
Feature Management Using YAML
Markups

Introduction and Objectives 1
Tooling around Feature and Various Artifact YAMLs 2
Feature Management YAML Vs. UML and other Visual Approaches 3
How do teams currently manage features? 3
YAML Specifications Summary 4

YAML for feature/subfeature hierarchy 5

YAML for managing UI Artifacts 6
Terminology / Glossary 6

Examples of Blocks 6
Block Markup Language 7
Associating UI blocks in Feature markup file 8

YAML for Managing Code Modules 8

Overview of Application Modules 9
Framework Module (F-Module) Vs. Implementation Module (I-Module) 9

YAML for Managing Tests associated with features 11

References 11

Introduction and Objectives
Any product evolves over time. Grosser requirements become more and more fine grained.
In turn, these impact the coding, UI development, testing. We often don’t even have visibility of
how much cost it will be in terms of estimation of cost, development time and so on.

In contrast, non-functional requirements include performance, security, reliability, maintainability,
safety and so on. These are identified and managed upfront, and don’t really change much
during the lifetime of a project.

Particularly for startups, initial iterations of a product are very crucial: You have limited budget,
and yet, with every iteration, you want a functional product that can actually be used for real

work. The startups either use mockups, or user interfaces themselves as the feature
documentation.

To help define a good feature development/tracking process, we identified these following
advantages, if we were to adopt a special YAML markup to track features and related artifacts of
a product:

Document features/sub-features as they are thought of, and later, detailed out.
Features start off as gross. For e.g. “Implement search functionality”. And then, we detail
it out. Do we want to search only titles for now? And later add content? Do we want
auto-completion as we type? And so on. These form a feature hierarchy, which would
have to be captured in our markup. In the absence of such a markup, one tends to
simply use requirement specification documents, and we can’t really use structured
information then.

Track associated artifacts. Particularly UI artifacts, such as mockups. For e.g. if there
is a mockup of home screen, how will it look like after we add search bar? As UI
developers develop these screens, our markup will have to track them, associated with
relevant subfeatures. This will also apply to other product development processes: Code,
Tests and so on. It should be possible for us to find out precisely that code which is used
to implement a particular sub-feature.

Create a communication model to track TODO items. A lot of fine details often need
to be created and communicate when a feature is being implemented either in mockup,
or it is being coded, or tests are being developed. The experience of senior and
experienced developers needs to be captured. For e.g. in our search example, the
instruction for developer might be “Search autocomplete response should be within a
sub-second latency.” Or, to UI developer, it might be, “Autocomplete suggestion box
should only list 5 items”. This communication, which is intended to reflect in artifacts
associated, is best captured and associated at sub-feature level, and our markup should
facilitate that.

And finally, auto-generate the artifacts from features when frameworks support it.
Let us say, our UI developers are directly using frameworks such as bootstrap (or even
React native, Vue/Vuetify etc) to create mockup UI with example data. So, if I want to
add a search bar in the main notification tab of the home screen for the search feature,
it could be hand edited and seen in a browser. But it is also possible to do this in
automated manner: Just make the main notification tab take a list of components from a
configuration file. Then, all we can do is to develop a simple approach to add our search
component definition to this configuration file automatically. So in theory, the feature
definition can now drive modification of UI at configuration time. (Tools such as stencil
are designed to help in this approach.) This approach can not only be applied to UI
artifacts, but also to development artifacts. For e.g. we may have a pluggable
architecture and a feature may define its own plugin. (Note that we are not talking of

code generation here. We are only saying, the code/configuration is written
independently, and triggered to be included in the main codebase upon inclusion of this
feature.

Tooling around Feature and Various Artifact YAMLs
Given the YAML Markup, we can then ease some of the product development tasks:

● Generate Feature Documentation from specs - In form of Excel etc. Or, we can
directly generate Wiki pages. We can even generate requirements documents.

● Tracking and linking artifacts. Every feature and sub-feature would have to get its
own ID. This helps us create appropriate linkages and traceability. More important, it will
give us a very quick access to relevant contributed artifacts from various teams specific
to a sub-feature.

● Planning and Tracking progress. While planning and tracking happens in different
tools, the process gets very structured by having programmatic access to
feature/subfeature and artifact YAMLs.

