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SYCL Single Source C++ Parallel Programming
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SYCL 2020 is here!
Open Standard for Single Source C++ Parallel Heterogeneous 

Programming
SYCL 2020 is released after 3 years of intense work

Significant adoption in Embedded, Desktop and HPC markets

Improved programmability, smaller code size, faster performance

Based on C++17, backwards compatible with SYCL 1.2.1

Simplify porting of standard C++ applications to SYCL

Closer alignment and integration with ISO C++

Multiple Backend acceleration and API independent

SYCL 2020 increases expressiveness and simplicity 

for modern C++ heterogeneous programming
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SYCL 2020 Industry Momentum

https://www.alcf.anl.gov/support-center/aurora/sycl-and-dpc-aurora

https://www.embeddedcomputing.com/technology/open-source/risc-v-open-source-ip/nsitexe-kyoto-microcomputer-and-codeplay-software-are-bringing-open-standards-programming-to-risc-v-vector-processor-for-hpc-and-ai-systems

https://www.nextplatform.com/2021/02/03/can-sycl-slice-into-broader-supercomputing/

https://www.phoronix.com/scan.php?page=news_item&px=hipSYCL-New-Lite-Runtime

https://software.intel.com/content/www/us/en/develop/articles/interoperability-dpcpp-sycl-opencl.html

https://www.renesas.com/br/en/about/press-room/renesas-electronics-and-codeplay-collaborate-opencl-and-sycl-adas-solutions

https://www.nersc.gov/news-publications/nersc-news/nersc-center-news/2021/nersc-alcf-codeplay-partner-on-sycl-for-next-generation-supercomputers/

https://research-portal.uws.ac.uk/en/publications/trisycl-for-xilinx-fpga

https://www.imaginationtech.com/news/press-release/tensorflow-gets-native-support-for-powervr-gpus-via-optimised-open-source-sycl-libraries/

SYCL support growing from 

Embedded Systems through 

Desktops to Supercomputers
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SYCL 2020 Major Features

• Unified Shared Memory (USM)
• Code with pointers can work naturally without buffers or accessors
• Simplifies porting from most code (e.g. CUDA, C++)

• Parallel Reductions
• Added built-in reduction operation to avoid boilerplate code and achieve maximum performance on 

hardware with built-in reduction operation acceleration.
• Work group and subgroup algorithms 

• Efficient parallel operations between work items
• Class template argument deduction (CTAD) and template deduction guides

• Simplified class template instantiation
• Simplified use of Accessors with a built-in reduction operation

• Reduces boilerplate code and streamlines the use of C++ software design patterns
• Expanded interoperability

• Efficient acceleration by diverse backend acceleration APIs
• SYCL atomic operations are now more closely aligned to standard C++ atomics

• Enhances parallel programming freedom

5



CC BY-SA 4.0 licensed presentation
SYCL and the SYCL logo are trademarks of 
the Khronos Group Inc.

Parallel Industry Initiatives
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OpenCL 2.2 
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SYCL 1.2
C++11 Single source 
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SYCL 1.2.1
C++11 Single source 

programming 

SYCL 2020
C++17 Single source 

programming
Many backend options 

SYCL 202X
C++20 Single source 

programming
Many backend options 

C++11 C++14 C++17 C++20

OpenCL 3.0

C++23
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SYCL Implementations in Development 

Multiple Backends in 
Development
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SYCL Ecosystem, Research and Benchmarks 

Working Group Members 
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Open industry standards, enable 

flexible integration and deployment 
of multiple acceleration technologies
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Safety Critical API Evolution

OpenCL and SYCL SC work will 

minimize API surface area , reduce 
ambiguity, UB, increase determinism

New Generation Safety 

Critical APIs for Graphics, 
Compute and Display 

Industry Need 
for GPU Acceleration APIs 

designed to ease system 

safety certification is 
increasing

ISO 26262 / ASIL-D 

Rendering Compute Display
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Choose 

Algorithm 
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• SYCL sits at the 
heart of oneAPI

• Provides an open 
standard interface 
for developers

• Defined by the 
industry

oneAPI and SYCL

SYCL 
source 
code

12
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Nvidia and AMD Support in oneAPI

