
CC BY-SA 4.0 licensed presentation
SYCL and the SYCL logo are trademarks of
the Khronos Group Inc.

SYCL 2020 and the future
Michael WOng

Acknowledgements:
SYCL WG

Rod Burns

CC BY-SA 4.0 licensed presentation
SYCL and the SYCL logo are trademarks of
the Khronos Group Inc.

SYCL Single Source C++ Parallel Programming

GPU

FPGA DSP

Custom Hardware

GPUCPUCPUCPU

Standard C++

Application
Code

C++
Libraries

ML
Frameworks

C++ Template
Libraries

C++ Template
Libraries

C++ Template
Libraries

SYCL

Compiler

CPU
Compiler

CPU

One-MKL

One-DNN

OneDPC

SYCL-BLAS

SYCL-Eigen

SYCL-DNN

SYCL Parallel STL

...
C++ templates and lambda

functions separate host &
accelerated device code

Accelerated code

passed into device
OpenCL compilers

Complex ML frameworks

can be directly compiled
and accelerated

SYCL is ideal for accelerating larger

C++-based engines and applications
with performance portability

C++ Kernel Fusion can

give better performance

on complex apps and libs
than hand-coding

AI/Tensor HW

GPU

FPGA DSP

Custom Hardware

GPUCPUCPUCPU

AI/Tensor HW

Other

Backends

CC BY-SA 4.0 licensed presentation
SYCL and the SYCL logo are trademarks of
the Khronos Group Inc.

SYCL 2020 is here!
Open Standard for Single Source C++ Parallel Heterogeneous

Programming
SYCL 2020 is released after 3 years of intense work

Significant adoption in Embedded, Desktop and HPC markets

Improved programmability, smaller code size, faster performance

Based on C++17, backwards compatible with SYCL 1.2.1

Simplify porting of standard C++ applications to SYCL

Closer alignment and integration with ISO C++

Multiple Backend acceleration and API independent

SYCL 2020 increases expressiveness and simplicity

for modern C++ heterogeneous programming

3

CC BY-SA 4.0 licensed presentation
SYCL and the SYCL logo are trademarks of
the Khronos Group Inc.

SYCL 2020 Industry Momentum

https://www.alcf.anl.gov/support-center/aurora/sycl-and-dpc-aurora

https://www.embeddedcomputing.com/technology/open-source/risc-v-open-source-ip/nsitexe-kyoto-microcomputer-and-codeplay-software-are-bringing-open-standards-programming-to-risc-v-vector-processor-for-hpc-and-ai-systems

https://www.nextplatform.com/2021/02/03/can-sycl-slice-into-broader-supercomputing/

https://www.phoronix.com/scan.php?page=news_item&px=hipSYCL-New-Lite-Runtime

https://software.intel.com/content/www/us/en/develop/articles/interoperability-dpcpp-sycl-opencl.html

https://www.renesas.com/br/en/about/press-room/renesas-electronics-and-codeplay-collaborate-opencl-and-sycl-adas-solutions

https://www.nersc.gov/news-publications/nersc-news/nersc-center-news/2021/nersc-alcf-codeplay-partner-on-sycl-for-next-generation-supercomputers/

https://research-portal.uws.ac.uk/en/publications/trisycl-for-xilinx-fpga

https://www.imaginationtech.com/news/press-release/tensorflow-gets-native-support-for-powervr-gpus-via-optimised-open-source-sycl-libraries/

SYCL support growing from

Embedded Systems through

Desktops to Supercomputers

4

https://www.alcf.anl.gov/support-center/aurora/sycl-and-dpc-aurora
https://www.embeddedcomputing.com/technology/open-source/risc-v-open-source-ip/nsitexe-kyoto-microcomputer-and-codeplay-software-are-bringing-open-standards-programming-to-risc-v-vector-processor-for-hpc-and-ai-systems
https://www.nextplatform.com/2021/02/03/can-sycl-slice-into-broader-supercomputing/
https://www.phoronix.com/scan.php?page=news_item&px=hipSYCL-New-Lite-Runtime
https://software.intel.com/content/www/us/en/develop/articles/interoperability-dpcpp-sycl-opencl.html
https://www.renesas.com/br/en/about/press-room/renesas-electronics-and-codeplay-collaborate-opencl-and-sycl-adas-solutions
https://www.nersc.gov/news-publications/nersc-news/nersc-center-news/2021/nersc-alcf-codeplay-partner-on-sycl-for-next-generation-supercomputers/
https://research-portal.uws.ac.uk/en/publications/trisycl-for-xilinx-fpga
https://www.imaginationtech.com/news/press-release/tensorflow-gets-native-support-for-powervr-gpus-via-optimised-open-source-sycl-libraries/

CC BY-SA 4.0 licensed presentation
SYCL and the SYCL logo are trademarks of
the Khronos Group Inc.