● Autogenerate Artifacts. When we use appropriate frameworks, we should even be able
to autogenerate artifacts related to specific sub-features.

Feature Management YAML Vs. UML and other Visual
Approaches
UML is popular means of doing various visual documents to convey the intent of the
applications. It is best suited for interactions (Use cases, Interactions via sequence diagrams,
code organizations via component diagrams) and so on.

However, UML is a specification, and carries with it a lot of semantics, which needs to be learnt
to properly use it as a collaboration medium. Over the time, it is more used as a communication
tool mainly for documentation purposes, rather than intended purpose of documenting object
models, classes and their relations, which can then be used to generate code.

Recent hacker news thread has elaborate discussions on this: Why UML “Really” died? .

The intent of our YAML approach is to create an incremental process to capture the
requirements (and in particular features), and then to connect them to changing UI artifacts,
Development artifacts and Test artifacts. A change must connect to the change. For example,
an UML sequence diagram may be modified due to feature requirement. So we want the
change to be identified in feature, and the changed subfeature will now link to new UML
diagram.

https://news.ycombinator.com/item?id=26956298

Let us say we are using a markup (such as PlantUML) to draw UML sequence diagram. In such
a case, the change in markup itself is captured as part of UML change, and then used to create
a diagram as a dynamically created, on-demand, picture.

Therefore, irrespective of tools and frameworks used for different aspects of product
development, we can create a markup approach that documents a change.

How do teams currently manage features?
Feature-driven development was a development methodology from 1999, focused on features
(and sub-features) to drive the development. In contrast, scrum and other agile methodologies
focus on incremental development of (usually) fixed duration to advance the projects. As a
result, they tend to use project collaboration tools to also document feature implementations:

● Maintaining a set of documents detailing feature requirements. And using issue tracking
tools to manage them - i.e. communicate and track with developers.

● Using collaborative project management software as a proxy for feature management as
well. For e.g. agile development tools have sprint management capabilities to track user
stories to completion. For e.g. Trello is often used for idea management using its boards
concept.

Dedicated feature management tools like zepel (https://zepel.io/) boldly point out that features
shouldn’t be managed as issue tracking.

Also, there is now well recognized design pattern of Feature Flags - Architect a product to
enable/disable a feature at run time, depending on say, subscription option chosen. This also
needs features to be recognized separately.

In general, it seems like feature management as a separate discipline within a product
development hasn’t taken roots. Our approach, if done well, could change that.

YAML Specifications Summary
We believe there is a need for following types of specifications. A project may of course only
start with features YAML specs and use others as an option.

Type of YAML Markups Main information Associations

Features YAML Files Capture feature info, assign
an ID.
And store the feature status -
Whether it is just an idea,
accepted for implementation,
planned, implemented and so

Association of Ownership
Association of dependency

(On artifacts of UI / App / Test
Modules)

https://en.wikipedia.org/wiki/Feature-driven_development
https://zepel.io/

on.

UI Artifacts YAML Files Capture information about UI
artifacts such as mockups,
screens etc.

It could also refer to specific,
added/removed changes in
mockups and screens.

Code Modules YAML Files.
YAML files may also be
specifically identified portions
within modules/files. See the
details.

System, Components and
Linkages between them, with
IDs assigned. (C4 Model, see
in references)

Test Specification YAML Files TODO

Please note that the project planning, milestones and the like are NOT the focus of these YAML
files; they would be managed in traditional tools.

YAML for feature/subfeature hierarchy

Feature may initially be just by itself, with only a loose description:

ID: SearchInGroupChat
Feature: Search in group chat
DependsOn:

- GroupChat
Description: |

Provide a menu item “Search” for group chat. Clicking it should
result in a new screen with search results from chats of the

group.
SubFeatures:

- ID: AutoCompleteSearchInGroupChat
Status: Planned

- ID: SearchOnlyTitles
Status: Planned

And later, we make it refined, but adding sub-features, each of which may be an independent
aspect, but depending on already having some existing features. So our markup should capture
the definitions and dependencies. Examples:

● Search is a typical feature in any product.
○ Adding autocomplete is a subfeature.

○ Adding an option to search only in titles is a sub feature which is meaningful in
context of main feature, and is orthogonal to the autocomplete subfeature.

