Skip to content
No description, website, or topics provided.
Python
Branch: master
Clone or download
Fetching latest commit…
Cannot retrieve the latest commit at this time.
Permalink
Type Name Latest commit message Commit time
Failed to load latest commit information.
LICENSE
README.md
cases.url
download.py
qrels.txt

README.md

DC3 - A Diagnostic Case Challenge Collection

DC3 is a collection of 31 extremely difficult diagnostic case challenges, that were manually compiled and solved by clinical experts. For each case, there are a number of temporally ordered physician-generated observations alongside the eventually confirmed true diagnosis. We additionally provide inferred dense relevance judgments for these cases in the PubMed Collection of scholarly biomedical articles.

Dataset Description

The dataset is described in detail in our ICTIR 2019 paper.

Requirements

  • python > 2.7
  • requests
  • json
  • datetime
  • bs4

Obtaining the Collection

For copyright reasons we cannot directly share the collection and instead provide a Python script that scrapes the collection for you. Running the following command:

python download.py

will generate the dc3.json file containing all 31 case related topics.

To evaluate your diagnostic decision support system, qrels.txt contains inferred dense relevance judgments for the 2018 snapshot of the National Library of Medicine's PubMed database in trec_eval format.

Citing DC3

If you want to refer to DC3, please cite:

@INPROCEEDINGS{eickhoff2019diagnostic,
  title={{DC$^3$ -- A Diagnostic Case Challenge Collection}},
  author={Eickhoff, Carsten and Gmehlin, Floran and Patel, Anu and Boullier, Jocelyn and Fraser, Hamish},
  booktitle={{Proceedings of the 5th ACM SIGIR International Conference on the Theory of Information Retrieval (ICTIR)}},
  year={2019},
  organization={ACM}
}
You can’t perform that action at this time.