Skip to content

codejiajia/AutoEdge-CCP

Folders and files

NameName
Last commit message
Last commit date

Latest commit

 

History

22 Commits
 
 
 
 
 
 
 
 

Repository files navigation

AutoEdge-CCP

A novel cancer-centric multi-association prediction model based on multi-source heterogeneous network integrating node intrinsic attribute information and link information.
image
Please see our manuscript for more details.

Requirements

  • python>=3.7
  • pytorch>=1.11
  • pyg>=2.0
  • numpy>=1.20
  • networkx>=2.6
  • pandas>=1.3
  • scikit-learn>=1.0
  • Java environment

Code and Data

  • data_preprocessing.py:Obtaining node features and edge indices of the multi-source heterogeneous network.
  • main.py:Extracting edge features from the multi-source heterogeneous network.
  • circRNA_set.csv:A complete mapping from circRNA index IDs to circRNA names.
  • drug_set.csv:A complete mapping from drug index IDs to drug meshID, smile and pubchemID.
  • cancer_set.csv:A complete mapping from cancer index IDs to cancer meshID, cancer names.
  • circ2cancer_assoMatrix.csv:circRNA-cancer association matrix.
  • circ2drug_assoMatrix.csv:circRNA-drug association matrix.
  • cancer2drug_assoMatrix.csv:cancer-drug association matrix.
  • circRNA_functional_similarity.csv:circRNA functional similarity scores.
  • circRNA_GIP_similarity.csv:circRNA Gaussian Interaction Profile kernel similarity scores.
  • circRNA_simfusion.csv:circRNA fusion similarity scores.
  • drug_structure_similarity.csv:drug chemical structure similarity scores.
  • drug_GIP_similarity.csv:drug Gaussian Interaction Profile kernel similarity scores.
  • drug_simfusion.csv:drug fusion similarity scores.
  • cancer_semantic_similarity.csv:cancer semantic similarity scores.
  • cancer_GIP_similarity.csv:cancer Gaussian Interaction Profile kernel similarity scores.
  • cancer_simfusion.csv:cancer fusion similarity scores.
  • circRNA_cancer_LabEdgEmbs4LTR.txt:Input data of learning to rank for circRNA-cancer prediction.
  • drug_cancer_LabEdgEmbs4LTR.txt:Input data of learning to rank for drug-cancer prediction.
    Note:1) The header IDs “0-476” in the mentioned dataset can be mapped to specific information about circRNAs, drugs, and cancers by the three mapping files circRNA_set.csv, drug_set.csv, and cancer_set.csv, respectively. 2) See manuscript Section 2.5 for data format details of circRNA_cancer_LabEdgEmbs4LTR.txt and drug_cancer_LabEdgEmbs4LTR.txt.

Usage

  • Here, we provide a demo for the first application scenario:"associated cancer ranking for novel queries." Depending on the specific prediction task, data for ${train.txt} and ${test.txt} can be obtained from either data/circRNA-cancer or data/drug-cancer.
    train:
    >> java -jar bin/RankLib.jar -train ${train.txt} -ranker 6  -metric2t NDCG@10  -tree 1000 -shrinkage 0.1 -tc 256 -mls 1 -save model.txt
    
    test:
    >> java -jar bin/RankLib.jar -load model.txt -rank ${test.txt} -score score.txt
    

About

No description, website, or topics provided.

Resources

Stars

Watchers

Forks

Releases

No releases published

Packages

No packages published

Languages