● In whatsapp, “Mute notifications” is one of the subfeatures under group chat. Within that,
“Mute notifications during night” may be sub feature of Mute Notifications.

So our markups will be as follows (for Autocomplete):

ID: SearchAutocompleteInGroupChat
Feature: Search Autocomplete in group chat
DependsOn:

- SearchInGroupChat
Description: |

As user types, provide a means to show list of chats starting
with

that word.

We will later on see how to augment the related artifacts and modules with these definitions.

Please note that whenever we say “Feature”, it may mean “SubFeature” also, because every
feature is sub feature of another feature.

How and when are other artifacts referenced in a feature
As seen above, we need to capture dependencies on the other artifacts.

Ownership of Artifact. We capture if a feature totally owns an artifact fully i.e. the artifact is
otherwise not owned by any other feature. We can do this at any level of subfeature. Note that
the artifact is provisioned (i.e. ID is created with some details), but the end artifact - such as
mockup or screen, or a development module, is not yet created.

Dependency on Artifact. Dependency is when we require an artifact which may be owned by a
parent feature, or even another feature. And this feature is only interested in changes to this
artifact. These changes may be applied manually on a copy of that artifact, or may be applied
automatically (within some sort of framework). If a new artifact is created manually, it must be
managed within that artifact definition YAML, and reevaluated if the parent’s artifact changes.

Actions available from artifacts
Consider the following feature spec.

ID: SearchAutocompleteInGroupChat
Feature: Search Autocomplete in group chat
Description: |

As user types, provide a means to show list of chats starting
with

that word.
Owns:

- UI_SearchAutocompletionDropdownBlock
- Function_SearchAutoComplete

DependsOn:
- UI_SearchInGroupChat
- Code_SearchModule

Actions:
- UIAction_ShowAutocompleteBlock

Block: UI_SearchInGroupChat
EnableCapability: AutoCompleteWidget
AssociateWith: UI_SearchAutocompletionDropdownBlock
Enable an already existing capability to be used for our
purpose

- CodeAction_AddFunctionToModule:
Module: Code_SearchModule
Function: Function_SearchAutoComplete
Add this function to the said module.

Here, we can see that this subfeature owns two artifacts. One is for UI, another is for code
related to search module. That means, these two artifacts are created solely for the purpose of
this subfeature.

The feature also has dependency on existing artifacts, which are also listed here by the feature.
First one is on UI. We want to modify the existing search UI to add a autocomplete feature. This
is done by two means as follows:

Manual Action. If the UI involves mockups, then it is treated as just a documentation action to
communicate to UI implementer: “Modify the existing search box to also show dropdown
autocompletion box whenever something is typed.”

Automated UI framework actions. Let us say, our UI is being done using bootstrap UI
framework, with some example data. This framework, as we know, provides readymade search
widget. With right options in markup, it also implements autocompletion as well.
Then, all we want is that a script can automatically enable this widget to do autocompletion also.
Of course, we should also supply an implementation of how the drop down block should look
like (also in bootstrap). So our feature will simply trigger this action. Needless to say, such list of
actions should already be available to us within the bootstrap framework. Which means, the
framework will adopt and enhance with such actions, if everyone starts using this markup
approach.

Code Module Actions. The code modules and individual functions, or configuration files can
also allow automated modifications. For e.g. a command line parser module may allow a
configuration file to be modified to add new command line options specific to features. These
actions need to be established a-priori by the code framework team. The specs should specify
how to specify such actions.

Please note that our primary intention is to establish what “work” needs to be
done to implement the feature. In UI, In Code, and in the Tests. The intention can
be expressed for documentation only i.e. a senior architect creating the set of
actions for coders to implement (and not to miss anything!). Or they can be
automated and used by framework to automatically add code or configurations.

We try to document the type of actions that one could perform, and therefore, associate with
features to give a better idea.

UI Artifact allowed actions

Artifact
Type

Artifact Sub
Type

Artifact
Allowed
Action

Arguments Meaning

UI Screen Block Insert a Block
at specific
location in
this screen

Screen’s ID,
Position word

Insert this block at the top, or
bottom etc. These positions are
pre-identified within the Screen
block.

Menu Block Insert a block
at specific
location in
this menu

Menu’s ID,
Position word
(top, bottom,
number)

Block can be just a word, or a
small widget such as on/off.