• Extending DPC++ to 
target Nvidia and 
AMD GPUs

• Supporting 
Perlmutter, Polaris 
and Frontier 
supercomputers

• Open source and 
available to everyone

SYCL source 
code

clang++ -fsycl -fsycl-targets=nvptx64-nvidia-
cuda

Different targets using a simple compiler flag

clang++ -fsycl -fsycl-targets=amdgcn-amd-amdhsa

https://www.codeplay.com/oneapiforcuda
Resources for AMD coming soon

13
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“this work supports the productivity of 
scientific application developers and users 

through performance portability of 
applications between Aurora and 

Perlmutter.” Enables a broad range 

of software frameworks 
and applications

SYCL Enables Supercomputers

Codeplay works in partnership 

with US National Laboratories 

to enable SYCL on exascale 
supercomputers
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SYCL 2020 compared with SYCL 1.2.1

• Easier to integrate with C++17 (CTAD, Deduction Guides...)

• Less verbose, smaller code size, simplify patterns

• Backend independent

• Multiple object archives aka modules simplify interoperability

• Ease porting C++ applications to SYCL

• Enable capabilities to improve programmability

• Backwards compatible but minor API break based on user 

feedback

SYCL Future Evolution

SYCL 2020
Improving Software Ecosystem
Books, Tutorials, Tool, libraries, GitHub

Expanding Implementations
DPC++

ComputeCpp

triSYCL

hipSYCL

neoSYCL

Regular Maintenance Updates
Spec clarifications, formatting and bug fixes

https://www.khronos.org/registry/SYCL/

NEXT

Over 40 Selected  

Features for SYCL 2020 
Unified Shared Memory) 

Parallel Reductions adds a built in reduction 

operation 

Work-group and sub-group algorithms 

Improvements to atomic operations

Class template argument deduction (CTAD) and 

deduction guides 

Simplification of accessors 

Expanded interoperability with different 

backends 

Extension mechanism

Address spaces

Vector rework

Specialization Constants

...

Integration of successful

Extensions plus new Core 

functionality

Converge SYCL with ISO 

C++ and continue to 

support OpenCL to 

deploy on more devices
CPU

GPU

FPGA

AI processors

Custom Processors

Repeat The Cycle every 1.5-3 years

SYCL Future Roadmap (MAY CHANGE)

Conformance Tests 

Working on 

Implementations

Future SYCL NEXT 

Proposals

...
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A Demo with C++ Parallel STL
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What can I do with a Parallel For Each?

Intel Core i7 7th generation

size_t nElems = 1000u;

std::vector<float> nums(nElems);

std::fill_n(std::begin(v1), nElems, 1);

std::for_each(std::begin(v), std::end(v),

[=](float f) { f * f + f });
Traditional for each uses only one core, 

rest of the die is unutilized!

10000 
elems
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What can I do with a Parallel For Each?

Intel Core i7 7th generation

size_t nElems = 1000u;

std::vector<float> nums(nElems);

std::fill_n(std::execution_policy::par,

std::begin(v1), nElems, 1);

std::for_each(std::execution_policy::par,

std::begin(v), std::end(v),

[=](float f) { f * f + f });

Workload is distributed across cores!

(mileage may vary, implementation-specific behaviour)

2500 
elems

2500 
elems

2500 
elems

2500 
elems
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What can I do with a Parallel For Each?

Intel Core i7 7th generation

size_t nElems = 1000u;

std::vector<float> nums(nElems);

std::fill_n(std::execution_policy::par,

std::begin(v1), nElems, 1);

std::for_each(std::execution_policy::par,

std::begin(v), std::end(v),

[=](float f) { f * f + f });

Workload is distributed across cores!

(mileage may vary, implementation-specific behaviour)

2500 
elems

2500 
elems

2500 
elems

2500 
elems

What about this 
part?
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What can I do with a Parallel For Each?

Intel Core i7 7th generation

size_t nElems = 1000u;

std::vector<float> nums(nElems);

std::fill_n(sycl_policy,

std::begin(v1), nElems, 1);

std::for_each(sycl_named_policy

<class KernelName>,

std::begin(v), std::end(v),

[=](float f) { f * f + f });
Workload is distributed on the GPU cores

(mileage may vary, implementation-specific behaviour)

10000 elems
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What can I do with a Parallel For Each?