SYCL 2020 Major Features

• Unified Shared Memory (USM)
• Code with pointers can work naturally without buffers or accessors
• Simplifies porting from most code (e.g. CUDA, C++)

• Parallel Reductions
• Added built-in reduction operation to avoid boilerplate code and achieve maximum performance on

hardware with built-in reduction operation acceleration.
• Work group and subgroup algorithms

• Efficient parallel operations between work items
• Class template argument deduction (CTAD) and template deduction guides

• Simplified class template instantiation
• Simplified use of Accessors with a built-in reduction operation

• Reduces boilerplate code and streamlines the use of C++ software design patterns
• Expanded interoperability

• Efficient acceleration by diverse backend acceleration APIs
• SYCL atomic operations are now more closely aligned to standard C++ atomics

• Enhances parallel programming freedom

5

CC BY-SA 4.0 licensed presentation
SYCL and the SYCL logo are trademarks of
the Khronos Group Inc.

Parallel Industry Initiatives

2011

OpenCL 1.2
OpenCL C Kernel

Language

OpenCL 2.1
SPIR-V in Core

2015

OpenCL 2.2

2017 2020 202X

SYCL 1.2
C++11 Single source

programming

SYCL 1.2.1
C++11 Single source

programming

SYCL 2020
C++17 Single source

programming
Many backend options

SYCL 202X
C++20 Single source

programming
Many backend options

C++11 C++14 C++17 C++20

OpenCL 3.0

C++23

6

CC BY-SA 4.0 licensed presentation
SYCL and the SYCL logo are trademarks of
the Khronos Group Inc.

SYCL Implementations in Development

Multiple Backends in
Development

There is development on supporting

SYCL on even more low-level

frameworks.
For more information: http://sycl.tech

Source Code

DPC++
Uses

LLVM/Clang

Part of oneAPI

ComputeCp
p

Multiple

Backends

triSYCL
Open source

test bed

hipSYCL
CUDA and

HIP/ROCm

Any
CPU Any

CPU

Intel
CPUs

Intel
GPUs

Intel
FPGAs

Intel CPUs

Intel GPUs

Intel FPGAs

AMD GPUs
(depends on driver

stack)

Arm Mali

IMG PowerVR

Renesas R-
Car

NVIDIA
GPUs

XILINX FPGAs

POCL
(open-source OpenCL

supporting CPUs and
NVIDIA GPUs and more)

Any CPU

AMD
GPUs

NVIDIA
GPUs

Any CPU

SYCL enables Khronos to

influence ISO C++ to

(eventually) support
heterogeneous compute

SYCL, OpenCL and SPIR-V, as open industry

standards, enable flexible integration and

deployment of multiple acceleration
technologies

VEO

Intel
CPUs

NEC VEs

neoSYCL
SX-AURORA
TSUBASA

Level
Zero

Intel
GPUs

NVIDIA
GPUs TBB

Any CPU

Level
Zero

Intel
GPUs

neoSYCL
SX-AURORA
TSUBASA

VEO

Kunpeng

Ascend

Shengteng

http://sycl.tech/

CC BY-SA 4.0 licensed presentation
SYCL and the SYCL logo are trademarks of
the Khronos Group Inc.

SYCL Ecosystem, Research and Benchmarks

Working Group Members

Benchmarks/Books Linear Algebra

Libraries

Implementations
Machine Learning

Libraries and Parallel

Acceleration Frameworks

Research

neoSYCL
SX-AURORA TSUBASA

BLAS FFT Math RAND

SYCLBLAS
oneMKL

oneMKL oneMKL oneMKL

SOLVER SPARSE TENSOR STL

oneMKL oneMKL SYCL-DNN
Eigen
oneDNN

SYCL Parallel
STL
oneDPL

SYCL-Bench

Direct

Programming

Benchmark

triSYCL

360k

download
s

8

CC BY-SA 4.0 licensed presentation
SYCL and the SYCL logo are trademarks of
the Khronos Group Inc.