Toolbar Allows to
insert a block
in specific
position in

Toolbar ID,
Position

Can be, e.g., icon, or a search
input block, etc.

toolbar

Settings Menu Insert a new
Setting block

Setting ID,
Setting Sub
Block ID,
Position,

Can be a mini screen.

Development Code Artifacts allowed actions

Artifact
Type

Artifact Sub
Type

Artifact
Allowed
Action

Argument
s

Meaning

Configuration
Module

Named
Configuration

Add a new
configuration
element

Config block
ID

Add feature specific configuration
element. For e.g. command line options.
Host/port options, and so on.

Modules Home
Directory

Module
directory

Create a
module
directory,
populate with
specific
template if any.

Module
name,
Name of file
Name of
template

Creates a new module. For e.g. all
authentication modules are undr
Authentication directory. A particular auth
mechanism (a feature) instructs
particular module to be created under
this directory.

Plugin Module Add a plugin
module of some
type

Type of
Plugin

All plugins adhering to specific
registration semantics, and provide
uniform API.

A File in Module N/A Add a function
to file

Name of
function, path
of codebase

It should not matter where the function is
added. But annotate it so that we identify
it belongs to this feature.

An existing
function

Add a single (or
few lines) of
code that is
related to this
feature,

At
pre-identified
location in
this function.

An example is a function that calls a
series of initializations, each for specific
feature.

Ordering can be managed by positions, if
it is important. Ideally it is used when
ordering is not important.

Data Modeling DB Create a Table
or Add a
column to table

Specifics of
table/column
s.

Provide information to add tables and/or
columns to tables.

Note that a single feature may trigger multiple actions.

Some examples of actual use in applications:
● Insert a few lines of code (which are themselves not functions) within an existing

function.
○ For e.g. Initialization calls managed by dynamically inserting functions in a

startup/shutdown code.
○ Or, one may do a series of checks, each specific to feature within a function. For

e.g. “add a user” feature may request code to be added to verify that userid
meets the specifications provided. This code may be managed as a YAML
artifact, and be inserted into a specific useradd function dynamically, at a

specified location within the function - where it allows various checks to be made
before calling database add.

● Add configuration elements specific to feature:
○ For e.g. File paths to store the files
○ Command line options

● Manage URL Paths of application (in web framework): Insert the URL Handler function
as well as path registration..

● Use a tool to manage database schema. Drive the schema addition from features i.e. let
feature adds required columns / tables etc.

● Manage plugins which all share the same function signatures / APIs. Insert and manage
them through features.

YAML for managing UI Artifacts

Features will be associated with UI artifacts as they are being developed in parallel by UI
designers. We should associate these artifacts such as mockup screens (or fully developed UI)
with features to ease tracking and access.

Various mechanisms are used to capture the UI: Hand drawings, Mockup screens created by
tools, Use of bootstrap-like widget system, High resolution tools like Figma and so on. Our
approach should be orthogonal to these - with the intention to mainly track feature specific
artifacts, or sub-artifacts.

Terminology / Glossary

● Block. We use the generic term “Block” for an UI artifact, since it owns space on the
screen real estate. It is always an image for our purpose, irrespective of tool.

● E-Blocks. A feature/sub-feature may totally own a mockup screen. For e.g. mute
notifications may have its pop up screen totally developed and used for this feature. We
call such artifacts as E-Blocks, E meaning “End artifact”. E-Blocks are either managed
by end user (i.e. different versions are associated with features as they evolve)

● F-Blocks. Or, a feature may insert its artifact in an already existing mockup screen. For
e.g. a menu item in an existing menu (like adding an option to trigger Mute notifications).
Or within a screen. For e.g. checkbox for “No notifications in the night”, which is a
widget. In this case, the widget (which will be a E-Block) is owned by the subfeature, and
it requests it to be inserted in a mockup of its parent feature - a F-Block owned by
parent.

● Configuration Actions on F-Blocks. Since F-Blocks allow dynamic changes to
themselves as new features are added, we define configurable actions on these blocks.
For e.g., a menu F-block will allow any feature to add a word to itself to trigger the
intended action. So one of main features will be defining a configurable menu, and later

during development, different features will add their menu entries. The semantics of
actions are totally specific to those blocks. The tools used may be able to dynamically
create and present the final E-Blocks.