Intel Core i7 7th generation

size_t nElems = 1000u;

std::vector<float> nums(nElems);

std::fill_n(sycl_heter_policy(cpu, gpu, 0.5),

std::begin(v1), nElems, 1);

std::for_each(sycl_heter_policy<class kName>

(cpu, gpu, 0.5),

std::begin(v), std::end(v),

[=](float f) { f * f + f });
Workload is distributed on all cores!

(mileage may vary, implementation-specific behaviour)

5000 elems

1250 
elems

1250 
elems

1250 
elems

1250 
elems

Experimental!
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https://youtu.be/RoUYiHTsEFE?t=2671
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Demo Results - Running std::sort

(Running on Intel i7 6600 CPU & Intel HD  Graphics 520)

size 2^16 2^17 2^18 2^19

std::seq 0.27031s 0.620068s 0.669628s 1.48918s

std::par 0.259486s 0.478032s 0.444422s 1.83599s

std::par_unseq 0.24258s 0.413909s 0.456224s 1.01958s

sycl_execution_policy 0.273724s 0.269804s 0.277747s 0.399634s
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SYCL 2020 is here!
Open Standard for Single Source C++ Parallel Heterogeneous 

Programming
SYCL 2020 is released after 3 years of intense work

Significant adoption in Embedded, Desktop and HPC markets

Improved programmability, smaller code size, faster performance

Based on C++17, backwards compatible with SYCL 1.2.1

Simplify porting of standard C++ applications to SYCL

Closer alignment and integration with ISO C++

Multiple Backend acceleration and API independent

SYCL 2020 increases expressiveness and simplicity 

for modern C++ heterogeneous programming
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Enabling Industry Engagement
• SYCL working group values industry feedback

- https://community.khronos.org/c/sycl

- https://sycl.tech

• SYCL FAQ
- https://www.khronos.org/blog/sycl-2020-what-do-you-need-to-know

• What features would you like in future SYCL versions?

SYCL 

Working

Group

SYCL 

Advisory

Panels

Khronos GitHub
Contribute to SYCL open source 

specs, CTS, tools and ecosystem

Khronos SYCL Forums, Slack Channels, 

Stackoverflow, reddit, and SYCL.tech

Khronos members
https://www.khronos.org/members/

https://www.khronos.org/registry/SYCL/

Invited Experts

https://www.khronos.org/advisors/

Public contributions to Specification, 

Conformance Tests and software
https://github.com/KhronosGroup/SYCL-CTS

https://github.com/KhronosGroup/SYCL-Docs

https://github.com/KhronosGroup/SYCL-Shared

https://github.com/KhronosGroup/SYCL-Registry

https://github.com/KhronosGroup/SyclParallelSTL
https://github.com/intel/llvm

Open to all!
https://community.khronos.org/www.khr.io/slack

https://app.slack.com/client/TDMDFS87M/CE9UX4CHG

https://community.khronos.org/c/sycl/

https://stackoverflow.com/questions/tagged/sycl

https://www.reddit.com/r/sycl

https://github.com/codeplaysoftware/syclacademy

https://sycl.tech/

• Advisory Panel 

Chaired by Tom 

Deakin of U of Bristol

• Quarterly SYCL 
Advisory Panel

• Regular meetings to 

give feedback on 

roadmap and draft 
specifications

https://community.khronos.org/c/sycl/
https://sycl.tech/
https://www.khronos.org/blog/sycl-2020-what-do-you-need-to-know
https://www.khronos.org/members/
https://www.khronos.org/registry/SYCL/
https://www.khronos.org/advisors/
https://github.com/KhronosGroup/SYCL-CTS
https://github.com/KhronosGroup/SYCL-Docs
https://github.com/KhronosGroup/SYCL-Shared
https://github.com/KhronosGroup/SYCL-Registry
https://github.com/KhronosGroup/SyclParallelSTL
https://github.com/intel/llvm
https://community.khronos.org/
http://www.khr.io/slack
https://app.slack.com/client/TDMDFS87M/CE9UX4CHG
https://community.khronos.org/c/sycl/
https://stackoverflow.com/questions/tagged/sycl
https://www.reddit.com/r/sycl
https://github.com/codeplaysoftware/syclacademy
https://sycl.tech/