Sensor Data

Training Data

Trained
Networks

Neural Network
Training

C++ Application
Code

SYCL in Embedded Systems, Automotive, and AI

Compilation Ingestion

FPGA

DSP
Dedicated
Hardware

GPU

Vision / Inferencing

Engine
Compiled

Code

Hardware Acceleration APIs

Diverse Embedded Hardware
Multi-core CPUs, GPUs

DSPs, FPGAs, Tensor Cores
* Vulkan only runs on GPUs

Applications link to compiled

inferencing code or call
vision/inferencing API

Networks trained on high-end
desktop and cloud systems

Open industry standards, enable

flexible integration and deployment
of multiple acceleration technologies

9

CC BY-SA 4.0 licensed presentation
SYCL and the SYCL logo are trademarks of
the Khronos Group Inc.

Safety Critical API Evolution

OpenCL and SYCL SC work will

minimize API surface area , reduce
ambiguity, UB, increase determinism

New Generation Safety

Critical APIs for Graphics,
Compute and Display

Industry Need
for GPU Acceleration APIs

designed to ease system

safety certification is
increasing

ISO 26262 / ASIL-D

Rendering Compute Display

10

CC BY-SA 4.0 licensed presentation
SYCL and the SYCL logo are trademarks of
the Khronos Group Inc.

Choose

Algorithm

for target

Simulation
HPC Languages

Solver Libraries, Parallel RT

C++ Application uses

SYCL, Kokkos, Raja

SYCL in HPC/Supercomputers

CUDA/pthreads/

OpenACC/OpenCL
OpenMP for C

and Fortran

Need Languages that allow

control of these Data Issues
Set Data affinity, Data Layout, Data

movement, Data Locality, highly

Parameterized Code and dynamically

compose the algorithms (C++ templates,

parallel STL, inlining and fusion,

abstractions)

Math, ML, Data Libraries; C++ Std, C, Python Libraries
Libraries augment compiler

optimizations for Performance

Portable programs

Use open standards to run

Performance Portable code on new

generation, or different vendor’s,

hardware with compiler optimization,

explicit parametrization and

dynamically composed algorithm

Data
Productivity Languages

Big Data Stack, Stats Lib, Databases

Learning
Productivity Languages

Deep Learning, Linear Alg, ML

Implement

and Test

Algorithm

Today’s Supercomputing

Development Workflow

needs knowledge of

system architecture and

tools that control data

Optimize

Algorithm

2021

Three Pillars of

Science Problem

2021 2022 2022 2023

11

CC BY-SA 4.0 licensed presentation
SYCL and the SYCL logo are trademarks of
the Khronos Group Inc.

• SYCL sits at the
heart of oneAPI

• Provides an open
standard interface
for developers

• Defined by the
industry

oneAPI and SYCL

SYCL
source
code

12

CC BY-SA 4.0 licensed presentation
SYCL and the SYCL logo are trademarks of
the Khronos Group Inc.

Nvidia and AMD Support in oneAPI

• Extending DPC++ to
target Nvidia and
AMD GPUs

• Supporting
Perlmutter, Polaris
and Frontier
supercomputers

• Open source and
available to everyone

SYCL source
code

clang++ -fsycl -fsycl-targets=nvptx64-nvidia-
cuda

Different targets using a simple compiler flag

clang++ -fsycl -fsycl-targets=amdgcn-amd-amdhsa

https://www.codeplay.com/oneapiforcuda
Resources for AMD coming soon

13

https://www.codeplay.com/oneapiforcuda

CC BY-SA 4.0 licensed presentation
SYCL and the SYCL logo are trademarks of
the Khronos Group Inc.

“this work supports the productivity of
scientific application developers and users

through performance portability of
applications between Aurora and

Perlmutter.” Enables a broad range

of software frameworks
and applications

SYCL Enables Supercomputers

Codeplay works in partnership

with US National Laboratories

to enable SYCL on exascale
supercomputers

14

CC BY-SA 4.0 licensed presentation
SYCL and the SYCL logo are trademarks of
the Khronos Group Inc.

SYCL 2020 compared with SYCL 1.2.1

• Easier to integrate with C++17 (CTAD, Deduction Guides...)