● D-Blocks or dynamic blocks. These are in-effect E-Blocks, but dynamically created by
running actions on the F-Blocks. They can be recreated by running tools on these
specifications.

For the markup, we use independent markup files to capture details of E-Blocks and F-Blocks,
and use their reference as part of features and sub-features. D-Blocks are created and stored in
directories identifying them as temporary.

Examples of Blocks
Some example of F-Blocks:

● A TopBar of mobile app, which may be configured to contain a menu entry, header, back
button, search icon and so on. These are introduced by respective features.

● A dropdown menu, in which different features may add their invocation entrypoints.
● A Screen, whose contents are configured for the main feature that screen implements.

Note that we generate D-Blocks when a feature is planned, and use the screenshots to depict
the use of the feature.

Some example of E-Blocks:
● Say, we do “Mute Notifications” popup. It will be designed by UI designer and contain

things like duration of notification etc. And thus it will be a E-Block, since we don’t expect
any changes by later feature enhancements. If we do make such enhancements, then
this will be versioned against older feature, and new version will be associated with new
sub feature.

Block Markup Language
We need to keep a list of designed blocks - both E-Blocks and F-Blocks. (G-Blocks are
autogenerated.) The spec for the Block is as follows:

BlockID: HomeScreenLeftMenu
BlockName: Home Screen Left side menu
BlockType: F-Block
BlockArtifacts:

ToolType: Vuetify
File: “HomeScreenLeftMenu.vue”

Attributes:
MaxSize: 10
ShowMoreAfterMaxSize: True

ActionsList:
- AddMenuWord

Name: ShortWord
Position: PositionWord

- AddToggleWordOption
Name: ShortWord
ToggleType: OnOffButton

Here, block is logically defined with action names such as “AddMenuWord”. That means, this
block can have dynamically added elements from other features. Hence it is F-Block. If it is
E-Block, the ActionList will be empty.

Each Action in ActionsList is a name, and it can take one or more arguments as options.

“ShortWord”, “PositionWord”, etc are themselves E-Blocks, supposed to be already in the
library.

A Dynamic block is essentially same form as E-Block, except that it will store information about
how it was generated.

Associating UI blocks in Feature markup file
The feature will have markup to identify the E-Block (or F-Block with actions and arguments)
associated with itself.

ID: SearchInGroupChat
...
OwnEBlocks:

- # None
OwnFBlocks:

- Id: SearchPopUp # We can add options, so it is FBlock.
UsingFBlocks:

- Screen: HomeScreenTopBar # search is triggered from search icon
there.

ConfigActions:
- Action: EnableSearchIcon

- OnClick: SearchPopUp
SearchIcon: FavIcons.SearchIcon

YAML for Managing Code Modules

Like we manage UI mockups with features, we also manage code modules, which act as a
definition of what the coders have to implement as part of the feature.

For e.g. if we want “Search” in group chat, then developers may plan to create:
● A generic Search Module, which will be a generic module and allow any

schema/contents to be registered and searched.
● And group chat specific search module, which will probably be a plugin, or at least a set

of independent functions which:
○ Configures search schema for this feature
○ Subscribes to changes (i.e. new chat etc) as part of group chat, so they are

submitted to search engine
○ Implement search API to return results of group chat.

A developer may have to become aware of different side effects, and so on, and that would be
documented here as well.

Like in UI artifacts, the actual coding language or methodology doesn’t really matter. We plan to
create an intermediate model of Modules which are either generic or specific to features and
sub-features. Some examples will help.

Currently our intention is to only create an overall system diagram of modules and their
dependencies automatically, and to create a set of their implemented (or about to implement)
capabilities for better communication. Later, they would be used to directly map to checkins etc.

Overview of Application Modules
● Modules are also hierarchical i.e. a bigger module may consist of multiple smaller

modules.
● Functionality provided by inner modules may be directly exposed or indirectly by

container module
● Modules may use other modules through different means:

○ Functional call APIs with well defined semantics
○ REST or other Web Calls with well defined semantics
○ Asynchronously, via message passing
○ Publish Subscribe model - Publishing and/or Subscribing to specific messages

● Modules may own/implement storage objects - Through database calls, File systems or
API calls.

