b722826", size = 4221077 }, + { url = "https://files.pythonhosted.org/packages/f8/d5/84e01821f362327bf4828728aa31e907a2eca7c78cd7c6ec062780d249f8/debugpy-1.8.14-cp312-cp312-win32.whl", hash = "sha256:281d44d248a0e1791ad0eafdbbd2912ff0de9eec48022a5bfbc332957487ed3f", size = 5255127 }, + { url = "https://files.pythonhosted.org/packages/33/16/1ed929d812c758295cac7f9cf3dab5c73439c83d9091f2d91871e648093e/debugpy-1.8.14-cp312-cp312-win_amd64.whl", hash = "sha256:5aa56ef8538893e4502a7d79047fe39b1dae08d9ae257074c6464a7b290b806f", size = 5297249 }, + { url = "https://files.pythonhosted.org/packages/4d/e4/395c792b243f2367d84202dc33689aa3d910fb9826a7491ba20fc9e261f5/debugpy-1.8.14-cp313-cp313-macosx_14_0_universal2.whl", hash = "sha256:329a15d0660ee09fec6786acdb6e0443d595f64f5d096fc3e3ccf09a4259033f", size = 2485676 }, + { url = "https://files.pythonhosted.org/packages/ba/f1/6f2ee3f991327ad9e4c2f8b82611a467052a0fb0e247390192580e89f7ff/debugpy-1.8.14-cp313-cp313-manylinux_2_5_x86_64.manylinux1_x86_64.manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:0f920c7f9af409d90f5fd26e313e119d908b0dd2952c2393cd3247a462331f15", size = 4217514 }, + { url = "https://files.pythonhosted.org/packages/79/28/b9d146f8f2dc535c236ee09ad3e5ac899adb39d7a19b49f03ac95d216beb/debugpy-1.8.14-cp313-cp313-win32.whl", hash = "sha256:3784ec6e8600c66cbdd4ca2726c72d8ca781e94bce2f396cc606d458146f8f4e", size = 5254756 }, + { url = "https://files.pythonhosted.org/packages/e0/62/a7b4a57013eac4ccaef6977966e6bec5c63906dd25a86e35f155952e29a1/debugpy-1.8.14-cp313-cp313-win_amd64.whl", hash = "sha256:684eaf43c95a3ec39a96f1f5195a7ff3d4144e4a18d69bb66beeb1a6de605d6e", size = 5297119 }, + { url = "https://files.pythonhosted.org/packages/97/1a/481f33c37ee3ac8040d3d51fc4c4e4e7e61cb08b8bc8971d6032acc2279f/debugpy-1.8.14-py2.py3-none-any.whl", hash = "sha256:5cd9a579d553b6cb9759a7908a41988ee6280b961f24f63336835d9418216a20", size = 5256230 }, ] [[package]] name = "decorator" -version = "5.1.1" +version = "5.2.1" source = { registry = "https://pypi.org/simple" } -sdist = { url = "https://files.pythonhosted.org/packages/66/0c/8d907af351aa16b42caae42f9d6aa37b900c67308052d10fdce809f8d952/decorator-5.1.1.tar.gz", hash = "sha256:637996211036b6385ef91435e4fae22989472f9d571faba8927ba8253acbc330", size = 35016 } +sdist = { url = "https://files.pythonhosted.org/packages/43/fa/6d96a0978d19e17b68d634497769987b16c8f4cd0a7a05048bec693caa6b/decorator-5.2.1.tar.gz", hash = "sha256:65f266143752f734b0a7cc83c46f4618af75b8c5911b00ccb61d0ac9b6da0360", size = 56711 } wheels = [ - { url = "https://files.pythonhosted.org/packages/d5/50/83c593b07763e1161326b3b8c6686f0f4b0f24d5526546bee538c89837d6/decorator-5.1.1-py3-none-any.whl", hash = "sha256:b8c3f85900b9dc423225913c5aace94729fe1fa9763b38939a95226f02d37186", size = 9073 }, + { url = "https://files.pythonhosted.org/packages/4e/8c/f3147f5c4b73e7550fe5f9352eaa956ae838d5c51eb58e7a25b9f3e2643b/decorator-5.2.1-py3-none-any.whl", hash = "sha256:d316bb415a2d9e2d2b3abcc4084c6502fc09240e292cd76a76afc106a1c8e04a", size = 9190 }, ] [[package]] @@ -641,16 +647,16 @@ wheels = [ [[package]] name = "fastapi" -version = "0.115.7" +version = "0.115.12" source = { registry = "https://pypi.org/simple" } dependencies = [ { name = "pydantic" }, { name = "starlette" }, { name = "typing-extensions" }, ] -sdist = { url = "https://files.pythonhosted.org/packages/a2/f5/3f921e59f189e513adb9aef826e2841672d50a399fead4e69afdeb808ff4/fastapi-0.115.7.tar.gz", hash = "sha256:0f106da6c01d88a6786b3248fb4d7a940d071f6f488488898ad5d354b25ed015", size = 293177 } +sdist = { url = "https://files.pythonhosted.org/packages/f4/55/ae499352d82338331ca1e28c7f4a63bfd09479b16395dce38cf50a39e2c2/fastapi-0.115.12.tar.gz", hash = "sha256:1e2c2a2646905f9e83d32f04a3f86aff4a286669c6c950ca95b5fd68c2602681", size = 295236 } wheels = [ - { url = "https://files.pythonhosted.org/packages/e6/7f/bbd4dcf0faf61bc68a01939256e2ed02d681e9334c1a3cef24d5f77aba9f/fastapi-0.115.7-py3-none-any.whl", hash = "sha256:eb6a8c8bf7f26009e8147111ff15b5177a0e19bb4a45bc3486ab14804539d21e", size = 94777 }, + { url = "https://files.pythonhosted.org/packages/50/b3/b51f09c2ba432a576fe63758bddc81f78f0c6309d9e5c10d194313bf021e/fastapi-0.115.12-py3-none-any.whl", hash = "sha256:e94613d6c05e27be7ffebdd6ea5f388112e5e430c8f7d6494a9d1d88d43e814d", size = 95164 }, ] [package.optional-dependencies] @@ -693,11 +699,11 @@ wheels = [ [[package]] name = "filelock" -version = "3.17.0" +version = "3.18.0" source = { registry = "https://pypi.org/simple" } -sdist = { url = "https://files.pythonhosted.org/packages/dc/9c/0b15fb47b464e1b663b1acd1253a062aa5feecb07d4e597daea542ebd2b5/filelock-3.17.0.tar.gz", hash = "sha256:ee4e77401ef576ebb38cd7f13b9b28893194acc20a8e68e18730ba9c0e54660e", size = 18027 } +sdist = { url = "https://files.pythonhosted.org/packages/0a/10/c23352565a6544bdc5353e0b15fc1c563352101f30e24bf500207a54df9a/filelock-3.18.0.tar.gz", hash = "sha256:adbc88eabb99d2fec8c9c1b229b171f18afa655400173ddc653d5d01501fb9f2", size = 18075 } wheels = [ - { url = "https://files.pythonhosted.org/packages/89/ec/00d68c4ddfedfe64159999e5f8a98fb8442729a63e2077eb9dcd89623d27/filelock-3.17.0-py3-none-any.whl", hash = "sha256:533dc2f7ba78dc2f0f531fc6c4940addf7b70a481e269a5a3b93be94ffbe8338", size = 16164 }, + { url = "https://files.pythonhosted.org/packages/4d/36/2a115987e2d8c300a974597416d9de88f2444426de9571f4b59b2cca3acc/filelock-3.18.0-py3-none-any.whl", hash = "sha256:c401f4f8377c4464e6db25fff06205fd89bdd83b65eb0488ed1b160f780e21de", size = 16215 }, ] [[package]] @@ -711,11 +717,11 @@ wheels = [ [[package]] name = "fsspec" -version = "2024.12.0" +version = "2025.3.2" source = { registry = "https://pypi.org/simple" } -sdist = { url = "https://files.pythonhosted.org/packages/ee/11/de70dee31455c546fbc88301971ec03c328f3d1138cfba14263f651e9551/fsspec-2024.12.0.tar.gz", hash = "sha256:670700c977ed2fb51e0d9f9253177ed20cbde4a3e5c0283cc5385b5870c8533f", size = 291600 } +sdist = { url = "https://files.pythonhosted.org/packages/45/d8/8425e6ba5fcec61a1d16e41b1b71d2bf9344f1fe48012c2b48b9620feae5/fsspec-2025.3.2.tar.gz", hash = "sha256:e52c77ef398680bbd6a98c0e628fbc469491282981209907bbc8aea76a04fdc6", size = 299281 } wheels = [ - { url = "https://files.pythonhosted.org/packages/de/86/5486b0188d08aa643e127774a99bac51ffa6cf343e3deb0583956dca5b22/fsspec-2024.12.0-py3-none-any.whl", hash = "sha256:b520aed47ad9804237ff878b504267a3b0b441e97508bd6d2d8774e3db85cee2", size = 183862 }, + { url = "https://files.pythonhosted.org/packages/44/4b/e0cfc1a6f17e990f3e64b7d941ddc4acdc7b19d6edd51abf495f32b1a9e4/fsspec-2025.3.2-py3-none-any.whl", hash = "sha256:2daf8dc3d1dfa65b6aa37748d112773a7a08416f6c70d96b264c96476ecaf711", size = 194435 }, ] [[package]] @@ -799,15 +805,15 @@ wheels = [ [[package]] name = "httpcore" -version = "1.0.7" +version = "1.0.8" source = { registry = "https://pypi.org/simple" } dependencies = [ { name = "certifi" }, { name = "h11" }, ] -sdist = { url = "https://files.pythonhosted.org/packages/6a/41/d7d0a89eb493922c37d343b607bc1b5da7f5be7e383740b4753ad8943e90/httpcore-1.0.7.tar.gz", hash = "sha256:8551cb62a169ec7162ac7be8d4817d561f60e08eaa485234898414bb5a8a0b4c", size = 85196 } +sdist = { url = "https://files.pythonhosted.org/packages/9f/45/ad3e1b4d448f22c0cff4f5692f5ed0666658578e358b8d58a19846048059/httpcore-1.0.8.tar.gz", hash = "sha256:86e94505ed24ea06514883fd44d2bc02d90e77e7979c8eb71b90f41d364a1bad", size = 85385 } wheels = [ - { url = "https://files.pythonhosted.org/packages/87/f5/72347bc88306acb359581ac4d52f23c0ef445b57157adedb9aee0cd689d2/httpcore-1.0.7-py3-none-any.whl", hash = "sha256:a3fff8f43dc260d5bd363d9f9cf1830fa3a458b332856f34282de498ed420edd", size = 78551 }, + { url = "https://files.pythonhosted.org/packages/18/8d/f052b1e336bb2c1fc7ed1aaed898aa570c0b61a09707b108979d9fc6e308/httpcore-1.0.8-py3-none-any.whl", hash = "sha256:5254cf149bcb5f75e9d1b2b9f729ea4a4b883d1ad7379fc632b727cec23674be", size = 78732 }, ] [[package]] @@ -849,7 +855,7 @@ wheels = [ [[package]] name = "huggingface-hub" -version = "0.27.1" +version = "0.30.2" source = { registry = "https://pypi.org/simple" } dependencies = [ { name = "filelock" }, @@ -860,27 +866,27 @@ dependencies = [ { name = "tqdm" }, { name = "typing-extensions" }, ] -sdist = { url = "https://files.pythonhosted.org/packages/e1/d2/d6976de7542792fc077b498d64af64882b6d8bb40679284ec0bff77d5929/huggingface_hub-0.27.1.tar.gz", hash = "sha256:c004463ca870283909d715d20f066ebd6968c2207dae9393fdffb3c1d4d8f98b", size = 379407 } +sdist = { url = "https://files.pythonhosted.org/packages/df/22/8eb91736b1dcb83d879bd49050a09df29a57cc5cd9f38e48a4b1c45ee890/huggingface_hub-0.30.2.tar.gz", hash = "sha256:9a7897c5b6fd9dad3168a794a8998d6378210f5b9688d0dfc180b1a228dc2466", size = 400868 } wheels = [ - { url = "https://files.pythonhosted.org/packages/6c/3f/50f6b25fafdcfb1c089187a328c95081abf882309afd86f4053951507cd1/huggingface_hub-0.27.1-py3-none-any.whl", hash = "sha256:1c5155ca7d60b60c2e2fc38cbb3ffb7f7c3adf48f824015b219af9061771daec", size = 450658 }, + { url = "https://files.pythonhosted.org/packages/93/27/1fb384a841e9661faad1c31cbfa62864f59632e876df5d795234da51c395/huggingface_hub-0.30.2-py3-none-any.whl", hash = "sha256:68ff05969927058cfa41df4f2155d4bb48f5f54f719dd0390103eefa9b191e28", size = 481433 }, ] [[package]] name = "humanize" -version = "4.11.0" +version = "4.12.2" source = { registry = "https://pypi.org/simple" } -sdist = { url = "https://files.pythonhosted.org/packages/6a/40/64a912b9330786df25e58127194d4a5a7441f818b400b155e748a270f924/humanize-4.11.0.tar.gz", hash = "sha256:e66f36020a2d5a974c504bd2555cf770621dbdbb6d82f94a6857c0b1ea2608be", size = 80374 } +sdist = { url = "https://files.pythonhosted.org/packages/e0/84/ae8e64a6ffe3291105e9688f4e28fa65eba7924e0fe6053d85ca00556385/humanize-4.12.2.tar.gz", hash = "sha256:ce0715740e9caacc982bb89098182cf8ded3552693a433311c6a4ce6f4e12a2c", size = 80871 } wheels = [ - { url = "https://files.pythonhosted.org/packages/92/75/4bc3e242ad13f2e6c12e0b0401ab2c5e5c6f0d7da37ec69bc808e24e0ccb/humanize-4.11.0-py3-none-any.whl", hash = "sha256:b53caaec8532bcb2fff70c8826f904c35943f8cecaca29d272d9df38092736c0", size = 128055 }, + { url = "https://files.pythonhosted.org/packages/55/c7/6f89082f619c76165feb633446bd0fee32b0e0cbad00d22480e5aea26ade/humanize-4.12.2-py3-none-any.whl", hash = "sha256:e4e44dced598b7e03487f3b1c6fd5b1146c30ea55a110e71d5d4bca3e094259e", size = 128305 }, ] [[package]] name = "identify" -version = "2.6.6" +version = "2.6.9" source = { registry = "https://pypi.org/simple" } -sdist = { url = "https://files.pythonhosted.org/packages/82/bf/c68c46601bacd4c6fb4dd751a42b6e7087240eaabc6487f2ef7a48e0e8fc/identify-2.6.6.tar.gz", hash = "sha256:7bec12768ed44ea4761efb47806f0a41f86e7c0a5fdf5950d4648c90eca7e251", size = 99217 } +sdist = { url = "https://files.pythonhosted.org/packages/9b/98/a71ab060daec766acc30fb47dfca219d03de34a70d616a79a38c6066c5bf/identify-2.6.9.tar.gz", hash = "sha256:d40dfe3142a1421d8518e3d3985ef5ac42890683e32306ad614a29490abeb6bf", size = 99249 } wheels = [ - { url = "https://files.pythonhosted.org/packages/74/a1/68a395c17eeefb04917034bd0a1bfa765e7654fa150cca473d669aa3afb5/identify-2.6.6-py2.py3-none-any.whl", hash = "sha256:cbd1810bce79f8b671ecb20f53ee0ae8e86ae84b557de31d89709dc2a48ba881", size = 99083 }, + { url = "https://files.pythonhosted.org/packages/07/ce/0845144ed1f0e25db5e7a79c2354c1da4b5ce392b8966449d5db8dca18f1/identify-2.6.9-py2.py3-none-any.whl", hash = "sha256:c98b4322da415a8e5a70ff6e51fbc2d2932c015532d77e9f8537b4ba7813b150", size = 99101 }, ] [[package]] @@ -903,11 +909,11 @@ wheels = [ [[package]] name = "iniconfig" -version = "2.0.0" +version = "2.1.0" source = { registry = "https://pypi.org/simple" } -sdist = { url = "https://files.pythonhosted.org/packages/d7/4b/cbd8e699e64a6f16ca3a8220661b5f83792b3017d0f79807cb8708d33913/iniconfig-2.0.0.tar.gz", hash = "sha256:2d91e135bf72d31a410b17c16da610a82cb55f6b0477d1a902134b24a455b8b3", size = 4646 } +sdist = { url = "https://files.pythonhosted.org/packages/f2/97/ebf4da567aa6827c909642694d71c9fcf53e5b504f2d96afea02718862f3/iniconfig-2.1.0.tar.gz", hash = "sha256:3abbd2e30b36733fee78f9c7f7308f2d0050e88f0087fd25c2645f63c773e1c7", size = 4793 } wheels = [ - { url = "https://files.pythonhosted.org/packages/ef/a6/62565a6e1cf69e10f5727360368e451d4b7f58beeac6173dc9db836a5b46/iniconfig-2.0.0-py3-none-any.whl", hash = "sha256:b6a85871a79d2e3b22d2d1b94ac2824226a63c6b741c88f7ae975f18b6778374", size = 5892 }, + { url = "https://files.pythonhosted.org/packages/2c/e1/e6716421ea10d38022b952c159d5161ca1193197fb744506875fbb87ea7b/iniconfig-2.1.0-py3-none-any.whl", hash = "sha256:9deba5723312380e77435581c6bf4935c94cbfab9b1ed33ef8d238ea168eb760", size = 6050 }, ] [[package]] @@ -936,11 +942,12 @@ wheels = [ [[package]] name = "ipython" -version = "8.31.0" +version = "9.1.0" source = { registry = "https://pypi.org/simple" } dependencies = [ { name = "colorama", marker = "sys_platform == 'win32'" }, { name = "decorator" }, + { name = "ipython-pygments-lexers" }, { name = "jedi" }, { name = "matplotlib-inline" }, { name = "pexpect", marker = "sys_platform != 'emscripten' and sys_platform != 'win32'" }, @@ -949,9 +956,21 @@ dependencies = [ { name = "stack-data" }, { name = "traitlets" }, ] -sdist = { url = "https://files.pythonhosted.org/packages/01/35/6f90fdddff7a08b7b715fccbd2427b5212c9525cd043d26fdc45bee0708d/ipython-8.31.0.tar.gz", hash = "sha256:b6a2274606bec6166405ff05e54932ed6e5cfecaca1fc05f2cacde7bb074d70b", size = 5501011 } +sdist = { url = "https://files.pythonhosted.org/packages/70/9a/6b8984bedc990f3a4aa40ba8436dea27e23d26a64527de7c2e5e12e76841/ipython-9.1.0.tar.gz", hash = "sha256:a47e13a5e05e02f3b8e1e7a0f9db372199fe8c3763532fe7a1e0379e4e135f16", size = 4373688 } +wheels = [ + { url = "https://files.pythonhosted.org/packages/b2/9d/4ff2adf55d1b6e3777b0303fdbe5b723f76e46cba4a53a32fe82260d2077/ipython-9.1.0-py3-none-any.whl", hash = "sha256:2df07257ec2f84a6b346b8d83100bcf8fa501c6e01ab75cd3799b0bb253b3d2a", size = 604053 }, +] + +[[package]] +name = "ipython-pygments-lexers" +version = "1.1.1" +source = { registry = "https://pypi.org/simple" } +dependencies = [ + { name = "pygments" }, +] +sdist = { url = "https://files.pythonhosted.org/packages/ef/4c/5dd1d8af08107f88c7f741ead7a40854b8ac24ddf9ae850afbcf698aa552/ipython_pygments_lexers-1.1.1.tar.gz", hash = "sha256:09c0138009e56b6854f9535736f4171d855c8c08a563a0dcd8022f78355c7e81", size = 8393 } wheels = [ - { url = "https://files.pythonhosted.org/packages/04/60/d0feb6b6d9fe4ab89fe8fe5b47cbf6cd936bfd9f1e7ffa9d0015425aeed6/ipython-8.31.0-py3-none-any.whl", hash = "sha256:46ec58f8d3d076a61d128fe517a51eb730e3aaf0c184ea8c17d16e366660c6a6", size = 821583 }, + { url = "https://files.pythonhosted.org/packages/d9/33/1f075bf72b0b747cb3288d011319aaf64083cf2efef8354174e3ed4540e2/ipython_pygments_lexers-1.1.1-py3-none-any.whl", hash = "sha256:a9462224a505ade19a605f71f8fa63c2048833ce50abc86768a0d81d876dc81c", size = 8074 }, ] [[package]] @@ -968,11 +987,11 @@ wheels = [ [[package]] name = "isort" -version = "5.13.2" +version = "6.0.1" source = { registry = "https://pypi.org/simple" } -sdist = { url = "https://files.pythonhosted.org/packages/87/f9/c1eb8635a24e87ade2efce21e3ce8cd6b8630bb685ddc9cdaca1349b2eb5/isort-5.13.2.tar.gz", hash = "sha256:48fdfcb9face5d58a4f6dde2e72a1fb8dcaf8ab26f95ab49fab84c2ddefb0109", size = 175303 } +sdist = { url = "https://files.pythonhosted.org/packages/b8/21/1e2a441f74a653a144224d7d21afe8f4169e6c7c20bb13aec3a2dc3815e0/isort-6.0.1.tar.gz", hash = "sha256:1cb5df28dfbc742e490c5e41bad6da41b805b0a8be7bc93cd0fb2a8a890ac450", size = 821955 } wheels = [ - { url = "https://files.pythonhosted.org/packages/d1/b3/8def84f539e7d2289a02f0524b944b15d7c75dab7628bedf1c4f0992029c/isort-5.13.2-py3-none-any.whl", hash = "sha256:8ca5e72a8d85860d5a3fa69b8745237f2939afe12dbf656afbcb47fe72d947a6", size = 92310 }, + { url = "https://files.pythonhosted.org/packages/c1/11/114d0a5f4dabbdcedc1125dee0888514c3c3b16d3e9facad87ed96fad97c/isort-6.0.1-py3-none-any.whl", hash = "sha256:2dc5d7f65c9678d94c88dfc29161a320eec67328bc97aad576874cb4be1e9615", size = 94186 }, ] [[package]] @@ -989,58 +1008,58 @@ wheels = [ [[package]] name = "jinja2" -version = "3.1.5" +version = "3.1.6" source = { registry = "https://pypi.org/simple" } dependencies = [ { name = "markupsafe" }, ] -sdist = { url = "https://files.pythonhosted.org/packages/af/92/b3130cbbf5591acf9ade8708c365f3238046ac7cb8ccba6e81abccb0ccff/jinja2-3.1.5.tar.gz", hash = "sha256:8fefff8dc3034e27bb80d67c671eb8a9bc424c0ef4c0826edbff304cceff43bb", size = 244674 } +sdist = { url = "https://files.pythonhosted.org/packages/df/bf/f7da0350254c0ed7c72f3e33cef02e048281fec7ecec5f032d4aac52226b/jinja2-3.1.6.tar.gz", hash = "sha256:0137fb05990d35f1275a587e9aee6d56da821fc83491a0fb838183be43f66d6d", size = 245115 } wheels = [ - { url = "https://files.pythonhosted.org/packages/bd/0f/2ba5fbcd631e3e88689309dbe978c5769e883e4b84ebfe7da30b43275c5a/jinja2-3.1.5-py3-none-any.whl", hash = "sha256:aba0f4dc9ed8013c424088f68a5c226f7d6097ed89b246d7749c2ec4175c6adb", size = 134596 }, + { url = "https://files.pythonhosted.org/packages/62/a1/3d680cbfd5f4b8f15abc1d571870c5fc3e594bb582bc3b64ea099db13e56/jinja2-3.1.6-py3-none-any.whl", hash = "sha256:85ece4451f492d0c13c5dd7c13a64681a86afae63a5f347908daf103ce6d2f67", size = 134899 }, ] [[package]] name = "jiter" -version = "0.8.2" -source = { registry = "https://pypi.org/simple" } -sdist = { url = "https://files.pythonhosted.org/packages/f8/70/90bc7bd3932e651486861df5c8ffea4ca7c77d28e8532ddefe2abc561a53/jiter-0.8.2.tar.gz", hash = "sha256:cd73d3e740666d0e639f678adb176fad25c1bcbdae88d8d7b857e1783bb4212d", size = 163007 } -wheels = [ - { url = "https://files.pythonhosted.org/packages/a1/17/c8747af8ea4e045f57d6cfd6fc180752cab9bc3de0e8a0c9ca4e8af333b1/jiter-0.8.2-cp312-cp312-macosx_10_12_x86_64.whl", hash = "sha256:e6ec2be506e7d6f9527dae9ff4b7f54e68ea44a0ef6b098256ddf895218a2f8f", size = 302027 }, - { url = "https://files.pythonhosted.org/packages/3c/c1/6da849640cd35a41e91085723b76acc818d4b7d92b0b6e5111736ce1dd10/jiter-0.8.2-cp312-cp312-macosx_11_0_arm64.whl", hash = "sha256:76e324da7b5da060287c54f2fabd3db5f76468006c811831f051942bf68c9d44", size = 310326 }, - { url = "https://files.pythonhosted.org/packages/06/99/a2bf660d8ccffee9ad7ed46b4f860d2108a148d0ea36043fd16f4dc37e94/jiter-0.8.2-cp312-cp312-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:180a8aea058f7535d1c84183c0362c710f4750bef66630c05f40c93c2b152a0f", size = 334242 }, - { url = "https://files.pythonhosted.org/packages/a7/5f/cea1c17864828731f11427b9d1ab7f24764dbd9aaf4648a7f851164d2718/jiter-0.8.2-cp312-cp312-manylinux_2_17_armv7l.manylinux2014_armv7l.whl", hash = "sha256:025337859077b41548bdcbabe38698bcd93cfe10b06ff66617a48ff92c9aec60", size = 356654 }, - { url = "https://files.pythonhosted.org/packages/e9/13/62774b7e5e7f5d5043efe1d0f94ead66e6d0f894ae010adb56b3f788de71/jiter-0.8.2-cp312-cp312-manylinux_2_17_ppc64le.manylinux2014_ppc64le.whl", hash = "sha256:ecff0dc14f409599bbcafa7e470c00b80f17abc14d1405d38ab02e4b42e55b57", size = 379967 }, - { url = "https://files.pythonhosted.org/packages/ec/fb/096b34c553bb0bd3f2289d5013dcad6074948b8d55212aa13a10d44c5326/jiter-0.8.2-cp312-cp312-manylinux_2_17_s390x.manylinux2014_s390x.whl", hash = "sha256:ffd9fee7d0775ebaba131f7ca2e2d83839a62ad65e8e02fe2bd8fc975cedeb9e", size = 389252 }, - { url = "https://files.pythonhosted.org/packages/17/61/beea645c0bf398ced8b199e377b61eb999d8e46e053bb285c91c3d3eaab0/jiter-0.8.2-cp312-cp312-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:14601dcac4889e0a1c75ccf6a0e4baf70dbc75041e51bcf8d0e9274519df6887", size = 345490 }, - { url = "https://files.pythonhosted.org/packages/d5/df/834aa17ad5dcc3cf0118821da0a0cf1589ea7db9832589278553640366bc/jiter-0.8.2-cp312-cp312-manylinux_2_5_i686.manylinux1_i686.whl", hash = "sha256:92249669925bc1c54fcd2ec73f70f2c1d6a817928480ee1c65af5f6b81cdf12d", size = 376991 }, - { url = "https://files.pythonhosted.org/packages/67/80/87d140399d382fb4ea5b3d56e7ecaa4efdca17cd7411ff904c1517855314/jiter-0.8.2-cp312-cp312-musllinux_1_1_aarch64.whl", hash = "sha256:e725edd0929fa79f8349ab4ec7f81c714df51dc4e991539a578e5018fa4a7152", size = 510822 }, - { url = "https://files.pythonhosted.org/packages/5c/37/3394bb47bac1ad2cb0465601f86828a0518d07828a650722e55268cdb7e6/jiter-0.8.2-cp312-cp312-musllinux_1_1_x86_64.whl", hash = "sha256:bf55846c7b7a680eebaf9c3c48d630e1bf51bdf76c68a5f654b8524335b0ad29", size = 503730 }, - { url = "https://files.pythonhosted.org/packages/f9/e2/253fc1fa59103bb4e3aa0665d6ceb1818df1cd7bf3eb492c4dad229b1cd4/jiter-0.8.2-cp312-cp312-win32.whl", hash = "sha256:7efe4853ecd3d6110301665a5178b9856be7e2a9485f49d91aa4d737ad2ae49e", size = 203375 }, - { url = "https://files.pythonhosted.org/packages/41/69/6d4bbe66b3b3b4507e47aa1dd5d075919ad242b4b1115b3f80eecd443687/jiter-0.8.2-cp312-cp312-win_amd64.whl", hash = "sha256:83c0efd80b29695058d0fd2fa8a556490dbce9804eac3e281f373bbc99045f6c", size = 204740 }, - { url = "https://files.pythonhosted.org/packages/6c/b0/bfa1f6f2c956b948802ef5a021281978bf53b7a6ca54bb126fd88a5d014e/jiter-0.8.2-cp313-cp313-macosx_10_12_x86_64.whl", hash = "sha256:ca1f08b8e43dc3bd0594c992fb1fd2f7ce87f7bf0d44358198d6da8034afdf84", size = 301190 }, - { url = "https://files.pythonhosted.org/packages/a4/8f/396ddb4e292b5ea57e45ade5dc48229556b9044bad29a3b4b2dddeaedd52/jiter-0.8.2-cp313-cp313-macosx_11_0_arm64.whl", hash = "sha256:5672a86d55416ccd214c778efccf3266b84f87b89063b582167d803246354be4", size = 309334 }, - { url = "https://files.pythonhosted.org/packages/7f/68/805978f2f446fa6362ba0cc2e4489b945695940656edd844e110a61c98f8/jiter-0.8.2-cp313-cp313-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:58dc9bc9767a1101f4e5e22db1b652161a225874d66f0e5cb8e2c7d1c438b587", size = 333918 }, - { url = "https://files.pythonhosted.org/packages/b3/99/0f71f7be667c33403fa9706e5b50583ae5106d96fab997fa7e2f38ee8347/jiter-0.8.2-cp313-cp313-manylinux_2_17_armv7l.manylinux2014_armv7l.whl", hash = "sha256:37b2998606d6dadbb5ccda959a33d6a5e853252d921fec1792fc902351bb4e2c", size = 356057 }, - { url = "https://files.pythonhosted.org/packages/8d/50/a82796e421a22b699ee4d2ce527e5bcb29471a2351cbdc931819d941a167/jiter-0.8.2-cp313-cp313-manylinux_2_17_ppc64le.manylinux2014_ppc64le.whl", hash = "sha256:4ab9a87f3784eb0e098f84a32670cfe4a79cb6512fd8f42ae3d0709f06405d18", size = 379790 }, - { url = "https://files.pythonhosted.org/packages/3c/31/10fb012b00f6d83342ca9e2c9618869ab449f1aa78c8f1b2193a6b49647c/jiter-0.8.2-cp313-cp313-manylinux_2_17_s390x.manylinux2014_s390x.whl", hash = "sha256:79aec8172b9e3c6d05fd4b219d5de1ac616bd8da934107325a6c0d0e866a21b6", size = 388285 }, - { url = "https://files.pythonhosted.org/packages/c8/81/f15ebf7de57be488aa22944bf4274962aca8092e4f7817f92ffa50d3ee46/jiter-0.8.2-cp313-cp313-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:711e408732d4e9a0208008e5892c2966b485c783cd2d9a681f3eb147cf36c7ef", size = 344764 }, - { url = "https://files.pythonhosted.org/packages/b3/e8/0cae550d72b48829ba653eb348cdc25f3f06f8a62363723702ec18e7be9c/jiter-0.8.2-cp313-cp313-manylinux_2_5_i686.manylinux1_i686.whl", hash = "sha256:653cf462db4e8c41995e33d865965e79641ef45369d8a11f54cd30888b7e6ff1", size = 376620 }, - { url = "https://files.pythonhosted.org/packages/b8/50/e5478ff9d82534a944c03b63bc217c5f37019d4a34d288db0f079b13c10b/jiter-0.8.2-cp313-cp313-musllinux_1_1_aarch64.whl", hash = "sha256:9c63eaef32b7bebac8ebebf4dabebdbc6769a09c127294db6babee38e9f405b9", size = 510402 }, - { url = "https://files.pythonhosted.org/packages/8e/1e/3de48bbebbc8f7025bd454cedc8c62378c0e32dd483dece5f4a814a5cb55/jiter-0.8.2-cp313-cp313-musllinux_1_1_x86_64.whl", hash = "sha256:eb21aaa9a200d0a80dacc7a81038d2e476ffe473ffdd9c91eb745d623561de05", size = 503018 }, - { url = "https://files.pythonhosted.org/packages/d5/cd/d5a5501d72a11fe3e5fd65c78c884e5164eefe80077680533919be22d3a3/jiter-0.8.2-cp313-cp313-win32.whl", hash = "sha256:789361ed945d8d42850f919342a8665d2dc79e7e44ca1c97cc786966a21f627a", size = 203190 }, - { url = "https://files.pythonhosted.org/packages/51/bf/e5ca301245ba951447e3ad677a02a64a8845b185de2603dabd83e1e4b9c6/jiter-0.8.2-cp313-cp313-win_amd64.whl", hash = "sha256:ab7f43235d71e03b941c1630f4b6e3055d46b6cb8728a17663eaac9d8e83a865", size = 203551 }, - { url = "https://files.pythonhosted.org/packages/2f/3c/71a491952c37b87d127790dd7a0b1ebea0514c6b6ad30085b16bbe00aee6/jiter-0.8.2-cp313-cp313t-macosx_11_0_arm64.whl", hash = "sha256:b426f72cd77da3fec300ed3bc990895e2dd6b49e3bfe6c438592a3ba660e41ca", size = 308347 }, - { url = "https://files.pythonhosted.org/packages/a0/4c/c02408042e6a7605ec063daed138e07b982fdb98467deaaf1c90950cf2c6/jiter-0.8.2-cp313-cp313t-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:b2dd880785088ff2ad21ffee205e58a8c1ddabc63612444ae41e5e4b321b39c0", size = 342875 }, - { url = "https://files.pythonhosted.org/packages/91/61/c80ef80ed8a0a21158e289ef70dac01e351d929a1c30cb0f49be60772547/jiter-0.8.2-cp313-cp313t-win_amd64.whl", hash = "sha256:3ac9f578c46f22405ff7f8b1f5848fb753cc4b8377fbec8470a7dc3997ca7566", size = 202374 }, +version = "0.9.0" +source = { registry = "https://pypi.org/simple" } +sdist = { url = "https://files.pythonhosted.org/packages/1e/c2/e4562507f52f0af7036da125bb699602ead37a2332af0788f8e0a3417f36/jiter-0.9.0.tar.gz", hash = "sha256:aadba0964deb424daa24492abc3d229c60c4a31bfee205aedbf1acc7639d7893", size = 162604 } +wheels = [ + { url = "https://files.pythonhosted.org/packages/af/d7/c55086103d6f29b694ec79156242304adf521577530d9031317ce5338c59/jiter-0.9.0-cp312-cp312-macosx_10_12_x86_64.whl", hash = "sha256:7b46249cfd6c48da28f89eb0be3f52d6fdb40ab88e2c66804f546674e539ec11", size = 309203 }, + { url = "https://files.pythonhosted.org/packages/b0/01/f775dfee50beb420adfd6baf58d1c4d437de41c9b666ddf127c065e5a488/jiter-0.9.0-cp312-cp312-macosx_11_0_arm64.whl", hash = "sha256:609cf3c78852f1189894383cf0b0b977665f54cb38788e3e6b941fa6d982c00e", size = 319678 }, + { url = "https://files.pythonhosted.org/packages/ab/b8/09b73a793714726893e5d46d5c534a63709261af3d24444ad07885ce87cb/jiter-0.9.0-cp312-cp312-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:d726a3890a54561e55a9c5faea1f7655eda7f105bd165067575ace6e65f80bb2", size = 341816 }, + { url = "https://files.pythonhosted.org/packages/35/6f/b8f89ec5398b2b0d344257138182cc090302854ed63ed9c9051e9c673441/jiter-0.9.0-cp312-cp312-manylinux_2_17_armv7l.manylinux2014_armv7l.whl", hash = "sha256:2e89dc075c1fef8fa9be219e249f14040270dbc507df4215c324a1839522ea75", size = 364152 }, + { url = "https://files.pythonhosted.org/packages/9b/ca/978cc3183113b8e4484cc7e210a9ad3c6614396e7abd5407ea8aa1458eef/jiter-0.9.0-cp312-cp312-manylinux_2_17_ppc64le.manylinux2014_ppc64le.whl", hash = "sha256:04e8ffa3c353b1bc4134f96f167a2082494351e42888dfcf06e944f2729cbe1d", size = 406991 }, + { url = "https://files.pythonhosted.org/packages/13/3a/72861883e11a36d6aa314b4922125f6ae90bdccc225cd96d24cc78a66385/jiter-0.9.0-cp312-cp312-manylinux_2_17_s390x.manylinux2014_s390x.whl", hash = "sha256:203f28a72a05ae0e129b3ed1f75f56bc419d5f91dfacd057519a8bd137b00c42", size = 395824 }, + { url = "https://files.pythonhosted.org/packages/87/67/22728a86ef53589c3720225778f7c5fdb617080e3deaed58b04789418212/jiter-0.9.0-cp312-cp312-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:fca1a02ad60ec30bb230f65bc01f611c8608b02d269f998bc29cca8619a919dc", size = 351318 }, + { url = "https://files.pythonhosted.org/packages/69/b9/f39728e2e2007276806d7a6609cda7fac44ffa28ca0d02c49a4f397cc0d9/jiter-0.9.0-cp312-cp312-manylinux_2_5_i686.manylinux1_i686.whl", hash = "sha256:237e5cee4d5d2659aaf91bbf8ec45052cc217d9446070699441a91b386ae27dc", size = 384591 }, + { url = "https://files.pythonhosted.org/packages/eb/8f/8a708bc7fd87b8a5d861f1c118a995eccbe6d672fe10c9753e67362d0dd0/jiter-0.9.0-cp312-cp312-musllinux_1_1_aarch64.whl", hash = "sha256:528b6b71745e7326eed73c53d4aa57e2a522242320b6f7d65b9c5af83cf49b6e", size = 520746 }, + { url = "https://files.pythonhosted.org/packages/95/1e/65680c7488bd2365dbd2980adaf63c562d3d41d3faac192ebc7ef5b4ae25/jiter-0.9.0-cp312-cp312-musllinux_1_1_x86_64.whl", hash = "sha256:9f48e86b57bc711eb5acdfd12b6cb580a59cc9a993f6e7dcb6d8b50522dcd50d", size = 512754 }, + { url = "https://files.pythonhosted.org/packages/78/f3/fdc43547a9ee6e93c837685da704fb6da7dba311fc022e2766d5277dfde5/jiter-0.9.0-cp312-cp312-win32.whl", hash = "sha256:699edfde481e191d81f9cf6d2211debbfe4bd92f06410e7637dffb8dd5dfde06", size = 207075 }, + { url = "https://files.pythonhosted.org/packages/cd/9d/742b289016d155f49028fe1bfbeb935c9bf0ffeefdf77daf4a63a42bb72b/jiter-0.9.0-cp312-cp312-win_amd64.whl", hash = "sha256:099500d07b43f61d8bd780466d429c45a7b25411b334c60ca875fa775f68ccb0", size = 207999 }, + { url = "https://files.pythonhosted.org/packages/e7/1b/4cd165c362e8f2f520fdb43245e2b414f42a255921248b4f8b9c8d871ff1/jiter-0.9.0-cp313-cp313-macosx_10_12_x86_64.whl", hash = "sha256:2764891d3f3e8b18dce2cff24949153ee30c9239da7c00f032511091ba688ff7", size = 308197 }, + { url = "https://files.pythonhosted.org/packages/13/aa/7a890dfe29c84c9a82064a9fe36079c7c0309c91b70c380dc138f9bea44a/jiter-0.9.0-cp313-cp313-macosx_11_0_arm64.whl", hash = "sha256:387b22fbfd7a62418d5212b4638026d01723761c75c1c8232a8b8c37c2f1003b", size = 318160 }, + { url = "https://files.pythonhosted.org/packages/6a/38/5888b43fc01102f733f085673c4f0be5a298f69808ec63de55051754e390/jiter-0.9.0-cp313-cp313-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:40d8da8629ccae3606c61d9184970423655fb4e33d03330bcdfe52d234d32f69", size = 341259 }, + { url = "https://files.pythonhosted.org/packages/3d/5e/bbdbb63305bcc01006de683b6228cd061458b9b7bb9b8d9bc348a58e5dc2/jiter-0.9.0-cp313-cp313-manylinux_2_17_armv7l.manylinux2014_armv7l.whl", hash = "sha256:a1be73d8982bdc278b7b9377426a4b44ceb5c7952073dd7488e4ae96b88e1103", size = 363730 }, + { url = "https://files.pythonhosted.org/packages/75/85/53a3edc616992fe4af6814c25f91ee3b1e22f7678e979b6ea82d3bc0667e/jiter-0.9.0-cp313-cp313-manylinux_2_17_ppc64le.manylinux2014_ppc64le.whl", hash = "sha256:2228eaaaa111ec54b9e89f7481bffb3972e9059301a878d085b2b449fbbde635", size = 405126 }, + { url = "https://files.pythonhosted.org/packages/ae/b3/1ee26b12b2693bd3f0b71d3188e4e5d817b12e3c630a09e099e0a89e28fa/jiter-0.9.0-cp313-cp313-manylinux_2_17_s390x.manylinux2014_s390x.whl", hash = "sha256:11509bfecbc319459647d4ac3fd391d26fdf530dad00c13c4dadabf5b81f01a4", size = 393668 }, + { url = "https://files.pythonhosted.org/packages/11/87/e084ce261950c1861773ab534d49127d1517b629478304d328493f980791/jiter-0.9.0-cp313-cp313-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:3f22238da568be8bbd8e0650e12feeb2cfea15eda4f9fc271d3b362a4fa0604d", size = 352350 }, + { url = "https://files.pythonhosted.org/packages/f0/06/7dca84b04987e9df563610aa0bc154ea176e50358af532ab40ffb87434df/jiter-0.9.0-cp313-cp313-manylinux_2_5_i686.manylinux1_i686.whl", hash = "sha256:17f5d55eb856597607562257c8e36c42bc87f16bef52ef7129b7da11afc779f3", size = 384204 }, + { url = "https://files.pythonhosted.org/packages/16/2f/82e1c6020db72f397dd070eec0c85ebc4df7c88967bc86d3ce9864148f28/jiter-0.9.0-cp313-cp313-musllinux_1_1_aarch64.whl", hash = "sha256:6a99bed9fbb02f5bed416d137944419a69aa4c423e44189bc49718859ea83bc5", size = 520322 }, + { url = "https://files.pythonhosted.org/packages/36/fd/4f0cd3abe83ce208991ca61e7e5df915aa35b67f1c0633eb7cf2f2e88ec7/jiter-0.9.0-cp313-cp313-musllinux_1_1_x86_64.whl", hash = "sha256:e057adb0cd1bd39606100be0eafe742de2de88c79df632955b9ab53a086b3c8d", size = 512184 }, + { url = "https://files.pythonhosted.org/packages/a0/3c/8a56f6d547731a0b4410a2d9d16bf39c861046f91f57c98f7cab3d2aa9ce/jiter-0.9.0-cp313-cp313-win32.whl", hash = "sha256:f7e6850991f3940f62d387ccfa54d1a92bd4bb9f89690b53aea36b4364bcab53", size = 206504 }, + { url = "https://files.pythonhosted.org/packages/f4/1c/0c996fd90639acda75ed7fa698ee5fd7d80243057185dc2f63d4c1c9f6b9/jiter-0.9.0-cp313-cp313-win_amd64.whl", hash = "sha256:c8ae3bf27cd1ac5e6e8b7a27487bf3ab5f82318211ec2e1346a5b058756361f7", size = 204943 }, + { url = "https://files.pythonhosted.org/packages/78/0f/77a63ca7aa5fed9a1b9135af57e190d905bcd3702b36aca46a01090d39ad/jiter-0.9.0-cp313-cp313t-macosx_11_0_arm64.whl", hash = "sha256:f0b2827fb88dda2cbecbbc3e596ef08d69bda06c6f57930aec8e79505dc17001", size = 317281 }, + { url = "https://files.pythonhosted.org/packages/f9/39/a3a1571712c2bf6ec4c657f0d66da114a63a2e32b7e4eb8e0b83295ee034/jiter-0.9.0-cp313-cp313t-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:062b756ceb1d40b0b28f326cba26cfd575a4918415b036464a52f08632731e5a", size = 350273 }, + { url = "https://files.pythonhosted.org/packages/ee/47/3729f00f35a696e68da15d64eb9283c330e776f3b5789bac7f2c0c4df209/jiter-0.9.0-cp313-cp313t-win_amd64.whl", hash = "sha256:6f7838bc467ab7e8ef9f387bd6de195c43bad82a569c1699cb822f6609dd4cdf", size = 206867 }, ] [[package]] name = "json5" -version = "0.10.0" +version = "0.12.0" source = { registry = "https://pypi.org/simple" } -sdist = { url = "https://files.pythonhosted.org/packages/85/3d/bbe62f3d0c05a689c711cff57b2e3ac3d3e526380adb7c781989f075115c/json5-0.10.0.tar.gz", hash = "sha256:e66941c8f0a02026943c52c2eb34ebeb2a6f819a0be05920a6f5243cd30fd559", size = 48202 } +sdist = { url = "https://files.pythonhosted.org/packages/12/be/c6c745ec4c4539b25a278b70e29793f10382947df0d9efba2fa09120895d/json5-0.12.0.tar.gz", hash = "sha256:0b4b6ff56801a1c7dc817b0241bca4ce474a0e6a163bfef3fc594d3fd263ff3a", size = 51907 } wheels = [ - { url = "https://files.pythonhosted.org/packages/aa/42/797895b952b682c3dafe23b1834507ee7f02f4d6299b65aaa61425763278/json5-0.10.0-py3-none-any.whl", hash = "sha256:19b23410220a7271e8377f81ba8aacba2fdd56947fbb137ee5977cbe1f5e8dfa", size = 34049 }, + { url = "https://files.pythonhosted.org/packages/41/9f/3500910d5a98549e3098807493851eeef2b89cdd3032227558a104dfe926/json5-0.12.0-py3-none-any.whl", hash = "sha256:6d37aa6c08b0609f16e1ec5ff94697e2cbbfbad5ac112afa05794da9ab7810db", size = 36079 }, ] [[package]] @@ -1123,10 +1142,11 @@ wheels = [ [[package]] name = "jupyter-events" -version = "0.11.0" +version = "0.12.0" source = { registry = "https://pypi.org/simple" } dependencies = [ { name = "jsonschema", extra = ["format-nongpl"] }, + { name = "packaging" }, { name = "python-json-logger" }, { name = "pyyaml" }, { name = "referencing" }, @@ -1134,9 +1154,9 @@ dependencies = [ { name = "rfc3986-validator" }, { name = "traitlets" }, ] -sdist = { url = "https://files.pythonhosted.org/packages/f4/65/5791c8a979b5646ca29ea50e42b6708908b789f7ff389d1a03c1b93a1c54/jupyter_events-0.11.0.tar.gz", hash = "sha256:c0bc56a37aac29c1fbc3bcfbddb8c8c49533f9cf11f1c4e6adadba936574ab90", size = 62039 } +sdist = { url = "https://files.pythonhosted.org/packages/9d/c3/306d090461e4cf3cd91eceaff84bede12a8e52cd821c2d20c9a4fd728385/jupyter_events-0.12.0.tar.gz", hash = "sha256:fc3fce98865f6784c9cd0a56a20644fc6098f21c8c33834a8d9fe383c17e554b", size = 62196 } wheels = [ - { url = "https://files.pythonhosted.org/packages/3f/8c/9b65cb2cd4ea32d885993d5542244641590530836802a2e8c7449a4c61c9/jupyter_events-0.11.0-py3-none-any.whl", hash = "sha256:36399b41ce1ca45fe8b8271067d6a140ffa54cec4028e95491c93b78a855cacf", size = 19423 }, + { url = "https://files.pythonhosted.org/packages/e2/48/577993f1f99c552f18a0428731a755e06171f9902fa118c379eb7c04ea22/jupyter_events-0.12.0-py3-none-any.whl", hash = "sha256:6464b2fa5ad10451c3d35fabc75eab39556ae1e2853ad0c0cc31b656731a97fb", size = 19430 }, ] [[package]] @@ -1247,59 +1267,58 @@ wheels = [ [[package]] name = "lazy-object-proxy" -version = "1.10.0" +version = "1.11.0" source = { registry = "https://pypi.org/simple" } -sdist = { url = "https://files.pythonhosted.org/packages/2c/f0/f02e2d150d581a294efded4020094a371bbab42423fe78625ac18854d89b/lazy-object-proxy-1.10.0.tar.gz", hash = "sha256:78247b6d45f43a52ef35c25b5581459e85117225408a4128a3daf8bf9648ac69", size = 43271 } +sdist = { url = "https://files.pythonhosted.org/packages/57/f9/1f56571ed82fb324f293661690635cf42c41deb8a70a6c9e6edc3e9bb3c8/lazy_object_proxy-1.11.0.tar.gz", hash = "sha256:18874411864c9fbbbaa47f9fc1dd7aea754c86cfde21278ef427639d1dd78e9c", size = 44736 } wheels = [ - { url = "https://files.pythonhosted.org/packages/d0/5d/768a7f2ccebb29604def61842fd54f6f5f75c79e366ee8748dda84de0b13/lazy_object_proxy-1.10.0-cp312-cp312-macosx_10_9_x86_64.whl", hash = "sha256:e98c8af98d5707dcdecc9ab0863c0ea6e88545d42ca7c3feffb6b4d1e370c7ba", size = 27560 }, - { url = "https://files.pythonhosted.org/packages/b3/ce/f369815549dbfa4bebed541fa4e1561d69e4f268a1f6f77da886df182dab/lazy_object_proxy-1.10.0-cp312-cp312-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:952c81d415b9b80ea261d2372d2a4a2332a3890c2b83e0535f263ddfe43f0d43", size = 72403 }, - { url = "https://files.pythonhosted.org/packages/44/46/3771e0a4315044aa7b67da892b2fb1f59dfcf0eaff2c8967b2a0a85d5896/lazy_object_proxy-1.10.0-cp312-cp312-manylinux_2_5_x86_64.manylinux1_x86_64.manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:80b39d3a151309efc8cc48675918891b865bdf742a8616a337cb0090791a0de9", size = 72401 }, - { url = "https://files.pythonhosted.org/packages/81/39/84ce4740718e1c700bd04d3457ac92b2e9ce76529911583e7a2bf4d96eb2/lazy_object_proxy-1.10.0-cp312-cp312-musllinux_1_1_aarch64.whl", hash = "sha256:e221060b701e2aa2ea991542900dd13907a5c90fa80e199dbf5a03359019e7a3", size = 75375 }, - { url = "https://files.pythonhosted.org/packages/86/3b/d6b65da2b864822324745c0a73fe7fd86c67ccea54173682c3081d7adea8/lazy_object_proxy-1.10.0-cp312-cp312-musllinux_1_1_x86_64.whl", hash = "sha256:92f09ff65ecff3108e56526f9e2481b8116c0b9e1425325e13245abfd79bdb1b", size = 75466 }, - { url = "https://files.pythonhosted.org/packages/f5/33/467a093bf004a70022cb410c590d937134bba2faa17bf9dc42a48f49af35/lazy_object_proxy-1.10.0-cp312-cp312-win32.whl", hash = "sha256:3ad54b9ddbe20ae9f7c1b29e52f123120772b06dbb18ec6be9101369d63a4074", size = 25914 }, - { url = "https://files.pythonhosted.org/packages/77/ce/7956dc5ac2f8b62291b798c8363c81810e22a9effe469629d297d087e350/lazy_object_proxy-1.10.0-cp312-cp312-win_amd64.whl", hash = "sha256:127a789c75151db6af398b8972178afe6bda7d6f68730c057fbbc2e96b08d282", size = 27525 }, - { url = "https://files.pythonhosted.org/packages/31/8b/94dc8d58704ab87b39faed6f2fc0090b9d90e2e2aa2bbec35c79f3d2a054/lazy_object_proxy-1.10.0-pp310.pp311.pp312.pp38.pp39-none-any.whl", hash = "sha256:80fa48bd89c8f2f456fc0765c11c23bf5af827febacd2f523ca5bc1893fcc09d", size = 16405 }, + { url = "https://files.pythonhosted.org/packages/4d/24/dae4759469e9cd318fef145f7cfac7318261b47b23a4701aa477b0c3b42c/lazy_object_proxy-1.11.0-cp312-cp312-macosx_11_0_arm64.whl", hash = "sha256:9a9f39098e93a63618a79eef2889ae3cf0605f676cd4797fdfd49fcd7ddc318b", size = 28142 }, + { url = "https://files.pythonhosted.org/packages/de/0c/645a881f5f27952a02f24584d96f9f326748be06ded2cee25f8f8d1cd196/lazy_object_proxy-1.11.0-cp312-cp312-win_amd64.whl", hash = "sha256:ee13f67f4fcd044ef27bfccb1c93d39c100046fec1fad6e9a1fcdfd17492aeb3", size = 28380 }, + { url = "https://files.pythonhosted.org/packages/a8/0f/6e004f928f7ff5abae2b8e1f68835a3870252f886e006267702e1efc5c7b/lazy_object_proxy-1.11.0-cp313-cp313-macosx_11_0_arm64.whl", hash = "sha256:fd4c84eafd8dd15ea16f7d580758bc5c2ce1f752faec877bb2b1f9f827c329cd", size = 28149 }, + { url = "https://files.pythonhosted.org/packages/63/cb/b8363110e32cc1fd82dc91296315f775d37a39df1c1cfa976ec1803dac89/lazy_object_proxy-1.11.0-cp313-cp313-win_amd64.whl", hash = "sha256:d2503427bda552d3aefcac92f81d9e7ca631e680a2268cbe62cd6a58de6409b7", size = 28389 }, + { url = "https://files.pythonhosted.org/packages/7b/89/68c50fcfd81e11480cd8ee7f654c9bd790a9053b9a0efe9983d46106f6a9/lazy_object_proxy-1.11.0-cp313-cp313t-macosx_11_0_arm64.whl", hash = "sha256:0613116156801ab3fccb9e2b05ed83b08ea08c2517fdc6c6bc0d4697a1a376e3", size = 28777 }, + { url = "https://files.pythonhosted.org/packages/39/d0/7e967689e24de8ea6368ec33295f9abc94b9f3f0cd4571bfe148dc432190/lazy_object_proxy-1.11.0-cp313-cp313t-win_amd64.whl", hash = "sha256:bb03c507d96b65f617a6337dedd604399d35face2cdf01526b913fb50c4cb6e8", size = 29598 }, + { url = "https://files.pythonhosted.org/packages/e7/1e/fb441c07b6662ec1fc92b249225ba6e6e5221b05623cb0131d082f782edc/lazy_object_proxy-1.11.0-py3-none-any.whl", hash = "sha256:a56a5093d433341ff7da0e89f9b486031ccd222ec8e52ec84d0ec1cdc819674b", size = 16635 }, ] [[package]] name = "levenshtein" -version = "0.26.1" +version = "0.27.1" source = { registry = "https://pypi.org/simple" } dependencies = [ { name = "rapidfuzz" }, ] -sdist = { url = "https://files.pythonhosted.org/packages/97/e6/79807d3b59a67dd78bb77072ca6a28d8db0935161fecf935e6c38c5f6825/levenshtein-0.26.1.tar.gz", hash = "sha256:0d19ba22330d50609b2349021ec3cf7d905c6fe21195a2d0d876a146e7ed2575", size = 374307 } -wheels = [ - { url = "https://files.pythonhosted.org/packages/4c/53/3685ee7fbe9b8eb4b82d8045255e59dd6943f94e8091697ef3808e7ecf63/levenshtein-0.26.1-cp312-cp312-macosx_10_13_x86_64.whl", hash = "sha256:cc741ca406d3704dc331a69c04b061fc952509a069b79cab8287413f434684bd", size = 176447 }, - { url = "https://files.pythonhosted.org/packages/82/7f/7d6fe9b76bd030200f8f9b162f3de862d597804d292af292ec3ce9ae8bee/levenshtein-0.26.1-cp312-cp312-macosx_11_0_arm64.whl", hash = "sha256:821ace3b4e1c2e02b43cf5dc61aac2ea43bdb39837ac890919c225a2c3f2fea4", size = 157589 }, - { url = "https://files.pythonhosted.org/packages/bc/d3/44539e952df93c5d88a95a0edff34af38e4f87330a76e8335bfe2c0f31bf/levenshtein-0.26.1-cp312-cp312-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:f92694c9396f55d4c91087efacf81297bef152893806fc54c289fc0254b45384", size = 153306 }, - { url = "https://files.pythonhosted.org/packages/ba/fe/21443c0c50824314e2d2ce7e1e9cd11d21b3643f3c14da156b15b4d399c7/levenshtein-0.26.1-cp312-cp312-manylinux_2_17_ppc64le.manylinux2014_ppc64le.whl", hash = "sha256:51ba374de7a1797d04a14a4f0ad3602d2d71fef4206bb20a6baaa6b6a502da58", size = 184409 }, - { url = "https://files.pythonhosted.org/packages/f0/7b/c95066c64bb18628cf7488e0dd6aec2b7cbda307d93ba9ede68a21af2a7b/levenshtein-0.26.1-cp312-cp312-manylinux_2_17_s390x.manylinux2014_s390x.whl", hash = "sha256:f7aa5c3327dda4ef952769bacec09c09ff5bf426e07fdc94478c37955681885b", size = 193134 }, - { url = "https://files.pythonhosted.org/packages/36/22/5f9760b135bdefb8cf8d663890756136754db03214f929b73185dfa33f05/levenshtein-0.26.1-cp312-cp312-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:33e2517e8d3c221de2d1183f400aed64211fcfc77077b291ed9f3bb64f141cdc", size = 162266 }, - { url = "https://files.pythonhosted.org/packages/11/50/6b1a5f3600caae40db0928f6775d7efc62c13dec2407d3d540bc4afdb72c/levenshtein-0.26.1-cp312-cp312-manylinux_2_5_i686.manylinux1_i686.manylinux_2_17_i686.manylinux2014_i686.whl", hash = "sha256:9092b622765c7649dd1d8af0f43354723dd6f4e570ac079ffd90b41033957438", size = 246339 }, - { url = "https://files.pythonhosted.org/packages/26/eb/ede282fcb495570898b39a0d2f21bbc9be5587d604c93a518ece80f3e7dc/levenshtein-0.26.1-cp312-cp312-musllinux_1_2_aarch64.whl", hash = "sha256:fc16796c85d7d8b259881d59cc8b5e22e940901928c2ff6924b2c967924e8a0b", size = 1077937 }, - { url = "https://files.pythonhosted.org/packages/35/41/eebe1c4a75f592d9bdc3c2595418f083bcad747e0aec52a1a9ffaae93f5c/levenshtein-0.26.1-cp312-cp312-musllinux_1_2_i686.whl", hash = "sha256:e4370733967f5994ceeed8dc211089bedd45832ee688cecea17bfd35a9eb22b9", size = 1330607 }, - { url = "https://files.pythonhosted.org/packages/12/8e/4d34b1857adfd69c2a72d84bca1b8538d4cfaaf6fddd8599573f4281a9d1/levenshtein-0.26.1-cp312-cp312-musllinux_1_2_ppc64le.whl", hash = "sha256:3535ecfd88c9b283976b5bc61265855f59bba361881e92ed2b5367b6990c93fe", size = 1197505 }, - { url = "https://files.pythonhosted.org/packages/c0/7b/6afcda1b0a0622cedaa4f7a5b3507c2384a7358fc051ccf619e5d2453bf2/levenshtein-0.26.1-cp312-cp312-musllinux_1_2_s390x.whl", hash = "sha256:90236e93d98bdfd708883a6767826fafd976dac8af8fc4a0fb423d4fa08e1bf0", size = 1352832 }, - { url = "https://files.pythonhosted.org/packages/21/5e/0ed4e7b5c820b6bc40e2c391633292c3666400339042a3d306f0dc8fdcb4/levenshtein-0.26.1-cp312-cp312-musllinux_1_2_x86_64.whl", hash = "sha256:04b7cabb82edf566b1579b3ed60aac0eec116655af75a3c551fee8754ffce2ea", size = 1135970 }, - { url = "https://files.pythonhosted.org/packages/c9/91/3ff1abacb58642749dfd130ad855370e01b9c7aeaa73801964361f6e355f/levenshtein-0.26.1-cp312-cp312-win32.whl", hash = "sha256:ae382af8c76f6d2a040c0d9ca978baf461702ceb3f79a0a3f6da8d596a484c5b", size = 87599 }, - { url = "https://files.pythonhosted.org/packages/7d/f9/727f3ba7843a3fb2a0f3db825358beea2a52bc96258874ee80cb2e5ecabb/levenshtein-0.26.1-cp312-cp312-win_amd64.whl", hash = "sha256:fd091209798cfdce53746f5769987b4108fe941c54fb2e058c016ffc47872918", size = 98809 }, - { url = "https://files.pythonhosted.org/packages/d4/f4/f87f19222d279dbac429b9bc7ccae271d900fd9c48a581b8bc180ba6cd09/levenshtein-0.26.1-cp312-cp312-win_arm64.whl", hash = "sha256:7e82f2ea44a81ad6b30d92a110e04cd3c8c7c6034b629aca30a3067fa174ae89", size = 88227 }, - { url = "https://files.pythonhosted.org/packages/7e/d6/b4b522b94d7b387c023d22944590befc0ac6b766ac6d197afd879ddd77fc/levenshtein-0.26.1-cp313-cp313-macosx_10_13_x86_64.whl", hash = "sha256:790374a9f5d2cbdb30ee780403a62e59bef51453ac020668c1564d1e43438f0e", size = 175836 }, - { url = "https://files.pythonhosted.org/packages/25/76/06d1e26a8e6d0de68ef4a157dd57f6b342413c03550309e4aa095a453b28/levenshtein-0.26.1-cp313-cp313-macosx_11_0_arm64.whl", hash = "sha256:7b05c0415c386d00efda83d48db9db68edd02878d6dbc6df01194f12062be1bb", size = 157036 }, - { url = "https://files.pythonhosted.org/packages/7e/23/21209a9e96b878aede3bea104533866762ba621e36fc344aa080db5feb02/levenshtein-0.26.1-cp313-cp313-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:c3114586032361722ddededf28401ce5baf1cf617f9f49fb86b8766a45a423ff", size = 153326 }, - { url = "https://files.pythonhosted.org/packages/06/38/9fc68685fffd8863b13864552eba8f3eb6a82a4dc558bf2c6553c2347d6c/levenshtein-0.26.1-cp313-cp313-manylinux_2_17_ppc64le.manylinux2014_ppc64le.whl", hash = "sha256:2532f8a13b68bf09f152d906f118a88da2063da22f44c90e904b142b0a53d534", size = 183693 }, - { url = "https://files.pythonhosted.org/packages/f6/82/ccd7bdd7d431329da025e649c63b731df44f8cf31b957e269ae1c1dc9a8e/levenshtein-0.26.1-cp313-cp313-manylinux_2_17_s390x.manylinux2014_s390x.whl", hash = "sha256:219c30be6aa734bf927188d1208b7d78d202a3eb017b1c5f01ab2034d2d4ccca", size = 190581 }, - { url = "https://files.pythonhosted.org/packages/6e/c5/57f90b4aea1f89f853872b27a5a5dbce37b89ffeae42c02060b3e82038b2/levenshtein-0.26.1-cp313-cp313-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:397e245e77f87836308bd56305bba630010cd8298c34c4c44bd94990cdb3b7b1", size = 162446 }, - { url = "https://files.pythonhosted.org/packages/fc/da/df6acca738921f896ce2d178821be866b43a583f85e2d1de63a4f8f78080/levenshtein-0.26.1-cp313-cp313-manylinux_2_5_i686.manylinux1_i686.manylinux_2_17_i686.manylinux2014_i686.whl", hash = "sha256:aeff6ea3576f72e26901544c6c55c72a7b79b9983b6f913cba0e9edbf2f87a97", size = 247123 }, - { url = "https://files.pythonhosted.org/packages/22/fb/f44a4c0d7784ccd32e4166714fea61e50f62b232162ae16332f45cb55ab2/levenshtein-0.26.1-cp313-cp313-musllinux_1_2_aarch64.whl", hash = "sha256:a19862e3539a697df722a08793994e334cd12791e8144851e8a1dee95a17ff63", size = 1077437 }, - { url = "https://files.pythonhosted.org/packages/f0/5e/d9b9e7daa13cc7e2184a3c2422bb847f05d354ce15ba113b20d83e9ab366/levenshtein-0.26.1-cp313-cp313-musllinux_1_2_i686.whl", hash = "sha256:dc3b5a64f57c3c078d58b1e447f7d68cad7ae1b23abe689215d03fc434f8f176", size = 1330362 }, - { url = "https://files.pythonhosted.org/packages/bf/67/480d85bb516798014a6849be0225b246f35df4b54499c348c9c9e311f936/levenshtein-0.26.1-cp313-cp313-musllinux_1_2_ppc64le.whl", hash = "sha256:bb6c7347424a91317c5e1b68041677e4c8ed3e7823b5bbaedb95bffb3c3497ea", size = 1198721 }, - { url = "https://files.pythonhosted.org/packages/9a/7d/889ff7d86903b6545665655627113d263c88c6d596c68fb09a640ee4f0a7/levenshtein-0.26.1-cp313-cp313-musllinux_1_2_s390x.whl", hash = "sha256:b817376de4195a207cc0e4ca37754c0e1e1078c2a2d35a6ae502afde87212f9e", size = 1351820 }, - { url = "https://files.pythonhosted.org/packages/b9/29/cd42273150f08c200ed2d1879486d73502ee35265f162a77952f101d93a0/levenshtein-0.26.1-cp313-cp313-musllinux_1_2_x86_64.whl", hash = "sha256:7b50c3620ff47c9887debbb4c154aaaac3e46be7fc2e5789ee8dbe128bce6a17", size = 1135747 }, - { url = "https://files.pythonhosted.org/packages/1d/90/cbcfa3dd86023e82036662a19fec2fcb48782d3f9fa322d44dc898d95a5d/levenshtein-0.26.1-cp313-cp313-win32.whl", hash = "sha256:9fb859da90262eb474c190b3ca1e61dee83add022c676520f5c05fdd60df902a", size = 87318 }, - { url = "https://files.pythonhosted.org/packages/83/73/372edebc79fd09a8b2382cf1244d279ada5b795124f1e1c4fc73d9fbb00f/levenshtein-0.26.1-cp313-cp313-win_amd64.whl", hash = "sha256:8adcc90e3a5bfb0a463581d85e599d950fe3c2938ac6247b29388b64997f6e2d", size = 98418 }, - { url = "https://files.pythonhosted.org/packages/b2/6d/f0160ea5a7bb7a62b3b3d56e9fc5024b440cb59555a90be2347abf2e7888/levenshtein-0.26.1-cp313-cp313-win_arm64.whl", hash = "sha256:c2599407e029865dc66d210b8804c7768cbdbf60f061d993bb488d5242b0b73e", size = 87792 }, +sdist = { url = "https://files.pythonhosted.org/packages/7e/b3/b5f8011483ba9083a0bc74c4d58705e9cf465fbe55c948a1b1357d0a2aa8/levenshtein-0.27.1.tar.gz", hash = "sha256:3e18b73564cfc846eec94dd13fab6cb006b5d2e0cc56bad1fd7d5585881302e3", size = 382571 } +wheels = [ + { url = "https://files.pythonhosted.org/packages/0d/73/84a7126b9e6441c2547f1fbfd65f3c15c387d1fc04e0dd1d025a12107771/levenshtein-0.27.1-cp312-cp312-macosx_10_13_x86_64.whl", hash = "sha256:25fb540d8c55d1dc7bdc59b7de518ea5ed9df92eb2077e74bcb9bb6de7b06f69", size = 173953 }, + { url = "https://files.pythonhosted.org/packages/8f/5c/06c01870c0cf336f9f29397bbfbfbbfd3a59918868716e7bb15828e89367/levenshtein-0.27.1-cp312-cp312-macosx_11_0_arm64.whl", hash = "sha256:f09cfab6387e9c908c7b37961c045e8e10eb9b7ec4a700367f8e080ee803a562", size = 156399 }, + { url = "https://files.pythonhosted.org/packages/c7/4a/c1d3f27ec8b3fff5a96617251bf3f61c67972869ac0a0419558fc3e2cbe6/levenshtein-0.27.1-cp312-cp312-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:dafa29c0e616f322b574e0b2aeb5b1ff2f8d9a1a6550f22321f3bd9bb81036e3", size = 151061 }, + { url = "https://files.pythonhosted.org/packages/4d/8f/2521081e9a265891edf46aa30e1b59c1f347a452aed4c33baafbec5216fa/levenshtein-0.27.1-cp312-cp312-manylinux_2_17_ppc64le.manylinux2014_ppc64le.whl", hash = "sha256:be7a7642ea64392fa1e6ef7968c2e50ef2152c60948f95d0793361ed97cf8a6f", size = 183119 }, + { url = "https://files.pythonhosted.org/packages/1f/a0/a63e3bce6376127596d04be7f57e672d2f3d5f540265b1e30b9dd9b3c5a9/levenshtein-0.27.1-cp312-cp312-manylinux_2_17_s390x.manylinux2014_s390x.whl", hash = "sha256:060b48c45ed54bcea9582ce79c6365b20a1a7473767e0b3d6be712fa3a22929c", size = 185352 }, + { url = "https://files.pythonhosted.org/packages/17/8c/8352e992063952b38fb61d49bad8d193a4a713e7eeceb3ae74b719d7863d/levenshtein-0.27.1-cp312-cp312-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:712f562c5e64dd0398d3570fe99f8fbb88acec7cc431f101cb66c9d22d74c542", size = 159879 }, + { url = "https://files.pythonhosted.org/packages/69/b4/564866e2038acf47c3de3e9292fc7fc7cc18d2593fedb04f001c22ac6e15/levenshtein-0.27.1-cp312-cp312-manylinux_2_5_i686.manylinux1_i686.manylinux_2_17_i686.manylinux2014_i686.whl", hash = "sha256:a6141ad65cab49aa4527a3342d76c30c48adb2393b6cdfeca65caae8d25cb4b8", size = 245005 }, + { url = "https://files.pythonhosted.org/packages/ba/f9/7367f87e3a6eed282f3654ec61a174b4d1b78a7a73f2cecb91f0ab675153/levenshtein-0.27.1-cp312-cp312-musllinux_1_2_aarch64.whl", hash = "sha256:799b8d73cda3265331116f62932f553804eae16c706ceb35aaf16fc2a704791b", size = 1116865 }, + { url = "https://files.pythonhosted.org/packages/f5/02/b5b3bfb4b4cd430e9d110bad2466200d51c6061dae7c5a64e36047c8c831/levenshtein-0.27.1-cp312-cp312-musllinux_1_2_i686.whl", hash = "sha256:ec99871d98e517e1cc4a15659c62d6ea63ee5a2d72c5ddbebd7bae8b9e2670c8", size = 1401723 }, + { url = "https://files.pythonhosted.org/packages/ef/69/b93bccd093b3f06a99e67e11ebd6e100324735dc2834958ba5852a1b9fed/levenshtein-0.27.1-cp312-cp312-musllinux_1_2_ppc64le.whl", hash = "sha256:8799164e1f83588dbdde07f728ea80796ea72196ea23484d78d891470241b222", size = 1226276 }, + { url = "https://files.pythonhosted.org/packages/ab/32/37dd1bc5ce866c136716619e6f7081d7078d7dd1c1da7025603dcfd9cf5f/levenshtein-0.27.1-cp312-cp312-musllinux_1_2_s390x.whl", hash = "sha256:583943813898326516ab451a83f734c6f07488cda5c361676150d3e3e8b47927", size = 1420132 }, + { url = "https://files.pythonhosted.org/packages/4b/08/f3bc828dd9f0f8433b26f37c4fceab303186ad7b9b70819f2ccb493d99fc/levenshtein-0.27.1-cp312-cp312-musllinux_1_2_x86_64.whl", hash = "sha256:5bb22956af44bb4eade93546bf95be610c8939b9a9d4d28b2dfa94abf454fed7", size = 1189144 }, + { url = "https://files.pythonhosted.org/packages/2d/54/5ecd89066cf579223d504abe3ac37ba11f63b01a19fd12591083acc00eb6/levenshtein-0.27.1-cp312-cp312-win32.whl", hash = "sha256:d9099ed1bcfa7ccc5540e8ad27b5dc6f23d16addcbe21fdd82af6440f4ed2b6d", size = 88279 }, + { url = "https://files.pythonhosted.org/packages/53/79/4f8fabcc5aca9305b494d1d6c7a98482e90a855e0050ae9ff5d7bf4ab2c6/levenshtein-0.27.1-cp312-cp312-win_amd64.whl", hash = "sha256:7f071ecdb50aa6c15fd8ae5bcb67e9da46ba1df7bba7c6bf6803a54c7a41fd96", size = 100659 }, + { url = "https://files.pythonhosted.org/packages/cb/81/f8e4c0f571c2aac2e0c56a6e0e41b679937a2b7013e79415e4aef555cff0/levenshtein-0.27.1-cp312-cp312-win_arm64.whl", hash = "sha256:83b9033a984ccace7703f35b688f3907d55490182fd39b33a8e434d7b2e249e6", size = 88168 }, + { url = "https://files.pythonhosted.org/packages/c6/d3/30485fb9aee848542ee2d01aba85106a7f5da982ebeeffc619f70ea593c7/levenshtein-0.27.1-cp313-cp313-macosx_10_13_x86_64.whl", hash = "sha256:ab00c2cae2889166afb7e1af64af2d4e8c1b126f3902d13ef3740df00e54032d", size = 173397 }, + { url = "https://files.pythonhosted.org/packages/df/9f/40a81c54cfe74b22737710e654bd25ad934a675f737b60b24f84099540e0/levenshtein-0.27.1-cp313-cp313-macosx_11_0_arm64.whl", hash = "sha256:c27e00bc7527e282f7c437817081df8da4eb7054e7ef9055b851fa3947896560", size = 155787 }, + { url = "https://files.pythonhosted.org/packages/df/98/915f4e24e21982b6eca2c0203546c160f4a83853fa6a2ac6e2b208a54afc/levenshtein-0.27.1-cp313-cp313-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:a5b07de42bfc051136cc8e7f1e7ba2cb73666aa0429930f4218efabfdc5837ad", size = 150013 }, + { url = "https://files.pythonhosted.org/packages/80/93/9b0773107580416b9de14bf6a12bd1dd2b2964f7a9f6fb0e40723e1f0572/levenshtein-0.27.1-cp313-cp313-manylinux_2_17_ppc64le.manylinux2014_ppc64le.whl", hash = "sha256:fb11ad3c9dae3063405aa50d9c96923722ab17bb606c776b6817d70b51fd7e07", size = 181234 }, + { url = "https://files.pythonhosted.org/packages/91/b1/3cd4f69af32d40de14808142cc743af3a1b737b25571bd5e8d2f46b885e0/levenshtein-0.27.1-cp313-cp313-manylinux_2_17_s390x.manylinux2014_s390x.whl", hash = "sha256:5c5986fb46cb0c063305fd45b0a79924abf2959a6d984bbac2b511d3ab259f3f", size = 183697 }, + { url = "https://files.pythonhosted.org/packages/bb/65/b691e502c6463f6965b7e0d8d84224c188aa35b53fbc85853c72a0e436c9/levenshtein-0.27.1-cp313-cp313-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:75191e469269ddef2859bc64c4a8cfd6c9e063302766b5cb7e1e67f38cc7051a", size = 159964 }, + { url = "https://files.pythonhosted.org/packages/0f/c0/89a922a47306a475fb6d8f2ab08668f143d3dc7dea4c39d09e46746e031c/levenshtein-0.27.1-cp313-cp313-manylinux_2_5_i686.manylinux1_i686.manylinux_2_17_i686.manylinux2014_i686.whl", hash = "sha256:51b3a7b2266933babc04e4d9821a495142eebd6ef709f90e24bc532b52b81385", size = 244759 }, + { url = "https://files.pythonhosted.org/packages/b4/93/30283c6e69a6556b02e0507c88535df9613179f7b44bc49cdb4bc5e889a3/levenshtein-0.27.1-cp313-cp313-musllinux_1_2_aarch64.whl", hash = "sha256:bbac509794afc3e2a9e73284c9e3d0aab5b1d928643f42b172969c3eefa1f2a3", size = 1115955 }, + { url = "https://files.pythonhosted.org/packages/0b/cf/7e19ea2c23671db02fbbe5a5a4aeafd1d471ee573a6251ae17008458c434/levenshtein-0.27.1-cp313-cp313-musllinux_1_2_i686.whl", hash = "sha256:8d68714785178347ecb272b94e85cbf7e638165895c4dd17ab57e7742d8872ec", size = 1400921 }, + { url = "https://files.pythonhosted.org/packages/e3/f7/fb42bfe2f3b46ef91f0fc6fa217b44dbeb4ef8c72a9c1917bbbe1cafc0f8/levenshtein-0.27.1-cp313-cp313-musllinux_1_2_ppc64le.whl", hash = "sha256:8ee74ee31a5ab8f61cd6c6c6e9ade4488dde1285f3c12207afc018393c9b8d14", size = 1225037 }, + { url = "https://files.pythonhosted.org/packages/74/25/c86f8874ac7b0632b172d0d1622ed3ab9608a7f8fe85d41d632b16f5948e/levenshtein-0.27.1-cp313-cp313-musllinux_1_2_s390x.whl", hash = "sha256:f2441b6365453ec89640b85344afd3d602b0d9972840b693508074c613486ce7", size = 1420601 }, + { url = "https://files.pythonhosted.org/packages/20/fe/ebfbaadcd90ea7dfde987ae95b5c11dc27c2c5d55a2c4ccbbe4e18a8af7b/levenshtein-0.27.1-cp313-cp313-musllinux_1_2_x86_64.whl", hash = "sha256:a9be39640a46d8a0f9be729e641651d16a62b2c07d3f4468c36e1cc66b0183b9", size = 1188241 }, + { url = "https://files.pythonhosted.org/packages/2e/1a/aa6b07316e10781a6c5a5a8308f9bdc22213dc3911b959daa6d7ff654fc6/levenshtein-0.27.1-cp313-cp313-win32.whl", hash = "sha256:a520af67d976761eb6580e7c026a07eb8f74f910f17ce60e98d6e492a1f126c7", size = 88103 }, + { url = "https://files.pythonhosted.org/packages/9d/7b/9bbfd417f80f1047a28d0ea56a9b38b9853ba913b84dd5998785c5f98541/levenshtein-0.27.1-cp313-cp313-win_amd64.whl", hash = "sha256:7dd60aa49c2d8d23e0ef6452c8329029f5d092f386a177e3385d315cabb78f2a", size = 100579 }, + { url = "https://files.pythonhosted.org/packages/8b/01/5f3ff775db7340aa378b250e2a31e6b4b038809a24ff0a3636ef20c7ca31/levenshtein-0.27.1-cp313-cp313-win_arm64.whl", hash = "sha256:149cd4f0baf5884ac5df625b7b0d281721b15de00f447080e38f5188106e1167", size = 87933 }, ] [[package]] @@ -1354,14 +1373,14 @@ wheels = [ [[package]] name = "marshmallow" -version = "3.26.0" +version = "3.26.1" source = { registry = "https://pypi.org/simple" } dependencies = [ { name = "packaging" }, ] -sdist = { url = "https://files.pythonhosted.org/packages/ed/3a/b392ca6582ce5c2e515a8ca365f89b6e631d864a80ecdc72e0bc1bf3aec6/marshmallow-3.26.0.tar.gz", hash = "sha256:eb36762a1cc76d7abf831e18a3a1b26d3d481bbc74581b8e532a3d3a8115e1cb", size = 221490 } +sdist = { url = "https://files.pythonhosted.org/packages/ab/5e/5e53d26b42ab75491cda89b871dab9e97c840bf12c63ec58a1919710cd06/marshmallow-3.26.1.tar.gz", hash = "sha256:e6d8affb6cb61d39d26402096dc0aee12d5a26d490a121f118d2e81dc0719dc6", size = 221825 } wheels = [ - { url = "https://files.pythonhosted.org/packages/d6/0d/80d7071803df1957c304bc096a714334dda7eb41ecfdd28dcfb49b1cde0e/marshmallow-3.26.0-py3-none-any.whl", hash = "sha256:1287bca04e6a5f4094822ac153c03da5e214a0a60bcd557b140f3e66991b8ca1", size = 50846 }, + { url = "https://files.pythonhosted.org/packages/34/75/51952c7b2d3873b44a0028b1bd26a25078c18f92f256608e8d1dc61b39fd/marshmallow-3.26.1-py3-none-any.whl", hash = "sha256:3350409f20a70a7e4e11a27661187b77cdcaeb20abca41c1454fe33636bea09c", size = 50878 }, ] [[package]] @@ -1402,11 +1421,11 @@ wheels = [ [[package]] name = "mistune" -version = "3.1.0" +version = "3.1.3" source = { registry = "https://pypi.org/simple" } -sdist = { url = "https://files.pythonhosted.org/packages/79/6e/96fc7cb3288666c5de2c396eb0e338dc95f7a8e4920e43e38783a22d0084/mistune-3.1.0.tar.gz", hash = "sha256:dbcac2f78292b9dc066cd03b7a3a26b62d85f8159f2ea5fd28e55df79908d667", size = 94401 } +sdist = { url = "https://files.pythonhosted.org/packages/c4/79/bda47f7dd7c3c55770478d6d02c9960c430b0cf1773b72366ff89126ea31/mistune-3.1.3.tar.gz", hash = "sha256:a7035c21782b2becb6be62f8f25d3df81ccb4d6fa477a6525b15af06539f02a0", size = 94347 } wheels = [ - { url = "https://files.pythonhosted.org/packages/b4/b3/743ffc3f59da380da504d84ccd1faf9a857a1445991ff19bf2ec754163c2/mistune-3.1.0-py3-none-any.whl", hash = "sha256:b05198cf6d671b3deba6c87ec6cf0d4eb7b72c524636eddb6dbf13823b52cee1", size = 53694 }, + { url = "https://files.pythonhosted.org/packages/01/4d/23c4e4f09da849e127e9f123241946c23c1e30f45a88366879e064211815/mistune-3.1.3-py3-none-any.whl", hash = "sha256:1a32314113cff28aa6432e99e522677c8587fd83e3d51c29b82a52409c842bd9", size = 53410 }, ] [[package]] @@ -1435,7 +1454,7 @@ wheels = [ [[package]] name = "nbconvert" -version = "7.16.5" +version = "7.16.6" source = { registry = "https://pypi.org/simple" } dependencies = [ { name = "beautifulsoup4" }, @@ -1453,9 +1472,9 @@ dependencies = [ { name = "pygments" }, { name = "traitlets" }, ] -sdist = { url = "https://files.pythonhosted.org/packages/46/2c/d026c0367f2be2463d4c2f5b538e28add2bc67bc13730abb7f364ae4eb8b/nbconvert-7.16.5.tar.gz", hash = "sha256:c83467bb5777fdfaac5ebbb8e864f300b277f68692ecc04d6dab72f2d8442344", size = 856367 } +sdist = { url = "https://files.pythonhosted.org/packages/a3/59/f28e15fc47ffb73af68a8d9b47367a8630d76e97ae85ad18271b9db96fdf/nbconvert-7.16.6.tar.gz", hash = "sha256:576a7e37c6480da7b8465eefa66c17844243816ce1ccc372633c6b71c3c0f582", size = 857715 } wheels = [ - { url = "https://files.pythonhosted.org/packages/8f/9e/2dcc9fe00cf55d95a8deae69384e9cea61816126e345754f6c75494d32ec/nbconvert-7.16.5-py3-none-any.whl", hash = "sha256:e12eac052d6fd03040af4166c563d76e7aeead2e9aadf5356db552a1784bd547", size = 258061 }, + { url = "https://files.pythonhosted.org/packages/cc/9a/cd673b2f773a12c992f41309ef81b99da1690426bd2f96957a7ade0d3ed7/nbconvert-7.16.6-py3-none-any.whl", hash = "sha256:1375a7b67e0c2883678c48e506dc320febb57685e5ee67faa51b18a90f3a712b", size = 258525 }, ] [[package]] @@ -1514,40 +1533,40 @@ wheels = [ [[package]] name = "numpy" -version = "2.2.2" -source = { registry = "https://pypi.org/simple" } -sdist = { url = "https://files.pythonhosted.org/packages/ec/d0/c12ddfd3a02274be06ffc71f3efc6d0e457b0409c4481596881e748cb264/numpy-2.2.2.tar.gz", hash = "sha256:ed6906f61834d687738d25988ae117683705636936cc605be0bb208b23df4d8f", size = 20233295 } -wheels = [ - { url = "https://files.pythonhosted.org/packages/0c/e6/847d15770ab7a01e807bdfcd4ead5bdae57c0092b7dc83878171b6af97bb/numpy-2.2.2-cp312-cp312-macosx_10_13_x86_64.whl", hash = "sha256:ac9bea18d6d58a995fac1b2cb4488e17eceeac413af014b1dd26170b766d8467", size = 20912636 }, - { url = "https://files.pythonhosted.org/packages/d1/af/f83580891577b13bd7e261416120e036d0d8fb508c8a43a73e38928b794b/numpy-2.2.2-cp312-cp312-macosx_11_0_arm64.whl", hash = "sha256:23ae9f0c2d889b7b2d88a3791f6c09e2ef827c2446f1c4a3e3e76328ee4afd9a", size = 14098403 }, - { url = "https://files.pythonhosted.org/packages/2b/86/d019fb60a9d0f1d4cf04b014fe88a9135090adfadcc31c1fadbb071d7fa7/numpy-2.2.2-cp312-cp312-macosx_14_0_arm64.whl", hash = "sha256:3074634ea4d6df66be04f6728ee1d173cfded75d002c75fac79503a880bf3825", size = 5128938 }, - { url = "https://files.pythonhosted.org/packages/7a/1b/50985edb6f1ec495a1c36452e860476f5b7ecdc3fc59ea89ccad3c4926c5/numpy-2.2.2-cp312-cp312-macosx_14_0_x86_64.whl", hash = "sha256:8ec0636d3f7d68520afc6ac2dc4b8341ddb725039de042faf0e311599f54eb37", size = 6661937 }, - { url = "https://files.pythonhosted.org/packages/f4/1b/17efd94cad1b9d605c3f8907fb06bcffc4ce4d1d14d46b95316cccccf2b9/numpy-2.2.2-cp312-cp312-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:2ffbb1acd69fdf8e89dd60ef6182ca90a743620957afb7066385a7bbe88dc748", size = 14049518 }, - { url = "https://files.pythonhosted.org/packages/5b/73/65d2f0b698df1731e851e3295eb29a5ab8aa06f763f7e4188647a809578d/numpy-2.2.2-cp312-cp312-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:0349b025e15ea9d05c3d63f9657707a4e1d471128a3b1d876c095f328f8ff7f0", size = 16099146 }, - { url = "https://files.pythonhosted.org/packages/d5/69/308f55c0e19d4b5057b5df286c5433822e3c8039ede06d4051d96f1c2c4e/numpy-2.2.2-cp312-cp312-musllinux_1_2_aarch64.whl", hash = "sha256:463247edcee4a5537841d5350bc87fe8e92d7dd0e8c71c995d2c6eecb8208278", size = 15246336 }, - { url = "https://files.pythonhosted.org/packages/f0/d8/d8d333ad0d8518d077a21aeea7b7c826eff766a2b1ce1194dea95ca0bacf/numpy-2.2.2-cp312-cp312-musllinux_1_2_x86_64.whl", hash = "sha256:9dd47ff0cb2a656ad69c38da850df3454da88ee9a6fde0ba79acceee0e79daba", size = 17863507 }, - { url = "https://files.pythonhosted.org/packages/82/6e/0b84ad3103ffc16d6673e63b5acbe7901b2af96c2837174c6318c98e27ab/numpy-2.2.2-cp312-cp312-win32.whl", hash = "sha256:4525b88c11906d5ab1b0ec1f290996c0020dd318af8b49acaa46f198b1ffc283", size = 6276491 }, - { url = "https://files.pythonhosted.org/packages/fc/84/7f801a42a67b9772a883223a0a1e12069a14626c81a732bd70aac57aebc1/numpy-2.2.2-cp312-cp312-win_amd64.whl", hash = "sha256:5acea83b801e98541619af398cc0109ff48016955cc0818f478ee9ef1c5c3dcb", size = 12616372 }, - { url = "https://files.pythonhosted.org/packages/e1/fe/df5624001f4f5c3e0b78e9017bfab7fdc18a8d3b3d3161da3d64924dd659/numpy-2.2.2-cp313-cp313-macosx_10_13_x86_64.whl", hash = "sha256:b208cfd4f5fe34e1535c08983a1a6803fdbc7a1e86cf13dd0c61de0b51a0aadc", size = 20899188 }, - { url = "https://files.pythonhosted.org/packages/a9/80/d349c3b5ed66bd3cb0214be60c27e32b90a506946857b866838adbe84040/numpy-2.2.2-cp313-cp313-macosx_11_0_arm64.whl", hash = "sha256:d0bbe7dd86dca64854f4b6ce2ea5c60b51e36dfd597300057cf473d3615f2369", size = 14113972 }, - { url = "https://files.pythonhosted.org/packages/9d/50/949ec9cbb28c4b751edfa64503f0913cbfa8d795b4a251e7980f13a8a655/numpy-2.2.2-cp313-cp313-macosx_14_0_arm64.whl", hash = "sha256:22ea3bb552ade325530e72a0c557cdf2dea8914d3a5e1fecf58fa5dbcc6f43cd", size = 5114294 }, - { url = "https://files.pythonhosted.org/packages/8d/f3/399c15629d5a0c68ef2aa7621d430b2be22034f01dd7f3c65a9c9666c445/numpy-2.2.2-cp313-cp313-macosx_14_0_x86_64.whl", hash = "sha256:128c41c085cab8a85dc29e66ed88c05613dccf6bc28b3866cd16050a2f5448be", size = 6648426 }, - { url = "https://files.pythonhosted.org/packages/2c/03/c72474c13772e30e1bc2e558cdffd9123c7872b731263d5648b5c49dd459/numpy-2.2.2-cp313-cp313-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:250c16b277e3b809ac20d1f590716597481061b514223c7badb7a0f9993c7f84", size = 14045990 }, - { url = "https://files.pythonhosted.org/packages/83/9c/96a9ab62274ffafb023f8ee08c88d3d31ee74ca58869f859db6845494fa6/numpy-2.2.2-cp313-cp313-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:e0c8854b09bc4de7b041148d8550d3bd712b5c21ff6a8ed308085f190235d7ff", size = 16096614 }, - { url = "https://files.pythonhosted.org/packages/d5/34/cd0a735534c29bec7093544b3a509febc9b0df77718a9b41ffb0809c9f46/numpy-2.2.2-cp313-cp313-musllinux_1_2_aarch64.whl", hash = "sha256:b6fb9c32a91ec32a689ec6410def76443e3c750e7cfc3fb2206b985ffb2b85f0", size = 15242123 }, - { url = "https://files.pythonhosted.org/packages/5e/6d/541717a554a8f56fa75e91886d9b79ade2e595918690eb5d0d3dbd3accb9/numpy-2.2.2-cp313-cp313-musllinux_1_2_x86_64.whl", hash = "sha256:57b4012e04cc12b78590a334907e01b3a85efb2107df2b8733ff1ed05fce71de", size = 17859160 }, - { url = "https://files.pythonhosted.org/packages/b9/a5/fbf1f2b54adab31510728edd06a05c1b30839f37cf8c9747cb85831aaf1b/numpy-2.2.2-cp313-cp313-win32.whl", hash = "sha256:4dbd80e453bd34bd003b16bd802fac70ad76bd463f81f0c518d1245b1c55e3d9", size = 6273337 }, - { url = "https://files.pythonhosted.org/packages/56/e5/01106b9291ef1d680f82bc47d0c5b5e26dfed15b0754928e8f856c82c881/numpy-2.2.2-cp313-cp313-win_amd64.whl", hash = "sha256:5a8c863ceacae696aff37d1fd636121f1a512117652e5dfb86031c8d84836369", size = 12609010 }, - { url = "https://files.pythonhosted.org/packages/9f/30/f23d9876de0f08dceb707c4dcf7f8dd7588266745029debb12a3cdd40be6/numpy-2.2.2-cp313-cp313t-macosx_10_13_x86_64.whl", hash = "sha256:b3482cb7b3325faa5f6bc179649406058253d91ceda359c104dac0ad320e1391", size = 20924451 }, - { url = "https://files.pythonhosted.org/packages/6a/ec/6ea85b2da9d5dfa1dbb4cb3c76587fc8ddcae580cb1262303ab21c0926c4/numpy-2.2.2-cp313-cp313t-macosx_11_0_arm64.whl", hash = "sha256:9491100aba630910489c1d0158034e1c9a6546f0b1340f716d522dc103788e39", size = 14122390 }, - { url = "https://files.pythonhosted.org/packages/68/05/bfbdf490414a7dbaf65b10c78bc243f312c4553234b6d91c94eb7c4b53c2/numpy-2.2.2-cp313-cp313t-macosx_14_0_arm64.whl", hash = "sha256:41184c416143defa34cc8eb9d070b0a5ba4f13a0fa96a709e20584638254b317", size = 5156590 }, - { url = "https://files.pythonhosted.org/packages/f7/ec/fe2e91b2642b9d6544518388a441bcd65c904cea38d9ff998e2e8ebf808e/numpy-2.2.2-cp313-cp313t-macosx_14_0_x86_64.whl", hash = "sha256:7dca87ca328f5ea7dafc907c5ec100d187911f94825f8700caac0b3f4c384b49", size = 6671958 }, - { url = "https://files.pythonhosted.org/packages/b1/6f/6531a78e182f194d33ee17e59d67d03d0d5a1ce7f6be7343787828d1bd4a/numpy-2.2.2-cp313-cp313t-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:0bc61b307655d1a7f9f4b043628b9f2b721e80839914ede634e3d485913e1fb2", size = 14019950 }, - { url = "https://files.pythonhosted.org/packages/e1/fb/13c58591d0b6294a08cc40fcc6b9552d239d773d520858ae27f39997f2ae/numpy-2.2.2-cp313-cp313t-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:9fad446ad0bc886855ddf5909cbf8cb5d0faa637aaa6277fb4b19ade134ab3c7", size = 16079759 }, - { url = "https://files.pythonhosted.org/packages/2c/f2/f2f8edd62abb4b289f65a7f6d1f3650273af00b91b7267a2431be7f1aec6/numpy-2.2.2-cp313-cp313t-musllinux_1_2_aarch64.whl", hash = "sha256:149d1113ac15005652e8d0d3f6fd599360e1a708a4f98e43c9c77834a28238cb", size = 15226139 }, - { url = "https://files.pythonhosted.org/packages/aa/29/14a177f1a90b8ad8a592ca32124ac06af5eff32889874e53a308f850290f/numpy-2.2.2-cp313-cp313t-musllinux_1_2_x86_64.whl", hash = "sha256:106397dbbb1896f99e044efc90360d098b3335060375c26aa89c0d8a97c5f648", size = 17856316 }, - { url = "https://files.pythonhosted.org/packages/95/03/242ae8d7b97f4e0e4ab8dd51231465fb23ed5e802680d629149722e3faf1/numpy-2.2.2-cp313-cp313t-win32.whl", hash = "sha256:0eec19f8af947a61e968d5429f0bd92fec46d92b0008d0a6685b40d6adf8a4f4", size = 6329134 }, - { url = "https://files.pythonhosted.org/packages/80/94/cd9e9b04012c015cb6320ab3bf43bc615e248dddfeb163728e800a5d96f0/numpy-2.2.2-cp313-cp313t-win_amd64.whl", hash = "sha256:97b974d3ba0fb4612b77ed35d7627490e8e3dff56ab41454d9e8b23448940576", size = 12696208 }, +version = "2.2.4" +source = { registry = "https://pypi.org/simple" } +sdist = { url = "https://files.pythonhosted.org/packages/e1/78/31103410a57bc2c2b93a3597340a8119588571f6a4539067546cb9a0bfac/numpy-2.2.4.tar.gz", hash = "sha256:9ba03692a45d3eef66559efe1d1096c4b9b75c0986b5dff5530c378fb8331d4f", size = 20270701 } +wheels = [ + { url = "https://files.pythonhosted.org/packages/a2/30/182db21d4f2a95904cec1a6f779479ea1ac07c0647f064dea454ec650c42/numpy-2.2.4-cp312-cp312-macosx_10_13_x86_64.whl", hash = "sha256:a7b9084668aa0f64e64bd00d27ba5146ef1c3a8835f3bd912e7a9e01326804c4", size = 20947156 }, + { url = "https://files.pythonhosted.org/packages/24/6d/9483566acfbda6c62c6bc74b6e981c777229d2af93c8eb2469b26ac1b7bc/numpy-2.2.4-cp312-cp312-macosx_11_0_arm64.whl", hash = "sha256:dbe512c511956b893d2dacd007d955a3f03d555ae05cfa3ff1c1ff6df8851854", size = 14133092 }, + { url = "https://files.pythonhosted.org/packages/27/f6/dba8a258acbf9d2bed2525cdcbb9493ef9bae5199d7a9cb92ee7e9b2aea6/numpy-2.2.4-cp312-cp312-macosx_14_0_arm64.whl", hash = "sha256:bb649f8b207ab07caebba230d851b579a3c8711a851d29efe15008e31bb4de24", size = 5163515 }, + { url = "https://files.pythonhosted.org/packages/62/30/82116199d1c249446723c68f2c9da40d7f062551036f50b8c4caa42ae252/numpy-2.2.4-cp312-cp312-macosx_14_0_x86_64.whl", hash = "sha256:f34dc300df798742b3d06515aa2a0aee20941c13579d7a2f2e10af01ae4901ee", size = 6696558 }, + { url = "https://files.pythonhosted.org/packages/0e/b2/54122b3c6df5df3e87582b2e9430f1bdb63af4023c739ba300164c9ae503/numpy-2.2.4-cp312-cp312-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:c3f7ac96b16955634e223b579a3e5798df59007ca43e8d451a0e6a50f6bfdfba", size = 14084742 }, + { url = "https://files.pythonhosted.org/packages/02/e2/e2cbb8d634151aab9528ef7b8bab52ee4ab10e076509285602c2a3a686e0/numpy-2.2.4-cp312-cp312-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:4f92084defa704deadd4e0a5ab1dc52d8ac9e8a8ef617f3fbb853e79b0ea3592", size = 16134051 }, + { url = "https://files.pythonhosted.org/packages/8e/21/efd47800e4affc993e8be50c1b768de038363dd88865920439ef7b422c60/numpy-2.2.4-cp312-cp312-musllinux_1_2_aarch64.whl", hash = "sha256:7a4e84a6283b36632e2a5b56e121961f6542ab886bc9e12f8f9818b3c266bfbb", size = 15578972 }, + { url = "https://files.pythonhosted.org/packages/04/1e/f8bb88f6157045dd5d9b27ccf433d016981032690969aa5c19e332b138c0/numpy-2.2.4-cp312-cp312-musllinux_1_2_x86_64.whl", hash = "sha256:11c43995255eb4127115956495f43e9343736edb7fcdb0d973defd9de14cd84f", size = 17898106 }, + { url = "https://files.pythonhosted.org/packages/2b/93/df59a5a3897c1f036ae8ff845e45f4081bb06943039ae28a3c1c7c780f22/numpy-2.2.4-cp312-cp312-win32.whl", hash = "sha256:65ef3468b53269eb5fdb3a5c09508c032b793da03251d5f8722b1194f1790c00", size = 6311190 }, + { url = "https://files.pythonhosted.org/packages/46/69/8c4f928741c2a8efa255fdc7e9097527c6dc4e4df147e3cadc5d9357ce85/numpy-2.2.4-cp312-cp312-win_amd64.whl", hash = "sha256:2aad3c17ed2ff455b8eaafe06bcdae0062a1db77cb99f4b9cbb5f4ecb13c5146", size = 12644305 }, + { url = "https://files.pythonhosted.org/packages/2a/d0/bd5ad792e78017f5decfb2ecc947422a3669a34f775679a76317af671ffc/numpy-2.2.4-cp313-cp313-macosx_10_13_x86_64.whl", hash = "sha256:1cf4e5c6a278d620dee9ddeb487dc6a860f9b199eadeecc567f777daace1e9e7", size = 20933623 }, + { url = "https://files.pythonhosted.org/packages/c3/bc/2b3545766337b95409868f8e62053135bdc7fa2ce630aba983a2aa60b559/numpy-2.2.4-cp313-cp313-macosx_11_0_arm64.whl", hash = "sha256:1974afec0b479e50438fc3648974268f972e2d908ddb6d7fb634598cdb8260a0", size = 14148681 }, + { url = "https://files.pythonhosted.org/packages/6a/70/67b24d68a56551d43a6ec9fe8c5f91b526d4c1a46a6387b956bf2d64744e/numpy-2.2.4-cp313-cp313-macosx_14_0_arm64.whl", hash = "sha256:79bd5f0a02aa16808fcbc79a9a376a147cc1045f7dfe44c6e7d53fa8b8a79392", size = 5148759 }, + { url = "https://files.pythonhosted.org/packages/1c/8b/e2fc8a75fcb7be12d90b31477c9356c0cbb44abce7ffb36be39a0017afad/numpy-2.2.4-cp313-cp313-macosx_14_0_x86_64.whl", hash = "sha256:3387dd7232804b341165cedcb90694565a6015433ee076c6754775e85d86f1fc", size = 6683092 }, + { url = "https://files.pythonhosted.org/packages/13/73/41b7b27f169ecf368b52533edb72e56a133f9e86256e809e169362553b49/numpy-2.2.4-cp313-cp313-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:6f527d8fdb0286fd2fd97a2a96c6be17ba4232da346931d967a0630050dfd298", size = 14081422 }, + { url = "https://files.pythonhosted.org/packages/4b/04/e208ff3ae3ddfbafc05910f89546382f15a3f10186b1f56bd99f159689c2/numpy-2.2.4-cp313-cp313-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:bce43e386c16898b91e162e5baaad90c4b06f9dcbe36282490032cec98dc8ae7", size = 16132202 }, + { url = "https://files.pythonhosted.org/packages/fe/bc/2218160574d862d5e55f803d88ddcad88beff94791f9c5f86d67bd8fbf1c/numpy-2.2.4-cp313-cp313-musllinux_1_2_aarch64.whl", hash = "sha256:31504f970f563d99f71a3512d0c01a645b692b12a63630d6aafa0939e52361e6", size = 15573131 }, + { url = "https://files.pythonhosted.org/packages/a5/78/97c775bc4f05abc8a8426436b7cb1be806a02a2994b195945600855e3a25/numpy-2.2.4-cp313-cp313-musllinux_1_2_x86_64.whl", hash = "sha256:81413336ef121a6ba746892fad881a83351ee3e1e4011f52e97fba79233611fd", size = 17894270 }, + { url = "https://files.pythonhosted.org/packages/b9/eb/38c06217a5f6de27dcb41524ca95a44e395e6a1decdc0c99fec0832ce6ae/numpy-2.2.4-cp313-cp313-win32.whl", hash = "sha256:f486038e44caa08dbd97275a9a35a283a8f1d2f0ee60ac260a1790e76660833c", size = 6308141 }, + { url = "https://files.pythonhosted.org/packages/52/17/d0dd10ab6d125c6d11ffb6dfa3423c3571befab8358d4f85cd4471964fcd/numpy-2.2.4-cp313-cp313-win_amd64.whl", hash = "sha256:207a2b8441cc8b6a2a78c9ddc64d00d20c303d79fba08c577752f080c4007ee3", size = 12636885 }, + { url = "https://files.pythonhosted.org/packages/fa/e2/793288ede17a0fdc921172916efb40f3cbc2aa97e76c5c84aba6dc7e8747/numpy-2.2.4-cp313-cp313t-macosx_10_13_x86_64.whl", hash = "sha256:8120575cb4882318c791f839a4fd66161a6fa46f3f0a5e613071aae35b5dd8f8", size = 20961829 }, + { url = "https://files.pythonhosted.org/packages/3a/75/bb4573f6c462afd1ea5cbedcc362fe3e9bdbcc57aefd37c681be1155fbaa/numpy-2.2.4-cp313-cp313t-macosx_11_0_arm64.whl", hash = "sha256:a761ba0fa886a7bb33c6c8f6f20213735cb19642c580a931c625ee377ee8bd39", size = 14161419 }, + { url = "https://files.pythonhosted.org/packages/03/68/07b4cd01090ca46c7a336958b413cdbe75002286295f2addea767b7f16c9/numpy-2.2.4-cp313-cp313t-macosx_14_0_arm64.whl", hash = "sha256:ac0280f1ba4a4bfff363a99a6aceed4f8e123f8a9b234c89140f5e894e452ecd", size = 5196414 }, + { url = "https://files.pythonhosted.org/packages/a5/fd/d4a29478d622fedff5c4b4b4cedfc37a00691079623c0575978d2446db9e/numpy-2.2.4-cp313-cp313t-macosx_14_0_x86_64.whl", hash = "sha256:879cf3a9a2b53a4672a168c21375166171bc3932b7e21f622201811c43cdd3b0", size = 6709379 }, + { url = "https://files.pythonhosted.org/packages/41/78/96dddb75bb9be730b87c72f30ffdd62611aba234e4e460576a068c98eff6/numpy-2.2.4-cp313-cp313t-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:f05d4198c1bacc9124018109c5fba2f3201dbe7ab6e92ff100494f236209c960", size = 14051725 }, + { url = "https://files.pythonhosted.org/packages/00/06/5306b8199bffac2a29d9119c11f457f6c7d41115a335b78d3f86fad4dbe8/numpy-2.2.4-cp313-cp313t-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:e2f085ce2e813a50dfd0e01fbfc0c12bbe5d2063d99f8b29da30e544fb6483b8", size = 16101638 }, + { url = "https://files.pythonhosted.org/packages/fa/03/74c5b631ee1ded596945c12027649e6344614144369fd3ec1aaced782882/numpy-2.2.4-cp313-cp313t-musllinux_1_2_aarch64.whl", hash = "sha256:92bda934a791c01d6d9d8e038363c50918ef7c40601552a58ac84c9613a665bc", size = 15571717 }, + { url = "https://files.pythonhosted.org/packages/cb/dc/4fc7c0283abe0981e3b89f9b332a134e237dd476b0c018e1e21083310c31/numpy-2.2.4-cp313-cp313t-musllinux_1_2_x86_64.whl", hash = "sha256:ee4d528022f4c5ff67332469e10efe06a267e32f4067dc76bb7e2cddf3cd25ff", size = 17879998 }, + { url = "https://files.pythonhosted.org/packages/e5/2b/878576190c5cfa29ed896b518cc516aecc7c98a919e20706c12480465f43/numpy-2.2.4-cp313-cp313t-win32.whl", hash = "sha256:05c076d531e9998e7e694c36e8b349969c56eadd2cdcd07242958489d79a7286", size = 6366896 }, + { url = "https://files.pythonhosted.org/packages/3e/05/eb7eec66b95cf697f08c754ef26c3549d03ebd682819f794cb039574a0a6/numpy-2.2.4-cp313-cp313t-win_amd64.whl", hash = "sha256:188dcbca89834cc2e14eb2f106c96d6d46f200fe0200310fc29089657379c58d", size = 12739119 }, ] [[package]] @@ -1628,20 +1647,20 @@ wheels = [ [[package]] name = "pip" -version = "25.0" +version = "25.0.1" source = { registry = "https://pypi.org/simple" } -sdist = { url = "https://files.pythonhosted.org/packages/47/3e/68beeeeb306ea20ffd30b3ed993f531d16cd884ec4f60c9b1e238f69f2af/pip-25.0.tar.gz", hash = "sha256:8e0a97f7b4c47ae4a494560da84775e9e2f671d415d8d828e052efefb206b30b", size = 1950328 } +sdist = { url = "https://files.pythonhosted.org/packages/70/53/b309b4a497b09655cb7e07088966881a57d082f48ac3cb54ea729fd2c6cf/pip-25.0.1.tar.gz", hash = "sha256:88f96547ea48b940a3a385494e181e29fb8637898f88d88737c5049780f196ea", size = 1950850 } wheels = [ - { url = "https://files.pythonhosted.org/packages/85/8a/1ddf40be20103bcc605db840e9ade09c8e8c9f920a03e9cfe88eae97a058/pip-25.0-py3-none-any.whl", hash = "sha256:b6eb97a803356a52b2dd4bb73ba9e65b2ba16caa6bcb25a7497350a4e5859b65", size = 1841506 }, + { url = "https://files.pythonhosted.org/packages/c9/bc/b7db44f5f39f9d0494071bddae6880eb645970366d0a200022a1a93d57f5/pip-25.0.1-py3-none-any.whl", hash = "sha256:c46efd13b6aa8279f33f2864459c8ce587ea6a1a59ee20de055868d8f7688f7f", size = 1841526 }, ] [[package]] name = "platformdirs" -version = "4.3.6" +version = "4.3.7" source = { registry = "https://pypi.org/simple" } -sdist = { url = "https://files.pythonhosted.org/packages/13/fc/128cc9cb8f03208bdbf93d3aa862e16d376844a14f9a0ce5cf4507372de4/platformdirs-4.3.6.tar.gz", hash = "sha256:357fb2acbc885b0419afd3ce3ed34564c13c9b95c89360cd9563f73aa5e2b907", size = 21302 } +sdist = { url = "https://files.pythonhosted.org/packages/b6/2d/7d512a3913d60623e7eb945c6d1b4f0bddf1d0b7ada5225274c87e5b53d1/platformdirs-4.3.7.tar.gz", hash = "sha256:eb437d586b6a0986388f0d6f74aa0cde27b48d0e3d66843640bfb6bdcdb6e351", size = 21291 } wheels = [ - { url = "https://files.pythonhosted.org/packages/3c/a6/bc1012356d8ece4d66dd75c4b9fc6c1f6650ddd5991e421177d9f8f671be/platformdirs-4.3.6-py3-none-any.whl", hash = "sha256:73e575e1408ab8103900836b97580d5307456908a03e92031bab39e4554cc3fb", size = 18439 }, + { url = "https://files.pythonhosted.org/packages/6d/45/59578566b3275b8fd9157885918fcd0c4d74162928a5310926887b856a51/platformdirs-4.3.7-py3-none-any.whl", hash = "sha256:a03875334331946f13c549dbd8f4bac7a13a50a895a0eb1e8c6a8ace80d40a94", size = 18499 }, ] [[package]] @@ -1668,7 +1687,7 @@ wheels = [ [[package]] name = "pre-commit" -version = "4.1.0" +version = "4.2.0" source = { registry = "https://pypi.org/simple" } dependencies = [ { name = "cfgv" }, @@ -1677,9 +1696,9 @@ dependencies = [ { name = "pyyaml" }, { name = "virtualenv" }, ] -sdist = { url = "https://files.pythonhosted.org/packages/2a/13/b62d075317d8686071eb843f0bb1f195eb332f48869d3c31a4c6f1e063ac/pre_commit-4.1.0.tar.gz", hash = "sha256:ae3f018575a588e30dfddfab9a05448bfbd6b73d78709617b5a2b853549716d4", size = 193330 } +sdist = { url = "https://files.pythonhosted.org/packages/08/39/679ca9b26c7bb2999ff122d50faa301e49af82ca9c066ec061cfbc0c6784/pre_commit-4.2.0.tar.gz", hash = "sha256:601283b9757afd87d40c4c4a9b2b5de9637a8ea02eaff7adc2d0fb4e04841146", size = 193424 } wheels = [ - { url = "https://files.pythonhosted.org/packages/43/b3/df14c580d82b9627d173ceea305ba898dca135feb360b6d84019d0803d3b/pre_commit-4.1.0-py2.py3-none-any.whl", hash = "sha256:d29e7cb346295bcc1cc75fc3e92e343495e3ea0196c9ec6ba53f49f10ab6ae7b", size = 220560 }, + { url = "https://files.pythonhosted.org/packages/88/74/a88bf1b1efeae488a0c0b7bdf71429c313722d1fc0f377537fbe554e6180/pre_commit-4.2.0-py2.py3-none-any.whl", hash = "sha256:a009ca7205f1eb497d10b845e52c838a98b6cdd2102a6c8e4540e94ee75c58bd", size = 220707 }, ] [[package]] @@ -1706,29 +1725,29 @@ wheels = [ [[package]] name = "prompt-toolkit" -version = "3.0.50" +version = "3.0.51" source = { registry = "https://pypi.org/simple" } dependencies = [ { name = "wcwidth" }, ] -sdist = { url = "https://files.pythonhosted.org/packages/a1/e1/bd15cb8ffdcfeeb2bdc215de3c3cffca11408d829e4b8416dcfe71ba8854/prompt_toolkit-3.0.50.tar.gz", hash = "sha256:544748f3860a2623ca5cd6d2795e7a14f3d0e1c3c9728359013f79877fc89bab", size = 429087 } +sdist = { url = "https://files.pythonhosted.org/packages/bb/6e/9d084c929dfe9e3bfe0c6a47e31f78a25c54627d64a66e884a8bf5474f1c/prompt_toolkit-3.0.51.tar.gz", hash = "sha256:931a162e3b27fc90c86f1b48bb1fb2c528c2761475e57c9c06de13311c7b54ed", size = 428940 } wheels = [ - { url = "https://files.pythonhosted.org/packages/e4/ea/d836f008d33151c7a1f62caf3d8dd782e4d15f6a43897f64480c2b8de2ad/prompt_toolkit-3.0.50-py3-none-any.whl", hash = "sha256:9b6427eb19e479d98acff65196a307c555eb567989e6d88ebbb1b509d9779198", size = 387816 }, + { url = "https://files.pythonhosted.org/packages/ce/4f/5249960887b1fbe561d9ff265496d170b55a735b76724f10ef19f9e40716/prompt_toolkit-3.0.51-py3-none-any.whl", hash = "sha256:52742911fde84e2d423e2f9a4cf1de7d7ac4e51958f648d9540e0fb8db077b07", size = 387810 }, ] [[package]] name = "psutil" -version = "6.1.1" +version = "7.0.0" source = { registry = "https://pypi.org/simple" } -sdist = { url = "https://files.pythonhosted.org/packages/1f/5a/07871137bb752428aa4b659f910b399ba6f291156bdea939be3e96cae7cb/psutil-6.1.1.tar.gz", hash = "sha256:cf8496728c18f2d0b45198f06895be52f36611711746b7f30c464b422b50e2f5", size = 508502 } +sdist = { url = "https://files.pythonhosted.org/packages/2a/80/336820c1ad9286a4ded7e845b2eccfcb27851ab8ac6abece774a6ff4d3de/psutil-7.0.0.tar.gz", hash = "sha256:7be9c3eba38beccb6495ea33afd982a44074b78f28c434a1f51cc07fd315c456", size = 497003 } wheels = [ - { url = "https://files.pythonhosted.org/packages/61/99/ca79d302be46f7bdd8321089762dd4476ee725fce16fc2b2e1dbba8cac17/psutil-6.1.1-cp36-abi3-macosx_10_9_x86_64.whl", hash = "sha256:fc0ed7fe2231a444fc219b9c42d0376e0a9a1a72f16c5cfa0f68d19f1a0663e8", size = 247511 }, - { url = "https://files.pythonhosted.org/packages/0b/6b/73dbde0dd38f3782905d4587049b9be64d76671042fdcaf60e2430c6796d/psutil-6.1.1-cp36-abi3-macosx_11_0_arm64.whl", hash = "sha256:0bdd4eab935276290ad3cb718e9809412895ca6b5b334f5a9111ee6d9aff9377", size = 248985 }, - { url = "https://files.pythonhosted.org/packages/17/38/c319d31a1d3f88c5b79c68b3116c129e5133f1822157dd6da34043e32ed6/psutil-6.1.1-cp36-abi3-manylinux_2_12_i686.manylinux2010_i686.manylinux_2_17_i686.manylinux2014_i686.whl", hash = "sha256:b6e06c20c05fe95a3d7302d74e7097756d4ba1247975ad6905441ae1b5b66003", size = 284488 }, - { url = "https://files.pythonhosted.org/packages/9c/39/0f88a830a1c8a3aba27fededc642da37613c57cbff143412e3536f89784f/psutil-6.1.1-cp36-abi3-manylinux_2_12_x86_64.manylinux2010_x86_64.manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:97f7cb9921fbec4904f522d972f0c0e1f4fabbdd4e0287813b21215074a0f160", size = 287477 }, - { url = "https://files.pythonhosted.org/packages/47/da/99f4345d4ddf2845cb5b5bd0d93d554e84542d116934fde07a0c50bd4e9f/psutil-6.1.1-cp36-abi3-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:33431e84fee02bc84ea36d9e2c4a6d395d479c9dd9bba2376c1f6ee8f3a4e0b3", size = 289017 }, - { url = "https://files.pythonhosted.org/packages/38/53/bd755c2896f4461fd4f36fa6a6dcb66a88a9e4b9fd4e5b66a77cf9d4a584/psutil-6.1.1-cp37-abi3-win32.whl", hash = "sha256:eaa912e0b11848c4d9279a93d7e2783df352b082f40111e078388701fd479e53", size = 250602 }, - { url = "https://files.pythonhosted.org/packages/7b/d7/7831438e6c3ebbfa6e01a927127a6cb42ad3ab844247f3c5b96bea25d73d/psutil-6.1.1-cp37-abi3-win_amd64.whl", hash = "sha256:f35cfccb065fff93529d2afb4a2e89e363fe63ca1e4a5da22b603a85833c2649", size = 254444 }, + { url = "https://files.pythonhosted.org/packages/ed/e6/2d26234410f8b8abdbf891c9da62bee396583f713fb9f3325a4760875d22/psutil-7.0.0-cp36-abi3-macosx_10_9_x86_64.whl", hash = "sha256:101d71dc322e3cffd7cea0650b09b3d08b8e7c4109dd6809fe452dfd00e58b25", size = 238051 }, + { url = "https://files.pythonhosted.org/packages/04/8b/30f930733afe425e3cbfc0e1468a30a18942350c1a8816acfade80c005c4/psutil-7.0.0-cp36-abi3-macosx_11_0_arm64.whl", hash = "sha256:39db632f6bb862eeccf56660871433e111b6ea58f2caea825571951d4b6aa3da", size = 239535 }, + { url = "https://files.pythonhosted.org/packages/2a/ed/d362e84620dd22876b55389248e522338ed1bf134a5edd3b8231d7207f6d/psutil-7.0.0-cp36-abi3-manylinux_2_12_i686.manylinux2010_i686.manylinux_2_17_i686.manylinux2014_i686.whl", hash = "sha256:1fcee592b4c6f146991ca55919ea3d1f8926497a713ed7faaf8225e174581e91", size = 275004 }, + { url = "https://files.pythonhosted.org/packages/bf/b9/b0eb3f3cbcb734d930fdf839431606844a825b23eaf9a6ab371edac8162c/psutil-7.0.0-cp36-abi3-manylinux_2_12_x86_64.manylinux2010_x86_64.manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:4b1388a4f6875d7e2aff5c4ca1cc16c545ed41dd8bb596cefea80111db353a34", size = 277986 }, + { url = "https://files.pythonhosted.org/packages/eb/a2/709e0fe2f093556c17fbafda93ac032257242cabcc7ff3369e2cb76a97aa/psutil-7.0.0-cp36-abi3-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:a5f098451abc2828f7dc6b58d44b532b22f2088f4999a937557b603ce72b1993", size = 279544 }, + { url = "https://files.pythonhosted.org/packages/50/e6/eecf58810b9d12e6427369784efe814a1eec0f492084ce8eb8f4d89d6d61/psutil-7.0.0-cp37-abi3-win32.whl", hash = "sha256:ba3fcef7523064a6c9da440fc4d6bd07da93ac726b5733c29027d7dc95b39d99", size = 241053 }, + { url = "https://files.pythonhosted.org/packages/50/1b/6921afe68c74868b4c9fa424dad3be35b095e16687989ebbb50ce4fceb7c/psutil-7.0.0-cp37-abi3-win_amd64.whl", hash = "sha256:4cf3d4eb1aa9b348dec30105c55cd9b7d4629285735a102beb4441e38db90553", size = 244885 }, ] [[package]] @@ -1760,60 +1779,59 @@ wheels = [ [[package]] name = "pydantic" -version = "2.10.6" +version = "2.11.3" source = { registry = "https://pypi.org/simple" } dependencies = [ { name = "annotated-types" }, { name = "pydantic-core" }, { name = "typing-extensions" }, + { name = "typing-inspection" }, ] -sdist = { url = "https://files.pythonhosted.org/packages/b7/ae/d5220c5c52b158b1de7ca89fc5edb72f304a70a4c540c84c8844bf4008de/pydantic-2.10.6.tar.gz", hash = "sha256:ca5daa827cce33de7a42be142548b0096bf05a7e7b365aebfa5f8eeec7128236", size = 761681 } +sdist = { url = "https://files.pythonhosted.org/packages/10/2e/ca897f093ee6c5f3b0bee123ee4465c50e75431c3d5b6a3b44a47134e891/pydantic-2.11.3.tar.gz", hash = "sha256:7471657138c16adad9322fe3070c0116dd6c3ad8d649300e3cbdfe91f4db4ec3", size = 785513 } wheels = [ - { url = "https://files.pythonhosted.org/packages/f4/3c/8cc1cc84deffa6e25d2d0c688ebb80635dfdbf1dbea3e30c541c8cf4d860/pydantic-2.10.6-py3-none-any.whl", hash = "sha256:427d664bf0b8a2b34ff5dd0f5a18df00591adcee7198fbd71981054cef37b584", size = 431696 }, -] - -[package.optional-dependencies] -email = [ - { name = "email-validator" }, + { url = "https://files.pythonhosted.org/packages/b0/1d/407b29780a289868ed696d1616f4aad49d6388e5a77f567dcd2629dcd7b8/pydantic-2.11.3-py3-none-any.whl", hash = "sha256:a082753436a07f9ba1289c6ffa01cd93db3548776088aa917cc43b63f68fa60f", size = 443591 }, ] [[package]] name = "pydantic-core" -version = "2.27.2" +version = "2.33.1" source = { registry = "https://pypi.org/simple" } dependencies = [ { name = "typing-extensions" }, ] -sdist = { url = "https://files.pythonhosted.org/packages/fc/01/f3e5ac5e7c25833db5eb555f7b7ab24cd6f8c322d3a3ad2d67a952dc0abc/pydantic_core-2.27.2.tar.gz", hash = "sha256:eb026e5a4c1fee05726072337ff51d1efb6f59090b7da90d30ea58625b1ffb39", size = 413443 } -wheels = [ - { url = "https://files.pythonhosted.org/packages/d6/74/51c8a5482ca447871c93e142d9d4a92ead74de6c8dc5e66733e22c9bba89/pydantic_core-2.27.2-cp312-cp312-macosx_10_12_x86_64.whl", hash = "sha256:9e0c8cfefa0ef83b4da9588448b6d8d2a2bf1a53c3f1ae5fca39eb3061e2f0b0", size = 1893127 }, - { url = "https://files.pythonhosted.org/packages/d3/f3/c97e80721735868313c58b89d2de85fa80fe8dfeeed84dc51598b92a135e/pydantic_core-2.27.2-cp312-cp312-macosx_11_0_arm64.whl", hash = "sha256:83097677b8e3bd7eaa6775720ec8e0405f1575015a463285a92bfdfe254529ef", size = 1811340 }, - { url = "https://files.pythonhosted.org/packages/9e/91/840ec1375e686dbae1bd80a9e46c26a1e0083e1186abc610efa3d9a36180/pydantic_core-2.27.2-cp312-cp312-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:172fce187655fece0c90d90a678424b013f8fbb0ca8b036ac266749c09438cb7", size = 1822900 }, - { url = "https://files.pythonhosted.org/packages/f6/31/4240bc96025035500c18adc149aa6ffdf1a0062a4b525c932065ceb4d868/pydantic_core-2.27.2-cp312-cp312-manylinux_2_17_armv7l.manylinux2014_armv7l.whl", hash = "sha256:519f29f5213271eeeeb3093f662ba2fd512b91c5f188f3bb7b27bc5973816934", size = 1869177 }, - { url = "https://files.pythonhosted.org/packages/fa/20/02fbaadb7808be578317015c462655c317a77a7c8f0ef274bc016a784c54/pydantic_core-2.27.2-cp312-cp312-manylinux_2_17_ppc64le.manylinux2014_ppc64le.whl", hash = "sha256:05e3a55d124407fffba0dd6b0c0cd056d10e983ceb4e5dbd10dda135c31071d6", size = 2038046 }, - { url = "https://files.pythonhosted.org/packages/06/86/7f306b904e6c9eccf0668248b3f272090e49c275bc488a7b88b0823444a4/pydantic_core-2.27.2-cp312-cp312-manylinux_2_17_s390x.manylinux2014_s390x.whl", hash = "sha256:9c3ed807c7b91de05e63930188f19e921d1fe90de6b4f5cd43ee7fcc3525cb8c", size = 2685386 }, - { url = "https://files.pythonhosted.org/packages/8d/f0/49129b27c43396581a635d8710dae54a791b17dfc50c70164866bbf865e3/pydantic_core-2.27.2-cp312-cp312-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:6fb4aadc0b9a0c063206846d603b92030eb6f03069151a625667f982887153e2", size = 1997060 }, - { url = "https://files.pythonhosted.org/packages/0d/0f/943b4af7cd416c477fd40b187036c4f89b416a33d3cc0ab7b82708a667aa/pydantic_core-2.27.2-cp312-cp312-manylinux_2_5_i686.manylinux1_i686.whl", hash = "sha256:28ccb213807e037460326424ceb8b5245acb88f32f3d2777427476e1b32c48c4", size = 2004870 }, - { url = "https://files.pythonhosted.org/packages/35/40/aea70b5b1a63911c53a4c8117c0a828d6790483f858041f47bab0b779f44/pydantic_core-2.27.2-cp312-cp312-musllinux_1_1_aarch64.whl", hash = "sha256:de3cd1899e2c279b140adde9357c4495ed9d47131b4a4eaff9052f23398076b3", size = 1999822 }, - { url = "https://files.pythonhosted.org/packages/f2/b3/807b94fd337d58effc5498fd1a7a4d9d59af4133e83e32ae39a96fddec9d/pydantic_core-2.27.2-cp312-cp312-musllinux_1_1_armv7l.whl", hash = "sha256:220f892729375e2d736b97d0e51466252ad84c51857d4d15f5e9692f9ef12be4", size = 2130364 }, - { url = "https://files.pythonhosted.org/packages/fc/df/791c827cd4ee6efd59248dca9369fb35e80a9484462c33c6649a8d02b565/pydantic_core-2.27.2-cp312-cp312-musllinux_1_1_x86_64.whl", hash = "sha256:a0fcd29cd6b4e74fe8ddd2c90330fd8edf2e30cb52acda47f06dd615ae72da57", size = 2158303 }, - { url = "https://files.pythonhosted.org/packages/9b/67/4e197c300976af185b7cef4c02203e175fb127e414125916bf1128b639a9/pydantic_core-2.27.2-cp312-cp312-win32.whl", hash = "sha256:1e2cb691ed9834cd6a8be61228471d0a503731abfb42f82458ff27be7b2186fc", size = 1834064 }, - { url = "https://files.pythonhosted.org/packages/1f/ea/cd7209a889163b8dcca139fe32b9687dd05249161a3edda62860430457a5/pydantic_core-2.27.2-cp312-cp312-win_amd64.whl", hash = "sha256:cc3f1a99a4f4f9dd1de4fe0312c114e740b5ddead65bb4102884b384c15d8bc9", size = 1989046 }, - { url = "https://files.pythonhosted.org/packages/bc/49/c54baab2f4658c26ac633d798dab66b4c3a9bbf47cff5284e9c182f4137a/pydantic_core-2.27.2-cp312-cp312-win_arm64.whl", hash = "sha256:3911ac9284cd8a1792d3cb26a2da18f3ca26c6908cc434a18f730dc0db7bfa3b", size = 1885092 }, - { url = "https://files.pythonhosted.org/packages/41/b1/9bc383f48f8002f99104e3acff6cba1231b29ef76cfa45d1506a5cad1f84/pydantic_core-2.27.2-cp313-cp313-macosx_10_12_x86_64.whl", hash = "sha256:7d14bd329640e63852364c306f4d23eb744e0f8193148d4044dd3dacdaacbd8b", size = 1892709 }, - { url = "https://files.pythonhosted.org/packages/10/6c/e62b8657b834f3eb2961b49ec8e301eb99946245e70bf42c8817350cbefc/pydantic_core-2.27.2-cp313-cp313-macosx_11_0_arm64.whl", hash = "sha256:82f91663004eb8ed30ff478d77c4d1179b3563df6cdb15c0817cd1cdaf34d154", size = 1811273 }, - { url = "https://files.pythonhosted.org/packages/ba/15/52cfe49c8c986e081b863b102d6b859d9defc63446b642ccbbb3742bf371/pydantic_core-2.27.2-cp313-cp313-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:71b24c7d61131bb83df10cc7e687433609963a944ccf45190cfc21e0887b08c9", size = 1823027 }, - { url = "https://files.pythonhosted.org/packages/b1/1c/b6f402cfc18ec0024120602bdbcebc7bdd5b856528c013bd4d13865ca473/pydantic_core-2.27.2-cp313-cp313-manylinux_2_17_armv7l.manylinux2014_armv7l.whl", hash = "sha256:fa8e459d4954f608fa26116118bb67f56b93b209c39b008277ace29937453dc9", size = 1868888 }, - { url = "https://files.pythonhosted.org/packages/bd/7b/8cb75b66ac37bc2975a3b7de99f3c6f355fcc4d89820b61dffa8f1e81677/pydantic_core-2.27.2-cp313-cp313-manylinux_2_17_ppc64le.manylinux2014_ppc64le.whl", hash = "sha256:ce8918cbebc8da707ba805b7fd0b382816858728ae7fe19a942080c24e5b7cd1", size = 2037738 }, - { url = "https://files.pythonhosted.org/packages/c8/f1/786d8fe78970a06f61df22cba58e365ce304bf9b9f46cc71c8c424e0c334/pydantic_core-2.27.2-cp313-cp313-manylinux_2_17_s390x.manylinux2014_s390x.whl", hash = "sha256:eda3f5c2a021bbc5d976107bb302e0131351c2ba54343f8a496dc8783d3d3a6a", size = 2685138 }, - { url = "https://files.pythonhosted.org/packages/a6/74/d12b2cd841d8724dc8ffb13fc5cef86566a53ed358103150209ecd5d1999/pydantic_core-2.27.2-cp313-cp313-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:bd8086fa684c4775c27f03f062cbb9eaa6e17f064307e86b21b9e0abc9c0f02e", size = 1997025 }, - { url = "https://files.pythonhosted.org/packages/a0/6e/940bcd631bc4d9a06c9539b51f070b66e8f370ed0933f392db6ff350d873/pydantic_core-2.27.2-cp313-cp313-manylinux_2_5_i686.manylinux1_i686.whl", hash = "sha256:8d9b3388db186ba0c099a6d20f0604a44eabdeef1777ddd94786cdae158729e4", size = 2004633 }, - { url = "https://files.pythonhosted.org/packages/50/cc/a46b34f1708d82498c227d5d80ce615b2dd502ddcfd8376fc14a36655af1/pydantic_core-2.27.2-cp313-cp313-musllinux_1_1_aarch64.whl", hash = "sha256:7a66efda2387de898c8f38c0cf7f14fca0b51a8ef0b24bfea5849f1b3c95af27", size = 1999404 }, - { url = "https://files.pythonhosted.org/packages/ca/2d/c365cfa930ed23bc58c41463bae347d1005537dc8db79e998af8ba28d35e/pydantic_core-2.27.2-cp313-cp313-musllinux_1_1_armv7l.whl", hash = "sha256:18a101c168e4e092ab40dbc2503bdc0f62010e95d292b27827871dc85450d7ee", size = 2130130 }, - { url = "https://files.pythonhosted.org/packages/f4/d7/eb64d015c350b7cdb371145b54d96c919d4db516817f31cd1c650cae3b21/pydantic_core-2.27.2-cp313-cp313-musllinux_1_1_x86_64.whl", hash = "sha256:ba5dd002f88b78a4215ed2f8ddbdf85e8513382820ba15ad5ad8955ce0ca19a1", size = 2157946 }, - { url = "https://files.pythonhosted.org/packages/a4/99/bddde3ddde76c03b65dfd5a66ab436c4e58ffc42927d4ff1198ffbf96f5f/pydantic_core-2.27.2-cp313-cp313-win32.whl", hash = "sha256:1ebaf1d0481914d004a573394f4be3a7616334be70261007e47c2a6fe7e50130", size = 1834387 }, - { url = "https://files.pythonhosted.org/packages/71/47/82b5e846e01b26ac6f1893d3c5f9f3a2eb6ba79be26eef0b759b4fe72946/pydantic_core-2.27.2-cp313-cp313-win_amd64.whl", hash = "sha256:953101387ecf2f5652883208769a79e48db18c6df442568a0b5ccd8c2723abee", size = 1990453 }, - { url = "https://files.pythonhosted.org/packages/51/b2/b2b50d5ecf21acf870190ae5d093602d95f66c9c31f9d5de6062eb329ad1/pydantic_core-2.27.2-cp313-cp313-win_arm64.whl", hash = "sha256:ac4dbfd1691affb8f48c2c13241a2e3b60ff23247cbcf981759c768b6633cf8b", size = 1885186 }, +sdist = { url = "https://files.pythonhosted.org/packages/17/19/ed6a078a5287aea7922de6841ef4c06157931622c89c2a47940837b5eecd/pydantic_core-2.33.1.tar.gz", hash = "sha256:bcc9c6fdb0ced789245b02b7d6603e17d1563064ddcfc36f046b61c0c05dd9df", size = 434395 } +wheels = [ + { url = "https://files.pythonhosted.org/packages/c8/ce/3cb22b07c29938f97ff5f5bb27521f95e2ebec399b882392deb68d6c440e/pydantic_core-2.33.1-cp312-cp312-macosx_10_12_x86_64.whl", hash = "sha256:1293d7febb995e9d3ec3ea09caf1a26214eec45b0f29f6074abb004723fc1de8", size = 2026640 }, + { url = "https://files.pythonhosted.org/packages/19/78/f381d643b12378fee782a72126ec5d793081ef03791c28a0fd542a5bee64/pydantic_core-2.33.1-cp312-cp312-macosx_11_0_arm64.whl", hash = "sha256:99b56acd433386c8f20be5c4000786d1e7ca0523c8eefc995d14d79c7a081498", size = 1852649 }, + { url = "https://files.pythonhosted.org/packages/9d/2b/98a37b80b15aac9eb2c6cfc6dbd35e5058a352891c5cce3a8472d77665a6/pydantic_core-2.33.1-cp312-cp312-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:35a5ec3fa8c2fe6c53e1b2ccc2454398f95d5393ab398478f53e1afbbeb4d939", size = 1892472 }, + { url = "https://files.pythonhosted.org/packages/4e/d4/3c59514e0f55a161004792b9ff3039da52448f43f5834f905abef9db6e4a/pydantic_core-2.33.1-cp312-cp312-manylinux_2_17_armv7l.manylinux2014_armv7l.whl", hash = "sha256:b172f7b9d2f3abc0efd12e3386f7e48b576ef309544ac3a63e5e9cdd2e24585d", size = 1977509 }, + { url = "https://files.pythonhosted.org/packages/a9/b6/c2c7946ef70576f79a25db59a576bce088bdc5952d1b93c9789b091df716/pydantic_core-2.33.1-cp312-cp312-manylinux_2_17_ppc64le.manylinux2014_ppc64le.whl", hash = "sha256:9097b9f17f91eea659b9ec58148c0747ec354a42f7389b9d50701610d86f812e", size = 2128702 }, + { url = "https://files.pythonhosted.org/packages/88/fe/65a880f81e3f2a974312b61f82a03d85528f89a010ce21ad92f109d94deb/pydantic_core-2.33.1-cp312-cp312-manylinux_2_17_s390x.manylinux2014_s390x.whl", hash = "sha256:cc77ec5b7e2118b152b0d886c7514a4653bcb58c6b1d760134a9fab915f777b3", size = 2679428 }, + { url = "https://files.pythonhosted.org/packages/6f/ff/4459e4146afd0462fb483bb98aa2436d69c484737feaceba1341615fb0ac/pydantic_core-2.33.1-cp312-cp312-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:d5e3d15245b08fa4a84cefc6c9222e6f37c98111c8679fbd94aa145f9a0ae23d", size = 2008753 }, + { url = "https://files.pythonhosted.org/packages/7c/76/1c42e384e8d78452ededac8b583fe2550c84abfef83a0552e0e7478ccbc3/pydantic_core-2.33.1-cp312-cp312-manylinux_2_5_i686.manylinux1_i686.whl", hash = "sha256:ef99779001d7ac2e2461d8ab55d3373fe7315caefdbecd8ced75304ae5a6fc6b", size = 2114849 }, + { url = "https://files.pythonhosted.org/packages/00/72/7d0cf05095c15f7ffe0eb78914b166d591c0eed72f294da68378da205101/pydantic_core-2.33.1-cp312-cp312-musllinux_1_1_aarch64.whl", hash = "sha256:fc6bf8869e193855e8d91d91f6bf59699a5cdfaa47a404e278e776dd7f168b39", size = 2069541 }, + { url = "https://files.pythonhosted.org/packages/b3/69/94a514066bb7d8be499aa764926937409d2389c09be0b5107a970286ef81/pydantic_core-2.33.1-cp312-cp312-musllinux_1_1_armv7l.whl", hash = "sha256:b1caa0bc2741b043db7823843e1bde8aaa58a55a58fda06083b0569f8b45693a", size = 2239225 }, + { url = "https://files.pythonhosted.org/packages/84/b0/e390071eadb44b41f4f54c3cef64d8bf5f9612c92686c9299eaa09e267e2/pydantic_core-2.33.1-cp312-cp312-musllinux_1_1_x86_64.whl", hash = "sha256:ec259f62538e8bf364903a7d0d0239447059f9434b284f5536e8402b7dd198db", size = 2248373 }, + { url = "https://files.pythonhosted.org/packages/d6/b2/288b3579ffc07e92af66e2f1a11be3b056fe1214aab314748461f21a31c3/pydantic_core-2.33.1-cp312-cp312-win32.whl", hash = "sha256:e14f369c98a7c15772b9da98987f58e2b509a93235582838bd0d1d8c08b68fda", size = 1907034 }, + { url = "https://files.pythonhosted.org/packages/02/28/58442ad1c22b5b6742b992ba9518420235adced665513868f99a1c2638a5/pydantic_core-2.33.1-cp312-cp312-win_amd64.whl", hash = "sha256:1c607801d85e2e123357b3893f82c97a42856192997b95b4d8325deb1cd0c5f4", size = 1956848 }, + { url = "https://files.pythonhosted.org/packages/a1/eb/f54809b51c7e2a1d9f439f158b8dd94359321abcc98767e16fc48ae5a77e/pydantic_core-2.33.1-cp312-cp312-win_arm64.whl", hash = "sha256:8d13f0276806ee722e70a1c93da19748594f19ac4299c7e41237fc791d1861ea", size = 1903986 }, + { url = "https://files.pythonhosted.org/packages/7a/24/eed3466a4308d79155f1cdd5c7432c80ddcc4530ba8623b79d5ced021641/pydantic_core-2.33.1-cp313-cp313-macosx_10_12_x86_64.whl", hash = "sha256:70af6a21237b53d1fe7b9325b20e65cbf2f0a848cf77bed492b029139701e66a", size = 2033551 }, + { url = "https://files.pythonhosted.org/packages/ab/14/df54b1a0bc9b6ded9b758b73139d2c11b4e8eb43e8ab9c5847c0a2913ada/pydantic_core-2.33.1-cp313-cp313-macosx_11_0_arm64.whl", hash = "sha256:282b3fe1bbbe5ae35224a0dbd05aed9ccabccd241e8e6b60370484234b456266", size = 1852785 }, + { url = "https://files.pythonhosted.org/packages/fa/96/e275f15ff3d34bb04b0125d9bc8848bf69f25d784d92a63676112451bfb9/pydantic_core-2.33.1-cp313-cp313-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:4b315e596282bbb5822d0c7ee9d255595bd7506d1cb20c2911a4da0b970187d3", size = 1897758 }, + { url = "https://files.pythonhosted.org/packages/b7/d8/96bc536e975b69e3a924b507d2a19aedbf50b24e08c80fb00e35f9baaed8/pydantic_core-2.33.1-cp313-cp313-manylinux_2_17_armv7l.manylinux2014_armv7l.whl", hash = "sha256:1dfae24cf9921875ca0ca6a8ecb4bb2f13c855794ed0d468d6abbec6e6dcd44a", size = 1986109 }, + { url = "https://files.pythonhosted.org/packages/90/72/ab58e43ce7e900b88cb571ed057b2fcd0e95b708a2e0bed475b10130393e/pydantic_core-2.33.1-cp313-cp313-manylinux_2_17_ppc64le.manylinux2014_ppc64le.whl", hash = "sha256:6dd8ecfde08d8bfadaea669e83c63939af76f4cf5538a72597016edfa3fad516", size = 2129159 }, + { url = "https://files.pythonhosted.org/packages/dc/3f/52d85781406886c6870ac995ec0ba7ccc028b530b0798c9080531b409fdb/pydantic_core-2.33.1-cp313-cp313-manylinux_2_17_s390x.manylinux2014_s390x.whl", hash = "sha256:2f593494876eae852dc98c43c6f260f45abdbfeec9e4324e31a481d948214764", size = 2680222 }, + { url = "https://files.pythonhosted.org/packages/f4/56/6e2ef42f363a0eec0fd92f74a91e0ac48cd2e49b695aac1509ad81eee86a/pydantic_core-2.33.1-cp313-cp313-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:948b73114f47fd7016088e5186d13faf5e1b2fe83f5e320e371f035557fd264d", size = 2006980 }, + { url = "https://files.pythonhosted.org/packages/4c/c0/604536c4379cc78359f9ee0aa319f4aedf6b652ec2854953f5a14fc38c5a/pydantic_core-2.33.1-cp313-cp313-manylinux_2_5_i686.manylinux1_i686.whl", hash = "sha256:e11f3864eb516af21b01e25fac915a82e9ddad3bb0fb9e95a246067398b435a4", size = 2120840 }, + { url = "https://files.pythonhosted.org/packages/1f/46/9eb764814f508f0edfb291a0f75d10854d78113fa13900ce13729aaec3ae/pydantic_core-2.33.1-cp313-cp313-musllinux_1_1_aarch64.whl", hash = "sha256:549150be302428b56fdad0c23c2741dcdb5572413776826c965619a25d9c6bde", size = 2072518 }, + { url = "https://files.pythonhosted.org/packages/42/e3/fb6b2a732b82d1666fa6bf53e3627867ea3131c5f39f98ce92141e3e3dc1/pydantic_core-2.33.1-cp313-cp313-musllinux_1_1_armv7l.whl", hash = "sha256:495bc156026efafd9ef2d82372bd38afce78ddd82bf28ef5276c469e57c0c83e", size = 2248025 }, + { url = "https://files.pythonhosted.org/packages/5c/9d/fbe8fe9d1aa4dac88723f10a921bc7418bd3378a567cb5e21193a3c48b43/pydantic_core-2.33.1-cp313-cp313-musllinux_1_1_x86_64.whl", hash = "sha256:ec79de2a8680b1a67a07490bddf9636d5c2fab609ba8c57597e855fa5fa4dacd", size = 2254991 }, + { url = "https://files.pythonhosted.org/packages/aa/99/07e2237b8a66438d9b26482332cda99a9acccb58d284af7bc7c946a42fd3/pydantic_core-2.33.1-cp313-cp313-win32.whl", hash = "sha256:ee12a7be1742f81b8a65b36c6921022301d466b82d80315d215c4c691724986f", size = 1915262 }, + { url = "https://files.pythonhosted.org/packages/8a/f4/e457a7849beeed1e5defbcf5051c6f7b3c91a0624dd31543a64fc9adcf52/pydantic_core-2.33.1-cp313-cp313-win_amd64.whl", hash = "sha256:ede9b407e39949d2afc46385ce6bd6e11588660c26f80576c11c958e6647bc40", size = 1956626 }, + { url = "https://files.pythonhosted.org/packages/20/d0/e8d567a7cff7b04e017ae164d98011f1e1894269fe8e90ea187a3cbfb562/pydantic_core-2.33.1-cp313-cp313-win_arm64.whl", hash = "sha256:aa687a23d4b7871a00e03ca96a09cad0f28f443690d300500603bd0adba4b523", size = 1909590 }, + { url = "https://files.pythonhosted.org/packages/ef/fd/24ea4302d7a527d672c5be06e17df16aabfb4e9fdc6e0b345c21580f3d2a/pydantic_core-2.33.1-cp313-cp313t-macosx_11_0_arm64.whl", hash = "sha256:401d7b76e1000d0dd5538e6381d28febdcacb097c8d340dde7d7fc6e13e9f95d", size = 1812963 }, + { url = "https://files.pythonhosted.org/packages/5f/95/4fbc2ecdeb5c1c53f1175a32d870250194eb2fdf6291b795ab08c8646d5d/pydantic_core-2.33.1-cp313-cp313t-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:7aeb055a42d734c0255c9e489ac67e75397d59c6fbe60d155851e9782f276a9c", size = 1986896 }, + { url = "https://files.pythonhosted.org/packages/71/ae/fe31e7f4a62431222d8f65a3bd02e3fa7e6026d154a00818e6d30520ea77/pydantic_core-2.33.1-cp313-cp313t-win_amd64.whl", hash = "sha256:338ea9b73e6e109f15ab439e62cb3b78aa752c7fd9536794112e14bee02c8d18", size = 1931810 }, ] [[package]] @@ -1975,20 +1993,20 @@ wheels = [ [[package]] name = "pyright" -version = "1.1.392.post0" +version = "1.1.399" source = { registry = "https://pypi.org/simple" } dependencies = [ { name = "nodeenv" }, { name = "typing-extensions" }, ] -sdist = { url = "https://files.pythonhosted.org/packages/66/df/3c6f6b08fba7ccf49b114dfc4bb33e25c299883fd763f93fad47ef8bc58d/pyright-1.1.392.post0.tar.gz", hash = "sha256:3b7f88de74a28dcfa90c7d90c782b6569a48c2be5f9d4add38472bdaac247ebd", size = 3789911 } +sdist = { url = "https://files.pythonhosted.org/packages/db/9d/d91d5f6d26b2db95476fefc772e2b9a16d54c6bd0ea6bb5c1b6d635ab8b4/pyright-1.1.399.tar.gz", hash = "sha256:439035d707a36c3d1b443aec980bc37053fbda88158eded24b8eedcf1c7b7a1b", size = 3856954 } wheels = [ - { url = "https://files.pythonhosted.org/packages/e7/b1/a18de17f40e4f61ca58856b9ef9b0febf74ff88978c3f7776f910071f567/pyright-1.1.392.post0-py3-none-any.whl", hash = "sha256:252f84458a46fa2f0fd4e2f91fc74f50b9ca52c757062e93f6c250c0d8329eb2", size = 5595487 }, + { url = "https://files.pythonhosted.org/packages/2f/b5/380380c9e7a534cb1783c70c3e8ac6d1193c599650a55838d0557586796e/pyright-1.1.399-py3-none-any.whl", hash = "sha256:55f9a875ddf23c9698f24208c764465ffdfd38be6265f7faf9a176e1dc549f3b", size = 5592584 }, ] [[package]] name = "pytest" -version = "8.3.4" +version = "8.3.5" source = { registry = "https://pypi.org/simple" } dependencies = [ { name = "colorama", marker = "sys_platform == 'win32'" }, @@ -1996,9 +2014,9 @@ dependencies = [ { name = "packaging" }, { name = "pluggy" }, ] -sdist = { url = "https://files.pythonhosted.org/packages/05/35/30e0d83068951d90a01852cb1cef56e5d8a09d20c7f511634cc2f7e0372a/pytest-8.3.4.tar.gz", hash = "sha256:965370d062bce11e73868e0335abac31b4d3de0e82f4007408d242b4f8610761", size = 1445919 } +sdist = { url = "https://files.pythonhosted.org/packages/ae/3c/c9d525a414d506893f0cd8a8d0de7706446213181570cdbd766691164e40/pytest-8.3.5.tar.gz", hash = "sha256:f4efe70cc14e511565ac476b57c279e12a855b11f48f212af1080ef2263d3845", size = 1450891 } wheels = [ - { url = "https://files.pythonhosted.org/packages/11/92/76a1c94d3afee238333bc0a42b82935dd8f9cf8ce9e336ff87ee14d9e1cf/pytest-8.3.4-py3-none-any.whl", hash = "sha256:50e16d954148559c9a74109af1eaf0c945ba2d8f30f0a3d3335edde19788b6f6", size = 343083 }, + { url = "https://files.pythonhosted.org/packages/30/3d/64ad57c803f1fa1e963a7946b6e0fea4a70df53c1a7fed304586539c2bac/pytest-8.3.5-py3-none-any.whl", hash = "sha256:c69214aa47deac29fad6c2a4f590b9c4a9fdb16a403176fe154b79c0b4d4d820", size = 343634 }, ] [[package]] @@ -2027,32 +2045,32 @@ wheels = [ [[package]] name = "python-dotenv" -version = "1.0.1" +version = "1.1.0" source = { registry = "https://pypi.org/simple" } -sdist = { url = "https://files.pythonhosted.org/packages/bc/57/e84d88dfe0aec03b7a2d4327012c1627ab5f03652216c63d49846d7a6c58/python-dotenv-1.0.1.tar.gz", hash = "sha256:e324ee90a023d808f1959c46bcbc04446a10ced277783dc6ee09987c37ec10ca", size = 39115 } +sdist = { url = "https://files.pythonhosted.org/packages/88/2c/7bb1416c5620485aa793f2de31d3df393d3686aa8a8506d11e10e13c5baf/python_dotenv-1.1.0.tar.gz", hash = "sha256:41f90bc6f5f177fb41f53e87666db362025010eb28f60a01c9143bfa33a2b2d5", size = 39920 } wheels = [ - { url = "https://files.pythonhosted.org/packages/6a/3e/b68c118422ec867fa7ab88444e1274aa40681c606d59ac27de5a5588f082/python_dotenv-1.0.1-py3-none-any.whl", hash = "sha256:f7b63ef50f1b690dddf550d03497b66d609393b40b564ed0d674909a68ebf16a", size = 19863 }, + { url = "https://files.pythonhosted.org/packages/1e/18/98a99ad95133c6a6e2005fe89faedf294a748bd5dc803008059409ac9b1e/python_dotenv-1.1.0-py3-none-any.whl", hash = "sha256:d7c01d9e2293916c18baf562d95698754b0dbbb5e74d457c45d4f6561fb9d55d", size = 20256 }, ] [[package]] name = "python-json-logger" -version = "3.2.1" +version = "3.3.0" source = { registry = "https://pypi.org/simple" } -sdist = { url = "https://files.pythonhosted.org/packages/e3/c4/358cd13daa1d912ef795010897a483ab2f0b41c9ea1b35235a8b2f7d15a7/python_json_logger-3.2.1.tar.gz", hash = "sha256:8eb0554ea17cb75b05d2848bc14fb02fbdbd9d6972120781b974380bfa162008", size = 16287 } +sdist = { url = "https://files.pythonhosted.org/packages/9e/de/d3144a0bceede957f961e975f3752760fbe390d57fbe194baf709d8f1f7b/python_json_logger-3.3.0.tar.gz", hash = "sha256:12b7e74b17775e7d565129296105bbe3910842d9d0eb083fc83a6a617aa8df84", size = 16642 } wheels = [ - { url = "https://files.pythonhosted.org/packages/4b/72/2f30cf26664fcfa0bd8ec5ee62ec90c03bd485e4a294d92aabc76c5203a5/python_json_logger-3.2.1-py3-none-any.whl", hash = "sha256:cdc17047eb5374bd311e748b42f99d71223f3b0e186f4206cc5d52aefe85b090", size = 14924 }, + { url = "https://files.pythonhosted.org/packages/08/20/0f2523b9e50a8052bc6a8b732dfc8568abbdc42010aef03a2d750bdab3b2/python_json_logger-3.3.0-py3-none-any.whl", hash = "sha256:dd980fae8cffb24c13caf6e158d3d61c0d6d22342f932cb6e9deedab3d35eec7", size = 15163 }, ] [[package]] name = "python-levenshtein" -version = "0.26.1" +version = "0.27.1" source = { registry = "https://pypi.org/simple" } dependencies = [ { name = "levenshtein" }, ] -sdist = { url = "https://files.pythonhosted.org/packages/31/72/58d77cb80b3c130d94f53a8204ffad9acfddb925b2fb5818ff9af0b3c832/python_levenshtein-0.26.1.tar.gz", hash = "sha256:24ba578e28058ebb4afa2700057e1678d7adf27e43cd1f17700c09a9009d5d3a", size = 12276 } +sdist = { url = "https://files.pythonhosted.org/packages/13/f6/d865a565b7eeef4b5f9a18accafb03d5730c712420fc84a3a40555f7ea6b/python_levenshtein-0.27.1.tar.gz", hash = "sha256:3a5314a011016d373d309a68e875fd029caaa692ad3f32e78319299648045f11", size = 12326 } wheels = [ - { url = "https://files.pythonhosted.org/packages/0f/d7/03e0453719ed89724664f781f0255949408118093dbf77a2aa2a1198b38e/python_Levenshtein-0.26.1-py3-none-any.whl", hash = "sha256:8ef5e529dd640fb00f05ee62d998d2ee862f19566b641ace775d5ae16167b2ef", size = 9426 }, + { url = "https://files.pythonhosted.org/packages/2a/95/8c8fd923b0a702388da4f9e0368f490d123cc5224279e6a083984304a15e/python_levenshtein-0.27.1-py3-none-any.whl", hash = "sha256:e1a4bc2a70284b2ebc4c505646142fecd0f831e49aa04ed972995895aec57396", size = 9426 }, ] [[package]] @@ -2066,25 +2084,26 @@ wheels = [ [[package]] name = "pywin32" -version = "308" +version = "310" source = { registry = "https://pypi.org/simple" } wheels = [ - { url = "https://files.pythonhosted.org/packages/00/7c/d00d6bdd96de4344e06c4afbf218bc86b54436a94c01c71a8701f613aa56/pywin32-308-cp312-cp312-win32.whl", hash = "sha256:587f3e19696f4bf96fde9d8a57cec74a57021ad5f204c9e627e15c33ff568897", size = 5939729 }, - { url = "https://files.pythonhosted.org/packages/21/27/0c8811fbc3ca188f93b5354e7c286eb91f80a53afa4e11007ef661afa746/pywin32-308-cp312-cp312-win_amd64.whl", hash = "sha256:00b3e11ef09ede56c6a43c71f2d31857cf7c54b0ab6e78ac659497abd2834f47", size = 6543015 }, - { url = "https://files.pythonhosted.org/packages/9d/0f/d40f8373608caed2255781a3ad9a51d03a594a1248cd632d6a298daca693/pywin32-308-cp312-cp312-win_arm64.whl", hash = "sha256:9b4de86c8d909aed15b7011182c8cab38c8850de36e6afb1f0db22b8959e3091", size = 7976033 }, - { url = "https://files.pythonhosted.org/packages/a9/a4/aa562d8935e3df5e49c161b427a3a2efad2ed4e9cf81c3de636f1fdddfd0/pywin32-308-cp313-cp313-win32.whl", hash = "sha256:1c44539a37a5b7b21d02ab34e6a4d314e0788f1690d65b48e9b0b89f31abbbed", size = 5938579 }, - { url = "https://files.pythonhosted.org/packages/c7/50/b0efb8bb66210da67a53ab95fd7a98826a97ee21f1d22949863e6d588b22/pywin32-308-cp313-cp313-win_amd64.whl", hash = "sha256:fd380990e792eaf6827fcb7e187b2b4b1cede0585e3d0c9e84201ec27b9905e4", size = 6542056 }, - { url = "https://files.pythonhosted.org/packages/26/df/2b63e3e4f2df0224f8aaf6d131f54fe4e8c96400eb9df563e2aae2e1a1f9/pywin32-308-cp313-cp313-win_arm64.whl", hash = "sha256:ef313c46d4c18dfb82a2431e3051ac8f112ccee1a34f29c263c583c568db63cd", size = 7974986 }, + { url = "https://files.pythonhosted.org/packages/6b/ec/4fdbe47932f671d6e348474ea35ed94227fb5df56a7c30cbbb42cd396ed0/pywin32-310-cp312-cp312-win32.whl", hash = "sha256:8a75a5cc3893e83a108c05d82198880704c44bbaee4d06e442e471d3c9ea4f3d", size = 8796239 }, + { url = "https://files.pythonhosted.org/packages/e3/e5/b0627f8bb84e06991bea89ad8153a9e50ace40b2e1195d68e9dff6b03d0f/pywin32-310-cp312-cp312-win_amd64.whl", hash = "sha256:bf5c397c9a9a19a6f62f3fb821fbf36cac08f03770056711f765ec1503972060", size = 9503839 }, + { url = "https://files.pythonhosted.org/packages/1f/32/9ccf53748df72301a89713936645a664ec001abd35ecc8578beda593d37d/pywin32-310-cp312-cp312-win_arm64.whl", hash = "sha256:2349cc906eae872d0663d4d6290d13b90621eaf78964bb1578632ff20e152966", size = 8459470 }, + { url = "https://files.pythonhosted.org/packages/1c/09/9c1b978ffc4ae53999e89c19c77ba882d9fce476729f23ef55211ea1c034/pywin32-310-cp313-cp313-win32.whl", hash = "sha256:5d241a659c496ada3253cd01cfaa779b048e90ce4b2b38cd44168ad555ce74ab", size = 8794384 }, + { url = "https://files.pythonhosted.org/packages/45/3c/b4640f740ffebadd5d34df35fecba0e1cfef8fde9f3e594df91c28ad9b50/pywin32-310-cp313-cp313-win_amd64.whl", hash = "sha256:667827eb3a90208ddbdcc9e860c81bde63a135710e21e4cb3348968e4bd5249e", size = 9503039 }, + { url = "https://files.pythonhosted.org/packages/b4/f4/f785020090fb050e7fb6d34b780f2231f302609dc964672f72bfaeb59a28/pywin32-310-cp313-cp313-win_arm64.whl", hash = "sha256:e308f831de771482b7cf692a1f308f8fca701b2d8f9dde6cc440c7da17e47b33", size = 8458152 }, ] [[package]] name = "pywinpty" -version = "2.0.14" +version = "2.0.15" source = { registry = "https://pypi.org/simple" } -sdist = { url = "https://files.pythonhosted.org/packages/f1/82/90f8750423cba4b9b6c842df227609fb60704482d7abf6dd47e2babc055a/pywinpty-2.0.14.tar.gz", hash = "sha256:18bd9529e4a5daf2d9719aa17788ba6013e594ae94c5a0c27e83df3278b0660e", size = 27769 } +sdist = { url = "https://files.pythonhosted.org/packages/2d/7c/917f9c4681bb8d34bfbe0b79d36bbcd902651aeab48790df3d30ba0202fb/pywinpty-2.0.15.tar.gz", hash = "sha256:312cf39153a8736c617d45ce8b6ad6cd2107de121df91c455b10ce6bba7a39b2", size = 29017 } wheels = [ - { url = "https://files.pythonhosted.org/packages/ad/79/759ae767a3b78d340446efd54dd1fe4f7dafa4fc7be96ed757e44bcdba54/pywinpty-2.0.14-cp312-none-win_amd64.whl", hash = "sha256:55dad362ef3e9408ade68fd173e4f9032b3ce08f68cfe7eacb2c263ea1179737", size = 1397207 }, - { url = "https://files.pythonhosted.org/packages/7d/34/b77b3c209bf2eaa6455390c8d5449241637f5957f41636a2204065d52bfa/pywinpty-2.0.14-cp313-none-win_amd64.whl", hash = "sha256:074fb988a56ec79ca90ed03a896d40707131897cefb8f76f926e3834227f2819", size = 1396698 }, + { url = "https://files.pythonhosted.org/packages/88/e5/9714def18c3a411809771a3fbcec70bffa764b9675afb00048a620fca604/pywinpty-2.0.15-cp312-cp312-win_amd64.whl", hash = "sha256:83a8f20b430bbc5d8957249f875341a60219a4e971580f2ba694fbfb54a45ebc", size = 1405243 }, + { url = "https://files.pythonhosted.org/packages/fb/16/2ab7b3b7f55f3c6929e5f629e1a68362981e4e5fed592a2ed1cb4b4914a5/pywinpty-2.0.15-cp313-cp313-win_amd64.whl", hash = "sha256:ab5920877dd632c124b4ed17bc6dd6ef3b9f86cd492b963ffdb1a67b85b0f408", size = 1405020 }, + { url = "https://files.pythonhosted.org/packages/7c/16/edef3515dd2030db2795dbfbe392232c7a0f3dc41b98e92b38b42ba497c7/pywinpty-2.0.15-cp313-cp313t-win_amd64.whl", hash = "sha256:a4560ad8c01e537708d2790dbe7da7d986791de805d89dd0d3697ca59e9e4901", size = 1404151 }, ] [[package]] @@ -2115,84 +2134,81 @@ wheels = [ [[package]] name = "pyzmq" -version = "26.2.0" +version = "26.4.0" source = { registry = "https://pypi.org/simple" } dependencies = [ { name = "cffi", marker = "implementation_name == 'pypy'" }, ] -sdist = { url = "https://files.pythonhosted.org/packages/fd/05/bed626b9f7bb2322cdbbf7b4bd8f54b1b617b0d2ab2d3547d6e39428a48e/pyzmq-26.2.0.tar.gz", hash = "sha256:070672c258581c8e4f640b5159297580a9974b026043bd4ab0470be9ed324f1f", size = 271975 } -wheels = [ - { url = "https://files.pythonhosted.org/packages/28/2f/78a766c8913ad62b28581777ac4ede50c6d9f249d39c2963e279524a1bbe/pyzmq-26.2.0-cp312-cp312-macosx_10_15_universal2.whl", hash = "sha256:ded0fc7d90fe93ae0b18059930086c51e640cdd3baebdc783a695c77f123dcd9", size = 1343105 }, - { url = "https://files.pythonhosted.org/packages/b7/9c/4b1e2d3d4065be715e007fe063ec7885978fad285f87eae1436e6c3201f4/pyzmq-26.2.0-cp312-cp312-macosx_10_9_x86_64.whl", hash = "sha256:17bf5a931c7f6618023cdacc7081f3f266aecb68ca692adac015c383a134ca52", size = 1008365 }, - { url = "https://files.pythonhosted.org/packages/4f/ef/5a23ec689ff36d7625b38d121ef15abfc3631a9aecb417baf7a4245e4124/pyzmq-26.2.0-cp312-cp312-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:55cf66647e49d4621a7e20c8d13511ef1fe1efbbccf670811864452487007e08", size = 665923 }, - { url = "https://files.pythonhosted.org/packages/ae/61/d436461a47437d63c6302c90724cf0981883ec57ceb6073873f32172d676/pyzmq-26.2.0-cp312-cp312-manylinux_2_17_i686.manylinux2014_i686.whl", hash = "sha256:4661c88db4a9e0f958c8abc2b97472e23061f0bc737f6f6179d7a27024e1faa5", size = 903400 }, - { url = "https://files.pythonhosted.org/packages/47/42/fc6d35ecefe1739a819afaf6f8e686f7f02a4dd241c78972d316f403474c/pyzmq-26.2.0-cp312-cp312-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:ea7f69de383cb47522c9c208aec6dd17697db7875a4674c4af3f8cfdac0bdeae", size = 860034 }, - { url = "https://files.pythonhosted.org/packages/07/3b/44ea6266a6761e9eefaa37d98fabefa112328808ac41aa87b4bbb668af30/pyzmq-26.2.0-cp312-cp312-manylinux_2_28_x86_64.whl", hash = "sha256:7f98f6dfa8b8ccaf39163ce872bddacca38f6a67289116c8937a02e30bbe9711", size = 860579 }, - { url = "https://files.pythonhosted.org/packages/38/6f/4df2014ab553a6052b0e551b37da55166991510f9e1002c89cab7ce3b3f2/pyzmq-26.2.0-cp312-cp312-musllinux_1_1_aarch64.whl", hash = "sha256:e3e0210287329272539eea617830a6a28161fbbd8a3271bf4150ae3e58c5d0e6", size = 1196246 }, - { url = "https://files.pythonhosted.org/packages/38/9d/ee240fc0c9fe9817f0c9127a43238a3e28048795483c403cc10720ddef22/pyzmq-26.2.0-cp312-cp312-musllinux_1_1_i686.whl", hash = "sha256:6b274e0762c33c7471f1a7471d1a2085b1a35eba5cdc48d2ae319f28b6fc4de3", size = 1507441 }, - { url = "https://files.pythonhosted.org/packages/85/4f/01711edaa58d535eac4a26c294c617c9a01f09857c0ce191fd574d06f359/pyzmq-26.2.0-cp312-cp312-musllinux_1_1_x86_64.whl", hash = "sha256:29c6a4635eef69d68a00321e12a7d2559fe2dfccfa8efae3ffb8e91cd0b36a8b", size = 1406498 }, - { url = "https://files.pythonhosted.org/packages/07/18/907134c85c7152f679ed744e73e645b365f3ad571f38bdb62e36f347699a/pyzmq-26.2.0-cp312-cp312-win32.whl", hash = "sha256:989d842dc06dc59feea09e58c74ca3e1678c812a4a8a2a419046d711031f69c7", size = 575533 }, - { url = "https://files.pythonhosted.org/packages/ce/2c/a6f4a20202a4d3c582ad93f95ee78d79bbdc26803495aec2912b17dbbb6c/pyzmq-26.2.0-cp312-cp312-win_amd64.whl", hash = "sha256:2a50625acdc7801bc6f74698c5c583a491c61d73c6b7ea4dee3901bb99adb27a", size = 637768 }, - { url = "https://files.pythonhosted.org/packages/5f/0e/eb16ff731632d30554bf5af4dbba3ffcd04518219d82028aea4ae1b02ca5/pyzmq-26.2.0-cp312-cp312-win_arm64.whl", hash = "sha256:4d29ab8592b6ad12ebbf92ac2ed2bedcfd1cec192d8e559e2e099f648570e19b", size = 540675 }, - { url = "https://files.pythonhosted.org/packages/04/a7/0f7e2f6c126fe6e62dbae0bc93b1bd3f1099cf7fea47a5468defebe3f39d/pyzmq-26.2.0-cp313-cp313-macosx_10_13_x86_64.whl", hash = "sha256:9dd8cd1aeb00775f527ec60022004d030ddc51d783d056e3e23e74e623e33726", size = 1006564 }, - { url = "https://files.pythonhosted.org/packages/31/b6/a187165c852c5d49f826a690857684333a6a4a065af0a6015572d2284f6a/pyzmq-26.2.0-cp313-cp313-macosx_10_15_universal2.whl", hash = "sha256:28c812d9757fe8acecc910c9ac9dafd2ce968c00f9e619db09e9f8f54c3a68a3", size = 1340447 }, - { url = "https://files.pythonhosted.org/packages/68/ba/f4280c58ff71f321602a6e24fd19879b7e79793fb8ab14027027c0fb58ef/pyzmq-26.2.0-cp313-cp313-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:4d80b1dd99c1942f74ed608ddb38b181b87476c6a966a88a950c7dee118fdf50", size = 665485 }, - { url = "https://files.pythonhosted.org/packages/77/b5/c987a5c53c7d8704216f29fc3d810b32f156bcea488a940e330e1bcbb88d/pyzmq-26.2.0-cp313-cp313-manylinux_2_17_i686.manylinux2014_i686.whl", hash = "sha256:8c997098cc65e3208eca09303630e84d42718620e83b733d0fd69543a9cab9cb", size = 903484 }, - { url = "https://files.pythonhosted.org/packages/29/c9/07da157d2db18c72a7eccef8e684cefc155b712a88e3d479d930aa9eceba/pyzmq-26.2.0-cp313-cp313-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:7ad1bc8d1b7a18497dda9600b12dc193c577beb391beae5cd2349184db40f187", size = 859981 }, - { url = "https://files.pythonhosted.org/packages/43/09/e12501bd0b8394b7d02c41efd35c537a1988da67fc9c745cae9c6c776d31/pyzmq-26.2.0-cp313-cp313-manylinux_2_28_x86_64.whl", hash = "sha256:bea2acdd8ea4275e1278350ced63da0b166421928276c7c8e3f9729d7402a57b", size = 860334 }, - { url = "https://files.pythonhosted.org/packages/eb/ff/f5ec1d455f8f7385cc0a8b2acd8c807d7fade875c14c44b85c1bddabae21/pyzmq-26.2.0-cp313-cp313-musllinux_1_1_aarch64.whl", hash = "sha256:23f4aad749d13698f3f7b64aad34f5fc02d6f20f05999eebc96b89b01262fb18", size = 1196179 }, - { url = "https://files.pythonhosted.org/packages/ec/8a/bb2ac43295b1950fe436a81fc5b298be0b96ac76fb029b514d3ed58f7b27/pyzmq-26.2.0-cp313-cp313-musllinux_1_1_i686.whl", hash = "sha256:a4f96f0d88accc3dbe4a9025f785ba830f968e21e3e2c6321ccdfc9aef755115", size = 1507668 }, - { url = "https://files.pythonhosted.org/packages/a9/49/dbc284ebcfd2dca23f6349227ff1616a7ee2c4a35fe0a5d6c3deff2b4fed/pyzmq-26.2.0-cp313-cp313-musllinux_1_1_x86_64.whl", hash = "sha256:ced65e5a985398827cc9276b93ef6dfabe0273c23de8c7931339d7e141c2818e", size = 1406539 }, - { url = "https://files.pythonhosted.org/packages/00/68/093cdce3fe31e30a341d8e52a1ad86392e13c57970d722c1f62a1d1a54b6/pyzmq-26.2.0-cp313-cp313-win32.whl", hash = "sha256:31507f7b47cc1ead1f6e86927f8ebb196a0bab043f6345ce070f412a59bf87b5", size = 575567 }, - { url = "https://files.pythonhosted.org/packages/92/ae/6cc4657148143412b5819b05e362ae7dd09fb9fe76e2a539dcff3d0386bc/pyzmq-26.2.0-cp313-cp313-win_amd64.whl", hash = "sha256:70fc7fcf0410d16ebdda9b26cbd8bf8d803d220a7f3522e060a69a9c87bf7bad", size = 637551 }, - { url = "https://files.pythonhosted.org/packages/6c/67/fbff102e201688f97c8092e4c3445d1c1068c2f27bbd45a578df97ed5f94/pyzmq-26.2.0-cp313-cp313-win_arm64.whl", hash = "sha256:c3789bd5768ab5618ebf09cef6ec2b35fed88709b104351748a63045f0ff9797", size = 540378 }, - { url = "https://files.pythonhosted.org/packages/3f/fe/2d998380b6e0122c6c4bdf9b6caf490831e5f5e2d08a203b5adff060c226/pyzmq-26.2.0-cp313-cp313t-macosx_10_13_x86_64.whl", hash = "sha256:034da5fc55d9f8da09015d368f519478a52675e558c989bfcb5cf6d4e16a7d2a", size = 1007378 }, - { url = "https://files.pythonhosted.org/packages/4a/f4/30d6e7157f12b3a0390bde94d6a8567cdb88846ed068a6e17238a4ccf600/pyzmq-26.2.0-cp313-cp313t-macosx_10_15_universal2.whl", hash = "sha256:c92d73464b886931308ccc45b2744e5968cbaade0b1d6aeb40d8ab537765f5bc", size = 1329532 }, - { url = "https://files.pythonhosted.org/packages/82/86/3fe917870e15ee1c3ad48229a2a64458e36036e64b4afa9659045d82bfa8/pyzmq-26.2.0-cp313-cp313t-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:794a4562dcb374f7dbbfb3f51d28fb40123b5a2abadee7b4091f93054909add5", size = 653242 }, - { url = "https://files.pythonhosted.org/packages/50/2d/242e7e6ef6c8c19e6cb52d095834508cd581ffb925699fd3c640cdc758f1/pyzmq-26.2.0-cp313-cp313t-manylinux_2_17_i686.manylinux2014_i686.whl", hash = "sha256:aee22939bb6075e7afededabad1a56a905da0b3c4e3e0c45e75810ebe3a52672", size = 888404 }, - { url = "https://files.pythonhosted.org/packages/ac/11/7270566e1f31e4ea73c81ec821a4b1688fd551009a3d2bab11ec66cb1e8f/pyzmq-26.2.0-cp313-cp313t-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:2ae90ff9dad33a1cfe947d2c40cb9cb5e600d759ac4f0fd22616ce6540f72797", size = 845858 }, - { url = "https://files.pythonhosted.org/packages/91/d5/72b38fbc69867795c8711bdd735312f9fef1e3d9204e2f63ab57085434b9/pyzmq-26.2.0-cp313-cp313t-manylinux_2_28_x86_64.whl", hash = "sha256:43a47408ac52647dfabbc66a25b05b6a61700b5165807e3fbd40063fcaf46386", size = 847375 }, - { url = "https://files.pythonhosted.org/packages/dd/9a/10ed3c7f72b4c24e719c59359fbadd1a27556a28b36cdf1cd9e4fb7845d5/pyzmq-26.2.0-cp313-cp313t-musllinux_1_1_aarch64.whl", hash = "sha256:25bf2374a2a8433633c65ccb9553350d5e17e60c8eb4de4d92cc6bd60f01d306", size = 1183489 }, - { url = "https://files.pythonhosted.org/packages/72/2d/8660892543fabf1fe41861efa222455811adac9f3c0818d6c3170a1153e3/pyzmq-26.2.0-cp313-cp313t-musllinux_1_1_i686.whl", hash = "sha256:007137c9ac9ad5ea21e6ad97d3489af654381324d5d3ba614c323f60dab8fae6", size = 1492932 }, - { url = "https://files.pythonhosted.org/packages/7b/d6/32fd69744afb53995619bc5effa2a405ae0d343cd3e747d0fbc43fe894ee/pyzmq-26.2.0-cp313-cp313t-musllinux_1_1_x86_64.whl", hash = "sha256:470d4a4f6d48fb34e92d768b4e8a5cc3780db0d69107abf1cd7ff734b9766eb0", size = 1392485 }, +sdist = { url = "https://files.pythonhosted.org/packages/b1/11/b9213d25230ac18a71b39b3723494e57adebe36e066397b961657b3b41c1/pyzmq-26.4.0.tar.gz", hash = "sha256:4bd13f85f80962f91a651a7356fe0472791a5f7a92f227822b5acf44795c626d", size = 278293 } +wheels = [ + { url = "https://files.pythonhosted.org/packages/10/44/a778555ebfdf6c7fc00816aad12d185d10a74d975800341b1bc36bad1187/pyzmq-26.4.0-cp312-cp312-macosx_10_15_universal2.whl", hash = "sha256:5227cb8da4b6f68acfd48d20c588197fd67745c278827d5238c707daf579227b", size = 1341586 }, + { url = "https://files.pythonhosted.org/packages/9c/4f/f3a58dc69ac757e5103be3bd41fb78721a5e17da7cc617ddb56d973a365c/pyzmq-26.4.0-cp312-cp312-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:e1c07a7fa7f7ba86554a2b1bef198c9fed570c08ee062fd2fd6a4dcacd45f905", size = 665880 }, + { url = "https://files.pythonhosted.org/packages/fe/45/50230bcfb3ae5cb98bee683b6edeba1919f2565d7cc1851d3c38e2260795/pyzmq-26.4.0-cp312-cp312-manylinux_2_17_i686.manylinux2014_i686.whl", hash = "sha256:ae775fa83f52f52de73183f7ef5395186f7105d5ed65b1ae65ba27cb1260de2b", size = 902216 }, + { url = "https://files.pythonhosted.org/packages/41/59/56bbdc5689be5e13727491ad2ba5efd7cd564365750514f9bc8f212eef82/pyzmq-26.4.0-cp312-cp312-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:66c760d0226ebd52f1e6b644a9e839b5db1e107a23f2fcd46ec0569a4fdd4e63", size = 859814 }, + { url = "https://files.pythonhosted.org/packages/81/b1/57db58cfc8af592ce94f40649bd1804369c05b2190e4cbc0a2dad572baeb/pyzmq-26.4.0-cp312-cp312-manylinux_2_28_x86_64.whl", hash = "sha256:ef8c6ecc1d520debc147173eaa3765d53f06cd8dbe7bd377064cdbc53ab456f5", size = 855889 }, + { url = "https://files.pythonhosted.org/packages/e8/92/47542e629cbac8f221c230a6d0f38dd3d9cff9f6f589ed45fdf572ffd726/pyzmq-26.4.0-cp312-cp312-musllinux_1_1_aarch64.whl", hash = "sha256:3150ef4084e163dec29ae667b10d96aad309b668fac6810c9e8c27cf543d6e0b", size = 1197153 }, + { url = "https://files.pythonhosted.org/packages/07/e5/b10a979d1d565d54410afc87499b16c96b4a181af46e7645ab4831b1088c/pyzmq-26.4.0-cp312-cp312-musllinux_1_1_i686.whl", hash = "sha256:4448c9e55bf8329fa1dcedd32f661bf611214fa70c8e02fee4347bc589d39a84", size = 1507352 }, + { url = "https://files.pythonhosted.org/packages/ab/58/5a23db84507ab9c01c04b1232a7a763be66e992aa2e66498521bbbc72a71/pyzmq-26.4.0-cp312-cp312-musllinux_1_1_x86_64.whl", hash = "sha256:e07dde3647afb084d985310d067a3efa6efad0621ee10826f2cb2f9a31b89d2f", size = 1406834 }, + { url = "https://files.pythonhosted.org/packages/22/74/aaa837b331580c13b79ac39396601fb361454ee184ca85e8861914769b99/pyzmq-26.4.0-cp312-cp312-win32.whl", hash = "sha256:ba034a32ecf9af72adfa5ee383ad0fd4f4e38cdb62b13624278ef768fe5b5b44", size = 577992 }, + { url = "https://files.pythonhosted.org/packages/30/0f/55f8c02c182856743b82dde46b2dc3e314edda7f1098c12a8227eeda0833/pyzmq-26.4.0-cp312-cp312-win_amd64.whl", hash = "sha256:056a97aab4064f526ecb32f4343917a4022a5d9efb6b9df990ff72e1879e40be", size = 640466 }, + { url = "https://files.pythonhosted.org/packages/e4/29/073779afc3ef6f830b8de95026ef20b2d1ec22d0324d767748d806e57379/pyzmq-26.4.0-cp312-cp312-win_arm64.whl", hash = "sha256:2f23c750e485ce1eb639dbd576d27d168595908aa2d60b149e2d9e34c9df40e0", size = 556342 }, + { url = "https://files.pythonhosted.org/packages/d7/20/fb2c92542488db70f833b92893769a569458311a76474bda89dc4264bd18/pyzmq-26.4.0-cp313-cp313-macosx_10_15_universal2.whl", hash = "sha256:c43fac689880f5174d6fc864857d1247fe5cfa22b09ed058a344ca92bf5301e3", size = 1339484 }, + { url = "https://files.pythonhosted.org/packages/58/29/2f06b9cabda3a6ea2c10f43e67ded3e47fc25c54822e2506dfb8325155d4/pyzmq-26.4.0-cp313-cp313-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:902aca7eba477657c5fb81c808318460328758e8367ecdd1964b6330c73cae43", size = 666106 }, + { url = "https://files.pythonhosted.org/packages/77/e4/dcf62bd29e5e190bd21bfccaa4f3386e01bf40d948c239239c2f1e726729/pyzmq-26.4.0-cp313-cp313-manylinux_2_17_i686.manylinux2014_i686.whl", hash = "sha256:e5e48a830bfd152fe17fbdeaf99ac5271aa4122521bf0d275b6b24e52ef35eb6", size = 902056 }, + { url = "https://files.pythonhosted.org/packages/1a/cf/b36b3d7aea236087d20189bec1a87eeb2b66009731d7055e5c65f845cdba/pyzmq-26.4.0-cp313-cp313-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:31be2b6de98c824c06f5574331f805707c667dc8f60cb18580b7de078479891e", size = 860148 }, + { url = "https://files.pythonhosted.org/packages/18/a6/f048826bc87528c208e90604c3bf573801e54bd91e390cbd2dfa860e82dc/pyzmq-26.4.0-cp313-cp313-manylinux_2_28_x86_64.whl", hash = "sha256:6332452034be001bbf3206ac59c0d2a7713de5f25bb38b06519fc6967b7cf771", size = 855983 }, + { url = "https://files.pythonhosted.org/packages/0a/27/454d34ab6a1d9772a36add22f17f6b85baf7c16e14325fa29e7202ca8ee8/pyzmq-26.4.0-cp313-cp313-musllinux_1_1_aarch64.whl", hash = "sha256:da8c0f5dd352136853e6a09b1b986ee5278dfddfebd30515e16eae425c872b30", size = 1197274 }, + { url = "https://files.pythonhosted.org/packages/f4/3d/7abfeab6b83ad38aa34cbd57c6fc29752c391e3954fd12848bd8d2ec0df6/pyzmq-26.4.0-cp313-cp313-musllinux_1_1_i686.whl", hash = "sha256:f4ccc1a0a2c9806dda2a2dd118a3b7b681e448f3bb354056cad44a65169f6d86", size = 1507120 }, + { url = "https://files.pythonhosted.org/packages/13/ff/bc8d21dbb9bc8705126e875438a1969c4f77e03fc8565d6901c7933a3d01/pyzmq-26.4.0-cp313-cp313-musllinux_1_1_x86_64.whl", hash = "sha256:1c0b5fceadbab461578daf8d1dcc918ebe7ddd2952f748cf30c7cf2de5d51101", size = 1406738 }, + { url = "https://files.pythonhosted.org/packages/f5/5d/d4cd85b24de71d84d81229e3bbb13392b2698432cf8fdcea5afda253d587/pyzmq-26.4.0-cp313-cp313-win32.whl", hash = "sha256:28e2b0ff5ba4b3dd11062d905682bad33385cfa3cc03e81abd7f0822263e6637", size = 577826 }, + { url = "https://files.pythonhosted.org/packages/c6/6c/f289c1789d7bb6e5a3b3bef7b2a55089b8561d17132be7d960d3ff33b14e/pyzmq-26.4.0-cp313-cp313-win_amd64.whl", hash = "sha256:23ecc9d241004c10e8b4f49d12ac064cd7000e1643343944a10df98e57bc544b", size = 640406 }, + { url = "https://files.pythonhosted.org/packages/b3/99/676b8851cb955eb5236a0c1e9ec679ea5ede092bf8bf2c8a68d7e965cac3/pyzmq-26.4.0-cp313-cp313-win_arm64.whl", hash = "sha256:1edb0385c7f025045d6e0f759d4d3afe43c17a3d898914ec6582e6f464203c08", size = 556216 }, + { url = "https://files.pythonhosted.org/packages/65/c2/1fac340de9d7df71efc59d9c50fc7a635a77b103392d1842898dd023afcb/pyzmq-26.4.0-cp313-cp313t-macosx_10_15_universal2.whl", hash = "sha256:93a29e882b2ba1db86ba5dd5e88e18e0ac6b627026c5cfbec9983422011b82d4", size = 1333769 }, + { url = "https://files.pythonhosted.org/packages/5c/c7/6c03637e8d742c3b00bec4f5e4cd9d1c01b2f3694c6f140742e93ca637ed/pyzmq-26.4.0-cp313-cp313t-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:cb45684f276f57110bb89e4300c00f1233ca631f08f5f42528a5c408a79efc4a", size = 658826 }, + { url = "https://files.pythonhosted.org/packages/a5/97/a8dca65913c0f78e0545af2bb5078aebfc142ca7d91cdaffa1fbc73e5dbd/pyzmq-26.4.0-cp313-cp313t-manylinux_2_17_i686.manylinux2014_i686.whl", hash = "sha256:f72073e75260cb301aad4258ad6150fa7f57c719b3f498cb91e31df16784d89b", size = 891650 }, + { url = "https://files.pythonhosted.org/packages/7d/7e/f63af1031eb060bf02d033732b910fe48548dcfdbe9c785e9f74a6cc6ae4/pyzmq-26.4.0-cp313-cp313t-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:be37e24b13026cfedd233bcbbccd8c0bcd2fdd186216094d095f60076201538d", size = 849776 }, + { url = "https://files.pythonhosted.org/packages/f6/fa/1a009ce582802a895c0d5fe9413f029c940a0a8ee828657a3bb0acffd88b/pyzmq-26.4.0-cp313-cp313t-manylinux_2_28_x86_64.whl", hash = "sha256:237b283044934d26f1eeff4075f751b05d2f3ed42a257fc44386d00df6a270cf", size = 842516 }, + { url = "https://files.pythonhosted.org/packages/6e/bc/f88b0bad0f7a7f500547d71e99f10336f2314e525d4ebf576a1ea4a1d903/pyzmq-26.4.0-cp313-cp313t-musllinux_1_1_aarch64.whl", hash = "sha256:b30f862f6768b17040929a68432c8a8be77780317f45a353cb17e423127d250c", size = 1189183 }, + { url = "https://files.pythonhosted.org/packages/d9/8c/db446a3dd9cf894406dec2e61eeffaa3c07c3abb783deaebb9812c4af6a5/pyzmq-26.4.0-cp313-cp313t-musllinux_1_1_i686.whl", hash = "sha256:c80fcd3504232f13617c6ab501124d373e4895424e65de8b72042333316f64a8", size = 1495501 }, + { url = "https://files.pythonhosted.org/packages/05/4c/bf3cad0d64c3214ac881299c4562b815f05d503bccc513e3fd4fdc6f67e4/pyzmq-26.4.0-cp313-cp313t-musllinux_1_1_x86_64.whl", hash = "sha256:26a2a7451606b87f67cdeca2c2789d86f605da08b4bd616b1a9981605ca3a364", size = 1395540 }, ] [[package]] name = "rapidfuzz" -version = "3.11.0" -source = { registry = "https://pypi.org/simple" } -sdist = { url = "https://files.pythonhosted.org/packages/a4/aa/25e5a20131369d82c7b8288c99c2c3011ec47a3f5953ccc9cb8145720be5/rapidfuzz-3.11.0.tar.gz", hash = "sha256:a53ca4d3f52f00b393fab9b5913c5bafb9afc27d030c8a1db1283da6917a860f", size = 57983000 } -wheels = [ - { url = "https://files.pythonhosted.org/packages/c5/54/954ae2dc7dcb53f5f0953379a4a175d9c2f5e393656ab042843e53780d32/rapidfuzz-3.11.0-cp312-cp312-macosx_10_13_x86_64.whl", hash = "sha256:f382fec4a7891d66fb7163c90754454030bb9200a13f82ee7860b6359f3f2fa8", size = 1938694 }, - { url = "https://files.pythonhosted.org/packages/f9/74/4682d3370821db5374c0f192d1e4123598190cb53d88936016187f80f154/rapidfuzz-3.11.0-cp312-cp312-macosx_11_0_arm64.whl", hash = "sha256:dfaefe08af2a928e72344c800dcbaf6508e86a4ed481e28355e8d4b6a6a5230e", size = 1423836 }, - { url = "https://files.pythonhosted.org/packages/e7/78/ce3d72767e186a9deca30dccb5096cfb03ec49e8e3abf2836ab10d1b4f74/rapidfuzz-3.11.0-cp312-cp312-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:92ebb7c12f682b5906ed98429f48a3dd80dd0f9721de30c97a01473d1a346576", size = 1393199 }, - { url = "https://files.pythonhosted.org/packages/3c/21/26bdbe846726ff7793789da07e155699cafa3ba3ed3bee86d472b4762121/rapidfuzz-3.11.0-cp312-cp312-manylinux_2_17_i686.manylinux2014_i686.whl", hash = "sha256:9a1b3ebc62d4bcdfdeba110944a25ab40916d5383c5e57e7c4a8dc0b6c17211a", size = 5543400 }, - { url = "https://files.pythonhosted.org/packages/c9/d5/78e922cfbfc67011ecee9f6c2fd630dee68650d23b9ce78316386a3d8c88/rapidfuzz-3.11.0-cp312-cp312-manylinux_2_17_ppc64le.manylinux2014_ppc64le.whl", hash = "sha256:9c6d7fea39cb33e71de86397d38bf7ff1a6273e40367f31d05761662ffda49e4", size = 1642855 }, - { url = "https://files.pythonhosted.org/packages/df/bb/dcf084c03c46968c3fbc52a33f2a725e0b8bb54ed714f0866c7dad747358/rapidfuzz-3.11.0-cp312-cp312-manylinux_2_17_s390x.manylinux2014_s390x.whl", hash = "sha256:99aebef8268f2bc0b445b5640fd3312e080bd17efd3fbae4486b20ac00466308", size = 1669853 }, - { url = "https://files.pythonhosted.org/packages/ec/3a/9aa7a2c5b611e8d465e82c1d5f8278be7335769165f68f3ffc5a169f4a23/rapidfuzz-3.11.0-cp312-cp312-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:4469307f464ae3089acf3210b8fc279110d26d10f79e576f385a98f4429f7d97", size = 3129941 }, - { url = "https://files.pythonhosted.org/packages/d3/15/2bbab50a2634b25593e36241ab9629be253b8c6ea28a34ba6b856bfea661/rapidfuzz-3.11.0-cp312-cp312-musllinux_1_2_aarch64.whl", hash = "sha256:eb97c53112b593f89a90b4f6218635a9d1eea1d7f9521a3b7d24864228bbc0aa", size = 2302199 }, - { url = "https://files.pythonhosted.org/packages/c6/7c/e3ed92b89c657348c41708fe3b856ebc982c4b220b47299bdef8da374b20/rapidfuzz-3.11.0-cp312-cp312-musllinux_1_2_i686.whl", hash = "sha256:ef8937dae823b889c0273dfa0f0f6c46a3658ac0d851349c464d1b00e7ff4252", size = 6904702 }, - { url = "https://files.pythonhosted.org/packages/bd/4f/eed77097068bffb692d6389ae19a531c52a896275e9f5c00566207767537/rapidfuzz-3.11.0-cp312-cp312-musllinux_1_2_ppc64le.whl", hash = "sha256:d95f9e9f3777b96241d8a00d6377cc9c716981d828b5091082d0fe3a2924b43e", size = 2679287 }, - { url = "https://files.pythonhosted.org/packages/1f/dc/d2d5dcd5b33a5b394485c67aa13674c8345826af8d3ba0702c06ab2f6430/rapidfuzz-3.11.0-cp312-cp312-musllinux_1_2_s390x.whl", hash = "sha256:b1d67d67f89e4e013a5295e7523bc34a7a96f2dba5dd812c7c8cb65d113cbf28", size = 3224946 }, - { url = "https://files.pythonhosted.org/packages/8f/af/17c0c29ded64e464e626dd43fc2e3028c1fa929d10e8201fb2aec654e5b3/rapidfuzz-3.11.0-cp312-cp312-musllinux_1_2_x86_64.whl", hash = "sha256:d994cf27e2f874069884d9bddf0864f9b90ad201fcc9cb2f5b82bacc17c8d5f2", size = 4144678 }, - { url = "https://files.pythonhosted.org/packages/66/5d/5dc02c87d9a0e64e0abd728d3255ddce8475e06b6be3f732a460f0a360c9/rapidfuzz-3.11.0-cp312-cp312-win32.whl", hash = "sha256:ba26d87fe7fcb56c4a53b549a9e0e9143f6b0df56d35fe6ad800c902447acd5b", size = 1824882 }, - { url = "https://files.pythonhosted.org/packages/b7/da/a37d532cbefd7242191abf18f438b315bf5c72d742f78414a8ec1b7396cf/rapidfuzz-3.11.0-cp312-cp312-win_amd64.whl", hash = "sha256:b1f7efdd7b7adb32102c2fa481ad6f11923e2deb191f651274be559d56fc913b", size = 1606419 }, - { url = "https://files.pythonhosted.org/packages/92/d0/1406d6e110aff87303e98f47adc5e76ef2e69d51cdd08b2d463520158cab/rapidfuzz-3.11.0-cp312-cp312-win_arm64.whl", hash = "sha256:ed78c8e94f57b44292c1a0350f580e18d3a3c5c0800e253f1583580c1b417ad2", size = 858655 }, - { url = "https://files.pythonhosted.org/packages/8a/30/984f1013d28b88304386c8e70b5d63db4765c28be8d9ef68d177c9addc77/rapidfuzz-3.11.0-cp313-cp313-macosx_10_13_x86_64.whl", hash = "sha256:e60814edd0c9b511b5f377d48b9782b88cfe8be07a98f99973669299c8bb318a", size = 1931354 }, - { url = "https://files.pythonhosted.org/packages/a4/8a/41d4f95c5742a8a47c0e96c02957f72f8c34411cecde87fe371d5e09807e/rapidfuzz-3.11.0-cp313-cp313-macosx_11_0_arm64.whl", hash = "sha256:3f28952da055dbfe75828891cd3c9abf0984edc8640573c18b48c14c68ca5e06", size = 1417918 }, - { url = "https://files.pythonhosted.org/packages/e3/26/031ac8366831da6afc5f25462196eab0e0caf9422c83c007307e23a6f010/rapidfuzz-3.11.0-cp313-cp313-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:5e8f93bc736020351a6f8e71666e1f486bb8bd5ce8112c443a30c77bfde0eb68", size = 1388327 }, - { url = "https://files.pythonhosted.org/packages/17/1b/927edcd3b540770d3d6d52fe079c6bffdb99e9dfa4b73585bee2a8bd6504/rapidfuzz-3.11.0-cp313-cp313-manylinux_2_17_i686.manylinux2014_i686.whl", hash = "sha256:76a4a11ba8f678c9e5876a7d465ab86def047a4fcc043617578368755d63a1bc", size = 5513214 }, - { url = "https://files.pythonhosted.org/packages/0d/a2/c1e4f35e7bfbbd97a665f8cd119d8bd4a085f1721366cd76582dc022131b/rapidfuzz-3.11.0-cp313-cp313-manylinux_2_17_ppc64le.manylinux2014_ppc64le.whl", hash = "sha256:dc0e0d41ad8a056a9886bac91ff9d9978e54a244deb61c2972cc76b66752de9c", size = 1638560 }, - { url = "https://files.pythonhosted.org/packages/39/3f/6827972efddb1e357a0b6165ae9e310d7dc5c078af3023893365c212641b/rapidfuzz-3.11.0-cp313-cp313-manylinux_2_17_s390x.manylinux2014_s390x.whl", hash = "sha256:5e8ea35f2419c7d56b3e75fbde2698766daedb374f20eea28ac9b1f668ef4f74", size = 1667185 }, - { url = "https://files.pythonhosted.org/packages/cc/5d/6902b93e1273e69ea087afd16e7504099bcb8d712a9f69cb649ea05ca7e1/rapidfuzz-3.11.0-cp313-cp313-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:cd340bbd025302276b5aa221dccfe43040c7babfc32f107c36ad783f2ffd8775", size = 3107466 }, - { url = "https://files.pythonhosted.org/packages/a6/02/bdb2048c9b8edf4cd82c2e8f6a8ed9af0fbdf91810ca2b36d1be6fc996d8/rapidfuzz-3.11.0-cp313-cp313-musllinux_1_2_aarch64.whl", hash = "sha256:494eef2c68305ab75139034ea25328a04a548d297712d9cf887bf27c158c388b", size = 2302041 }, - { url = "https://files.pythonhosted.org/packages/12/91/0bbe51e3c15c02578487fd10a14692a40677ea974098d8d376bafd627a89/rapidfuzz-3.11.0-cp313-cp313-musllinux_1_2_i686.whl", hash = "sha256:5a167344c1d6db06915fb0225592afdc24d8bafaaf02de07d4788ddd37f4bc2f", size = 6899969 }, - { url = "https://files.pythonhosted.org/packages/27/9d/09b85adfd5829f60bd6dbe53ba66dad22f93a281d494a5638b5f20fb6a8a/rapidfuzz-3.11.0-cp313-cp313-musllinux_1_2_ppc64le.whl", hash = "sha256:8c7af25bda96ac799378ac8aba54a8ece732835c7b74cfc201b688a87ed11152", size = 2669022 }, - { url = "https://files.pythonhosted.org/packages/cb/07/6fb723963243335c3bf73925914b6998649d642eff550187454d5bb3d077/rapidfuzz-3.11.0-cp313-cp313-musllinux_1_2_s390x.whl", hash = "sha256:d2a0f7e17f33e7890257367a1662b05fecaf56625f7dbb6446227aaa2b86448b", size = 3229475 }, - { url = "https://files.pythonhosted.org/packages/3a/8e/e9af6da2e235aa29ad2bb0a1fc2472b2949ed8d9ff8fb0f05b4bfbbf7675/rapidfuzz-3.11.0-cp313-cp313-musllinux_1_2_x86_64.whl", hash = "sha256:4d0d26c7172bdb64f86ee0765c5b26ea1dc45c52389175888ec073b9b28f4305", size = 4143861 }, - { url = "https://files.pythonhosted.org/packages/fd/d8/4677e36e958b4d95d039d254d597db9c020896c8130911dc36b136373b87/rapidfuzz-3.11.0-cp313-cp313-win32.whl", hash = "sha256:6ad02bab756751c90fa27f3069d7b12146613061341459abf55f8190d899649f", size = 1822624 }, - { url = "https://files.pythonhosted.org/packages/e8/97/1c782140e688ea2c3337d94516c635c575aa39fe62782fd53ad5d2119df4/rapidfuzz-3.11.0-cp313-cp313-win_amd64.whl", hash = "sha256:b1472986fd9c5d318399a01a0881f4a0bf4950264131bb8e2deba9df6d8c362b", size = 1604273 }, - { url = "https://files.pythonhosted.org/packages/a6/83/8b713d50bec947e945a79be47f772484307fc876c426fb26c6f369098389/rapidfuzz-3.11.0-cp313-cp313-win_arm64.whl", hash = "sha256:c408f09649cbff8da76f8d3ad878b64ba7f7abdad1471efb293d2c075e80c822", size = 857385 }, +version = "3.13.0" +source = { registry = "https://pypi.org/simple" } +sdist = { url = "https://files.pythonhosted.org/packages/ed/f6/6895abc3a3d056b9698da3199b04c0e56226d530ae44a470edabf8b664f0/rapidfuzz-3.13.0.tar.gz", hash = "sha256:d2eaf3839e52cbcc0accbe9817a67b4b0fcf70aaeb229cfddc1c28061f9ce5d8", size = 57904226 } +wheels = [ + { url = "https://files.pythonhosted.org/packages/13/4b/a326f57a4efed8f5505b25102797a58e37ee11d94afd9d9422cb7c76117e/rapidfuzz-3.13.0-cp312-cp312-macosx_10_13_x86_64.whl", hash = "sha256:4a1a6a906ba62f2556372282b1ef37b26bca67e3d2ea957277cfcefc6275cca7", size = 1989501 }, + { url = "https://files.pythonhosted.org/packages/b7/53/1f7eb7ee83a06c400089ec7cb841cbd581c2edd7a4b21eb2f31030b88daa/rapidfuzz-3.13.0-cp312-cp312-macosx_11_0_arm64.whl", hash = "sha256:2fd0975e015b05c79a97f38883a11236f5a24cca83aa992bd2558ceaa5652b26", size = 1445379 }, + { url = "https://files.pythonhosted.org/packages/07/09/de8069a4599cc8e6d194e5fa1782c561151dea7d5e2741767137e2a8c1f0/rapidfuzz-3.13.0-cp312-cp312-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:5d4e13593d298c50c4f94ce453f757b4b398af3fa0fd2fde693c3e51195b7f69", size = 1405986 }, + { url = "https://files.pythonhosted.org/packages/5d/77/d9a90b39c16eca20d70fec4ca377fbe9ea4c0d358c6e4736ab0e0e78aaf6/rapidfuzz-3.13.0-cp312-cp312-manylinux_2_17_i686.manylinux2014_i686.whl", hash = "sha256:ed6f416bda1c9133000009d84d9409823eb2358df0950231cc936e4bf784eb97", size = 5310809 }, + { url = "https://files.pythonhosted.org/packages/1e/7d/14da291b0d0f22262d19522afaf63bccf39fc027c981233fb2137a57b71f/rapidfuzz-3.13.0-cp312-cp312-manylinux_2_17_ppc64le.manylinux2014_ppc64le.whl", hash = "sha256:1dc82b6ed01acb536b94a43996a94471a218f4d89f3fdd9185ab496de4b2a981", size = 1629394 }, + { url = "https://files.pythonhosted.org/packages/b7/e4/79ed7e4fa58f37c0f8b7c0a62361f7089b221fe85738ae2dbcfb815e985a/rapidfuzz-3.13.0-cp312-cp312-manylinux_2_17_s390x.manylinux2014_s390x.whl", hash = "sha256:e9d824de871daa6e443b39ff495a884931970d567eb0dfa213d234337343835f", size = 1600544 }, + { url = "https://files.pythonhosted.org/packages/4e/20/e62b4d13ba851b0f36370060025de50a264d625f6b4c32899085ed51f980/rapidfuzz-3.13.0-cp312-cp312-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:2d18228a2390375cf45726ce1af9d36ff3dc1f11dce9775eae1f1b13ac6ec50f", size = 3052796 }, + { url = "https://files.pythonhosted.org/packages/cd/8d/55fdf4387dec10aa177fe3df8dbb0d5022224d95f48664a21d6b62a5299d/rapidfuzz-3.13.0-cp312-cp312-musllinux_1_2_aarch64.whl", hash = "sha256:9f5fe634c9482ec5d4a6692afb8c45d370ae86755e5f57aa6c50bfe4ca2bdd87", size = 2464016 }, + { url = "https://files.pythonhosted.org/packages/9b/be/0872f6a56c0f473165d3b47d4170fa75263dc5f46985755aa9bf2bbcdea1/rapidfuzz-3.13.0-cp312-cp312-musllinux_1_2_i686.whl", hash = "sha256:694eb531889f71022b2be86f625a4209c4049e74be9ca836919b9e395d5e33b3", size = 7556725 }, + { url = "https://files.pythonhosted.org/packages/5d/f3/6c0750e484d885a14840c7a150926f425d524982aca989cdda0bb3bdfa57/rapidfuzz-3.13.0-cp312-cp312-musllinux_1_2_ppc64le.whl", hash = "sha256:11b47b40650e06147dee5e51a9c9ad73bb7b86968b6f7d30e503b9f8dd1292db", size = 2859052 }, + { url = "https://files.pythonhosted.org/packages/6f/98/5a3a14701b5eb330f444f7883c9840b43fb29c575e292e09c90a270a6e07/rapidfuzz-3.13.0-cp312-cp312-musllinux_1_2_s390x.whl", hash = "sha256:98b8107ff14f5af0243f27d236bcc6e1ef8e7e3b3c25df114e91e3a99572da73", size = 3390219 }, + { url = "https://files.pythonhosted.org/packages/e9/7d/f4642eaaeb474b19974332f2a58471803448be843033e5740965775760a5/rapidfuzz-3.13.0-cp312-cp312-musllinux_1_2_x86_64.whl", hash = "sha256:b836f486dba0aceb2551e838ff3f514a38ee72b015364f739e526d720fdb823a", size = 4377924 }, + { url = "https://files.pythonhosted.org/packages/8e/83/fa33f61796731891c3e045d0cbca4436a5c436a170e7f04d42c2423652c3/rapidfuzz-3.13.0-cp312-cp312-win32.whl", hash = "sha256:4671ee300d1818d7bdfd8fa0608580d7778ba701817216f0c17fb29e6b972514", size = 1823915 }, + { url = "https://files.pythonhosted.org/packages/03/25/5ee7ab6841ca668567d0897905eebc79c76f6297b73bf05957be887e9c74/rapidfuzz-3.13.0-cp312-cp312-win_amd64.whl", hash = "sha256:6e2065f68fb1d0bf65adc289c1bdc45ba7e464e406b319d67bb54441a1b9da9e", size = 1616985 }, + { url = "https://files.pythonhosted.org/packages/76/5e/3f0fb88db396cb692aefd631e4805854e02120a2382723b90dcae720bcc6/rapidfuzz-3.13.0-cp312-cp312-win_arm64.whl", hash = "sha256:65cc97c2fc2c2fe23586599686f3b1ceeedeca8e598cfcc1b7e56dc8ca7e2aa7", size = 860116 }, + { url = "https://files.pythonhosted.org/packages/0a/76/606e71e4227790750f1646f3c5c873e18d6cfeb6f9a77b2b8c4dec8f0f66/rapidfuzz-3.13.0-cp313-cp313-macosx_10_13_x86_64.whl", hash = "sha256:09e908064d3684c541d312bd4c7b05acb99a2c764f6231bd507d4b4b65226c23", size = 1982282 }, + { url = "https://files.pythonhosted.org/packages/0a/f5/d0b48c6b902607a59fd5932a54e3518dae8223814db8349b0176e6e9444b/rapidfuzz-3.13.0-cp313-cp313-macosx_11_0_arm64.whl", hash = "sha256:57c390336cb50d5d3bfb0cfe1467478a15733703af61f6dffb14b1cd312a6fae", size = 1439274 }, + { url = "https://files.pythonhosted.org/packages/59/cf/c3ac8c80d8ced6c1f99b5d9674d397ce5d0e9d0939d788d67c010e19c65f/rapidfuzz-3.13.0-cp313-cp313-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:0da54aa8547b3c2c188db3d1c7eb4d1bb6dd80baa8cdaeaec3d1da3346ec9caa", size = 1399854 }, + { url = "https://files.pythonhosted.org/packages/09/5d/ca8698e452b349c8313faf07bfa84e7d1c2d2edf7ccc67bcfc49bee1259a/rapidfuzz-3.13.0-cp313-cp313-manylinux_2_17_i686.manylinux2014_i686.whl", hash = "sha256:df8e8c21e67afb9d7fbe18f42c6111fe155e801ab103c81109a61312927cc611", size = 5308962 }, + { url = "https://files.pythonhosted.org/packages/66/0a/bebada332854e78e68f3d6c05226b23faca79d71362509dbcf7b002e33b7/rapidfuzz-3.13.0-cp313-cp313-manylinux_2_17_ppc64le.manylinux2014_ppc64le.whl", hash = "sha256:461fd13250a2adf8e90ca9a0e1e166515cbcaa5e9c3b1f37545cbbeff9e77f6b", size = 1625016 }, + { url = "https://files.pythonhosted.org/packages/de/0c/9e58d4887b86d7121d1c519f7050d1be5eb189d8a8075f5417df6492b4f5/rapidfuzz-3.13.0-cp313-cp313-manylinux_2_17_s390x.manylinux2014_s390x.whl", hash = "sha256:c2b3dd5d206a12deca16870acc0d6e5036abeb70e3cad6549c294eff15591527", size = 1600414 }, + { url = "https://files.pythonhosted.org/packages/9b/df/6096bc669c1311568840bdcbb5a893edc972d1c8d2b4b4325c21d54da5b1/rapidfuzz-3.13.0-cp313-cp313-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:1343d745fbf4688e412d8f398c6e6d6f269db99a54456873f232ba2e7aeb4939", size = 3053179 }, + { url = "https://files.pythonhosted.org/packages/f9/46/5179c583b75fce3e65a5cd79a3561bd19abd54518cb7c483a89b284bf2b9/rapidfuzz-3.13.0-cp313-cp313-musllinux_1_2_aarch64.whl", hash = "sha256:b1b065f370d54551dcc785c6f9eeb5bd517ae14c983d2784c064b3aa525896df", size = 2456856 }, + { url = "https://files.pythonhosted.org/packages/6b/64/e9804212e3286d027ac35bbb66603c9456c2bce23f823b67d2f5cabc05c1/rapidfuzz-3.13.0-cp313-cp313-musllinux_1_2_i686.whl", hash = "sha256:11b125d8edd67e767b2295eac6eb9afe0b1cdc82ea3d4b9257da4b8e06077798", size = 7567107 }, + { url = "https://files.pythonhosted.org/packages/8a/f2/7d69e7bf4daec62769b11757ffc31f69afb3ce248947aadbb109fefd9f65/rapidfuzz-3.13.0-cp313-cp313-musllinux_1_2_ppc64le.whl", hash = "sha256:c33f9c841630b2bb7e69a3fb5c84a854075bb812c47620978bddc591f764da3d", size = 2854192 }, + { url = "https://files.pythonhosted.org/packages/05/21/ab4ad7d7d0f653e6fe2e4ccf11d0245092bef94cdff587a21e534e57bda8/rapidfuzz-3.13.0-cp313-cp313-musllinux_1_2_s390x.whl", hash = "sha256:ae4574cb66cf1e85d32bb7e9ec45af5409c5b3970b7ceb8dea90168024127566", size = 3398876 }, + { url = "https://files.pythonhosted.org/packages/0f/a8/45bba94c2489cb1ee0130dcb46e1df4fa2c2b25269e21ffd15240a80322b/rapidfuzz-3.13.0-cp313-cp313-musllinux_1_2_x86_64.whl", hash = "sha256:e05752418b24bbd411841b256344c26f57da1148c5509e34ea39c7eb5099ab72", size = 4377077 }, + { url = "https://files.pythonhosted.org/packages/0c/f3/5e0c6ae452cbb74e5436d3445467447e8c32f3021f48f93f15934b8cffc2/rapidfuzz-3.13.0-cp313-cp313-win32.whl", hash = "sha256:0e1d08cb884805a543f2de1f6744069495ef527e279e05370dd7c83416af83f8", size = 1822066 }, + { url = "https://files.pythonhosted.org/packages/96/e3/a98c25c4f74051df4dcf2f393176b8663bfd93c7afc6692c84e96de147a2/rapidfuzz-3.13.0-cp313-cp313-win_amd64.whl", hash = "sha256:9a7c6232be5f809cd39da30ee5d24e6cadd919831e6020ec6c2391f4c3bc9264", size = 1615100 }, + { url = "https://files.pythonhosted.org/packages/60/b1/05cd5e697c00cd46d7791915f571b38c8531f714832eff2c5e34537c49ee/rapidfuzz-3.13.0-cp313-cp313-win_arm64.whl", hash = "sha256:3f32f15bacd1838c929b35c84b43618481e1b3d7a61b5ed2db0291b70ae88b53", size = 858976 }, ] [[package]] @@ -2311,77 +2327,77 @@ wheels = [ [[package]] name = "rich-click" -version = "1.8.5" +version = "1.8.8" source = { registry = "https://pypi.org/simple" } dependencies = [ { name = "click" }, { name = "rich" }, { name = "typing-extensions" }, ] -sdist = { url = "https://files.pythonhosted.org/packages/9a/31/103501e85e885e3e202c087fa612cfe450693210372766552ce1ab5b57b9/rich_click-1.8.5.tar.gz", hash = "sha256:a3eebe81da1c9da3c32f3810017c79bd687ff1b3fa35bfc9d8a3338797f1d1a1", size = 38229 } +sdist = { url = "https://files.pythonhosted.org/packages/a6/7a/4b78c5997f2a799a8c5c07f3b2145bbcda40115c4d35c76fbadd418a3c89/rich_click-1.8.8.tar.gz", hash = "sha256:547c618dea916620af05d4a6456da797fbde904c97901f44d2f32f89d85d6c84", size = 39066 } wheels = [ - { url = "https://files.pythonhosted.org/packages/aa/0b/e2de98c538c0ee9336211d260f88b7e69affab44969750aaca0b48a697c8/rich_click-1.8.5-py3-none-any.whl", hash = "sha256:0fab7bb5b66c15da17c210b4104277cd45f3653a7322e0098820a169880baee0", size = 35081 }, + { url = "https://files.pythonhosted.org/packages/fa/69/963f0bf44a654f6465bdb66fb5a91051b0d7af9f742b5bd7202607165036/rich_click-1.8.8-py3-none-any.whl", hash = "sha256:205aabd5a98e64ab2c105dee9e368be27480ba004c7dfa2accd0ed44f9f1550e", size = 35747 }, ] [[package]] name = "rich-toolkit" -version = "0.13.2" +version = "0.14.1" source = { registry = "https://pypi.org/simple" } dependencies = [ { name = "click" }, { name = "rich" }, { name = "typing-extensions" }, ] -sdist = { url = "https://files.pythonhosted.org/packages/5b/8a/71cfbf6bf6257ea785d1f030c22468f763eea1b3e5417620f2ba9abd6dca/rich_toolkit-0.13.2.tar.gz", hash = "sha256:fea92557530de7c28f121cbed572ad93d9e0ddc60c3ca643f1b831f2f56b95d3", size = 72288 } +sdist = { url = "https://files.pythonhosted.org/packages/2e/ea/13945d58d556a28dfb0f774ad5c8af759527390e59505a40d164bf8ce1ce/rich_toolkit-0.14.1.tar.gz", hash = "sha256:9248e2d087bfc01f3e4c5c8987e05f7fa744d00dd22fa2be3aa6e50255790b3f", size = 104416 } wheels = [ - { url = "https://files.pythonhosted.org/packages/7e/1b/1c2f43af46456050b27810a7a013af8a7e12bc545a0cdc00eb0df55eb769/rich_toolkit-0.13.2-py3-none-any.whl", hash = "sha256:f3f6c583e5283298a2f7dbd3c65aca18b7f818ad96174113ab5bec0b0e35ed61", size = 13566 }, + { url = "https://files.pythonhosted.org/packages/66/e8/61c5b12d1567fdba41a6775db12a090d88b8305424ee7c47259c70d33cb4/rich_toolkit-0.14.1-py3-none-any.whl", hash = "sha256:dc92c0117d752446d04fdc828dbca5873bcded213a091a5d3742a2beec2e6559", size = 24177 }, ] [[package]] name = "rpds-py" -version = "0.22.3" -source = { registry = "https://pypi.org/simple" } -sdist = { url = "https://files.pythonhosted.org/packages/01/80/cce854d0921ff2f0a9fa831ba3ad3c65cee3a46711addf39a2af52df2cfd/rpds_py-0.22.3.tar.gz", hash = "sha256:e32fee8ab45d3c2db6da19a5323bc3362237c8b653c70194414b892fd06a080d", size = 26771 } -wheels = [ - { url = "https://files.pythonhosted.org/packages/75/47/3383ee3bd787a2a5e65a9b9edc37ccf8505c0a00170e3a5e6ea5fbcd97f7/rpds_py-0.22.3-cp312-cp312-macosx_10_12_x86_64.whl", hash = "sha256:27e98004595899949bd7a7b34e91fa7c44d7a97c40fcaf1d874168bb652ec67e", size = 352334 }, - { url = "https://files.pythonhosted.org/packages/40/14/aa6400fa8158b90a5a250a77f2077c0d0cd8a76fce31d9f2b289f04c6dec/rpds_py-0.22.3-cp312-cp312-macosx_11_0_arm64.whl", hash = "sha256:1978d0021e943aae58b9b0b196fb4895a25cc53d3956b8e35e0b7682eefb6d56", size = 342111 }, - { url = "https://files.pythonhosted.org/packages/7d/06/395a13bfaa8a28b302fb433fb285a67ce0ea2004959a027aea8f9c52bad4/rpds_py-0.22.3-cp312-cp312-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:655ca44a831ecb238d124e0402d98f6212ac527a0ba6c55ca26f616604e60a45", size = 384286 }, - { url = "https://files.pythonhosted.org/packages/43/52/d8eeaffab047e6b7b7ef7f00d5ead074a07973968ffa2d5820fa131d7852/rpds_py-0.22.3-cp312-cp312-manylinux_2_17_armv7l.manylinux2014_armv7l.whl", hash = "sha256:feea821ee2a9273771bae61194004ee2fc33f8ec7db08117ef9147d4bbcbca8e", size = 391739 }, - { url = "https://files.pythonhosted.org/packages/83/31/52dc4bde85c60b63719610ed6f6d61877effdb5113a72007679b786377b8/rpds_py-0.22.3-cp312-cp312-manylinux_2_17_ppc64le.manylinux2014_ppc64le.whl", hash = "sha256:22bebe05a9ffc70ebfa127efbc429bc26ec9e9b4ee4d15a740033efda515cf3d", size = 427306 }, - { url = "https://files.pythonhosted.org/packages/70/d5/1bab8e389c2261dba1764e9e793ed6830a63f830fdbec581a242c7c46bda/rpds_py-0.22.3-cp312-cp312-manylinux_2_17_s390x.manylinux2014_s390x.whl", hash = "sha256:3af6e48651c4e0d2d166dc1b033b7042ea3f871504b6805ba5f4fe31581d8d38", size = 442717 }, - { url = "https://files.pythonhosted.org/packages/82/a1/a45f3e30835b553379b3a56ea6c4eb622cf11e72008229af840e4596a8ea/rpds_py-0.22.3-cp312-cp312-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:e67ba3c290821343c192f7eae1d8fd5999ca2dc99994114643e2f2d3e6138b15", size = 385721 }, - { url = "https://files.pythonhosted.org/packages/a6/27/780c942de3120bdd4d0e69583f9c96e179dfff082f6ecbb46b8d6488841f/rpds_py-0.22.3-cp312-cp312-manylinux_2_5_i686.manylinux1_i686.whl", hash = "sha256:02fbb9c288ae08bcb34fb41d516d5eeb0455ac35b5512d03181d755d80810059", size = 415824 }, - { url = "https://files.pythonhosted.org/packages/94/0b/aa0542ca88ad20ea719b06520f925bae348ea5c1fdf201b7e7202d20871d/rpds_py-0.22.3-cp312-cp312-musllinux_1_2_aarch64.whl", hash = "sha256:f56a6b404f74ab372da986d240e2e002769a7d7102cc73eb238a4f72eec5284e", size = 561227 }, - { url = "https://files.pythonhosted.org/packages/0d/92/3ed77d215f82c8f844d7f98929d56cc321bb0bcfaf8f166559b8ec56e5f1/rpds_py-0.22.3-cp312-cp312-musllinux_1_2_i686.whl", hash = "sha256:0a0461200769ab3b9ab7e513f6013b7a97fdeee41c29b9db343f3c5a8e2b9e61", size = 587424 }, - { url = "https://files.pythonhosted.org/packages/09/42/cacaeb047a22cab6241f107644f230e2935d4efecf6488859a7dd82fc47d/rpds_py-0.22.3-cp312-cp312-musllinux_1_2_x86_64.whl", hash = "sha256:8633e471c6207a039eff6aa116e35f69f3156b3989ea3e2d755f7bc41754a4a7", size = 555953 }, - { url = "https://files.pythonhosted.org/packages/e6/52/c921dc6d5f5d45b212a456c1f5b17df1a471127e8037eb0972379e39dff4/rpds_py-0.22.3-cp312-cp312-win32.whl", hash = "sha256:593eba61ba0c3baae5bc9be2f5232430453fb4432048de28399ca7376de9c627", size = 221339 }, - { url = "https://files.pythonhosted.org/packages/f2/c7/f82b5be1e8456600395366f86104d1bd8d0faed3802ad511ef6d60c30d98/rpds_py-0.22.3-cp312-cp312-win_amd64.whl", hash = "sha256:d115bffdd417c6d806ea9069237a4ae02f513b778e3789a359bc5856e0404cc4", size = 235786 }, - { url = "https://files.pythonhosted.org/packages/d0/bf/36d5cc1f2c609ae6e8bf0fc35949355ca9d8790eceb66e6385680c951e60/rpds_py-0.22.3-cp313-cp313-macosx_10_12_x86_64.whl", hash = "sha256:ea7433ce7e4bfc3a85654aeb6747babe3f66eaf9a1d0c1e7a4435bbdf27fea84", size = 351657 }, - { url = "https://files.pythonhosted.org/packages/24/2a/f1e0fa124e300c26ea9382e59b2d582cba71cedd340f32d1447f4f29fa4e/rpds_py-0.22.3-cp313-cp313-macosx_11_0_arm64.whl", hash = "sha256:6dd9412824c4ce1aca56c47b0991e65bebb7ac3f4edccfd3f156150c96a7bf25", size = 341829 }, - { url = "https://files.pythonhosted.org/packages/cf/c2/0da1231dd16953845bed60d1a586fcd6b15ceaeb965f4d35cdc71f70f606/rpds_py-0.22.3-cp313-cp313-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:20070c65396f7373f5df4005862fa162db5d25d56150bddd0b3e8214e8ef45b4", size = 384220 }, - { url = "https://files.pythonhosted.org/packages/c7/73/a4407f4e3a00a9d4b68c532bf2d873d6b562854a8eaff8faa6133b3588ec/rpds_py-0.22.3-cp313-cp313-manylinux_2_17_armv7l.manylinux2014_armv7l.whl", hash = "sha256:0b09865a9abc0ddff4e50b5ef65467cd94176bf1e0004184eb915cbc10fc05c5", size = 391009 }, - { url = "https://files.pythonhosted.org/packages/a9/c3/04b7353477ab360fe2563f5f0b176d2105982f97cd9ae80a9c5a18f1ae0f/rpds_py-0.22.3-cp313-cp313-manylinux_2_17_ppc64le.manylinux2014_ppc64le.whl", hash = "sha256:3453e8d41fe5f17d1f8e9c383a7473cd46a63661628ec58e07777c2fff7196dc", size = 426989 }, - { url = "https://files.pythonhosted.org/packages/8d/e6/e4b85b722bcf11398e17d59c0f6049d19cd606d35363221951e6d625fcb0/rpds_py-0.22.3-cp313-cp313-manylinux_2_17_s390x.manylinux2014_s390x.whl", hash = "sha256:f5d36399a1b96e1a5fdc91e0522544580dbebeb1f77f27b2b0ab25559e103b8b", size = 441544 }, - { url = "https://files.pythonhosted.org/packages/27/fc/403e65e56f65fff25f2973216974976d3f0a5c3f30e53758589b6dc9b79b/rpds_py-0.22.3-cp313-cp313-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:009de23c9c9ee54bf11303a966edf4d9087cd43a6003672e6aa7def643d06518", size = 385179 }, - { url = "https://files.pythonhosted.org/packages/57/9b/2be9ff9700d664d51fd96b33d6595791c496d2778cb0b2a634f048437a55/rpds_py-0.22.3-cp313-cp313-manylinux_2_5_i686.manylinux1_i686.whl", hash = "sha256:1aef18820ef3e4587ebe8b3bc9ba6e55892a6d7b93bac6d29d9f631a3b4befbd", size = 415103 }, - { url = "https://files.pythonhosted.org/packages/bb/a5/03c2ad8ca10994fcf22dd2150dd1d653bc974fa82d9a590494c84c10c641/rpds_py-0.22.3-cp313-cp313-musllinux_1_2_aarch64.whl", hash = "sha256:f60bd8423be1d9d833f230fdbccf8f57af322d96bcad6599e5a771b151398eb2", size = 560916 }, - { url = "https://files.pythonhosted.org/packages/ba/2e/be4fdfc8b5b576e588782b56978c5b702c5a2307024120d8aeec1ab818f0/rpds_py-0.22.3-cp313-cp313-musllinux_1_2_i686.whl", hash = "sha256:62d9cfcf4948683a18a9aff0ab7e1474d407b7bab2ca03116109f8464698ab16", size = 587062 }, - { url = "https://files.pythonhosted.org/packages/67/e0/2034c221937709bf9c542603d25ad43a68b4b0a9a0c0b06a742f2756eb66/rpds_py-0.22.3-cp313-cp313-musllinux_1_2_x86_64.whl", hash = "sha256:9253fc214112405f0afa7db88739294295f0e08466987f1d70e29930262b4c8f", size = 555734 }, - { url = "https://files.pythonhosted.org/packages/ea/ce/240bae07b5401a22482b58e18cfbabaa392409b2797da60223cca10d7367/rpds_py-0.22.3-cp313-cp313-win32.whl", hash = "sha256:fb0ba113b4983beac1a2eb16faffd76cb41e176bf58c4afe3e14b9c681f702de", size = 220663 }, - { url = "https://files.pythonhosted.org/packages/cb/f0/d330d08f51126330467edae2fa4efa5cec8923c87551a79299380fdea30d/rpds_py-0.22.3-cp313-cp313-win_amd64.whl", hash = "sha256:c58e2339def52ef6b71b8f36d13c3688ea23fa093353f3a4fee2556e62086ec9", size = 235503 }, - { url = "https://files.pythonhosted.org/packages/f7/c4/dbe1cc03df013bf2feb5ad00615038050e7859f381e96fb5b7b4572cd814/rpds_py-0.22.3-cp313-cp313t-macosx_10_12_x86_64.whl", hash = "sha256:f82a116a1d03628a8ace4859556fb39fd1424c933341a08ea3ed6de1edb0283b", size = 347698 }, - { url = "https://files.pythonhosted.org/packages/a4/3a/684f66dd6b0f37499cad24cd1c0e523541fd768576fa5ce2d0a8799c3cba/rpds_py-0.22.3-cp313-cp313t-macosx_11_0_arm64.whl", hash = "sha256:3dfcbc95bd7992b16f3f7ba05af8a64ca694331bd24f9157b49dadeeb287493b", size = 337330 }, - { url = "https://files.pythonhosted.org/packages/82/eb/e022c08c2ce2e8f7683baa313476492c0e2c1ca97227fe8a75d9f0181e95/rpds_py-0.22.3-cp313-cp313t-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:59259dc58e57b10e7e18ce02c311804c10c5a793e6568f8af4dead03264584d1", size = 380022 }, - { url = "https://files.pythonhosted.org/packages/e4/21/5a80e653e4c86aeb28eb4fea4add1f72e1787a3299687a9187105c3ee966/rpds_py-0.22.3-cp313-cp313t-manylinux_2_17_armv7l.manylinux2014_armv7l.whl", hash = "sha256:5725dd9cc02068996d4438d397e255dcb1df776b7ceea3b9cb972bdb11260a83", size = 390754 }, - { url = "https://files.pythonhosted.org/packages/37/a4/d320a04ae90f72d080b3d74597074e62be0a8ecad7d7321312dfe2dc5a6a/rpds_py-0.22.3-cp313-cp313t-manylinux_2_17_ppc64le.manylinux2014_ppc64le.whl", hash = "sha256:99b37292234e61325e7a5bb9689e55e48c3f5f603af88b1642666277a81f1fbd", size = 423840 }, - { url = "https://files.pythonhosted.org/packages/87/70/674dc47d93db30a6624279284e5631be4c3a12a0340e8e4f349153546728/rpds_py-0.22.3-cp313-cp313t-manylinux_2_17_s390x.manylinux2014_s390x.whl", hash = "sha256:27b1d3b3915a99208fee9ab092b8184c420f2905b7d7feb4aeb5e4a9c509b8a1", size = 438970 }, - { url = "https://files.pythonhosted.org/packages/3f/64/9500f4d66601d55cadd21e90784cfd5d5f4560e129d72e4339823129171c/rpds_py-0.22.3-cp313-cp313t-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:f612463ac081803f243ff13cccc648578e2279295048f2a8d5eb430af2bae6e3", size = 383146 }, - { url = "https://files.pythonhosted.org/packages/4d/45/630327addb1d17173adcf4af01336fd0ee030c04798027dfcb50106001e0/rpds_py-0.22.3-cp313-cp313t-manylinux_2_5_i686.manylinux1_i686.whl", hash = "sha256:f73d3fef726b3243a811121de45193c0ca75f6407fe66f3f4e183c983573e130", size = 408294 }, - { url = "https://files.pythonhosted.org/packages/5f/ef/8efb3373cee54ea9d9980b772e5690a0c9e9214045a4e7fa35046e399fee/rpds_py-0.22.3-cp313-cp313t-musllinux_1_2_aarch64.whl", hash = "sha256:3f21f0495edea7fdbaaa87e633a8689cd285f8f4af5c869f27bc8074638ad69c", size = 556345 }, - { url = "https://files.pythonhosted.org/packages/54/01/151d3b9ef4925fc8f15bfb131086c12ec3c3d6dd4a4f7589c335bf8e85ba/rpds_py-0.22.3-cp313-cp313t-musllinux_1_2_i686.whl", hash = "sha256:1e9663daaf7a63ceccbbb8e3808fe90415b0757e2abddbfc2e06c857bf8c5e2b", size = 582292 }, - { url = "https://files.pythonhosted.org/packages/30/89/35fc7a6cdf3477d441c7aca5e9bbf5a14e0f25152aed7f63f4e0b141045d/rpds_py-0.22.3-cp313-cp313t-musllinux_1_2_x86_64.whl", hash = "sha256:a76e42402542b1fae59798fab64432b2d015ab9d0c8c47ba7addddbaf7952333", size = 553855 }, - { url = "https://files.pythonhosted.org/packages/8f/e0/830c02b2457c4bd20a8c5bb394d31d81f57fbefce2dbdd2e31feff4f7003/rpds_py-0.22.3-cp313-cp313t-win32.whl", hash = "sha256:69803198097467ee7282750acb507fba35ca22cc3b85f16cf45fb01cb9097730", size = 219100 }, - { url = "https://files.pythonhosted.org/packages/f8/30/7ac943f69855c2db77407ae363484b915d861702dbba1aa82d68d57f42be/rpds_py-0.22.3-cp313-cp313t-win_amd64.whl", hash = "sha256:f5cf2a0c2bdadf3791b5c205d55a37a54025c6e18a71c71f82bb536cf9a454bf", size = 233794 }, +version = "0.24.0" +source = { registry = "https://pypi.org/simple" } +sdist = { url = "https://files.pythonhosted.org/packages/0b/b3/52b213298a0ba7097c7ea96bee95e1947aa84cc816d48cebb539770cdf41/rpds_py-0.24.0.tar.gz", hash = "sha256:772cc1b2cd963e7e17e6cc55fe0371fb9c704d63e44cacec7b9b7f523b78919e", size = 26863 } +wheels = [ + { url = "https://files.pythonhosted.org/packages/1a/e0/1c55f4a3be5f1ca1a4fd1f3ff1504a1478c1ed48d84de24574c4fa87e921/rpds_py-0.24.0-cp312-cp312-macosx_10_12_x86_64.whl", hash = "sha256:d8551e733626afec514b5d15befabea0dd70a343a9f23322860c4f16a9430205", size = 366945 }, + { url = "https://files.pythonhosted.org/packages/39/1b/a3501574fbf29118164314dbc800d568b8c1c7b3258b505360e8abb3902c/rpds_py-0.24.0-cp312-cp312-macosx_11_0_arm64.whl", hash = "sha256:0e374c0ce0ca82e5b67cd61fb964077d40ec177dd2c4eda67dba130de09085c7", size = 351935 }, + { url = "https://files.pythonhosted.org/packages/dc/47/77d3d71c55f6a374edde29f1aca0b2e547325ed00a9da820cabbc9497d2b/rpds_py-0.24.0-cp312-cp312-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:d69d003296df4840bd445a5d15fa5b6ff6ac40496f956a221c4d1f6f7b4bc4d9", size = 390817 }, + { url = "https://files.pythonhosted.org/packages/4e/ec/1e336ee27484379e19c7f9cc170f4217c608aee406d3ae3a2e45336bff36/rpds_py-0.24.0-cp312-cp312-manylinux_2_17_armv7l.manylinux2014_armv7l.whl", hash = "sha256:8212ff58ac6dfde49946bea57474a386cca3f7706fc72c25b772b9ca4af6b79e", size = 401983 }, + { url = "https://files.pythonhosted.org/packages/07/f8/39b65cbc272c635eaea6d393c2ad1ccc81c39eca2db6723a0ca4b2108fce/rpds_py-0.24.0-cp312-cp312-manylinux_2_17_ppc64le.manylinux2014_ppc64le.whl", hash = "sha256:528927e63a70b4d5f3f5ccc1fa988a35456eb5d15f804d276709c33fc2f19bda", size = 451719 }, + { url = "https://files.pythonhosted.org/packages/32/05/05c2b27dd9c30432f31738afed0300659cb9415db0ff7429b05dfb09bbde/rpds_py-0.24.0-cp312-cp312-manylinux_2_17_s390x.manylinux2014_s390x.whl", hash = "sha256:a824d2c7a703ba6daaca848f9c3d5cb93af0505be505de70e7e66829affd676e", size = 442546 }, + { url = "https://files.pythonhosted.org/packages/7d/e0/19383c8b5d509bd741532a47821c3e96acf4543d0832beba41b4434bcc49/rpds_py-0.24.0-cp312-cp312-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:44d51febb7a114293ffd56c6cf4736cb31cd68c0fddd6aa303ed09ea5a48e029", size = 393695 }, + { url = "https://files.pythonhosted.org/packages/9d/15/39f14e96d94981d0275715ae8ea564772237f3fa89bc3c21e24de934f2c7/rpds_py-0.24.0-cp312-cp312-manylinux_2_5_i686.manylinux1_i686.whl", hash = "sha256:3fab5f4a2c64a8fb64fc13b3d139848817a64d467dd6ed60dcdd6b479e7febc9", size = 427218 }, + { url = "https://files.pythonhosted.org/packages/22/b9/12da7124905a680f690da7a9de6f11de770b5e359f5649972f7181c8bf51/rpds_py-0.24.0-cp312-cp312-musllinux_1_2_aarch64.whl", hash = "sha256:9be4f99bee42ac107870c61dfdb294d912bf81c3c6d45538aad7aecab468b6b7", size = 568062 }, + { url = "https://files.pythonhosted.org/packages/88/17/75229017a2143d915f6f803721a6d721eca24f2659c5718a538afa276b4f/rpds_py-0.24.0-cp312-cp312-musllinux_1_2_i686.whl", hash = "sha256:564c96b6076a98215af52f55efa90d8419cc2ef45d99e314fddefe816bc24f91", size = 596262 }, + { url = "https://files.pythonhosted.org/packages/aa/64/8e8a1d8bd1b6b638d6acb6d41ab2cec7f2067a5b8b4c9175703875159a7c/rpds_py-0.24.0-cp312-cp312-musllinux_1_2_x86_64.whl", hash = "sha256:75a810b7664c17f24bf2ffd7f92416c00ec84b49bb68e6a0d93e542406336b56", size = 564306 }, + { url = "https://files.pythonhosted.org/packages/68/1c/a7eac8d8ed8cb234a9b1064647824c387753343c3fab6ed7c83481ed0be7/rpds_py-0.24.0-cp312-cp312-win32.whl", hash = "sha256:f6016bd950be4dcd047b7475fdf55fb1e1f59fc7403f387be0e8123e4a576d30", size = 224281 }, + { url = "https://files.pythonhosted.org/packages/bb/46/b8b5424d1d21f2f2f3f2d468660085318d4f74a8df8289e3dd6ad224d488/rpds_py-0.24.0-cp312-cp312-win_amd64.whl", hash = "sha256:998c01b8e71cf051c28f5d6f1187abbdf5cf45fc0efce5da6c06447cba997034", size = 239719 }, + { url = "https://files.pythonhosted.org/packages/9d/c3/3607abc770395bc6d5a00cb66385a5479fb8cd7416ddef90393b17ef4340/rpds_py-0.24.0-cp313-cp313-macosx_10_12_x86_64.whl", hash = "sha256:3d2d8e4508e15fc05b31285c4b00ddf2e0eb94259c2dc896771966a163122a0c", size = 367072 }, + { url = "https://files.pythonhosted.org/packages/d8/35/8c7ee0fe465793e3af3298dc5a9f3013bd63e7a69df04ccfded8293a4982/rpds_py-0.24.0-cp313-cp313-macosx_11_0_arm64.whl", hash = "sha256:0f00c16e089282ad68a3820fd0c831c35d3194b7cdc31d6e469511d9bffc535c", size = 351919 }, + { url = "https://files.pythonhosted.org/packages/91/d3/7e1b972501eb5466b9aca46a9c31bcbbdc3ea5a076e9ab33f4438c1d069d/rpds_py-0.24.0-cp313-cp313-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:951cc481c0c395c4a08639a469d53b7d4afa252529a085418b82a6b43c45c240", size = 390360 }, + { url = "https://files.pythonhosted.org/packages/a2/a8/ccabb50d3c91c26ad01f9b09a6a3b03e4502ce51a33867c38446df9f896b/rpds_py-0.24.0-cp313-cp313-manylinux_2_17_armv7l.manylinux2014_armv7l.whl", hash = "sha256:c9ca89938dff18828a328af41ffdf3902405a19f4131c88e22e776a8e228c5a8", size = 400704 }, + { url = "https://files.pythonhosted.org/packages/53/ae/5fa5bf0f3bc6ce21b5ea88fc0ecd3a439e7cb09dd5f9ffb3dbe1b6894fc5/rpds_py-0.24.0-cp313-cp313-manylinux_2_17_ppc64le.manylinux2014_ppc64le.whl", hash = "sha256:ed0ef550042a8dbcd657dfb284a8ee00f0ba269d3f2286b0493b15a5694f9fe8", size = 450839 }, + { url = "https://files.pythonhosted.org/packages/e3/ac/c4e18b36d9938247e2b54f6a03746f3183ca20e1edd7d3654796867f5100/rpds_py-0.24.0-cp313-cp313-manylinux_2_17_s390x.manylinux2014_s390x.whl", hash = "sha256:2b2356688e5d958c4d5cb964af865bea84db29971d3e563fb78e46e20fe1848b", size = 441494 }, + { url = "https://files.pythonhosted.org/packages/bf/08/b543969c12a8f44db6c0f08ced009abf8f519191ca6985509e7c44102e3c/rpds_py-0.24.0-cp313-cp313-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:78884d155fd15d9f64f5d6124b486f3d3f7fd7cd71a78e9670a0f6f6ca06fb2d", size = 393185 }, + { url = "https://files.pythonhosted.org/packages/da/7e/f6eb6a7042ce708f9dfc781832a86063cea8a125bbe451d663697b51944f/rpds_py-0.24.0-cp313-cp313-manylinux_2_5_i686.manylinux1_i686.whl", hash = "sha256:6a4a535013aeeef13c5532f802708cecae8d66c282babb5cd916379b72110cf7", size = 426168 }, + { url = "https://files.pythonhosted.org/packages/38/b0/6cd2bb0509ac0b51af4bb138e145b7c4c902bb4b724d6fd143689d6e0383/rpds_py-0.24.0-cp313-cp313-musllinux_1_2_aarch64.whl", hash = "sha256:84e0566f15cf4d769dade9b366b7b87c959be472c92dffb70462dd0844d7cbad", size = 567622 }, + { url = "https://files.pythonhosted.org/packages/64/b0/c401f4f077547d98e8b4c2ec6526a80e7cb04f519d416430ec1421ee9e0b/rpds_py-0.24.0-cp313-cp313-musllinux_1_2_i686.whl", hash = "sha256:823e74ab6fbaa028ec89615ff6acb409e90ff45580c45920d4dfdddb069f2120", size = 595435 }, + { url = "https://files.pythonhosted.org/packages/9f/ec/7993b6e803294c87b61c85bd63e11142ccfb2373cf88a61ec602abcbf9d6/rpds_py-0.24.0-cp313-cp313-musllinux_1_2_x86_64.whl", hash = "sha256:c61a2cb0085c8783906b2f8b1f16a7e65777823c7f4d0a6aaffe26dc0d358dd9", size = 563762 }, + { url = "https://files.pythonhosted.org/packages/1f/29/4508003204cb2f461dc2b83dd85f8aa2b915bc98fe6046b9d50d4aa05401/rpds_py-0.24.0-cp313-cp313-win32.whl", hash = "sha256:60d9b630c8025b9458a9d114e3af579a2c54bd32df601c4581bd054e85258143", size = 223510 }, + { url = "https://files.pythonhosted.org/packages/f9/12/09e048d1814195e01f354155fb772fb0854bd3450b5f5a82224b3a319f0e/rpds_py-0.24.0-cp313-cp313-win_amd64.whl", hash = "sha256:6eea559077d29486c68218178ea946263b87f1c41ae7f996b1f30a983c476a5a", size = 239075 }, + { url = "https://files.pythonhosted.org/packages/d2/03/5027cde39bb2408d61e4dd0cf81f815949bb629932a6c8df1701d0257fc4/rpds_py-0.24.0-cp313-cp313t-macosx_10_12_x86_64.whl", hash = "sha256:d09dc82af2d3c17e7dd17120b202a79b578d79f2b5424bda209d9966efeed114", size = 362974 }, + { url = "https://files.pythonhosted.org/packages/bf/10/24d374a2131b1ffafb783e436e770e42dfdb74b69a2cd25eba8c8b29d861/rpds_py-0.24.0-cp313-cp313t-macosx_11_0_arm64.whl", hash = "sha256:5fc13b44de6419d1e7a7e592a4885b323fbc2f46e1f22151e3a8ed3b8b920405", size = 348730 }, + { url = "https://files.pythonhosted.org/packages/7a/d1/1ef88d0516d46cd8df12e5916966dbf716d5ec79b265eda56ba1b173398c/rpds_py-0.24.0-cp313-cp313t-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:c347a20d79cedc0a7bd51c4d4b7dbc613ca4e65a756b5c3e57ec84bd43505b47", size = 387627 }, + { url = "https://files.pythonhosted.org/packages/4e/35/07339051b8b901ecefd449ebf8e5522e92bcb95e1078818cbfd9db8e573c/rpds_py-0.24.0-cp313-cp313t-manylinux_2_17_armv7l.manylinux2014_armv7l.whl", hash = "sha256:20f2712bd1cc26a3cc16c5a1bfee9ed1abc33d4cdf1aabd297fe0eb724df4272", size = 394094 }, + { url = "https://files.pythonhosted.org/packages/dc/62/ee89ece19e0ba322b08734e95441952062391065c157bbd4f8802316b4f1/rpds_py-0.24.0-cp313-cp313t-manylinux_2_17_ppc64le.manylinux2014_ppc64le.whl", hash = "sha256:aad911555286884be1e427ef0dc0ba3929e6821cbeca2194b13dc415a462c7fd", size = 449639 }, + { url = "https://files.pythonhosted.org/packages/15/24/b30e9f9e71baa0b9dada3a4ab43d567c6b04a36d1cb531045f7a8a0a7439/rpds_py-0.24.0-cp313-cp313t-manylinux_2_17_s390x.manylinux2014_s390x.whl", hash = "sha256:0aeb3329c1721c43c58cae274d7d2ca85c1690d89485d9c63a006cb79a85771a", size = 438584 }, + { url = "https://files.pythonhosted.org/packages/28/d9/49f7b8f3b4147db13961e19d5e30077cd0854ccc08487026d2cb2142aa4a/rpds_py-0.24.0-cp313-cp313t-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:2a0f156e9509cee987283abd2296ec816225145a13ed0391df8f71bf1d789e2d", size = 391047 }, + { url = "https://files.pythonhosted.org/packages/49/b0/e66918d0972c33a259ba3cd7b7ff10ed8bd91dbcfcbec6367b21f026db75/rpds_py-0.24.0-cp313-cp313t-manylinux_2_5_i686.manylinux1_i686.whl", hash = "sha256:aa6800adc8204ce898c8a424303969b7aa6a5e4ad2789c13f8648739830323b7", size = 418085 }, + { url = "https://files.pythonhosted.org/packages/e1/6b/99ed7ea0a94c7ae5520a21be77a82306aac9e4e715d4435076ead07d05c6/rpds_py-0.24.0-cp313-cp313t-musllinux_1_2_aarch64.whl", hash = "sha256:a18fc371e900a21d7392517c6f60fe859e802547309e94313cd8181ad9db004d", size = 564498 }, + { url = "https://files.pythonhosted.org/packages/28/26/1cacfee6b800e6fb5f91acecc2e52f17dbf8b0796a7c984b4568b6d70e38/rpds_py-0.24.0-cp313-cp313t-musllinux_1_2_i686.whl", hash = "sha256:9168764133fd919f8dcca2ead66de0105f4ef5659cbb4fa044f7014bed9a1797", size = 590202 }, + { url = "https://files.pythonhosted.org/packages/a9/9e/57bd2f9fba04a37cef673f9a66b11ca8c43ccdd50d386c455cd4380fe461/rpds_py-0.24.0-cp313-cp313t-musllinux_1_2_x86_64.whl", hash = "sha256:5f6e3cec44ba05ee5cbdebe92d052f69b63ae792e7d05f1020ac5e964394080c", size = 561771 }, + { url = "https://files.pythonhosted.org/packages/9f/cf/b719120f375ab970d1c297dbf8de1e3c9edd26fe92c0ed7178dd94b45992/rpds_py-0.24.0-cp313-cp313t-win32.whl", hash = "sha256:8ebc7e65ca4b111d928b669713865f021b7773350eeac4a31d3e70144297baba", size = 221195 }, + { url = "https://files.pythonhosted.org/packages/2d/e5/22865285789f3412ad0c3d7ec4dc0a3e86483b794be8a5d9ed5a19390900/rpds_py-0.24.0-cp313-cp313t-win_amd64.whl", hash = "sha256:675269d407a257b8c00a6b58205b72eec8231656506c56fd429d924ca00bb350", size = 237354 }, ] [[package]] @@ -2429,24 +2445,24 @@ wheels = [ [[package]] name = "setuptools" -version = "75.8.0" +version = "78.1.0" source = { registry = "https://pypi.org/simple" } -sdist = { url = "https://files.pythonhosted.org/packages/92/ec/089608b791d210aec4e7f97488e67ab0d33add3efccb83a056cbafe3a2a6/setuptools-75.8.0.tar.gz", hash = "sha256:c5afc8f407c626b8313a86e10311dd3f661c6cd9c09d4bf8c15c0e11f9f2b0e6", size = 1343222 } +sdist = { url = "https://files.pythonhosted.org/packages/a9/5a/0db4da3bc908df06e5efae42b44e75c81dd52716e10192ff36d0c1c8e379/setuptools-78.1.0.tar.gz", hash = "sha256:18fd474d4a82a5f83dac888df697af65afa82dec7323d09c3e37d1f14288da54", size = 1367827 } wheels = [ - { url = "https://files.pythonhosted.org/packages/69/8a/b9dc7678803429e4a3bc9ba462fa3dd9066824d3c607490235c6a796be5a/setuptools-75.8.0-py3-none-any.whl", hash = "sha256:e3982f444617239225d675215d51f6ba05f845d4eec313da4418fdbb56fb27e3", size = 1228782 }, + { url = "https://files.pythonhosted.org/packages/54/21/f43f0a1fa8b06b32812e0975981f4677d28e0f3271601dc88ac5a5b83220/setuptools-78.1.0-py3-none-any.whl", hash = "sha256:3e386e96793c8702ae83d17b853fb93d3e09ef82ec62722e61da5cd22376dcd8", size = 1256108 }, ] [[package]] name = "setuptools-scm" -version = "8.1.0" +version = "8.2.0" source = { registry = "https://pypi.org/simple" } dependencies = [ { name = "packaging" }, { name = "setuptools" }, ] -sdist = { url = "https://files.pythonhosted.org/packages/4f/a4/00a9ac1b555294710d4a68d2ce8dfdf39d72aa4d769a7395d05218d88a42/setuptools_scm-8.1.0.tar.gz", hash = "sha256:42dea1b65771cba93b7a515d65a65d8246e560768a66b9106a592c8e7f26c8a7", size = 76465 } +sdist = { url = "https://files.pythonhosted.org/packages/4b/bd/c5d16dd95900567e09744af92119da7abc5f447320d53ec1d9415ec30263/setuptools_scm-8.2.0.tar.gz", hash = "sha256:a18396a1bc0219c974d1a74612b11f9dce0d5bd8b1dc55c65f6ac7fd609e8c28", size = 77572 } wheels = [ - { url = "https://files.pythonhosted.org/packages/a0/b9/1906bfeb30f2fc13bb39bf7ddb8749784c05faadbd18a21cf141ba37bff2/setuptools_scm-8.1.0-py3-none-any.whl", hash = "sha256:897a3226a6fd4a6eb2f068745e49733261a21f70b1bb28fce0339feb978d9af3", size = 43666 }, + { url = "https://files.pythonhosted.org/packages/10/7c/5a9799042320242c383c4485a2771a37d49e8ce2312ca647653d2fd1a7a4/setuptools_scm-8.2.0-py3-none-any.whl", hash = "sha256:136e2b1d393d709d2bcf26f275b8dec06c48b811154167b0fd6bb002aad17d6d", size = 43944 }, ] [[package]] @@ -2510,14 +2526,14 @@ wheels = [ [[package]] name = "starlette" -version = "0.45.3" +version = "0.46.2" source = { registry = "https://pypi.org/simple" } dependencies = [ { name = "anyio" }, ] -sdist = { url = "https://files.pythonhosted.org/packages/ff/fb/2984a686808b89a6781526129a4b51266f678b2d2b97ab2d325e56116df8/starlette-0.45.3.tar.gz", hash = "sha256:2cbcba2a75806f8a41c722141486f37c28e30a0921c5f6fe4346cb0dcee1302f", size = 2574076 } +sdist = { url = "https://files.pythonhosted.org/packages/ce/20/08dfcd9c983f6a6f4a1000d934b9e6d626cff8d2eeb77a89a68eef20a2b7/starlette-0.46.2.tar.gz", hash = "sha256:7f7361f34eed179294600af672f565727419830b54b7b084efe44bb82d2fccd5", size = 2580846 } wheels = [ - { url = "https://files.pythonhosted.org/packages/d9/61/f2b52e107b1fc8944b33ef56bf6ac4ebbe16d91b94d2b87ce013bf63fb84/starlette-0.45.3-py3-none-any.whl", hash = "sha256:dfb6d332576f136ec740296c7e8bb8c8a7125044e7c6da30744718880cdd059d", size = 71507 }, + { url = "https://files.pythonhosted.org/packages/8b/0c/9d30a4ebeb6db2b25a841afbb80f6ef9a854fc3b41be131d249a977b4959/starlette-0.46.2-py3-none-any.whl", hash = "sha256:595633ce89f8ffa71a015caed34a5b2dc1c0cdb3f0f1fbd1e69339cf2abeec35", size = 72037 }, ] [[package]] @@ -2531,20 +2547,20 @@ wheels = [ [[package]] name = "tenacity" -version = "9.0.0" +version = "9.1.2" source = { registry = "https://pypi.org/simple" } -sdist = { url = "https://files.pythonhosted.org/packages/cd/94/91fccdb4b8110642462e653d5dcb27e7b674742ad68efd146367da7bdb10/tenacity-9.0.0.tar.gz", hash = "sha256:807f37ca97d62aa361264d497b0e31e92b8027044942bfa756160d908320d73b", size = 47421 } +sdist = { url = "https://files.pythonhosted.org/packages/0a/d4/2b0cd0fe285e14b36db076e78c93766ff1d529d70408bd1d2a5a84f1d929/tenacity-9.1.2.tar.gz", hash = "sha256:1169d376c297e7de388d18b4481760d478b0e99a777cad3a9c86e556f4b697cb", size = 48036 } wheels = [ - { url = "https://files.pythonhosted.org/packages/b6/cb/b86984bed139586d01532a587464b5805f12e397594f19f931c4c2fbfa61/tenacity-9.0.0-py3-none-any.whl", hash = "sha256:93de0c98785b27fcf659856aa9f54bfbd399e29969b0621bc7f762bd441b4539", size = 28169 }, + { url = "https://files.pythonhosted.org/packages/e5/30/643397144bfbfec6f6ef821f36f33e57d35946c44a2352d3c9f0ae847619/tenacity-9.1.2-py3-none-any.whl", hash = "sha256:f77bf36710d8b73a50b2dd155c97b870017ad21afe6ab300326b0371b3b05138", size = 28248 }, ] [[package]] name = "termcolor" -version = "2.5.0" +version = "3.0.1" source = { registry = "https://pypi.org/simple" } -sdist = { url = "https://files.pythonhosted.org/packages/37/72/88311445fd44c455c7d553e61f95412cf89054308a1aa2434ab835075fc5/termcolor-2.5.0.tar.gz", hash = "sha256:998d8d27da6d48442e8e1f016119076b690d962507531df4890fcd2db2ef8a6f", size = 13057 } +sdist = { url = "https://files.pythonhosted.org/packages/f8/b6/8e2aaa8aeb570b5cc955cd913b083d96c5447bbe27eaf330dfd7cc8e3329/termcolor-3.0.1.tar.gz", hash = "sha256:a6abd5c6e1284cea2934443ba806e70e5ec8fd2449021be55c280f8a3731b611", size = 12935 } wheels = [ - { url = "https://files.pythonhosted.org/packages/7f/be/df630c387a0a054815d60be6a97eb4e8f17385d5d6fe660e1c02750062b4/termcolor-2.5.0-py3-none-any.whl", hash = "sha256:37b17b5fc1e604945c2642c872a3764b5d547a48009871aea3edd3afa180afb8", size = 7755 }, + { url = "https://files.pythonhosted.org/packages/a6/7e/a574ccd49ad07e8b117407bac361f1e096b01f1b620365daf60ff702c936/termcolor-3.0.1-py3-none-any.whl", hash = "sha256:da1ed4ec8a5dc5b2e17476d859febdb3cccb612be1c36e64511a6f2485c10c69", size = 7157 }, ] [[package]] @@ -2563,26 +2579,26 @@ wheels = [ [[package]] name = "tiktoken" -version = "0.8.0" +version = "0.9.0" source = { registry = "https://pypi.org/simple" } dependencies = [ { name = "regex" }, { name = "requests" }, ] -sdist = { url = "https://files.pythonhosted.org/packages/37/02/576ff3a6639e755c4f70997b2d315f56d6d71e0d046f4fb64cb81a3fb099/tiktoken-0.8.0.tar.gz", hash = "sha256:9ccbb2740f24542534369c5635cfd9b2b3c2490754a78ac8831d99f89f94eeb2", size = 35107 } +sdist = { url = "https://files.pythonhosted.org/packages/ea/cf/756fedf6981e82897f2d570dd25fa597eb3f4459068ae0572d7e888cfd6f/tiktoken-0.9.0.tar.gz", hash = "sha256:d02a5ca6a938e0490e1ff957bc48c8b078c88cb83977be1625b1fd8aac792c5d", size = 35991 } wheels = [ - { url = "https://files.pythonhosted.org/packages/c1/22/34b2e136a6f4af186b6640cbfd6f93400783c9ef6cd550d9eab80628d9de/tiktoken-0.8.0-cp312-cp312-macosx_10_13_x86_64.whl", hash = "sha256:881839cfeae051b3628d9823b2e56b5cc93a9e2efb435f4cf15f17dc45f21586", size = 1039357 }, - { url = "https://files.pythonhosted.org/packages/04/d2/c793cf49c20f5855fd6ce05d080c0537d7418f22c58e71f392d5e8c8dbf7/tiktoken-0.8.0-cp312-cp312-macosx_11_0_arm64.whl", hash = "sha256:fe9399bdc3f29d428f16a2f86c3c8ec20be3eac5f53693ce4980371c3245729b", size = 982616 }, - { url = "https://files.pythonhosted.org/packages/b3/a1/79846e5ef911cd5d75c844de3fa496a10c91b4b5f550aad695c5df153d72/tiktoken-0.8.0-cp312-cp312-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:9a58deb7075d5b69237a3ff4bb51a726670419db6ea62bdcd8bd80c78497d7ab", size = 1144011 }, - { url = "https://files.pythonhosted.org/packages/26/32/e0e3a859136e95c85a572e4806dc58bf1ddf651108ae8b97d5f3ebe1a244/tiktoken-0.8.0-cp312-cp312-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:d2908c0d043a7d03ebd80347266b0e58440bdef5564f84f4d29fb235b5df3b04", size = 1175432 }, - { url = "https://files.pythonhosted.org/packages/c7/89/926b66e9025b97e9fbabeaa59048a736fe3c3e4530a204109571104f921c/tiktoken-0.8.0-cp312-cp312-musllinux_1_2_x86_64.whl", hash = "sha256:294440d21a2a51e12d4238e68a5972095534fe9878be57d905c476017bff99fc", size = 1236576 }, - { url = "https://files.pythonhosted.org/packages/45/e2/39d4aa02a52bba73b2cd21ba4533c84425ff8786cc63c511d68c8897376e/tiktoken-0.8.0-cp312-cp312-win_amd64.whl", hash = "sha256:d8f3192733ac4d77977432947d563d7e1b310b96497acd3c196c9bddb36ed9db", size = 883824 }, - { url = "https://files.pythonhosted.org/packages/e3/38/802e79ba0ee5fcbf240cd624143f57744e5d411d2e9d9ad2db70d8395986/tiktoken-0.8.0-cp313-cp313-macosx_10_13_x86_64.whl", hash = "sha256:02be1666096aff7da6cbd7cdaa8e7917bfed3467cd64b38b1f112e96d3b06a24", size = 1039648 }, - { url = "https://files.pythonhosted.org/packages/b1/da/24cdbfc302c98663fbea66f5866f7fa1048405c7564ab88483aea97c3b1a/tiktoken-0.8.0-cp313-cp313-macosx_11_0_arm64.whl", hash = "sha256:c94ff53c5c74b535b2cbf431d907fc13c678bbd009ee633a2aca269a04389f9a", size = 982763 }, - { url = "https://files.pythonhosted.org/packages/e4/f0/0ecf79a279dfa41fc97d00adccf976ecc2556d3c08ef3e25e45eb31f665b/tiktoken-0.8.0-cp313-cp313-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:6b231f5e8982c245ee3065cd84a4712d64692348bc609d84467c57b4b72dcbc5", size = 1144417 }, - { url = "https://files.pythonhosted.org/packages/ab/d3/155d2d4514f3471a25dc1d6d20549ef254e2aa9bb5b1060809b1d3b03d3a/tiktoken-0.8.0-cp313-cp313-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:4177faa809bd55f699e88c96d9bb4635d22e3f59d635ba6fd9ffedf7150b9953", size = 1175108 }, - { url = "https://files.pythonhosted.org/packages/19/eb/5989e16821ee8300ef8ee13c16effc20dfc26c777d05fbb6825e3c037b81/tiktoken-0.8.0-cp313-cp313-musllinux_1_2_x86_64.whl", hash = "sha256:5376b6f8dc4753cd81ead935c5f518fa0fbe7e133d9e25f648d8c4dabdd4bad7", size = 1236520 }, - { url = "https://files.pythonhosted.org/packages/40/59/14b20465f1d1cb89cfbc96ec27e5617b2d41c79da12b5e04e96d689be2a7/tiktoken-0.8.0-cp313-cp313-win_amd64.whl", hash = "sha256:18228d624807d66c87acd8f25fc135665617cab220671eb65b50f5d70fa51f69", size = 883849 }, + { url = "https://files.pythonhosted.org/packages/cf/e5/21ff33ecfa2101c1bb0f9b6df750553bd873b7fb532ce2cb276ff40b197f/tiktoken-0.9.0-cp312-cp312-macosx_10_13_x86_64.whl", hash = "sha256:e88f121c1c22b726649ce67c089b90ddda8b9662545a8aeb03cfef15967ddd03", size = 1065073 }, + { url = "https://files.pythonhosted.org/packages/8e/03/a95e7b4863ee9ceec1c55983e4cc9558bcfd8f4f80e19c4f8a99642f697d/tiktoken-0.9.0-cp312-cp312-macosx_11_0_arm64.whl", hash = "sha256:a6600660f2f72369acb13a57fb3e212434ed38b045fd8cc6cdd74947b4b5d210", size = 1008075 }, + { url = "https://files.pythonhosted.org/packages/40/10/1305bb02a561595088235a513ec73e50b32e74364fef4de519da69bc8010/tiktoken-0.9.0-cp312-cp312-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:95e811743b5dfa74f4b227927ed86cbc57cad4df859cb3b643be797914e41794", size = 1140754 }, + { url = "https://files.pythonhosted.org/packages/1b/40/da42522018ca496432ffd02793c3a72a739ac04c3794a4914570c9bb2925/tiktoken-0.9.0-cp312-cp312-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:99376e1370d59bcf6935c933cb9ba64adc29033b7e73f5f7569f3aad86552b22", size = 1196678 }, + { url = "https://files.pythonhosted.org/packages/5c/41/1e59dddaae270ba20187ceb8aa52c75b24ffc09f547233991d5fd822838b/tiktoken-0.9.0-cp312-cp312-musllinux_1_2_x86_64.whl", hash = "sha256:badb947c32739fb6ddde173e14885fb3de4d32ab9d8c591cbd013c22b4c31dd2", size = 1259283 }, + { url = "https://files.pythonhosted.org/packages/5b/64/b16003419a1d7728d0d8c0d56a4c24325e7b10a21a9dd1fc0f7115c02f0a/tiktoken-0.9.0-cp312-cp312-win_amd64.whl", hash = "sha256:5a62d7a25225bafed786a524c1b9f0910a1128f4232615bf3f8257a73aaa3b16", size = 894897 }, + { url = "https://files.pythonhosted.org/packages/7a/11/09d936d37f49f4f494ffe660af44acd2d99eb2429d60a57c71318af214e0/tiktoken-0.9.0-cp313-cp313-macosx_10_13_x86_64.whl", hash = "sha256:2b0e8e05a26eda1249e824156d537015480af7ae222ccb798e5234ae0285dbdb", size = 1064919 }, + { url = "https://files.pythonhosted.org/packages/80/0e/f38ba35713edb8d4197ae602e80837d574244ced7fb1b6070b31c29816e0/tiktoken-0.9.0-cp313-cp313-macosx_11_0_arm64.whl", hash = "sha256:27d457f096f87685195eea0165a1807fae87b97b2161fe8c9b1df5bd74ca6f63", size = 1007877 }, + { url = "https://files.pythonhosted.org/packages/fe/82/9197f77421e2a01373e27a79dd36efdd99e6b4115746ecc553318ecafbf0/tiktoken-0.9.0-cp313-cp313-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:2cf8ded49cddf825390e36dd1ad35cd49589e8161fdcb52aa25f0583e90a3e01", size = 1140095 }, + { url = "https://files.pythonhosted.org/packages/f2/bb/4513da71cac187383541facd0291c4572b03ec23c561de5811781bbd988f/tiktoken-0.9.0-cp313-cp313-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:cc156cb314119a8bb9748257a2eaebd5cc0753b6cb491d26694ed42fc7cb3139", size = 1195649 }, + { url = "https://files.pythonhosted.org/packages/fa/5c/74e4c137530dd8504e97e3a41729b1103a4ac29036cbfd3250b11fd29451/tiktoken-0.9.0-cp313-cp313-musllinux_1_2_x86_64.whl", hash = "sha256:cd69372e8c9dd761f0ab873112aba55a0e3e506332dd9f7522ca466e817b1b7a", size = 1258465 }, + { url = "https://files.pythonhosted.org/packages/de/a8/8f499c179ec900783ffe133e9aab10044481679bb9aad78436d239eee716/tiktoken-0.9.0-cp313-cp313-win_amd64.whl", hash = "sha256:5ea0edb6f83dc56d794723286215918c1cde03712cbbafa0348b33448faf5b95", size = 894669 }, ] [[package]] @@ -2599,27 +2615,27 @@ wheels = [ [[package]] name = "tokenizers" -version = "0.21.0" +version = "0.21.1" source = { registry = "https://pypi.org/simple" } dependencies = [ { name = "huggingface-hub" }, ] -sdist = { url = "https://files.pythonhosted.org/packages/20/41/c2be10975ca37f6ec40d7abd7e98a5213bb04f284b869c1a24e6504fd94d/tokenizers-0.21.0.tar.gz", hash = "sha256:ee0894bf311b75b0c03079f33859ae4b2334d675d4e93f5a4132e1eae2834fe4", size = 343021 } +sdist = { url = "https://files.pythonhosted.org/packages/92/76/5ac0c97f1117b91b7eb7323dcd61af80d72f790b4df71249a7850c195f30/tokenizers-0.21.1.tar.gz", hash = "sha256:a1bb04dc5b448985f86ecd4b05407f5a8d97cb2c0532199b2a302a604a0165ab", size = 343256 } wheels = [ - { url = "https://files.pythonhosted.org/packages/b0/5c/8b09607b37e996dc47e70d6a7b6f4bdd4e4d5ab22fe49d7374565c7fefaf/tokenizers-0.21.0-cp39-abi3-macosx_10_12_x86_64.whl", hash = "sha256:3c4c93eae637e7d2aaae3d376f06085164e1660f89304c0ab2b1d08a406636b2", size = 2647461 }, - { url = "https://files.pythonhosted.org/packages/22/7a/88e58bb297c22633ed1c9d16029316e5b5ac5ee44012164c2edede599a5e/tokenizers-0.21.0-cp39-abi3-macosx_11_0_arm64.whl", hash = "sha256:f53ea537c925422a2e0e92a24cce96f6bc5046bbef24a1652a5edc8ba975f62e", size = 2563639 }, - { url = "https://files.pythonhosted.org/packages/f7/14/83429177c19364df27d22bc096d4c2e431e0ba43e56c525434f1f9b0fd00/tokenizers-0.21.0-cp39-abi3-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:6b177fb54c4702ef611de0c069d9169f0004233890e0c4c5bd5508ae05abf193", size = 2903304 }, - { url = "https://files.pythonhosted.org/packages/7e/db/3433eab42347e0dc5452d8fcc8da03f638c9accffefe5a7c78146666964a/tokenizers-0.21.0-cp39-abi3-manylinux_2_17_armv7l.manylinux2014_armv7l.whl", hash = "sha256:6b43779a269f4629bebb114e19c3fca0223296ae9fea8bb9a7a6c6fb0657ff8e", size = 2804378 }, - { url = "https://files.pythonhosted.org/packages/57/8b/7da5e6f89736c2ade02816b4733983fca1c226b0c42980b1ae9dc8fcf5cc/tokenizers-0.21.0-cp39-abi3-manylinux_2_17_i686.manylinux2014_i686.whl", hash = "sha256:9aeb255802be90acfd363626753fda0064a8df06031012fe7d52fd9a905eb00e", size = 3095488 }, - { url = "https://files.pythonhosted.org/packages/4d/f6/5ed6711093dc2c04a4e03f6461798b12669bc5a17c8be7cce1240e0b5ce8/tokenizers-0.21.0-cp39-abi3-manylinux_2_17_ppc64le.manylinux2014_ppc64le.whl", hash = "sha256:d8b09dbeb7a8d73ee204a70f94fc06ea0f17dcf0844f16102b9f414f0b7463ba", size = 3121410 }, - { url = "https://files.pythonhosted.org/packages/81/42/07600892d48950c5e80505b81411044a2d969368cdc0d929b1c847bf6697/tokenizers-0.21.0-cp39-abi3-manylinux_2_17_s390x.manylinux2014_s390x.whl", hash = "sha256:400832c0904f77ce87c40f1a8a27493071282f785724ae62144324f171377273", size = 3388821 }, - { url = "https://files.pythonhosted.org/packages/22/06/69d7ce374747edaf1695a4f61b83570d91cc8bbfc51ccfecf76f56ab4aac/tokenizers-0.21.0-cp39-abi3-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:e84ca973b3a96894d1707e189c14a774b701596d579ffc7e69debfc036a61a04", size = 3008868 }, - { url = "https://files.pythonhosted.org/packages/c8/69/54a0aee4d576045b49a0eb8bffdc495634309c823bf886042e6f46b80058/tokenizers-0.21.0-cp39-abi3-musllinux_1_2_aarch64.whl", hash = "sha256:eb7202d231b273c34ec67767378cd04c767e967fda12d4a9e36208a34e2f137e", size = 8975831 }, - { url = "https://files.pythonhosted.org/packages/f7/f3/b776061e4f3ebf2905ba1a25d90380aafd10c02d406437a8ba22d1724d76/tokenizers-0.21.0-cp39-abi3-musllinux_1_2_armv7l.whl", hash = "sha256:089d56db6782a73a27fd8abf3ba21779f5b85d4a9f35e3b493c7bbcbbf0d539b", size = 8920746 }, - { url = "https://files.pythonhosted.org/packages/d8/ee/ce83d5ec8b6844ad4c3ecfe3333d58ecc1adc61f0878b323a15355bcab24/tokenizers-0.21.0-cp39-abi3-musllinux_1_2_i686.whl", hash = "sha256:c87ca3dc48b9b1222d984b6b7490355a6fdb411a2d810f6f05977258400ddb74", size = 9161814 }, - { url = "https://files.pythonhosted.org/packages/18/07/3e88e65c0ed28fa93aa0c4d264988428eef3df2764c3126dc83e243cb36f/tokenizers-0.21.0-cp39-abi3-musllinux_1_2_x86_64.whl", hash = "sha256:4145505a973116f91bc3ac45988a92e618a6f83eb458f49ea0790df94ee243ff", size = 9357138 }, - { url = "https://files.pythonhosted.org/packages/15/b0/dc4572ca61555fc482ebc933f26cb407c6aceb3dc19c301c68184f8cad03/tokenizers-0.21.0-cp39-abi3-win32.whl", hash = "sha256:eb1702c2f27d25d9dd5b389cc1f2f51813e99f8ca30d9e25348db6585a97e24a", size = 2202266 }, - { url = "https://files.pythonhosted.org/packages/44/69/d21eb253fa91622da25585d362a874fa4710be600f0ea9446d8d0217cec1/tokenizers-0.21.0-cp39-abi3-win_amd64.whl", hash = "sha256:87841da5a25a3a5f70c102de371db120f41873b854ba65e52bccd57df5a3780c", size = 2389192 }, + { url = "https://files.pythonhosted.org/packages/a5/1f/328aee25f9115bf04262e8b4e5a2050b7b7cf44b59c74e982db7270c7f30/tokenizers-0.21.1-cp39-abi3-macosx_10_12_x86_64.whl", hash = "sha256:e78e413e9e668ad790a29456e677d9d3aa50a9ad311a40905d6861ba7692cf41", size = 2780767 }, + { url = "https://files.pythonhosted.org/packages/ae/1a/4526797f3719b0287853f12c5ad563a9be09d446c44ac784cdd7c50f76ab/tokenizers-0.21.1-cp39-abi3-macosx_11_0_arm64.whl", hash = "sha256:cd51cd0a91ecc801633829fcd1fda9cf8682ed3477c6243b9a095539de4aecf3", size = 2650555 }, + { url = "https://files.pythonhosted.org/packages/4d/7a/a209b29f971a9fdc1da86f917fe4524564924db50d13f0724feed37b2a4d/tokenizers-0.21.1-cp39-abi3-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:28da6b72d4fb14ee200a1bd386ff74ade8992d7f725f2bde2c495a9a98cf4d9f", size = 2937541 }, + { url = "https://files.pythonhosted.org/packages/3c/1e/b788b50ffc6191e0b1fc2b0d49df8cff16fe415302e5ceb89f619d12c5bc/tokenizers-0.21.1-cp39-abi3-manylinux_2_17_armv7l.manylinux2014_armv7l.whl", hash = "sha256:34d8cfde551c9916cb92014e040806122295a6800914bab5865deb85623931cf", size = 2819058 }, + { url = "https://files.pythonhosted.org/packages/36/aa/3626dfa09a0ecc5b57a8c58eeaeb7dd7ca9a37ad9dd681edab5acd55764c/tokenizers-0.21.1-cp39-abi3-manylinux_2_17_i686.manylinux2014_i686.whl", hash = "sha256:aaa852d23e125b73d283c98f007e06d4595732104b65402f46e8ef24b588d9f8", size = 3133278 }, + { url = "https://files.pythonhosted.org/packages/a4/4d/8fbc203838b3d26269f944a89459d94c858f5b3f9a9b6ee9728cdcf69161/tokenizers-0.21.1-cp39-abi3-manylinux_2_17_ppc64le.manylinux2014_ppc64le.whl", hash = "sha256:a21a15d5c8e603331b8a59548bbe113564136dc0f5ad8306dd5033459a226da0", size = 3144253 }, + { url = "https://files.pythonhosted.org/packages/d8/1b/2bd062adeb7c7511b847b32e356024980c0ffcf35f28947792c2d8ad2288/tokenizers-0.21.1-cp39-abi3-manylinux_2_17_s390x.manylinux2014_s390x.whl", hash = "sha256:2fdbd4c067c60a0ac7eca14b6bd18a5bebace54eb757c706b47ea93204f7a37c", size = 3398225 }, + { url = "https://files.pythonhosted.org/packages/8a/63/38be071b0c8e06840bc6046991636bcb30c27f6bb1e670f4f4bc87cf49cc/tokenizers-0.21.1-cp39-abi3-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:2dd9a0061e403546f7377df940e866c3e678d7d4e9643d0461ea442b4f89e61a", size = 3038874 }, + { url = "https://files.pythonhosted.org/packages/ec/83/afa94193c09246417c23a3c75a8a0a96bf44ab5630a3015538d0c316dd4b/tokenizers-0.21.1-cp39-abi3-musllinux_1_2_aarch64.whl", hash = "sha256:db9484aeb2e200c43b915a1a0150ea885e35f357a5a8fabf7373af333dcc8dbf", size = 9014448 }, + { url = "https://files.pythonhosted.org/packages/ae/b3/0e1a37d4f84c0f014d43701c11eb8072704f6efe8d8fc2dcdb79c47d76de/tokenizers-0.21.1-cp39-abi3-musllinux_1_2_armv7l.whl", hash = "sha256:ed248ab5279e601a30a4d67bdb897ecbe955a50f1e7bb62bd99f07dd11c2f5b6", size = 8937877 }, + { url = "https://files.pythonhosted.org/packages/ac/33/ff08f50e6d615eb180a4a328c65907feb6ded0b8f990ec923969759dc379/tokenizers-0.21.1-cp39-abi3-musllinux_1_2_i686.whl", hash = "sha256:9ac78b12e541d4ce67b4dfd970e44c060a2147b9b2a21f509566d556a509c67d", size = 9186645 }, + { url = "https://files.pythonhosted.org/packages/5f/aa/8ae85f69a9f6012c6f8011c6f4aa1c96154c816e9eea2e1b758601157833/tokenizers-0.21.1-cp39-abi3-musllinux_1_2_x86_64.whl", hash = "sha256:e5a69c1a4496b81a5ee5d2c1f3f7fbdf95e90a0196101b0ee89ed9956b8a168f", size = 9384380 }, + { url = "https://files.pythonhosted.org/packages/e8/5b/a5d98c89f747455e8b7a9504910c865d5e51da55e825a7ae641fb5ff0a58/tokenizers-0.21.1-cp39-abi3-win32.whl", hash = "sha256:1039a3a5734944e09de1d48761ade94e00d0fa760c0e0551151d4dd851ba63e3", size = 2239506 }, + { url = "https://files.pythonhosted.org/packages/e6/b6/072a8e053ae600dcc2ac0da81a23548e3b523301a442a6ca900e92ac35be/tokenizers-0.21.1-cp39-abi3-win_amd64.whl", hash = "sha256:0f0dcbcc9f6e13e675a66d7a5f2f225a736745ce484c1a4e07476a89ccdad382", size = 2435481 }, ] [[package]] @@ -2739,16 +2755,16 @@ wheels = [ [[package]] name = "trove-classifiers" -version = "2025.1.15.22" +version = "2025.4.11.15" source = { registry = "https://pypi.org/simple" } -sdist = { url = "https://files.pythonhosted.org/packages/f3/cb/8f6a91c74049180e395590901834d68bef5d6a2ce4c9ca9792cfadc1b9b4/trove_classifiers-2025.1.15.22.tar.gz", hash = "sha256:90af74358d3a01b3532bc7b3c88d8c6a094c2fd50a563d13d9576179326d7ed9", size = 16236 } +sdist = { url = "https://files.pythonhosted.org/packages/52/db/cd8510702ed0ac1215e960ab3511a7f5750d63b56f2ae94d94fb4a6425af/trove_classifiers-2025.4.11.15.tar.gz", hash = "sha256:634728aa6698dc1ae3db161da94d9e4c7597a9a5da2c4410211b36f15fed60fc", size = 16321 } wheels = [ - { url = "https://files.pythonhosted.org/packages/2b/c5/6422dbc59954389b20b2aba85b737ab4a552e357e7ea14b52f40312e7c84/trove_classifiers-2025.1.15.22-py3-none-any.whl", hash = "sha256:5f19c789d4f17f501d36c94dbbf969fb3e8c2784d008e6f5164dd2c3d6a2b07c", size = 13610 }, + { url = "https://files.pythonhosted.org/packages/70/7d/a2271b98b833680561ab3fcd60ab682478dc4f7cc023fab24991601ac8ac/trove_classifiers-2025.4.11.15-py3-none-any.whl", hash = "sha256:e7d98983f004df35293caf954bdfe944b139eb402677a97115450e320f0bd855", size = 13710 }, ] [[package]] name = "typer" -version = "0.15.1" +version = "0.15.2" source = { registry = "https://pypi.org/simple" } dependencies = [ { name = "click" }, @@ -2756,9 +2772,9 @@ dependencies = [ { name = "shellingham" }, { name = "typing-extensions" }, ] -sdist = { url = "https://files.pythonhosted.org/packages/cb/ce/dca7b219718afd37a0068f4f2530a727c2b74a8b6e8e0c0080a4c0de4fcd/typer-0.15.1.tar.gz", hash = "sha256:a0588c0a7fa68a1978a069818657778f86abe6ff5ea6abf472f940a08bfe4f0a", size = 99789 } +sdist = { url = "https://files.pythonhosted.org/packages/8b/6f/3991f0f1c7fcb2df31aef28e0594d8d54b05393a0e4e34c65e475c2a5d41/typer-0.15.2.tar.gz", hash = "sha256:ab2fab47533a813c49fe1f16b1a370fd5819099c00b119e0633df65f22144ba5", size = 100711 } wheels = [ - { url = "https://files.pythonhosted.org/packages/d0/cc/0a838ba5ca64dc832aa43f727bd586309846b0ffb2ce52422543e6075e8a/typer-0.15.1-py3-none-any.whl", hash = "sha256:7994fb7b8155b64d3402518560648446072864beefd44aa2dc36972a5972e847", size = 44908 }, + { url = "https://files.pythonhosted.org/packages/7f/fc/5b29fea8cee020515ca82cc68e3b8e1e34bb19a3535ad854cac9257b414c/typer-0.15.2-py3-none-any.whl", hash = "sha256:46a499c6107d645a9c13f7ee46c5d5096cae6f5fc57dd11eccbbb9ae3e44ddfc", size = 45061 }, ] [[package]] @@ -2772,20 +2788,23 @@ wheels = [ [[package]] name = "types-setuptools" -version = "75.8.0.20250110" +version = "78.1.0.20250329" source = { registry = "https://pypi.org/simple" } -sdist = { url = "https://files.pythonhosted.org/packages/f7/42/5713e90d4f9683f2301d900f33e4fc2405ad8ac224dda30f6cb7f4cd215b/types_setuptools-75.8.0.20250110.tar.gz", hash = "sha256:96f7ec8bbd6e0a54ea180d66ad68ad7a1d7954e7281a710ea2de75e355545271", size = 48185 } +dependencies = [ + { name = "setuptools" }, +] +sdist = { url = "https://files.pythonhosted.org/packages/e9/6e/c54e6705e5fe67c3606e4c7c91123ecf10d7e1e6d7a9c11b52970cf2196c/types_setuptools-78.1.0.20250329.tar.gz", hash = "sha256:31e62950c38b8cc1c5114b077504e36426860a064287cac11b9666ab3a483234", size = 43942 } wheels = [ - { url = "https://files.pythonhosted.org/packages/cf/a3/dbfd106751b11c728cec21cc62cbfe7ff7391b935c4b6e8f0bdc2e6fd541/types_setuptools-75.8.0.20250110-py3-none-any.whl", hash = "sha256:a9f12980bbf9bcdc23ecd80755789085bad6bfce4060c2275bc2b4ca9f2bc480", size = 71521 }, + { url = "https://files.pythonhosted.org/packages/7d/31/85d0264705d8ef47680d28f4dc9bb1e27d8cace785fbe3f8d009fad6cb88/types_setuptools-78.1.0.20250329-py3-none-any.whl", hash = "sha256:ea47eab891afb506f470eee581dcde44d64dc99796665da794da6f83f50f6776", size = 66985 }, ] [[package]] name = "typing-extensions" -version = "4.12.2" +version = "4.13.2" source = { registry = "https://pypi.org/simple" } -sdist = { url = "https://files.pythonhosted.org/packages/df/db/f35a00659bc03fec321ba8bce9420de607a1d37f8342eee1863174c69557/typing_extensions-4.12.2.tar.gz", hash = "sha256:1a7ead55c7e559dd4dee8856e3a88b41225abfe1ce8df57b7c13915fe121ffb8", size = 85321 } +sdist = { url = "https://files.pythonhosted.org/packages/f6/37/23083fcd6e35492953e8d2aaaa68b860eb422b34627b13f2ce3eb6106061/typing_extensions-4.13.2.tar.gz", hash = "sha256:e6c81219bd689f51865d9e372991c540bda33a0379d5573cddb9a3a23f7caaef", size = 106967 } wheels = [ - { url = "https://files.pythonhosted.org/packages/26/9f/ad63fc0248c5379346306f8668cda6e2e2e9c95e01216d2b8ffd9ff037d0/typing_extensions-4.12.2-py3-none-any.whl", hash = "sha256:04e5ca0351e0f3f85c6853954072df659d0d13fac324d0072316b67d7794700d", size = 37438 }, + { url = "https://files.pythonhosted.org/packages/8b/54/b1ae86c0973cc6f0210b53d508ca3641fb6d0c56823f288d108bc7ab3cc8/typing_extensions-4.13.2-py3-none-any.whl", hash = "sha256:a439e7c04b49fec3e5d3e2beaa21755cadbbdc391694e28ccdd36ca4a1408f8c", size = 45806 }, ] [[package]] @@ -2801,6 +2820,18 @@ wheels = [ { url = "https://files.pythonhosted.org/packages/65/f3/107a22063bf27bdccf2024833d3445f4eea42b2e598abfbd46f6a63b6cb0/typing_inspect-0.9.0-py3-none-any.whl", hash = "sha256:9ee6fc59062311ef8547596ab6b955e1b8aa46242d854bfc78f4f6b0eff35f9f", size = 8827 }, ] +[[package]] +name = "typing-inspection" +version = "0.4.0" +source = { registry = "https://pypi.org/simple" } +dependencies = [ + { name = "typing-extensions" }, +] +sdist = { url = "https://files.pythonhosted.org/packages/82/5c/e6082df02e215b846b4b8c0b887a64d7d08ffaba30605502639d44c06b82/typing_inspection-0.4.0.tar.gz", hash = "sha256:9765c87de36671694a67904bf2c96e395be9c6439bb6c87b5142569dcdd65122", size = 76222 } +wheels = [ + { url = "https://files.pythonhosted.org/packages/31/08/aa4fdfb71f7de5176385bd9e90852eaf6b5d622735020ad600f2bab54385/typing_inspection-0.4.0-py3-none-any.whl", hash = "sha256:50e72559fcd2a6367a19f7a7e610e6afcb9fac940c650290eed893d61386832f", size = 14125 }, +] + [[package]] name = "unidiff" version = "0.7.5" @@ -2821,48 +2852,49 @@ wheels = [ [[package]] name = "urllib3" -version = "2.3.0" +version = "2.4.0" source = { registry = "https://pypi.org/simple" } -sdist = { url = "https://files.pythonhosted.org/packages/aa/63/e53da845320b757bf29ef6a9062f5c669fe997973f966045cb019c3f4b66/urllib3-2.3.0.tar.gz", hash = "sha256:f8c5449b3cf0861679ce7e0503c7b44b5ec981bec0d1d3795a07f1ba96f0204d", size = 307268 } +sdist = { url = "https://files.pythonhosted.org/packages/8a/78/16493d9c386d8e60e442a35feac5e00f0913c0f4b7c217c11e8ec2ff53e0/urllib3-2.4.0.tar.gz", hash = "sha256:414bc6535b787febd7567804cc015fee39daab8ad86268f1310a9250697de466", size = 390672 } wheels = [ - { url = "https://files.pythonhosted.org/packages/c8/19/4ec628951a74043532ca2cf5d97b7b14863931476d117c471e8e2b1eb39f/urllib3-2.3.0-py3-none-any.whl", hash = "sha256:1cee9ad369867bfdbbb48b7dd50374c0967a0bb7710050facf0dd6911440e3df", size = 128369 }, + { url = "https://files.pythonhosted.org/packages/6b/11/cc635220681e93a0183390e26485430ca2c7b5f9d33b15c74c2861cb8091/urllib3-2.4.0-py3-none-any.whl", hash = "sha256:4e16665048960a0900c702d4a66415956a584919c03361cac9f1df5c5dd7e813", size = 128680 }, ] [[package]] name = "uv" -version = "0.5.24" -source = { registry = "https://pypi.org/simple" } -sdist = { url = "https://files.pythonhosted.org/packages/2e/f9/248e790785008d0486e87024c9ac712e94d77c66d269d853eed94d74c7a0/uv-0.5.24.tar.gz", hash = "sha256:b7895b66a182bf5e5b88e470ab04beaf76361a64970db6058363293a18c9dd2a", size = 2683917 } -wheels = [ - { url = "https://files.pythonhosted.org/packages/86/83/3f1dbd0c23bbaaac95f42daa893862f04a6a4b12ee9aa107961230c2d877/uv-0.5.24-py3-none-linux_armv6l.whl", hash = "sha256:13f4f1e36c2b566c19d6fefd09cca5a2a6e8b1cf2ffa16b670351d0eed0c7d4f", size = 15314400 }, - { url = "https://files.pythonhosted.org/packages/f8/0a/0c1579c28cd794a8004213300fbd8e0d23accfa61b95cfde26da09fb30d6/uv-0.5.24-py3-none-macosx_10_12_x86_64.whl", hash = "sha256:188bacdbe39c7f76ad1999ce0dee0dfd2b79d248e121498bbaf94ba6089fb7ee", size = 15541096 }, - { url = "https://files.pythonhosted.org/packages/83/34/398f9b69ecc6ec5cecd3ea561681cd067162b2d0bc3ec1619948ca564b2b/uv-0.5.24-py3-none-macosx_11_0_arm64.whl", hash = "sha256:f2ccd95cecfcc9e106b9d8d154f6bfc59d8263952f72a720d0158f3b94dc69cb", size = 14426323 }, - { url = "https://files.pythonhosted.org/packages/c3/23/4af395cdaa68b02a724e159b42d0e2fb5985b807b36aabea5160ac5d7337/uv-0.5.24-py3-none-manylinux_2_17_aarch64.manylinux2014_aarch64.musllinux_1_1_aarch64.whl", hash = "sha256:d36da9ab6291eaac151695247cdfb3049e6416d6c210c9890ffcda6d0aa6ad19", size = 14869237 }, - { url = "https://files.pythonhosted.org/packages/a1/b0/aa8af618b0d7fbe349a62b4e3641041a894e994b0431289aab5b9c0cca13/uv-0.5.24-py3-none-manylinux_2_17_armv7l.manylinux2014_armv7l.whl", hash = "sha256:d7421d59c80bc805103f1030777f909904feab338620db5b5d81f9c10767304d", size = 15110487 }, - { url = "https://files.pythonhosted.org/packages/21/e4/f249caa7bfed27f68931ef9ec364cfd536dea2ea06c9279af6a014e2a5e1/uv-0.5.24-py3-none-manylinux_2_17_i686.manylinux2014_i686.whl", hash = "sha256:455d23e0f41577eb9edbdac8e41d37875cb2885758760acee96469084f31571c", size = 15834535 }, - { url = "https://files.pythonhosted.org/packages/3d/f2/32f3f4de7cebaefc2259606ad5a3909efdabf1795078a3aaec892f008b34/uv-0.5.24-py3-none-manylinux_2_17_ppc64.manylinux2014_ppc64.whl", hash = "sha256:cfcabf26314411dde69c7a62e9757d5688aa475731c7a3b3749f389488121768", size = 16779355 }, - { url = "https://files.pythonhosted.org/packages/f5/12/219a90b663706c4a75609edff4bd4b86b9a6c2ff5ec3d156e27ab62f1cf3/uv-0.5.24-py3-none-manylinux_2_17_ppc64le.manylinux2014_ppc64le.whl", hash = "sha256:ac8919fc145aeba090adce202e470c21f2df7dfcfa01ca67a9575d41adbf3de5", size = 16502313 }, - { url = "https://files.pythonhosted.org/packages/51/8c/72a2b033bbd35fed1aee42a771bbc9aa09570bde7c55605056d558a423ba/uv-0.5.24-py3-none-manylinux_2_17_s390x.manylinux2014_s390x.whl", hash = "sha256:57b473602e7f3f356ba4d2cb5e2c6c7c691f21dbbffd7202c12fc9db29b7ad7a", size = 20823843 }, - { url = "https://files.pythonhosted.org/packages/c7/04/9050b089ffa18ce665f3f0cd82c8f333789fea1e775a172ec389560fc99b/uv-0.5.24-py3-none-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:a47acfda27654c212af6aeec0b8d12fc0150295b7e6afabbdc741a7eb39d898f", size = 16164564 }, - { url = "https://files.pythonhosted.org/packages/2c/1b/d38166a3a254061c862a4a99b49ec9e3b98be254f33e24caeeb5c1184252/uv-0.5.24-py3-none-manylinux_2_28_aarch64.whl", hash = "sha256:1e933341300f107d228608af9cc23e08c3a386c0077181db23b4cd26535c64d7", size = 15151622 }, - { url = "https://files.pythonhosted.org/packages/6f/5f/365450f8cb40fcc070f3b288b07edf40c07529c423e51e6b807821dd0d3d/uv-0.5.24-py3-none-musllinux_1_1_armv7l.whl", hash = "sha256:421304f2b31799f9f926faa75add2b7bbf653e850b9f97c08cb74e5fb5e7f661", size = 15054207 }, - { url = "https://files.pythonhosted.org/packages/6e/08/91eefd0a2428151e8b8b1b7b55bfd4f055c91320ed0284713952a980e24d/uv-0.5.24-py3-none-musllinux_1_1_i686.whl", hash = "sha256:d3a9e63b098055830b58b47552ea4fc38c94a95b5f2de44a8d288ef5decce265", size = 15492772 }, - { url = "https://files.pythonhosted.org/packages/bd/9f/8260e02540d8982e5ecc5e6174f030e8e25ea845e43d25dbe566ceee6af3/uv-0.5.24-py3-none-musllinux_1_1_x86_64.whl", hash = "sha256:6640a2cb919cc04c0fb599d5630a579bacfa8166b928b7e49e3b71280f30f5d9", size = 16296687 }, - { url = "https://files.pythonhosted.org/packages/24/ca/c638ff0f49f0d971a1fa459f500abd5ac8d7472491ba1b1b6da95c5c7ea5/uv-0.5.24-py3-none-win32.whl", hash = "sha256:ecb71bcada372274db34bd32f6a9214974b26b6cdc3145a26d07a710f2ea7f18", size = 15430745 }, - { url = "https://files.pythonhosted.org/packages/fc/0e/5a2cd5519e78528c99f7fe80514f03bf4bfbd51966bf8b55bd746c6e8675/uv-0.5.24-py3-none-win_amd64.whl", hash = "sha256:9059775b0c74a68799f3e665a08c429f527d3cdf61c15227992cfff75e31c327", size = 16826614 }, +version = "0.6.14" +source = { registry = "https://pypi.org/simple" } +sdist = { url = "https://files.pythonhosted.org/packages/e5/eb/07bc000a3c05372448b63c45da98630c532ec4e059d848488c3e774d017a/uv-0.6.14.tar.gz", hash = "sha256:a117466f307d164a74444949cc94ec4328ec880fb489cbaa7df324dab14c5c98", size = 3134567 } +wheels = [ + { url = "https://files.pythonhosted.org/packages/6b/bf/3e87dec7728b249458967f39a301376cb776e559c90261c1dac963686dc3/uv-0.6.14-py3-none-linux_armv6l.whl", hash = "sha256:c775e5d7a80ff43cb88856bbdcd838918d5ac3dc362414317e6bbaeb615fff98", size = 16228143 }, + { url = "https://files.pythonhosted.org/packages/24/b2/111e1ea40453d93c849f36a67397b51d9b458e6e598c3629ffe76d11b490/uv-0.6.14-py3-none-macosx_10_12_x86_64.whl", hash = "sha256:2578f6f8cdbcc036ffad1043f9f66ade3ac0babf29def6abd9eefd4a7c6621cb", size = 16273279 }, + { url = "https://files.pythonhosted.org/packages/72/89/e7fc8a047f08234cc26d1e37e5f573887744205d087f8e8e6f3d0feb04ce/uv-0.6.14-py3-none-macosx_11_0_arm64.whl", hash = "sha256:9fc8fe58871b4fe02a863b05b8b1b25ef1b6c60d4d224e85338f5c2be0ab4f0e", size = 15115451 }, + { url = "https://files.pythonhosted.org/packages/20/1e/72ac3d1e0805d3b49b0a4de46483489ea1989827440f42b0cfb444cdc67f/uv-0.6.14-py3-none-manylinux_2_17_aarch64.manylinux2014_aarch64.musllinux_1_1_aarch64.whl", hash = "sha256:2fb2cd7f6aae21b81474b0051d30e7ed939a9a71714948c47f58b0e7acdd2a80", size = 15540456 }, + { url = "https://files.pythonhosted.org/packages/fd/47/5aeb7fb80c673bc28ccf3ab99e376b1cd92eac41af6b9b48c0e38b114c54/uv-0.6.14-py3-none-manylinux_2_17_armv7l.manylinux2014_armv7l.whl", hash = "sha256:d6ca3f99c1a6c1c430ae8f451133fb4e8c3a22f661c257425402a5d9430bb797", size = 15979820 }, + { url = "https://files.pythonhosted.org/packages/1f/44/c3ad856473f2ef5f22c865a73a0a37ee82d11fcca78ae82f5ac895a7023a/uv-0.6.14-py3-none-manylinux_2_17_i686.manylinux2014_i686.whl", hash = "sha256:ed41877b679e0a1af9ab65427d829b87a81b499017e59c70756d4ba02ca43fcb", size = 16650494 }, + { url = "https://files.pythonhosted.org/packages/7a/f6/8a1245530c282d470909db78cf56831693c58b90d9b819e35aa2d85fbbe8/uv-0.6.14-py3-none-manylinux_2_17_ppc64.manylinux2014_ppc64.whl", hash = "sha256:fe9b4361b1c8055301b715fdd94d94eb512053dc4545fec40d3fe3657f655987", size = 17505028 }, + { url = "https://files.pythonhosted.org/packages/a5/70/0806268440651e2ad1b3542af42b800e20bb7e43050a9ca78f3d1eb4c660/uv-0.6.14-py3-none-manylinux_2_17_ppc64le.manylinux2014_ppc64le.whl", hash = "sha256:998b67bb1cebbe044fc2c5cb251c29cffc56f62a6d55719d6f4e960461d6edad", size = 17245854 }, + { url = "https://files.pythonhosted.org/packages/2a/3a/0da9780868626466d8c4977fb02d1b0daa80e6f7504d7b662cae3fb4af3d/uv-0.6.14-py3-none-manylinux_2_17_s390x.manylinux2014_s390x.whl", hash = "sha256:6d433925db6e2ef46047b68962d136ff2ef17a7b5609168615f19e60674232c9", size = 21584756 }, + { url = "https://files.pythonhosted.org/packages/eb/fd/21a82b78173be1a2ea20f4f55154e7252bd80d21ed60b9bbbc0e2047b8d0/uv-0.6.14-py3-none-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:36aaeb00a70a10f748e16c7a1fc410862e2ba905806e7e9dfbc3e64596309404", size = 16878847 }, + { url = "https://files.pythonhosted.org/packages/6c/9a/7c84650ae9fb801ecc848d49dcba201243989d9234fe3ec4a4e935ff21c0/uv-0.6.14-py3-none-manylinux_2_28_aarch64.whl", hash = "sha256:11779beb3bd1f92814bc8d8cd350d5228e8f9198cca2f52138b53030a4061d93", size = 15810089 }, + { url = "https://files.pythonhosted.org/packages/0b/b3/efcbd3a2d298801109b24feee655bb80fe4178aa6bf68e49664c48b342b2/uv-0.6.14-py3-none-musllinux_1_1_armv7l.whl", hash = "sha256:bf1ec103cf9a0850f03935dc6a93cacc680fa2c90c3b41cfc10da311afab8f5b", size = 15962056 }, + { url = "https://files.pythonhosted.org/packages/3f/53/c92c894cb34e9578c2e6dc195bcd4eb0a140dd57c96a60207d847521a902/uv-0.6.14-py3-none-musllinux_1_1_i686.whl", hash = "sha256:955e36c98a438a249e178988d4f13b1bb831eb57264d73c459f171b5afd7b023", size = 16255226 }, + { url = "https://files.pythonhosted.org/packages/df/eb/38bc37856691d53008bf094d03d9e7ab0c2927523a3901c83e152e7c9915/uv-0.6.14-py3-none-musllinux_1_1_x86_64.whl", hash = "sha256:2d534e7dc1299c8b53eb7b4c7575e4f0933673ea8b1275d3f3022f5670e311db", size = 17005225 }, + { url = "https://files.pythonhosted.org/packages/d8/fe/087d5193603e16bc5f67556d94cf8fa8634785c5863cccdec825f14e9a4c/uv-0.6.14-py3-none-win32.whl", hash = "sha256:7cdf3c8d927b07d4eaffc44809eb57523d449705f10dabbdd6f34f7bdfc7d5fe", size = 16131231 }, + { url = "https://files.pythonhosted.org/packages/40/17/33c5c1503c35c874932d4a21ec10a55051e3695dba12b7de700bcfad0cca/uv-0.6.14-py3-none-win_amd64.whl", hash = "sha256:012f46bef6909209c4a6749e4019eb755ba762d37d7ceaaf76da9cb4b7f771e9", size = 17628508 }, + { url = "https://files.pythonhosted.org/packages/77/09/163062d439ddc0d89e527ae0e631abf1f7781b183442d8823c48af368f5d/uv-0.6.14-py3-none-win_arm64.whl", hash = "sha256:7465081b4d0b213d0055ccb48de7fe546b5cf0853c6d3601115760760634f6d8", size = 16387232 }, ] [[package]] name = "uvicorn" -version = "0.34.0" +version = "0.34.1" source = { registry = "https://pypi.org/simple" } dependencies = [ { name = "click" }, { name = "h11" }, ] -sdist = { url = "https://files.pythonhosted.org/packages/4b/4d/938bd85e5bf2edeec766267a5015ad969730bb91e31b44021dfe8b22df6c/uvicorn-0.34.0.tar.gz", hash = "sha256:404051050cd7e905de2c9a7e61790943440b3416f49cb409f965d9dcd0fa73e9", size = 76568 } +sdist = { url = "https://files.pythonhosted.org/packages/86/37/dd92f1f9cedb5eaf74d9999044306e06abe65344ff197864175dbbd91871/uvicorn-0.34.1.tar.gz", hash = "sha256:af981725fc4b7ffc5cb3b0e9eda6258a90c4b52cb2a83ce567ae0a7ae1757afc", size = 76755 } wheels = [ - { url = "https://files.pythonhosted.org/packages/61/14/33a3a1352cfa71812a3a21e8c9bfb83f60b0011f5e36f2b1399d51928209/uvicorn-0.34.0-py3-none-any.whl", hash = "sha256:023dc038422502fa28a09c7a30bf2b6991512da7dcdb8fd35fe57cfc154126f4", size = 62315 }, + { url = "https://files.pythonhosted.org/packages/5f/38/a5801450940a858c102a7ad9e6150146a25406a119851c993148d56ab041/uvicorn-0.34.1-py3-none-any.whl", hash = "sha256:984c3a8c7ca18ebaad15995ee7401179212c59521e67bfc390c07fa2b8d2e065", size = 62404 }, ] [package.optional-dependencies] @@ -2898,52 +2930,52 @@ wheels = [ [[package]] name = "virtualenv" -version = "20.29.1" +version = "20.30.0" source = { registry = "https://pypi.org/simple" } dependencies = [ { name = "distlib" }, { name = "filelock" }, { name = "platformdirs" }, ] -sdist = { url = "https://files.pythonhosted.org/packages/a7/ca/f23dcb02e161a9bba141b1c08aa50e8da6ea25e6d780528f1d385a3efe25/virtualenv-20.29.1.tar.gz", hash = "sha256:b8b8970138d32fb606192cb97f6cd4bb644fa486be9308fb9b63f81091b5dc35", size = 7658028 } +sdist = { url = "https://files.pythonhosted.org/packages/38/e0/633e369b91bbc664df47dcb5454b6c7cf441e8f5b9d0c250ce9f0546401e/virtualenv-20.30.0.tar.gz", hash = "sha256:800863162bcaa5450a6e4d721049730e7f2dae07720e0902b0e4040bd6f9ada8", size = 4346945 } wheels = [ - { url = "https://files.pythonhosted.org/packages/89/9b/599bcfc7064fbe5740919e78c5df18e5dceb0887e676256a1061bb5ae232/virtualenv-20.29.1-py3-none-any.whl", hash = "sha256:4e4cb403c0b0da39e13b46b1b2476e505cb0046b25f242bee80f62bf990b2779", size = 4282379 }, + { url = "https://files.pythonhosted.org/packages/4c/ed/3cfeb48175f0671ec430ede81f628f9fb2b1084c9064ca67ebe8c0ed6a05/virtualenv-20.30.0-py3-none-any.whl", hash = "sha256:e34302959180fca3af42d1800df014b35019490b119eba981af27f2fa486e5d6", size = 4329461 }, ] [[package]] name = "watchfiles" -version = "1.0.4" +version = "1.0.5" source = { registry = "https://pypi.org/simple" } dependencies = [ { name = "anyio" }, ] -sdist = { url = "https://files.pythonhosted.org/packages/f5/26/c705fc77d0a9ecdb9b66f1e2976d95b81df3cae518967431e7dbf9b5e219/watchfiles-1.0.4.tar.gz", hash = "sha256:6ba473efd11062d73e4f00c2b730255f9c1bdd73cd5f9fe5b5da8dbd4a717205", size = 94625 } -wheels = [ - { url = "https://files.pythonhosted.org/packages/5b/1a/8f4d9a1461709756ace48c98f07772bc6d4519b1e48b5fa24a4061216256/watchfiles-1.0.4-cp312-cp312-macosx_10_12_x86_64.whl", hash = "sha256:229e6ec880eca20e0ba2f7e2249c85bae1999d330161f45c78d160832e026ee2", size = 391345 }, - { url = "https://files.pythonhosted.org/packages/bc/d2/6750b7b3527b1cdaa33731438432e7238a6c6c40a9924049e4cebfa40805/watchfiles-1.0.4-cp312-cp312-macosx_11_0_arm64.whl", hash = "sha256:5717021b199e8353782dce03bd8a8f64438832b84e2885c4a645f9723bf656d9", size = 381515 }, - { url = "https://files.pythonhosted.org/packages/4e/17/80500e42363deef1e4b4818729ed939aaddc56f82f4e72b2508729dd3c6b/watchfiles-1.0.4-cp312-cp312-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:0799ae68dfa95136dde7c472525700bd48777875a4abb2ee454e3ab18e9fc712", size = 449767 }, - { url = "https://files.pythonhosted.org/packages/10/37/1427fa4cfa09adbe04b1e97bced19a29a3462cc64c78630787b613a23f18/watchfiles-1.0.4-cp312-cp312-manylinux_2_17_armv7l.manylinux2014_armv7l.whl", hash = "sha256:43b168bba889886b62edb0397cab5b6490ffb656ee2fcb22dec8bfeb371a9e12", size = 455677 }, - { url = "https://files.pythonhosted.org/packages/c5/7a/39e9397f3a19cb549a7d380412fd9e507d4854eddc0700bfad10ef6d4dba/watchfiles-1.0.4-cp312-cp312-manylinux_2_17_i686.manylinux2014_i686.whl", hash = "sha256:fb2c46e275fbb9f0c92e7654b231543c7bbfa1df07cdc4b99fa73bedfde5c844", size = 482219 }, - { url = "https://files.pythonhosted.org/packages/45/2d/7113931a77e2ea4436cad0c1690c09a40a7f31d366f79c6f0a5bc7a4f6d5/watchfiles-1.0.4-cp312-cp312-manylinux_2_17_ppc64le.manylinux2014_ppc64le.whl", hash = "sha256:857f5fc3aa027ff5e57047da93f96e908a35fe602d24f5e5d8ce64bf1f2fc733", size = 518830 }, - { url = "https://files.pythonhosted.org/packages/f9/1b/50733b1980fa81ef3c70388a546481ae5fa4c2080040100cd7bf3bf7b321/watchfiles-1.0.4-cp312-cp312-manylinux_2_17_s390x.manylinux2014_s390x.whl", hash = "sha256:55ccfd27c497b228581e2838d4386301227fc0cb47f5a12923ec2fe4f97b95af", size = 497997 }, - { url = "https://files.pythonhosted.org/packages/2b/b4/9396cc61b948ef18943e7c85ecfa64cf940c88977d882da57147f62b34b1/watchfiles-1.0.4-cp312-cp312-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:5c11ea22304d17d4385067588123658e9f23159225a27b983f343fcffc3e796a", size = 452249 }, - { url = "https://files.pythonhosted.org/packages/fb/69/0c65a5a29e057ad0dc691c2fa6c23b2983c7dabaa190ba553b29ac84c3cc/watchfiles-1.0.4-cp312-cp312-musllinux_1_1_aarch64.whl", hash = "sha256:74cb3ca19a740be4caa18f238298b9d472c850f7b2ed89f396c00a4c97e2d9ff", size = 614412 }, - { url = "https://files.pythonhosted.org/packages/7f/b9/319fcba6eba5fad34327d7ce16a6b163b39741016b1996f4a3c96b8dd0e1/watchfiles-1.0.4-cp312-cp312-musllinux_1_1_x86_64.whl", hash = "sha256:c7cce76c138a91e720d1df54014a047e680b652336e1b73b8e3ff3158e05061e", size = 611982 }, - { url = "https://files.pythonhosted.org/packages/f1/47/143c92418e30cb9348a4387bfa149c8e0e404a7c5b0585d46d2f7031b4b9/watchfiles-1.0.4-cp312-cp312-win32.whl", hash = "sha256:b045c800d55bc7e2cadd47f45a97c7b29f70f08a7c2fa13241905010a5493f94", size = 271822 }, - { url = "https://files.pythonhosted.org/packages/ea/94/b0165481bff99a64b29e46e07ac2e0df9f7a957ef13bec4ceab8515f44e3/watchfiles-1.0.4-cp312-cp312-win_amd64.whl", hash = "sha256:c2acfa49dd0ad0bf2a9c0bb9a985af02e89345a7189be1efc6baa085e0f72d7c", size = 285441 }, - { url = "https://files.pythonhosted.org/packages/11/de/09fe56317d582742d7ca8c2ca7b52a85927ebb50678d9b0fa8194658f536/watchfiles-1.0.4-cp312-cp312-win_arm64.whl", hash = "sha256:22bb55a7c9e564e763ea06c7acea24fc5d2ee5dfc5dafc5cfbedfe58505e9f90", size = 277141 }, - { url = "https://files.pythonhosted.org/packages/08/98/f03efabec64b5b1fa58c0daab25c68ef815b0f320e54adcacd0d6847c339/watchfiles-1.0.4-cp313-cp313-macosx_10_12_x86_64.whl", hash = "sha256:8012bd820c380c3d3db8435e8cf7592260257b378b649154a7948a663b5f84e9", size = 390954 }, - { url = "https://files.pythonhosted.org/packages/16/09/4dd49ba0a32a45813debe5fb3897955541351ee8142f586303b271a02b40/watchfiles-1.0.4-cp313-cp313-macosx_11_0_arm64.whl", hash = "sha256:aa216f87594f951c17511efe5912808dfcc4befa464ab17c98d387830ce07b60", size = 381133 }, - { url = "https://files.pythonhosted.org/packages/76/59/5aa6fc93553cd8d8ee75c6247763d77c02631aed21551a97d94998bf1dae/watchfiles-1.0.4-cp313-cp313-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:62c9953cf85529c05b24705639ffa390f78c26449e15ec34d5339e8108c7c407", size = 449516 }, - { url = "https://files.pythonhosted.org/packages/4c/aa/df4b6fe14b6317290b91335b23c96b488d365d65549587434817e06895ea/watchfiles-1.0.4-cp313-cp313-manylinux_2_17_armv7l.manylinux2014_armv7l.whl", hash = "sha256:7cf684aa9bba4cd95ecb62c822a56de54e3ae0598c1a7f2065d51e24637a3c5d", size = 454820 }, - { url = "https://files.pythonhosted.org/packages/5e/71/185f8672f1094ce48af33252c73e39b48be93b761273872d9312087245f6/watchfiles-1.0.4-cp313-cp313-manylinux_2_17_i686.manylinux2014_i686.whl", hash = "sha256:f44a39aee3cbb9b825285ff979ab887a25c5d336e5ec3574f1506a4671556a8d", size = 481550 }, - { url = "https://files.pythonhosted.org/packages/85/d7/50ebba2c426ef1a5cb17f02158222911a2e005d401caf5d911bfca58f4c4/watchfiles-1.0.4-cp313-cp313-manylinux_2_17_ppc64le.manylinux2014_ppc64le.whl", hash = "sha256:a38320582736922be8c865d46520c043bff350956dfc9fbaee3b2df4e1740a4b", size = 518647 }, - { url = "https://files.pythonhosted.org/packages/f0/7a/4c009342e393c545d68987e8010b937f72f47937731225b2b29b7231428f/watchfiles-1.0.4-cp313-cp313-manylinux_2_17_s390x.manylinux2014_s390x.whl", hash = "sha256:39f4914548b818540ef21fd22447a63e7be6e24b43a70f7642d21f1e73371590", size = 497547 }, - { url = "https://files.pythonhosted.org/packages/0f/7c/1cf50b35412d5c72d63b2bf9a4fffee2e1549a245924960dd087eb6a6de4/watchfiles-1.0.4-cp313-cp313-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:f12969a3765909cf5dc1e50b2436eb2c0e676a3c75773ab8cc3aa6175c16e902", size = 452179 }, - { url = "https://files.pythonhosted.org/packages/d6/a9/3db1410e1c1413735a9a472380e4f431ad9a9e81711cda2aaf02b7f62693/watchfiles-1.0.4-cp313-cp313-musllinux_1_1_aarch64.whl", hash = "sha256:0986902677a1a5e6212d0c49b319aad9cc48da4bd967f86a11bde96ad9676ca1", size = 614125 }, - { url = "https://files.pythonhosted.org/packages/f2/e1/0025d365cf6248c4d1ee4c3d2e3d373bdd3f6aff78ba4298f97b4fad2740/watchfiles-1.0.4-cp313-cp313-musllinux_1_1_x86_64.whl", hash = "sha256:308ac265c56f936636e3b0e3f59e059a40003c655228c131e1ad439957592303", size = 611911 }, - { url = "https://files.pythonhosted.org/packages/55/55/035838277d8c98fc8c917ac9beeb0cd6c59d675dc2421df5f9fcf44a0070/watchfiles-1.0.4-cp313-cp313-win32.whl", hash = "sha256:aee397456a29b492c20fda2d8961e1ffb266223625346ace14e4b6d861ba9c80", size = 271152 }, - { url = "https://files.pythonhosted.org/packages/f0/e5/96b8e55271685ddbadc50ce8bc53aa2dff278fb7ac4c2e473df890def2dc/watchfiles-1.0.4-cp313-cp313-win_amd64.whl", hash = "sha256:d6097538b0ae5c1b88c3b55afa245a66793a8fec7ada6755322e465fb1a0e8cc", size = 285216 }, +sdist = { url = "https://files.pythonhosted.org/packages/03/e2/8ed598c42057de7aa5d97c472254af4906ff0a59a66699d426fc9ef795d7/watchfiles-1.0.5.tar.gz", hash = "sha256:b7529b5dcc114679d43827d8c35a07c493ad6f083633d573d81c660abc5979e9", size = 94537 } +wheels = [ + { url = "https://files.pythonhosted.org/packages/2a/8c/4f0b9bdb75a1bfbd9c78fad7d8854369283f74fe7cf03eb16be77054536d/watchfiles-1.0.5-cp312-cp312-macosx_10_12_x86_64.whl", hash = "sha256:b5eb568c2aa6018e26da9e6c86f3ec3fd958cee7f0311b35c2630fa4217d17f2", size = 401511 }, + { url = "https://files.pythonhosted.org/packages/dc/4e/7e15825def77f8bd359b6d3f379f0c9dac4eb09dd4ddd58fd7d14127179c/watchfiles-1.0.5-cp312-cp312-macosx_11_0_arm64.whl", hash = "sha256:0a04059f4923ce4e856b4b4e5e783a70f49d9663d22a4c3b3298165996d1377f", size = 392715 }, + { url = "https://files.pythonhosted.org/packages/58/65/b72fb817518728e08de5840d5d38571466c1b4a3f724d190cec909ee6f3f/watchfiles-1.0.5-cp312-cp312-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:3e380c89983ce6e6fe2dd1e1921b9952fb4e6da882931abd1824c092ed495dec", size = 454138 }, + { url = "https://files.pythonhosted.org/packages/3e/a4/86833fd2ea2e50ae28989f5950b5c3f91022d67092bfec08f8300d8b347b/watchfiles-1.0.5-cp312-cp312-manylinux_2_17_armv7l.manylinux2014_armv7l.whl", hash = "sha256:fe43139b2c0fdc4a14d4f8d5b5d967f7a2777fd3d38ecf5b1ec669b0d7e43c21", size = 458592 }, + { url = "https://files.pythonhosted.org/packages/38/7e/42cb8df8be9a37e50dd3a818816501cf7a20d635d76d6bd65aae3dbbff68/watchfiles-1.0.5-cp312-cp312-manylinux_2_17_i686.manylinux2014_i686.whl", hash = "sha256:ee0822ce1b8a14fe5a066f93edd20aada932acfe348bede8aa2149f1a4489512", size = 487532 }, + { url = "https://files.pythonhosted.org/packages/fc/fd/13d26721c85d7f3df6169d8b495fcac8ab0dc8f0945ebea8845de4681dab/watchfiles-1.0.5-cp312-cp312-manylinux_2_17_ppc64le.manylinux2014_ppc64le.whl", hash = "sha256:a0dbcb1c2d8f2ab6e0a81c6699b236932bd264d4cef1ac475858d16c403de74d", size = 522865 }, + { url = "https://files.pythonhosted.org/packages/a1/0d/7f9ae243c04e96c5455d111e21b09087d0eeaf9a1369e13a01c7d3d82478/watchfiles-1.0.5-cp312-cp312-manylinux_2_17_s390x.manylinux2014_s390x.whl", hash = "sha256:a2014a2b18ad3ca53b1f6c23f8cd94a18ce930c1837bd891262c182640eb40a6", size = 499887 }, + { url = "https://files.pythonhosted.org/packages/8e/0f/a257766998e26aca4b3acf2ae97dff04b57071e991a510857d3799247c67/watchfiles-1.0.5-cp312-cp312-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:10f6ae86d5cb647bf58f9f655fcf577f713915a5d69057a0371bc257e2553234", size = 454498 }, + { url = "https://files.pythonhosted.org/packages/81/79/8bf142575a03e0af9c3d5f8bcae911ee6683ae93a625d349d4ecf4c8f7df/watchfiles-1.0.5-cp312-cp312-musllinux_1_1_aarch64.whl", hash = "sha256:1a7bac2bde1d661fb31f4d4e8e539e178774b76db3c2c17c4bb3e960a5de07a2", size = 630663 }, + { url = "https://files.pythonhosted.org/packages/f1/80/abe2e79f610e45c63a70d271caea90c49bbf93eb00fa947fa9b803a1d51f/watchfiles-1.0.5-cp312-cp312-musllinux_1_1_x86_64.whl", hash = "sha256:4ab626da2fc1ac277bbf752446470b367f84b50295264d2d313e28dc4405d663", size = 625410 }, + { url = "https://files.pythonhosted.org/packages/91/6f/bc7fbecb84a41a9069c2c6eb6319f7f7df113adf113e358c57fc1aff7ff5/watchfiles-1.0.5-cp312-cp312-win32.whl", hash = "sha256:9f4571a783914feda92018ef3901dab8caf5b029325b5fe4558c074582815249", size = 277965 }, + { url = "https://files.pythonhosted.org/packages/99/a5/bf1c297ea6649ec59e935ab311f63d8af5faa8f0b86993e3282b984263e3/watchfiles-1.0.5-cp312-cp312-win_amd64.whl", hash = "sha256:360a398c3a19672cf93527f7e8d8b60d8275119c5d900f2e184d32483117a705", size = 291693 }, + { url = "https://files.pythonhosted.org/packages/7f/7b/fd01087cc21db5c47e5beae507b87965db341cce8a86f9eb12bf5219d4e0/watchfiles-1.0.5-cp312-cp312-win_arm64.whl", hash = "sha256:1a2902ede862969077b97523987c38db28abbe09fb19866e711485d9fbf0d417", size = 283287 }, + { url = "https://files.pythonhosted.org/packages/c7/62/435766874b704f39b2fecd8395a29042db2b5ec4005bd34523415e9bd2e0/watchfiles-1.0.5-cp313-cp313-macosx_10_12_x86_64.whl", hash = "sha256:0b289572c33a0deae62daa57e44a25b99b783e5f7aed81b314232b3d3c81a11d", size = 401531 }, + { url = "https://files.pythonhosted.org/packages/6e/a6/e52a02c05411b9cb02823e6797ef9bbba0bfaf1bb627da1634d44d8af833/watchfiles-1.0.5-cp313-cp313-macosx_11_0_arm64.whl", hash = "sha256:a056c2f692d65bf1e99c41045e3bdcaea3cb9e6b5a53dcaf60a5f3bd95fc9763", size = 392417 }, + { url = "https://files.pythonhosted.org/packages/3f/53/c4af6819770455932144e0109d4854437769672d7ad897e76e8e1673435d/watchfiles-1.0.5-cp313-cp313-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:b9dca99744991fc9850d18015c4f0438865414e50069670f5f7eee08340d8b40", size = 453423 }, + { url = "https://files.pythonhosted.org/packages/cb/d1/8e88df58bbbf819b8bc5cfbacd3c79e01b40261cad0fc84d1e1ebd778a07/watchfiles-1.0.5-cp313-cp313-manylinux_2_17_armv7l.manylinux2014_armv7l.whl", hash = "sha256:894342d61d355446d02cd3988a7326af344143eb33a2fd5d38482a92072d9563", size = 458185 }, + { url = "https://files.pythonhosted.org/packages/ff/70/fffaa11962dd5429e47e478a18736d4e42bec42404f5ee3b92ef1b87ad60/watchfiles-1.0.5-cp313-cp313-manylinux_2_17_i686.manylinux2014_i686.whl", hash = "sha256:ab44e1580924d1ffd7b3938e02716d5ad190441965138b4aa1d1f31ea0877f04", size = 486696 }, + { url = "https://files.pythonhosted.org/packages/39/db/723c0328e8b3692d53eb273797d9a08be6ffb1d16f1c0ba2bdbdc2a3852c/watchfiles-1.0.5-cp313-cp313-manylinux_2_17_ppc64le.manylinux2014_ppc64le.whl", hash = "sha256:d6f9367b132078b2ceb8d066ff6c93a970a18c3029cea37bfd7b2d3dd2e5db8f", size = 522327 }, + { url = "https://files.pythonhosted.org/packages/cd/05/9fccc43c50c39a76b68343484b9da7b12d42d0859c37c61aec018c967a32/watchfiles-1.0.5-cp313-cp313-manylinux_2_17_s390x.manylinux2014_s390x.whl", hash = "sha256:f2e55a9b162e06e3f862fb61e399fe9f05d908d019d87bf5b496a04ef18a970a", size = 499741 }, + { url = "https://files.pythonhosted.org/packages/23/14/499e90c37fa518976782b10a18b18db9f55ea73ca14641615056f8194bb3/watchfiles-1.0.5-cp313-cp313-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:0125f91f70e0732a9f8ee01e49515c35d38ba48db507a50c5bdcad9503af5827", size = 453995 }, + { url = "https://files.pythonhosted.org/packages/61/d9/f75d6840059320df5adecd2c687fbc18960a7f97b55c300d20f207d48aef/watchfiles-1.0.5-cp313-cp313-musllinux_1_1_aarch64.whl", hash = "sha256:13bb21f8ba3248386337c9fa51c528868e6c34a707f729ab041c846d52a0c69a", size = 629693 }, + { url = "https://files.pythonhosted.org/packages/fc/17/180ca383f5061b61406477218c55d66ec118e6c0c51f02d8142895fcf0a9/watchfiles-1.0.5-cp313-cp313-musllinux_1_1_x86_64.whl", hash = "sha256:839ebd0df4a18c5b3c1b890145b5a3f5f64063c2a0d02b13c76d78fe5de34936", size = 624677 }, + { url = "https://files.pythonhosted.org/packages/bf/15/714d6ef307f803f236d69ee9d421763707899d6298d9f3183e55e366d9af/watchfiles-1.0.5-cp313-cp313-win32.whl", hash = "sha256:4a8ec1e4e16e2d5bafc9ba82f7aaecfeec990ca7cd27e84fb6f191804ed2fcfc", size = 277804 }, + { url = "https://files.pythonhosted.org/packages/a8/b4/c57b99518fadf431f3ef47a610839e46e5f8abf9814f969859d1c65c02c7/watchfiles-1.0.5-cp313-cp313-win_amd64.whl", hash = "sha256:f436601594f15bf406518af922a89dcaab416568edb6f65c4e5bbbad1ea45c11", size = 291087 }, ] [[package]] @@ -2984,33 +3016,33 @@ wheels = [ [[package]] name = "websockets" -version = "14.2" -source = { registry = "https://pypi.org/simple" } -sdist = { url = "https://files.pythonhosted.org/packages/94/54/8359678c726243d19fae38ca14a334e740782336c9f19700858c4eb64a1e/websockets-14.2.tar.gz", hash = "sha256:5059ed9c54945efb321f097084b4c7e52c246f2c869815876a69d1efc4ad6eb5", size = 164394 } -wheels = [ - { url = "https://files.pythonhosted.org/packages/c1/81/04f7a397653dc8bec94ddc071f34833e8b99b13ef1a3804c149d59f92c18/websockets-14.2-cp312-cp312-macosx_10_13_universal2.whl", hash = "sha256:1f20522e624d7ffbdbe259c6b6a65d73c895045f76a93719aa10cd93b3de100c", size = 163096 }, - { url = "https://files.pythonhosted.org/packages/ec/c5/de30e88557e4d70988ed4d2eabd73fd3e1e52456b9f3a4e9564d86353b6d/websockets-14.2-cp312-cp312-macosx_10_13_x86_64.whl", hash = "sha256:647b573f7d3ada919fd60e64d533409a79dcf1ea21daeb4542d1d996519ca967", size = 160758 }, - { url = "https://files.pythonhosted.org/packages/e5/8c/d130d668781f2c77d106c007b6c6c1d9db68239107c41ba109f09e6c218a/websockets-14.2-cp312-cp312-macosx_11_0_arm64.whl", hash = "sha256:6af99a38e49f66be5a64b1e890208ad026cda49355661549c507152113049990", size = 160995 }, - { url = "https://files.pythonhosted.org/packages/a6/bc/f6678a0ff17246df4f06765e22fc9d98d1b11a258cc50c5968b33d6742a1/websockets-14.2-cp312-cp312-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:091ab63dfc8cea748cc22c1db2814eadb77ccbf82829bac6b2fbe3401d548eda", size = 170815 }, - { url = "https://files.pythonhosted.org/packages/d8/b2/8070cb970c2e4122a6ef38bc5b203415fd46460e025652e1ee3f2f43a9a3/websockets-14.2-cp312-cp312-manylinux_2_5_i686.manylinux1_i686.manylinux_2_17_i686.manylinux2014_i686.whl", hash = "sha256:b374e8953ad477d17e4851cdc66d83fdc2db88d9e73abf755c94510ebddceb95", size = 169759 }, - { url = "https://files.pythonhosted.org/packages/81/da/72f7caabd94652e6eb7e92ed2d3da818626e70b4f2b15a854ef60bf501ec/websockets-14.2-cp312-cp312-manylinux_2_5_x86_64.manylinux1_x86_64.manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:a39d7eceeea35db85b85e1169011bb4321c32e673920ae9c1b6e0978590012a3", size = 170178 }, - { url = "https://files.pythonhosted.org/packages/31/e0/812725b6deca8afd3a08a2e81b3c4c120c17f68c9b84522a520b816cda58/websockets-14.2-cp312-cp312-musllinux_1_2_aarch64.whl", hash = "sha256:0a6f3efd47ffd0d12080594f434faf1cd2549b31e54870b8470b28cc1d3817d9", size = 170453 }, - { url = "https://files.pythonhosted.org/packages/66/d3/8275dbc231e5ba9bb0c4f93144394b4194402a7a0c8ffaca5307a58ab5e3/websockets-14.2-cp312-cp312-musllinux_1_2_i686.whl", hash = "sha256:065ce275e7c4ffb42cb738dd6b20726ac26ac9ad0a2a48e33ca632351a737267", size = 169830 }, - { url = "https://files.pythonhosted.org/packages/a3/ae/e7d1a56755ae15ad5a94e80dd490ad09e345365199600b2629b18ee37bc7/websockets-14.2-cp312-cp312-musllinux_1_2_x86_64.whl", hash = "sha256:e9d0e53530ba7b8b5e389c02282f9d2aa47581514bd6049d3a7cffe1385cf5fe", size = 169824 }, - { url = "https://files.pythonhosted.org/packages/b6/32/88ccdd63cb261e77b882e706108d072e4f1c839ed723bf91a3e1f216bf60/websockets-14.2-cp312-cp312-win32.whl", hash = "sha256:20e6dd0984d7ca3037afcb4494e48c74ffb51e8013cac71cf607fffe11df7205", size = 163981 }, - { url = "https://files.pythonhosted.org/packages/b3/7d/32cdb77990b3bdc34a306e0a0f73a1275221e9a66d869f6ff833c95b56ef/websockets-14.2-cp312-cp312-win_amd64.whl", hash = "sha256:44bba1a956c2c9d268bdcdf234d5e5ff4c9b6dc3e300545cbe99af59dda9dcce", size = 164421 }, - { url = "https://files.pythonhosted.org/packages/82/94/4f9b55099a4603ac53c2912e1f043d6c49d23e94dd82a9ce1eb554a90215/websockets-14.2-cp313-cp313-macosx_10_13_universal2.whl", hash = "sha256:6f1372e511c7409a542291bce92d6c83320e02c9cf392223272287ce55bc224e", size = 163102 }, - { url = "https://files.pythonhosted.org/packages/8e/b7/7484905215627909d9a79ae07070057afe477433fdacb59bf608ce86365a/websockets-14.2-cp313-cp313-macosx_10_13_x86_64.whl", hash = "sha256:4da98b72009836179bb596a92297b1a61bb5a830c0e483a7d0766d45070a08ad", size = 160766 }, - { url = "https://files.pythonhosted.org/packages/a3/a4/edb62efc84adb61883c7d2c6ad65181cb087c64252138e12d655989eec05/websockets-14.2-cp313-cp313-macosx_11_0_arm64.whl", hash = "sha256:f8a86a269759026d2bde227652b87be79f8a734e582debf64c9d302faa1e9f03", size = 160998 }, - { url = "https://files.pythonhosted.org/packages/f5/79/036d320dc894b96af14eac2529967a6fc8b74f03b83c487e7a0e9043d842/websockets-14.2-cp313-cp313-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:86cf1aaeca909bf6815ea714d5c5736c8d6dd3a13770e885aafe062ecbd04f1f", size = 170780 }, - { url = "https://files.pythonhosted.org/packages/63/75/5737d21ee4dd7e4b9d487ee044af24a935e36a9ff1e1419d684feedcba71/websockets-14.2-cp313-cp313-manylinux_2_5_i686.manylinux1_i686.manylinux_2_17_i686.manylinux2014_i686.whl", hash = "sha256:a9b0f6c3ba3b1240f602ebb3971d45b02cc12bd1845466dd783496b3b05783a5", size = 169717 }, - { url = "https://files.pythonhosted.org/packages/2c/3c/bf9b2c396ed86a0b4a92ff4cdaee09753d3ee389be738e92b9bbd0330b64/websockets-14.2-cp313-cp313-manylinux_2_5_x86_64.manylinux1_x86_64.manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:669c3e101c246aa85bc8534e495952e2ca208bd87994650b90a23d745902db9a", size = 170155 }, - { url = "https://files.pythonhosted.org/packages/75/2d/83a5aca7247a655b1da5eb0ee73413abd5c3a57fc8b92915805e6033359d/websockets-14.2-cp313-cp313-musllinux_1_2_aarch64.whl", hash = "sha256:eabdb28b972f3729348e632ab08f2a7b616c7e53d5414c12108c29972e655b20", size = 170495 }, - { url = "https://files.pythonhosted.org/packages/79/dd/699238a92761e2f943885e091486378813ac8f43e3c84990bc394c2be93e/websockets-14.2-cp313-cp313-musllinux_1_2_i686.whl", hash = "sha256:2066dc4cbcc19f32c12a5a0e8cc1b7ac734e5b64ac0a325ff8353451c4b15ef2", size = 169880 }, - { url = "https://files.pythonhosted.org/packages/c8/c9/67a8f08923cf55ce61aadda72089e3ed4353a95a3a4bc8bf42082810e580/websockets-14.2-cp313-cp313-musllinux_1_2_x86_64.whl", hash = "sha256:ab95d357cd471df61873dadf66dd05dd4709cae001dd6342edafc8dc6382f307", size = 169856 }, - { url = "https://files.pythonhosted.org/packages/17/b1/1ffdb2680c64e9c3921d99db460546194c40d4acbef999a18c37aa4d58a3/websockets-14.2-cp313-cp313-win32.whl", hash = "sha256:a9e72fb63e5f3feacdcf5b4ff53199ec8c18d66e325c34ee4c551ca748623bbc", size = 163974 }, - { url = "https://files.pythonhosted.org/packages/14/13/8b7fc4cb551b9cfd9890f0fd66e53c18a06240319915533b033a56a3d520/websockets-14.2-cp313-cp313-win_amd64.whl", hash = "sha256:b439ea828c4ba99bb3176dc8d9b933392a2413c0f6b149fdcba48393f573377f", size = 164420 }, - { url = "https://files.pythonhosted.org/packages/7b/c8/d529f8a32ce40d98309f4470780631e971a5a842b60aec864833b3615786/websockets-14.2-py3-none-any.whl", hash = "sha256:7a6ceec4ea84469f15cf15807a747e9efe57e369c384fa86e022b3bea679b79b", size = 157416 }, +version = "15.0.1" +source = { registry = "https://pypi.org/simple" } +sdist = { url = "https://files.pythonhosted.org/packages/21/e6/26d09fab466b7ca9c7737474c52be4f76a40301b08362eb2dbc19dcc16c1/websockets-15.0.1.tar.gz", hash = "sha256:82544de02076bafba038ce055ee6412d68da13ab47f0c60cab827346de828dee", size = 177016 } +wheels = [ + { url = "https://files.pythonhosted.org/packages/51/6b/4545a0d843594f5d0771e86463606a3988b5a09ca5123136f8a76580dd63/websockets-15.0.1-cp312-cp312-macosx_10_13_universal2.whl", hash = "sha256:3e90baa811a5d73f3ca0bcbf32064d663ed81318ab225ee4f427ad4e26e5aff3", size = 175437 }, + { url = "https://files.pythonhosted.org/packages/f4/71/809a0f5f6a06522af902e0f2ea2757f71ead94610010cf570ab5c98e99ed/websockets-15.0.1-cp312-cp312-macosx_10_13_x86_64.whl", hash = "sha256:592f1a9fe869c778694f0aa806ba0374e97648ab57936f092fd9d87f8bc03665", size = 173096 }, + { url = "https://files.pythonhosted.org/packages/3d/69/1a681dd6f02180916f116894181eab8b2e25b31e484c5d0eae637ec01f7c/websockets-15.0.1-cp312-cp312-macosx_11_0_arm64.whl", hash = "sha256:0701bc3cfcb9164d04a14b149fd74be7347a530ad3bbf15ab2c678a2cd3dd9a2", size = 173332 }, + { url = "https://files.pythonhosted.org/packages/a6/02/0073b3952f5bce97eafbb35757f8d0d54812b6174ed8dd952aa08429bcc3/websockets-15.0.1-cp312-cp312-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:e8b56bdcdb4505c8078cb6c7157d9811a85790f2f2b3632c7d1462ab5783d215", size = 183152 }, + { url = "https://files.pythonhosted.org/packages/74/45/c205c8480eafd114b428284840da0b1be9ffd0e4f87338dc95dc6ff961a1/websockets-15.0.1-cp312-cp312-manylinux_2_5_i686.manylinux1_i686.manylinux_2_17_i686.manylinux2014_i686.whl", hash = "sha256:0af68c55afbd5f07986df82831c7bff04846928ea8d1fd7f30052638788bc9b5", size = 182096 }, + { url = "https://files.pythonhosted.org/packages/14/8f/aa61f528fba38578ec553c145857a181384c72b98156f858ca5c8e82d9d3/websockets-15.0.1-cp312-cp312-manylinux_2_5_x86_64.manylinux1_x86_64.manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:64dee438fed052b52e4f98f76c5790513235efaa1ef7f3f2192c392cd7c91b65", size = 182523 }, + { url = "https://files.pythonhosted.org/packages/ec/6d/0267396610add5bc0d0d3e77f546d4cd287200804fe02323797de77dbce9/websockets-15.0.1-cp312-cp312-musllinux_1_2_aarch64.whl", hash = "sha256:d5f6b181bb38171a8ad1d6aa58a67a6aa9d4b38d0f8c5f496b9e42561dfc62fe", size = 182790 }, + { url = "https://files.pythonhosted.org/packages/02/05/c68c5adbf679cf610ae2f74a9b871ae84564462955d991178f95a1ddb7dd/websockets-15.0.1-cp312-cp312-musllinux_1_2_i686.whl", hash = "sha256:5d54b09eba2bada6011aea5375542a157637b91029687eb4fdb2dab11059c1b4", size = 182165 }, + { url = "https://files.pythonhosted.org/packages/29/93/bb672df7b2f5faac89761cb5fa34f5cec45a4026c383a4b5761c6cea5c16/websockets-15.0.1-cp312-cp312-musllinux_1_2_x86_64.whl", hash = "sha256:3be571a8b5afed347da347bfcf27ba12b069d9d7f42cb8c7028b5e98bbb12597", size = 182160 }, + { url = "https://files.pythonhosted.org/packages/ff/83/de1f7709376dc3ca9b7eeb4b9a07b4526b14876b6d372a4dc62312bebee0/websockets-15.0.1-cp312-cp312-win32.whl", hash = "sha256:c338ffa0520bdb12fbc527265235639fb76e7bc7faafbb93f6ba80d9c06578a9", size = 176395 }, + { url = "https://files.pythonhosted.org/packages/7d/71/abf2ebc3bbfa40f391ce1428c7168fb20582d0ff57019b69ea20fa698043/websockets-15.0.1-cp312-cp312-win_amd64.whl", hash = "sha256:fcd5cf9e305d7b8338754470cf69cf81f420459dbae8a3b40cee57417f4614a7", size = 176841 }, + { url = "https://files.pythonhosted.org/packages/cb/9f/51f0cf64471a9d2b4d0fc6c534f323b664e7095640c34562f5182e5a7195/websockets-15.0.1-cp313-cp313-macosx_10_13_universal2.whl", hash = "sha256:ee443ef070bb3b6ed74514f5efaa37a252af57c90eb33b956d35c8e9c10a1931", size = 175440 }, + { url = "https://files.pythonhosted.org/packages/8a/05/aa116ec9943c718905997412c5989f7ed671bc0188ee2ba89520e8765d7b/websockets-15.0.1-cp313-cp313-macosx_10_13_x86_64.whl", hash = "sha256:5a939de6b7b4e18ca683218320fc67ea886038265fd1ed30173f5ce3f8e85675", size = 173098 }, + { url = "https://files.pythonhosted.org/packages/ff/0b/33cef55ff24f2d92924923c99926dcce78e7bd922d649467f0eda8368923/websockets-15.0.1-cp313-cp313-macosx_11_0_arm64.whl", hash = "sha256:746ee8dba912cd6fc889a8147168991d50ed70447bf18bcda7039f7d2e3d9151", size = 173329 }, + { url = "https://files.pythonhosted.org/packages/31/1d/063b25dcc01faa8fada1469bdf769de3768b7044eac9d41f734fd7b6ad6d/websockets-15.0.1-cp313-cp313-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:595b6c3969023ecf9041b2936ac3827e4623bfa3ccf007575f04c5a6aa318c22", size = 183111 }, + { url = "https://files.pythonhosted.org/packages/93/53/9a87ee494a51bf63e4ec9241c1ccc4f7c2f45fff85d5bde2ff74fcb68b9e/websockets-15.0.1-cp313-cp313-manylinux_2_5_i686.manylinux1_i686.manylinux_2_17_i686.manylinux2014_i686.whl", hash = "sha256:3c714d2fc58b5ca3e285461a4cc0c9a66bd0e24c5da9911e30158286c9b5be7f", size = 182054 }, + { url = "https://files.pythonhosted.org/packages/ff/b2/83a6ddf56cdcbad4e3d841fcc55d6ba7d19aeb89c50f24dd7e859ec0805f/websockets-15.0.1-cp313-cp313-manylinux_2_5_x86_64.manylinux1_x86_64.manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:0f3c1e2ab208db911594ae5b4f79addeb3501604a165019dd221c0bdcabe4db8", size = 182496 }, + { url = "https://files.pythonhosted.org/packages/98/41/e7038944ed0abf34c45aa4635ba28136f06052e08fc2168520bb8b25149f/websockets-15.0.1-cp313-cp313-musllinux_1_2_aarch64.whl", hash = "sha256:229cf1d3ca6c1804400b0a9790dc66528e08a6a1feec0d5040e8b9eb14422375", size = 182829 }, + { url = "https://files.pythonhosted.org/packages/e0/17/de15b6158680c7623c6ef0db361da965ab25d813ae54fcfeae2e5b9ef910/websockets-15.0.1-cp313-cp313-musllinux_1_2_i686.whl", hash = "sha256:756c56e867a90fb00177d530dca4b097dd753cde348448a1012ed6c5131f8b7d", size = 182217 }, + { url = "https://files.pythonhosted.org/packages/33/2b/1f168cb6041853eef0362fb9554c3824367c5560cbdaad89ac40f8c2edfc/websockets-15.0.1-cp313-cp313-musllinux_1_2_x86_64.whl", hash = "sha256:558d023b3df0bffe50a04e710bc87742de35060580a293c2a984299ed83bc4e4", size = 182195 }, + { url = "https://files.pythonhosted.org/packages/86/eb/20b6cdf273913d0ad05a6a14aed4b9a85591c18a987a3d47f20fa13dcc47/websockets-15.0.1-cp313-cp313-win32.whl", hash = "sha256:ba9e56e8ceeeedb2e080147ba85ffcd5cd0711b89576b83784d8605a7df455fa", size = 176393 }, + { url = "https://files.pythonhosted.org/packages/1b/6c/c65773d6cab416a64d191d6ee8a8b1c68a09970ea6909d16965d26bfed1e/websockets-15.0.1-cp313-cp313-win_amd64.whl", hash = "sha256:e09473f095a819042ecb2ab9465aee615bd9c2028e4ef7d933600a8401c79561", size = 176837 }, + { url = "https://files.pythonhosted.org/packages/fa/a8/5b41e0da817d64113292ab1f8247140aac61cbf6cfd085d6a0fa77f4984f/websockets-15.0.1-py3-none-any.whl", hash = "sha256:f7a866fbc1e97b5c617ee4116daaa09b722101d4a3c170c787450ba409f9736f", size = 169743 }, ] [[package]]