• Less verbose, smaller code size, simplify patterns

• Backend independent

• Multiple object archives aka modules simplify interoperability

• Ease porting C++ applications to SYCL

• Enable capabilities to improve programmability

• Backwards compatible but minor API break based on user

feedback

SYCL Future Evolution

SYCL 2020
Improving Software Ecosystem
Books, Tutorials, Tool, libraries, GitHub

Expanding Implementations
DPC++

ComputeCpp

triSYCL

hipSYCL

neoSYCL

Regular Maintenance Updates
Spec clarifications, formatting and bug fixes

https://www.khronos.org/registry/SYCL/

NEXT

Over 40 Selected

Features for SYCL 2020
Unified Shared Memory)

Parallel Reductions adds a built in reduction

operation

Work-group and sub-group algorithms

Improvements to atomic operations

Class template argument deduction (CTAD) and

deduction guides

Simplification of accessors

Expanded interoperability with different

backends

Extension mechanism

Address spaces

Vector rework

Specialization Constants

...

Integration of successful

Extensions plus new Core

functionality

Converge SYCL with ISO

C++ and continue to

support OpenCL to

deploy on more devices
CPU

GPU

FPGA

AI processors

Custom Processors

Repeat The Cycle every 1.5-3 years

SYCL Future Roadmap (MAY CHANGE)

Conformance Tests

Working on

Implementations

Future SYCL NEXT

Proposals

...
15

https://www.khronos.org/registry/SYCL/

CC BY-SA 4.0 licensed presentation
SYCL and the SYCL logo are trademarks of
the Khronos Group Inc.

A Demo with C++ Parallel STL

CC BY-SA 4.0 licensed presentation
SYCL and the SYCL logo are trademarks of
the Khronos Group Inc.

What can I do with a Parallel For Each?

Intel Core i7 7th generation

size_t nElems = 1000u;

std::vector<float> nums(nElems);

std::fill_n(std::begin(v1), nElems, 1);

std::for_each(std::begin(v), std::end(v),

[=](float f) { f * f + f });
Traditional for each uses only one core,

rest of the die is unutilized!

10000
elems

CC BY-SA 4.0 licensed presentation
SYCL and the SYCL logo are trademarks of
the Khronos Group Inc.

What can I do with a Parallel For Each?

Intel Core i7 7th generation

size_t nElems = 1000u;

std::vector<float> nums(nElems);

std::fill_n(std::execution_policy::par,

std::begin(v1), nElems, 1);

std::for_each(std::execution_policy::par,

std::begin(v), std::end(v),

[=](float f) { f * f + f });

Workload is distributed across cores!

(mileage may vary, implementation-specific behaviour)

2500
elems

2500
elems

2500
elems

2500
elems

CC BY-SA 4.0 licensed presentation
SYCL and the SYCL logo are trademarks of
the Khronos Group Inc.

What can I do with a Parallel For Each?

Intel Core i7 7th generation

size_t nElems = 1000u;

std::vector<float> nums(nElems);

std::fill_n(std::execution_policy::par,

std::begin(v1), nElems, 1);

std::for_each(std::execution_policy::par,

std::begin(v), std::end(v),

[=](float f) { f * f + f });

Workload is distributed across cores!

(mileage may vary, implementation-specific behaviour)

2500
elems

2500
elems

2500
elems

2500
elems

What about this
part?

CC BY-SA 4.0 licensed presentation
SYCL and the SYCL logo are trademarks of
the Khronos Group Inc.

What can I do with a Parallel For Each?

Intel Core i7 7th generation

size_t nElems = 1000u;

std::vector<float> nums(nElems);

std::fill_n(sycl_policy,

std::begin(v1), nElems, 1);

std::for_each(sycl_named_policy

<class KernelName>,

std::begin(v), std::end(v),

[=](float f) { f * f + f });
Workload is distributed on the GPU cores

(mileage may vary, implementation-specific behaviour)

10000 elems

CC BY-SA 4.0 licensed presentation
SYCL and the SYCL logo are trademarks of
the Khronos Group Inc.

What can I do with a Parallel For Each?

Intel Core i7 7th generation

size_t nElems = 1000u;

std::vector<float> nums(nElems);

std::fill_n(sycl_heter_policy(cpu, gpu, 0.5),

std::begin(v1), nElems, 1);

std::for_each(sycl_heter_policy<class kName>

(cpu, gpu, 0.5),

std::begin(v), std::end(v),

[=](float f) { f * f + f });
Workload is distributed on all cores!