● Modules never interact directly with UI elements. However, they may use push
messages to update UI elements. UI modules are assumed to be the task of UI
subsystem, and hence covered by tools / artifacts within UI subsystem.

● Modules may implement different design patters:
○ Allow plugins to be registered with them (For e.g. multiple auth mechanisms)
○ Be an observer to system events and respond with specific logic

As part of markup, we associate implementation details with features:

● A feature may fully own a module. Or it may reference a module already defined by
another feature. (We may have non-UI features also specified in the system to define
initial frameworks.)

● When it owns fully, then we may let module’s description and specifications fully describe
the implementation details.

● When we use existing modules to add features (for e.g. adding URL paths to a web
framework), we will use module provided actions. (So a web framework may specify
addition of path and associated method/module).

We will provide examples as we define further.

Framework Module (F-Module) Vs. Implementation Module
(I-Module)
Any app is built as a set of different modules. A module is supposed to be an independent unit
of application, implementing a specific functionality. For example, a Search Module may allow
searching different contents used by the application.

A search module is probably a Framework module. What it means is that it is designed
generally such that other modules may achieve searching by submitting search data to index,
and later do a search. We call such modules, Framework Modules. Framework modules should
define a set of actions: Usually to register and use the framework in specific manner. The
markups should capture such capabilities so that a feature will reference such a module and
then register a local module with it (or do other actions).

In contrast, Implementation Module will be a standalone module, implementing an API for
other modules to use. We capture the intent of such APIs in markup - again using actions. A
Feature which has dependency on this module can then provide documentation about how this
module will be used.

Example markup of Framework Module, which manages paths in a web server such as python
flask:

ModuleID: WebAppPathRegistry
ModuleName: This Web app’s Path Registration system
ModuleType: F-Module
ModuleArtifacts:

- Toolkit: Flask
Path: “./Methods”

ActionsList:
- AddWebPath

Path: WebPath
Methods: WebMethod # GET, POST
FunctionSpec: FunctionSpec

And then, in a feature spec, we will use this F-Block to add a new function, under “Search
activity list” in our web app:

ID: SearchActivityList
...
OwnIModules:

- Id: ActivitySearchRegisterFunction
- Id: SubmitActivityUpdateToSearchFunction
- Id: SearchActivityFunction
- Id: HandleSearchFunction

OwnFModules:
- # None

UsingFModules:
- Id: WebAppPathRegistry
Actions:

- AddWebPath
- Path: “/search”

Methods: GET
FunctionSpec: HandleSearchFunction

Note that our aim is not to write code here! What we want is to capture enough structural details
so that the programmer has no questions to ask about what method names to use for this
feature. So the check-in system can ensure that only these names are used for implementation,
and also implement some semantics around the actions.

YAML for Managing Tests associated with features
This section has not been detailed out. We believe it can be done, and it has many advantages.

Appendix: YAML Specs
YAML schema is specified using the specs here: https://github.com/23andMe/Yamale

References
● Using Stencil component system to generate Ionic components for any specific

framework such as React or Vue. https://www.youtube.com/watch?v=RZ6MLELGsD8
● https://plantuml.com/ - Diagrams that we can create using markup
● Feature management tool zepel (https://zepel.io/)

https://github.com/23andMe/Yamale
https://www.youtube.com/watch?v=RZ6MLELGsD8
https://plantuml.com/
https://zepel.io/

● Diagrams using javascript - can be embedded in wikis:
https://mermaid-js.github.io/mermaid/#/

● https://c4model.com/ A lean graphical notation technique for modelling the architecture
of software systems. https://www.youtube.com/watch?v=x2-rSnhpw0g shows how to
think practically about the architecture diagrams, and not confuse with UML.
https://structurizr.com/ is another tool proposed by him, apart from c4 for plantuml.

● https://www.cs.ubc.ca/~gregor/teaching/papers/4+1view-architecture.pdf - The popular
4+1 model of software visualization

● Many product managers are saying they are using Notion to track product features.
Notion is a generic collaboration tool and also a content manager at the same time.

https://mermaid-js.github.io/mermaid/#/
https://c4model.com/
https://www.youtube.com/watch?v=x2-rSnhpw0g
https://structurizr.com/
https://www.cs.ubc.ca/~gregor/teaching/papers/4+1view-architecture.pdf