(mileage may vary, implementation-specific behaviour)

5000 elems

1250
elems

1250
elems

1250
elems

1250
elems

Experimental!

CC BY-SA 4.0 licensed presentation
SYCL and the SYCL logo are trademarks of
the Khronos Group Inc.

https://youtu.be/RoUYiHTsEFE?t=2671

CC BY-SA 4.0 licensed presentation
SYCL and the SYCL logo are trademarks of
the Khronos Group Inc.

Demo Results - Running std::sort

(Running on Intel i7 6600 CPU & Intel HD Graphics 520)

size 2^16 2^17 2^18 2^19

std::seq 0.27031s 0.620068s 0.669628s 1.48918s

std::par 0.259486s 0.478032s 0.444422s 1.83599s

std::par_unseq 0.24258s 0.413909s 0.456224s 1.01958s

sycl_execution_policy 0.273724s 0.269804s 0.277747s 0.399634s

CC BY-SA 4.0 licensed presentation
SYCL and the SYCL logo are trademarks of
the Khronos Group Inc.

SYCL 2020 is here!
Open Standard for Single Source C++ Parallel Heterogeneous

Programming
SYCL 2020 is released after 3 years of intense work

Significant adoption in Embedded, Desktop and HPC markets

Improved programmability, smaller code size, faster performance

Based on C++17, backwards compatible with SYCL 1.2.1

Simplify porting of standard C++ applications to SYCL

Closer alignment and integration with ISO C++

Multiple Backend acceleration and API independent

SYCL 2020 increases expressiveness and simplicity

for modern C++ heterogeneous programming

24

CC BY-SA 4.0 licensed presentation
SYCL and the SYCL logo are trademarks of
the Khronos Group Inc.

Enabling Industry Engagement
• SYCL working group values industry feedback

- https://community.khronos.org/c/sycl

- https://sycl.tech

• SYCL FAQ
- https://www.khronos.org/blog/sycl-2020-what-do-you-need-to-know

• What features would you like in future SYCL versions?

SYCL

Working

Group

SYCL

Advisory

Panels

Khronos GitHub
Contribute to SYCL open source

specs, CTS, tools and ecosystem

Khronos SYCL Forums, Slack Channels,

Stackoverflow, reddit, and SYCL.tech

Khronos members
https://www.khronos.org/members/

https://www.khronos.org/registry/SYCL/

Invited Experts

https://www.khronos.org/advisors/

Public contributions to Specification,

Conformance Tests and software
https://github.com/KhronosGroup/SYCL-CTS

https://github.com/KhronosGroup/SYCL-Docs

https://github.com/KhronosGroup/SYCL-Shared

https://github.com/KhronosGroup/SYCL-Registry

https://github.com/KhronosGroup/SyclParallelSTL
https://github.com/intel/llvm

Open to all!
https://community.khronos.org/www.khr.io/slack

https://app.slack.com/client/TDMDFS87M/CE9UX4CHG

https://community.khronos.org/c/sycl/

https://stackoverflow.com/questions/tagged/sycl

https://www.reddit.com/r/sycl

https://github.com/codeplaysoftware/syclacademy

https://sycl.tech/

• Advisory Panel

Chaired by Tom

Deakin of U of Bristol

• Quarterly SYCL
Advisory Panel

• Regular meetings to

give feedback on

roadmap and draft
specifications

https://community.khronos.org/c/sycl/
https://sycl.tech/
https://www.khronos.org/blog/sycl-2020-what-do-you-need-to-know
https://www.khronos.org/members/
https://www.khronos.org/registry/SYCL/
https://www.khronos.org/advisors/
https://github.com/KhronosGroup/SYCL-CTS
https://github.com/KhronosGroup/SYCL-Docs
https://github.com/KhronosGroup/SYCL-Shared
https://github.com/KhronosGroup/SYCL-Registry
https://github.com/KhronosGroup/SyclParallelSTL
https://github.com/intel/llvm
https://community.khronos.org/
http://www.khr.io/slack
https://app.slack.com/client/TDMDFS87M/CE9UX4CHG
https://community.khronos.org/c/sycl/
https://stackoverflow.com/questions/tagged/sycl
https://www.reddit.com/r/sycl
https://github.com/codeplaysoftware/syclacademy
https://sycl.tech/

